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PREFACE

This report is submitted by the Douglas Aircraf t Company,

Missile and Space Systems Division, to the National Aeronautics

and Space Administration Marshall Space Flight Center (NASA-

MSFC). It has been prepared under Contract No. NAS8-21023

and describes results of the Orbital Astronomy Support Facility

(OASF) Study. The study began on 1Z December 1966 and ended

on 28 June 1968.

This volume is the third of five and reports on the selection and

conceptual design of astronomy instruments for manned Earth

orbital missions (Task B). The other four volumes present a

technical summary (DAC-58141), detailed results of Tasks A

and C (DAC-58142 and DAC-58144), and a discussion of the

research and technology implications for orbital astronomy

(DAC-58145).

Comments or requests for information concerning this report

•will be welcomed by the following individuals:

• H. L. Wolbers, Program Manager
Douglas Aircraf t Company
Missile and Space Systems Division
5301 Bolsa Avenue
Huntington Beach, California 92647
Telephone: 714-897-0311, Extension 4754

• J. R. Olivier, R-AS-VO
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
Telephone: 205-876-2234
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FOREWORD

The unparalleled research opportunities offered by manned space
flight are perhaps nowhere more evident than in astronomy and

astrophysics. The ability to overcome atmospheric interference
is, in itself, a major breakthrough, and this, when coupled with

the astronaut's ability to select and process data and to calibrate,
modify, and repair instruments, will yield unprecedented and
invaluable insights into many fundamental questions.

While the opportunities for important astronomical research from
a manned platform in Earth orbit are clear, significant planning
questions remain for NASA. For example, the space station and
its scientific instrumentation and crew participation may be
greatly dependent on the research program. What is their sensi-
tivity to research objectives? What are acceptable strategies in
reaching these objectives? Considering the real-life constraints
of limited fiscal and intellectual resources, is there a systematic
approach to planning for the accomplishment of these objectives?

In a sense, the ultimate objective of this study was to reduce the
uncertainty in the planning of astronomical research and the
design of the space facilities which the research demands.

The specific purpose of this.study was to identify and analyze
elements of a long-range evolutionary plan for the 1974-tp-1990
time period that will fulfill the needs of the scientific community
to as large an extent as possible, with flexibility for change as
new data about the universe stimulate new objectives, and to
assess the requirements which such a long-range space astronomy



program would place on manned orbital facilities. The sequence
followed by the study team was as follows:

1. Deriving--with the aid of contributing members of the
scientific community--a set of significant astronomical
research objectives.

2. Identifying those objectives which are particularly
appropriate for a manned orbital observatory.

3. Translating those objectives into observation and
measurement requirements.

4. Deriving a set of conceptual instrument designs.
5. Deriving a series of orbital facilities which can accom-

modate these instruments and perform the desired
research.

6. Formulating an evolutionary plan that is based on the
objectives, instruments, and facilities.

In developing the approach to this plan, the study team was faced
with several significant challenges. First, it was important to
recognize that long-range programs of national scope require
considerable time for the development of necessary systems and
equipment. Long-range planning is therefore desirable because
it offers the promise that necessary long-term fiscal commit-
ments can be made and that the systems and equipment required
will be available by the time they are scheduled for use. Yet the
team recognized that in scientific disciplines, unexpected rather
than planned events sometimes contribute most significantly to

scientific insight, and such unexpected discoveries could well
influence subsequent planning. Furthermore, while rigid research
plans may facilitate the design of the space instruments, they may
stifle innovative research. Recognizing these aspects, the study
team sought to develop an approach that would provide concepts
structured well enough for initial planning and for the derivation
of instrument and space station designs but flexible enough to per-
mit change and individaul contributions and participation.

The result of the OASF Study, then, is a plan that is of sufficient
breadth to permit definition of (1) the effort required to realize
the projected objectives of astronomy, (2) the future performance



requirements for orbital facilities with reasonable expectation
that they will avoid obsolescence ,in the:-near-term, and (3) a
time-phased implementation plan. ' ' "'•'-

The final report of this study is contained in.five.volumes, of

.which this document is one. .These, five volumes"are:

Volume I The Orbital Astronomy Support Facility Study
Final Report: 'Technical Summary
This volume compactly summarizes the material
contained in Volumes II through V.

Volume II OASF Study Final Report: Task A--Orbital
Astronomy Research Requirements
Part 1: The Baseline Astronomy Research

Program
This portion, in describing the baseline research
program used in Tasks B and C, discusses the
participation of scientific contributors, the syste-
matic derivation and evaluation of the program,
and the potential of space astronomy.
Part 2: A Methodology for Systematic Identifica-

tion of Candidate Space Astronomy
Observations

This portion discusses the development of a metho-
dology for use in follow-on research planning as
applied to space astronomy.

Volume III OASF Study Final Report: Task B--Instruments
for Orbital Astronomy
This volume describes a set of instruments--
radio telescopes, optical telescopes, and radia-
tion counters—for accomplishing the observation
requirements derived in Task A. It also discusses
the procedure used in selecting the instruments,
the requirements for developing the instruments,
and the characteristics of the instruments which
will affect their operation in orbit.

Volume IV OASF Study Final Report: Task C--Orbital
Astronomy Support Facility Concepts
This volume discusses the evolution of manned
OASF concepts that accommodate and support
astronomy instruments and respond to demands
of the observation program. It contains a logical,
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evolutionary plan for developing the instruments
and orbital facilities and for utilizing them in a
series of missions that will accomplish the base-
line research program.

Volume V OASF Study Final Report: Research and Technology
Implications for Orbital Astronomy
This volume discusses the research and technology
requirements related to astronomy instruments
and orbital observatory facilities which appear to
warrant further effort.
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Section 1

INTRODUCTION AND SUMMARY

1. 1 PURPOSE OF TASK B

The purpose of the Orbital Astronomy Support Facility (OASF) Study was to
identify and analyze the requirements for manned orbital facilities that will
support orbital missions during the 1974 to 1990 time period, and to develop
a series of mission concepts that are responsive to astronomy research
objectives.

The major objective of Task B was to (1) select a set of instruments for
accomplishing the observation requirements derived in Task A, (2) estimate
their development requirements, including time, cost and supporting research
and technology, and (3) identify characteristics of the instruments that affect
their operation in orbit. This volume documents the activity of Task B.

Under subcontract to Douglas Aircraft Company, Task B was performed by
the Electro-Optics Division of the Kollsman Instrument Corporation, Syosset,
New York, Kollsman was assisted by Airborne Instrument Laboratories,
Deer Park, New York, and by Barnes Engineering Company, .Stamford,
Connecticut.

1.2 SPECIFIC OBJECTIVES OF TASK B

A principal guideline in the selection of astronomy instruments was to satisfy
the observation requirements to the greatest extent possible. Observation
requirements were documented in 9 1 Observation Requirement Data Sheets
(ORDS) during Task A. The ORDS cover the electromagnetic spectrum from
radio frequencies (50 kHz) to gamma rays (100 GeV) and appear in full in
Volume II of this report. A typical ORDS is shown in Figure 1--1.

In addition to being responsive to the observation requirements of the
baseline research program, it was required that the selected instruments
(1) utilize when feasible known instrument concepts and designs, (2) be
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Figure 1-1. Typical Observation Requirement Data Sheet (QRDS)



divided into two time periods, "intermediate" (late 1970's) and "late" (the
1980's), and (3) fit collectively within development funding limitations
anticipated by NASA.

Another important objective of Task B was to provide supporting data for
Task C on each selected instrument. Instrument characteristics, space-
station interface requirements, mass properties, power requirements,
data processing, and maintenance are examples of the type of information
required by Task C in order to include the instruments in the orbital facility
concepts. It was also desirable to select instrument characteristics that
tend to minimize mission and operational constraints.

Other objectives of Task B included estimating development schedules and
costs for each selected instrument; identifying critical areas of supporting
research and technology; and investigating man's usefulness in assembly,
alignment, calibration, operation, and maintenance of the instruments
in space.

1. 3 TASK B INFORMATION SOURCES

Task B used three principal sources of information: (1) the 91 ORDS derived
in Task A, which represented the Baseline Astronomy Program, (2) informa-
tion on known astronomy instrument concepts and designs supplied by NASA,
and (3) consultation with the scientific community, an extension of the
consultation conducted in Task A.

The ORDS were used as the interface between Tasks A and B, since they
defined in specific terms a representative set of observation requirements
specified by the scientific community for the astronomy program. The
ORDS also contained recommendations on the basic characteristics of
relevant instrument designs. These data sheets provided the basis for new
conceptual designs and for modifications to.existing instrument designs.

Information was supplied by NASA on concepts and designs for instruments
already identified with such current items as (1) the Apollo telescope mount

(ATM), (2) the electromagnetic radiation (EMR) instrument package for
ATM, (3) the advanced Princeton satellite (APS), (4) the manned orbital



telescope (MOT), and (5) the Goddar experimental package (GEP). These
and other instruments and instrument concepts were used wherever possible,
"as is" or modified, to satisfy the observation requirements.

Consultations were held with members of the scientific community to review
instrument concepts under consideration. The consultants included many
of the astronomers who generated the ORDS in Task A and other astronomers
and physicists who are prominent in the development of some of the instru-
ment types involved (see Acknowledgements).

1.4 ASTRONOMY INSTRUMENT TERMINOLOGY

A self-consistent terminology for describing astronomy instruments was
adopted in Task B and is adhered to in this report. In this terminology,
which is explained in the following sections, an attempt was made to concur,
inasofar as possible, with current scientific and technical usage. However,
multiple uses of many terms in current usage inevitably made such an effort
imperfect in its results. Therefore, the terminology explained below should
not be construed to suggest any general us;_ge outside of this study.

Astronomical observations involve electromagnetic radiation and cosmic-ray
fluxes. Both electromagnetic radiation and cosmic-ray particles have energy,
momentum, and wavelength. However, wave properties are apparent only
if the energy and momentum are sufficiently large to permit the detection of

individual quanta.

The terminology adopted in Task B refers to all observational apparatus as
"instruments" and subdivides instruments into two categories, (1) telescopes,
for observations involving radiation whose wave properties predominate
and (2) counters, for which particle properties predominate. These two
categories are explained in the following sections.

1. 4. 1 Instruments

The term, "instrument, " as used in this report, refers to the specific item(s)
of hardware that provide a complete capability for making some type of
astronomical observation. "Complete capability" refers to the fact that an



observation can sometimes be divided into separate functions such as (1) col-
lecting the incident radiation and (2) dispersing, filtering, magnifying, and
measuring this radiation (among other tasks) to extract information.

1.4.1.1 Telescopes

As utilized in this study, the term, "telescope, " refers to any instrument
concerned with the detection of fluxes where wavelength is detectable and
the design of the instrument is strongly influenced by that branch of physical
sciences called "wave mechanics. " The region over which telescopes (as
defined here) may be employed extends longward from a wavelength of about

o
1 A; thus, it embraces X-ray, UV, visible, IR, microwave, and radio
radiation. In general, electromagnetic radiation in any of these regions can
be reflected, refracted, diffracted, and polarized.

It is generally convenient to subdivide telescopes into two categories
according to their method of collection, for example, electrical methods for
microwave and radio, ,and optical methods for X-ray, UV, visible, and IR.

1.4. 1.2 Counters

Counters, unlike telescopes, do not cause any meaningful deviation in the
path of the intercepted radiation. They employ various means of identifying
(for example, counting) radiation pulses (photons or particles) coming from
a specified direction and falling in a specified range of energy; and they
reject (for counting purposes) those coming from other directions or falling
outside the specified range of energy.

(The term, "counters, " provides an example of the multiple use of a term
in various circumstances. Besides the use of this word as a basic category
of instrument, as explained here, it is sometimes used to denote a component
of an optical instrument. Thus, a small counting device, such as a Geiger
counter or a proportional counter, may be used as the sensing element of an
optical telescope by placing it in the path of the focused radiation. )

Counters are generally applicable in the X-ray and gamma-ray regions of
the specgrum. In terms of wavelength, their region of applicability may be



identified as less than 20 A. However, it is common practice to express

points in this region in terms of the energy associated with the photons
(discrete pulses) of electromagnetic radiation. The relationship, estab-

lished by Planck's constant, is such that the energy is inversely proportional
to the wavelength, the energy associated with a photon whose wavelength is

o
1 A being .approximately 12.4 keV. The region of applicability of counter
type instruments, which starts at about 0. 6 keV and embraces all higher
energies (shorter wavelengths), is referred to in this report as the region

of high-energy radiation.

1.4.2 Telescope Components (Collectors and Instrumentation Devices
or Sections)

A telescope may generally be considered as a combination of two basic
componets: (1) a collector which intercepts and focuses the electromagnetic
radiation of interest and (2) an instrumentation device, into which the focused
energy is directed, and whose function is to sense, analyze, record or
otherwise process this energy to extract information. Instrumentation
devices may include detectors, image recorders, spectrometers, filters,
polarimeters, magnetometers, or other special purpose items. Since a
single collector may be fitted with more than one instrumentation device,
the complement of instrumentation devices associated with a given collector
is referred to as the "instrumentation section. " Generally speaking, the
collector is identified with the "front-end" of the telescope, and the instru-
mentation devices, or section, are identified with the "back-end" of the
telescope.

In the case of the high-energy radiation counters, because of the increased
difficulty in focusing or concentrating energy as the energy level increases,
the "front-end" and "back-end" terminology associated with optical telescopes
loses its significance. Each basic function of an optical telescope has its
counterpart in a high-energy radiation counter: a collimator corresponds,

insofar as possible, to the optical (reflective) elements; shielding (possibly
augmented by active elements such as photomultiplier tubes) corresponds to
the telescope tube; and a detector suitable for the energy levels involved
corresponds to any of the types of instrumentation devices mentioned in the

preceding paragraph. Nevertheless, the requirements of the design are



usually such that these elements are intimately associated with each other,

both physically and functionally, and moreover are usually designed as an
integrated whole. Therefore, the physical distinction between "front-ends"

and "back-ends" generally becomes indistinct and the single term "counter"
is usually used to refer to the entire instrument.

1. 5 TASK B PROCEDURE

The flow of Task B events is shown in Figure 1-2. Starting with the observa-
tion requirements from Task A, an analysis and sorting of the observation
requirements and recommended instrument parameters was carried out.
The sorted instrument parameters were then expressed in generic instru-
ment concepts arranged in time-phased-groups. These concepts were
reviewed with consultants and revised to take advantage of the information
gained. The generic concepts were then compared with known instrument
concepts and designs, and known designs were substituted for generic con-
cepts wherever feasible. The output of this process was a set of selected
instruments in time-phased groups that could satisfy the requirements of
the baseline astronomy program. These instruments include (1) existing
concepts and designs suitably modified to satisfy observation requirements
associated with the baseline astronomy program and (2) new conceptual
instrument designs which fill the voids in cases where no suitable instruments
were known. Supporting data were developed for each of the selected instru-
ments and provided as a major input to Task C. The supporting data include
the pertinent physical characteristics and space station subsystem require-
ments of each instrument, estimates of development schedules and costs,
assessments of the utilization of man in the operation of the instruments, and
identification of required supporting research and technology.

1. 6 SUMMARY OF ASTRONOMY INSTRUMENTS AND THEIR
REQUIREMENTS " . '

A summary of the instrument classes developed during Task B. appears in
Figure 1-3, which is arranged to show the time-phased groups and the
groupings according to instrument category. Within the optical telescope
category, further subdivision is made into the categories of normal incidence
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and grazing incidence to emphasize the significant area of new technology
represented by grazing-incidence optical instruments. A natural growth in
most cases from the intermediate to the late time period is also in evidence.
For example, most of the normal-incidence stellar instruments show a
significant growth in aperture.

In the case of radio astronomy in the intermediate time period, alternative
instrument concepts are shown for a single application. One concept, the
crossed-H tethered interferometer (Instrument No. 32), was well-coordinated
with the scientific community in the course of an earlier advance mission
study (Reference 1-1); therefore, it constitutes the basic recommendation.
However, the other concept, the terminated-loop tethered interferometer
(Instrument No. 30), was generated in Task B in response to the specific
requirements of Task A and, consequently, is somewhat better-suited to the
requirements of the OASF Study, although the capabilities of the two instru-
ments overlap considerably. Because the analysis in this study did not
identify any decisive advantage for either type of instrument in terms of
cost, development time, or technical feasibility, bith instruments are
included here for future consideration.

The details on how the instruments were selected, descriptions for each of
the instruments and associated instrumentation sections, as well as the
supporting data, occupy the remainder of this volume. Section 2, as indicated
in Figure 1-2, describes the rationale for the. establishment of generic
instrument classifications and the specific selections made after consultation
•with the scientific contributors. Section 3 provides a detailed description
of each instrument on an instrument-by-instrument basis. The general
characteristics, the criteria to which they were designed, specific charac-
teristics required for space station integration analysis in Task C, the
utilization of man, and an engineering drawing of the conceptual design are
presented for each instrument. Brief identification of the supporting research
and technology requirements are also given in Section 3.

Section 4 is devoted solely to supporting research and technology require-

ments and includes the summary relationships of each requirement to the
various instruments, the predecessor-successor relationships of the



various requirements to each other, and the program requirements in terms
of cost and time for accomplishment of the supporting research and tech-
nology items.

From the analysis conducted during this phase of the study, the following
conclusions can be offered relevant to the overall astronomy program:

• A feasible approach to providing the instruments for a manned
orbital astronomy program has been demonstrated. The
development costs of these instruments, in terms of both single
instruments and the entire group, are within realistic budget
levels.

• Current activities devoted to the development of astronomical
instruments in this country can provide the starting point for
22 of the 29 instruments selected in Task B. These activities
range from initial hardware development to flight testing of
initial designs.

• Present technology (or reasonable extensions thereof) can
provide enough of the required instruments to assure program
success. Several areas have been identified where realistic
technology advancements can give real benefits in astronomy
program effectiveness.

• Man in orbit has a vital role in the setup, operation, and
maintenance of many of the instruments identified for the
astronomy program.

• A comprehensive astronomy program can be initiated with the
instruments that can be available for 1-year-mission space
stations (intermediate time period). Instruments available
for 5-year-mission space stations (late time period) can
provide a mature observational capability for the foreseeable
requirements of astronomy in orbit.

• A more comprehensive exploitation of man's capability, through
providing design characteristics that achieve a more effective
man/machine interface, and a more effective interface between
the instruments and the orbital facilities, can be accomplished with
an iteration of Tasks B and C.
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Section 2
INSTRUMENT SELECTION PROCEDURE

One of the principal objectives of Task B was to identify and describe a set
of conceptual instruments (as small in number as possible) capable of per-
forming the astronomical observations called for in the baseline astronomy
program, derived in Task A. Information describing these conceptual instru-
ments constituted the major input to Task C for use in the analysis of in-orbit
facilities to carry out the astronomy program. . The rationale for selecting
these instruments is described in this section.

2.1 INFORMATION FOR MAKING INSTRUMENT SELECTION

The selection of instruments was based primarily on the interpretation of the
observation requirements identified in the baseline astronomy program.
These requirements are embodied in the series of Observation Requirement
Data Sheets (ORDS) that were derived in Task A. The set of 91 ORDS appears
in full in Volume II of this report, and a typical ORDS has been shown in
Figure 1-1 of this volume. These ORDS provided definitive information on
the observations required as a representative portion of the astronomy
program. They also contained recommendations of instrument types to
accomplish the required observations, as well as recommendations of
specific design parameters for these instruments . Because the ORDS were
developed with the aid of leading members of the astronomy community,
these instrument recommendations were given considerable weight in the

selection process described in this section.

Another major information source in the selection of instruments was the
knowledge of a number of ongoing NASA-sponsored activities directed
toward the development of astronomy Instruments for orbit. After the
types of instruments needed to accomplish the baseline astronomy program
were generically identified, instruments associated with these activities

11



were compared with the set of generic instruments and, in cases where it
was deemed most practical, they were substituted for the generic types. In
some cases, minor modifications to these designs were required to satisfy
the observation requirements as fully as possible.

The third major information source in the selection of instruments was the
opportunity for consultation with many of the astronomers whose contributions
provided the basis for many of the ORDS in Task A, as well as with additional
scientists who are prominent in the development of some of the instrument
concepts involved. Preliminary conceptual layouts of many of the instru-
ments under consideration were discussed. These discussions made possible
the development of more practical design approaches and facilitated the inclu-
sion of many design criteria derived from the collective experience of these
consultants.

2. 2 INSTRUMENT-ORIENTED CATEGORIZATION OF
OBSERVATION REQUIREMENTS

As a preparatory step in the analysis of the instrument data and parameters
developed from the baseline astronomy program, consideration was given to
the categorization of the observation requirements from the point of view of
instrument technology. The level of detail in categorization of the observa-
tion requirements that had been found advantageous in Task A is shown in
Figure 2-1. This categorization distinguishes nine types of astronomical
objects and eight regions of electromagnetic radiation. However, for the
instrument selection, it was deemed preferable to distinguish fewer types
of astronomical objects and fewer regions of electromagnetic radiation. The
categories derived for instrument selection are explained below.

With regard to astronomical objects, the only categories considered signifi-
cant for instrument selection reflect a distinction between the sun and all
other celestial sources. This distinction derives from the fact that, near
the Earth, the sun is many orders of magnitude more powerful, in terms of
observed radiant-energy flux, than any other celestial source. Thus, except
in cases where very high resolution is required, instruments observing the
sun generally do not require the large collecting apertures of stellar-oriented

12
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! Figure 2-1. Observational Requirement Data Summary
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instruments. Indeed, in some cases they have to be designed to reject a
considerable amount of excess energy in such a way as to avoid thermal
distortions and even damage to the instrument. For all other celestial
sources, observational instruments are generally designed with the objective
of extracting as much information as possible from a very faint (observed)
source of radiated energy. Therefore, the astronomical object classifications
were reduced to merely solar and stellar, with planetary objects included
in the stellar category.

With regard to radiation, the number of categories was also amenable to
considerable reduction in numbers for purposes of instrument selection.
From the instrument point of view, three basic categories appeared logical,
corresponding to three regimes of handling of the radiated energy.

In the cosmic-ray, gamma-ray, and X-ray regimes, the instruments gen-
erally available do not meaningfully deflect the radiation from its original
path. These devices, as explained in Section 1.4. 1, are called "counters"
in this report, are designed to discriminate among various radiation pulses
(photons or particles) with regard to direction of approach and energy level.
Those falling within certain limits of direction of approach and energy level
are "counted, " and the others are rejected.

In another broad region of the spectrum, embracing UV, visible, and IR
radiation, as well as some overlap in the X-ray region, a different process
of handling the incoming radiation provides a distinct identity. In this
region, radiation coming from some specified direction can be redirected in
an organized, meaningful manner (i. e. , focused, whether by normal-
incidence or grazing-incidence techniques) and then directed into some device
that senses, detects, images, disperses, or otherwise processes the focused
beam of radiated energy to extract information.

The third region convenient for instrument-oriented categorization is the
very-low-frequency radio region (generally referred to here simply as the
radio region). From the instrument point of view, this region may be
described as one in which the wavelengths are no longer small with respect
to the devices for collecting the radiated energy. Focusing is relatively
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imprecise; however, the use of long-baseline interferometry can provide

useful angular measurements.

The result of the foregoing considerations of the categories appropriate to

astronomy observation instrument selection was to reduce the 9x8 matrix

shown in Figure 2-1 to a 3 x 2 matrix, comprising radio, UV-visible-IR,

and high-energy radiation regimes and stellar and solar astronomical
objects.

2. 3 IDENTIFICATION OF GENERIC INSTRUMENT TYPES

Generic instrument types were identified by analysis of the basic observation

specifications in the ORDS. An example of this procedure is illustrated in

Figure 2-2. This figure shows the relationship of wavelength to the required

angular resolution for the ORDS that fall in both the optical instrument cate-

gory and the stellar astronomical object category. Each vertical line indi-

cates the wavelength range and the angular resolution called for in one of

the ORDS; the dot on each line indicates the wavelengths at which the angular

resolution was specified.

10 MICRONS

10.000

1,000

BESTSEEING CONDITIONS
I

NORMALSEEING CONDITIONS

INDICATED TELESCOPE TYPES
1 WIDE-ANGLE (SCHMIDTI FOR UV SURVEY
2 1-METER NON-DIFFRACTION-LIMITED
3 1-METER DIFFRACTION-LIMITED
4 3-METER DIFFRACTION-LIMITED

0.1 1
REQUI RED ANGULAR RESOLUTION, ARC SECONDS

Figure 2-2. Observation Commonality Assessment



By examining the commonalities, or groupings, of the observation require-
ments plotted in Figure 2-2 with respect to the diffraction limitations inher-

ent in optical telescope performance (slopping lines) and in light of the
observations available from ground-based observatories (shaded areas), it
was possible to identify general classes of instruments that would provide
the specified observation capabilities.

The regions defined by Ellipses 1 and 2 identify observations at angular
resolutions comparable to angular resolutions that can be achieved from
ground-based observations but are extended into the UV wavelength region,
in which radiation cannot pass through the atmosphere to reach ground-based
telescopes. Region 1, with angular resolution in the neighborhood of 5 to
10 arc sec, deals with sky surveys in the UV region; while Region 2, with
angular resolution in the neighborhool of 1 arc sec, deals with specific
observations (spectroscopy, imagery, et cetera) of point sources, again in
the UV region.

Regions 3 and 4 embrace both visible and UV wavelengths, because they
relate to angular resolutions superior to any that can be achieved in ground-
based observations (the latter are limited by random refraction of the
incoming radiation by the atmosphere). The regions (ellipses) here must
necessarily be aligned in a direction more or less parallel to the sloping
lines, because these lines indicate the combinations of wavelength and angular
resolution to which any telescope (as determined by its aperture) is inherently
limited by diffraction effects. The ORDS in Region 3 tend to suggest a
1-m-aperture diffraction-limited telescope, and those in Region 4, a 2. 5-
or 3-m diffraction-limited telescope.

It is important to note that the sparsity of ORDS plotted in these regions
reflects the fact that the set of observation requirements generated in Task A
is merely representative of a complete program of astronomy. A more
nearly complete set of observation requirements than those that could be
derived within the scope of Task A would provide a more ample population
in Regions 3 and 4 than that evidenced in Figure 2-2.
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Analysis of this type was the first step in a selection process that eventually
led to the establishment of the following types of instruments:

1. A wide-angle (Schmidt-type) telescope for sky survey work in the
UV region similar to sky surveys that have been made in the visible
region with ground-based Schmidt telescopes (0, 3-m UV Schmidt,
telescope; OASF Instrument No. 33). This type of instrument can
be upgraded with an advanced version in the late time period to per-
form some of the more advanced sky-survey observation require-
ments (1-m UV Schmidt telescope; OASF Instrument No. 13).

2. A telescope of large aperture but with less than the highest quality
optics (i. e. , non-diffraction-limited) to provide an adequate
capability for a significant amount of spectrographic observation in
the UV region. Some useful UV imaging can also be done with such
a telescope (1-m non-diffraction-limited UV-visible-IR telescope;
OASF Instrument No. 45).

3. A large-aperture telescope with high-quality optics (i. e. ,
diffraction-limited) to extend ground-based observations that have
already been made in the visible region down to much finer angular
resolution. This instrument also provides a capability for observa-
tions of fine angular resolution in the UV region (1 -m diffraction-
limited UV-visible-IR telescope; OASF Instrument No. 34).

4. A very-large-aperture diffraction-limited telescope to extend the
angular resolution and light-collecting capabilities of both visible
and UV observations even further than the preceding instrument.
This would extend the limits of the most distant stellar objects
that could be detected. This instrument is a generation later than
the 1-m diffraction-limited telescope (3-m diffraction-limited
UV-visible^IR telescope; OASF Instrument No. 35).

2.4 INSTRUMENT SELECTION

Table 2-2 shows the grouping of the ORDS for instrument selection. Each
group, which is identified alphabetically to facilitate further discussion, is
associated with a given general nature of observation, as noted. The ORDS
belonging to each group are indicated, and the most important elements of
the commonalities affecting possible instrument design parameters for each
group are displayed.as "ORD-Suggested Values of Key Selection Parameters. " \

• liThe entries in this category represent a composite of the entries in the cor- ;•
responding group of ORDS, and generally reflect the most stringent require-
ments set forth in the ORDS. Because it was not possible to meet all of the
most stringent requirements in the derivation of instrument concepts, these
ORDS-suggested values of key selection parameters should be regarded as
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Table 2-1 (page 1 of 3)
OBSERVATION REQUIREMENT COMMONALITIES AND INSTRUMENT SELECTION

Group (for
Identification

in Text)

A

B

C

D

E

F

General Nature of
Observations*

Imaging, spectres copy,
and polarimetry of stellar
and solar radio sources

Spectroscopy of stellar
sources in 1R

Spectroscopy and imaging
of stellar sources in UV

Imaging and Spectroscopy
of stellar sources in visi-
ble and UV

Imaging and Spectroscopy
of remote, faint stellar
sources

Sky survey in UV

Observation
Requirement

Data Sheets (ORDS)
Cited

004, 005, 006, 105,
106

1

029, 063, 072, 073,
074, 075, 076, 077,
078

002, 027, 028, 030,
031, 032, 033, 034,
037, 113

020, 021, 022, 035,
036, 040

(a) 018, 023, 024,
039
(b) 026, 038

101, 107, 171

ORDS-Suggested Values of
Effective
Focal Angular

Aperture Length Resolu-
(m) (m) tion

1°

1.0 5 to 15 1 arc sec

1. 0 30 0. 1 arc sec
(diff-lim
@4, 000 A)

2. 5 (a) 50 0. 05 arc sec
(b) 30 (diff-lim

@5,000 A)

1 arc sec

0. 5 arc sec

Key Selection Parameters**
Wavelength

Field Wavelength (or
of (or Energy Energy)

View Level) Resolution

6 km (max. ) 5%

200 n (max. ) ±1%
(energy
flux)

_ _ -

8° 1,000 A (min.)

5°

Instrument(

OASF
No. Type

32 Crossed-H tethered
interferometer

30 Terminated-loop
tethered
interferometer

40 Filled aperture
radio telescope

14 Cooled Cassegrainian
telescope

45 Cassegrainian
telescope

34 Cassegrainian
telescope

35 Cassegrainian
telescope

33 . All-reflective

13 Schmidt telescopes

s) Selected

Derived From

Large Space Structures
Exp Study (Reference 1-1)
(new)

Kilometer Wave Orbiting
Telescope (References 2-1
and 2-2)

(new)

Goddard Experiment
Package (GEP)

Advanced Princeton
Satellite (Reference 2-3)

Manned Orbital Telescope
(Reference 2-4)

Nthwstn U. Schmidt
(Reference 2-5)
(new)

*Planetary objects included in general stellar category
**Final selections differed in some respects
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Table 2-1 (page 2 of 3)

Group (for
Identification

in Text)

G

H

J

K

L

M

N

General Nature of
Observations*

Photography of outer solar
corona

Imaging and spectres copy
of solar features in UV-
visible -near-IR

Spectres copy of solar
features in extreme UV
(XUV)

Spectroheliography of solar
features in XUV

High-resolution spectres -
copy of solar features in
XUV ..,

Imaging of solar flares in
X-ray region

Spectres copy of solar
flares in X-ray region

Observation
Requirement

Data Sheets (ORDS)
Gited

062

050, 064, 069

053, 057, 066, 067,
069, 079, 080

042, 058
, 043, 044, 051, 060

052
070

054, 055
056, 059, 061

065

045, 068

ORDS-Suggested Values of Key Selection Parameters**
Effective Wavelength
Focal Angular Field Wavelength (or

Aperture Length Resolu- of (or Energy Energy
(m) (m) tion View Level) ;Resolution

--- 45 arc sec 15 ---

t

i
'

1 40' 0. 1 arc sec
(diff-lim
@4, 000 A)

1.5 .75 0. 1 arc sec
(diff-lim
@6,000 A)

1 arc sec --- 300 A (min. )

, 0. 5 arc sec 700 A (typ)

1 70 A (min. )

304 A (min. )

170 A (min.)

1 70 A (min. )

1 arc sec 1/2° 2 to 10 A
(range)

— — _

0. 5 A

0. 25 A

2 A
o

0. 5 A

o
0. 5 A
; o
p. 01 A

v

o
--- 1 A (min. ) 0. 1 A

Instrument(s) Selected

OASF
No. Type Derived From

36 Externally occulted ATM Exp S052
coronagraphs (Reference 2-6)

37 ATM Exp S052
(Reference 2-6)

44 Gregorian optics ATM Solar Telescope
telescope (JPL) (Reference 2-7)

46 Gregorian optics ATM Solar Telescope
(JPL) (Reference 2-7)

04 Hers chelian (off- ATM Exp S055
axis) telescopes (Reference 2-8)

05 ATM Exp S055
(Reference 2-8)

06 Spectroheliograph ATM Exp S053
telescopes (Reference 2-9)

07 ; ATM Exp S053
(Reference 2-9) '

08 Type II grazing- (new)
incidence telescopes

09 . (new)

39 Type I grazing- ATM Exp S056
incidence telescope (Reference 2-10)

11 Single-reflection (new)
grazing -incidence
telescope

*Planetary objects included in general stellar category
**Final selections differed in some respects
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Table 2-1 (page 2 of 3)

Group (for
Identification

in Text)

P

Q

R

S

T

U

V

General Nature of
Observations*

Imaging and Spectroscopy .
of stellar sources in X-ray
region

Sky survey and Spectros-
copy of stellar sources
in X-ray region

Sky survey and Spectros-
copy of stellar sources
in X-ray region

Spectroscopy and photom-
etry of stellar and solar
sources in gamma-ray
region

Spectroscopy and photom-
etry of stellar sources in
X-ray and gamma-ray
region

Sky survey and Spectros-
copy of stellar sources
gamma-ray regions

Spectroscopy, flux, and
position/ electron ratio
of cosmic -ray electrons

Observation
Requirement

Data Sheets (ORDS)
Cited

081, 082, 083, 084

085, 090, 095, 096,
097, 100

049, 086, 089

046, 102

098, 099, 103, 104

048, 093

087, 091

ORDS-Suggested Values of Key Selection Parameters**
Effective Wavelength

Focal Angular Field Wavelength (or
Aperture Length Resolu- of (or Energy Energy)

(m) (m) tion View Level) Resolution

500 cm2 --- 0. 1 arc sec 2° 1 to 24 A 1%
collecting , (range)
area

0.1° 3° 0 . 7 t o 2 0 k e V 10%
(range)

3° 6° 10 to 300 10%
MeV
(range)

--- . 3° 6° 0.3 to 20 5%
MeV
(range)

3° 6° 10 keV to 1 keV
20 MeV
(range)

0.5° 30° 20 MeV to 50%
1 GeV
(range)

500cm2 - --- --- 1 step 100 MeV to 10%
collecting radian 100 GeV
area (range)

1 Instrument(s) Selected

OASF
No. Type Derived From

19 Type I grazing- Large Space Structures
incidence telescope Exp Study (Reference 2-11)

20 Proportional EMR Exp No. 9
counter array (Reference 2-12)

22 : Scintillation EMR Exp No. 3
\ counter (Reference 2-12)

23 ; Scintillation EMR Exp No. 5
42 counters (Reference 2-12)

j

25 Solid-state counter EMR Exp No. 7
(Reference 2-12)

43 ; Digitized spark EMR Exp No. 8
chamber (Reference 2-12)

27 Gas Cerenkov (new)
counter

*Planetary objects included in general stellar category
**Final selections differed in some respects
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design objectives that were worked for but not always achieved. The full
descriptions of the instruments that were eventually selected constitute the
main bulk of this volume and appear in Section 3. For purposes of Table 2-1,
the final selections are merely summarized in terms of (1) the instrument
type and (2) the ongoing instrument development activity from-which the
selected instrument was derived.

2. 4. 1 Key Selection Parameters

In Table 2-1, the numerous blanks in the tabulation of "ORDS-Suggested
Values of Key Selection Parameters" reflect the fact that different instru-
ment parameters assume primary significance as different types of astronomy
are considered. An example of this type of distinction may be seen in com-
paring imagery and spectroscopy.

For imagery, angular resolution is of principal importance, because it
defines the amount of detail that can be transmitted in the focused optical
beam. Linked to this consideration is the technology limitation that exists
with regard to the fineness of image resolution that can be captured on a
recording medium (photographic emulsion or electronic imaging device). If
the fineness of the detail in the focused optical beam exceeds the fineness
capabilities of the recording medium, then the full capability of the optics
will not be realized unless the image is magnified, i. e. , spread out, to
match the resolution minimum of the recording medium.. Image size is
proportional to the effective focal length of the optical system, so that a
long effective focal length is usually important for imaging. The aperture
of the optical collector may be considered next in importance, because for
faint astronomical sources, the spreading put of the image reduces the
intensity of the radiation that impinges on the recording medium (photographic
emulsion chiefly considered here) and the ability to record the image may
be lost if some threshold value is not reached. A larger aperture, of course,
increases .the radiation intensity on the recording medium to compensate
for this.

A spectrescopic instrument, on the other hand, may be primarily influenced
by other criteria. Especially in the case of stellar sources, spectroscopic
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observations of precise spectral resolution depend upon the gathering of as

much energy as possible, so that an optical system that provides an
unobscured aperture is in some cases very important. Furthermore, it is
desirable to keep the collected energy in as narrow a beam as possible to
permit the use of spectroscopic elements (e. g. , diffraction gratings) that
are small. In order to do this, a small image size, achieved through short
effective focal length, is an important consideration.

2. 4. 2 Instrument Selection Example

The selection of the 3-m diffraction limited UV-visible-IR stellar telescope
(OASF Instrument No. 35) is explained below as an example of the process
that was followed throughout the instrument selection phase of Task B. This
case exhibits the typical pattern, including the following:

1. Consideration of the specific values of the key selection parameters,
followed by preliminary conceptual layout of an instrument to
satisfy these parameters.

2. Discussion of the preliminary conceptual layout with scientific
contributors, and revision of conceptual design concepts, if
appropriate, in accordance with the advice of these consultants.

3. Consideration of known current instrument development activities
that may provide a start toward the conceptual instrument design.

Group E in Table 2-1 contains the ORDS for which a large visible-wavelength
telescope is indicated. On the basis of both energy collection and angular
resolution requirements, a 2. 5-m aperture is recommended. Angular
resolution is specified as 0. 05 arc-sec in conjunction with the requirements
in many of the ORDS (Subgroup a) for imaging. To achieve this angular
resolution with this aperture at the wavelengths of the visible region, selec-
tion of a diffraction-limited (i. e. , optics of highest quality) collector is
implied. The requirement for a large scale factor (i. e. , large image size)
for imaging prompted recommendations for an effective focal length of about
50 m. Two of the ORDS (Subgroup b) indicate a requirement for spectroscopy
and recommended effective focal lengths in the neighborhood of 30 m, since
a small image is advantageous for spectroscopy by keeping the light in a
relatively narrow, compact beam. Therefore, dual secondary mirrors were
initially considered, as indicated by Options a and b corresponding to
Subgroups a and b.
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The type of optical system considered for this instrument and for several

others is the classical Cassegrainian telescope (Figure 2-3). This arrange-

ment is frequently most advantageous because it provides a combination of

satisfactory features, including (1) a short telescope tube for rigidity, as

determined by the focal length of the primary mirror; (2) capability for a long

effective focal length (EFL), even with a short primary focal length, by virtue

of the magnification provided by the secondary mirror, (3) low obscuration

of the primary collector area, by virtue of the small secondary mirror;

(4) convenient in-line arrangement of the instrumentation section in the main

tube behind the primary mirror; and (5) availability of well-established

techniques for figuring (shaping) the reflective surfaces, since both the pri-

mary and the secondary mirror are axisymmetrical.

Among other questions, that of using dual secondary mirrors, was discussed

with the scientific contributors, and it appeared from their discussion that

the problems of alignment and calibration in remote mechanical switching

from one secondary mirror to another would very possibly defeat the purpose

of the line imaging capabilities sought by the longer focal length (50-m)

optical system. In addition, it was learned that the high-resolution limits of

the field of view would be compromised by the dual-secondary design, as

TUBE

SUPPORTS'1

PRIME
FOCUS

SECONDARY
MIRROR

INSTRUMENT
FOCUS

PRIMARY
MIRROR

Figure 2-3. Cassegrainian Telescope
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compared with a design providing a single secondary and in which the figuring

of the primary and secondary reflectors were specifically matched to each
other (Reference 2-13). (This type of matched figuring for the primary and
secondary reflectors of a Cassegrainian optical system so as to maintain
high quality angular resolution over the entire field of view is known as
Ritchey-Chretien optics. ) For these reasons, the consideration of dual
secondary mirrors was dropped in favor of a single secondary providing
an effective focal length at some compromise value between 30 m and 50 m.

In comparing this generic type of instrument (2. 5-m aperture, 30- to 50-m
effective focal length, diffraction-limited, Cassegrainian optics telescope)
to known instrument concepts, it was apparent that the progress in the
design of a 3-m optical telescope, the manned orbital telescope (MOT)
(Reference 2-4), offered an opportunity to associate this requirement with
a current development activity. In further corroboration of this choice,
a small number of ORDS in Group A called for an angular resolution that
would require a 3-m aperture. This instrument design concept also offered
an effective focal length of 45 m, a suitable compromise between 30 m and
50 m. Therefore, the MOT concept was adopted as the basis for the OASF
instrument for satisfying the requirements of this group of ORDS.

2. 4. 3 Individual Instrument Selections

The salient points in the selection of the remaining instruments are dis-
cussed below in the order in which the respective groups are listed in
Table 2-2.

