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ABSTRACT :
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An error in WestergaardF§ equation for a certain class
_Qf plane crack problems, originally pointed out by Sih, is
briefly discussed anew. The source of ﬁhe diffiéulty‘is
traced to &n oversight in an earlieir work by Mac?regor, upon
whose work Westergaard based his'equations, Sevéral example:
of interest. illustrating the consequences of the necessary

correction to these equations are given.
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iNTRODUCTIgg

 The Westergaard equations, whiéh apply for a certain class
of plane problems in linear elasticity, were shown to be geh—
érali;’indorrect by Sih in 1966, [l1].. Specifically, by use of
the well known Goursat-Kolosov complex representation of the
~ plane problem, it was shown that the stress and displacement
field equations aépropriate to the restricted class of problems
alluded to above. include a real constant term which is lacking
in the Westergaard equations.

In £his paper the constant term which, according to Sih's
analysis, should be appended Fo Westergaard's equations, is shown
to be the result of an oversight in.a leéser known work of
MacGregor [2], upon whose work Westergaard based his formula-
tions [3]. The consequences of the corrected equations are
then demonstrated for several familiar plane crack problems,
and for the approximaté plane crack-tip stress and displacemant
field equations. |

The problem of the centrallyvcracked strip of finite width
>loaded unaxially in uniform tension is also discussed. A
Westergaard type stress-funciion is introduced which provides an
approximaﬁe closed form solution. This approximate solution has
the merits of yielding the Feddersoa secant formula for the :rack-
tip stress intensity factor, and for proViding an analytical
expression for the crack opening displacément which closely-
matches experimentél_daté and which is a considerable improv:-

ment. over the calculation first introduced by Irwin [4]. -
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MODIFIED WESTERGAARD EQUATIONS

In MacGregor's. complex characterization of the plane

problem (omitting body force) the holomorphic functions

J(z)

It

O0(x,y) + i Q(x,y)

I

H(z)
are introduced together with their derivatives

i J7(z) iw(z)

o(x,y) + i ¥Y(x,y)

il

H” (z)

- K(z).

The bi-harinonic Airy stress function U(x,y) is represented
as a linear combination of the single-valued harmonic

- functions 9 and eo by

Ulx,y) =y 0 + 0 = U(z,7) = 2122 mmpig(af)
+ Re[H(z)] cesececaeas

The comple:: representation of the plane stress field is

then readily shown to be

OXX = 20 + Y 'a—y + -8—-£= 2Re[1W(Z)] - YIm[lW’(Z)] + Re[K’(z)]
Oyy = = ¥ 32 = 3% = + YIR[IH (2)] - Re[K"(2)]
Oy =~ ¥ " ¥ -g;i + % = - Im[iW(z)] - yRel[iW~(z)]

- Im[K“(z)]. cecees

OO(X,Y) + iQO(X,y) ‘.ocoo-ooc.-noo-o-.ooocou

= v{x,y) - i I(x,y). R

(1)

(2)

(3)

(4)



For the restricted class of plane problems for which
Oxy = 0 at allApoints along the line y = 0, which includes
plane crack,problems'in which the internal crack (or cracks)

—

isfsituated along the x axis and where the applied loads
are symmetrically located with respect to the crack plane,

it follows from (4) that
v . . -
W—_;:Im[lw(z) +K (Z)] =C. ® 8 00 00 00 000 00000 (5)

Consequent 1y

from which it necessarily follows that

% |
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1
|
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3
3.

/

® 4+ A = - A e (6)

orx

Re[iW(z) + K~ (2)]

- N R © 0\

everywhere. Here A is a real constant. The oversight in
MacGregor's work rests in the fact that A was omitted or, put
another way, was necessarily presumad to be zero. Substituting

equations (5) thru (7) into (4) and introducing

Z2(z) = i W(z) ..,......;.....;{;.......... (8)



‘one obtains -

Y = Re[Z(z)] - yIm[Z7(2)] - A
- | oyy = Re[z(z)] + yIm[Z27(z)] + Av
cxy = —‘yRe[Z’(z)]’ R R R E R (9)

which are the.equations obtained by Sih when Z(z) = 2¢07°(2).
Because the stress components are required to satisfy given
boundary conditions the constant A will in general depend or:
the manner of the applied.loading and will vanish only for
rather special loading conditions.

»The'displacement field equatichs must likewise be cor-
rected. In the Goursat-Kolosov representation the displace-

ment field is specified by the well known form [S]

/

2u(utiv) = k¢(z) - z ¢ (2) - y(2) ceecccncacanana (10)

whéfe u(x,y) and v(x,y) are respectiﬁely the x and y com~
ponents of the displacement vector, py = E/2(1+v) is the shesr
-modulus, E and v are Young;s Modulus and Poisson's Ratio
respectively, and k = [3-v/1+v] for plane stress and k = [3-4V]
for plane strain. The holomorphic functions ¢(z) and Y(z) can
be shown to be related to those intfoduced~in equations (1),

(2) and (3) by the relations

iW(z) = Z(z) = 2¢°(2)

H(z)

X(z) + z¢(2)



r/’
.