2. 4. 3. 1 Radio Telescopes

Group A shows that the important parameters in selecting radio astronomy
telescopes are the wavelength and the angular resolution. To achieve
angular resolution of 1 with wavelengths up to 6 km, antennas of tremendous
size would be required. Therefore, interferometers (pairs of antennas
separated by several kilometers) were considered (Instruments No. 32 and
30). A filled-aperture type of kilometer-wave telescope was also considered
(Instrument No. 40).
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2. 4. 3. 2 Normal-Incidence Telescopes for Stellar Use

In Group B, the IR telescope (Instrument No. 14), because of the relatively
long wavelengths in which it operates, is concerned principally with the
problem of "noise" generated within the telescope itself because of its
temperature. The telescope must be cooled below the temperature at which
it would emit significant radiation in the wavelength region it is attempting
to observe. The desired temperature (in this case about 70° to 80°K) is
determined by the maximum wavelength, which governs the design accord-
ingly. The principal feature of the design therefore is the cooling provision
rather than the optics. The optics are relatively straightforward; because
at the long wavelengths, even diffraction-limited optics do not represent an
angular resolution that is difficult to achieve within the present technology.
(The absence of requirements for imaging in the IR region apparently reflects
the absence from the present technology of any image-recording media for
these long wavelengths. ) '

Groups C, D, and E represent increasing capability in optical collectors in
the UV-visible.near-IR region. The trend of the key parameters shows
increasing focal length and decreasing angular resolution, both of which
contribute to the achievement of finer imaging capabilities. As a secondary
consideration, increasing apertu-re is also a key parameter added to meet
the diffraction requirements and the light-gathering requirements for the
fine imaging. (Instruments No. 45, 34, and 35, respect ively.) .

The requirement for sky surveys in the UV region are considered in Group F.
The key parameters affecting the design of the telescopes are field of view
(which relates to the time required to photograph the entire sky), and angular
resolution, which establishes the quality (limiting magnitude) of the survey.
Consideration was also given to the focal length of the primary reflector, as
this-parameter influenced the light blockage on the primary collector that is
caused by the imaging device (camera) as constrained by the wide field of
view. The problem of energy collection is also alluded to by the notation of

o • .
the 1, 000 A minimum wavelength, at which normal incidence reflectivity
drops off considerably. This consideration determined the all-reflective
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design of the optical system, since at this wavelength almost no light is
transmitted through any optical medium (e.g. , glass). Schmidt telescopes
were selected because of their well established capability to cover a wide

field of view. (Instruments No. 33 and 13. )

2. 4. 3. 3 Normal Incidence Telescopes for Solar Use

The considerable potential for astronomical observations of the sun is enor-
mous because (1) it is the strongest observed astronomical source and (2) it
is close enough for its individual features to be studied. The progressive
instrument design steps that must be taken to realize this potential are shown
in Groups G, H, J, K, L, M, and N. (Groups L, M, and N will be described
in the next section, which covers grazing incidence telescopes. )

Starting with the region around the sun in which observable solar phenomena

occur (the solar corona), Group G provides cameras (coronagraphs) for
photographing this region (Instruments No. 36 and 37). Occultation devices
(opaque disks) are used to blank out the overpoweringly bright radiation from
the sun itself so that the coronal phenomena may be photographed. Similarly,
the coronal region itself is divided into (1) the brighter region within about
6 solar radii of the sun and (2) the region from there out to about 30 solar
radii. Key instrument design parameters are the field of view, which is
determined by the size of a disk 30 solar radii in diameter as seen from the
Earth, and the angular resolution, which determines the quality of the photo-
graphy. The separation into two instruments provides several advantages:
(1) each of the two instruments is relatively small compared to one instru-

\
ment of unwieldy proportions, (2) the inner coronagraph, which requires a
much smaller field of view, provides higher resolution for a given image
size than the outer coronagraph, this being desirable because the features
in the inner coronagraph are much more interesting; and (3) the radiation
flux levels encountered in solar corona vary by six to eight orders of magni-
tude between the region of 1 solar radius and 30 solar radii and the require-
ment for recording media (film) with such a wide range of response is con-
siderably relaxed by splitting this region into two.
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White light photography of the surface of the sun is considered in Group H.
The key parameter here is effective focal length, a large value of this param-
eter being necessary in order to get large images of the solar phenomena.
Fine angular resolution is also necessary in order to achieve high-quality

imaging. The apertures reflect the diffraction requirements to achieve high-
quality angular resolution. The telescopes selected (Instruments No. 44 and
46) are characterized by Gregorian optics rather than the more common
Cassegrainian'optics, because this arrangement is more amenable to reject-
ing large amounts of extraneous solar radiation to minimize thermal
distortion problems in the telescope.

As shorter wavelength solar radiation is considered in the observation
requirements,, the problems associated with decreasing normal-incidence
reflectivity in the extreme ultraviolet (XUV) region are evidenced in the
successive telescope designs resulting from Groups J, K. JL, M. and N.

(Groups L, M, and N will be described in the next section, which.covers
grazing incidence telescopes; however, they are a part of this general
trend. )

The off-axis telescope design, Group J, is utilized to minimize, obscuration
of the optical path and to eliminate all reflections except the single focusing
reflection performed by the primary mirror. This design provides spectros-

o
copy with wavelength resolution to a fraction of 1 A down to wavelengths

o
between 300 and 700 A, using a normal-incidence spectrograph. (Instru-

ments No. 04 and 05. )

o
In order to conduct spectroscopy at wavelengths down to about 170 A, slitless

spectrography must be combined with off-axis design in order to utilize the
light that would be intercepted by the slit. This is done in the spectro-
heliographs of Group K, in which the diffraction grating is ruled directly on
the primary reflector. These instruments (Instrument No. 06 and 07) extend

o
the range of spectroscopy down to 170 A.
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2. 4. 3. 4 Grazing-Incidence Optical Telescopes

Solar observations in the XUV region (Group L) are extended to include finer
spectral resolution capabilities than could be achieved with any normal-

incidence device by the inclusion of grazing-incidence telescopes (Instru-
ments No. 08 and 09) for that purpose. The increased reflectivity of
grazing-incidence optics at wavelengths around 170 A, as compared with
normal-incidence optics, permits the use of the slit in the spectrograph and,

consequently, provides clear separation of the various spectral lines, as
opposed to the overlapping images of the solar disk that characterize the
slitless spectroheliograph data.

Imaging and spectroscopy of solar phenomena in the X-ray region (about 1 to
40 A) are provided by instruments selected for Groups M and N. Although
not explicitly shown in Table 2-2, the ORDS in these groups call for simul-
taneous imaging and spectroscopy. To meet this requirement, two instru-
ments had to be provided, one for each of these functions, and the two
instruments had to be used simultaneously. For the imaging telescope
(Instrument No.. 39), angular resolution and field of view contribute to the
determination of the design characteristics. For the spectroscopic
telescope (Instruments No. 11) as well as for the imaging telescope, the

wavelength range, through its influence on the acceptable angles of grazing
influence, contributes to the determination of the design.

The observation requirements for imaging and spectroscopy of stellar sources
in the X-ray region are considered in Group P. Since the combination of

angular resolution and field of view do not appear to be attainable with the
technology anticipated for the time period of this study, the instrument

selected (Instrument No. 19) is limited essentially to as large a size as
appears feasible for the launch capabilities anticipated. Although the col-

2
lecting area suggested in the ORDS (500 cm ) can be achieved with this size
instrument, neither the 2 field of view nor the 0. 1 arc-sec angular resolution
that were suggested could be confidently postulated within the time period
considered in this study.

2. 4. 3. 5 High-Energy Radiation Counters

Groups Q, R, S, T, U, and V show the progression of types of detectors
through the various energy levels (equivalent to wavelengths) in the
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high-energy radiation region. A proportional counter array (Instru-

ment No. ZO) in the X-ray region up to about 20 keV (Group Q) is suitable
for sky surveys to identify discrete X-ray sources for further examination

by the stellar X-ray telescope described in Group P. At higher energy
levels (Groups R and S), scintillation counters of various design (Instru-
ments No. 22, 23, and 42) can provide sky surveys and spectroscopy,
although to energy (spectral) resolutions no better than 5 to 10%. The solid-

state counter (Instrument No. 25) can cover the same range to a more
precise energy resolution (Group T) as a follow-on to the scintillation
counters in a later time period.

The spark chamber (Instrument No. 43) extends the energy level that can be
observed up to 1 GeV (Group U); and the Cerenkov counter (Instrument No. 27)
provides observation to 100 GeV (Group V).

The considerations discussed above provided the selection of a set of instru-
ments that could satisfy the observation requirements of the baseline

astronomy program. These instruments were then analyzed at the conceptual
design level to provide descriptive information (observation capabilities;
physical characteristics; orbital support requirements such as electrical
power, stabilization, and data handling; development cost estimates, et

cetera) needed in Task C for analysis of orbital support facilities and for
development of an overall astronomy program plan. Detailed instrument
descriptions resulting from this conceptual design analysis are presented in
the next section.
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Section 3
ASTRONOMY INSTRUMENT DESCRIPTIONS

3. 1 SUMMARY MATRIXES OF ASTRONOMY INSTRUMENTS

A series of summary matrixes has been prepared to provide a compact
overview of the entire set of instruments selected for the baseline astronomy
program. These matrixes highlight major instrument categories, the dis-
tinction between the instrument "front-ends" and back-ends, " and the distinc-
tion between designs for solar and stellar observations.

This baseline set of instruments is the final result of (1) an analysis of the
ORDS, (2) discussion with scientific contributors, and (3) utilization of
NASA-available instruments.

Figure 3-1 shows the radio telescopes. For this category of instrument,
antenna parameters are considered particularly important to the instrument
description, because they tend to establish the individual identify and charac-
teristics of the overall instrument.

Stellar and solar normal, incidence optical telescopes are summarized in
Figures 3-2 and 3-3. The two matrixes are similar in that they each deal
with UV, visible and IR portions of the electromagnetic spectrum. The upper
portions of these matrixes tabulate the characteristics of the optical collectors.
Various spectrographs, cameras, interferometers, detectors, and other
instrumentation devices are presented in the lower portions of the figures,
which also show, by their matrix interrelationship, the association of the
collectors ("front-ends") with the instrumentation devices ("back-ends"),

and the ORDS to which these combinations are applicable. Grazing-incidence
optical telescopes for both solar and stellar applications are shown in a
similar fashion in Figure 3-4.

Figure 3-5 summarizes the high-energy radiation counters; the capabilities of
these instruments extend from 0. 7 keV to 100 GeV.
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INSTRUMENT

(SECTION IN TEXT) (BOOK 1)

OASF INSTRUMENT NO.

8
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E
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H
A

R
A

C
TE

R
IS

T
IN

S
TR

U
M

E
N

TA
TI

O
N

D
E

V
IC

E
S

FREQUENCY RANGE

TYPE OF POLARIZATION

E-PLANE BEAMWIDTH

H-PLANE BEAMWIDTH

IMPEDANCE RATIO

DIMENSIONAL ADJUSTMENT
REQUIRED IN ORBIT

ANTENNA DIMENSIONS

TETHER LENGTH

LENGTH (LAUNCH CONFIGURATION) (m,-ft)

VOLUME (LAUNCH CONFIGURATION) (m3,-ft3)

WEIGHT (kg;lb)

TIME PE'RIOD

ORDS TO WHICH APPLICABLE

FULL-FREQUENCY-SWEEP
CAPABILITY

SWEPT FREQUENCY
RADIOMETRY RECEIVERS

WIDE-BAND RADIOMETRY RECEIVERS

^

CROSSED-H
TETHERED

INTERFEROMETER

(3.2.1)

32

LOW: 0.5-2.5 MHz
MID: 2.5-5.0 MHz
HIGH: 5.0-10 MHz

DIVERSE

35°- 75°*
1.7° *»

1.7° *
134-180°**

10

TETHER LENGTH

(ADJUSTABLE)
150 M x 150 M x 30 M
(MAX.)

10km (MAX.)

3.3;10.8

10;353

1,900;4,200

INTERMEDIATE

004,005lSl,006lSi,
105,106

NO

50kHz
FREQUENCY RESOLUTION

70 dB DYNAMIC RANGE

^

TERMINATED-LOOP
TETHERED

INTERFEROMETER

(3.2.2)

30

0.05 MHz TO 15MHz

LINEAR

1°

90°

7

TETHER LENGTH

45.8 M x 45.8 M x 45.8 M
AND
18.1 M x 18.1 M

40km

2.4;7.9

0.75;26.4

1,450;3,200

INTERMEDIATE

004,005|S,006S,
105,106

YES

50 kHz
FREQUENCY RESOLUTION

70 dB DYNAMIC RANGE

\
\

KILOMETER WAVE
ORBITING

TELESCOPE (KWOT)

(3.2.3)

41

0.1 MHz TO 10MHz

NOT AVAILABLE

1.7°**

19.9°*

NOT AVAILABLE

MINOR DIAGONAL

10km x 10km

I N/A

3.1 ;1 0.2

1.5;53.5

640;1,410

LATE

004,005lSi,006lSl
105,106

YES

NOT AVAILABLE

70dB DYNAMIC RANGE

•AS H-PLANEINTERFEROMETER
**AS E-PLANE INTERFEROMETER Figure 3-1. Radio Telescopes
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INSTRUMENT

(SECTION'IN TEXT) (BOOK1)
OASF INSTRUMENT NUMBER

APERTURE (m)
EFFECTIVE FOCAL LENGTH (m)

UNOBSCURED COLLECTING AREA (cm2)
WAVELENGTH (MINIMUM! (A)
WAVELENGTH (MAXIMUM) (A)
ON-AXIS ANGULAR RESOLUTION IN FOV AT GIVEN WAVELENGTH (arc-sec at X)
FINE GUIDANCE RESOLUTION (arc sac)
FIELD OF VIEW (FOV) (arc-mini
AUTOMATIC GUIDANCE ACCURACY (arc-sec)
POOREST ANGULAR RESOLUTION IN FOV AT GIVEN WAVELENGTH (arc-sec at A)
LENGTH. STOWED POSITION lm;ft)
VOLUME. STOWED POSITION (m3.-fl3|

.WEIGHT, INCLUDING INSTRUMENTATION DEVICES lkg;lb)
VIEWFINDER FIELD OF VIEW (degrees)
TIME PERIOD

ORDS TO WHICH APPLICABLE

NORMAL-INCIDENCE SPECTRAL DISPERSION
SPECTROGRAPH WAVELENGTH RESOLUTION

RECORDING SCALE

ECHELLE WAVELENGTH RANGE
spFr-rnnr-HAPH SPECTRAL DISPERSION
SPECTROGRAPH WAVELENGTH RESOLUTION

RECORDING SCALE

SLITLESS WAVELENGTH RANGE
SPECTROGRAPH SPECTRAL DISPERSION
SPECTROGRAPH WAVELENGTH RESOLUTION

RECORDING SCALE

PLATE CAMERA SIZE
FIELD OF VIEW
RECORDING SCALE

SIZE
RECORDING SCALE

FILTER ASSEMBLY

FIELD LENS
AND/OR
IMAGE TUBE

PHOTOPOLARIMETER.

SPECTROPHOTOMETER

INTERFEROMETER

RADIOMETER SPECTRAL DETECTIVITY

DETECTORTMATRIX SPECTRAL DETECTIVITY

MAGNETIC
TAPE
RECORDER

f^ OL*•£>.. ' .^^
1-METER
INFRARED

(3.2.4)
14
1.0
10.0
7.050

0.7 V
1.000H
1 AT 4 C
±0.1

5
1

1 AT 4 M
1.755.75
50;1,760.

1.000.2.200 (INCLUDING SHIELD)
2 .

INTERMEDIATE

029. 063S. 072 THRU 078

RESOLVING POWER „„
= 4 PARTS IN 104 „„"
INTERFEROMETER ™
CONTROL | JJ7g

t SPECTRAL D*-10'3 WITH I 9SPS

DETECTOR COOLING TO 4°K I 076S
t SPECTRAL O' - 10'3 WITH ' ORDS

DETECTOR COOLING TO <fK ' "MS
ORDS

35 mm DIGITAL I 029
1 063S
1 072

.073
079

^1-METER
NON-DIFF-LIM
UV-VIS-IR

(3.2.5)
45
1.0
5.0

6.290
< 900

> 12,000
0.2 AT 4.000

± 0.05
10
0.1

1 AT 4.000
2.B.-9.2
3.5:124

1,000.2.200
5

INTERMEDIATE

002, 027. 028, 030, 031 , 032, 033, 034,1)37. 1 1 3"
1.000-3.000A I ORDS
1QOA/mm I 033
2AAT.1.500A 037
1 3.8 arc sec/mm
TYPICAL INTERCHANGE GRATING
SQfM.OOOA ORDS
1 GJ& /mm
0.2A AT 2.000A 031
1 3.8 arc sac/mm 032
TYPICAL INTERCHANGE GRATING 034
8OQ-4.000A OR OS
50A/mm 028
2.5A AT2.000A
1 3.8 arc sec/mm
IMAGE INTENSIFIER + FILM

25x25 mm nnni
5-3/4 arc min. "Mu!>

13.8 arc sec/mm 11J

PHOTO °£DS

MULTIPLIER IT,
IMAGE ™
INTENSIFIER J^"

800-3.2OOX AND ORDS
3.200-12.0OOA CO2

10.100H 027
RESOLUTION 030

^1-METER
OIFF-LIM
UV-VIS-IR

(3.2.6)
34

1.017
10.17
6,930
900

6,000
0.1 AT 4,000

±0.01

2
1

0.15 AT 4.000
2.68;8.8
4.1;145
240:530

5
INTERMEDIATE

020, 02 1,022 035.036, 040

800-3.000A | ORDS
4.65&/mm I 035
0.1AAT2.000A 036
• 20.3 arc sec

20-POWER ORDS
RELAY 020
LENS 021
+ S.E.C. 022
VIDICON 040

'<>>
3-METER '
DIFF-Lim
UV-VIS-IR '.

(3.2.13)
35 I

3.04

45
63,200

900
12.000

0.04 AT 5,000
± 0.005 ,
' 15

INTERMED. 30 FINE. 10
0.1 AT 5,000

15.6:51.2
270:9,520

12,000:26.500
2

LATE

' 018, 023, 024, 026, 038, 039
800-3,000 A 1 ORDS •
24A/mm | 028 ',
0.5A AT 2.000A | 031
1 3.8 arc sec/mm | 032 <
TYPICAL INTERCHANGE GRATING 1 034

. ' ORDS 1
70 mm 225mm | Q18 |
5 arc min. 1 5 arc min. 023
4.6 arc sec/mm „ 6 arc sec/mm Q24

026 i
35»50 mm ORDS
4.6 arc sec/mm 038
200 A BANDS ORDS

500 A BANDS °18

023
024
026

2 POWER ORDS
LENS +
16mm. 1,000-lina 024
VIDICON

0.5% POLARIZATION ORDS 1
A- 1050-3000 A 039

^

1

I

\
1

^
0.3-METER
UV
SCHMIDT

(3.2.7)
33
0.3

0.91
706

1,000
> 2,000

0.25 AT 1 .200
. ±0.5

10 •
5

0.5 AT 1,200
3.08:10.1

2.5:88
430550

5

INTERMEDIATE

101,1075

900-4,000 A OH OS
1QOA/mm 107S
2 A AT 1,200 A
226 arc sec/mm
SLITLESS PLANE GRATING

150 x 150mm | ORDS
10° |
226 arc sec/mm | 101

0.5, 0.2 1 ORDS
7/' 1 J07S
BAND

^>1-METER
UV
SCHMIDT
(3.2.141

13
1.0
4.0

7.850
1,000
5.000

0.1 AT 4,000
± 0.05

5 •
0.25

0.25 AT 4.000

9.07:29.6

53:1.870
930:2.050

5

LATE

071S

15x15 in. | ORDS
10° ,
55.5 (arc sec)/mm i 071$

500 X | ORDS
BANDS 1 071S

t See Table 11-1, Reference 3-5 Figure 3-2. Normal Incidence Stellar Telescopes
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(SECTION. IN TEXT) (BOOK 1)
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APERTURE (m)

EFFECTIVE FOCAL
LENGTH (ml

UNOBSCURED COLLECT- 2,
ING AREA lcm '

WAVELENGTH (MINIMUM) iS)

WAVELENGTH (MAXIMUM) (°l)

ON-AXIS ANGULAR RESOLUTION (arc-sec
AT GIVEN WAVELENGTH at £)

FINE GUIDANCE RESOLUTION (arc sec)

FIELD OF VIEW (FOV) (arc min)

AUTOMATIC GUIDANCE i™— «-i
ACCURACY (arc-sec)

POOREST ANGULAR RESOLU- ,
TION IN FOV AT GIVEN o,
WAVELENGTH

LENGTH, STOWED POSITION (m,-ft)

VOLUME STOWED POSITION (m3.-ft3)

WEIGHT, INCLUDING INSTRUMENTATION DEVICES (knjb)

VIEWFINDER FIELD OF VIEW (arc min)

TIME PERIOD

ORDS TO WHICH APPLICABLE

WAVELENGTH RANGE
NORMAL-INCIDENCE SPECTRAL DISPERSION
SPECTROGRAPH WAVELENGTH RESOLUTION

RECORDING SCALE

,-,,,., . - WAVELENGTH RANGE
SPECTROGRAPH SPECTRAL DISPERSIONSPECTKUljKAm WAVELENGTH RESOLUTION

RECORDING SCALE

,. ._ fv, WAVELENGTH RANGE
5PCr-TRnm=l in SPECTRAL DISPERSION
rpfpw WAVELENGTH RESOLUTION
" RECORDING SCALE

NARROW-BAND BANDPASS
LYOT FILTER

CINE-FRAME FIELD OF VIEW
CAMERA, 35mm RECORDING SCALE

PLATE CAMERA FIELD OF VIEWPLATE LAMtHft RECORDING SCALE
FORMAT

MAG^ETOGRAPH BANDPASS

•37

1-TO-6 SOLAR
RADII
CORONAGRAPH £

(3.2.8|) «
36

0.0245

0.315

4.48

4,000

10,000

10 at 5.0OO

[fj 5-TO-30 SOLAR
I RADII
1- CORONAGRAPH
5 (3.2.9|)
0 37

0.040

0.090

11.9

4,000

10,000

30 at 5.000

±5

3.25°

15

45 at 5.000

3.7:12.15

15°

15

1 arc min. at 5,000

2.83.2

COMBINED 2.3:81

COMBINED 400:880

•40

INTERMEDIATE

062

3.25" | QRDS
656 arc sec/mm | Qg2

40

INTERMEDIATE

062

15" 1 ORDS
2,700 arc sec/mm 1 062

"̂
0.8-METER
UV VISUAL

(3.2.10)
44

0.80

39.2

4280

1.200

10.000

0.1 6 at 5.000

±0.02

2.6

1

0.196 at 5.000

3.56:11.8

3.25:115

800:1 .760

300

INTERMEDIATE

050,064,069

i;500-7.SOOA ORDS
0.5A/mm . 069
0.01 A at 3,000 A
4.43 arc sec/mm

+ 0.25A 1 ORDS
I 064

2.6torc min. 4.43 arc sec/mm [ ORDS
35x35 mm 050
35x100 mm , 064

%
1.5-METER
DIFF-LIM
UV-VISUAL

(3.2.15))
46

1.5

75

17200

< 1,300

>12,000

0.1 at 6,200

± 0.05

1.1

15

0.1 at 6,200

12.3:40.4

: 32.5:1.150

1,600:3,530
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LATE

053,057,064
066.069,079

1.300-11.000A PA05

0.1A/mm «
0.002A at 3,000 Q79
2.75 arc sec/mm

±0,A I ^7
OS

1 064

1.1 arc min. 1 ORDS
. 2.75 arc sec/mm 1 057
35x100 mm I 064

0
0.05A/mm I ORDS
(SPECTROHELIOGRAPH) ] 066

^0.2-METER
UV (OFF-AXIS)

(3.2.1 1;)
04

0.2

2.4

315

300

> 1 ,500

1 at 800

±0.1

2

15

1.5 at 800

3.6:11.8

1.6:56.5

65:143

40

INTERMEDIATE

042,058

300-1500A I

10A/mm |ORDS
1042,

0.2Xat300A|058
86 arc sec/mm 1

2 arc min. ' 1 ORDS
86 arc sec/mm 1 042
35x1 20 mm I 058

%
0.5-METER
UV (OFF-AXIS)

(3.2.16!)
05

0.5

6.0 j

1360

170

> 1,500 'i
1

0.5 at 800

±0.05
1

2

15

1 at 800 (

1
9:29.6

10.8:38.1

1.800:3.970

40

LATE

043,044,
051,060

300-p50oS

lA/mm ORDS

c 043'
0.02Aal800A 044,
34 arc sec/mm 060

'o
170-650A
tA/mm 0 ORDS
0.02Aat800A 051
34 arc sec/mm '',

2 arc min ORDS
34 arc sac/mm 043
35x600 mm 044

051
060

^0.25-METER
XUV SPECTRO-
HELIOGRAPH

(3.2.12!)
06

0.25

3.0

490

170

650

1 at 170

±0.02

32

0.1

1 at 170

3.44:11.3

3:106

300:660

15s

INTERMEDIATE

052

170-650A
iX/mm ORDS
O.01 5A at 1 70A °52

69 arc sec/mm

32 arc min. | ORDS
69 arc sec/mm I Q52
35x495 mm |

^
0.125JV1ETER
XUV HIGH DISPERSION
SPECTROHELIOGRAPH

(3.2.17)
07

0.125

2.5

122

304

1,216

1 at 600

±0.02

10

0.1

1 at 600

3.44:11.3

3:106

320:710

15°

LATE

070

0
304-1 216A
lA/mm 0 ORDS
0.01 5A at 600A 070
21 arc sec/mm

10 arc min, ORDS
?1 arc sec/mm 070
35x250 mm
(Grazing)

Figure 3-3. Normal Incidence Solar Telescopes
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INSTRUMENT

(SECTION IN TEXT) (BOOK 2)
OASF INSTRUMENT NUMBER.
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E
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 C
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A

R
A

C
TE

R
IS

TI
C

S
IN

S
TR

U
M

E
N

TA
TI

O
N

 D
E

V
IC

E
S

APERTURE (m)
EFFECTIVE FOCAL LENGTH (m)
UNOBSCURED COLLECTING AREA (cm

2)
WAVELENGTH (MINIMUM) (A)
WAVELENGTH (MAXIMUM) (A)
ON-AXIS ANGULAR RESOLUTION (arc sec
AT GIVEN WAVELENGTH at A)
FINE GUI DANCE RESOLUTION (arc sec)
FIELD OF VIEW (FOV) (arc min)
AUTOMATIC GUIDANCE ACCURACY (arc sec)
POOREST ANGULAR RESOLUTION (arc sec
IN FOV AT GIVEN WAVELENGTH at A)
LENGTH, STOWED POSITION (m;ft)
VOLJME, STOWED POSITION (m3;ft3)
WEIGHT. INCLUDING INSTRUMENTATION DEVICES (kg;lb)
VIEWFINDER FIELD OF VIEW (degrees)
TIME PERIOD
ORDS TO WHICH APPLICABLE
GRAZING-INCIDENCE WAVELENGTH RANGE
SPECTROGRAPH SPECTRAL DISPERSION

WAVELENGTH RESOLUTION
PLATE CAMERA, FIELD OF VIEW
GRAZING INCIDENCE RECORDING SCALE

FORMAT
CINE-FRAME FIELD OF VIEW
CAMERA, 35mm RECORDING SCALE

X-RAY IMAGE FIELD OF VIEW
INTENSIFIER RECORDING SCALE
PLUS VIDICON
CRYSTAL WAVELENGTH RANGE
SPECTROMETEFI WAVELENGTH RESOLUTION

X-RAY GRAZING WAVELENGTH RANGE
INCIDENCE SPECTROMETER WAVELENGTH RESOLUTION
FIELD LENS AND/OR
IMAGE TUBE

CHANNEL SPECTROMETER/
PROPORTIONAL COUNTER

^
X 11

SOLAR
0.25-METER
XUV

(3.2.1 8.)
08

0.25
3.0

125

170

>650

2.5 at 300

±0.1

2

1

2.5 at 300

3.16;10.4

0.44;15.5
85;187

5
INTERMEDIATE

054, 055, 059
170-650& I ORDS
10A/mm | 054.055
0.5A at 300A | '059
2 arc min. |ORDS
69arcsec!/mm 1 054, 055
35x44 mm (059

0.5-METER
XUV

(3.2.221)
09

0.50
6.0

500

170

>6bO

0.5 at 300

±0.02
2

0.2

0.5 at 300

6.4;21.0

2.3;81
400;880

5

LATE
055,056,061

1^0-650A ORDS
1A/rnm 0 055,
0.1Aat304A 061
2 arc min. ORDS
34.4 arc sec/mm 055,
70 x 450 mm 061

0.25-METER
IMAGING X-RAY

(3.2.19 ) £
39

0.25
2.4

50

2

10

5 at 6

g- 0.225-MEtER
I SPECTROGRAPHIC X-RAYI—
g (3.2.20)

g 11
0.225

2.4

20

±1

30

(MANUAL)

20 at 6

3.12;10.2

1

40

5 at 6

I 10
(MANUAL)

20 at 6

2.95:9.7
COMBINED 0.65;23.0 ;
COMBINED80;176

2/3

INTERMEDIATE
065

30 arc min. I ORDS
86 arc sec/min. I 065

30 arc min. I ORDS
86 arc sec/mm I 065
(ALTERNATIVE TO CAMERA)

2/3

INTERMEDIATE
'045,068

1.5-o10?i I ORDS
0.1Aat3A | 045,

j | 068
1.5-60& I ORDS
0.1Aat3A . I 045

%|,
STELLAR
1-METER
X-RAY
(3.2.21;)

19

1.0

10.0
500

2

100

Sat 6

±0.25
10

15

20 at 6

5.71:18.8
200:7,050
1,220:2,690

3

LATE
081,082,083,084

20.6 arc sec/mm | ORDS
35 mm | 081

084

I ORDS
1%at3keV | 083

I

X-RAY IMAGE ORDS
INTENSIFIER 081
GAIN = 7

6% RESOLUTION ORDS
at lOkeV 082

Figure 3-4. Grazing Incidence Telescopes
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INSTRUMENT

(SECTION IN TEXT) (BOOK 2)

OASF INSTRUMENT NUMBER

EFFECTIVE COLLECTOR . 2,
AREA (cm '

ENERGY RANGE

ANGULAR RESOLUTION (degrees)

FINE GUIDANCE RESOLUTION

FIELD OF VIEW (degrees)

TOTAL SIGNAL (photons/sec-keV)
COUNT

EXPECTED COUNT "
IN TOTAL BAND (photons/sec)

ENERGY RESOLUTION

TOTAL NOISE (ENVIRONMENTAL)

LENGTH (m;ft)

VOLUME (m3;ft3)

WEIGHT <kg;lb)

RECORDING MEDIUM

GUIDANCE STABILITY (degrees)
REQUIRED

VIEWFINDER (degrees)
FIELD OF VIEW

TIME PERIOD

ORDS TO WHICH APPLICABLE

9&\^' /\ ^/ / ^( •/ / // s sI,/ s" /
S s' '-^y ' ty•^>j>^

0.7-keV to 20-keV
Proportional
Counter Array

(3.2.23)

20

1.3 x 105

0.7 keV TO
20 KeV

1

± 3.3 sec

3

1 x 104

600 TO
5x105

10% AT 10keV

*

4.3;14.1

8.8;310

2,700;5,950

MAGNETIC TAPE
11 HOURS
SKY SCAN

0.1

15

INTERMEDIATE

0855,095,
096,097,100

*»
10-keV to300-keV
Scintillation
Counter

(3.2.24j)

22

300

10keVTO
300 keV

3

i 1 min.

6

3 x 10-2

10 TO
104

20% AT 50 keV

*

1.5;4.9

0.65;23.0

290;640

MAGNETIC TAPE
10MIN/OBSER-
VATION

1.0

8

INTERMEDIATE

0493,086,0895

\
300-keVto1-MeV
Scintillation
Counter

(3.2.25')

23

100

300 keV TO
1 MeV

3

± 1 min.

6

10'6

0.02 TO
2

8% AT 600 keV

*

1.2;3.9

0.84;29.6

300;660

MAGNETIC TAPE
100HR/OBSER-
V ATI ON

0.3

8

INTERMEDIATE

046, 102

%
1 MeV to 5-MeV
Scintillation
Counter

(3.2.26|)

~>2

100

1 MeV TO
5 MeV

3

± 5 min.

r.

10"6

0.02 TO
2

5% AT 1 MeV

*

1.0;3.3

0.4;14.1

200;440

MAGNETIC TAPE
100HR/OBSER-
V ATI ON

0.3

8

INTERMEDIATE

046, 102

^
25-MeV to 1-GeV
Digitized
Spark Chamber

(3.2.27')

43

230

25 MeV TO
1 GeV

2.5

± 30 sec

60

10"8

10-2 TO
1

35% AT 100 MeV

*

1.5;4.9

0.5;17.6

90;198

DIGITAL

±|0.5

8

INTERMEDIATE

0483,0935

I

10-keV to 20-MeV
Solid State
Counter

(3.2.28|)

25

1000

10keVTO
20 MeV

3

N/A

6

10-5

2 TO
20

3 keV AT 1 MeV
8keV AT 20 MeV !

*

1.2;3.9

0.4;14.|1

350;770

MAGNETIC TAPE
IOOHR/OBSER-
V ATI ON

0.3

8

LATE

046,098,099,103,104

*0
20-MeV to 100-GeV
Gas Cerenkov
Counter

(3.2.29)

27

500

20 MeV TO
100 GeV

8 arc min.

± 15isec

60

10"5 PARTICLES/
sec-MeV

0.05 TO 50
(ELECTRONS/SEC AT

0.1 GeV)

10% AT1 GeV

*

3.7;12.1

9;318

800;1,760

VIDICON/FILM

0.05

2.0

LATE

087S.091S

* ADDITIONAL DATA REQUIRED BEFORE ENVIRONMENTAL
NOISE CAN BE DEFINED. Figure 3-5. High-Energy Radiation Counters
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3. 1. 1 Astronomy-Program Effectiveness of Task B Instruments

A display of the elements that contribute to effectiveness of the various
instruments derived in Task B is presented in Table 3-1. No attempt is

made here to establish a relative program effectiveness, or ranking, among
the instruments, for several reasons:

1. The instruments are identified with "widely diverse regions of the
electromagnetic spectrum; hence any measure of the value of
observations performed would be subjective.

2. The ORDS themselves, being merely representative of a complete
baseline research program in astronomy, are not necessarily well
balanced with respect to various areas of astronomy. Therefore,
any attempt to tabulate data such as numbers of ORDS satisfied
could be misleading.

3. Economic factors, which are not reflected in this figure, would have
to be considered in any attempt to delineate program effectiveness
of the instruments.

The symbols used in Table 3-1 are explained as follows:

1. [H Instrument Fully Satisfies the ORDS--The instrument, utilizing
present technology and presently postulated state-of-the-art advances,
would have the required performance characteristics with respect to
the desired observation requirements, as defined in the indicated
ORDS. Instrument packaging to meet the requirements imposed by
in-orbit operation, and mirror figuring to stated limits, are con-
sidered to be within postulated state-of-the-art advances.

2. HI Instrument Theoretically Permits Full Satisfaction of ORDS--
Postulated instrument performance is predicated on the desired
ORDS observation requirements. Although performance falls short
of some of the specified observation parameters (such as detector
sensitivity, response speed, or field of view), it could satisfy these
requirements when the instrument is developed to, or close to, its
theoretical limit.

3. B Instrument Partially Satisfied the ORDS--A qualified fulfillment
of the observation requirements as stated in the applicable ORDS.
Instrument capability falls short of some of the specified observation
parameters, such as spectral range, spectral resolution, spectral
dispersion, field of view, or angular resolution.

4. E ORDS Not Covered by Task B Instruments--None of Task B instru-
ments presented provides any significant accomplishment with
respect to the particular ORDS observation requirements. This
classification may reflect a lack of any feasible instrument concept
for the time period of the study. Alternatively, it may reflect a
compromise in instrument versatility because of selection of an
instrument already under development.
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Table 3- 1
ASTRONOMY PROGRAM EFFECTIVENESS OF TASK B INSTRUMENTS

ASTRONOMICAL
SOURCE

STARS
SKY
SKY
RADIO SOURCES
STARS

STARS
MERCURY

MARS
STARS

STARS
STARS
NEBULAE
STARS.GALAXIES NEBULAE ETC

STARS
STARS

STARS
STARS

VENUS. MARS. JUPITER. SATUR^
QUASARS
STARS
VENUS
SUN
SUN
SUN
SUN
SUN

SKY

-SUN
SUN
SUN
SUN
SUN
SUN
SUN
SUN
SUN
SUN
SUN
SU',1
STARS. QUASARS. ETC.
SUN
SUN
SUN
SUN
SUN
SUN
SUN
STARS NEBULAE GALAXIES
PLANETS. LARGE SATELLITES

COMETS
STARS
INTERSTELLAR MATTER

INTERSTELLAR MATTER
SUN
SUN

X-RAY SOURCES
X-RAY SOURCES
X-RAY SOURCES
SKY
X-RAY SOURCES
SKY
SKY
SKY
SKY
SKY
X-HAY SOURCES
X-RAY SOURCES
X RAY SOURCES
X-RAY SOURCES
X-RAY SOURCES
X-RAY SOURCES
GALAXIES
GAMMA RAY SOURCES
GAMMA RAY SOURCES
GAMMA RAY SOURCES
SUN
JUPITER
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STARS. GALAXIES. NEBULAE
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CATEGORY

\ \ INSTRUMENT
\ \ NAME

RADIATION \

UV
VLF
VLF
VLF
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UV, VISIBLE

UV. VISIBLE. IR
UV. VISIBLE
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UV
uv

UV. VISIBLE. IR
UV
UV

UV
UV

uv
uv
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uv
uv
uv
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X-RAY
GAMMA RAY

X-RAY
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X-RAY
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X-RAY
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061
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3. 1. 2 Estimates of Development Times and Costs

The estimates of development times and costs for the astronomy instruments,
shown in Section 3. 2 are limited to estimates of the Phase D portions of the
instrument programs, since that is adequate to the requirement for deriving
a logical, evolutionary plan for the astronomy program in Task C.

The OASF has been divided into four phases, so as to agree with NASA
planning practices. These phases are as follows:

1. Phase A--Program definition.
2. Phase B--Preliminary definition.
3. Phase C--Final definition.
4. Phase D--Development and Operation.

This report is roughly equivalent to Phase A. Phase B, consisting mainly of
systems engineering and related disciplines, contains no specific design
requirements. Phase C is a continuation of Phase B with a further evolution
to preliminary design of the specific instruments. At the end of Phase C all
tradeoff analyses must be completed and the decisions relating to the choice
of particular instrument design options should be made. The costs in the
Development portion of Phase D include design, breadboarding. engineering
model fabrication, project verification model fabrication, fabrication of
models for qualification testing, and qualification testing, Phase D operations
costs include refurbishment of the project verification model to flight quality
as backup, flight article fabrication, and engineering support at the Manned
Spacecraft Center (MSC) and Kennedy Space Center (KSC).

Development costs, development schedules, and numbers of deliverable
hardware items for the various instruments are shown in a series of figures
and tables that are included in Section 3. 2, below, as part of the overall
description of each instrument.

In developing Phase D costs for the various instruments, cost analyses were
made of representative instruments of each type. These cost analyses were
based'on actual costs incurred in the development and fabrication of similar
hardware already developed, with appropriate adjustments for differences in-
complexity and research requirements, on a component-by-component basis.
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Experience factors were used where applicable to reflect an improving cost/
effectiveness with each subsequent design of a given general type. The costs
shown for the individual instruments in the following pages are engineering
estimates based on these analyses, and significant figures beyond the second
have been left in the tabulated material for arithmetical convenience only.
Some individual cost items in the tables (identified by *) were omitted in
cases where the lack of extra detail would not significantly affect the overall
estimate for the instrument.

An important aspect of these instrument Phase D cost estimates is the
commonality in instrument development that could be exploited in considering
the evolutionary astronomy program as a whole. Commonalities in develop-
ment efforts for different instruments (such as in a second-generation growth
version of a given instrument) were taken advantage of so as to achieve the
greatest economy in overall program costs. Therefore, some of the instru-
ment cost estimates shown in Section 3. 2, below, reflect assumptions that
other instruments developed earlier in the program reduce the development
cost estimate for the instrument in question. These assumptions, where
they are made, are identified in footnotes in the appropriate "Task Cost
Estimate--Phase D" tables in Section 3. 2. Another assumption that is some-
times made, and footnoted as appropriate, is that a single contractor will
develop the optics for both instruments in a sequence. In addition, the entire
set of instrument-development cost estimates is predicated on Cluster 1 and
Cluster 2 of the ATM series having flown. In cases where these types of
program-derived development commonalities are assumed, the cost estimates
are .significantly smaller than they would be if the instruments were to be
developed independently.

Schedules were devised with regard to the influence on overall program
logistics. Primary consideration was given to the logical evolution from
earlier instruments to their more sophisticated descendents, and the neces-
sary development intervals were allowed between instruments whose develop-
ment cost could be commonized as explained in the preceding paragraph.
Thereby, full advantage could be taken of the learning process. By creating
schedules on an overall basis, it was possible to maximize the usefulness of
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each launch. Manpower loading was assumed to be flexible; i. e. , no allow-
ance was made for loss in manpower efficiency which might occur when
greater than the normal number personnel are assigned to a project at a

given time.