H'(2) == K(z) = y(2) + ¢(2) + 2¢°(2)

X (z) = ¢(z). S O ¢ B B

T

Adding to (10) its complex conjugate in the case of plane

stress, onz obtains

Eu

= (3-v)Rel[¢(z)] -'(1+v){xReT¢’(z)] + yIm[¢p~“(z)]
4 Rely(2)1}.
Ev = (3-v)Iﬁ[¢(z)] + (14+v) {xIm[¢“(2)] - yRe[¢“(2)]

INIU(Z) 1} e e, (12)

The Goursa:-Kolosov equivalent of equations (5) and (7), with

the help o (11), read

|
o

Im[z¢" (2) + $°(z)]

1
b
\

Rel[z¢"(2) + ¢ (2)]
or
A R T ) L PR (135
everywhere. Integrating
29" (z) - ¢(Z)» + w(z)~ = Az + p
which is equavalent to the pair of equations
xRe[¢”(2)] = yIm[¢”(2)] = Relp()] + Rely(2)] = Ax

yRe[¢~(2z)] + xIm[¢”(2)]1 = Im[¢{z)] + Im[y(z)] = Ay



The constant B, which must be real, can be omitted because its
retention merely serves to add to the displacement field a

term which represents a rigid body displacement.‘ Upon combining

(12) with (14)

Eu

2(1-v)Re[¢(2)] - (1+v)2y Im[¢7"(z2)] - (L+v)Ax

Ev = 4Im[¢(z)] - (1+v)2y Rel6”(2)] + (1+V)Ay  .v.... (15)

To avoid confusion with the bar symbol used to denote complex

conjugatici let

‘ ’ v . . R
26 (2) =‘jnz(z)dz = 7(z) B ¢ T 7}

»

where upon

N
Eu = {1-v)Re[Z(2)] - (1+v)yIm[Z(2)] -~ (1l+v)Ax
N
Ev = 2Im[Z(2)] - (1+v)y Relz(z)] + (1+v)Ay / ....... (17)

emerge as ithe modified Westergaard field equations for plane
stress.

APPLICATIOIIS

To illustrate use of the modified Westergaard equations
it is worth while to treat anew the familiar problem of the
infinite pléte with colinear periodic cracks as shown in Fig. 1.

The factor k is any real number.
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Using the Kolosov equations [5]

Oux * Oyy = 2{¢"(2z) + $7(2)} = 4Rel[¢ " (2)]

Ouy = Txx T gicxy f 2{z¢" (z) + Y7 (2)} et

(18)

The boundary conditions can be expressed as follows: For all

points situated on any crack border

2Re[¢7(2)] + {Zp"(2) + v (z)} = 0

Q
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Due to the gymmétry of the loading relative to the x axis (13)

must be satisfied. With z = z at y:= 0, (13) reduces .(19) to

e /éRe[¢’(z)] = - A. B I -3

for all points on.any crack border. In semi-inverse fashion,
owing to the periodic and symmetric- nature of the crack spacing,

the function 2¢“(z) can be chosen to have the form

2¢°(z) = _g(z) _ N N 7))
2(15)._ .2 ,ma }1/2 '
W

| Sln sSin (—W)

“where the-denominator of the first term has no real part alcng
the crack borders. The funct;on g(é)-is presumed to be holc-
-morphic in the region of definition, except possibly at the
point'z = », and must be such that Im[g(x)] = 0 along the crack
borders. The function 2¢“(z) so defined satisfies boundary con-

dition (21).

From oboundary cogdition (20)
oyy(m),— Gxx(m) + 2i0xy(m) = (1-k)o = 4yIm[¢" (2)] + 2A
- 4iY Re[¢"(2)]
from which
(1-k)o = (z=2)2¢°(2z) + 27, |z]| + «. .. (23)

Inasmuch as 2¢7(2z). must be holomorphic throughout, includingy

the point at infinity, it will therefore be continuous at ani

8 .



in the neighborhood of this point, and for |z| arbitrarily

large

“2¢f(z) > 92 = _ 5

sin (%)
where ‘upon’
(z-2) (-2 (2L _ 92 T ocos T2} 4 o2a = (1-k)o
sin (W—) sin® ((F7)

0.000..000.00‘-0... (24)
" ““which can be identically satisfied by Chdosing'
- . TZ .
9(z) = 0 sin (=)
'—l . . ‘ . .
A"-z— (l-k)c . ...o’nff.‘.lo.nocootqococ-'--.'oonco (25)

The condition that Im[g(x)] = 0 along the crack borders is
also seen to be saﬁisfied.
The stress function which solvas this problem is thus
o sin (%) . -
z(z) = 177" 3 (1-k)o REEERE (26)

{sin®(FF) - sin®(12))

-

For uniaxial uniform tension applied-in the y direction,

k = 0 and A = g/2. The stress function (26) - then assumes -
.a form equivalent to that given by Sanders [6]. When k = 1,
A = 0, which correéponds to loading by equal uniform biaxial
tension. The stress funétion introduced by Westergaard for
this problem in refefencé [3] is therefore a solution only

for this special loading condition.