In the individual development schedules shown in Section 3. 2, the general
bar chart layouts of the component activities for the various subsystems
(detectors, collecting optics, etc. ) as well as for the basic instrument
system development, and also for the interface with the OASF launches in
the overall astronomy program, are essentially similar from instrument to
instrument. The major differences are in the predecessor activity inter-
faces shown at the Phase D Authority To Proceed (zero-month point) and the
instrument launch date. The evolutionary plan presented in Task C is based
on the matching of each instrument launch date shown he're with the appropri-
ate OASF launch (the one indicated in the instrument development schedule).
Furthermore, to accomplish Phase D within the time and within the cost
estimated for a given instrument, the predecessor activities are considered
to have taken place before the Phase D Authority To Proceed date for that
instrument. Without these predecessor activities having taken place, the
time and the cost necessary to accomplish Phase D for the given instrument
would bpth have to be increased.

A summary of Phase D costs, separated into operations and development for
each instrument, is presented in Table 3-2.
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Table 3-2
PHASE D TASK COST ESTIMATES

($ Thousands)

Section
in Text

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

3.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2.21

2. 22

2.23

2.

2.

2.

2.

2.

2.

24

25

26

27

28

29

OASF
Instrument

Instrument Name Number

Crossed- H tethered interferometer

Terminated- loop tethered interferometer

Kilometer wave orbiting telescope

1- meter IR telescope

1- meter non- diffraction-limited UV- visible- IR telescope

1- meter diffraction»limited UV- visible- IR telescope

0. 3- meter UV Schmidt telescope

1- to 6- solar- radii coronagraph

5- to 30- solar- radii coronagraph

0. 8- meter UV- visible- IR telescope

0.2- meter UV off- axis telescope

0.25- meter XUV spectroheliograph

3- meter diffraction- limited UV-visible-IR telescope

1- meter UV Schmidt telescope

1.5- meter diffraction- limited UV- visual- IR telescope

0.5- meter UV off- axis telescope

0. 125- meter XUV high- dispersion- spectroheliograph

0.25- meter XUV grazing incidence telescope

0.25- meter imaging X-ray grazing incidence telescope

0.225- meter spectrographic X-ray grazing incidence
telescope

1- meter X-ray grazing incidence telescope

0.5- meter XUV grazing incidence telescope

0.7 keV to 20 keV proportional counter array

10 keV to 300 keV scintillation counter

300 keV to 1 MeV scintillation counter

1 MeV to 5 MeV scintillation counter

25 MeV to 1 GeV digitized spark chamber

10 keV to 20 MeV solid state counter

20 MeV to 100 GeV gas Cerenkov counter

32

30

41

14

45

34

33

36

37

44

04

06

35

13

46

05

07

08

39

11

19

09

20

22

23

42

43

25

27

Development

26,

23,

80,

4,

10.

6,

3,

1.

2,

6,

2,

2,

176,

23,

5,

4,

2,

3,

3,

3,

4.

4,

1,

1.

1,

1,

4,

1,

1.

780

600

950

285

729

719

265

285

715

824

250

385

950

705

896

010

385

915

020

269

630

560

890

930

435

435

320

180

376

Total
Operations Phase D

12,

10,

37,

1,

4,

3.

1,

1,

3,

1,

1,

81,

10,

2,

1,

1,

1,

1,

1,

2.

2,

1,

375

908

348

980

961

104

677

593

577

128

040

102

697

949

722

852

102

805

511

510

141

059

873

892

663

663

948

546

637

39.

34.

118,

6,

15.

9,

4,

1,

4,

9,

3.

3.

258,

34,

8,

5,

3,

5,

4,

4,

6,

6,

2.

2,

2,

2.

6,

1,

2,

155

508

298

265

690

823

942

878

292

952

290

487

647

654

618

862

487

720

531

779

771

619

763

822

098

098

268

726

013
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3.1 .3 Flight Crew Skills

The instrument descriptions in Section 3. 2 include discussions of the utiliza-
tion of man in the deployment, alignment, calibration, operation, and
maintenance of each instrument. Crew skills identified in those discussions
are referenced by number; Table 3-3 summarizes these flight crew skills
and their numerical identification.

Table 3-3

FLIGHT CREW SKILL SUMMARY

No. Name

1 Biological Technician
2 Microbiological Technician
3 Biochemist
4 Physiologist
5 Astronomer/Astrophysicist (Navigator)
6 Physicist
7 Nuclear Physicist
8 Photo Technician/Cartographer
9 Thermodynamicist

10 Electronic Engineer (Navigator/Radar Specialist)
11 Mechanical Technician (Engineer)
12 Electromechanical Technician (general)
13 Physician
14 Optical Technician
15 Optical Scientist
16 Meteorologist
17 Microwave Specialist (Communications/Radar)
18 Oceanographer
19 Physical Geologist
20 Photo Geologist
21 Observer (general)

3. 2 DESCRIPTION OF ASTRONOMY INSTRUMENTS

The astronomy instruments resulting from the selection process described in
Section 2 are described in detail below.
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3. 2. 1 Crossed-H Tethered Interferometer Radio Telescope--OASF
Instrument No. 32 .

3. 2. 1. 1 General Characteristics

The crossed-H interferometer (Figure 3-6)* is a long-wave radio astronomy
instrument concept advanced in the Large Space Structures Experiment Study
conducted by the Convair Division of General Dynamics in coordination with
the scientific community (Reference 1-1). The system provides high resolu-
tion over a wide frequency band utilizing interferometer effects and dimen-
sional variations. It was conceived to fulfill the threefold purpose of (1)
evaluating man's role'in the deployment, maintenance, and repair of large
space structures; (2) evaluating technology of large space structure's; (3)
satisfying a user-oriented requirement such as radio astronomy.. It consists
of a symmetrically shaped center body with extendable booms that support
retractable wire-mesh dipoles resembling a turnstile configuration. Both
beams and dipole lengths are adjustable in three steps to permit operation
over three frequency bands: 0. 5 to 2. 5 MHz, 2. 5 to 5 MHz, and 5 to 1 0 MHz.

The dipole antennas are the basic sensors. A pair of orthogonal dipoles is
arrayed with a second pair to give an end-fire pattern with polarization

diversity, • . . .

The center body encloses most of the mechanisms, the observation electron-
ics, arid the power system. Solar cells are mounted on the body surface.

The booms extend and retract by telescoping.

Each antenna has its independent attitude-control system, including a horizon
seeker and/or star tracker. Thrusters are located at boom tips and center
body to provide the 6° of motion. Momentum wheels can be added.

The tether joining the two antennas is extendable and retractable between
10, 000 and 1, 000 m. The tether serves to. (1) permit utilization of the gravity

KFor convenience, the basic figure for each instrument is a foldout located
at the conclusion of the appropriate section.
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gradient as a primary stabilizing force and (2) provide a means of controlling
the distance between the antennas. The antennas can be redocked into the

launch configuration.

The variable geometry crossed-H interferometer concept satisfies the long-
wave radio astronomy user requirements, even when structural and dynamic
problems inherent in this type of observation are considered. Important

features of this concept are:

1. J^n. end-fire radiation pattern, which eliminates the hemispherical
ambiguities in antenna response.

2. Variable tether length, which makes possible the use of the inter-
ferometer, together with data-correlation processes, to achieve an
unambiguous mapping resolution equivalent to that of a two-
dimensional filled-aperture array. This achieves a performance
that could be matched, using conventional techniques, only by a
vastly more complex antenna structure.

3. Variable dipole spacing and length, which permits operation over
the broad frequency range from 0. 5 to 10 MHz.

4. Ability to lock-on or slew the end-fire dipole assemblies to
continuously monitor one sector of the sky. This permits use of
the instrument to study time-varying sources, such as the sun,
when events of special interest occur.

5. For strong time-varying sources, the entire range, either from
0. 5 to 5. 0 MHz or from 2. 5 to 10. 0 MHz, can be observed
simultaneously by tuning the two ends separately (either 0. 5-2. 5/
2. 5-5. 0 MHz or 2. 5-5. 0/5. 0-10 MHz).

6. Polarization measurements in two orthogonal directions are
performed continuously during all observation periods and modes.

Other design features that contribute to the feasibility of the crossed-H
interferometer are deployment reliability, refurbishment capability, and
reasonable cost.

The crossed-H interferometer concept is derived in part from the Tethered
Orbiting Interferometer (TOI) concept of Dr. R. G. Stone of the Goddard
Space Flight Center, which uses the tethered-antenna-pair interferometer
principle. Instead of crossed-H antennas as basic sensors, the TOI uses
simple dipoles. Much of the research concerning gravity-gradient tethered
antennas was done by Johns Hopkins University, together with the TOI
program.
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3. 2. 1. 2 Design Criteria

Principal measurement objectives of a long-wave radio astronomy system
are (1) the spectral brightness and polarization mapping of essentially time-
stationary-sources for frequencies below 10 MHz and (2) spectral brightness
and polarization monitoring of strong time-varying sources within the solar
system for frequencies below 10 MHz.

Earth-based radio telescopes are limited in their usefulness in varying
degrees below roughly 30 MHz.by the reflection, absorption, refraction, and
polarization rotation effects of the .ionosphere. They are also adversely
affected by interference from man-made signals and atmospheric noises
originating on the Earth. These limitations increase in severity with
decreasing frequency, becoming very severe at about 10 MHz and intolerable
at frequencies below about 5 MHz. Space-borne long-wave radio astronomy
telescopes operating outside the ionospheric blanket avoid many of these
.problems associated with Earth-based telescopes. Below frequencies of
4 or 5 MHz, space-borne long-wave radio astronomy telescopes are the sole
means of obtaining long-wave radio astronomy measurement data.

To be useful, then, satellite-borne long-wave radio astronomy telescopes
must, among other things, to able to operate at frequencies below 5 MHz,
must be able to resolve small angles for mapping, must be capable of
monitoring time-varying sources, and be able to measure the polarization
of the incident radiation. During analysis and evaluation phases of the
program, a listing of typical long-wave radio astronomy user requirements
was developed as an aid in evaluating various satellite-borne telescope
concepts; these user requirements are summarized in Table 3-4.

Outputs of the phasing and combining circuit, lead to detection and correla-
tion portions of the radiometer equipment. Envelope or power detectors
would give a measure of energy incident on each of the channels. Correlation
or product detectors, measuring correlation between inputs from the two ends
of the interferometer, would yield values of Fourier components of the sky-
spatial radiant distribution. Later these could be processed through ground-
based computers to obtain maps of sky brightness distribution. A
representative correlation detector is a type developed by Hubbard and
Erickson.
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Table 3-4

DESIGN CRITERIA
Crossed-H Tethered Interferometer

Radio Telescope
OASF Instrument No. 32

Lifetime

Orbit altitude
Effective beamwidth

Pointing accuracy

Pointing stability
Bandwidth

Spectral resolution

Sensitivity
Lock-on time

Tolerance

Orientation

Minimum of 1 year desired
Minimum of synchronous
100 degrees at 1 MHz desired—less than 10 in one
direction, but could be greater for solar and planetary
astronomy. Interferometers should be used if possible
for improving this resolution to 2°.
1/2 beamwidth minimum to 1/10 for aspect determina-
tions. In case of a sweeping mode or drift mode
antenna, pointing direction must be known to within
1/10 half-power beam-width or better.
Approximately 1/10 beamwidth or better.
500 kHz to 10 MHz desired, with emphasis on lower
half. Possible extension to 200 kHz.
Good desired, and depends only on electronics for any
one antenna.
Unfilled apertures entirely adequate.
1/2 sec to several hours for time-varying phenomena.
For most observations, however, an antenna arrange-
ment with as slow a drift-rate as possible--of up to
approximately l°/sec suffices.
Perfer 1/20X, but l / l6\is adequate.
(At 1 MHz, a = 300 m)
Eliminate antenna-pattern directional ambiguity.

About 15 pass bands, i. e. , five in each of the three principal divisions of the
0. 5 to 10 MHz frequency range, would give a reasonable spectral sampling
for the interferometer mapping mission.

A circuit feature that could be provided would include servo-controlled filter
and end-fire phasing elements which would permit swept-frequency measure-
ments to be made. This capability is most desirable for the observation of
strong time-varying sources.

Capability of observation of all extraterrestrial radio phenomena will be
assured by incorporation of radiometry filters and power detectors, swept
frequency receivers, and wideband receivers of sufficient dynamic range.

Wideband noise sources will probably be employed for calibration purposes.
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3. 2. 1. 3 Detailed Characteristics

Basic characteristics of the crossed-H tethered interferometer radio tele-
scope have been summarized in Figure 3-1 in Section 3. 1.

Additional instrument details are tabulated in Tables 3-5 and 3-6.

Impedance Considerations

Figure 3-7 is a Smith chart plot of the anticipated input impedance of a
single dipole operating over the designated frequency ranges without com-
pensating networks. The 0. 5- to 2.5-MHz range is the widest range and,
consequently, has the maximum impedance variation.

The higher bands are identical in ratio and, therefore, display the same
impedance characteristics.

Antenna Dimensions

Dipole dimensions as adjusted for each frequency range are shown in
Table 3-7.

Radiation Patterns

Dipole end-fire arrays have directive radiation patterns designed to enhance
reception in one hemisphere. Referring to the coordinate system in
Figure 3-8, radiation pattern of the array is expressed by:

Eg = sin
[ -1 r .

•^Y (sin 9 cos <J> + 1) Icos (-y- cos 0) - cos (^y
5in -r= -ty j= . T \-|

sin(—-—) sine 1 - cos ' (—j I
\ l_ J

where

d/\ = 0. 25
. . .L/\ = 1. 25

Figures 3-9 through 3-11 are radiation patterns calculated at low-, mid-,
and high-frequency points for a mixed dipole length and spacing.

Additional instrument details have been tabulated in Tables 3-5 and 3-6.
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Table 3-5
COLLECTOR PARAMETERS

Crossed-H Tethered Interferometer - Radio Telescope
OASF Instrument No. 32

Aperture
Total field of view
Angular resolution

On axis
Poorest in field of view

Minimum wavelength
Maximum wavelength

150 m x 150 m x 30 m x 10 km
130° x 90°

1. 7° at 100 m
5° at 100 m
30 m
600 m

Table 3-6
INTERFACE CHARACTERISTICS

Crossed-H Tethered Interferometer - Radio Telescope
OASF Instrument No. 32

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing. . .
Deployment

Alignment
Calibration
Ope ration
Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format

Processing

Record ing media
Mode of data recovery

Pointing requirements
Poin t ing accuracy (acquisition)

Power consumption
Standby
Ope rate

1 ,900kg
10 m3

Spheroidal pod with extendable
booms and STEM dipoles retracted

Extension of STEM and telescoping
booms
Gravity gradient and pneumatic
Calibrated noise source
Remote
Ground activated

Protective core
N/A

Partially processed rf cov-
converted to digital
Transmission to ground-based
computer
Tape
Ground-based S-band receiver

±5°

200 W
614 W



zo = so A

Figure 3-7. Impedance Coordinates
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Table 3-7
CROSSED-H DIPOLE DIMENSIONS

Frequency
(MHz)

0. 5
2. 5
2. 5
5
5

10

Dipole Length
(m)

150

75

37. 5

Dipole Spacing
(m)

30

15

7. 5

L/\

1/4
5/4
5/8

5/8
5/4

d / X .

1/20
1/4
1/8

1/8
1/4

3. 2. 1.4 Utilization of Man

The normal deployment and operation mode of the Crossed-H Tethered
Interferometer Radio Telescope (OASF Instrument No. 32) is automatic.
However, yearly resupply of consumables is required, and EVA may be
utilized for inspection, maintenance, repair, and updating of components.

Deployment

Neither man nor EVA is needed; deployment is automatic.

Alignment

No alignment is needed. If the antenna has been properly deployed, it will
be in the proper configuration. Antenna dimensional accuracy is not critical.

Calibration

Standard radio objects are scanned; the receiver contains built-in standards.

Operation

Operation is automatic and preprogrammed. Observations are telemetered
to an orbital support facility or directly to an Earth receiver. Manned activ-
ity near the antenna during its operation is undesirable because it might
interfere with the observations.
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8- o°

_
Figure 3-8. Dipole End-Fire Array, Coordinate System

0.05. - 0.25. TYPICAL OF 0.5 MHz

Figure 3-9. Radiation Patterns of End-Fire Array
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0.125. Jjf - 0.625, TYPICAL OF 1.25MHz

Figure 3-10. Radiation Patterns of End-Fire Array

Figure 3-11. Radiation Patterns of End-Fire Array
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Scheduled Maintenance

One re supply of attitude-control gas per year, well before the supply is
exhausted, is required. At the same time, EVA may be utilized not only to
replace failed components, but also to make adjustments to restore the sys-
tem to peak operating condition and to replace components suspected of
impending failure. The scientific quality of the antenna and the receiving
system can also be upgraded by the introduction of new, more-sophisticated

electronic modules.

Unscheduled Maintenance

Because the instrument is operated in a high orbit (synchronous or higher)
and is normally left unattended between annual resupply and maintenance
events, unscheduled maintenance, if required, would be combined with
resupply and normal maintenance. In case of a system breakdown, the
resupply, repair, and maintenance described above under Scheduled Mainte-
nance may be rescheduled for an earlier date.

(If stabilizing jets fail and an antenna is tumbling without control, it would
be dangerous for an astronaut to approach and the antenna would probably
be abandoned. )

3. 2. 1. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements associated with the
Crossed-H Tethered Interferometer (Instrument No. 32) are listed below.
Full descriptions of SRT items are given in Section 4. 3.

Research and Advance Technology

Investigate techniques for erection of large structures in space
(SRT 53).

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (1) hard-vacuum
effects on materials, finishes, etc. , and (2) development of proces
sing, handling, and assembly techniques (SRT 83).
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3. 2. 1. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-8, which shows both development and
operations costs. The development schedule is shown in Figure 3-12.
Quantities of equipment required in development are shown in Table 3-9.

3. 2. 1. 7 Instrumentation Section

The following paragraphs discuss characteristics associated with the
instrumentation contained in the instrumentation section.

Receiver

Receiver instrumentation used in conjunction with the crossed-H interferom-
eter is shown in the simplified block diagram of Figure 3-13. The diagram
shows a method of providing the phasing necessary to obtain the desired
end-fire radiation patterns. Energy received at each dipole is amplified by
a wide-band amplifier, then sent through band-pass filters that separate
different portions of the spectrum for transmission through different circuits.
This separation into narrow-frequency bands is necessary if good front-to-
back ratios of reception are to be obtained throughout the frequency band
with the end-fire arrays, because of the mutual impedance properties of the
dipoles in the arrays. At each narrow-frequency band the end-fire phasing
components insert the phase shift and magnitude transformations required
for proper cardioid pattern shape.

As a single antenna, it is sufficient to note that the receiver will be capable
of frequency and power resolution by the use of eight wide-band and three
swept-frequency radiometry receivers.

Time-varying sources can be observed by making the two antenna con-
figurations different so that two frequency bands may be observed simul-
taneously, because two satellites will be launched together.
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Table 3-8
TASK COST ESTIMATE--PHASE D

Crossed-H Tethered Interferometer Radio Telescope
(OASF Instrument No. 32)

( $ thousands)

Development total 26,780
Engineering 1, 980
Detectors *
Collectors 1,200

Antenna array 1, 200
Guidance 1, 600

Star tracker 600
Gas system 1,000
Electronics *

Housing 9, 000
Structure *
Deployment mech 1, 000
Power supply 8, 000

Experiment package 13, 000
Tape recorders 400
Satellite to GRD com-
munication system 600
Receivers 12, 000

Major hardware articles . *
Mockup ' *
Engineering model • . *
Project verification model *
Qualification model • #

Operations total 12, 375
Flight instrument 8, 035
Backup flight instrument 3, 215
Engineering support 1, 125

Phase D total '

*Cost item not derived where overall estimate for instrument is not
significantly affected.
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Table 3-9
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

Crossed-H Antenna Tethered Interferometer Radio Telescope
(OASF Instrument No. 32)

Functional
System
(Major

Element)

Crossed
-H
Tethered
Inte rf e r -
ometer

Subsystem

Detectors

Collectors

Guidance

Housing

Experi-
ment
package

Major
hardware
articles

Assemblies

--

Antenna array

Star tracker
Gas system
Electronics

Structure
Deployment mech
Power supply

Tape recorders
Satellite to grd comm sys
Receivers

Mockup
Engineering model
Project verification model
Qualification model

Quantity

Bread-
Board

--

--

1
1
1

--
_ _

2
2
2

1

""

Proto-
type

--

2

2
2
2

1
1
1

2
2
2

1
60%*

Flight
Quality

--

2

2
2
2

2
2
2

2
2
2

40%*
1

^Obtained from subsystem development quantities

It will be noted that the circuit is designed to provide a dual set of cardioid
patterns simultaneously (through use of a dual hybrid and phasing network
arrangement, if reception [and null] of each is in a direction opposite to that
of the other). Thus, data from opposite hemispheres can be simultaneously
obtained.

Band-pass filters also serve the function of limiting the spectral spread of
any one set of observed data so that phase-shift techniques rather than more
difficult transmission delay techniques can be used in the synthetic aperture
correlation process. Filter pass-bandwidths on the order of 2 or 3 kHz
appear to provide appropriate system performance.
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TDIPOLE
RADIOMETER
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PHASING AND COM
BINING NETWORKS
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TELEMETRY I
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TO DATA
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AND
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INTERFEROMETER UPPER END INTERFEROMETER LOWER END

Figure 3-13. Simplified Equipment Block Diagram
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ADJUSTABLE
6 TO 75 M.
TYP.'

TRIANGULAR TELESCOPING BOOM

MAIN BODY ASSEMBLY
ATTITUDE CONTROL

TETHER TAPE
C_ DIPOLE

ADJUSTABLE 3 TO 30 M. .

TETHER TAPE
(ORIENTED ALONG
GRAVITY GRADIENT)

ANTENNA

ANTENNA

10.000-250 METERS
(1,000 METERS SHOWN)

Figure 3-6. Crossed-H Tethered Interferometer, Radio Telescope. OASF Instrument No. 32
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3. 2. 2 Terminated-Loop Tethered Interferometer Radio Telescope -
OASF Instrument No. 30

3. 2. 2. 1 General Characteristics

This instrument concept consists of two terminated loop anteriha modules
connected by a tether of variable length (Figure 3-14). For ease of storage
and deployment, the loop assumes a square configuration. Two adjacent
legs of the loop can then be Storable Tubular Extendable Member (STEM)
elements. Extending from the apex formed by these two legs, along a neutral
axis between them, is a third STEM used to deploy the other two sides of the
loop. These sides are conductive tapes stored on reels and automatically
deploy with the STEMS. The deployment concept is represented in Fig-
ure 3-15. Each module would contain total power and swept frequency
receivers and a variable antenna structure.

One module, the Base Module, would have for its antenna, two orthogonal-
terminated-loops 107 ft (32. 6 m) on the side which would be capable of
operating from 50 kHz to 15 MHz with polarization determination capability.
The other, the Remote Module, would be a smaller single- (linearly polar-
ized) terminated-loop 42 feet (12. 8 m) on a side. Together the tethered
pair of antennas would act as an interferometer with an angular resolution
of 1°.

Alignment of both antennas is augmented by the gravity gradient existing
between them.

Electrical power and alignment pneumatic storage required to enable the
module to remain in orbit for a year are reasonable. Weight of the two
modules combined is estimated to be a maximum of 1, 450 kg.

Distance measuring equipment such as a radio theodolite accurately measures
the linear distance between both modules, and star trackers are used to
accurately fix their angular orientation with respect to space. These data
are used in the process of aperture synthesis.
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WIRE STORAGE
SPOOL

DEPLOYED ANTENNA

WIRE STORAGE
SPOOL

COMMON DRIVE
ROLLER

Figure 3-15. Deployment Concept Terminated Loop Antenna

Unique Features

Over the frequency range, its input impedance remains basically resistive.
This is unlike the highly reactive impedance of electrically small lossless
antennas and presents a smaller interface problem when combined with
receiving equipment.

The radiation pattern remains essentially constant and directive without
requiring complicated phasing circuitry.

Allowing for the low sensitivity that is tolerable at the brightness levels
anticipated on the radio frequency range, the antenna can be extremely small
relative to the lowest operating frequency wavelength.

Concept of a tethered-orthogonal-loop and small-plane-loop resulted directly
from fitting an equipment capability to baseline research program specifica-
tions. Resulting equipment is regarded as having minimum weight and volume
required for the task.

64



That multibeam techniques may be fully exploited, it is suggested that all
radiometer data be transmitted to ground in a raw digitized state.

Predecessor Developments

Work that preceded the suggested tethered terminated loop is most signifi-
cantly concentrated in the following programs:

1. TOI--Tethered Orbiting Interferometer.
2. Crossed-H Interferometer.

The terminated loop antenna concept has been known for over a decade and
had been used in direction-finding applications.

3. 2. 2. 2 Design Criteria

Specific criteria for this equipment are the Observation'Requirements Data
Sheet (ORDS) which are a compilation or research objectives as gathered from
the scientific community by Douglas Aircraft Company.

They are briefly stated below:

1. Average Low Frequency Medium Frequency and High High Frequency
(MF and LF) Radio Emission From The Galaxy.
"Sky brightness" will be monitored by a radiometer. 1, 500-, 600-,
300-, 150-, 60-, and 30-m bands will be observed with a bandwidth
of 5% (or less).

2. Survey Low Frequency, Medium Frequency and High Frequency Sky
Radiation.
It is desired to scan the entire sky with 10° angular resolution for
radio emission between 0. 2 and 10 MHz. Bandwidth will be 5% or
less of the observed frequency.

3. Survey Low Frequency, Medium Frequency, and High Frequency
Discrete Sources.
Discrete radio sources will be detected using a "radio telescope"
having 1° angular resolution, and their spectra will be monitored
in the range 0. 2 to 10 MHz. Bandwidth will be less than 5% of the
observed frequencies.

4. Obtain LF, MF, and HF Spectral and Polarization Measurements of
the Solar Corona.
Dynamic spectra of solar bursts in the frequency range 50 kHz to
15 MHz will be obtained by rapidly sweeping this range with a
radiometer.
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5. LF, MF, and HF Radio Observations of Jupiter.
Planet Jupiter will be monitored for radio emission in the 50 kHz to
15 MHz frequency range, principally to obtain dynamic spectra of
its diameter and longer -wavelength bursts. Electron density and
temperature structure of Jovian trapped particle belts can be deter-
mined from this data. . . .

Resolution

Angular resolution of the system is determined in along-track direction by the

interferometer fringe lobes and in the cross-track direction by the antenna

beamwidth of the synthesized aperture.

In the interferometer mode, the interference fringe lobe pattern is given by

6 = 2 sin"1 (^j)

This can be approximated for small angles near broadside by

o ~ ^
d"

where

X = wavelength

d = Distance between the two antennas

6 = beamwidth between first nulls measured
from broadside

The term 6 represents twice the angular resolution of the interferometer and
is plotted in Figure 3-16 as a function of baseline separation and frequency.
Figure 3-16 also shows the time required to pass through the fringe lobe
(or maximum time available to integrate the fringe lobe data).

Limit of Resolution

Maximum usable separation of the antenna elements will be governed by the
ORDS requirements for resolution and effects of coronal scattering.
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For observations in the quadrants in a direction opposite to that of the sun,
scattering angle is

4> (opposition) ~

where

X = wavelength in meters

R = distance to sun in solar radii

In vicinity of Earth, R = 215.

Table 3-10 summarizes order of magnitude of this effect, and also indicates
maximum usable aperture. It can be seen that a resolution of about 1° is
the limit set by coronal scattering at a wavelength of 600 m, and that the
maximum usable aperture is about 34 km or about 17 nmi.

Design of the terminated loop is based on an analysis to determine the mini-
mum sensitivity allowable. Resulting antenna efficiencies and scattering
angles are shown in Tables 3-11 and 3-12.

1
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g
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<
£Co
H

2.4 X 1fl2

2.4 X 101 L- 10'1

ORBIT: EARTH SYNCHRONOUS

I I I I I I 1
2 3 4 5 6 7 1 0

BASELINF IN NAUTICAL MILES

Figure 3-16. Beamwidth and Integration Time per Fringe Lobe
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Table 3-10

COLLECTOR PARAMETERS
Terminated-Loop Tethered Interferometer Radio Telescope

OASF Instrument No. 30

Aperture 40 km
Total field of view 132° x 90°
Angular resolution

On axis 1° at 1, 000 m
Poorest in field of view 5° at 1, 000 m

Minimum wavelength 20 m
Maximum wavelength 6, 000 m

Table 3-11
MINIMUM ALLOWABLE ANTENNA EFFICIENCIES

Frequency (MHz)

15
10
0. 85
0. 2
0.05

Efficiency (dB)

- -14
-16

-39
-51
-63

Table 3-12
SCATTERING ANGLES

Mm)

30
100
300

1, 000

<t>Q (opposition)

14
2.

24
4.

in.
7 ft

ft
5°

Maximum Usable
Aperature (km)

430
130
43
13
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3. 2. 2. 3 Detailed Characteristics

Basic characteristics have been summarized in Figure 3-1. Additional
instrument details are tabulated in Tables 3-10 and 3-13. Results are
conservative because an istropic antenna and a 10 dBa background level is
assumed.

Impedance Consideration

A terminated loop can be designed to have an equivalent circuit equal to a
radiation resistance in series with a terminating resistor.

At the low end of the bank where the loop is extremely small in terms of
wavelengths, the terminating resistor (numerically equal to the receiver
input impedance) is much greater than the radiation resistance. Therefore,
though the antenna is lossy, the receiver and antenna are virtually matched.

At the highest operating frequency the loop perimeter should not exceed one
wavelength. Thus the maximum loop area is equal to y-7- for a square loop
with a length of a side equal to -r.

Applying the fomula for radiation resistance of a small loop:

R = 320"4(7)2

where

R = Loop radiation resistance
A = Loop Area
X. = Wavelength

the loop is found to have a radiation resistance of 122 ohms and mismatch to
a 50-ohm receiver is about 3. 5:1.

Antenna Dimension .

Considering the design criteria discussed above, antenna efficiency at the
lowest frequency should be at least minus 63 dB. This indicates a required
loop area of 1, 040 m or a square loop side dimension of 31. 7 m or 107 ft.
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Table 3-13
INTERFACE CHARACTERISTICS

Terminated-Loop Tethe red -Interferometer
Radio Telescope--OASF Instrument No. 30

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing . . .
Deployment

Alignment
Calibration
Operation
Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format
Processing

Recording media

Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed
Standby
Operate

1,450 kg

Two, 2/3 m diam x 2 m long
cylinders with STEM elements
retracted and attitude control
tanks external.

Extension of STEM Loop
elements
Gravity gradient and pneumatic
Calibrated noise source
Remote
Ground-activated

Plastic bag protective cover
None

Analog rf converted to digital
Raw transmission to ground
based computer
Tape, raw data transmitted to
ground
Ground-based S-band receiver

5° (angle)

260 W
800 W
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At the highest frequency of 15 MHz, the loop-perimeter exceeds one wave-
length. This can be compensated for by adding a capacitively coupled
smaller loop at the apex of the larger loop as shown schematically in Fig-
ure 3-17. The smaller loop should become effective at approximately 2 MHz
where the circumference of the 107-ft equals one wavelength.

The above procedure can be applied to the smaller frequency range required
(0. 2 MHz to 10 MHz) where an efficiency of -51 dB at 0. 2 MHz is expected.
Resulting loop edge dimension is 42 ft. Here the loop exceeds a wavelength
at approximately 8 MHz where the high frequency section should cross over.

Referring to the coordinate system represented in Figure 3-18, the termi-
nated loops normalized radiation pattern is expressed as

1 q+
E^ = JL

rh J q

q + ~ I ATT \
cos (q + 1), (-1) L ^sin p—j

P A
where

+ ZK* cos (s + 1) (-1)

J.K .1 . ATT•75-^- sin p —

A = Loop circumference in wavelengths

L = Normalizing constant

c = Velocity of radiation in space

v = Velocity of radiation along the loop
c

P = v
k = A sin 6

s = Any positive even integer including 0,
and q = any positive odd integer
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T

Figure 3-17. Schematic Representation of High Frequency Loop Within Larger Loop'

Figure 3-18. Coordinate System used in Radiation Pattern
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J,(k), J (k), J (k), etc., are Bessel Function of the first kind
1 C[ S

Jq(k) + Jq + 2(k)
. . . ^ ~ P

2 A 2 - ( q + l ) 2

Js(k) + J (k ) .
k = —-s 2 . 2 . . . . 2p A - (s + 1)

- J
kx =P 2.2 . . .2 •H p A - (s + 1)

kl Js<k> - Js + 2<k>
S " p 2 A 2 - ( q + l ) 2

Figure 3-19 depicts E plaine radiation patterns computed from the above
formula. .

It can be seen that the pattern remains relatively constant and directive even
when the loop is extremely small in terms of wavelength. One of the major
advantages of the terminated loop is that it remains this way without using
a frequency dependent phasing network.

Basic characteristics have been summarized in Figure 3-1.

3. 2. 2. 4 Utilization of Man

The normal deployment and operation mode of the Terminated-Loop Tethered
Interferometer Radio Telescope (OASF Instrument No. 30) is automatic.
However, yearly resupply of consumables is required, and EVA may be
utilized for inspection, maintenance, repair, and updating of components.

Deployment

Neither men nor EVA is needed; deployment is automatic.

Alignment

No alignment is needed. If the antenna has been properly deployed it will be
in the proper configuration. Antenna dimensional accuracy is not critical.
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PERIMETER • 0.9\

180°

. PERIMETER « 0.5X PERIMETER •= 0.003X

Figure 3-19. E Plane Radiation Pattern

Calibration

Standard radio objects are scanned; the receiver also contains built-in
standards.

Operation

Operation is automatic and preprogrammed. Observations are telemetered
to an orbital support facility or directly to an Earth receiver. Manned
activity near the antenna during its operation is undesirable because it might
interfere with the observations.

Scheduled Maintenance

One resupply of attitude-control gas per year, well before the supply is
exhausted, is required. At the same time, EVA may be utilized not only to
replace failed components, but also to make adjustments to restore the
system to peak operating condition and to replace components suspected of
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impending failure. The scientific quality of the antenna and the receiving
system can also be upgraded by the introduction of new, more-sophisticated
electronic modules.

Unscheduled Maintenance

Because the instrument is operated in a high orbit (synchronous or higher)
and is normally left unattended between annual resupply and maintenance
events, unscheduled maintenance, if required, would be combined with

resupply and normal maintenance. In case of a system breakdown, the
resupply, repair, and maintenance described above under Scheduled Mainte-
nance may be rescheduled for an earlier date.

(If stabilizing jets fail and an antenna is tumbling without control, it would
be dangerous for an astronaut to approach and the antenna would probably
be abandoned.)

3. 2. 2. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements associated with the
Terminated Loop Tethered Interferometer (Instrument No. 30) are listed
below. Full description of SRT items are given in Section 4. 3.

Research and Advance Technology

Investigate techniques for erection of large structures in space (SRT 53).

Advance Development

Assess materials for internal use to determine if rapid aging .
and breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (1) hard vacuum
effects on materials, finishes, etc. , and (2) development of
processing, handling, and assembly techniques (SRT 83).

3. 2. 2. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-14, which shows both development and
operations costs. The development schedule is shown in Figure 3-20.
Quantities of equipment required in development are shown in Table 3-15.

75



Table 3-14
TASK COST ESTIMATE--PHASE D

Terminated-Loop Tethered Interferometer
Radio Telescope (OASF Instrument No. 30)

($ thousands)

Development total

Engineering

Detectors

Collectors
(2) Antenna arrays (107 ft and 42 ft)

Guidance
(2) Star trackers
(2) Gas systems
(2) Electronics

Housing

Structure
(2) Deployment mech
(2) Tether system
(2) Power system

Experiment package
(4) Tape recorders
(2) Satellite to GRD

comm system
(2) Receivers

Operations total

Flight Instrument

Backup flight instrument

Engineering support

Phase D total

23,600

10,908

34, 508

1,750

*

1,250

1,600

10,000

9,000

7,080

2,835

993

1,250

600
1,000

*

2,000
*

8,000

400
600

8,000

*Cost item not derived where overall estimate for instrument is not
significantly affected.
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Table 3-15
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

(Terminated-Loop Tethered-Interferometer Radio Telescope
OASF Instrument No. 30)

System
(Major

Element)

Terminated
loop
tethered
inte rf e rom -
eter

„

Subsystem

Detectors

Collectors

Guidance

Housing

Experiment
package

Major
hardware
articles

Assemblies

(2) Antenna arrays
(107 ft and 42 ft)

Star tracker
Gas system
Electronics

Structure
Deployment mech
Tether system
Power system

Tape recorders
Satellite to GRD

comm sys
Receivers

Mockup
Engineering model
Project verification

model
Qualification model

Quantity

Bread-
Board

2

1
1
.1

_ _ ^

2

2
2 •

1

Proto-
Type

2

2
2
2

1
1
1
1

2

2
2

_ _ _

1

60%*

Flight
Quality

2

2
2
2

2
2
2
2

2

2
2

_ _ _

40%*
1

*Obtained from subsystem development quantities.

3 .2 .2 .7 Instrumentation Section

The following paragraph contains characteristics associated with the instru-
mentation section.

Radiometer Design Criteria

Operating frequency range, which extends from 50 kHz to 15 MHz, is a range
in which electronic components have been most highly developed. In addition,
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the operating environment can be controlled, and there is a store of knowledge
that relates to the survival of solid-state components over the range of
environment to be encountered during the non-operating condition to guide
selection of components. Thus, whether instrumentation requirements indi-
cate an extension in the capability of existing hardware, or new conceptual
design there is a complete confidence in their realizability.

Receiver Design Criteria

Temperature resolution (AT) of a radiometry receiver can be written as

AT _ K
T ~ i -

The equation indicates that resolution of the system can be improved by
increasing either predetection bandwidth (B) or postdetection time constant
(T); predetection bandwidth -will be determined by the frequency resolution

requited and postdetection time constant will be determined by observation
time allowed.

To satisfy all radiometer requirements a compromise cannot be made between
temperature and frequency resolution. The logical choice then, is a receiving
system with a wideband front end which, after preamplification, splits the
power to frequency discriminator and power detection circuits.

Receiver Detailed Characteristics

Measurement requirements indicate that both swept and fixed channel receivers
are to be used so that measurements of a dynamic event can be made. Thus
it is anticipated that the entire frequency range must be covered nearly
instantaneously.

Electronics are block diagrammed in Figure 3-21. One sweeping receiver
and 40 fixed tuned receivers are used at the 107-ft antenna.

Output at the antenna terminals will be distributed by a broadband multicoupler,
which will provide inputs to the sweeping receiver and the 40 fixed channels.
The sweeping receiver and fixed channels are total power radiometers. Cali-
bration signals will be provided at regular intervals and upon command derived
from recognition circuits.
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V

Figure 3-21. Block Diagram of Radiometer

The sweeping receiver will be provided with a digitally tuned signal derived
from a crystal-controlled frequency synthesizer, to eliminate the need for
special frequency calibration. The synthesizer will sweep each band in
about 30 steps within 2 sec. Analog output of the log IF and log rf amplifiers
will be converted to a digital number and recorded. Fixed channels can be
manually tuned to spot channels away from rf interference. Bandwidth of
each fixed channel will be 5% of its tuned frequency and the gain of each
channel will be approximately compensated. Bandwidth of the log IF ampli-
fiers in each sweeping receiver will be 5% of the geometric mean of band
frequency limits. Thus, bandwidths will be 5, 20, 80 and 350 kHz.

Logarithmic amplifiers of the sweeping receiver (log IF) and fixed channel
receiver (log rf) should cover a 50-dB dynamic range. Output of the fixed
channel receivers, which when dc coupled to an integrator, will provide
variable (in the range of 0. 001 to 1 sec) integration time constants for fixed
channels. Output of the sweeping receiver log IF amplifier will be integrated
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over a 50 msec period with an integration time constant of 10 msec. Power
resolution of the sweeping receivers will therefore be about 2% and 14% for
high and low bands respectively. Power resolution of the fixed channels
will vary accordingly to the setting of the integrator time constant and band-
width of the channel being monitored.

Output of the fixed channels is used for burst recognition as well as for
burst analysis. Accordingly output of each fixed channel will be connected
to burst recognition circuitry, as well as an electronic commutator whose
output can be digitized and stored on tape or transmitted to ground.
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ATTITUDE CONTROL
GAS

DISTANCE
MEASUREMENT

•STEM DEPLOYMENT
MECHANISM

-ATTITUDE CONTROL
GAS

DISTANCE
MEASURE
ANTENNA

-ATTITUDE CONTROL
GAS

ANTENNA AND INSTRUMENTATION MODULE

NOTE:
SIMILAR ELECTRONIC SUBSYSTEMS
ARE CONTAINED IN BOTH ANTENNA
AND INSTRUMENTATION MODULES
WITH EXCEPTION OF TETHER REEL
MECHANISM.

ANTENNA AND
INSTRUMENTATION
MODULES12.5 MILES MAX.

(19.6 KM)

Figure 3-14. Terminated-Loop Tethered Interferometer, Radio Telescope. OASF Instrument No. 30
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3.2.3 Kilometer Wave Orbiting Telescope (KWOT)--OASF
Instrument No. 41

3. 2. 3. 1 General Characteristics

The KWOT Structure (Figure 3-22) resembles a rhombus, for example, a
parallelogram with equal sides. A cross-member is coincident with the
minor diagonal of the rhombus and extends beyond it in both directipns; The
major diagonal of the rhombic configuration, and the cross-member based on
the minor diagonal, are each 1.0 km long. The four sides of the rhombic con-
figuration are conductors and constitute the rhombic antenna. Mounted along
the cross-member, on the portions outside the rhombus, are conducting
sections that act as dipole elements of the interferometer array. Four identi-
cal 100-lb subsatellites (A, B, C, and D in Figure 3-22) are attached to the
two acute vertices of the rhombic antenna and to each end of the cross-
member. The subsatellites contain solar-cells, radio receivers, short-range
telemetry transmitters, and navigational radio beacons. Each subsatellite
also contains 16 identical radio-controlled low-thrust microrockets pointed
outward in six directions. These microrockets enable the subsatellites to
control the shape and orientation of the structure. Signals from the rhombic
antenna and/or the dipole elements are collected by the (unmanned) "central
observatory." The central observatory contains the basic electronic instru-
mentation for the radio astronomy observations as well as communications
equipment for relaying data to other orbiting vehicles or to ground stations.
The final stage of the KWOT launch vehicle is in a synchronous orbit related
to that of the KWOT and contains instrumentation for attitude control through
the subsatellites, for data processing, and for communication relay between
the central observatory and ground stations.

Several weeks may be required to deploy KWOT after it is launched into
orbit. As the system is slowly rotated, the spin axis is slowly precessed.
Thus the entire sky can be scanned in less than a year.

Unique features of KWOT are:

1. Relatively large frequency range capability.
2. Versatility.

3. Small launch package compared to deployed system.
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3. 2. 3. 2 Predecessor Instrument Developments

The rhombic antenna has been used extensively since 1931. A modest level
of effort on KWOT has been under way since the latter part of 1964. A pre-

sentation on large structures in space (which dealt primarily with the KWOT
concept) was made to. the President's Scientific Advisory Subcommittee on

Space Science in August 1965. The Woods Hole Summer Study Group of the
National Academy of Sciences recommended that further study be made on

such structures. The most recent study was initiated in November 1965
under a NASA grant. The first phase of an en-gineering feasibility study of
KWOT was completed by the University of Michigan Radio Observatory in
October 1966 (Reference 2-1).

Although the rhombic antenna has been used extensively since 1931, and many
papers have been written on various parameters of the rhombic, some areas
that are of interest to space applications have not yet been considered. One
important effect that has not been studied is the change in the rhombic pat-
tern because of the use of thin, lightweight conductors. This factor is of
interest because the weight requirements of the system necessitate the
utilization of lightweight conductors.

Studies concerned with obtaining a useful approximate analytic solution for
the current distribution on a long, straight, perfectly conducting wire have
only recently yielded results (References 3-1 through 3-3). There have also
been contributions in the determination of current distribution on straight
lossy conductors, but those published to date have not covered all of the

important physical aspects of the problem.

Work to date has shown that in general the length of each wire on modified
rhombic antennas must be greater by approximately one wavelength than the
direct distance between the two verticles of the antenna. This property

should allow one to extend the frequency range of the antenna by varying the
vertex spacing. Some general results concerning the reduction of sidelobe

levels have been obtained by suitable spatial tapering.
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3. 2. 3. 3 Design Criteria

The following criteria have been applied to KWOT:

1. Life Time--minimum of 1 year desired.
2. Orbit Altitude--minimum of synchronous.
3. Effective Beamwidth--80°.
4. Pointing Accuracy--0. 1 .
5. Bandwidth--0. 1 MHz to 10 MHz with emphasis on lower half.

6. Spectral Resolution--a few percent for the lower bandwidth
spectrum.

3. 2. 3. 4 KOWT Subsystem Requirements

Attitude Subsystem

The primary importance of measuring and controlling subsatellite attitudes
is to assure that the thrust vector is aligned in the proper direction. Any

spurious velocity adds to other sources of spurious velocity components,
increasing the net velocity error, and hence shortening the time interval
between velocity corrections. If this spurious velocity component is no more
than 10% of the desired change in velocity, it should not materially degrade

the position control. This standard will be achieved if the direction of the
applied thrust is controlled with an accuracy of ±5 . Attitude of the sub-

satellite when thrusters are fired must be known to within ±5 .

Position Subsystem

The primary importance of measuring and controlling positions of the remote
units is to maintain proper configuration of the antenna elements (the rhombic,

and the dipoles which make up the interferometer). Early studies of electri-
cal properties indicate that positions of each antenna elements should be

maintained within an accuracy of ±50 m, with respect to a common frame
of reference. To control position with this accuracy, it should.be possible

to measure it with still more accuracy, perhaps ±5 rn. :•

If the positions of the subsatellites are sensed by radar or an optical device,

the accuracy requirement of ±5 m implies a range accuracy of ±5 m at 5 km,
or ±0. 1%, and an angular accuracy of 0. 001 rad, or 0. 058° (3. 44 arc-min).
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Pointing Subsystem

Beam position must ultimately be determined with an error which is a small
fraction of the smallest dimension of the narrowest beam that can be antici-

pated, or about ±0. 1 . About half of this error has been assigned to the
position measuring subsystem; about ±0. 05 can be allowed in the pointing

subsystem.

Implementation of the pointing subsystem may be based upon measuring

apparent positions of any two celestial bodies whose actual positions with
respect to KWOT are known.

Communications Subsystem

The communications subsystem consists of internal data links between the
various units of KWOT, and external data links between the KWOT central
observatory and the ground stations. Each link carries different types of
data, and hence has its own specifications. There are no communications
direct from subsatellite to subsatellite, or from sub satellite to ground.

All KWOT units generate basic status information, such as temperatures,

and solar cell and battery parameters.

The dipole elements generate scientific information, which must be relayed
to the central observatory along with the basic status information. An
information bandwidth of 2 to 10 MHz is required for each dipole unit with
the information carried in analog form, probably amplitude modulation.
Dipole units receive no command and control information, except possibly

for simple on-off signals.

The Scientific Maneuvering Subsatellites generate scientific information

and basic status information, similar to that generated in the dipole units.
In addition, they generate attitude information and status information con-
cerning the attitude control and propulsion systems. They must accept
command and control signals to control the thrusters and possibly the
attitude sensors. The interferometer subsatellites hold no scientific

information, but otherwise have the same requirements as the rhombic
subsatellites.
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The central observatory receives all scientific information from the sub-
satellites and the dipole units in broadband analog form, processes it,
converting it to narrow-band digital form, and relays it to the.ground,
directly or via satellite relay. In addition, it receives commands from the
ground and status information from the subsatellites and generates command
and control signals to the subsatellites and relays the status information to
ground. . .

Command and Control Subsystem

Command and control subsystem accepts inputs in the form of commands
from the ground, error signals from attitudes and position-sensing sub-
systems, signals from the pointing system, and status signals from various
subsatellites. From this information, it generates control signals to the

thrusters throughout the configuration, so that the proper attitude and posi-
tion of each body is maintained, and the antenna beam is pointed and moved
as commanded from the ground. This task requires sufficient precision that
digital techniques are indicated, and is of sufficient magnitude and complexity
that services of a general-purpose, stored-program digital computer on
board the spacecraft are probably required. This computer will be shared

with the data subsystem.

Backup control loops of a simple analog nature should also be provided, to
be switched in the event of computer failure. These analog control loops
could control the attitude, position, and pointing with sufficient accuracy to .
permit continued operation of the system in the basic scanning modes, but
at the cost of a much more rapid consumption of thruster fuel, and hence a
shorter useful life for the system.

Data Subsystem

The basic function of the data subsystem is the processing of .all data col-
lected in KWOT system, including scientific, housekeeping, status, attitude,
position and pointing data. The data subsystem must prepare information'for

transmission to ground, and for the use of the command and control
subsystem. '' -

89



Scientific information, as it is presented to the data subsystem, would consist

of several analog voltage signals, perhaps 10, representing the output of
several radiometers. The data subsystem must sample some or all of these

channels according to a sequence which is specified by ground command, con-
vert these values to digital numbers, store and encode them for transmission

to earth. Very likely it would also be called upon to perform some numeric
processing upon this information, also under control of ground commands.

Status and housekeeping information would be handled in the data subsystem
in a number of ways. First, certain key parameters will be tested to detect

conditions which present a hazard to the system. Out-of-limit temperatures
or power-supply voltages would be in this category. Any condition that might
lead to a runaway condition in the control system should also be monitored
closely. Such conditions might include malfunction of the thruster valves in

any subsatellites, or noise in the transmission of the control signals.

Second, enough status and housekeeping information must be sent to the ground
to permit performance of all KWOT subsystems to be monitored, including

the data subsystem. • " '

Third, some of the status and housekeeping information will be analyzed in
the on-board computer, and the computer will modify the mode of operation
of various subsystems to adopt to changing conditions, either internal or

external. For example, if it is found that the present mode of operation is
depleting the charge on the batteries, the system/might change to a mode that
will use less current until :the charge is built up again.

Radio Astronomy Instrumentation

The radio astronomy subsystem consists of preamplifier and relay units
located in the dipole units and rhombic subsatellites and radiometer units
located in the central observatory.

The preamplifier and relay units amplify radio-frequency signals appearing
at the terminals of the antenna elements, both dipoles and rhombic, and
transform them to a high frequency for transmission to the central
observatory. The simplest implementation would be a broad-band preampli-

fier, covering the entire range over which KWOT is to operate (perhaps

90



0. 1 MHz to 10 MHz). The transmitters, receivers, and antennas for relaying
the radio astronomy information from the dipole units and rhombic sub-

satellites to the central observatory are included in the communications
system.

The facilitiy for combining signals from various antenna elements is located
in the central observatory. After the broad-band signal from each element

is recovered by demodulation of the signals relayed to the central observa-
tory, and the particular frequency bands upon which KWOT is operating at

the moment are selected by filters, these signals must be combined to
synthesize two or more beams. The phase of each dipole signal must be
corrected for the propagation delay introduced in transmission from the sub-
satellite to the central observatory, and then all dipole signals are linearly
mixed to synthesize the interferometer signal. The interferometer signal is
then correlated independently with each of the two rhombic signals to syn-

thesize two narrow beams, one pointing in each direction along the major
axis of the rhombic.

Internal noise calibration is required, and it is desirable to switch one or
more noise sources periodically into the signal path.

3. 2, 3. 5 Detailed Characteristics

KWOT consists of a rhombic antenna with a "central observatory" and an
array of dipoles forming an interferometer along extensions of the minor
diagonal of the rhombus. The KWOT coordinate system is shown in Fig-

ure 3-23. The units of the system are (see also Figure 3-22):

1. The central observatory (Figure 3-24).
2. Two scientific maneuvering sub satellites, at each acute apex

of the rhombus (Figure 3-25).
3. Two scientific maneuvering sub satellites, one at each end of the

extensions of the minor axis of the rhombus (Figure 3-25).
4. Six dipole units, one for each dipole element of the interferometer

array.

The deployment sequence of the system is shown in Figure 3-26. Weights
and volumes are shown in Table 3-16. KWOT parameters are presented in
Table 3-17. Additional details about the instrument are provided in
Tables 3-18 and 3-19.
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Table 3-17 -
SUMMARY OF KWOT PARAMETERS

(OASF Instrument No. 41)

Physical:

Diameter (approx): 10 km, 6. 2 mi, 30A at 1 MHz

Rhombic:

Leg: 17X
Semi-major axis = 16.53X.= 4,960 m
Semi-minor axis = 3 .9IX. = 1,172 m
Half angle at vertex: 13. 3°

Central obs: 29 x 29 x 60 in. , plus solar panels
Wt: 635 Ib Power: 74 W avg, 272 max.

SMS: 37 x 25 x 18 in.
Wt: 212 or 157 Ib Power: 7. 8 W avg, 94 W max.

Dipole unit: 9. 6 in. diam x 8. 25 in.
Wt: 7. 5 or 9. 1 Ib Power: 1. 46 W

Stowed configuration of entire system: X-shape, with four SMS1 s attached by
end faces to four side faces of C. O. length of X, tip-to-tip, 103 in..;
Maximum thickness: 60 in.

Total weight: 1, 411. 44 Ib

Dynamic:
Scan rate: 1 rev/hour = 6°/min = 0.001776 rad/sec
Precession rate (max. ): 1/2 /hours = 12 /day = 180 / ISdays
Centrifugal force at SMS1 s: 0. 00159 g = g/630
SMS velocity: 873 cm/sec = 28. 6 fps = 19. 54 mi/hr .
Orbit: Synchronous (24-hour period), circular, zero inclination

Rhombic: 17X legs, 13. 3 half-angle at apex.
Electric:

lie: 1
Beam 6.3° x 16. 1° ellipse = 80 sq deg = 1/300 celestial sphere.

Dipoles:

Fringes of 30K pair: 1 . 91, peak to peak.
First null, 30X filled aperture: 1°.91.
Period of highest spatial freq (at 1 rev/hour = 6 /min— 10 sec/degree

scan rate): 19. 1 sec.
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Table 3-18

COLLECTOR PARAMETERS —KWOT
(OASF Instrument No. 41)

Aperture 10 km

Total field of view 80°

Angular resolution, on-axis 1. 7

Minimum wavelength 30 m

Maximum wavelength 3,000 m

F. Determine, orientation of the system frame of reference with
respect to the celestial sphere.

G. Generate all primary power needed within the unit.
2. Rhombic Subsatellite (Figure 3-25; also A and C, Figure 3-22)

A. Measure the RF energy delivered by the rhombic.
B. Integrate, encode, and transmit these measurements to the

central observatory.

C. Receive control signals from central observatory to control
both radiometers and thrusters.

D. Return proper transponder signals to central body tracking
system.

E. Measure its own orientation with respect to the system frame
of reference, correct by thrusters and/or reaction wheels.

F. Generate all primary power needed in the unit.
G. Sense all necessary housekeeping data, and transmit to the

central observatory.
3. Interferometer Subsatellite (Figure 3-25; also B and D, Figure 3-22)

A. Receive control signals from the central observatory to control
thrusters.

B. Return proper transponder signals to central observatory
tracking system.

C. Measure its own orientation with respect to the system frame
of reference, and correct by thrusters and/or reaction wheels.

D. Generate all primary power needed in the unit.

E. Sense all necessary housekeeping data, and transmit it to the
central observatory.

94



Table 3-19
INTERFACE CHARACTERISTICS--KWOT

(OASF Instrument No. 41)

General

System weight-(less expendables): 312kg
System volume (launch, configuration): 1.1 cu m
System shape (launch configuration): Rhombic interferometer

cross-member

Methods of accomplishing. . .

Deployment: Thrustors and centrifugal force
Alignment: Maneuverable subsatellites
Calibration: Separate calibrator spacecraft
Operation: Remote
Experiment Change: .Ground-activated

Stowage requirements (launch)

Mechanical: LEM adapter "
Electrical: N/A

Experiment data handling

Format: Partially processed rf converted to digital
Processing: Transmission to ground-based computer; some on-board

analysis
Recording media: Tape
Mode of data recovery: Ground-based receiver

Pointing requirements

Pointing accuracy (acquisition): ±0. 1°

Power consumption

Stowed: None
Standby: 83 W
Operate: '366 W
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NOTE:
X, Y AXES IN PLANE
OF ORBIT

Figure 3-23. KWOT Coordinate System

SCIENTIFIC
MANEUVERING
SATELLITE
(SMS)

/NON
• / ROTATING
1 / COORDINATE

SYSTEM

•- PERIGEE
1

SCIENTIFIC MANEUVERABLE
SUBSATELLITE (SMS)
4 RQ'D

CENTRAL
OBSERVATORY (CO)

Figure 3-24. Kilometer Wave Orbiting Telescope (KWOT) - Launch Configuration
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PROP TANK (BLOWDOWNI
ISOLATION VALVE 12)
THRUSTER (16)
BATTERY PACK
SOLAR CELL

INTERFEROMETER ANTENNA
POLARIZATION ANTENNA
STAB. AND CONTROL
ELECTRONICS PACK
COMMAND DATA PACK
DISPENSER

Figure 3-25. Scientific Maneuvering Satellite - KWOT

For the normal sky survey mode of operation this entire assemblage is

rotated about the center with a period of about 1 hour. The dipole units are
much simpler than the other units and serve to relay the dipole signals to

the central observatory. Functions of the various units are outlined below:

1. Central observatory. (Figure 3-24)
A. House entire system during launch.

Deploy other components and lines.

Receive commands from ground, interpret them, and relay to
other units when appropriate.

Receive data (radiometer, status, orientation, position,
et cetera) from other units. Store, process, encode, and
transmit it to ground.

Track positions of the'outer system components, with respect
to the system frame of reference.

B.
C.

D.

E.
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3. 2. 3. 6 Utilization of Man

Findings as to the potential for man to assist in the erection operation have
generally been quite pessimistic. For this and other reasons, KWOT studies

assume that man will be available only for servicing. This would upgrade
the long-term reliability of the system, and its ultimate desirability would
depend on tradeoff stuides involving the cost of fewer units with man in the
picture, compared to more units with man out of the picture. Such an

analysis, however was deemed to be beyond the scope of this study.

Astronauts' tasks for an alternative deployment mode involving man are
listed in Table 3-20.

3. 2. 3. 7 Support Research and Technology

Supporting Research and Technology (SRT) requirements associated with the
Kilometer Wave Orbiting Telescope (KWOT) (Instrument No. 41) are listed
below. Full descriptions of SRT items are shown in Section 4. 3.

Research and Advance Technology

Investigate techniques for erection of large structures in space (SRT 53).

Advance Development

Assess materials for internal use to determine whether rapid aging and break-
down are caused by internal atmosphere (SRT 82).

Assess materials for external use to evaluate (1) hard vacuum effects on
materials, finishes, et cetera, and (2) development of processing, handling,

and assembly techniques (SRT 83).

3. 2. 3. 8 Development Cost and Schedules

The Phase D cost is shown in Table 3-21, which shows both development and
operations costs. The development schedule is shown in Figure 3-27. Quan-

tities of equipment required in development are shown in Table 3-22.
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! Table 3-20
ASTRONAUT TASKS--ALTERNATIVE DEPLOYMENT MODE (MANNED INVOLVEMENT)

Kilometer Wave Orbiting Telescope-KWOT
:• (OASF Instrument No. 41)

Task

Verify sunchronous orbit

Orient launch vehicle with vertical

Open launch vehicle fairings

Check out major KWOT systems

Separate KWOT from launch vehicle

Switch KWOT to external power

Warm up equipment

Lock-on starfield tracker

Activate propulsion systems

Sever KWOT attachment

Monitor cluster assembly

Initiate KWOT deployment

Monitor deployment

Calibrate Antenna

Initiate operational mode

Map Celestial sphere

Recalibrate rhombic and repeat

*Estimated

Crew Crew
'A' 'B'

Time* Time*

5 min.

3 min.

30 min.

30 sec ---

10 sec

10 min.

2 min.

30 sec

30 sec

2 min.

10 sec

4 hr

1 hr

5 hr

" .

**Sequence of operations may be interrupted at this point.
tKWOT operation unattended hereafter; A complete sky mapping operation covering

Equipment Used in
Performing Task

Ground tracking station

Launch vehicle control panel

KWOT C/O console

Launch vehicle control panel

KWOT C/O console

KWOT C/O console

KWOT C/O console

KWOT C'/O console

Optical aids (binoculars)

R. A. control console

R. A. control console

Ground station

Ground station

180 requires 360 hours (1/2 per hour)

Schedule
(L = Launch)

L + 2 orbits

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

L + 3

continuous operation.

Cum.
Time

(hr = min. )

8:00

8:05

8:08

8:38

8:38

8:39

8:49

8:51

8:51

8:52

8:54

8:54

4:54

5:54

10:54

t

t
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Table 3-21
TASK COST ESTIMATE—PHASE D~

KILOMETER WAVE ORBITING TELESCOPE (KWOT)
(OASF Instrument No. 41)

($ thousands)

Development total 80,950

Engineering 6,000
Detectors *
Collecting optics 50,000

Antenna array ' 50,000
(1 ,000 mi)

Fine Guidance . . : 3 , 8 0 0
Star trackers (4) . .1,200
Gas systems . 2, 600
(1 small, 3 large)

Housing ,16, 200
Unmanned . : 1, 200
satellites (4)
Deployment : ; • 5, 000
Mechanism
Power Supplies 10,000

Experiment sensors ' 4,950
Tape recorders (2) 200
Satellite to grd i 750
comm systems (4)
Receiver . . 4,000

Major hardware articles *
Mockup *
Engineering model *
Project verification . .. *
model
Qualification model *

Operations total 37, 348
Flight instrument ' 24, 240
Backup flight instrument 9, 710
Engineering support 3,398

Phase D total 118, 298

*Cpst item not derived where overall estimate for instrument is not
significantly affected.
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Table 3-22
PRIMARY INSTRUMENT EQUIPMENT LIST,--DEVELOPMENT PHASE D

Kilometer Wave Orbiting Telescope (KWOT) (OASF Instrument No. 41)

Functional System
(Major Element)

Kilometer wave
orbiting telescope
(KWOT)

- .

Subsystem

Detectors

Collecting
optics

Fine
guidance

Housing

Experiment
sensors

Major
hardware
articles

Assemblies

Antenna array (1, 000 mi)

Star trackers
Gas system

Unmanned satellites
- Power supplies

Deployment mechanism

Tape recorders
Sat. To grd. comm sys
Receivers

Mockup
Engineering model
Project verification model
Qualification model

Quantity

Breadboard

2

1
.1

---
---

—
1 .
1
1

. 1

—
— • .

— —

Prototype

4

2
. 2.

1
1
1

.1
1
1

1
60%'

Flight
Quality

4

2
2

2
2
2

1
1
1

—---
40%*
• 1

"Obtained from subsystem development quantities.

3. 2. 3. 9 Definitions of KWOT Subsystems

KWOT subsystems perform the following general functions:

1. Attitude Subsystem--Measures attitude, or orientation, of each of
the bodies in the KWOT structure, relative to the system frame of
reference.

2. Position Subsystem—Measures position of each of the units in the
KWOT structure "relative to the system frame of reference.

3. Pointing Subsystem—Measures orientation of the system frame of
reference with respect to the celestial sphere.

4. Communications Subsystem--Provides all necessary communications
between units of the KWOT structure, and between KWOT and ground
stations.

5. Command and Control Subsystems — Receives, stores, and inter-
prets commands received from ground control, and generates the
necessary thruster command signals to maintain the attitude and
position of the structural elements within limits.

103



6. Data Subsystem--Collects, stores, processes, and prepared for
transmission all data gathered in the KWOT system, both scientific
and housekeeping.

7. Radio Astronomy Subsystem.
8. Ground Support System — Includes ground portions of the communica-

tions, command, and data systems, and perhaps other subystems
as well.

3. 2. 3. 10 Dipole Unit Functions

1. Amplify the rf signal appearing at the dipole terminals, modulate
a carrier, and transmit it to the central observatory.

2. Receive control signals from central observatory to control its
preamp.

3. Generate all primary power needed in the unit.

4. Sense all necessary housekeeping data, and transmit it to the central
observatory.

The shape of the antenna, and hence the characteristics of the beam, is con-

trolled by controlling positions of the outer units with respect to the central
observatory (Figure 3-28 and 3-29). These positions are sensed from the

E-PLANE
INTERSECTION
WITH RHOMBIC
PLANE

HJ>UANE
INTERSECTION \
WITH RHOMBIC \
PLANE

BEAMW1DTH 7.1° 6.*1e.f tsP 4.1°

^

v
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\
\

Figure 3-28. Antenna Characteristics of Rhombic Shapes
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Figure 3-29. Antenna Patterns for a Kilometer Wave Orbiting Telescope
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central observatory and corrected by firing appropriate thrustors on the
outer units. For the action of the thrustors to be properly directed, the
attitude of each sub satellite must also be controlled. This control can best
be accomplished through the use of attitude sensors in each subsatellite, and
thrustors to correct the attitude.

All subsatellite units generate attitude data and housekeeping data which must
be transmitted to the central observatory, and all but the two interferometer
subsatellite units generate scientific data as well. Furthermore, all sub-
satellite units receive thruster control commands, and most of them receive
other command signals as well. Therefore, two-way communications is
required from each subsatellite to the central observatory.

Each subsatellite and data system will use electric power, and will require
some form of long-lived source of primary power, such as solar cells.
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SCIENTIFIC MANEUVERING
SUBSATELLITE (SMS) 4 REQ
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Figure 3-22 KWOT Configuration

OASF Instrument No. 41
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3. 2. 4 1-Meter Normal-Incidence Telescope, Steller--OASF Instrument No. 14

3. 2. 4. 1 General Characteristics

The IR telescope is unique among the astronomy instruments in that it must
be cooled in its entirety to very substantial cryogenic temperatures. This
requirement results from the fact that a body will radiate energy in the IR
region according to its temperature and its surface emissivity. Thus, if
various parts of the optical system, such as the mirrors, the secondary
supports, and the baffles, are not sufficiently cooled, they will radiate energy
that may be seen as "noise" by the IR detector at the focus of the primary
optical path.

A telescope at a temperature of about 77 K (liquid nitrogen temperature)
would emit negligible radiation noise in the 1 (J. to 25 [i wavelength range,
where the greatest interest in IR astronomy is currently centered. In the
25 p. to 100 [j. wavelength range, the radiation noise from a 77 K telescope is
at its maximum; however, adequate observation should still be possible,
based on radiation fluxes observed from known astronomical objects. From
100 /i to up perhaps 1 ,000/u , an essentially unexplored IR radiation region,
noise from a telescope at this temperature is again negligible.

The detectors in IR telescopes, at the focus of the optical path, must be kept
at even lower cryogenic temperatures. To suppress "noise" in the detection
and recording system, temperatures as low as 1. 5 K are desired in some
cases. Note that these extremely low temperatures apply only to the
detectors and not to the telescope as a whole.

With regard to the entire telescope, two basic methods of achieving the
cryogenic temperatures .specified exist: passive cooling and active cooling.
Passive cooling is achieved through shielding the telescope from unwanted
radiation from the Earth and from the sun to a sufficient extent that the
telescope, exposed only to cold space, achieves equilibrium at the desired
temperature. Active cooling involves the use of cryogenic refrigeration
systems; in these systems,' the cryogenic fluids may be used either on an
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open-cycle, resupplied basis or may be continuously recycled through a
closed refrigeration system (which places a power demand on the spacecraft).

For Task B, a passively cooled telescope-shield combination was concept-
ually designed, becaused (1) this was a basically simple configuration, (2) the
same telescope, without the shield, could be inserted in a cryogenically
cooled space station environment if advantageous, and (3) the analysis of
passive cooling would provide the basis for a comparison of active versus
passive cooling techniques, if required. The passive cooling analysis is
presented in Appendix A. (As indicated in Task C, the use of the telescope
derived here, without the shield, in a cryogenically cooled space station
environment, was found to be advantageous, for reasons of packaging for
launch and simplicity of orbital operations. )

The IR instrument derived in Task B (Figure 3-30) consists of a straight-
forward Cassegrainian optical system mounted on a thermal shield that
rejects radiation from both the sun and the Earth. It is mounted on a gimbal
system, or yolk, that enables the telescope to be pointed as required. The
IR instrumentation section (an interferometer, a radiometer, and an IR
detector array) is mounted directly behind the primary mirror of the
Cassegrainian optics, on the cold side of the shield. An auxiliary optical
path, for simultaneous visible-light imaging, is conducted along the arms of
the yolk and through the shield at the point where the yolk pivots, to the back
side of the shield where the TV viewfinder tracker, the vidicon, and the
electronics can be located without the heat that they emit affecting the tem-
perature of the telescope. The shield is attitude-controlled to provide the
necessary orientation to the Earth and the sun, and the (heat-emitting) drive
motors for positioning the telescope yolk with respect to the shield are
behind the shield (hot side) with only a (non-heat-emitting) mechanical drive
mechanism going through the shield to the telescope.

The principal difference between the optics of this telescope and the optics of
the 1-m non-diffraction-limited UV-visible-IR telescope (OASF Instrument
No. 45, Section. 3. 2. 5) is the coating, of the mirror surfaces to enhance IR •
reflectivity.
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3. 2. 4. 2 Design Criteria

Collection and detection of photon energy from various astronomical sources
in the spectral region of 1 to 1, 000 n requires a special instrument. : To
operate in this IR region of the spectrum, consideration must be given to the
absolute temperatures of various portions of the telescope which are viewed
by the detector. When this is done, it is found that it is necessary to con-
sider cooling of the telescope to prevent the telescope's own inherent noise
from "masking" the .reception of the desired signal. It is also desirable to
keep the overall size of all parts of the telescope that must be cooled as
small as possible to limit the amound of cooling required. To reduce the
amount of cooling to a minimum, all heat-producing elements in the IR
instrument system must be thermally isolated from the telescope.

The IR telescope shown in Figure 3-30 should be capable of satisfactory
operation in the 1 to 1, 000 [j. region. To achieve this range of operation,
radiative cooling techniques are used to permit the telescope optics to
stabilize at a temperature of 77 K or less. The detectors, which view parts
of the telescope and deep space may be cooled by radiative or active
techniques. These detectors are expected to achieve operational tempera-
tures as low as 1. 5 K. To minimize the power being dissipated by the IR
instrument, all amplification (other than preamplification) and processing of
signals received are. accomplished outside (hotside) of the thermal shield.
Power required to drive the interferometer is kept to a minimum.
Instrumentation change (as indicated by the use of a rotating pallet) is caused
to occur at infrequent intervals to prevent indiscriminant heating of the
telescope. A pellicle in the f /10 Ritchey-Chretien optical system is utilized
to extract a portion of the received energy (over the field of view) and route
it into the optical link of the view-finder/tracker system.

The mechanical-drive linkage is arranged as a dual drive to each axis of
motion to prevent backlash. The stable reference for the drive system is
obtained from CMC's that orient the thermal shield continuously so that the
telescope is never irradiated by either the Earth or sun.
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3. 2. 4. 3 Detailed Characteristics

The basic characteristics of the 1 -m IR normal-incidence stellar telescope
have been summarized in Figure 3-2 in Section 3. 1. Additional details about
the instrument are provided in Tables 3-22, 3-23, and 3-24.

3. 2. 4. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-25. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately
summarized in Table 3-26.

Deployment

After protective covers and supports are removed, and the optics and instru-
mentation have been examined for damage, the radiative heat shield is
erected. The CMC's are activated and connected to the analog computer
(using sun- and Earth-sensor-data inputs) to ensure the appropriate telescope
and shield orientation relative to the sun and Earth. Finally, a cryogenic
agent ( L H ^ is applied to the instrument for initial cooldown to about 7.7 K.

Alignment

Optical alignment is checked in the red portion of the visible spectrum; this
satisfies longer wavelength system requirements. An IR astronomical source
of known size and spectral distribution is used for testing the interferometer

portion of the instrumentation.

Calibration

A number of artificial IR sources, supplemented by stars, is used for cali-
bration of the instrumentation. The instrumentation consists of a radiometer,
interferometer, and solid-state detector matrix. They are all electro-
optical, and the data output is in electronic signal form and is telemetered.

Operation

Temperatures of the various parts of the instrument are monitored during
observations, particularly during those in the far IR (100 p. to 1, 000 fi ).
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Table 3-22A
COLLECTOR PARAMETERS

1-Meter IR Normal-Incidence Telescope, Stellar--
OASF Instrument No. 14

Aperture
Primary focal length
Effective focal length
Total field of view
Angular resolution

On axis
Poorest in field of view

Obscuration of aperture
Minimum wavelength
Maximum wavelength
Primary f /No.
System f/No.
Scale at system focal.plane
Resolation at system focal plane
Linear field of view at system focal plane

1 m
1. 5-m •
10 m - •'
5 arc rnin.

1 arc sec at 4|J-
1 arc sec at 4M-
6.25%
0. 7V-
1, D O O M -
1. 5
10. .
20. 6 arc sec/mm
20. 6 lines /mm
14. 6 mm

The calibration observation for the spectral region of interest is taken, then
the actual observations for data, and then the calibration observations are
repeated. This procedure ensures that the true conditions under which the
data were collected are known, so that^any necessary corrections can be
applied during data reduction. ,

Scheduled Maintenance

Inspection of the shield for damage or potential failure is indicated. It is
desirable to check the state of the electronics and detectors. It is not
expected that damage to the optics will be incurred, but it is of interest to
observe changes in the surfaces. It is necessary to resupply cryogenic fluid
after any maintenance, for cooldown.
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Table 3-23
INTERFACE CHARACTERISTICS

1-Meter IR Normal Incidence Telescope, Stellar--
OASF Instrument No. 14

General
System weight (less expendables)
System volume (launch configuration)
System s.hape (launch configuration)

Method of accomplishing. . .
Deployment
Alignment

Calibration
Ope ration
Experiment change

Stowage requirements (launch)
Mechanical

Experiment data handling
Format

Processing
Recording media
Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed

Standby
Operate

1,000 kg
50 m3

Open-ended cylinder with cen-
tral plug

Extend thermal shield
Adjust focus of secondary-
TV remote
Standard sources
Automatic
Rotating turrent

Brace telescope because of
cantilever installation

35-mm magnetic-tape data
block.
None
Magnetic tape
Exchange tape cartridge in
space station

None
200 W
300 W
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Table 3-24
GUIDANCE AND CONTROL CHARACTERISTICS

1-Meter IR Normal-Incidence Telescope, Stellar--
OASF Instrument No. 14

Guidance characteristics

Coarse
Initial acquisition field of view ±1
Resolution ±10 arc sec
Residual error ±60 arc sec

Intermediate
Field of view ±120 arc sec
Resolution ±1 arc sec
Residual error ±5 arc sec

Fine
Field of view ±30 arc sec
Resolution ±0. 1 arc sec
Residual error ±1 arc sec

Control characteristics

CMC
Type: Two degrees of freedom
Wheel momentum ~2, 000 Ib-ft-sec
Gimbal Stops: Outer, none, inner ±60
Spin motor power (start) =200 W

(run) = 35 W
Servo power (peak) =200 W

(average) = 30 W
Max.torque =1, 000 ft-lb
Weight . =400 Ib
Diameter (wheel housing) = 40 in.
Length (overall) = 50 in.
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Table 3-25

SETUP AND MAINTENANCE REQUIREMENTS
1-Meter IR Normal-Incidence Telescope, Stellar--OASF Instrument No. 14

Average Duration
Operation Times/Year (hours)

15
Deployment

Alignment — 12

Calibration — 4

Scheduled
maintenance

Unscheduled 1 2maintenance

'Skills are identified by number in Table

No. of
Men

1
1
1

1

1

1

1

3-3.

Skill
Identification*

12
14
21

14

21

12

12

Hours/Man

.4
2

15

12

4

8

2

Special Special
Average Equip Equip

Power Weight Volume
(W) (Ib) (ft3)

20 900 35

10

25

25 70 13

25 15 3

Table 3-26

OPERATION SUPPORT AND REQUIREMENTS
1-Meter IR Normal-Incidence Telescope, Stellar--OASF Instrument No. 14

ORDS No.

029

063S

072

073

074

075

076S

077

078

Time per
Observation

(hours)

0.33

6 months

5

500

300

5

6 months

300

500

No. of
Men

1

1

1

1

1

1

1

1

1

Skill
Identification*

5

5

5

5

5

5

5

5

5

Man-hours/
Observation

0.6

• I d a y

1.2

2 days

2 days

1.2

Iday

2 days

2 days

Start Time
(hours from

start of
observation)

-0.2

-1

-0.2

-0.5

-0.2

-0.2

-1

-0.2

-0.5

Number of
Observations

800

1

100

-10

5

300

1

90

:>10 '

*Skills are identified by number in Table 3-3.

116



Unscheduled Maintenance

Unscheduled maintenance will be necessary if (1) the heat shield is severely
damaged (meteoroid or other cause), (2) a portion of the detector or trans-
mission systems fails, or (3) the stabilization system fails.

3. 2. 4. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 1-Meter-IR
Normal-Incidence Telescope (Instrument No. 14) are listed below. Full
descriptions of SRT items are given in Section 4. 3.

Research and Advance Technology

Develop methods for rapidly evaluating mirror figure and alignment
under 1-3 and zero-g environments (SRT 1).
Conduct experimental studies of precision structural properties of
mirror material related to optical performance (SRT 2).
Establish details of thermal fluctuations in secondary shield system
as a function of primary shield thermal fluctuations (SRT 41).
Investigate mirror support structures that minimize the mechanical
and optical problems of Cassegrainian telescopes (SRT 54).
Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).
Investigate the dimensional stability of candidate mirror materials
(SRT 56).
Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57).
Investigate the adhesion of high-reflectivity low-emissivity IR coat-
ings to structural substrata at cryogenic temperatures (below 100°)
(SRT 57A).

Advance Development .

Develop defector-mounting techniques and cryogenic equipment for
sensor cooling of IR telescope (SRT 64).
Determine the effect of superconductivity on the emissivity of
metallic conductors (SRT 66).
Perform a detailed thermal and structural analysis for a cooled IR
telescope (SRT 67). . .
Develop an IR imaging device of adequate resolution for use with a
1-m-aperture IR telescope (SRT 68).
Develop fil ters 'for IR spectroscopy (SRT 68A).
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Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (1) hard-vacuum
effects on materials, finishes, etc. , and (Z) development of process-
ing, handling, and assembly techniques (SRT 83).

3. 2. 4. 6 Instrumentation Section

Interferometer

An interferometer shown schematically in Figure 3-31, is incorporated in the

instrumentation section of the IR telescope. The infrared energy collected by
ihe telescope is passed through a hole in the rotating pallet where the interfer-
ometer is to be used. The optical arrangement of the interferometer divides
the energy to create an interference pattern. The bolometer detects the inter-

ference-pattern as a function of time and the position of the movable mirror.

Although a Michelson-type of interferometer is depicted in Figures 3-30 and
3-31, other types of interferometers could also be considered. The specific
design capabilities of the interferometer shown are listed in Table 3-27.

DC Radiometer

In the spectral region of 5 to 14p. , mercury-doped germanium (Ge:Hg)
operating at a temperature of between 4°K and 40°K is normally utilized for
detection of radiation. Figure 3-32 shows a radiative-cooled mercury-
doped-germanium detector radiometer assembly weighing 3 kg that can be

mounted on the rotating pallet in the IR instrumentation section. For the
radiometer configuration shown, it is expected that any installed detector

will stabilize thermally at some temperature and 35°K. Variations in the
radiative aperture will enable different types of radiometer detector materials
to be optimized at other temperatures for use in other spectral regions.

IR Detector Array

To accomplish an IR sky survey within a reasonable operating period, a

detector array can be incorporated into an assembly similar to that discussed
in the preceding paragraph. Scanning of the heavens can then be accomplished
by holding the IR telescope at a given angle with respect to the orbit plane and
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REFERENCE BEAM
IMAGING MIRROR

MOVABLE
IMAGING
MIRROR,

TELESCOPE
PRINCIPAL
FOCUS

Figure 3-31. Michelson Interferometer

DETECTOR SECTION

G«: Hg DETECTOR

CONTACT LEAD TO PRE-AMPLIFIER\
(PROBABLY INDIUM SOLDER)

COPPER
SLEEVE

-RING AI2O3

THREADED RET,

NOTES: MATERIAL THICKNESSES SHOWN ARE SCHEMATIC ONLY
PRE-AMPLIFIER SECTION AT 77°KELVIN

Figure 3-32 DC Radiometer Assembly
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Table 3-27
INTERFEROMETER CHARACTERISTICS

1-m IR Normal-Incidence Telescope, Stellar--
OASF Instrument No. 14

Type
Wavelength

Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spatial resolution

Detector type
Recorder
Weight

Michelson interferometer

0. 7H-

16A at 4M-

50, 250, 1, 250^
200, 1,000, 5,000^

10
1 arc sec at 4H-
Bolometer (cooled thermister)
Magnetic tape
20 kg (including 10 kg for
tape recorder)

scanning a full circle (generally less than a great circle) on the celestial
sphere as the orbit is traversed. The angle measured from the orbit plane
is changed for each successive orbit traverse until the entire celestial
sphere is scanned. Considering the 5-arc-min. field of the Ritchey-Chretien
optics of the telescope, a 100-element array of mercury-doped-germanium
detectors, weighing about 4 kg, would enable a 4-arc-min. "slice" of the
celestial sphere (2. 5 arc-sec/element, at 10 JJL wavelength) to be obtained per
orbit traverse. At the expected operational altitude (=500 nmi) only a 3. 5-
arc-min. field of view is required to produce a complete celestial scan in a
half year of continuous scanning.

3. 2. 4. 7 Development Cost and Schedules

The Phase D cost is shown in Table 3-28, which shows both development and
operations costs. The development schedule is shown in Figure 3-33. Quan-
tities of equipment required in development are shown in Table 3-29.
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Table 3-28
TASK COST ESTIMATE--PHASE D

1-Meter IR Normal-Incidence Telescope, Stellar--OASF Instrument No. 14
($ thousands)

Development total 4, Z85
Engineering 360
Detectors *

Field lens and/or image tube *
Collecting optics 700

1 -m primary mirror *
Secondary mirror *
Secondary mirror align, assy *

Fine guidance 715
Guidance optics *
Sensor *
Control moment gyros *

Housing (primarily servo aspect and hardware) 610
Structure (including optics support) 400
Inflatable sunshade 30
Thermal shield 180

Experiment sensors 1,050
Filter wheels *
Interferometer *
Optical switch *

Major articles 850
Mockup *
Engineering model *
Project verification model *
Qualification model *

Operations total 1,980
Flight instrument 1,285
Back-up flight instrument 515
Engineering support 180
Phase D total 6, 265**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

**Assumes previous development of 1-m non-diffraction-limited OASF
Instrument No. 45, same optical contractor for both instruments.
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Table 3-29
PRIMARY INSTRUMENT EQUIPMENT

LIST--DEVELOPMENT PHASE D
1-Meter IR Normal-Incidence Telescope, Stellar--

OASF Instrument No. 14

Functional
System
(Major

Element)

1 -meter
IR

telescope

Subsystem

Detectors

Collecting
optics

Fine
guidance

Housing

Experi-
ment
sensors

Major
hardware
articles

Assemblies

Field lens and/ or image
tube

1-m primary mirror
Secondary mirror
Secondary mirror align.
assy

Guidance optics
Sensor
Control moment gyro

Structure (including
optics support)
Inflatable sunshade
Thermal shield

Filter wheels
Interferometers
Optical switch

Mockup
Engineering model
Project verification
model

Qualification model

Quantity

Bread-
board

1

1

1

2

1
1
1

1

1

1
1
1

1

- - —

Proto-
Type

2

2

2

2

1
1
2

1

1

1
1
1

1

60%*

— — -

Flight
Quality

1

1
1

1

2
2
1

2
2
2

2
2
2

40%*

1

^Obtained from subsystem development quantities.
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3.2.5 1-Meter Non-Diffraction-Limited UV-VIS-IR Normal Incidence
Telescope, Stellar - OASF Instrument No. 45

3.2 .5 .1 General Characteristics

The 1. 0-m f/5 stellar telescope is a general-purpose telescope consisting
of a non-diffraction-limited collector and an instrumentation package of

varied capabilities (Figure 3-34). Among the functions provided by the

telescope are stellar spectrophotometry, stellar and planetary spectrog-

raphy in a variety of dispersions, and slitless spectrography of extended

sources such as planetary nebulae. The principal spectral range to be
investigated by this telescope is the UV region from about 1, 000 to 4, 000 A,
although some visual range measurements are also contemplated.