As another illﬁstration of consequence concerning this
particular class of plane crack problems, consider the so-
called crack-tip stress and displacement field equations.
These éan>be obtained for opening mode crack surface displace-
mehts (mode I) by considération\of the problem of Fig..1l,
ﬁodified‘to,a sinéle centrally 1ocated'¢rack of léngth 2a,

A stress function which will satisfy the boundary conditions

along such a cut has the form

. 24’_"(;) = Z(z) = 9(2)1/2 - A .
e 2 2
{z"-a"}

Proceeding as in the previous’exampie, it will turn out that

'g(z) = 0z and A = (1-k)o/2 so that

2(z) = —9E o (1-k) & eiieiiiiiieiea. (27)

: 1/2
{zz—az}

Introducing crack-tip polar coofdinates (r,8) through the

coordinate transformation ¢ = (z-a) =._rele
+ _
Z(g) = o(zc+a) - (1-k' 2,
. 2 2 172 -
{(z+a) “-a”}
For IQIIVery small, i.e., |z| << a
Z(g) :"\-)__——Ii‘/_z— (l-k) % ® o0 9 00000 s e e 00 s (28)
{2wz} '
where
KI Ec{ﬂa}l/z ....-...‘41...‘_.‘.A............... (29)

{
N

10



is the érack~tip stress intensity factor. Sﬁbstifuting (28) into
(9), (16) and (17) one obtains for ‘the plane stress crack-tip
‘streSS'ahd_displacement»fields the approximations

K

v I

o
XX EE;;;I77 cos(j)[l 81n(—) s1n(2 )]— (l -k)o

K
_—__£T7§ cos'(%)[l+ sin(%) sin(%g)]

e

YY  {2nr}

K ,
I . 5] 0,. 36
o ————=—= sin (3) cos (%) cos (=2)

e -

K 1/2

w2 ED T cos(PUED+ sin(D1- (1K) cos 6
K 1/2 ’ |
v = ﬁi{lf— sm(—) [(l+v) cosz(%)]

+ %9 (1-k)r sin 6 cee. (30)

Again’only when k = 1, i.e., equal-ﬁniférm biaxial tensile
loading, do these equatiqns reduce to the form currently fouad
in the literature [71. |

To further illustrate use of the modlfled Westergaard
equations consider the centrally crccked strip (plate) . of
finite width loaded uniaxially in un;form tension, Fig. 2, of
greét interest in fractﬁre toughnesﬁltesting; and which hés

‘'not been given an-exact closed form solution.

11
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A widely used approximate solution to this problem was
first intrcduced by Irwin [4], by means of the stress func-
tion (26).with k = 1, which, as has been showﬁ,_is the exact
solution tc the periodic colinear crack problem in an infinite
sheet lqaded in uniform biaxial tension. To the stress field
associated with this stress function Irwin adds a uniform

' horizontal_compressive stress of magnitude ¢ along the vertical
edges of tle strip which, interestingly, has the effect of

compensating for the missing A term. This combination satisfies

12 .



boundary conditions along the vertical edges, leaving a
horizontal stress of varying magnitﬁde which depends on the
relative crack size. The crack tip stress intensity'factor'
éﬁéﬁaging from this stress funétion is the so-called tangent-

formula

1/2

Ky = olW tan'<%i)} e, (3D)

Subsequently more accurate truncated séries (poly-
normial) x:presentations for KI have obtained bvasidé [8]
and Srawley et.al. [9], which show the tangent formula to be
in varying degree of small error, depending on the crack siza.
Recently a secant:formula has been proposed by Fedderson [9]

. 1/2
K, = ¢{ma sec (%E)} O (<

I
/

which matches almost identically Isida's KI.Values, deemed
to be the most accurate.. Having the added virtue of being
concise and therefore relatively simple to use, Fedderson's
secant forrwula has now in some quarters replaced the tangent
formula in fracture toughness testing. |

- There will be some practical inte;est then in obtaining
ﬁhe corresponding stress functién, that is, one which comeslﬂ
acceptably close to solving the problem of Fig. 2 and which
yields the secant formula for K;-
It is conveﬁient to let:

z(z) = 2{z) -a . ........}........}.J;,.........., :33)

13



Then

-

Re[Z*(2z)] - yIm 1z°(z)1 - 2a

c.. . =
XX
= Re[z* ' *(2)] e, 34
§yy Re[Z"(z)] + yIm [2%(2)] (34)
. *7 v
,ny ~_yR§ (27 (z)]
5(2) ==~f (Z*(z)v- A) dz =-E%(z) - Az ceesesveeeenn (35)

and _ . - B e

"

Eu
| ) ’ ... (36)
2Im[Z*(z)] - (l+v) yRe[u*(z)] + 2vAy

[H

Ev

A stress function which satisfies the crack border
boundary condition, partially satisfies the vertical edge

boundary ccndition and vields the secant formula for K. has

I
the form
1/2
o{%2 csc(%g)} sin(%z)
= * - =
.Z(z) Z*(z) A — 173
'{sinz (TZy - sir2 (22y 3
W A 1)
| 172 | |
"%O‘{%’ECSC(%—Q)} ;-ouooootnqc--ooco.oucj (37
"For |¢| << a, where ¢ = z-a = ret®
. 1/2
x . d{%i csc(%i)} .
Z{g) = ’ -
omy 1/2
PARS _

W
. 2 ,Ta
sin (W—) +

in(T2) cos (T2
sin(z=) cos ()

21g

. ,Ta Ta
W 51n(W—)‘cos(ﬁ—)‘

’14

(1-v) Relz#*(2)] = (1+v) YIm[Z*(2)] = -2Ax—————=



from which

1/2. :
. of{ra sec(%i)} - Ky
Zt[\ .2. ; 1/2 = 1/2 . R R (38)
T {271z} {27z} - '
Using (38) and
o N 172
2A = o{g™ csc (F2)) e, S ¢ 1))

in (34) thru (36) will give the crack tip stresses and dis-
placements as in equations (30), except that (l-k)o is
replaced by 2A as given by (39).°

The crack border condition .

Syy = Oxy = 00 ¥ = 0s [x] < a

is seen to be satisfied by inspection. At z =

2 |
P fsin(I?) 7\ rsin(E2)
2%+ iy) = i2a T tann () B | —E
cosh(wz) A cosh(wz)

which has no real part. Thus oxy(g,y)“= 0 for all y. On the

other hand
1- [———W ] I-l+ o tanh(%l]
W cosh(%z) _ | 'k '
Oyx (Z1¥) = 2A4 . ‘ —373 TN e (40)
. ,Ta
. 51n(W—) :
y
\ . _co;h(w ) )

15



(37) would‘be‘an exact solution if the right side of (40) were
to vanish for all values ofvy, all other boundary conditions
having been satisfied. Resuits of calculation of (40) are’
shown in Fié. 3. For small crack sizes, (ra/W) < 0.3, the
right side of (40) gives values values very close to zero
élong the entire vertical edge, having é maXimum value of
about four percent of the applied load at the crack.plane
) when (né/W) = 0.3. For (ra/W) - > 0.5 the resulting horizontel
boundary stress exceeds fifteen percent of the applied load
at the crack plane. The'pattérn of this boundary stress
distribution is interesting in that .through Poisson's Ratio
effécts it tends to suppress vertical displacement of points
situated just above. and below the crack plane.

Owing to the greater relative accuracy of the secant
- formula foi: KI' oné_might expect tﬁat for small to moderate
crack sizes,‘e.g., (ra/W) < 0.5; the stress function (37)
will yield good estimates for other centrally located quéntities
such as the crack opening displacemznt, of interest in elastic
‘compliance calibrations. For’displacement gage points locatad
along the platé’center line, it foilowsvfrqm (36), after soma

"calculation, that

g’ﬁ vio,y) = {Z= csc (72) }

ceess  (41)
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Calculation of (41) is compated with experimental data
obtained from Alum. 7075~ T6 center cracked sheets, reported
in reference [10], and shown in Flg 4. The data points
defanng the experimental curve wera obtained in the low load
or . elastlc range. . The-predlcted crack opening dlsplacement,
eq., (41), is a considerabie improvenent over Irwin's cal-
culation, and is surprisingly cloee to the.experimental curve
in the large crack size range where the vettiCal edge boundary
condition. is poorly approximated; The fact that the predicted
compliance curve lies entirely below the experimental curve

appears. to be explainable by the pa-ticular nature of the dis-

 tribution of the excess of vertical edge boundary stress shown

in Fig. 3. Imposition of en identical distribution along tha
vertical edges; but reversed in sense, (leaving these edges
free of traction as they should be) would tend to increase
somewhat the vertical displacement :rom that given by (42) for

all points a little above and below the crack plane and would -

thereby ele¢vate the curve of (41).
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