Guidance and control are accomplished by means of a star tracker
mounted both inboard and outboard on the telescope, control moment gyros
(CMC's) for pointing control of the telescope, and a beam steering mirror
for vernier pointing of the line of sight within the telescope.

The outboard astrotrackers are gimballed, and, by means of calculated
offset angles from specified reference stars, can point the telescope
adequately to acquire the target star in the field of view of the internal
tracker, which in turn centers the target star in its field of view. The
CMC's mounted on the telescope provide the necessary torques to steer the
telescope in response to nulling error signals from the astrotrackers.
Although this guidance is satisfactory for the spectrophotometer, it is sub-
marginal for the spectrographs. Accordingly, a third stage of guidance is
added, whereby a tracker, which is incorporated with each instrument

package, supplies drive signals to actuate deflectors built into the rotating

optical switch mirror.

The telescope is also fitted with a sunshade which extends approximately

2 m beyond the end of the telescope and serves to shorten the dead time on '

t h e d a y side o f each orbit.- . . • • . . ,
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This instrument is intended as a logical successor to the orbiting astronom-
ical observatory (OAO) series of telescopes, applying to one or more of them
the advantages of manned intervention to increase their scope and
versatility.

3. 2. 5. 2 Design Criteria

By extracting from the requirements of the overall astronomy program those
observations not needing a high degree of angular resolution or pointing
precision, a group was assembled which could be performed with a resolu-
tion not better than 1 sec. These observations can be performed with
instrumentation that is well within the present state of the art and could be
flown with the shortest conceivable delay. Hence, a telescope based on a
modification of the Goddard Experiment Package is recommended to fill
this function. .

3. 2. 5. 3 Detailed Characteristics

The basic characteristics of the 1-m nondiffraction-limited UV-VIS-IR
normal incidence stellar telescope have been summarized in Figure 3-2 in
Section 3.1.

Additional details about the instrument are tabulated in Table 3-30, 3-31,
and 3-32.

3. 2. 5. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-33. Because man's utilization in the operation of the instrument

V
depends on the observational program, operational information is separately
summarized in Table 3-34.

Deployment

The deployment tasks require no unusual mental or manual skills, so that they
can be done by automatic mechanisms with EVA backup capability. Deploy-
ment includes the erection of star and planet trackers and the sunshade,
removal of protective coverings, and the installation of image and photo-
multiplier tubes and tape recorders; The accomplishment of the deployment,
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Table 3-30

COLLECTOR PARAMETERS
1-m Non-Diffraction-Limited UV-Vis-IR

Normal-Incidence Stellar Telescope--
OASF Instrument No. 45

Aperture
Primary focal length
Effective focal length
Total field of view
Angular resolution

On axis

Poorest in field of view
Obscuration of aperture
Minimum wavelength
Maximum wavelength
Primary f / N o .
System f / N o .
Scale at system focal plane
Resolution at system focal plane
Linear field of view at system focal plane

1 m
2 m
5 m
1 0 arc min.

0. 2 arc sec at 4, 000 A
1 arc sec at 4 ,000 A
-15%
<900 A
> 1 2 , O O O A
2
5
42 arc sec/mm
1 4 lines/mm
8.8 mm

Table 3-31
INTERFACE CHARACTERISTICS (page 1 of 2)

1-m Non-Diffraction-Limited UV-Vis-IR
Normal-Incidence Stellar Tele scope--

OASF Instrument No. 45

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing. . .
Deployment

Alignment

1 ,000kg
3. 5 m^

Cylindrical

Removal of plastic bags and
extension of sunshade.
Autocollimation, motor-
operated secondary, TV
sensor. ' • • • - '
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Table 3-31 (page 2 of 2)

Calibration

Operation

Experiment change

Stowage requirements (launch)
Mechanical

Electrical
Experiment data handling

Format
Processing
Recording media

Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed
Standby
Operate

Standard sources using
photography.
Remote control pointing and
photography.
Remote control of rotatable mir-
ror, manual change of units.

Air bag support for optics.
Plastic bag covering.
None.

35-mm roll film.
On board.
Photographic film and magnetic
tape.
Exchange of cartridges for film
and tape.

±5 min. -automatic; 1-min,
(angle) manual.

None.
SOW
110W

either automatically or by EVA, is important, because the photocathodes of
the UV-sensitive image tubes and photomultipliers, once opened for use,
cannot be exposed to any atmosphere. If contaminated accidentally, they
have to be replaced and the instrumentation recalibrated.

Alignment

An optical technician (No. 14) observes a TV screen to interpret a display of
star images. The TV camera takes the place of the eyepiece of an auto-
collimator which is rigidly attached to the instrumentation pallet. The
autocollimator is used in two modes. In the first mode, it projects an
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Table 3-32
GUIDANCE AND CONTROL CHARACTERISTICS

1-m Non-Diffraction-Limited UV-Vis-IR
Normal-Incidence Stellar Telescope--

OASF Instrument No. 45

Guidance Characteristics

Coarse .
Initial acquisition field of view ±5°
Resolution ±2 arc sec
Residual error ±5 arc min.

Intermediate
Field of view ±5 arc min.
Resolution ±0. 5 arc sec
Residual error ±2 arc sec

Fine

Field of view ±2 arc min.
Resolution ±0. 05 arc sec
Residual error ±0. 1 arc sec

Control characteristics

CMG
Type: Single degree of freedom, viscous damped
Wheel momentum: =640 oz. -in. -sec.
Gimbal stops ±60°
Spin motor power (start): =40 W

(run): = 6 W
Servo power (peak): =10 W

(average): =1 .5W
Max. torque: . . =3. 8 pz. -in.
Weight: . =16 Ib
Diameter: ~5 in.
Length: =8-1/2 in.
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Table 3-33
SETUP AND MAINTENANCE REQUIREMENTS

1-m Non-Diffraction-Limited UV-Vis-IR
Normal-Incidence Stellar Telescope--

OASF Instrument No. 45

Average Special Special
Times No. Skill* Hours Average Equip. Equip.

Per Duration of Identi- Per Power Weight Volume
Operation Year (hours) Men fication Man (W) (Ib) (ft )

Deployment 21

Alignment 12 14 12 15

Calibration --.-

Scheduled 6
maintenance

Unscheduled 1/2

maintenance

# Skills are identified by

24 1
1

4 1
1

5 1
1

number in

21
12

14

12

12

14

Table 3-3.

24 5
4 ---

1
4 15 15 2

c~J ™ ™ — — ̂  _ _ _

2 15 30 3

image which is reflected off the rota^able mirror (optical switch) and then off
an optically flat area ground and polished on the center' of the secondary
mirror and then reflected back through the system. If the projected and
reflected images are in coincidence (in the manner of a range-finder) then
the secondary mirror is centered and normal to the telescope optical axis.
(The technician manipulates servo-motor controls to achieve this alignment. )
In the second mode, the autocollimator (with its image projector off) is used
as an alignment telescope. The technician views the star image (on the TV
monitor) and further adjusts the controls until he obtains the best possible
star image shape on the TV monitor.
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Table 3-34
OPERATION SUPPORT AND REQUIREMENTS

1-m Non-Diffraction-Limited UV-Vis-IR
Normal-Incidence Stellar Telescope--

OASF Instrument No. 45

ORDS No.

002

027

028

030

031

032

033

034

037

113

^Skills are

Time per
Observa-

tion
(hours)

0. 03

0. 13

0.33

0.33

1

0.5

0.25

0.5

0.33

0. 25

identified

No.
of

Men

1

1

1
1

1

1
1

1
1

1

1

1

1

1
1
1

Skill*
Identi-
fication

5

5

5
8

5

5
8

5
8

5
8

5
8

5
8
5

Man-
hours/

Observa-
tion

0.1

0.5

0.6
0. 05

0.6

1.25
0. 05

0.75
0. 05

0.5
0. 05

0.5
0. 05

0.6
0. 05
0. 5

1 8 0. 05

by number in Table 3-3.

Start Time
(hours from

start of
observation)

-0.05

-0.25

-0.25 •
+48 -

-0.25

. -0.25
+48

-0.25
+48

-0.25
+48

-0.25
+48

-0.25
+48
-0. 25
+48

No. of
Observations

2, 000

500

500

250

5 0 ,

300

100

300

150

300
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The scheme described above has been derived from Kollsman experience on
the Goddard Experiment Package. In the .light of this experience, 12 hours
appears to be a reasonable time allotment for the alignment procedure
(Table 3-33). This time may be reduced, depending on the skill of the
operator, the design of the servomechanisms, and a number of partially
controllable parameters such as machined tolerances, temperature varia-
tions, and structural hysterisis.

Other alignment tasks include checking and adjusting of the rotational axis
of the rotatable mirror, and ensuring that the star trackers are boresighted
with the telescope axis.

Calibration

The two spectrophotometers, the slitless spectrograph, the concave grating
spectrograph, and the echelle spectrograph are calibrated separately for
each observation requirement. Photography and spectrography of MK-UBV
standards as well as'the use of a calibrated standard lamp are used in the
procedure. A phototechnician or observer loads the film strip and plate
camera magazines and reduces the developed photographs with a densito-
meter. The densitometry could be done in the spacecraft to which the
telescope is attached.

The calibration time indicated on Table 3-33 is based on an estimate of the
number of photographs needed for calibration sequences, the use time of
standard sources and the time needed to obtain the observations. The
allotment of 24 hours is subject to some uncertainty, depending on unknowns
such as the specific observing program and the reflection efficiency of UV
mirror coatings.

Operation

Each of the spectrographic experiments requires a technician to load the film
or plate magazine, and an observer to check the field of view to which the
instrument is pointed, to initiate the exposure timing mechanism, and to
remove the contents of the camera magazine and develop the photographic

134



material after the exposure. It may be necessary for the observer to change
gratings (servomechanism) or filters during the course of an exposure
sequence. .

Scheduled Maintenance

An optical technician examines the telescope and instrument optics for
damage or deterioration.

An electromechanical technician checks the TV cameras and monitors and
other electronics for deterioration and replaces degraded or unreliable
components. A modular replacement technique is indicated.

Unscheduled Maintenance

The major portion of the electromechanical technician's time (Table 3-33)
is for unusual electronic failures in the photomultipliers, TV cathode ray
tubes or image intensifiers, because the large number of such components
implies a significant failure problem.

The time allotment for an optical technician in Table 3-33 for failures in
•which the optical alignment could have been disturbed and needs to be
checked.

3. 2. 5. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the l.-m non-
diffraction limited UV-Visible-IR telescope (Instrument No. 45) are listed
below. Full descriptions of SRT items are given in Section 4. 3.

Research and Advanced Technology

Conduct experimental studies of precision structural .properties of
mirror material related to optical performance (SRT 2).

Develop mirror surfaces to provide high UV reflectivity, precision
of figure, and freedom from scattering (SRT 4).

. 6
.Develop XUV-sensitive imaging tubes for use below 1, 050 A (SRT 11).

Develop techniques to overcome electrostatic charge build-up and
fog-producing spark discharge on roll film in hard vacuum (SRT 17).

135



Develop criteria for film-transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flaking (SRT 39).

Investigate degradation of telescope detector and reflective surfaces
resulting from D£ exposure (SRT 42).

Investigate mirror support structures that minimize the mechanical
and optical problems of Cassegrainian telescopes (SRT 54).

Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).

Investigate the dimensional stability of candidate mirror materials
.(SRT 56).

Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57)..

Advance Development

Assess materials for internal use to determine whether rapid aging
and breakdown are caused by internal atmosphere (SRT 82).

Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. ; and (B) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spacial resolution than now
• currently obtainable (SRT 84).

3. 2. 5. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-35, which shows both development
and operations costs. The development schedule is shown in Figure 3-35.
Quantities of equipment required in development are shown in Table 3-36.

3. 2. 5. 7 Instrumentation Section

Photoelectric Spectrophometer (See Figure 3-36)

The two photoelectric spectrophometers are identical except for the wave-
length range involved. One unit covers the UV spectral range while the other
is principally designed for the visible range with the near-UV and IR
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Table 3-35 (page 1 of 2)
TASK COST ESTIMATE - PHASE D

1-METER NON-DIFFRACTION-LIMITED UV-VISIBLE-IR-NORMAL
INCIDENCE TELESCOPE, STELLAR (OASF INSTRUMENT NO. 45)--

($ Thousands)

Development total 10,729
Engineering 1,010
Detectors *

35-mm digital magnetic
tape recorder *
35-mm strip film *
Spectrograph film *''
Field lens and/or image
tub e *

Collecting optics . 353
1.0-m primary mirror 97
Secondary mirror 30
Secondary mirror align-
ment assembly 226

Fine guidance 664
Guidance optics *
Sensor *

Control moment gyro #

Housing 350
Structure (including
optics support) 238
Thermal shield ' 9 2
Sunshade 20

Experiment sensors 7,238
35-mm plate camera 699
Filter wheels 150
35-mm strip camera 500
Concave grating
spectrograph 600

*Cost item not derived where overall estimate for instrument is not
significantly affected.
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Table 3-35 (page 2 of 2)

Photopolarimeter 500
Spectrophotometer 800
Echelle spectrograph 714
Interferometer 1,000
Radiometer (cryo) 1, 300
Solid-state detector
matrix (cryo) 700
Optical switch 275

Major hardware articles 1, 114
Mockup *
Engineering model *
Project verification
model *
Qualification model *

Operations total 4, 961
Flight instrument 3,221
Back up flight instrument 1,289
Engineering support 451

Phase D total 15,690**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

##Assurries previous development of Stellar ATM (GEP) optics.
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Table 3-36
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

1-m Non-Diffraction-Limited UV-Visible-IR
Normal-Incidence Stellar Telescope

(OASF Instrument No. 45)

Functional
system
(major

element)

1. 0-m
nondiffrac-
tion~limited
UV-visible-
IR telescope

Subsystem

Detectors

Collecting
optics

Fine
guidance

Housing

Experi-
ment
sensors

Major
hardware
articles

Assemblies

35-mm strip film
Spectrograph film
Field lens and /or

image tube
35-mm digital magne-

tic tape recorder
1. 0-m primary mirror
Secondary mirror
Secondary mirror

alignment assy
Guidance optics
Sensor
Control moment gyro
Structure (including

optics support)
Thermal shield
Sunshade
35-mm plate camera
Filter wheels
35-mm strip camera
Concave grating

spectrograph
Photo polarimeter
Spectrophotometer
Echelle spectrograph
Interferometer
Radiometer (cryo)
Solid state detector

matrix (cryo)
Optical switch
Mockup
Engineering model
Project verification

model
Qualification model

Quantity

Bread-
board

2
2
1

1

1
1
2.

1
1
1
1

1

1
1
1
1

1
1
1
1
1
1

1
1

Proto-
type

1
1
2

2

2
2
2

1
1
2
1

1

1
1
1
1

1
1
1
1
2
2

1

1
60%*

Flight
Quality

2
2
1

1

1
1
1

2
2
1
2

2
2
2
2
2
2

2
2
2
2
1
1

2

40%*

1

*Obtained from subsystem development quantities
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L- I

Figure 3-36. Photoelectric Spectrophotometer

included. Both are Ebert spectrometers based in general design on the
Goddard Experiment Package spectrometer, but reduced in size. Each con-
sists of an entrance slit, a concave spectrometer mirror, a slightly
aspherized plane grating which is capable of scanning through a restricted
angle, and three exit slots, each backed up by a photomultiplier tube selected
for best response in the wavelength band to be covered.

o
The spectrophotometers were designed to cover the range from 800 to 4, 000 A

o
and 2, 500 to 12, 000 A respectively (see Table 3-37) with a wavelength reso-

o
lution ranging from 10 to 100 A, depending on the magnitude of the observed
star. A threshold of 15th magnitude is anticipated. To standardize readings,
a tethered reference light source is used for calibration.

Normal-Incidence Conca.ve-Grating Spectrograph (Figure 3-37)

The normal-incidence concave-grating spectrograph consists of a slit, a
concave grating, and a camera magazine. Associated with it is a reference
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Table 3-37

PHOTOELECTRIC SPECTROPHOTOMETER CHARACTERISTICS
1-Meter Non-Diffraction-Limited UV-Visible-IR

Normal-Incidence Telescope, Stellar --
(OASF Instrument No. 45)

Wavelength
Short:
Long:
Resolution:

Entrance aperture
Slit width:

Slit height:

Incident radiation
f/No. limitation:
Spatial resolution

Main grating
Type:
Size:
Ruling frequency:
Dispersion:
Angle of diffraction range:
Spectral order:

Recorder characteristics
Type:
Aperture:

Weight

800 and 3, 200 A
3, 200 and 12, 000 A
10 A

120|Ji

1 arc sec

Plane (Schmidt)
32 x 32 mm
~2, 400 and ~800 lines/mm

o o
16 A/mm at 2, 000 A
~0 to 36°
1

Multiplier phototubes
6 mm

10 kg
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• CAMERA

IMAGE
PLANE

Figure 3-37. Normal Incidence Concave Grating Spectrograph

light source which introduces the energy for a comparison spectrum on the
extreme ends of the slit. It was designed to cover the range from 1,000 to

o o
3,000 A, with a dispersion of 100 A/mm (see Table 3-38). An interchange-

o
able grating is provided to double the dispersion to 50 A/mm for a more

detailed examination of the details of the shortwave-end of the spectrum.
An Eagle mount spectrograph with virtually normal incidence and based on a

Rowland circle of 25-cm diam meets all requirements if the grating is ruled

with 400 lines/mm, and alternate grating with 800 lines./mm.

Echelle Spectrograph.(Figure 3-38)

Where higher dispersion requires a film format that is larger than a double

frame, it is possible'to generate a compact format by the use of a crossed
grating technique. Schroeder has described the technique as applied to an

echelle grating spectrograph (Reference 3-4).
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Table 3-38

CONCAVE GRATING SPECTROGRAPH CHARACTERISTICS
1-Meter Non-Diffraction-Limited UV-Visible-IR

Normal-Incidence Telescope, Stellar
(OASF Instrument No. 45)

Type:

Wavelength
Short:
Long:
Resolution:

Entrance aperture
Slit width:
Slit height:

Incident radiation
f/No. limitation:
Spatial resolution:

Main grating
Type:
Size:

Ruling frequency:
Dispersion:

Angle of diffraction range:

Spectral order:

Recorder characteristics

Type:

Aperture:

Remote change cycle time:
Film type limitations:
Exposure per magazine load:
Power consumption during

Normal incidence (Eagle mount)

1,000 A
3,000 A
2 A at 1,500 A

20 ji
300(1

15
1.4 sec

Concave
33.3 wide x 36. 6, 52 mm
200 and 400 lines/mm

100 A/mm at 1, 500 A

0.29° -2. 58°, 2 . 3 ° - 6.9°

cycle change:
Weight

Film
25 x 15 (wide) mm
15 sec
Schumann type
150

2 W
12.5 kg (including 10 kg for

plate camera)
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I

Figure 3-38. Echelle Spectrograph

The spectrograph was designed to provide a dispersion of 10 A/mm and to
cover the range of 800 to 3,000 A (see Table 3-39). It consists of a slit, a
concave predisperser grating, a plane echelle main grating, a concave
focusing mirror, and a camera magazine. A reference light source provides
comparison spectrum capability. Interchangeable gratings, both predisperser
and main can be provided to alter the parameters of the instrument to suit
a specific observation. The 20-cm focal length of the spectrograph allows
compact packaging.

Slitless Spectrograph (See Figure 3-39) :

The slitless spectrograph is designed to make photographic records of
extended celestial sources, such as diffuse and planetary nebulae in the light
of any one of a series bright spectral lines. To this end, the slit of the
spectrograph is replaced by a field stop designed to include the desired field
and exclude all else. Because of the diffuse nature of the object being
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Table 3-39

ECHELLE SPECTROGRAPH CHARACTERISTICS
1-Meter Non-Diffraction-Limited UV-Visible-IR

Normal-Incidence Telescope, Stellar
(OASF Instrument No. 45)

Wavelength

Short:
Long:
Resolution:

Entrance aperture

Slit width:
Slit height:

Incident radiation
f /No. limitation:
Spatial resolution:

Predisperser grating

Type:
Size:
Ruling frequency:
Dispersion:
Angle of diffraction range:
Spectral order:

Main grating

Type:
Size:
Ruling frequency:
Dispersion:
Angle of diffraction range:
Spectral order:

Recorder characteristics

Type:
Aperture:
Remote change cycle time:
Film type limitations:
Exposure per magazine load:
Power consumption during

cycle change:
Weight

800 A „
3, 000 A
0. 2 A at 2, 000 A

300|Ji

0. 24 sec

Concave
42 x 42 mm
500 lines/mm
100 A/mm
2. 3° -
1

8. 6° dispenser

Echelle
35 x 60 mm
490olines/mm 0
10 A/mm at 2, 000 A
23. 3° - 33. 3°
7-24

Film
25 x 35 mm wide
15 sec
Schumann type
50

2 W
16 kg (including 10 kg for plate

camera)
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PLATE CAMERA -

MAIN GRATING

RELAY LENS •

Figure 3-39. Image-lntensifier Slitless Spectrograph

recorded, an image intensifier is placed at the spectrograph focus. A con-

ventional intensifier with a semitransparent cathode is shown in Figure 3-39
but current progress in the application of open tubes could result in an exten-

o
sion of the spectral range below the 1,050 A cutoff (see Table 3-40). The
instrument shown uses a predisperser in preference to filters for order

separation in the interest of increased efficiency.

The instrument is composed of the field stop, the two gratings, predisperser

and main, an image intensifier, an optical relay, and a camera magazine.

Although a plate camera is shown in the drawing, a roll-film camera could

also be employed.
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Table 3-40
SLITLESS SPECTROGRAPH CHARACTERISTICS
1-Meter Non-Diffraction-Limited UV-Visible-IR

Normal-Incidence Telescope, Stellar
(OASF Instrument No. 45)

Type:

Wavelength

Short:
Long:
Resolution:

Entrance aperture

Incident radiation
f/No. limitation:
Spatial resolution:

Predisperser grating--scanning
Type:
Size:
Ruling frequency:
Dispersion:
Angle of diffraction range and

incidence range:
Spectral order:

Main grating
Type:
Size:
Ruling frequency:
Dispersion:
Angle of diffraction range

and incidence:

Echelle - scanning - image intensifier

800 A 0
4, 000 A
2. 5 A at 2, 000 A (second order)

14, 600(1 x 14, 600|j. slitless

5
1. 5 sec

Concave
36 x 36 mm
572olines/mm
80 A/mm

1.31° disperser
1 and 6. 57°

Concave
36 x 36 mm
4990lines/mm 0
50 A/mm at 2, 000 A

2. 29° - 5. 73°

Recorder characteristics
Type:
Aperture:
Remote change cycle time:
Film type limitations:
Exposure per magazine load:
Power consumption during

cycle change:

Weight

Film and image intensifier photo tube
25 mm
15 sec
Matched to phosphor
150

2 W

14 kg (including 12 kg for plate camera)
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COARSE ASTROTRACKER
TWO PLACES

BEAM SPLITTER

FINE GUIDANCE SENSOR

REFERENCE LIGHT SOURCE

OPTICAL SWITCH

: CONCAVE GRATING

SPECTROGRAPH
PLATE CAMERA

CONCAVE
GRATING
SPECTRO-
GRAPH

ECHELLE
SPECTROGRAPHOPTIONAL

EXPERIMENTS

NTERMEDIATE

SLITLESS
SPECTROGRAPH

SPECTROPHOTOMETER

OPTIONAL
EXPERIMENTS

ALIGNMENT
AUTOCOLLIMATOR

TELESCOPE STABILIZATION
SENSOR

SECONDARY MIRROR
TILT FOCUS, AND
CENTRATION
MECHANISM

ROTATABLE MIRROR
(OPTICAL SWITCH)

ISOLATION SUSPENSION
GIMBAL RING

SUNSHADE EXTENDS I
TO 3 M ,t

ALIGNMENT
AUTOCOLLIMATOR

PRIMARY MIRROR

CMGTYP 4 PLACES
Figure 3-34. 1-Meter Won-Diffraction Limited UV-Visible-IR Telescope, Stellar. OASF Instrument No. 45
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3.2.6 1-Meter Diffraction-Limited UV-Visible-IR Normal-Incidence
Telescope, Stellar-OASF Instrument No. 34

3. 2. 6. 1 General Characteristics

To perform the tasks of high-resolution planetary photography and high-
dispersion stellar spectrography, a 1-m-aperture telescope, diffraction-

O

limited at 4,000 A, is recommended (Figure 3-40). This instrument
provides an angular resolution of 0. 1 arc sec in the UV region, and a
resolution almost that fine in the blue region of the spectrum.

The telescope presented here was derived from the Princeton Experiment
Package of the OAO series. It anticipates a partially manned mission,
with some of the observations being remotely performed. Therefore, the
use of film as a detector is limited, and video detectors, specifically SEC
vidicons, provide the bulk of the recording.

This Cassegrainian-configuration telescope has a 1-m-aperture, a 2-m-focal-
length primary mirror, and a secondary mirror that provides a five-power
magnification, giving an effective focal length of 10 m. The image is brought
to an "optical switch" (Figure 3-41) behind the primary mirror. The optical
switch is a rotatable mirror (for choosing between the two imagery, optical
paths) with a slit (for the spectrograph). Each of the imagery optical paths
includes a relay lens of special design to give an additional magnification of
20 power, thus making the effective focal length of the cameras 200 m. The
spectrograph is of the echelle type, covering the spectral range in a number
of diffraction-pattern orders. To match the resolution of the spectrograph
to that of the vidicon camera, the format is large, requiring about seven
successive exposures and a scanning sequence to record the spectrum.

In the converging beam of light before the Cassegrain focus is a set of three
corrector lenses to provide an extended field for guidance. The central
portion of each of these correctors is removed to leave the on-axis light rays
unaffected. The image formed by the corrector lenses is interrupted by two
articulated prism-and-lens assemblies called "image movers" (Figure 3-42),
which relay the intercepted portion of the image to the image plane of a pair
of star trackers. The articulation permits the trackers to see two stars
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PREDISPEHSION GRATING

CORRECTOR LENSES
FOR GUIDANCE

Figure 341. Echelle Spectrograph and Photographic Optical Layouts

selected from the annulus surrounding the observed star. Thus, a variable
offset to two stars can be used providing guidance information in three axes.

The telescope was originally designed chiefly as a stellar spectrograph
instrument and high-re solution star field recorder. While it meets the
requirements for the 1. 0-m diffraction-limited stellar telescope whose
function is to perform planetary photography and stellar spectrography, the
guidance technique employed in the original telescope design is suitable for
the spectrographic function only. For present purposes, the guidance is
modified to provide on-axis tracking for planetary photography so that the
telescope is guided by the planet being recorded rather than by nearby stars.
This is done by inserting a beam splitter and mirror to tap off some of the
main-optical-path energy and transfer it to the guidance optical path as
illustrated in Figure 3-42. A supplementary lens corrects for the shift in
focus caused by change in path length.
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LAST CORRECTOR LENS
(SEE FIGURE 3-41)

IMAGE MOVER ASSEMBLIES
(ARTICULATED)

20-POWER RELAY LENS

GUIDANCE OPTICAL PATHS

FOLDING FLATS

MODIFICATION REGION

MAIN OPTICAL PATH
(SEE FIGURE 3-43)

MIRROR

STAR
TRACKER <
ASSEMBLY

SUPPLEMENTARY
FOCUS
ADJUSTMENT

BEAM
SPLITTER

S.E.C. VIDICON

PHOTOMULTIPLIER TUBES (PMT)

Figure 3-42. Fine Guidance System, Showing Modification for Planet Tracking
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External modifications to the telescope include the installation of a 4-m-long

sunshade, removal of the magnetic pusher suspension and replacement by

isolation gimbals suitable for the OASF orbital facilities, and the addition

of outboard star trackers for acquisition and roll reference when photograph-

ing planets.

3. 2. 6. 2 Design Criteria

Among the observations indicated by the scientific community as a part of
the space astronomy program are high-re solution photography of the nearby
planets, namely Mercury, Venus and Mars, and high-re solution spectrog-
raphy of stars to determine the composition of the stars and intervening
matter. A resolution improvement of half an order of magnitude over the
best ground-based telescopes can be achieved by a diffraction-limited
telescope of 1-m aperture. This same telescope, operating above the UV
absorbing layers of the atmosphere, can focus the radiation down to a short

o
wavelength limit of about 900 A for spectroscopic analysis.

The principal requirement in the achievement of "diffraction-limited" optics
is to provide optical elements that are extremely accurate both in their
configuration and alignment, so as to approach closely the theoretical dif-
fraction pattern that would be produced by "perfect" optics. The theoretical
image of a distant point source (based on analysis of diffraction effects) is a
central (Airy) disc surrounded by a series of concentric rings, with about
84% of the focused radiation impinging in the central disc and the remaining
16% in the rings. From this knowledge, the ability to distinguish between
two point sources may be equated to the ability to distinguish between the
diffraction images of those sources. When the center of the diffraction
pattern for one point source lies on the "da*rk ring" between the central disc
and the first bright ring for another point source (assumed to be of equal

intensity), which gives a separation angle between the sources of

0= 1.22A/D
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where
0 = separation angle between point sources
A = wavelength
D = telescope aperture

the energy-intensity minimum at the midpoint between the centers of the two
diffraction images is about 80% of the intensity at the centers. The
separation-angle relationship in the above equation, known as "Rayleigh's
criterion, " is most frequently used as the criterion for the ability to distin-
guish between two point sources.

Any imperfection that may exist in the optical system causes some of the
energy from the central disc to be redistributed into the ring system, with-
out actually changing the diameters of the central disc or the rings. In terms
of the image formed on a recording medium (film or image tube), this phe-
nomeon can have the same effect as simply enlarging the central disc. For
example, if deviations in the optical path lengths through the system are on
the order of -r (a.value investigated by Rayleigh and known as "Rayleigh's
limit"), the brightness in the inner two or three rings is approximately
doubled at the expense of some of the brightness in the central disc. In
effect, the image of a distant point source is more than doubled in size, with
a corresponding loss in ability to distinguish between closely, spaced sources,
ability to see detail, and ability to distinguish faint sources close to bright
ones. To approach closely the theoretical performance attainable by
"perfect" optics, it is desirable to achieve tolerance limits much more
stringent than the Rayleigh limit. Current standards for "diffraction-
limited" optics for reflective systems (note that any deviation of a reflective
surface produces twice that deviation in the optics path length) limit the
root-mean-square (rms) value of the surface deviation to - .̂. This deviation
limit, in turn, limits the energy intensity impinging in the ring pattern to
less tlian a 5% increase over the intensity in the rings experienced with
"perfect" optics (References 3-5, page 413 and 3-6, page 444).

3. 2. 6. 3 Detailed Characteristics

The basic characteristics of the 1-m diffraction-limited UV-visible-IR
normal-incidence stellar telescope have been summarized in Figure 3-2
in Section 3. 1.
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Additional details about the instrument are tabulated in Table 3-41, 3-42,
and 3-43.

3. 2. 6. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-44. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately
summarized in Table 3-45.

Deployment

Erecting the star trackers, uncovering mirrors, gratings, and cameras,
and erecting the magnetic suspension and gimbals can be done automatically
with man as backup. The optical surfaces (telescope and instrumentation)
are inspected so that their initial condition is known for comparison at a
later time.

Outgassing after exposure to atmospheric contaminants is a problem for this
telescope. Because it has a number of TV vidicons, photomultiplier tubes
(PMT), and other electronic components that have high voltages, high-voltage
arc-over and consequent deterioration of optical surfaces can become
important considerations during later phases of operation. Therefore, the
telescope surfaces must be given sufficient opportunity to outgas in vacuum
before the electrical components are energized.

Alignment

An optical technician observing a TV monitor screen (projected image from
an autocollimator) and using remote controls checks and adjusts the optical
alignment (tilt, centration, and focus). The procedure is similar in that
described for the 1-m non-diffraction-limited UV-visible-IR telescope (OASF
Instrument No. 45) in the corresponding paragraph of Section 3. 2. 5.4.

Calibration

Because all the data sensors in this instrument are electro-optical, the
calibration procedure is typified by that of the guidance PMT's. Selected
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Table 3-41
COLLECTOR PARAMETERS

1-M Diffraction-Limited UV-VIS-IR
Normal-Incidence Stellar Telescope--OASF Instrument No. 34

Aperture

Primary focal length • '

Effective focal length

Total field of view

Angular resolution

On axis

.Poorest in field of view

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary/No.

System/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system
focal plane

1.017 m

2 . 0 3 4 m

10. 17 m'

2 arc min.

0. 1 arc sec at 4, 000 A

0. 15 arc sec at 4, 000 A

5%

900 A

6,000 A

2 '

10

20. 3 arc sec/mm

203 lines/mm

5. 9 mm

astronomical objects (for example, luminosity-standard MKK stars) are
observed and the sensitivity of the PMT's determined from a comparison of
the observed to the standard values. This procedure should apply equally
well to both the imaging and the spectrographic sections of the instrument.

Operation

After the target object has been located on the TV monitor connected to the
telescope viewfinder, the SEC vidicon scans the image (bit by bit, because the
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Table 3-42
INTERFACE CHARACTERISTICS

1-M Diffraction-Limited UV-VIS-IR
Normal-Incidence Stellar Telescope--OASF Instrument No. 34

General

System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

= 240 kg

=4. 1 m3

Cylindrical

Method of accomplishing.

Deployment

Alignment

Calibration
Operation

Remove plastic air bags, uncap,
and magnetic suspension
Motor-driven, using TV and
autocollimator
Standard source
Remote viewing and telemetry

Stowage requirements (launch)

Mechanical Inflatable plastic bags and
plastic bag covering

Experiment data handling

Format
Recording media
Mode of data recovery

1-in. SEC vidicon
Real-time telemetry
Telemetry

Power consumption

Stowed
Standby
Operate

None
=90 W

=150 W
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Table 3-43
GUIDANCE AND CONTROL CHARACTERISTICS

1-M Diffraction-Limited UV-VIS-IR
Normal-Incidence Stellar Telescope--OASF Instrument No. 34

Guidance characteristics
Coarse

Initial acquisition field of view
Resolution
Residual error

Intermediate
Field of view

Fine
Field of view
Resolution
Residual error

Control characteristics
CMC

Type:

Wheel momentum:
Gimbal stops:
Spin motor power (start):

(run):
Servo power (peak);:

(average):
Max. torque:
Weight:
Diameter:
Length:

Suspension characteristics
Type:

Bearing breakaway torque:

±5"
±15 arc sec
±1 arc min.

±3 arc min.

±1 arc min.
±0.01 arc sec
±1 arc sec

Single degree of freedom,
viscous damped
=640 oz-in-sec
±60°
40 W
6 W
10 W
1. 5 W
3. 8 oz-in.
16 Ib
5 in.
8-1/2 in.

Two axis bearing
supported gimbals
=0. 005 oz-in.

20-power relay lens looks at only a small portion of the field of view at any
time) in the focal plane until the entire field of view has been recorded.
This may take several orbits, which would require halting the scan and
repositioning of the telescope in the middle of an exposure after each
interruption.
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Table 3-44
SETUP AND MAINTENANCE REQUIREMENTS

1-M Diffraction-Limited UV-VIS-IR
Normal-Incidence Stellar Telescope--OASF Instrument No. 34

Operation

Deployment

Alignment

Calibration

Scheduled
maintenance

Unscheduled
maintenance

Average
Times
per

Year

6

1/2

*Skills are identified by

Duration
(hours)

2

12

9

4

3

number in

No.
of

Men

1

1

1

1

1

1

1

Table

Skill
Identifi-
cation*

21

14

21

12

14

12

14

3-3.

Hours
per
Man

2

12

9

1

1

2

1

Average
Power

(W)'

15

5

15

15

Special Special
Equip Equip

Weight Volume
(Ib) (ft3)

- .

15 2

30 3

Table 3-45
OPERATION SUPPORT AND REQUIREMENTS

1-M Diffraction-Limited UV-VIS-IR
Normal-Incidence Stellar Telescope--OASF Instrument No. 34

Time per Start Time
Observa- No. Skill (hours from

tion of Identifi- Manhours/ start of Number of
ORDS No. (hours) Men cation* Observation observation) Observations

020

021, 022

035, 036

040

0.

0.

1.

0.

16

67

0

01

1

1

1

1

5

5

5

5 .

0.

1.

1.

0.

5

0

25

3

-0.

-0.

-0.

-0.

25

25

25

25

350/year

1, 000

300

500

*Skills are identified by number in Table 3-3.

160



Scheduled Maintenance

The optical technician checks the mirrors (and other optics) for alignment
and reflective efficiency. The electromechanical technician inspects the
electronics components (TV cameras and PMT's) including voltage checks
for evidence of deterioration.

Unscheduled Maintenance

Failed electronic components (particularly the PMT's which are vacuum
tubes and thus inherently less reliable than solid-state circuitry) are
replaced. PMT failure may occur almost immediately after onset of initial
signs (voltage changes, cathode efficiency change); therefore, the regular
maintenance checks may not reveal a potential failure unless it is imme-

diately imminent. . ,

3 . 2 .6 .5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 1-Meter
Diffraction Limited UV-VIS-IR Normal Incidence Telescope (Instrument
No. 34) are listed below. Full descriptions of SRT items are given in

Section 4. 3.

Research and Advance Technology

Develop methods for rapidly evaluating mirror figure and alignment
under one-gravity and zero-gravity environments (SRT 1).
Conduct experimental studies of precision structural properties of
mirror material related to optical performance (SRT 2).
Developo methods for generating and maintaining diffraction-limited
(5, 000 A) mirror quality in orbital environments (SRT 3).
Develop mirror surfaces to provide high UV reflectivity, precision
of figure, and freedom from scattering (SRT 4).

Develop cantilevered mirror as a reflective beam deflector (SRT 5)
o . •

Develop XUV-sensitive imaging tubes for use below 1, 050 A
(SRT 11).
Investigate degradation of telescope detector and reflective surfaces

. resulting from 0_ exposure (SRT 42).
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Investigate mirror support structures that minimize the mechanical
and optical problems of Cassegrainian telescopes (SRT 54).
Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).

Investigate the dimensional stability of candidate mirror materials
(SRT 56).

Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57).

Advanced Development

Assess materials for internal use to determine whether rapid
aging and breakdown are caused by internal atmosphere
(SRT 82).

Assess materials for external use to evaluate (a) hard vacuum
effects on materials, finishes, etc. ; and (b) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than currently
obtainable (SRT 84).

Develop photographic emulsions with improved spatial resolution
(SRT 84A).

3. 2. 6. 6 Phase D Cost

The Phase D cost is shown in Table 3-46 which shows both development and
operation costs. The development schedule is shown in Figure 3-43. Quan-
tities of equipment required in development are shown in Table 3-47.

3. 2. 6. 7 . Instrumentation Section

\
Large-Scale Image Recorder (See Figure 3-44)

The large-scale image recorder consists of an SEC-vidicon television cam-

era, a 20-power microscope objective relay lens, and a pair of folding mir-
rors. For reliability, complete redundancy is provided so that the failure

of one video tube will not negate the entire program. A photographic camera
magazine could replace one of the video cameras. The relay lens is a triplet
consisting of fused silica and LiF elements to permit transmission down to

o
2,000 A. The field of view on the vidicon format with the 200-m effective
focal length is approximately 22 sec, which is sufficiently large to record
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Table 3-46 (page 1 of 2)
TASK COST ESTIMATE - PHASE D

1-Meter Diffraction Limited UV-Visible-IR Normal-Incidence
Telescope, Stellar (OASF Instrument No. 34)--

($ thousands)

Development total 6, 719
Engineering 550
Detectors *

35-mm digital magnetic *
tape recorder
35-mm strip film *
Spectrograph film . .*
Field lens and/or image *
tube
70-mm plates . *

Collecting optics 421
1. 0-m primary mirror 125
Secondary mirror 45
Secondary mirror 251
alignment assembly

Fine guidance 490
Guidance optics ' *
Sensor *
Control moment gyros . *

Housing (primarily servo 258
aspect and hardware) .

Structure (including 238
optics support)
Inflatable sunshade 20

Experiment sensors :. • 3 ,900
Filter wheels " 150

*Cost item not derived where overall estimate for instrument is not signifi-
cantly affected.
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Table 3-46 (page 2 of 2)

Interferometer

35-mm plate camera

70-mm plate camera

35-mm cine camera

Echelle spectrograph

Optical switch

Major hardware articles

Mockup

Engineering model

Project verification
model

Qualification model

Operations total

Flight instrument

Backup flight instrument

Engineering support

Phase D total

1, 100

800

550

650

775

750

275

*

*

3, 104

2, 016

806

282

9, 823**

*Cost item not derived where overall estimate for instrument is not signifi-
cantly affected.

**Assumes previous development of 1-m non-diffraction-limited OASF
Instrument No. 45.
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Table 3-47
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT

PHASE D--(MID-LATE) (APS)
1. 0-Meter Diffraction-Limited UV-Visible-IR Normal-Incidence

Stellar Telescope (OASF Instrument No. 34)

Functional
System
(Major

Element)

1.0-m
diffraction-
limited
UV -visible -IR
telescope

Subsystem

Detectors

Collecting
optics.

FineJL m\^

guidance

Housing

Experiment
sensors

Major
hardware
articles

Assemblies

3 5 -mm strip film
Spectrograph film
Field lens and/ or

image tube
70-mm plates
35-mm digital magne-

tic tape. recorder
1. 0-m primary mirror
Secondary mirror
Secondary mirror

alignment assy
Guidance optics
Sensor
Control moment gyro
Structure (including

optics support)
Inflatable sunshade
35-mm plate camera
Filter wheels
70-mm plate camera
35-mm cine camera
Echelle spectrograph

interferometer
Optical switch^
Mockup
Engineering model
Project verification

model
Qualification model

Quantity

Bread-
board

2
2
1

1
1

1 .
1
2

1
1
1
1

1
1
1
1
1

1
1

Proto-
type

1
1
2

2
2

2
2
2

1
1
2
1

1
1
1
1
1

1

1
60%

Flight
Quality

2
2
1

1
1

1
1
1

2
2
1
2

2
2
2
2
2
2

2

_ _ _

40%*

1

*Obtained from subsystem development.quantities.
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LAST CORRECTOR LENS

Figure 3-44. F/200 Imaging System

the entire crescent of Mercury, approximately 90% of the Martian diameter
at opposition, and about two-thirds of Venus's crescent at its closest observ-

able range. A minor adjustment in the magnification of one of the relay
lenses could well be made to permit the inclusion of the entire image on a
single exposure.

Echelle Spectrograph (See Figure 3-41)

The other principal function of this telescope is to record spectrograms of
stars and planetary atmospheres for determining their chemical constituents.

To this end, as echelle spectrograph is included, it serves the purpose well
o

by folding the desired range of spectrum (from 800 to 3, 000'A) (see

Table 3-48) into a compact format.

The spectrograph consists of a slit, a concave predisperser grating, a pair
of flat echelle gratings and the same image tubes that are used to record the
image field. The slit is a part of the rotatable mirror (optical switch) that
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Table 3-48
ECHELLE SPECTROGRAPH CHARACTERISTICS

1-M Diffraction-Limited UV-Visible-IR Normal-Incidence
Stellar Tele scope--QASF Instrument No. 34

Wavelength

Short:
Long:
Resolution:

800 A
3, 000 A
0. 1 A at 1, 000 A

Entrance aperture

Slit width:
Slit weight:

25-100M

Incident radiation

f/No. limitation:
Spatial resolution:

10
0. 1 arc sec

Predisperser grating

Type:
Size:
Ruling frequency:
Dispersion:
Spectral order

concave
25 x 25 mm
720 line/mm
25 A/mm at 1, 000 A
1

Main grating

Type:
Size:
Ruling frequency:
Dispersion:
Spectral order:

Plane echelle
32 x 32 mm
360 lines/mm
1 A/mm at 1, 000 A
13-40

Recorder characteristics

Type:
Aperture:
Remote change cycle time:
Limitations:
Power consumption
Window material:

Weight

SEC vidicon
25. 4 x 22 mm
Variable
20 lines/mm
10 W
LiF
5kg
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directs the optical path to either of the vidicons cameras. The predisperser
grating can be tilted to direct the return beam to either of the two echelle
gratings, depending oh which camera tube is to be employed. The gratings
are capable of limited scanning to select the portion of the format to be
recorded, as it takes seven exposures to cover the entire format. The
echelle gratings are immediately adjacent to the second of the folding flats
in each line of sight to keep the rays arriving at the vidicon virtually normal
to the face plate in either case.

Provision for recording a comparison spectrum is considered a compara-
tively straightforward engineering task.

As in the case of the image field recorder, the addition of versatility to the
spectrograph, by establishing different parameters for each of the echelle
gratings, is anticipated. By this means, it is possible to increase the over-
all coverage, yet retain the capability of deriving the critical information
in the event of the failure of either camera tube.

169



Page intentionally left blank



CONTROL MOMENT GYRO
TYP 4 PLACES

SECONDARY MIRROR -

SUNSHADE
EXTENDS 3.9 M

COARSE STAR TRACKER
TYP 2 PLACES :

1.13M

FOLDING MIRRORS

' SEC VIDICON
NOTE
REPLACE WITH CAMERA
FOR PHOTO MODE

ISOLATION SUSPENSION
GIMBAL RING

SEC V DICON
ELECTRONICS

PLANET TRACKER

FOLDING MIRRORS

Figure 3-40. 1-Meter Diffraction-Limited UV-Visible-IR
Telescope, Stellar. OASF Instrument No. 34

171



Page intentionally left blank



3. 2. 7 0. 3-Meter UV Schmidt Normal-Incidence Telescope,
Stellar-OASF Instrument No. 33

3. 2. 7. 1 General Characteristics

The 0. 3-m all-reflective Schmidt Camera (Figure 3-45) described in this
section is a modification of the all-reflective Schmidt Camera built for
Northwestern University and described in References 2-5 and 3-7.

The following description of the Schmidt Camera is given in Reference 3-8.

The basic principle of (the "Schmidt) Camera" is that a single concave
spherical mirror with a stop at its center of curvature has no unique
axis and therefore yields equally good images at all points of its field.
The field is curved, with a radius equal to the focal length. If small
focal ratios are used, spherical aberration may become appreciable,
although it should be noted that the spherical aberration of a single con-
cave spherical mirror is smaller than that of the three- and four-lens
anastigmats such as the triplet or Tessar types of the same focal ratio.
To correct this residual spherical aberration, Schmidt introduced, in
the stop at the center of curvature of the mirror, a thin, non-spherical
corrector plate of glass. Even though this plate is non-achromatic it
reduces the already very small spherical aberration to 2 or 3 percent
of its original value over the range of wave lengths normally photo-
graphed. This permits critical definition over a large field with a focal
ratio that is an order of magnitude smaller than is possible with lens
systems.

Space operation permits the reception of UV energy, and to capitalize on this
capability it becomes necessary to re-examine the design of the Schmidt
Camera as a UV collector. Conventional glass-corrector plates absorb the
UV. The use of quartz permits the extension of the spectrum somewhat
further into the ultraviolet but does not come near to passing the critical
Lyman-alpha wavelength. Some of the fluoride crystals pass this wavelength,
but they are not available in sizes suitable for manufacturing a corrector

plate. Therefore, it becomes necessary to use a corrector plate that is
reflective rather than refractive. The instrument shown here substitutes a
reflective aspheric mirror for the classical design's thin refractive correct-
ing plate at the center of curvature of its spherical collecting mirror.

The instrument has an aperture of 0. 3, a focal length of 0. 9, a 150-mm film
format with a phosphor-coated-fiber optic-field flattener and image converter
permitting the use of a conventional roll-film camera. The field of view thus
provided approaches 10°. The compact camera, in turn, permits an on-axis
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location with obscuration held to a reasonable amount thus simplifying the

optical design of the telescope. The reflective corrector plate is mounted
back to back with another corrector plate on which a diffraction grating is
ruled. Because of the size of this corrector plate, it is composed of a
mosaic of four pieces aligned precisely to act as a single grating and cor-
rector. These two mirrors are turret mounted to permit rapid selection of
mode of operation.

The telescope housing is mounted by means of three-axis gimbals to the
spacecraft. Guidance is provided by means of gimbaled star trackers for
acquisition and roll reference and a boresighted telescope with a fine guidance
sensor to maintain precise pointing during exposure. CMC's receive the sig-
nals from the trackers and provide the torques necessary to control the attitude

of the telescope in yaw, pitch, and roll.

A sunshade extendable after deployment permits the telescope line of sight to
be directed closer to the sun than would otherwise be possible.

For stellar surveys, Schmidt cameras are unsurpassed, providing as they do
both a reasonably wide field with good definition and a large aperture to permit
photographing of faint starts with relatively short exposures. In space, from
a point of vantage above the nightglow, it will be possible to reach a fainter
magnitude limit because the lower background level will permit longer
exposures than are profitable on the ground.

3. 2. 7. 2 Design Criteria

The instrument is to have a camera which can use standard panchromatic
film in place of special UV films or plates. It must be capable of photograph-

o
ing the entire sky in the range 900 to 4, 000 A. All stars brighter than apparent
visual magnitude, m , = +8. 0 will be recorded on a single exposure of 2-hours
duration. Both photographs and spectra of the stars in the UV spectral sky
survey will be needed. To be efficient, about 50 spectra per exposure must
be obtained, an instrument field of view at least 8 in diameter is needed to

O
satisfy the above. A spectral resolution of 1 A will be adequate for many
applications, including the following:

1. Identification of UV objects for subsequent observation using
conventional spectroscopy with finer wavelength resolution.

174



2.

3.

Identification of the most conspicuous luminosity sensitive lines
by comparing spectra of stars having MK classifications.
Detection of shifted spectral lines and of strong interstellar
absorption lines.

3. 2. 7. 3 Detailed Characteristics

The basic characteristics of the 0. 3-m UV Schmidt normal-incidence stellar
telescope, have been summarized in Figure 3-2 in Section 3. 1. Additional
details about the instrument are provided in Tables 3-49, 3-50, and 3-51.

3. 2. 7. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-52. Since man's utilization in the operation of the instrument is
dependent upon the observational program, operational information is
separately summarized in Table 3-53.

Table 3-49
COLLECTOR PARAMETERS

0.3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
(OASF Instrument No. 33)

Aperture
Primary focal length
Effective focal length
Total field of view
Angular resolution

On axis
Poorest in field of view

Obscuration of aperture
Minimum wavelength
Maximum -wavelength
Primary f /No.
System f /No.
Scale at system focal plane
Resolution at system focal plane
Linear field of view at system focal plane

0. 3 m
0. 91 m
0. 91 m
10°

0. 25 arc sec at 1, 200 A
0. 5 arc sec at 1, 200 A
27%
1,000 A
2,000 A
1.46
3
226 arc sec/mm
45 lines/mm
152. 4 mm

175



Table 3-50
INTERFACE CHARACTERISTICS

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
OASF Instrument No. 33

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing

Deployment
Alignment
Calibration
Operation
Experiment change

Stowage requirements (launch)
Mechanical

Electrical

Experiment data handling
Format
Processing
Recording media
Mode of data recovery

Pointing requirements

430 kg
2. 5m3

Rectangular prism w/off-axis
cylinder

Automatic sunshade extension
None
Photography of: standard source
Automatic
Flip mirror-remotely
controlled

Inflated air bags to protect
optics, plastic protective bags

None

150-mm roll film
On board
Photographic emulsion
Film magazine replacement

Pointing accuracy (acquisition) ± external acquisition (angle)

Power consumption
Stowed
Standby
Operate

0
120 W
120 W, peak 125 W
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Table 3-51
GUIDANCE AND CONTROL CHARACTERISTICS

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
OASF Instrument No. 33

Guidance characteristics

Coarse
Initial acquisition filed of view

Intermediate
Field of view

Fine
Field of view
Resolution
Residual error

Manual external

Manual external

±3.min
±0. 5 arc-sec

5 arc-sec

Control characteristics

Control Moment gyro
Type
Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max. torque
Weight
Diameter of wheel housing
Length of wheel housing

Two degrees of freedom
15 Ib-ft-sec
Outer none - inner ±70°

40 W
6 W
40 W
5 W
15 oz-in.

30 Ib

«8 in.

5 in.

Suspension characteristics

Type 3 degree of freedom,
bearing-supported
gimbals
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Table 3-52
SETUP AND MAINTENANCE REQUIREMENTS

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
OASF Instrument No. 33

Special Special
Average No. Skill Average Equip Equip
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (lb) (ft3)

Deployment

Alignment

Calibration

Scheduled
maintenance 6

1

1

3

1-1/2

...

1

1

1

1

1

21

14

21

14

12

1

1

3

1-1/2

1

3

5

5

3

3

5

5

1

1

1

1

Unscheduled
maintenance 1/3 12 10

^Skills are identified B-l number in Table 3-3.

Table 3-53
OPERATION SUPPORT AND REQUIREMENTS

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
OASF Instrument No. 33

ORDS No.

101

107

Time per
Observa-

tion
(hours)

2

0. 2

No.
of

Men

1

1

1

1

Skill
Identifi-
cation *

5

8

5

8

Man
hours/

Observa-
tion

2 .25

0. 05

0. 5

0.05

Start Time
(hours from

start of
observation)

-0. 25

+48

-0. 25

+48

Number of
Observations

50

800

*Skills are identified by number in Table 3-3.
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Deployment

The sunshade is extended, the two mirrors and star trackers uncovered, the
gimbal erected, and the phosphor-coated fiber-optic face-plate camera'
removed from its protective packaging.

Alignment

The telescope has two corrector elements so that it can be used both as a
wide-field UV camera with broadband filters, and as an objective grating
spectrograph. After changing from grating to correcting plate by rotating the
corrector assembly 180°, refocusing the camera will suffice if the supporting
structure of the optical system is stiffened enough. The focusing scheme that
Northwestern University describes for their 0. 3-m Schmidt telescope appears
to be a good method and it has been retained here (as well as for the late-
time-period 1-m UV Schmidt, OASF Instrument No. 13). In this scheme, an
optical technician observes a star image on a TV monitor. If two images are
present, he moves a one-dimensional control which moves the camera along
the optical axis until he sees a single star, indicating that proper focus has
been achieved.

Calibration

Calibration is done from densitometry of a sequence of photographs taken and
processed by the observer. The primary reason for the calibration plates is
to determine appropriate exposure times for the combination of telescope and
narrow-band filter. The calibration plates also serve as standards by which
to measure the deterioration of the UV-reflective coatings over long periods
of time. The number of plates taken depends on the range of brightness of the
galactic objects in the observation program.

Operation

Exposure time for a single frame is estamated to be about 2 hours. The
telescope may, upon completing an exposure, be programmed to move auto-
matically to another preplanned location and to initiate another exposure.
Alternatively, an observer points the telescope to the proper star field, loads
the plate or film magazine, and initiates the exposure. The plates are
developed in orbit to minimize radiation fogging.
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The changeover from direct plates to the objective prism grating is done

remotely from the spacecraft. A series of test plates is taken to achieve
good focus.

Scheduled Maintenance

An electromechanical technician checks the camera-sequence mechanism at
regular intervals. An optical technician checks the condition of the optical

surfaces. The narrow-band filters may be replaced and the previously used
ones tested for changes in transmission properties.

Unscheduled Maintenance

Electromechanical failure is considered very unusual and will probably call
for the use of electromechanical technicians for trouble shooting and modular
replacement.

3. 2. 7. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 0. 3-Meter
UV Schmidt normal-incidence telescope (instrument No. 33) are listed below.
Full descriptions of SRT items are given in Section 4. 3.

Research and Advance Technology

Develop mirror coatings with higher reflectivity shortward
of 1, 200 A (SRT 4).
Develop fabrication techniques for noncircular aspherics (SRT 6).
Develop ruling techniques for ruling gratings on aspherics (SRT 9).
Develop techniques to overcome electrostatic charge buildup and
fog-producing spark discharge on roll film in hard vacuum (SRT 17).
Develop improved grating ruling techniques and equipment to provide
closer ruling spacing and greater uniformity of ruling spacing, blaze
angle, and surface finish (SRT 38).

Develop criteria for film-transport mechanism suitable for roll film
in hard vacuum to avoid emulsion cracking and flaking (SRT 39).
Investigate degradation of telescope detector and reflective surfaces
resulting from O? exposure (SRT 42).

Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).
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Investigate the dimensional stability of candidate mirror materials
(SRT 56).
Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57).

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (1) hard-vacuum
effects on materials, finishes, etc. , and (2) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than currently
obtainable (SRT 84).

3. 2. 7. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-54 which shows both development and
operations costs. The development schedule is shown in Figure 3-46.
Quantities of equipment required in development are shown in Table 3-55.

3. 2. 7. 7 Instrumentation Section

Fiber-Optic Face-Plate Camera

The fiber-optic camera (Figure 3-47) is composed of three sections. The
first contains the face plate and consists of a phosphor-coated fiber-optic
bundle, the shutter, and the fiber-optic mount; the second includes the film-
magazine assembly, which includes the film and film-transport mechanism.
Finarlly, the third section is the camera-housing section, which serves as
a radiation shield and environmental (temperature-humidity) chamber. The
camera weights about 10 kg. The phosphor camera has several potential
advantages in that the phosphor transforms UV light to blue-violet light,
thereby admitting the use of normal roll film rather than abrasion, pressure-
sensitive Schumann-type film; the face plate flattens the field, thus'elimi-
nating the mechanical problems associated with shaping sheets of film to a
spherical surface; the film magazine may be pressurized, thereby avoiding
the deleterious effects of a vacuum environment on photographic film.
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Table 3-54
TASK COST ESTIMATE--PHASE D

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
(OASF Instrument No. 33)

($thousands)

Development total 3, 265
Engineering 240
Detectors *

70-mm plates *
Collecting optics 715

0. 3-m primary mirror 15
Corrector mirror 250
Alignment assy 450

Manual guidance 300
TV camera *
Control moment gyro *

Housing 195
Structure (including optics

support) 175
Inflatable sunshade 20

Experiment sensors 950
Filter wheels 150
70-mm plate camera 800

Major hardware articles 865
Mockup *
Engineering model *

Project verification model *
Qualification model *

Operations total 1,677
Flight instrument 1,089
Backup flight instrument 436
Engineering support 152

Phase D total 4, 942

*Cost item not derived where overall estimate for instrument is not
significantly affected.
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Table 3-55
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
(OASF Instrument No. 33)

Functional
System

(Major Element)

0. 3-Meter UV
Schmidt
telescope

Subsystem

Detectors

Collecting
optics

Manual
guidance

Housing

Experiment
Sensors

Major
hardware
articles.

Assemblies

70 -mm plates

0. 3-m primary
mirror
Corrector mirror
Alignment assy

TV camera
Control moment gyro

Structure (Including
Optics Support)
Inflatable Sunshade

Filter wheels
70 -mm plate
camera

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread-
Board

2

---_ _ _

2

1
1

- — -

1

1

1

Proto-
Type

2

_ —
2
2
4

2
2

1
1

1

1

1

60%*

Flight
Quality

2

2
2
4

2
2

2
2

1

1

40%*
1

Obtained from subsystem development quantities.
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Figure 3-47. Phosphor-Coated Fiber-Optic-Faceplate Camera

Objective Grating

The UV grating which is ruled on the aspheric correcting plate has a grating
o o

frequency of 110 lines./mm, resulting in a 2 A resolution and 100 A/mm dis-
persion (see' Table 3-56). A grating of such coarsene.ss will be wasteful of

light in the UV unless the greatest care is exercised in ruling control. The
demand for UV gratings is improving the above situation. A further problem

is that this grating is larger than any now being made, so that either larger
ruling engines will be needed, or the ruled corrector will have to be made in

segments.
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Table 3-56
OBJECTIVE GRATING CHARACTERISTICS

0. 3-Meter UV Schmidt Normal-Incidence Stellar-Telescope
(OASF Instrument No. 33)

Wavelength

Short
Long
Resolution

Incident radiation

f/No. limitation
Spatial resolution

Main grating

Type
Size
Ruling frequency
Dispersion
Angle of diffraction range

Spectral order
Recorder characteristics

Type
Aperture

Remote change cycle time
Film type limitations

Exposure per magazine load
Power consumption during

cycle change
Power consumption during calibration

Weight

900 A
4,300 A

2 A at 1,200 A

5 arc sec

Aspheric

300 mm
110 lines/mm

o o
100 A/mm at 1, 200 A
-11. 4 to -13. 5°
1

Phosphor-augmented camera
150 mm

1 sec
Roll film

144

5 W
10 W
15 kg
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COARSE STAR TRACKER
TYP 2 PLACES

SUN SHADE UNEXTENDED
EXTENDS LOOM

(PHOSPHOR FIBRE OPTICS \ ' V

FINE GUIDANCE
TELESCOPE

ERECTION MECHANISM
TYPE 4 PLACES

PRIMARY MIRROR
C.M.G.
TYP 3 PLACES

ISOLATION SUSPENSION
GIMBAL RING

1.99M

CAMERA ACCESS
DOOR

Figure 3-45. 0.3-Meter UV Schmidt, Normal Incidence (Telescope, Stellar. OASF Instrument No. 33
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3.2.8 1 - to 6- Solar Radii Coronagraph Normal-Incidence
Telescope, Solar - OASF Instrument No. 36

3.2.8.1 General Characteristics

The 1- to 6-solar-radii coronagraph combines with the 5- to 30-solar-radii
coronagraph (Section 3. 2. 29) to observe white-light emission of outward-
moving plasma clouds from the solar limb to a distance of 30 solar radii
from the center of the sun. Coverage of this considerable region is divided
into two instruments for the following reasons: (1) the two instruments are
each relatively small in size as contrasted with one instrument of unwieldy
proportions; (2) the inner coronagraph, which requires a much smaller field
of view, provides higher resolution for a given image size, in the region
where the coronal phenomena are expected to be much more interesting; (3)
the range-of-response requirement for the recording medium (film) is
considerably relaxed by splitting into two parts the six- to e ight- order -of -
magnitude difference in radiation flux levels between the solar limb and
30 solar radii.

The 1- to 6-solar radii coronagraph (Figure 3-48) is a motion-picture cam-
era with a telephoto lens to restrict the field of view to three degrees on a
35-mm format. It is fitted out with occulting disks, both internal and
external to block out the direct rays of the sun so that the picture obtained
contains the image of the inner corona •without the glare of the direct sun.
It is composed of four parts: an optical bench, which ties everything
together; an optics housing, which provides a support for the objective lens,
field lines, relay lens, folding mirrors, elements of the calibration chain,
and thermal mirrors; a light tube, which serves as a baffle, a support for
the instrument cover, and protection for the external occulting disks; and a
35-mm cine camera, which records the corona pictures on film.

Optically the coronagraph consists of an objective lens and relay system
which form an image of the corona at the camera focal plane. On the field
lens, which is at the focus of the objective lens, is an internal occulting disk.
This disk occupies the place where the solar image would be were it not for
the external occulters. It blocks the last remnant of direct solar light. In
front of the objective lens by somewhat over two meters is an external
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occulting disk, supported by the optical bench and so designed as to shield
the internal optics completely from direct sunlight, yet offer minimum
vignetting to light from the corona. Backing up this occulting disk are two
more disks, placed so as to cut off any diffraction effects that would permit
sunlight to pass. A thermal mirror (f/100) surrounding the objective lens
redirects unused solar radiation out into space again, protecting the instru-
ment from undue heating.

The instrument is an outgrowth of the coronagraphs that have been operating
for many years in the mountain observatories in Colorado and Southern
France. It is anticipated that by going into space higher contrast and cor-
respondingly higher definition can be achieved.

3. 2. 8. 2 Design Criteria

The coronagraph suggested by the scientific community was required to have
a field capable of viewing the outer corona, and minimal vignetting of the
inner corona. While ideally this makes an interesting goal, achievement of
it is encumbered with practical difficulties. In the first place, a detector
capable of recording the outer corona •would be exposed beyond saturation by
the inner corona. Secondly, it is not at all evident that scattering due to
unocculted light from the inner corona will not cause excessive fogging of
the outer corona image. Therefore, the original requirement was divided
into two parts, providing separate instruments for viewing the inner and
outer portions of the corona. These instruments are to be co-mounted and
operated as a unit.

The inner coronagraph was intended to cover the portion of the corona out to
6 solar radii and requires a design that will ensure that no direct sunlight
strikes the optics and that scattering is kept to a minimum.

3. 2. 8. 3 Detailed Characteristics

The basic characteristics of the 1 - to 6-solar radii coronagraph normal-
incidence telescope, solar, have been summarized in Figure 3-3, Section 3. 1.
Additional details about the instrument are tabulated in Tables 3-57, 3-58,
3-59, and 3-60.
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3. 2. 8. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-61. Since man's utilization in the operation of the instrument is
dependent upon the observational program, operational information is sep-
arately summarized in Table 3-62.

Deployment

The two coronagraphs will be mounted on a common support track (optical
bench) at launch. Covers and lens caps will be removed, and the sun sensor
will be erected.

Table 3-57
COLLECTOR PARAMETERS

1 - to 6-Solar Radii Coronagraph Normal-Incidence Telescope, Solar
OASF Instrument No. 36

Aperture
Primary focal length
Effective focal length
Total field of view
Angular resolution

On axis
Poorest in field of view

Occulted area in focal plane
Minimum wavelength
Maximum wavelength
Primary f/No.
System f/No.
Scale at system focal plane
Resolution at system focal plane
Linear field of view system focal
plane

0.0245 m
0.315 m
0. 315 m
3. 25°

10 arc-sec, at 5, 000 A
o

45 arc-sec, at 5, 000 A
3.4 (%)
4,000 A
10, 000 A

12.9 . . .
12.9

690 arc sec/mm
.69 lines/mm

17. 9 mm
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Table 3-58
INTERFACE CHARACTERISTICS

1- to 6-Solar Radii Coronagraph Normal -Incidence Solar Telescope--
OASF Instrument No. 36

General (Includes 5- to 30-solar radii coronagraph)
System weight (less expendables) =400 kg
System volume (launch

configuration) ~2. 3 m
System shape (launch

configuration) 2 cylinders on beam

Method of accomplishing
Deployment

Alignment

Calibration

Operation
Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format
Processing
Recording media
Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed
Standby
Operate

Uncap aperture and remove plastic
bag

Remote adjustment of internal
occulting disk position

Use of intensity calibration wedge
on photograph

Remove photograph

Plastic-bag packaging
None

35-mm strip film, 18 x 24 mm
On-board
Panchromatic photographic film
Exchange of film magazine

Manual (angle)

None
= 35 W
= 60 W
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Table 3-59
GUIDANCE AND CONTROL CHARACTERISTICS

1- to 6-Solar Radii Coronagraph Normal -Incidence Solar Telescope-
OASF Instrument No. 36

Guidance characteristics

Coarse

Initial acquisition field of view

Intermediate

Field of view

Resolution

Residual error

Control characteristics

CMG

Type

Wheel momentum

Gimbal stops

Spin motor power (start)

(run)

Servo power (peak)

(average)

Max. torque

Weight

Diameter

Length

Manual

±40 arc-min

± 5 arc sec

±15 arc sec

Single degree of freedom,
viscous damped

640 oz-in. -sec

±60°

40 W

6 W

10 W

1. 5 W

3. 8 oz -in.

16 Ib

5 in.

8-1/2 in.
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Table 3-60
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

1- to 6-Solar Radii Coronagraph Normal -Incidence Solar Telescope--
OASF Instrument No. 36

Film camera characteristics

Type Cine roll film
Aperture 18 x 24 mm
Remote change cycle time 5 sec
Power consumption during change 2 W
Film type limitations Panchromatic
Exposures per magazine load 3, 600
Weight 10 kg

Filter characteristics Polarizers
Remote change cycle time 1 sec
Power consumption during change 2 W

Table 3-61
SETUP AND MAINTENANCE REQUIREMENTS

1 - to 6-Solar Radii Coronagraph Normal-Incidence Solar Telescope--
OASF Instrument No. 36

Special Special
Average No.. Skill Average Equip Equip
Times/ Dur.ation of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (,lb) (ft3)

Deployment

Alignment

Calibration

1

2

3

1

1

1

21

14

21

1

5

3

5

1

5

10

3

1

2

1

Scheduled
maintenance 6 2 1 12

Unscheduled
maintenance 1/5 1 1 12

*Skills are identified by number in Table 3-3.
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Table 3-62
OPERATION SUPPORT AND REQUIREMENTS

1 - to 6-Solar Radii Coronagraph Normal-Incidence Solar Telescope--
OASF Instrument No. 36

ORDS
No.

062

*Skills

Time
per

Observation

1 year
(continuous)

are identified

No.
of

Men

1

Skill
Identifi-
cation*

5

1 8

by number in

Man-
hours/

Observation

2 /day
in 10-min.
periods

2/day
(1 period)

Table 3-3.

Start Time
(hours from

start of
observation)

-0. 25

+ 24

Number of
Observations

1

Alignment

The optics of each coronagraph is an independent sealed unit requiring no
further adjustment. The positions of the external occulting disks are
adjusted in orbit to obtain maximum suppression of diffraction effects.
Adjustment of the internal occulting disk will be infrequent. Sample photo-
graphic exposures will serve as a record of alignment. The use of a common
optical bench assures the boresight alignment of the two coronagraph optics
systems to each other.

Calibration

Intensity calibration wedges on the photographs are utilized. Depending on
the frequency of photographs and the type of phenomenon being observed, it
may be convenient to omit the wedges from many of the photographs during,
operation and only take intensity test plates at intervals.

Operation

Remote-controlled simultaneous photography through both coronagraph cam-
eras is typical of the operational use. The sun sensor will keep the system
centered on the solar image. The cine camera magazines are changed and
the film developed at frequent intervals.
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Scheduled Maintenance

Requirements are examination of the camera optics and mechanisms for
deterioration and a check on the accuracy of the sun-sensor pointing.

Unscheduled Maintenance

Requirements arise only from unusual failures of electrical components,
cameras, or supporting structures, or from damage to camera optics, as
from sudden shock causing misalignment.

3. 2. 8. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 1 to 6 Solar
Radii Coronagraph (Instrument No. 36) are listed below. Full descriptions
of SRT Items are given in Section 4. 3.

Research and Advanced Technology

Develop techniques to overcome electrostatic charge build-up and
fog producing spark discharge on -oil film in hard vacuum (SRT 17).
Develop criteria for film transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flaking (SRT 39).

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc.; and (B) development of process-
ing, handling, and assembly techniques (SRT 83).

3. 2. 8. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-63, which shows both development
and operations costs. The development schedule is shown in Figure 3-49.
Quantities of equipment required in development are shown in Table 3-64.
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Table 3-63

TASK COST ESTIMATE--PHASE D
1 - to 6-Solar Radii Coronagraph Normal-Incidence Telescope, Solar

(OASF Instrument No. 36)

Development total . 1, 285

Engineering 95
Detectors *-
Collecting optics 12

0. 025-m objective lens *
Field lens *

Fine guidance 400
Optics *
Control moment gyros *
Sensor *

Housing 250
Structure (including optics support) *
Solar thermal shield (dumping mirror) *

Experiment sensors 875
35-mm cine frame camera 875

Major hardware articles 653
Mockup *
Engineering model *
Project verification model * .
Qualification model *

Operations total 593
Flight instrument 385
Back-up flight instrument 154
Engineering support 54

Phase D total 1,878**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

**Assumes previous development of ATM Experiment S052 (Reference 2-6).
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Table 3-64
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

1- to 6-Solar Radii Coronagraph Normal-Incidence Solar Telescope--
OASF Instrument No. 36

Functional
System

(Major Element)

1-6 solar- radii
coronagraph
(solar)

Subsystem

Detectors

Collecting
optics

Fine
guidance

Housing

Experiment
sensors

Major
hardware

Assemblies

0. 025-m objective
lens
Field lens

Optics
Control moment
gyro
Sensor

Structure (includ-
ing optics support)
Solar thermal
shield (dumping
mirror)

35-mm cine frame
camera

Mockup
Engineering model
Project verifica-
tion model
Qualification
model

Quantity

Bread- Proto-
Board Type

Flight
Quality

1 2

1 2

1 2

1 2
1 2

1

1

1 1

1
1

60%*

1

1

2

2
2

2

2

1

40%*

1

-''Obtained from subsystem development quantities.
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EXTERNAL OCCULTING CISK ASSEMBLY

INTENSITY CALIBRATION WEDGE

THERMAL MIRROR

OPTICS HOUSING |

FIELD LENS.

ELECTRONICS HOUSING

CALIBRATION PATH OBJECTIVE LENS
PRIMARY OBJECTIVE LENS

C.M.G.
TYP 4 PLACES

CALIBRATION PATH MIRRORS

SECOND OBJECTIVE
LENS

ISOLATION SUSPENSION
GIMBAL RING (REF)

WHITE-LIGHT OUTER CORONA CORONAGRAPH (REF)

33 MM CAMERA

MAIN IMAGE PATH MIRRORS

Figure 3-48. 1 to 6-Solar-Radii Coronagraph, Normal-Incidence Telescope, Solar. OASF Instrument No. 36
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3.2.9 5- to 30-Solar Radii Coronagraph Normal Incidence Telescope,
Solar-OASF Instrument No. 37

3.2 .9 .1 General Characteristics

Instrument No. 37 is shown in Figure 3-50. A modification of the inner
coronagraph of Section 3. 2. 8 is recommended for the photographing of the
outer corona. If the diameter of the light tube is increased from 0. 25 m to
0. 65 m the objective lens will have an unobscured view out to a full field of
16° or a view of the corona out to 30 solar radii. An external occulting disk

was sized to provide full occulation of the inner corona to 3 solar radii and
no vignetting beyond 5 radii. The length of the light tube was retained at
2. 16 m and the effective focal length of the optics was set at 90 mm to pro-
vide for a plate scale including 30° in a 24-mm format. With these design
criteria, a layout was prepared for a camera to record the outer corona..
The camera consists of a 35-mm cine magazine with 90-mm EFL optics and
an aperture of 40 mm. The focal ratio of 2. 5 compared with 12. 9 on the
inner corona camera reduces the discrepancy in required exposure time.
The camera optics include an objective lens, a field lens with an occulting
disk, and a relay lens pair. The external occulter, 160 mm in diameter, is
placed about 2. 16 m in front of the objective lens, with the additional occult-
ing disks placed at strategic points in between.

The combination of the two coronagraphs permits simultaneous recording of
both inner and outer coronas. It permits each part of the corona to be
recorded at an appropriate scale factor, thus taking advantage of a larger
effective format to show the inner corona in more detail.

3. 2. 9. 2 Design Criteria

The goal in designing the outer coronagraph is to permit the recording of the
corona out to30-solar radii, a feat which is not possible on the ground
because of atmospheric scattering, and therefore even more critical in space,

than the inner coronagraph. Particular attention must be paid to the design
of baffles for the suppression of scattering and the optimization of the
external occulter spacing.
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3. 2. 9. 3 Detailed Characteristics

The basic characteristics of the 5- to 30-solar radii coronagraph normal-
incidence telescope, solar, have been summarized in Figure 3-3, Section 3. 1.

Additional details about the instrument are tabulated in Tables 3-65, 3-66,
3-67, and 3-68.

3. 2. 9. 4 Utilization of Man for OASF Instruments

The material in Section 3. 2. 8. 4 is applicable here, including the tables
presented.

3. 2. 9. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 5- to
30-solar-radii coronagraph (Instrument No. 37) are the same as for the
1- to 6-solar radii coronagraph (Instrument No. 36) and are listed in
Section 3. 2. 8. 5.

3. 2. 9. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-69 • which shows both development
and operations costs. The development schedule is shown in Figure 3-51.
Quantities of equipment required in development are shown in Table 3-70.
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Table 3-65
COLLECTOR PARAMETERS

5- to 30-Solar Radii Coronagraph Normal-Incidence
Telescope, Solar OASF Instrument No. 37

Aperture

Primary focal length

Effective focal length

Total field of view

Angular resolution

On axis

Poorest in field of view

Occulted area in focal plane

Minimum wavelength

Maximum wavelength

Primary f/No.

System f/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system, focal plane

0. 04 m

0. 09 m

0. 09 m

15°

30 arc-sec at 5 ,000 A

60 arc-sec at 5 ,000 A

6. 5%

4,000 A

10, 000 A

i. 85 : •

1. 85 .

2, 700 arc sec/mm

9 0 line s / mm

24 mm
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Table 3-66
INTERFACE CHARACTERISTICS

5- to 30-Solar Radii Coronagraph Normal-Incidence
Telescope, Solar OASF Instrument No. 37

General (included with 1- to 6-solar radii coronagraph)

System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing
Deployment
Alignment
Calibration
Operation
Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format
Processing
Recording media
Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed
Standby
Operate

See Section 3. 2. 8
See Section 3. 2. 8
See Section 3. 2. 8

See Section 3. 2. 8
See Section 3. 2. 8
See Section 3. 2. 8
See Section 3. 2. 8
See Section 3. 2. 8

Plastic bag packaging
None

35-mm strip film, 20 x 24 mm
On board
Panchromatic photographic film
Exchange of film magazine

Manual

Combined with Instrument No. 36
Combined with instrument No. 36
Combined with instrument No. 36
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Table 3-67
GUIDANCE AND CONTROL CHARACTERISTICS

5- to 30-Solar Radii Coronagraph Normal-Incidence
Telescope, Solar OASF Instrument No. 37

Guidance characteristics
Coarse

Initial acquisition field of view
Intermediate

Field of view
Resolution
Residual error

Fine
Field of view

Control characteristics
Control moment gyro

Type

Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max. torque
Weight
Diameter
Length

Manual

±40 arc min.
±5 arc sec
±15 arc sec

Not required

Single degree of freedom
viscous damped

640 oz-in. -sec
± 60°
40 W
60 W
10 W
1. 5 W
3. 8 oz-in.
16 Ib
5 in.
8-1/2 in.

Table 3-68 :
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS FOR USE ON

5- to 30-Solar Radii Coronagraph Normal-Incidence
Telescope, Solar OASF Instrument No. 37 ,

Film camera characteristics
Type •
Aperture
Remote change cycle time
Power consumption during change
Film type limitations
Exposures per magazine load
Weight

Filter Characteristics
Remote change cycle time
Power consumption during change

Cine roll film
18 x 24 mm
5 sec
2 W
Panchromatic
3,600
1 0 kg .

1 sec
2 W
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Table 3-69
TASK COST ESTIMATE - PHASE D

5- to 30-Solar Radii Coronagraph Normal Incidence Solar Telescope
(OASF Instrument No. 37)

($ thousands)

Development total 2,715
Engineering 250
Detectors *
Collecting optics 15

0. 04-m objective lens
Field lens

Fine guidance 500
Optics #
Control moment gyros *
Sensor *

Housing 195
Structure (including 175
optics support)
Solar shield (dumping 20
mirror)

Experiment sensors 875
35-mm cine frame 875
camera

Major hardware articles 900
Mockup *
Engineering model *
Project verification *
model
Qualification model *

Operations total 1,577
Flight instrument 1,024
Backup flight instrument 410
Engineering support 143

Phase D total 4, 292**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

**Assumes previous development of ATM Experiment S052 (Reference 2-6).
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Table 3-70
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

5- to 30-Solar Radii Coronagraph Normal Incidence
Solar Telescope (OASF Instrument No. 37)

Functional
System
(Major

Element)

5- to 30-
solar-radii
coronagraph

Subsystem

Detectors

Collecting
optics

Fine
guidance

Housing

Experiment
sensors

Major
hardware
articles

Assemblies

0. 04 -m objective lens
Field lens

Optics
Control moment gyro
Sensor

Structure (including
optics support)
Solar thermal shield
(dumping mirror)

3 5 -mm cine frame
camera

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread-
board

1
1

1
1

1

1

---

Proto-
type

2
2

2
2

1

1

1

1
60%*

—

Flight
Quality

1
1

2
2

2

2

1

40%*

1

^Obtained from subsystem development quantities.
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OPTICAL BENCH

CALIBRATION PATH OBJECTIVE LENS

ELECTRONIC HOUSING .

35 MM CAMERA

CALIBRATION PATH MIRRORS

INTENSITY CALIBRATION
WEDGEPRIMARY OBJECTIVE LENS

EXTERNAL OCCULTING DISK ASSEMBLY

THERMAL
MIRROR

OPTICS HOUSING

ISOLATION SUSPENSION
GIMBAL RING (REF)WHITE-LIGHT INNER CORONA

CORONAGRAPH (REF)

SECOND OBJECTIVE LENS

\

CMC (REF)
TYP4 PLACES Figure 3-50. 5-to 30-Solar-Radii Coronagraph, Normal Incidence Telescope, Solar. OASF Instrument No. 37
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3 .2 .10 0. 8 Meter UV-Visible Normal-Incidence Telescope; Solar-OASF
Instrument No. 44

3. 2. 10. 1 General Characteristics

This telescope has an aperture of 0. 8 m, and an effective focal length of
39. 2 m'(Figure 3-52). The primary mirror is f /3. 5; the secondary mirror
magnification of 14 produces an f/49 telescope. The Gregorian arrangement
of the optical system, as suggested by Zirin (Reference 3-9) was chosen
because it provides a solution to the problems of heat rejection and reduction
of thermal gradients that are present in solar telescopes. A heat dump mir^
ror placed between the primary and secondary mirrors insures that light
scattered off the primary does not contribute to heating of the secondary
mirror. At the same time, the heat dump mirror also eliminates the ther-
mal distortion of the primary caused by the infrared image of the heated
secondary on the primary, thus permitting the full optical capabilities of the
telescope to be exploited. The Cassegrain arrangement cannot eliminate an
incident energy variation of from one to six suns over portions of the primary
reflective surface.

3 .2 .10 . 2 Design Criteria

The telescope -was designed for continuous observation of solar plages,
sunspots, ultraviolet flares and other features of astronomical interest. It
can be used with a high dispersion echelle spectrograph or with a set of cine
cameras for taking simultaneous photographic sequences in three spectral
regions; it also has two Lyot filters that can be used with the cine cameras
or with the slit-jaw camera of the echelle spectrograph.

3. 2. 10. 3 Detailed Characteristics

The basic characteristics of the 0. 8 m UV-visible normal-incidence solar
telescope have been summarized in Figure 3-3 in Section 3. 1.

Additional details about the instrument are tabulated in Table 3-71, 3-72,
and 3-73.
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Table 3-71
COLLECTOR PARAMETERS

0. 8 Meter UV-Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

Aperture

Primary focal length

Effective focal length

Total field of view

Angular resolution

On axis

Poorest in field of view

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary f/No.

System f/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system focal plane

0. 80 m

2. 8 m

39. 2 m

2. 6 arc min.

0. 156 arc sec at 5, 000 A

0. 196 arc sec at 5, 000 A

15% total

1, 200 A

10, 000 A

3. 5

49

4. 43 arc sec/mm

33. 5 lines/mm

33. 5 mm

3. 2. 10. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-74. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is summarized
separately in Table 3-75.
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Table 3-72
INTERFACE CHARACTERISTICS

0. 8 Meter UV-Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing
Deployment

Alignment

Calibration

Operation

Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format

Processing
Recording media

Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed
Standby
Operate

800 kg
3. 25 m3

Cylinder w/flanges and
tubular appendages

Activate cooling system
remove plastic bags
Man-aided electromechan-
ical autocollimation
Photography of quiet sun and
standard sources
TV vidicons, cine sequence
cameras
Replaceable cameras and
optics

Inflatable bags and supports
None

35-mm x 35-mm imaging,
35-mm x 100-mm spectro-
graph
On board
Photographic emulsions,
TV vidicons
Replaceable film magazines

Manual

None

70W
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Table 3-73
GUIDANCE AND CONTROL CHARACTERISTICS

0. 8 Meter UV Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

Guidance characteristics

Coarse

Initial acquisition field of view

Resolution

Residual error

Fine

Field of view

Resolution

Residual error

Control characteristics

Control moment gyro

Type

Wheel momentum

Gimbal stops

Spin motor power (start)
(run)

Servo power (peak)
(average)

Max. torque

Weight

Diameter

Length

±5°

±10 arc sec

±30 arc sec

±40 arc min.

±0. 02 arc sec

±1 arc sec

Single degree of freedom,
viscous damped

640 oz-in. -sec

±60° •

40 W
6 W

10 W
1. 5 W

3. 8 oz-in.

16 Ib

5 in.

8. 5 in.
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Table 3-74
SETUP AND MAINTENANCE REQUIREMENTS

0. 8 Meter UV-Visible Incidence Solar Telescope--
OASF Instrument No. 44

Special Special
Average No. Skill Average Equip Equip
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) (ft3)

Deployment 2 1 11 1-1/4 --- ---

1 14 3/4

--- 1 21 2

Alignment --- 12 1 14 12 15

Calibration 2 1 14 2 5

Scheduled 6 4 1 12 1-1/2 15 25
maintenance

--- 1 14 1-1/2

1 21 1

Unscheduled 2/3 3 1 12 3 25 30
maintenance

*Skills are identified by number in Table 3-3.

217



Deployment

The telescope is mounted with a number of other solar instruments. Pro-
tective caps and structural supports are removed. Any cameras and
gratings not mounted before launch because of lack of structural strength or
available supports, are mounted during setup.

Alignment

Alignment is accomplished remotely with the aid of a photodetector and

specially designed test mechanisms. Man is in the "loop" to reduce the
complexity of the procedure.

Calibration

Monochromatic and bright-line test sources are used, as well as the sun and
other stellar sources with known spectral distributions. Test exposures are
made at regular intervals to ensure that the Lyot filters, dichroic mirrors,
and other parts of the optical system are in proper working order. Intensity
calibration is made from exposures of standard star sequences and artificial
standards.

Operation

The telescope instrumentation includes a set of remotely controlled cine
o o

movie cameras to take solar photographs in the 1, 500-A to I-JJL (10, 000-A)

spectral range. There is also an echelle spectrograph of very high disper-
sion and a slit-jaw viewing system which has a Lyot filter in series with a
TV vidicon.

The observer -will change film, locate solar features of interest, and make

judgments such as exposure time and choice of instrumentation device to use.

Scheduled Maintenance

All optical surfaces, (mirrors, lenses, gratings, slits, and filters) are
examined for damage or deterioration at regular intervals. Calibration
tests of some elements are made less frequently to determine whether changes
in reflectivity or transmittance have occurred. The dichroic mirrors and
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Table 3-75
OPERATION SUPPORT AND REQUIREMENTS

0. 8 Meter UV-Visible Incidence Solar Telescope--
OASF Instrument No. 44

Start Time
Time per No. Skill Man- (hours from
Observa- of Identifi- hours/ start of Number of

ORDS No. tion Men cation* Observation observation) Observations

050

064

069

24 hours 1
followed
by 0. 5
hour /day
for 13
days

1

30 days 1
continu-
ous

1

0. 5 hour 1

1

5

8

5

8

5

8

3

0. 75

10

0. 5

2 /day

4 /day

0. 75

0. 2

-0. 25

-0. 25

+24

+48

-0. 25

+24

-0. 25

+48

1

1

3

*Skills are identified by number in Table 3-3.
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Lyot filters are of particular interest in this regard. The cine-camera and

echelle-camera transport mechanisms are examined and overhauled at
regular intervals, as are other electromechanical equipment units.

Unscheduled Maintenance

Replacement cameras, guidance equipment, filters and motors are available
for maintenance. Replacement optics (gratings, mirrors, or lenses) may
be available in some cases.

3. 2. 10. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 0. 8-m

UV-visible-IR diffraction-limited telescopic (Instrument No.. 44) are listed
below. Full descriptions of SRT items are given in Section 4. 3.

Research and Advance Technology

Develop methods for rapidly evaluating mirror figure and alignment
under one and zero-g environments (SRT 1).
Conduct experimental studies of precision structural properties of
mirror (SRT 2).

• Developomethods for generating and maintaining diffraction limited
(5, 000 A) mirror quality in orbital environments (SRT 3).
Develop mirror surfaces to provide high ultraviolet reflectivity,
precision of figure and freedom from scattering (SRT 4).

Develop cantilevered mirror as a reflective beam- deflector
(SRT 5).

Develop techniques to overcome electrostatic charge build-up
and fog producing spark discharge on roll film in hard vacuum
(SRT 17).

Develop flexible film substrata of higher dimensional stability
than now available (SRT 18).
Develop improved grating ruling techniques and equipment to
provide closer ruling spacing and greater uniformity of ruling
spacing, blaze angle and surface finish (SRT 38).
Develop criteria for film transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flaking
(SRT 39).
Investigate degradation of telescope detector and reflective sur-
faces resulting from 0-, exposure (SRT 42).
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Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).

Investigate the dimensional stability of candidate mirror materials
(SRT 56).

Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57).

Advance Development

Assess materials for internal use to determine if rapid aging
and breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. ; and (B) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than are
available (SRT 84).

3. 2. 10. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-76, which shows both development and
operations costs. The development schedule is shown in Figure 3-53.

Quantities of equipment required in development are shown in Table 3-77.

3. 2. 10. 7 Instrumentation Section

Slit-Jaw Camera

The slit-jaw camera assembly consists of a field lens adjacent to the back of
a diagonally mounted slivered slit subassembly, a relay lens that refocuses
the light into an f/40 or higher beam just before it goes into the Lyot-Ohman
Ha extremely narrow bandpass filter, and relay lens following the filter
assembly that focuses the nearly parallel beam of 6, 563 A light onto the TV
camera focal plane (Table 3-78). A permanent record of the slit position on
the sun is made from the TV camera output, or an observer can view the
same output on a TV monitor so that he can select targets of interest and
ensure that the spectrograph is accurately positioned on its target feature.
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Table 3-76
TASK COST ESTIMATE - PHASE D (page 1 of 2)

0. 8-Meter UV-Visible-IR Normal Incidence Solar Telescope--
(OASF Instrument No. 44)

($ thousands)

Development total 6, 824

Engineering . . . 500

Detectors *

Spectrograph film *

Collecting optics 471

0. 8-m primary mirror 150

Secondary mirror 45

Secondary mirror alignment Assy 276

Manual guidance " 300

TV camera . *

Control moment gyros - *

Housing 288

Structure 288

Experiment sensors 3, 465

Lyot filter . . . 450

Mod dispersion spectrograph 600

Echelle spectrograph 915

35-mm plate camera 700

Solar magnetograph 800

*Cost item not derived where overall estimate for instrument is not
significantly affected.
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Table 3-76 (page 2 of 2)

Major hardware articles

Mockup

Engineering model

Project verification model

Qualification model

Operations total

Flight instrument

Backup flight instrument

Engineering support

Phase D total

1, 800

*

*
3, 128

2, 023

819

286

9, 952**

*Cost item not derived where overall estimate for instrument is not signifi-
cantly affected.

**Assumes previous development of ATM Solar Telescope (JPL)
(Reference 2-7)

Echelle Spectrograph

The echelle spectrograph assembly follows the silvered slit (Figure 3-52).
The light passing through the slit reflects off a plane mirror (which allows
the spectrograph optics to be kept within the projected area of the telescope
tube) and then falls onto the predisperser grating (275. 5 or 128 lines/mm
grating frequency (see Table 3-79) which disperses the beam into the plane

of the spectrograph1 s light path. The predisperser is tilted so that the
desired region of the first order spectrum falls onto the echelle grating, the
resulting beam contains the dispersing colors, but the light of each wave-
length remains collimated. The echelle grating disperses the spectrum

presented to it in the plane perpendicular to that of the predisperser grating;
.the light from the echelle is focused by an imaging mirror onto the focal
plane of the spectrograph sequence camera (35 mm x 10 mm).
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Table 3-77
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

0. 8-m UV-Visible-IR Normal-Incidence Solar Telescope--
(OASF Instrument No. 44)

Functional
System

(Major Element)

0. 8-m
U V- vi si ble -IK.
telescope

Subsystem

Detectors

Collecting
optics

Manual
guidance

Housing

Experiment
sensors

Major
hardware
articles

Assemblies

Spectrograph film

0. 8-m primary mirror
Secondary mirror
Secondary mirror
alignment assembly

TV camera
Control moment gyro

Structure

Lyot filter
Mod. disp. spectro-
graph
Echelle spectrograph
35-mm plate camera
Solar magnetograph

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread-
Board

2

1
1

2

1
1

1

1
1
1
1

1

Proto-
Type

2

2
2

2

1
1

1

1

1
1
1
1

1

60%*

Flight
Quality

2

1
1

1

2
2

2

2

2
2
2
2

-_--

40%*

*Obtained from subsystem development quantities
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Table 3-78
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

0.8 Meter UV-Visible Normal-Incidence Solar Telescope--
. OASF Instrument No. 44

Electro-optics camera characteristics

Type

Aperture

Resolution

Photo surface

Power consumption

Frame time

Weight

Filter characteristics

Type

Wavelength (short)

(long)

Resolution ± .

Band center

Remote change cycle time

Weight

Slit-jaw camera with
TV vidicon and image
converter

25. 4 vidicon face mm

525 TV lines/mm

Photocathode

10 W

Variable

7 k g

Narrow-band Lyot

6, 560 A

6, 566 A

0. 25 (0. 5 A bandwidth)

6, 563 A

2 sec

8kg

The predisperser grating is a conventional concave grating, but the echelle
is a grating of somewhat different design. It is a "pile of steps" where the
narrow space between the step levels is used to reflect the light. That light
is incident on the grating at angles up to 75° from the normal.
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Table 3-79
...-•-ECHELLE SPECTROGRAPH CHARACTERISTICS

0. 8 Meter UV-Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

Wavelength
Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spatial resolution

Predisperser grating
Type
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Main grating
Type

Size
Ruling frequency
Dispersion
Angle-of-diffraction range
Spectral order

Recorder Characteristics
Type
Aperture
Remote change cycle time
Film-type limitations
Exposure per magazine load
Power consumption during cycle

change
Power consumption during

calibration
Weight

1, 500 A
7, 500oA
0. 01 A at 3, 000 A

20|J.
12, 500|Ji

40
0.096 sec

Concave (two)
80 mm diam
275. 5, 128 line/mm
13.35, 28. 7 A/mm
44° - 3. 27 (dispenser)
1 usually

Echelle (two) Ib450 - 3, 240 A;
3, 150 - 7, 000 A
30, 90 cm x 8 cm
539^,6, 254. 2 lines/mm
15 A/mm at 3, 000 A
44°. 31, 52°. 43, 45°. 63, 53°. 76
9-18, 9-18

Cine-frame camera
35 x 100 mm
1 sec
Schumann-Panchromatic
750

15 W

5 W
20 kg (including 12 kg for camera)
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Table 3-80
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

0.8 Meter UV-Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

Film camera characteristics

Type

Aperture

Remote change cycle time

Power consumption during
change

Film-type limitations

Exposures per magazine load

Filter characteristics
Type
Wavelength (short)

(long)

Resolution ±

Band centers

Remote change cycle time

Power consumption during
change

Weight

Cine movie sequence

35 x 35 (mm)

<2 sec

1 0 W

Spectrographic emulsions

1, 000-ft reels

Fabrey-Perot
1, 165. 7 A

1, 265. 7 A

50 A

1,215. 7 A

10 sec

2 W

12kg
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Table 3-81
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

0. 8 Meter UV-Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

Film camera characteristics

Type

Aperture

Remote change cycle time

Power consumption during
change

Film type limitations

Exposures per magazine load

Filter characteristics*

Wavelength (short)

(long)

Resolution ±

Band centers

Remote change cycle time

Power consumption during
change

Weight

Cine movie sequence

35 x 35 mm

< 2 sec

10 W

Spectrographic films

1, 000-ft reels

6, 650 A

6, 566 A

0. 25 (0. 5-A bandwidth)

6, 563 ± 3 A

50 sec

2 W

20kg

#Nar row-band Lyot filter

230



Table 3-81A
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

0.8 Meter UV-Visible Normal-Incidence Solar Telescope--
OASF Instrument No. 44

Film camera characteristics

Type
Aperture
Remote change cycle time
Power consumption during

change
Film-type limitations
Exposures per magazine load

Electro-optics camera characteristics

Type
Aperture
Resolution
Photo surface
Power consumption
Frame time

Filter characteristics*

Wavelength (short)
(long)

Resolution
Band centers

Remote change cycle time
Power consumption during

change

Weight

Cine movie sequence
35 x 35 mm
< 2 sec

1 0 W
Spectrographic emulsions.
1, 000-ft reels

TV vidicon and image converter
25. 4 vidicon face
525 lines /mm TV
Photo cathode
1 0 W
Variable

3, 000 A
6, 000 A
Band filters
Assorted
10 sec

2 W

13kg

^Filter wheel
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The echelle grating enables a large spectral range to be covered on a limited
format when high dispersion is needed. The grating frequencies specified
for this particular echelle spectrograph (539. 6 and 254. 2 lines/mm) are
within present technological capabilities.

Recording Cameras

The three time-lapse/cine movies cameras are arranged in a fixed cluster
weighing 45 kg in such a way that all can be focused as a unit. Each camera
(Figure 3-54) contains a removable film cassette, motorized shutter
(remotely adjusted for exposure time) and a bandpass filter or remotely
controlled filter wheel (see Tables 3-80, 3-81, and 3-81A). The cassettes
consist of film supply (up to 2, 000 ft if necessary) and take up reels, camera
mechanism, and motor. The cassettes can be sealed if a controlled atmos-
phere is desirable.

The incoming light beam is split by two dichroic beam splitters; the first
beam splitter separates the energy into long and short wavelengths. The

o
short (below 3, 000 A) reflects to a UV Camera, passing through a Fabry-
Perot filter and other bandpass filters to the film. The long wavelengths

o
pass through to the second beam splitter where the red light (6, 000 A and
above) is reflected off to the Hydrogen Alpha (Hor) Camera and the balance
passes through to the visible light camera.
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Figure 3-52. 0.8-Meter UV-Visible, Normal Incidence Telescope, Solar. 0ASF Instrument No. 44
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3.2.11 0.2 Meter UV (off-axis) Normal Incidence Telescope, Sola.r OASF-
Instrument No. 4

3. 2. 11. 1 General Characteristics
0

In order to reach wavelengths shorter than the 900 to 1,000 A'lower limit for
adequate collection by Cassegrainian or other multiple element telescopes,
an off-axis, or Herschelian, telescope is recommended (Figure 3-55). The
advantage of this telescope is that the instrumentation section can be placed
at the prime focus, thereby permitting the use of a single optical element
in the collector, without obscuring the collecting mirror by the instrumenta-
tion package, A telescope of this configuration provides good collecting

0

efficiency down to a lower wavelength limit of about 500A, and is reasonably
o

competitive with a Cassegrainian telescope out to 1, 400 or 1, 500A.

For the intermediate time period of the OASF Study, an aperture of 0.20
meters is considered adequate from the standpoint of resolution and collecting
area. A focal ratio of 12 provides a workable compromise between excessive
length and insufficient scale factor. Therefore, the telescope design has been
set at 0.2 m aperture and 2.4 m effective focal length.

Associated with this telescope as an instrumentation package is a spectro-
graph employing a concave grating in a nearly normal incidence configuration.
The purpose of this arrangement is identical to the reasoning behind the
selection of the single element telescope; namely, the reduction of reflec-
tions to a minimum. Also, incorporated in the instrument is a slit-jaw
camera which serves the following dual functions:

1. .Providing a reference image of the sun for each spectrogram, to
identify the features recorded in the spectrogram.

2. Providing to the on-board observer an image of the sun for acquisi-
tion and tracking purposes. ' " • • '

The spectrograph consists of a slit at the prime focus of the telescope, a
o

concave grating ruled to provide a reciprocal linear dispersion of 10A per
mm on the plate, and a magazine which stores the unexposed plates, advances
them to the exposure position and returns them to storage in a manner-sim-
ilar to the operation of an automatic slide changer. -Each plate consists of a
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strip of Schumann film mounted on a semi-rigid frame which serves as a
vehicle to transport the film and at the same time to protect it from mechan-
ical damage.

The slit-jaw camera takes the light reflected off the face of the slit, which
is silvered and mounted at 45° to the axis, and relays the image to the film

camera and video camera by means of a field lens, a relay lens, and a beam
splitter. A very narrow band filter, probably of the Lyot type, restricts

the image to light in.hydrogen alpha line for the purpose of highlighting the
features of interest. Shutters are provided for both film cameras, spectro-
graphic and slit-jaw, to control exposures.

Mounted on the telescope are four control moment gyros whose function is
to direct the line of sight of the telescope according to commands of the
on-board observer in pitch and yaw. Roll is derived from spacecraft
orientation.

While the telescope has been designed around a short wavelength limit of
o

500 A, the spectrograph geometry has been arranged so as to permit the
o

304 A line of helium to be recorded. It is expected that, due to its excep-
tional strength, this line will be recorded despite the poor reflection of the
mirrors at this wavelength.

In lieu of photographic recording of the spectrum, it is possible to use
electronic recording. Channel photomultipliers are suitable transducers
for this region of the spectrum; and in addition, are conveniently small,
allowing reasonable packaging in the spectrometer package. An instrument
already embodying these features is the spectroheliometer proposed by
Harvard College Observatory for experiment S055 in the Apollo Telescope

Mount (Reference 2-8). These instruments are considered nominally

equivalent.

3.2.11.2 Design Criteria

The function of this instrument is to extend the lower wavelength limit for
o

solar observation beyond the 1,000 A region, at which point multiple
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reflections in Cassegrainian telescopes cause a sharp drop-off in collected
energy. Because of the off-axis configuration, the resolution requirement
must be relaxed from the diffraction-limited value (due to the inherent
aberrations in off-axis systems). It is desired to have a collecting area
equal to a 20 cm aperture and an angular resolution of 1 sec combined with

o
adequate reflectivity down to 500 A. A nominal field of view of two minutes
is desired with resolution approaching one second. The tabular data that
follow describe how these criteria can be met.

3.2.11.3 Detailed Characteristics

The basic characteristics of the 0. 2-m UV (off-axis) normal-incidence solar
telescope, have been summarized in Figure 3-3 in Section 3.1.

Additional details about the instrument are tabulated in Table 3-82, 3-83,
and 3-84. ,

3.2. 11.4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in

Table 3-85. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately
summarized in Table 3-86. . ,

Deployment

The optical technician inspects the single mirror and the gratings of the

spectrograph. The star tracker and/or sun sensor are activated. If channel
multipliers are used, they must remain in vacuum to avoid contamination
from the space station atmosphere.

Alignment

The phototechnician takes a series of spectrograms and slit-jaw-camera
photographs to check that the system is in working order and has maintained
alignment through launch.
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Table 3-82
COLLECTOR PARAMETERS

0.2-M UV (Off Axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 4

Aperture

Primary focal length

Effective focal length

Total fielf of view

Angular resolution

On axis

Poorest in field of view

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary f/No.

System f/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system focal plane

0.2 m

2.4 m

2.4 m

2 arc min.

1 arc sec at 800 A

1.5 arc sec at 800 A

0%

300 A

>1,500 A

12

12

86 arc sec (arc sec/mm)

86 lines /mm

1. 4 mm

Calibration

The test photographs taken for alignment also serves for calibration require-
ments (in conjunction with a microdensitometer). Each particular observa-
tion of a solar prominence will require a test strip to determine proper
exposure time.
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Table 3-83
INTERFACE CHARACTERISTICS .

0. 2-m UV (Off-Axis.) Normal-Incidence. Solar Telescope--
OASF Instrument No. 4

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

65 kg
1. 6 m3

Cylinder

Method of accomplishing
Deployment
Alignment
Calibration

Operation
Experiment change

Remove plastic bag
No in-flight alignment
Photography of spectrum of
quiet sun
Remote photography
Not required

Stowage requirements (launch)
Mechanical
Electrical

Plastic bag packaging
None

Experiment data handling
Format

Processing
Recording media

Mode of data recovery

35- x 120-mm photographic
plate
On board
Photographic emulsion
(Schumann)
Change plate cannister

Pointing requirements
Pointing accuracy (acquisition) Manual

Power consumption
Stowed
Standby
Operate

None
•=35 W
= 40 W
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Table 3-84
GUIDANCE AND CONTROL CHARACTERISTICS

0.2-m UV (Off-Axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 4

Guidance characteristics

Coarse

Initial acquisition field of view
Resolution
Residual error

Intermediate

Field of view
Resolution
Residual error

Fine

Field of view
Resolution
Residual error

Control characteristics

CMC

Type

Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max torque
Weight
Diameter
Length

Manual

Manual

± 40 arc min.
± 0. 1 arc sec
± 15 arc sec

Single degree of freedom,
viscous damped
640°
±60 W
40 W

6 W
10W

1.5 W
3.8 oz-in.'
16 Ib
5 in.
8-1/2 in.
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Table 3-85
SETUP AND MAINTENANCE REQUIREMENTS

0. 2-M UV (Off-Axis) Normal-Incidence Solar Telescqpe--
OASF Instrument No. 4

- • Special Special
Average . No. Skill Average Equip Equip
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) . (ft3)

Deployment

Alignment

2

1

1 .

1

1

21

14

8

2

1

1 3 1

Calibration (none required in orbit)

Scheduled
maintenance 6 1 1 12 1/2

1 14 1/2 5 10

Unscheduled -
maintenance 1/3 1 1 .12 1 40 1.0.0

-'-Skills are identified by number in Table 3-3.

Operation '

Exposure time depends on the specifics of instrument design and film choice
and is determined empirically. The astronaut identifies a prominence and
acquires it on the slit. TV monitor (±10 to 15 arc sec) is a possibility.
Exposure is every 30 sec in a l-"to 2-hour sequence for 12 sequences or\~t
every minute for 15 min. , then every 5 min. for 1 hour. "

Scheduled Maintenance ; . . . . . . ' . . " . . . , .

An optical technician examines the optics for damage or deterioration. An
electromechanical technician checks the, camera-sequencing rinechanism on
the spectrograph .for deterioration. : . -
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Table 3-86
OPERATION SUPPORT AND REQUIREMENTS

0.2-M UV (Off-Axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 4

Start Time
Time per No. Skill (hours from

ORDS Observation of Identifi- Man-hours/ start of Number of
No. (hours) Men cation* Observation observation) Observations

042 1.0 1

1

058 1.25 1

1

^Skills are identified by

5

8

5

8

number

1.1 -0.05

0.2 +48
(avg)

1.3 0.05

0. 1 +48
(avg)

in Table 3-3.

12

1,000

Unscheduled Maintenance

Unscheduled maintenance is most likely the result of unusual failures of the
sun sensors, or a mechanical failure in the camera-sequencing mechanism.

3. 2. 11. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 0.2-m UV
off-axis telescope (Instrument No.4) are listed below. Full descriptions of
SRT items are given in S.ection 4. 3.

Research and Advance Technology

Develop mirror surfaces to provide high UV reflectivity, precision
of figure and freedom from scattering (SRT 4).
Develop higher than current reflectivity in coatings for XUV below
900 A (SRT 7).
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Extend the XUV filter technology to provide structurally sturdy
transmission filters of about 100 A bandpass in the region from
170 A longward (SRT 10).

o
Develop XUV sensitive imaging tubes for use below 1,050 A
(SRT 11).
Develop techniques to overcome electrostatic charge build-up and
fog producing spark discharge on roll fim in hard vacuum (SRT 17).

Develop criteria for film transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flaking (SRT 39).
Investigate degradation of telescope detector and reflective surfaces
resulting from 0_ exposure (SRT 42).

C* • • .

Investigate the dimensional stability of candidate mirror materials
(SRT 56). '

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. ; and (B) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater special resolution than currently
obtainable (SRT 84). . : .

3. 2. 11.6 Development Cost and Schedules .

The Phase D cost is shown in Table 3-87, which shows both development and

operations costs. The development schedule is shown in Figure'3-56.
Quantities of equipment required in development are shown in Table 3-88.

3. 2. 11.7 Instrumentation Section

The off-axis telescope utilizes a single instrumentation device, a low-:
dispersion cpncave grating spectrograph (Figure 3-55) that operates at near-
normal incidence. It consists of a slit, with its associated,slip-jaw camera,

a concave grating (see Table 3-89) and a plate camera consisting of a slide
changer type of magazine. The slit-jaw camera (see Section 3. 2. 10. 7)
assembly (weight, 15 kg) takes both video, and photographic pictures in hydro-
gen alpha light of the portion of the solar image surrounding the slit. The
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video picture is relayed to the on-board observer who uses it for acquisition
and guidance and the photographic record is used as a reference when
examining the spectra.

Table 3-87
TASK COST ESTIMATE--PHASE D

0.2-m UV (Off-Axis) Normal-Incidence Solar Telescope--
(OASF Instrument No. 4)

($ thousands)

Development total 2 ,250
Engineering 165
Detectors *

35-mm strip film *
Spectrograph film *

Collecting optics 15
0. 20-m primary mirror *

Manual guidance 200
Housing 75

Structure *
Experiment sensors 1,200

Normal-incidence 500
spectrograph
35-mm plate camera 700

Major hardware articles 595
Mockup . *
Engineering model *
Project verification *
model
Qualification model *

Operations total 1,040
Flight instrument 675
Back-up flight instrument 270
Engineering support 95

Phase D total 3,290**

*Cost item not derived where overall estimate for instrument is not signifi-
cantly affected.

##Assumes previous development of ATM Experiment S056 (Reference 2-10).
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Table 3-88

PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D
0. 2-M UV Off-Axis Normal-Incidence Solar Telescope--

(OASF Instrument No. 4)

Functional
System

(Major Element)

0.2-m UV
off -axis
solar
telescope

Subsystem

Detectors

Collecting
optics

Manual
guidance

Hous ing

Experi-
ment
sensors

Major
hardware
articles

Assemblies

35 -mm strip film
Spectrograph film

0.20-m primary
mirror

Structure (including
optics support)

Normal- incidence
spectrograph
3 5 -mm plate
camera

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread-
board

2
2

1

1

1

1

Proto-
type

1
1

2

1

1

1

1

60%*

Flight
Quality

2
2

1

2

1

1

40%*
1

*Obtained from subsystem development quantities.
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Table. 3-89
CONCAVE GRATING SPECTROGRAPH CHARACTERISTICS
0. 2-m UV (Off-Axis) Normal-Incidence Solar Telescope--

OASF Instrument No. 4

Type
Wavelength

Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spectral resolution

Spectral calibration
Predisperser grating

Type
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Main grating
Type
Size
Ruling frequency
Dispersion
Range of angle of diffraction
Range of spectral order

Recorder characteristics
Type
Aperture
Remote change cycle time
Film-type limitations
Exposure per magazine load
Power consumption during cycle change
Power consumption during calibration

Weight

Normal incidence

300 A 0
1 . 5 0 Q A
0...2 A at 700 A

20 n
1, 500

12
1 sec

NA

Concave
85 x 83 mm
1,000 lines/mm 0
±10 A/mm at 300 A
1. 7° to 8. 6°
1

Film
25 x 1 20 mm
5 sec
Schumann emulsion
640
5 W

21. 5 kg (including 20 kg for
plate camera)
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COLD MIRROR
SLITASS'Y

•FIELD LENS
•6563 A FILTER

• RELAY LENS
-..SLIT JAVV" CAMERA

•BEAMSPLITTER
•VIDICON CAMERA

SPECTROGRAPH
CAMERA

CONCAVE GRATING

FILTER

C.M.G.
(TYPICAL 4PLACES)

ISOLATION SUSPENSION
GIMBAL RING

SECTION A-A

Figure 3-55. 0.2-Meter UV Off-Axis, Normal-Incidence Telescope, Solar. OASF Instrument No. 4
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3.2.12 0.25-Meter XUV Spectroheliograph Normal-Incidence Solar
Telescope--OASF Instrument No. 6

3.2.12.1 General Characteristics

The 0.25-m XUV spectroheliograph is a special-purpose instrument
designed to record the image of the solar disk in several extreme UV wave-
lengths simultaneously (Figure 3-57). Because of the history associated with
this instrument, and the success enjoyed by the Naval Research Laboratory
in rocket flights, the spectroheliograph is based on the Naval Research
Laboratory design which is proposed for the Solar ATM as part of experi-
ment S053. This is the logical successor to the earlier rocket borne instru-
ment. The telescope has a concave grating with figure corrections to improve
the image quality. The grating is plated with gold and ruled at 3,333
lines/mm. An aperture of about 0.25 m with a focal length of 3 m provides
the scale factor and image brightness required.

An unbacked thin film of aluminum possesses the desired wavelength trans-
mission range, while reflecting the much more intense visible energy. As a
further protection, thermal mirrors are placed at strategic points to reflect
the zero order image and the first order visible range energy back out into
space through the entrance aperture. The camera consists of a magazine to
store the film strips, advance them to exposure position, and return them to
storage in the manner of an automatic slide changer. A shutter, operated on
command, controls the exposure time. '

An auxiliary telescope consisting of an objective lens of about 0. 1-m aperture,
a narrow band filter, and a video camera, is boresighted to the spectrohelio-
graph telescope, to provide the astronaut-observer with guiding information.
Control gyros provide the steering torques. An automatic guidance subsys-
tem is also entirely feasible for this telescope.

3.2.12.2 Design Criteria :

The purpose of this instrument is to record the image of the solar disk in the
o o

various bright-line wavelength between 170 A and 650 A. A resolution of
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one arc sec over the field of view of 30 min. will accomplish this. To
achieve satisfactory images in the extreme ultraviolet, very effective rejec-

tion of the longer wavelength, which predominate in the sun, must be
effected.

3. 2. 12. 3 Detailed Characteristics

The basic characteristics of the 0. 25-m XUV spectroheliograph normal-
incidence solar telescope have been summarized in Figure 3-3 in Section 3. 1.

Additional details about the instrument are tabulated in Tables 3-90, 3-91,
3-92, and 3-93.

3. 2. 12. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-94. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately
summarized in Table 3-95.

Deployment

The optics require only focusing in orbit. The sun sensor and spectrohelio-

graph optics are uncovered and the gimbal ring attached to the space station.
An optical technician may inspect the concave gratings for damage.

Alignment

The need for minor focus adjustments is determined from the test plates
made during calibration. No other alignments are necessary in orbit.

Calibration

A series of plates is made of the solar plages and inner corona, and then of
some standard lamps. The two gratings are optimized for different wave-
length regions, one for 170 to 650 A and the other for 304 to 1,216 A.
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Table 3-90
COLLECTOR PARAMETERS

0.25-m XUV Spectroheliograph Normal-Incidence Solar Telescope--
OASF Instrument No. 6

Aperture

Primary focal length

Effective focal length

Total field of view

Angular resolution

On axis

Poorest in field of view

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary f/No.

System f/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system focal plane

0.25 m

3 m

3 m

32 arc min.

o
1 arc sec at 170 A

O

Tare sec at 170 A

0%

170 A

650 A

12

12

69 arc sec/mm

.69 lines/mm

27. 9 mm'
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Table 3-91
INTERFACE CHARACTERISTICS

0. 25-m XUV Spectroheliograph Normal-Incidence Solar Telescope--
OASF Instrument No. 6

General

System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing

Deployment
Alignment
Calibration
Operation
Experiment change

Stowage requirements (Launch)

Mechanical
Electrical

Experiment data handling

Format
Processing
Recording media
Mode of data recovery

Pointing requirements

Pointing accuracy (acquisition)

Power consumption

Stowed
Standby
Operate

= 300 kg
=3-m3

Cylinder W/appendage one side
for one-half length

Uncapping only
No in-flight alignment
Photography of quiet sun
TV control of photography
Substitution of grating assembly

Plastic-bag packaging
None

Film strip 70 x 504 mm
None on board
Photographic film (Schumann)
Manual change of film magazine

±1°

None
55 W
=55 W (peak 60 W)
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Table 3-92
GUIDANCE AND CONTROL CHARACTERISTICS

0. 25-m XUV Spectroheliograph Normal-Incidence Solar Telescope--
OASF Instrument No. 6

Guidance characteristics

C o ar s e
Initial acquisition field of view
Resolution
Residual error

Intermediate
Field of view
Resolution
Residual error

Fine
Field of view

Resolution
Residual error

Control characteristics

CMC
Type

Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max. torque
Weight
Diameter
Length

±7-1/2°
±15 arc min.
±1°

±Z°

±20 arc sec
±5 min.

± 40 arc min.
±0. 02 arc sec
±0. 1 arc' sec

Single degree of freedom,
viscous damped
640 oz-in. sec
±60°
40 W
6 W
1 0 W
1. 5 W . .
3. 8 oz-in.
16 Ib
5 in.
8-1/2 in.
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Table 3-93
SLITLESS SPECTROHELIOGRAPH CHARACTERISTICS

0. 25-m XUV Spectroheliograph Normal-Incidence Solar Telescope--
OASF Instrument No. 6

Type

Wavelength

Short
Long
Resolution

Entrance aperture

Slit width

Slit height

Incident radiation

f/No. limitation
Spatial resolution

Spectral calibration

Main grating

Type
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Recorder characteristics

Type
Aperture
Remote change cycle time
Film type limitations
Exposure per magazine load
Power consumption during cycle change
Power consumption during calibrate

Weight

Spectroheliograph (Tousey)

170 A
650 A
0. 015 A at 170 A

No slit, aperture 0. 25-m
diam

12
1 sec

Concave
250-mm diam
3, 333 lines/mm
1 A/mm at 170 A
3. 3° - 12. 5°
1

Film
30 x 495 mm
5 sec
Schumann emulsion
25
10 W
5 W

55 kg (including 40 kg for
plate camera)
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Table 3-94
SETUP AND MAINTENANCE REQUIREMENTS

0.25-m XUV Spectroheliograph Normal-Incidence Solar Telescope--.
OASF Instrument No. 6

Special Special
Average Dura- No. Skill Average Equip Equip
Times/ tion of Identifi- Hours/ Power .Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) (ft3)

Deployment -.-- 1/2 1 24 1/2 ----

Alignment None

Calibration 1 1 2 1 1 3

\

Scheduled 6
maintenance

Unscheduled
maintenance

*Skills are identified by

1 1 12 1/2 15

1 14 1/2

1 1 12 1 15

number in Table 3-3.

10 1

30 2

Table 3-95
OPERATION SUPPORT AND REQUIREMENTS

0. 25-m XUV Spectroheliograph Normal-Incidence Solar Telescope-
OASF Instrument No. 6 .

Time per Start Time
Observa- No. Skill Man- (hours from

ORDS tion of Identifi- hours/ Start of • Number of
No. (hours) Men cation* Observation observation). Observations

052 0.33 1 5 0. 4 -0. 05 100
1 8 (combine ±48

with other ' ,
observations)

*Skills are identified by number in Table 3-3.
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Scheduled Maintenance

An optical technician inspects the optical surfaces for damage or deteriora-
tion. An electromechanical technician inspects the plate camera sequencing
mechanism for possible sources of failure.

Unscheduled Maintenance

Unscheduled maintenance results primarily from failure of one of the camera
mechanisms. In the case of a sun sensor failure, a backup instrument is
available already mounted and the repair can be postponed until a scheduled
maintenance period.

3.2.12.5 Supporting Research and Technology

The operation of the 0.25-m XUV spectroheliograph (Instrument No. 6)
represents a significant improvement in performance. Its implementation
does not require major state-of-the-art advances. Supporting Research and
Technology (SRT) requirements are listed below. Full descriptions of SRT
items are given in Section 4. 3.

Research and Advance Technology

Develop mirror surfaces to provide high ultraviolet reflectivity,
precision of figure and freedom from scattering (SRT 4).
Develop fabrication techniques for noncircular aspherics (SRT 6).
Develop ruling techniques for ruling gratings on aspherics (SRT 9).
Extend the XUV filter technology to provide structurally sturdy
transmission filters of about 100 A bandpass in the wavelength
region from 170 A longward (SRT 10).
Develop techniques to overcome electrostatic charge build-up and
fog-producing spark discharge on roll film in hard vacuum (SRT 17).
Develop improved grating ruling techniques and equipment to
provide closer ruling, spacing and greater uniformity of ruling
spacing, blaze angle, and surface finish (SRT 38).
Develop criteria for film-transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion, cracking, and flaking
(SRT 39).
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Investigate degradation of telescope detector and reflective surfaces
resulting from 0_ exposure (SRT 42).

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc.; and (B) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than currently
available (SRT 84).

3. 2. 12. 6 Development Cost and Schedules : •

The Phase D cost is shown in Table 3-96, which shows both development and
operation costs. The development schedule is shown in Figure 3-58.
Quantities of equipment required in development are. shown in Table 3-97.
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Table 3-96
TASK COST ESTIMATE--PHASE. D

0.25-Meter XUV Spectroheliograph Normal-Incidence Solar Telescope--
OASF Instrument No. 6

($ thousands)

Development total . 2,385

Engineering 180
Detectors *
Collecting optics . . 75

0.25-m collecting optics . *
(concave grating)

Fine guidance (automatic) 400
Optics *
Control moment *
gyroscopes
Sensor *

Housing 50
Structure 50

Experiment sensors : 1,000
Slitless spectroheliograph 1,000
(plate camera)

Major hardware articles 630
Mockup *
Engineering model *
Project verification *
model
Qualification model *

Operations total 1, 102
Flight instrument 716
Backup flight 286
instrument
Engineering support " 100

Phase D total 3,487**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

**Assumes previous development of ATM Experiment 5053 (Reference 2-9)
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Table 3-97
PRIMARY INSTRUMENT EQUIPMENT LIST — DEVELOPMENT PHASE D

0. 25-rri XUV Spectroheliograph Normal-Incidence Solar Telescope--
OASF Instrument No. 6

Functional
System
(Major

Element)

0. 25-m XUV
spectrohelio-
graph,
solar

Subsystem

Detectors

Collecting
optics

Fine
guidance
(automatic)

Housing

Experiment
sensors

Major
hardware
articles

Assemblies

0.25-m collecting
optics (concave
grating)

Guidance optics

sensor

Control Moment
gyroscope

Structure (including
optics support)

Slitless
Spectroheliograph
(plate camera)

Mockup

Engineering model

Project verification
model

Qualification model

Quantity

Bread-
board

--

1

1

1

1

1

Proto-
type

1

2

2

2

1

1

_ __

1

60%*

Flight
Quality

1

2

2

2

2

1

_ __

40%*

1

*Obtained from subsystem development quantities.
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NOTES:

1. FILTER, GRATING AND CAMERA TO BE
REPLACED BY ITEMS OF SIMILAR SIZE
BUT OF DIFFERENT CHARACTERISTICS
IN LATE TIME PERIOD INSTRUMENT.

ISOLATION SUSPENSION
GIMBAL RING

CONCAVE GRATING
(SEE NOTE 1)

FILTER
(SEE NOTE 1)

(TYP 4 PLACES)

70 x 600 MM \v
PLATE CAMERA
(SEE NOTE 1)

GUIDANCE SYSTEM

VIEW WITH COVER REMOVED

PARTIAL VIEW A-A

Figure 3-57. 0.25-Meter XUV Spectroheliograph, Normal Incidence Telescope, Solar. OASF Instrument No. 6
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3, 2. 13 3-Meter Diffraction Limited Normal Incidence Telescope,
Stellar--OASF Instrument No. 35

3, 2. 13. 1 General Characteristics

The 3-m stellar telescope is proposed as the instrument to probe the fron-
tiers of optical astronomy, particularly in the realm of spatial resolution and

faint object detection (Figure 3-59). For the most part, its task will be to
photograph distant galaxies, and to obtain spectra of quasi-stellar objects,
the so-called quasars. In this respect, it is the successor to the earlier
Cassegrain telescopes, extending the spectrographic observations to fainter

objects and searching for more detailed spatial information on known bodies
and also new stars and galaxies that are below the detection threshold of
existing instruments.

The telescope portion is a Cassegrain collector with a primary mirror of
3-m aperture and 12-m focal length, and a secondary mirror which provides
the 3. 75 power magnification for an effective focal length of 45 m. A field

of view of 15 arc-min. is desired for some of the photographic work.
Because a field of these dimensions would be helpful in locating suitable guide
stars, a Ritchey-Chretien figuring of the primary and secondary reflectors
is recommended in preference to the classical Cassegrainian (paraboloid-
hyperboloid) type because of its wider field of view.

The instrumentation section for this telescope as a minimum contains a
225-mm (9-in. ) plate camera to survey celestial areas rich in galaxies, a
70-mm plate camera, which can take 35- or 70-mm film for use where the

field requirements are most modest, and a spectrograph to study the spectra
of quasi-stellar sources, with particular attention to Doppler shift measure-
ments for determination of radial velocities. ;

Because this telescope is planned for a later generation, the design is left
flexible to incorporate instruments required to answer questions raised by
observations performed in the intervening period, and other equipment made

possible by advances in the technology, such as "electronographic" recording,
high-resolution image intensification or video transmission.
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Because it is probably not feasible to attach a telescope as large as this to a
spacecraft by means of a gimbaled suspension, provision is made for three-
axis control-moment-gyro orientation control, rather than two-axis control.
The excess energy stored in the gyros is dumped during periodic dockings

with the manned spacecraft. These same dockings are used to service the
telescope in other ways, such as photographic magazine changes and sched-

uled maintenance, or emergency repair.

Guidance is accomplished by star tracking systems; externally mounted star
trackers are combined with integrated star tracking instrumentation that is
part of the telescope optical system. The number of external trackers is
sufficient to permit continuous control, despite the need to transfer from one
tracker to another during slewing.

3. 2. 13. 2 Design Criteria

It is the function of this telescope to provide the opportunity for making
observations of the faintest celestial bodies with the highest achievable spatial
resolution commensurate with the launch vehicle capabilities. The instrument
that meets this description has been determined to be a telescope of three
meters aperture which provides a possible resolution of 0. 04 arc sec and a
collecting area virtually an order of magnitude greater than the telescopes
proposed for the intermediate time period. With its associated recording
instruments, it must, as a minimum, be capable of measuring the radial
velocity of quasi-stellar objects by means of a spectrograph and recording star
fields of reasonable extent which are rich in distant galaxies. For these
reasons a telescope of the Ritchey-Chretien configuration is recommended with

extremely precise guidance capability and an instrumentation section including
a spectrograph and an image recorder with provisions for expanding its scope
to perform additional observations.
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The following pages of tabular data describe in detail the physical and optical
characteristics of the telescope.

3. 2. 13. 3 Detailed Characteristics

The basic characteristics of the 3-m diffraction-limited normal-incidence
stellar telescope, have been summarized in Figure 3-Z in Section 3. 1.

Additional details about the instrument are tabulated in Tables 3-98, 3-99
and 3-100.

Table 3-98
COLLECTOR PARAMETERS

3-Meter Diffraction-Limited Normal-Incidence Telescope, Stellar--
OASF Instrument No. 35

Aperture
Primary focal length
Effective focal length
Total field of view
Angular resolution

On axis
Poorest in field of view

Obscuration of aperture
Minimum wavelength
Maximum wavelength
Primary f/No.
System f/No.
Scale at system focal plane
Resolution at system focal plane
Linear field of view at system focal plane

3 . 0 5 m
12.16m
45 m

15 arc min.

0. 04 arc sec at 5,000 A
0. 10 arc sec at 5,000 A
4.5 (%)

<900 A
>12,000 A

f/4 '

f /15
4. 6 arc sec/mm

110 lines/mm
15 arc min. --134 mm
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Table 3-99
INTERFACE CHARACTERISTICS

3-Meter Diffract!on-Limited Normal-Incidence Stellar Telescope--
OASF Instrument No. 35

General

~ 12,000 kgSystem weight (less expendables)
System volume (launch

configuration) =270 m
System shape (launch configuration) Cylinder

Method of accomplishing

Deployment

Alignment
calibration

Operation
experiment change

Remove inflated plastic bags and
covers

Autocollimation-motor controlled
Spectral photography of standard

sources
Remote photography •
Substitution of back ends

Stowage requirements (launch)

Mechanical

Electrical

Inflatable plastic bags and plastic
bag covering

None

Experiment data handling

Format
Processing
Recording media
Mode of data recovery

On board
Photographic emulsion
Replacement of cannister

Pointing requirements

Pointing accuracy
(acquisition) ±1'

Power consumption

Stowed
Standby
Operate

None
=450 W
= 930 W
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. . Table 3-100 . . . .
GUIDANCE AND CONTROL CHARACTERISTICS

3-Meter Diffract!on-Limited Normal-Incidence Stellar Telescope--
OASF Instrument No. 35

Guidance characteristics

Coarse
Initial acquisition field of view
Resolution
Residual error .

Intermediate
Field of view
Resolution
Residual error

Fine
Field of view
Resolution
Residual error

Control characteristics

CMC
Type

Wheel momentum

Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max. torque
Weight

Diameter1

Length

±1"
±120 arc sec
±300 arc sec

±15 arc min.
±10 arc sec
±30 arc sec

±300 arc sec
±0. 005 arc sec
±10 arc sec

Single degree of freedom, dual
rotor

(Total, both wheels) pitch and
yaw-20; roll-60 Ib-ft-sec

±60°

Pitch and yaw--avg 16 W

Roll-.-avg 11 W
Pitch and Yaw - 30 oz-in.
Roll--54-lb; pitch and yaw--

90 Ib
Pitch arid yaw--l. 8 in.
Roll--1.2 in.
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3. 2. 13. 4 Utilization of Man for OASF Instruments

Setup and maintenance requirements are summarized for this instrument in
Table 3-101. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately

summarized in Table 3-102.

Deployment

Because this very large telescope is initially operated as a photographic
camera, and, hence, is mechanically simple, and because it is a late-time-
period instrument, deployment is automatic, with man as a backup. The
sunshade and star trackers are automatically erected, and the mirror cover-
ings and camera-protective envelopes are removed by servo mechanisms.

Alignment

An optical technician, who observes a TV monitor screen (projected image
from an autocollimator) and uses remote controls, checks and adjusts the

optical alignment (tilt, centration, and focus). The procedure is similar to
that described for the 1-m non-diffraction-limited UV-visible-IR telescope
(OASF Instrument 45) in the corresponding paragraph of Section 2. 3. 5. 4.

Calibration

Three cameras and a spectrograph are to be calibrated. Preprogrammed
sequences of standard test stars are photographed with varying exposure

times through each UBV filter. More time is required for calibration of this
telescope as compared to the 1-m diffraction-limited UV-visible-IR telescope
(OASF Instrument No. 34) because it is intended for use with fainter astro-
nomical sources. The observer uses a microdensitometer to calibrate the
spectrograms and an iris (or constant diaphragm) photometer for the photo-
graphic photometry.

The calibration time indicated in Table 3-101 is based on an estimate of the
number of photographs and spectrograms needed for calibration. The
observer loads appropriate plate and film magazines and monitors the system
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Table 3-101
SETUP AND MAINTENANCE REQUIREMENTS

3-Meter Diffraction-Limited Normal-Incidence Stellar Telescope
OASF Instrument No. 35

Special Special
Average No. Skill Average Equip Equip
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) (ft3)

Deployment 2 2 21 2

Alignment 15 1 14 15 20

Calibration 9 1 21 9 5

1 12 1 5 ---

Scheduled
maintenance 6 4 1 - 1 4 15 15

Unscheduled 1/2 3 1 12 2 15 30
maintenance

1 14 1

*Skills are identified by number in Table 3^-3.

during the exposure. The time allotment of 9 hours is subject to some uncer-
tainty, depending on unknowns such as the specific observing program and the
reflection efficiency of the mirror coatings.

Operation

Each experiment requires observer and phototechnician skills. However, the
observer, besides pointing the telescope and initiating and determining the
exposure, could also load the camera magazines and develop the photographs,
thus taking the place of the phototechnician.
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Table 3-102
OPERATION SUPPORT AND REQUIREMENTS

3-Meter Diffraction-Limited Normal-Incidence Stellar Telescope--
OASF Instrument No. 35

ORDS No.

018

023

024

026

038

039

#Skills are

Time Per
Observa-

tion
(hours)

5

12

3

6

3

0.3

identified by

No.
of

Men

1
1

1
1

1
1

1
1

1
1

1

Skill
Identifi-
cation*

5
8

5
8

5
8

5
8

5
8

5

Man-
Hours/
Obser-
vation

5. 25
0. 1

12. 25
0. 1

3.25
0. 2

6. 25
0. 1

3. 25
0.2

0. 55
1 8 0. 1

number in Table 3-3.

Start Time
(hours from

start of Number of
observation) Observations

-0. 25 200
+48

-0.25 150
+48

-0. 25 50
+48

-0. 25 350
+48

-0. 25 50
+48

-0. 25 300
+48 -

The objects to be photographed are faint stars and galaxies in the +13 to +21
magnitude range. Because exposure times are upwards of 2 hours, a given
plate must be exposed over a number of orbit traverses. "Composite" photo-
graphs of this sort have been taken successfully at ground observatories, even
covering several successive nights. Problems of this sort and the extremely
fine guidance required for diffraction-limited photography demand at least
one-half of the observer's operation time.
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Scheduled Maintenance

The optical technician inspects the optics for damage or deterioration
(1 hour). The electromechanical technician will mainly be concerned with
inspection and repair of the sequence camera mechanisms.

Unscheduled Maintenance

The electromechanical technician replaces camera mechanisms when failure
occurs. This repair can be postponed until the regularly scheduled main-
tenance if other instrumentation can be used in the interim.

3. 2. 13. 5 Supporting Research and Technology

Supporting Research and Technology (SRT) requirements for the 3-m Dif-
fraction Limited UV-Visible-IR Normal-Incidence Telescope (Instrument
No. 35) are listed below. Full descriptions of SRT items are given in
Section 4. 3.

Research and Advanced Technology

Develop methods for rapidly evaluating mirror figure and align-
ment under one-gravity and zero-gravity environments (SRT 1).
Conduct experimental studies of precision structural properties
of mirror material related to optical performance (SRT 2).
Develop methods for generating and maintaining diffraction-
limited (5,000 A) mirror quality in orbital environments (SRT 3).
Develop mirror surfaces to provide high UV reflectivity, precision
of figure, and freedom from scattering (SRT 4).
Develop cantilevered mirror as a reflective beam deflector (SRT 5).

o
Develop XUV-sensitive imaging tubes for use below 1,050. A (SRT 11).
Develop techniques to.overcome electrostatic charge build-up and
fog-producing spark discharge on roll film in hard vacuum (SRT 17).
Develop flexible film substrata of higher dimensional stability than
now available (SRT 18).
Develop criteria for film transport mechanisms suitable for roll
film-in hard .vacuum to avoid emulsion, cracking, and flaking
(SRT 39).

Investigate mirror-support structures that minimize the mechanical
and optical problems of Cassegrainian telescopes (SRT 54).
Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).
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Investigate the dimensional stability of candidate mirror
materials (SRT 56).

Evaluate sputtering on mirror surfaces from high-energy
particles (SRT 57).

Advance Development

Assess materials for internal use to determine whether rapid
aging and breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. , (B) development of processing,
handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than currently
obtainable (SRT 84).

Develop photographic emulsions with improved spatial resolution
(SRT 84A).

3. 2. 13. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-103, which shows both development

and operations costs. The development schedule is shown in Figure 3-60.
Quantities of equipment required in development are shown in Table 3-104.

3. 2. 13. 7 Instrumentation Section

70-mm Plate Camera (see Figure 3-61)

The function of the 70-mm camera is to record with the highest possible
resolution the images of specific objects such as galaxies, globular clusters

and quasi-stellar sources in different wave length bands in order to deter-
mine their structural characteristics. To this end, a plate camera with a

70 mm format (50 mm clear, see Table 3-105) has been devised. The cam-
era provides a feed and a take-up magazine with a transport to take a plate

from the feed magazine to the exposure position, and at the end of the obser-
vation, to the take-up magazine. Since a filter wheel with the required aper-
ture would be excessively large, a similar device is used for selecting the
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Table 3-103 .
TASK COST ESTIMATE—PHASE D (page 1 of 2)

3-Meter Diffraction-Limited UV-Visible-IR Normal-Incidence
Telescope, Stellar (OASF Instrument No. 35)

($ thousands)

Development total 176,950
Engineering 13,450
Detectors *

70-mm and 9-in. plate ' ' *
Spectrograph film *
35-mm strip film • ' ' #
Field lens and/or image tube *

35-mm digital magnetic tape recorder . . ..*
Collecting optics 50,300

3-m primary mirror *
Secondary mirrors (32-in. and 19-in. ) #
Secondary mirror align/int assy *
Folding mirror assemblies . . *

Fine guidance 20,290
Guidance optics *
Sensor *
Control moment gyro *

Housing 39,090
Structure (including optics support) *
Inflatable sunshade *

Experiment sensors 7,515
Filter wheels *
70-mm plate camera (prev dev
on 1. 0-m; mod for 3. 0-m) *'
9-in. plate camera • . - • • . - - . . • • • *
35-mm strip camera (prev dev
on 1. 0-m; mod for 3. 0-m) *

Concave grating spectrograph *
Mission modes '*' '

*Cost item not derived where overall estimate for instrument'is not signifi-
cantly affected. . . - . . - . - . : . -
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Table 3-103 (page 2 of 2)

Major hardware articles
Mockup
Engineering model
Project verification model
Qualification model

Operations total
Flight instrument
Backup flight instrument
Engineering support

Phase D total

46,305
*
*
*
*

81,697
53,050
21,220

7,427
258,647**

*Cost item not derived where overall estimate for instrument is not signifi-
cantly affected.

**Assumes previous development of 1-m diffraction-limited OASF Instru-
ment 34; same optics contractor for both instruments.

desired filter for the observation. A plate camera is preferred to a roll
film camera because it avoids the electrostatic sparking problems and other
deleterious effects of film friction.

225-mm Plate Camera (see Figure 3-62)

For the measurement of Cepheid variable stars, as a means of determining
the distance of the galaxies in which they are located, it is helpful to photo-
graph a reasonably large area so that many stars are recorded in a single
exposure. To satisfy this requirement, a large format plate camera maga-
zine is presented. The plate used is 225-mm square (200-mm clear, see
Table 3-106) providing for a field of view of 15 arc-min. square. The camera
and plate changer, magazine and filter mechanisms are enlarged versions of
the 70-mm camera.

Concave Grating Spectrograph

For measuring the Doppler shift in the radiation received from quasi-stellar
sources, a concave grating spectrograph is supplied. The spectrograph con-
sists of a slit, a concave grating (see Table 3-107) and a camera.
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Table 3-104
PRIMARY INSTRUMENT EQUIPMENT LIST — DEVELOPMENT PHASE D

3-Meter UV-Visible-IR Normal-IncidenceTelescope, Stellar
(OASF Instrument No. 35)

Functional
System

(Major Element)

7 0 T-nJ , \J Til

diffraction
limited
UV-visible-
IR telescope

Subsystem

Detectors

Collecting
optics

Fine
guidance

Housing

Experi-
ment
sensors

Major
hardware
articles

Assemblies

70 -mm plates
9 -in. plates
35-mm strip film
Spectrograph film
Field lens and/or

image tube
35-mm digital mag-

netic tape recorder
3-m primary mirror
Secondary mirrors

(32 in. and 19 in. )
Secondary mirror

align, /int assy
Folding mirror

assemblies
Guidance optics
Sensor
Control moment gyro
Structure (inc. optics

support)
Inflatable sunshade
Filter wheels
70 -mm plate camera
9 -in. plate camera
35-mm strip camera
Concave grating

spectrograph
Mockup
Engineering model
Project verification

model
Qualification model

Quantity

Bread-
Board

1
2
2
2

1

1
1

1

2

2
1
1
1

1

1
1
1
1

1
1

— « <~

Proto-
Type

2
2
1
1

2

2
2

2

2

4
1
1
2

1

1
1
1
1

1

1

60%*
— . _ _

Flight
Quality

2
2
2
2

1

1
1

2

1

4

2
2
1

2
2

2
2
2
2

2

40%*
1

*Obtained from subsystem development quantities.
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Table 3-105
FIELD-IMAGE INSTRUMENTATION CHARACTERISTICS

3-Meter Diffraction-Limited Normal-Incidence Stellar Telescope--
OASF Instrument No. 35

Film camera characteristics
Type
Aperture
Remote change cycle time
power consumption during change
Film type limitations

Exposures per magazine load

Filter characteristics
Wavelength (short)

(long)
Resolution ±
Band centers

Remote change cycle time
Power consumption during change

Weight

Plate
50 x 50 mm
30 sec

2 W
Panchromatic emulsion on
glass plates
32 max.

3,477 A
6,813 A
100 and 250 A
3,727, 4,101, 4,340,04, 861 A
4,959, 5,007, 6, 563 A
30 sec
2 W
25kg

A reference light source illuminating the fringes of the slit provides a com-
parison spectrum to permit precise wavelength calibration. Because of its
similarity to the spectrograph described in Section 3. 2. 7. 2 (see Figure 3-29)
it will not be discussed further except to state that it is about two and a half
times as long while maintaining the same cross section.
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Figure 3-61. 35- or 70-Millimeter Plate Camera
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Figure 3-62. 225-Millimeter Plate Camera
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Table 3-106

FIELD-IMAGE INSTRUMENTATION CHARACTERISTICS
3-Meter Diffraction-Limited Normal-Incidence Stellar Telescope--

OASF Instrument No. 35

Film camera characteristics
Type
"Aperture
Remote change cycle time

. Power, consumption during change
Film type limitations

Exposures per magazine load

Filter characteristics
Wavelength (short)

(long)
Resolution ±

Band centers
Remote change cycle time
Power consumption during change

Weight

Plate
200 x 200 mm
60 sec
4 W
Panchromatic emulsions on
glass plates
16 max.

3,400 A
5,500 A
100 A

3, 500, 4, 300, 5,400 A
60 sec
4 W
40 kg
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Table 3-107
CONCAVE GRATING SPECTROGRAPH CHARACTERISTICS

3-Meter Diffraction-Limited Normal-Incidence Stellar Telescope--
OASF Instrument No. 35

Type
Wavelength

Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spatial resolution

Spectral calibration
Main grating

Type
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Recorder characteristics

Type
Aperture
Remote change cycle time
Film-type limitations
Exposure per magazine load
Power consumption during cycle

change
Power consumption during
calibration

Weight

Normal incidence

800 A
3,000 A
1 A at 2 ,000 A

20
150

15
1

Concave .
31. 3 x 32. 3 mm
400 lines/mm
50 A/mm at 2,000 A
-0. 46° to +4.59°

Film
25 x 44. 1 mm

30 sec
Schumann
16

2 W

28kg
(including 25 kg for plate
camera)
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3. 2. 14 1-Meter UV Schmidt Normal-Incidence Telescope,
Stellar OASF Instrument 13

3 . 2 . 1 4 . 1 General Characteristics . • . • • • • . .

A 1-in (collecting aperture) Schmidt camera has been conceptually designed
(Figure 3-63). It has a 1. 8-m (diameter) spherical primary mirror and a
1-m correcting plate located at the center of curvature of the primary. The
corrector has been tilted 15 so that the light rays coming to it are not
blocked by the primary or its supports. The camera magazine .incorporates
an automatic plate changer capable of introducing the proper curvature to the
plates or accepting preformed plates. A shutter and a filter changer are also
included. The plates and filters are both approximately. 38 cm . The camera
is mounted on a roll-correcting turntable. The telescope, as .with .other
stellar telescopes, is fitted with a sunshade, CMC's, and star trackers for
guidance, and is mounted to the spacecraft by gimbaled suspension.

The basic principles of the classical Schmidt camera have .been outlined in
Section 3, 2. 7. The principal attraction of the Schmidt-type of optical system
is the large field of view combined with a short focal length. The 1. 0-m
Schmidt camera design suggested here uses only reflective optics so as to be

o
able to extend its performance into the UV region below 1, 500 A.

The physical arrangement of this large Schmidt camera is a further develop-
ment of the optical design concept shown in the 0. 3-m Schmidt (OASF ..
Instrument No. 33) (Section 3. 2. 7). One of the major differences between
the two telescopes is the off-axis location of the plate camera in the larger
instrument. This was necessary because the 15 x 15-in. plate camera would
create an intolerable obscuration if it were located in the on-axis position, as
is the case with the fiber-optics-face-plate camera of the smaller Schmidt.
The later design has a further virtue in that the improved modulation transfer
function (MTF), resulting from the disappearance of the obscuration, results
in improved image quality.
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3. 2. 14. 2 Design Criteria

The observation program for which the 1-m Schmidt camera has been
designed is to repeat the Palomar Sky Survey in the spectral region below

e
3, 000 A. The Palomar Schmidt was unable to record the ultraviolet wave-
lengths because of atmospheric absorption.

The program's purpose is to survey stars, nebulae, and galaxies in the
ultraviolet which have limiting apparent visual magnitudes of +20.
A 5 field of view allows the entire sky to be recorded in 1, 600 exposures.

Comparative spectral information can be obtained if filters covering bands
centered at approximately 1, 200, 1, 800, 2, 500, and 3, 000 A are used. The

o
target angular resolution of 0. 5 arc sec at 2, 500 A will be comparable to the
Palomar photographs.

The 1. 0-m Schmidt camera is designed to use glass plates because of the
desirability of dimensional stability, and the need for a durable permanent
record of the photographic information.

3. 2. 14. 3 Detailed Characteristics

The basic characteristics of the 1-m UV Schmidt normal-incidence stellar
telescope have been summarized in Figure 3-2 in Section 3. 1.

Additional details about the instrument are tabulated in Table 3-108, 3-109,
and 3-110.

3.2. 14. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-111. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately
summarized in Table 3-112.
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Table 3-108
COLLECTOR PARAMETERS

1. 0 Meter UV Schmidt Normal-Incidence Stellar Tele scope--
OASF Instrument No. 13

Aperture
Primary focal length
Effective focal length
Total field of view
Angular resolution

On axis
Poorest in field of view

Obscuration of aperature
Minimum wavelength
Maximum wavelength
Primary f /No.
System f /No.
Scale at system focal plane
Resolution at system focal plane
Linear field of view at system focal plane

1 m . - • . - - .

4m '
4m

5°

0. 1 arc sec at 4, 000 A
0. 25 arc sec at 4, 000 A
0
1, 000 A
> 5,000 A

4
4
55. 5 arc sec/mm
225 " - • • ' ••"-
350 mm

Deployment . . :

The sunshade is erected, the star trackers are activated, the gimbal is
erected, and the covers are removed from the two mirrors arid the la'rge plate
camera. All these are simple functions that can be done automatically, with
man as a backup.

Alignment

The focusing scheme that Northwestern University describes for their
0. 3-m Schmidt telescope (Reference 2-5) appears to be a good method and it
has been retained here (as well as for the early -time-peripd.iQ..3,-m ..UV. : _ . . . . . -
Schmidt, OASF Instrument 13). In this scheme, an optical technician,.,;/
observes a star image on a TV monitor. If two images are present; ..he. moves
a one-dimensional control which moves the camera along the optical axis until
he-sees a single star, indicating that proper focus has been achieved.•-
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Table 3-109
INTERFACE CHARACTERISTICS

1. 0 Meter UV Schmidt Normal-Incidence Stellar Telescope--
OASF Instrument No. 13

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of Accomplishing
Deployment
Alignment
Calibration
Operation
Experiment change

930 kg
53 m3
Rectangular prism and wedge

Uncap and extend baffle
No in-flight alignment
Photograph of standard source
Remote control photography
Manual change of cameras,

remote control filter wheel

Stowage Requirements (launch)
Mechanical

Electrical

Plastic-bag packaging and
shock mounting

None

Experiment data handling
Format
Processing
Recording media

Mode of data recovery

15 x 15-in. photographic plates
On-board developments
Photographic emulsion

(Schumann)
Manual recovery of plate

canister

Pointing requirements
Pointing accuracy (acquisition) ± external acquisition (manual) (angle)

Power consumption
Stowed
Standby
Operate

0
167 W
167 W (peak 174)
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Table 3-110
GUIDANCE AND CONTROL CHARACTERISTICS

1. 0-Meter UV Schmidt Normal-Incidence Stellar Telescope--
OASF Instrument No. 13

Guidance characteristics

Coarse

Initial acquisition
Resolution
Residual error

Intermediate

Field of view

Fine

Field of view
Resolution
Residual error

Control characteristics

CMC

Type
Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max. torque
Weight
Diameter
Length

±Manual - external
N/A
N/A

±Manual - external

±l-arc min.
±0. 05 arc sec
±0. 25 arc sec

Single degree of freedom
= 200 Ib-ft-sec

.60°
= 100 W
* 15 W
~ 60..W. . . .
~ 8 W- - - . - . '
==200 oz. -in.
~ 80 Ib
* 30 in.
= 40 in. overall
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Table 3-111
SETUP AND MAINTENANCE REQUIREMENTS

1. 0-Meter UV Schmidt Normal-Incidence Stellar Telescope--
OASF Instrument No. 13

Special Special
Average No. Skill Average Equip. ** Equip. **
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) (ft3)

Deployment

Alignment

Calibration

Scheduled
maintenance 6

Unscheduled
maintenance 1/3

1 1

1 1

3 ' 1

1-1/2 1
1

1 1

21

14

21

14
12

12

1

1 3 3 1

3 --- 3 1

1-1/2
1 5 5 1

1 5 10 2

*Skills are identified by number in Table 3-3.
**Note if special equipment already in orbit because of previous equipment

setup or instrumentation section modification.

Table 3-112
OPERATION SUPPORT AND REQUIREMENTS

1. 0-Meter UV Schmidt Normal-Incidence Stellar Telescope--
OASF Instrument No. 13

ORDS No.

071S

Time per
Observa-

tion
(hours)

1

No.
of

Men

1
1

Skill
Identifi-
cation*

5
8

Man-
hours/

Observation

1. 25

Start Time
(hours from

start of
observation)

-0. 25
+48

Number of
Observations

1,800

(combine
with other
observations)

*Skills are identified by number in Table 3-3.
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Calibration ; :

Calibration is done from densitometry of a sequence-Of photographs taken by
the observer. The primary reason for the calibration plates is to determine
appropriate exposure times for the telescope-plus-filter combination. The
calibration plate also serves as a standard by which to measure the deterio-
ration of the UV-reflective coatings over long periods of time. ' -' •

Operation

Exposure time per frame (using the 15 x 15 in. plate camera) is assumed to
be about 1-1/2 to 2 hours. The telescope may, upon completing an exposure,
be programmed to move automatically to another preplanned location.
Alternatively, an observer points the telescope to the proper., star field,
advances the plates, and initiates the exposure. The broadband.UV filters
just ahead of the plates are left in place during any sequence of exposures
until the next change in plate magazines. The plates are developed in orbit
to minimize radiation fogging. ., ' . . . ' ... ' . .

Scheduled Maintenance , -••' ; ' ": " • ' • •

An electromechanical technician checks the camera-sequence mechanism at
regular intervals. An optical technician.checks the condition of the optical
surfaces. - ~ ' • ' • ' '

Unscheduled Maintenance :-- : r

Electromechanical failure is considered Very unusual'arid will probably call
for use of electromechanical technicians for troubleshooting and material
replacement. . . ..

3. 2. 14. 5 Supporting Research and Technology
: • ; . • . . ; • • • •. '=. • - . . : • , . • . - . u • - ,

Supporting Research and Technology (SRT) requirements for the- 1-m UV -
Schmidt Telescope ^(Instrument No. 13) are listed below. Full descriptions

• ' -' t ,: * ' • ' ' . . . < . , ,

of SRT items are given in Section 4. 3.
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Research and Advance Technology

Develop methods for rapidly evaluating mirror figure and alignment
under one and zero-g environments (SRT 1).
Conduct experimental studies of precision structural properties of
mirror material related to optical performance (SRT 2).
Developo methods for generating and maintaining diffraction limited
(1, 500 A) mirror quality in orbital environments (SRT 3).
Develop mirror surfaces to provide high ultraviolet reflectivity,
precision of figure and freedom from scattering (SRT 4).
Develop fabrication techniques for non-circular aspherics (SRT 6).

Investigate trans mis sibilities of interference-type filters and
reflective-type (dichroic) filters for use in the 1,000 A to 2 ,000 A
wavelength region (SRT 10).
Develop techniques to overcome electrostatic charge buildup and fog
producing spark discharge on roll film in hard vacuum (SRT 17).
Develop criteria for film-transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flacking
(SRT 39).
Investigate degradation of telescope detector and reflective surfaces
resulting from 0_ exposure (SRT 42).
Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).
Investigate the dimensional stability of candidate mirror materials
(SRT 56).
Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57).

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. ; and (B) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tube with greater spatial resolution than now
currently obtainable (SRT 84).
Develop photographic emulsions with improved spatial resolution
(SRT 84A).
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3. 2. 14. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-113, which shows both development
and operations costs. The development schedule is shown in Figure 3-64.
Quantities of equipment required in development are shown in Table 3-114.

3. 2. 14. 7 Instrumentation Section ;

380-mm Plate Camera

The 1. 0-m Schmidt is needed to satisfy a single observational requirement,
the "Ultraviolet Photographic Sky Survey. " The "Sky Survey" plates must be
durable and have high dimensional stability; the field of view required, is
contained within a curved glass plate 38 cm (35-cm clear aperture, see
Table 3-115) (15 x 15 in. ) which has been matched to the focal surface.

The Remote Sequence Control Photographic Plate Camera (arid Magazine)
Kollsman has conceptually designed for use with these large :glass plates is
shown in Figure 3-65. The method of operation is as follows: a plate from
the unexposed stack is carried to the exposure position by the camera
sequence mechanism. The unexposed plate is pressed against the platen.
The shutter is opened and the end of the exposure, which is'either auto-
matically timed or manually controlled, closes. The exposed'-plate is then
carried to the exposed plate receiver. '
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Table 3-113
TASK COST ESTIMATE--PHASE D

1-Meter UV Schmidt Normal-Incidence Stellar Telescope
(OASF Instrument No. 13)

($ thousand)

Development total 23, 705
Engineering 275
Detectors *

15-in. plates *
Collecting optics 780

1-m primary mirror 80
Corrector mirror 250
Alignment assy 450

Manual guidance 300
TV camera *
Control moment gyro *

Housing 270
Structure (including optics support) 250
Inflatable sunshade. 20

Experiment sensors 1, 100
Filter wheels 150
15-in. plate camera . 950

Major hardware articles . 980
Mockup *
Engineering model *
Project verification model *
Qualification model *

Operations total 10,949
Flight instrument 7, 110
Backup flight instrument 2, 843
Engineering support 996

Phase D total 34, 654**

*Cost item not derived where overall estimate for instrument not signifi-
cantly affected.

**Assumes previous development of 0. 3-m Schmidt OASF Instrument 33;
same optics contractor for each instrument.
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Table 3-114
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

1-Meter UV Schmidt Normal-Incidence Stellar Telescope
(OASF Instrument No/ 13)

Functional
System

(Major Element)

1-m UV
Schmidt
telescope

Subsystem

Detectors

Collecting
optics

Fine
guidance

"

Housing

Experiment
sensors

Major
hardware
articles

Assemblies

15 -in. plates

1 -m primary
mirror
Corrector mirror
Alignment assy

TV camera
Control moment gyro

Structure (including
optics support)
Inflatable sunshade

Filter wheels
15 -in. plate
camera

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread-
Board

2

2

1
- - -

— m. _

1

1

1

.

....

Proto-
Type

2

1
2
4

2

1
1

1 ;

1

...
1

60%*
— •. _

Flight
Quality

2

1
2
4

2
2

2
2

1

1

40%*
1

*Obtained from subsystem development'quantities.
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Table 3-115
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

1. 0-Meter UV Schmidt Normal-Incidence Stellar Telescope
(OASF Instrument No. 13)

Film camera characteristics

Type

Aperture

Remote change cycle time

Power consumption during change

Film type limitations:

Exposures per magazine load

Filter Characteristics

Wavelength (short)

(long)

Resolution

Band centers

Remote change cycle time

Weight

Plate camera

350 x 350 mm

90 sec

10 W

Schumann Type - sensitive from
1,000 A to 5, 000 A

16 (max. )

1,200 A

3,000 A

±250 A (approx half-width)

1,200, 1,800, 2,500, 3,000 A

Manual

50kg
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12.5 M
BAFFLE EXTENDED

COARSEiSTAR TRACKER
TYP 2 PLACES

ISOLATION SUSPENSION
GIMBAL RING

THERMAL
INSULATION

CMC
TYP. 4
PLACES

ASPHERIC CORRECTING
PLATE

PRIMARYMIRROR
CAMERA ROLL MECHANISM CURVED FOCAL PLANE

ERECTION MECHANISM
TYP 4 PLACES

REMOTE SEQUENCE CONTROL
PHOTOGRAPHIC PLATE MAGAZINE
(15 x 15 PLATES) CAMERA

ACCESS DOORS (BOTH
SIDES) FOR MAGAZINE
LOADING AND UNLOADING

Figure 3-63. 1-Meter UV/Schmidt Normal Incidence Telescope, Stellar. OASF Instrument No. 13
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3..2. 15 1. 5-Meter Diffraction-Limited UV-Visible Solar .Telescope. .-
OASF Instrument 46

3. 2. 15. 1 General Characteristics

The late-time-period solar telescopes are essentially larger and more
refined versions of the earlier instruments. This holds true for the off-axis
(Herschelian) and grazing-inciderice telescopes, as well as for the Gregorian
telescope described in this section. In general, the larger aperture provides
increased resolution and, with its larger collecting area, permits higher
linear magnification or linear dispersion with the same exposure time.

o

The late-time period solar telescope for the 1,500-A and longer-wavelength
range is a Gregoriantelescope of 1. 5-m aperture and 75-rh focal length. The
collecting optics consist of a primary: mirror of 1. 5-.m aperture ;and about; :

5. 35-m focal length, and a secondary mirror providing about 14. 0 diameters
of magnification. The image is brought to a focus about 0. 3 m behind the pri-
mary mirror (see Figure 3-66).

The instrumentation section behind the primary mirror consists of a triple
range echelle spectrograph, a slit-jaw camera, and space; provision for a
solar magnetograph. The slit-jaw camera is similar to the one described
for the 0. 8-m solar telescope (Section 3. 2. 10), and is not discussed further
here. The solar magnetograph is a specialized instrument of which only a
very few exist at present. The choice between two known conceptual approaches
approaches (Section 3. 2. 15. 7) has not been attempted in this study.

In the solar telescopes, guidance will mainly be inertial, with updating com.-
ing either automatically from the image of the sun's limb w,ith or without a

\
programmed scan, or manually-from an astronaut observervviewing. an image
of the sun on. a monitor, and endeavoring to keep a. specific;feature of, scienk
tific interest in the field of view or on the sl.it of .a. spec.trograph;', .Coars.e J.
resolution can be achieved through a modest sun sens.or device! ,., ' ->•. ; : •• . • • : • . : •

3. 2. 15. 2 Design Criteria

The study of UV line profiles of'th'e fine structure of the solar granulation
(ORDS-053) requires measurements of extreme spectral arid angular "resolu-
tion (about 0. 002 A and 0. 1 arc-sec respectively).
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The solar granulation is to be observed with spatial resolution of 0. 1 arc-sec
to examine its structure in fine detail and to determine its connection with

o
the chromosphere. The light of the sun at 6, 555 A where the granulation is

o
observed and at 6,563 A where the chromosphere is observed will be isolated
by Lyot filters.

.The ability to use the telescope for high resolution, solar, magnetic and
velocity field, measurements is required.

Echelle spectrograph observations of near infrared line profiles from small
solar photospheric features are also of interest.

3. 2. 15. 3 Detailed Characteristics

The basic characteristics of the 1. 5-m UV-visible normal-incidence solar
telescope have been summarized in Figure 3-3 in Section 3. 1.

Additional details about the instrument are tabulated in Table 3-116, 3-117,
and 3-118.

3. 2. 15. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3. 119. Since man's utilization in the operation of the instrument is
dependent upon the observational program, operational information is separ-
ately summarized in Table 3-120.

Deployment

Most if not all deployment is automatic. The sun sensor is erected, and the
mirrors, gratings, and cameras are uncovered. The spectrographs (with
their cameras) and Lyot filter are premounted that is, before launch) on the
instrument pallet. The magnetograph may be premounted or may require
manned in-orbit mounting, depending on the ruggedness and the size of the
final instrument design.

Outgassing after exposure to atmospheric contaminants is a problem for this
telescope. Because it has a number of TV vidicons, photo multiplier tubes,
and other electronic components that have high voltages, high-voltage
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Table 3-116
. COLLECTOR PARAMETERS

1. 5-Meter Diffraction-Limited UV-Visible Normal-Incidence. Solar
Tele scope--OASF Instrument No. 46

Aperture

Primary focal length

Effective focal length

Total field of view

Angular resolution

On axis

Poorest in field of view

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary f/No.

System f/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system focal plane

1 .5m

5. 35 m

75 m

1. 1 arc min.

0. 1 arc sec at 6, 200 A
o

0. 1 arc sec at 6, 200 A

3.5%

<1, 500 A'

> 1 2 , O O O A

6

50

2. 75 arc sec/mm

24 mm

24 mm

arc-over and consequent deterioration of optical surfaces can become impor-
tant considerations during later phases of operation. Therefore, the tele-
scope surfaces must be given sufficient opportunity to outgas in vacuum
before the electrical components are energized.

Alignment

An optical technician (No. 14) observes a TV screen to interpret a display of
star images. The TV camera takes the place of the eyepiece of an autocol-
limator which is rigidly attached to the instrumentation pallet. The auto-
collimator is used in two modes. In the first mode, it projects an image
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Table 3-117
INTERFACE CHARACTERISTICS

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Telescope--OASF Instrument No. 46

General

System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing
Deployment
Alignment

Calibration
Operation
Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format
Processing
Recording media
Mode of data recovery

Pointing requirements
Pointing accuracy (acquisition)

Power consumption
Stowed
Standby
Operate

1,600 kg
32. 5 m3

Cylindrical (13. 5 m long)

Uncap and unwrap
Motor-driven EVA-
autocollimation
Photography of quiet sun
Remote operation
Change gratings

Inflatable plastic bags
None required

35-mm plates
On board
Photographic emulsion
Manual exchange of cannisters

Manual pointing

None
150 W
150 W (peak 165)
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Table 3-118
GUIDANCE AND CONTROL CHARACTERISTICS

1. 5-Meter Diffraction-Limited UV-Visible.-Normal-Incidence Solar
Telescope--OASF Instrument No. .46

Guidance characteristics

Coarse
Initial acquisition1 field of view

Intermediate
Field of view

Fine
Field of view
Resolution
Residual error

Control characteristics
Control moment gyro

Type
Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
Max. torque
Weight , .
Diameter .
Length

Manual

Manual

±32 arc rriin.
±0. 05 arc sec
±15 arc sec

Single degree of freedom
270 Ib-ft-sec

±50°
«150 W
« 25 W

W
12 W

*1.00 Ib
• « 36 in. -
* 50 in. overall
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Table 3-119
SETUP AND MAINTENANCE REQUIREMENTS

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Telescope--OASF Instrument No. 46

Special Special
Average No. Skill Average Equip. Equip.
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) (ft3)

Deployment

Alignment
Calibration
Scheduled 6
Maintenance

Unscheduled 2/3

2

12
12
4

3

1
1
1
1
1
1
1
1
1

11
14
21
14
14
12
14
21
12

1-1/4
3/4
2
12
12
1-1/2
1-1/2
1
3

.. _ —

15
5
15

25

_ _ _ -

25 3

30 3
Maintenance

^Skills are identified by number in Table 3-3.

which is reflected off the rotatable mirror (optical switch) and then off an
optically flat area ground and polished on the center of the secondary mirror
and then reflected back through the system. If the projected and reflected
images are in coincidence (in the manner of a range-finder) then the
secondary mirror is centered and normal to the telescope optical axis. (The
technician manipulates servo-motor controls to achieve this alignment. ) In
the second mode, the autocollimator (with its image projector off) is used as
an alignment telescope. The technician views the star image (oh the TV
monitor) and further adjusts the controls until he obtains the best possible
star image shape on the TV monitor.

The scheme described above has been derived from Kollsman experience on
the Goddard Experiment Package. In the light of this experience, 12 hours
appears to be a reasonable time allotment for the alignment procedures
(Table 3-119). This time may be reduced, depending upon the skill of the
operator, the design of the servo mechanisms, and a number of partially
controllable parameters such as machined tolerances, temperature
variations, and structural hysterisis.
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Table 3-120
OPERATION SUPPORT AND REQUIREMENTS

1. 5-Meter Diffraction-Limited UV-Visible-Normal^Incidence Solar
Telescope--OASF Instrument No. 46

ORDS
No.

053

057

064

Time per
Observa-

tion
(hours)

0. 33

0. 5

30 days
contin hour

No.
of

Men

1
1

1
1

1
1

Skill
Identifi-
cation*

5
8

5
8

5
8

Man-
hours/

observation

0. 5
1

0.6
2

2 /day
4/day

Start Time
(hours from

start of
observation)

-0. 1
+48

-0. 1
+48 .

-0. 25
+24

Number of
Observations

Open

15 periods

1

066 0. 1 0. 2 -0.1 1/hr during
solar active
periods

069 0. 5 5
8

0. 75
0. 2

-0. 25
+48

079 0. 33 5
8

0. 5
1

-0. 1
+48

Open

080 0. 1 5
8

0. 35
2

-0. 25
+48

50

*Skills are identified by number in .Table 3-3.

Other alignment tasks include checking and adjustment of the rotational axis
of the rotatable mirror, and ensuring that the star trackers are boresighted
with the telescope axis. Photographic test sequences may be made to check
the correctness of the TV monitor veiw through the TV vidicon on the bore-
sighted wide-field guide telescope of the position of the spectrograph split
on the sun. Corrections are then made if necessary.
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Calibration

Calibration will require a number of photographic sequences with each of the
thre'e echelle spectrographs. Some of these may be test plates taken during
alignment. The Lyot filter used in the chromospheric experiment is checked

o
to be sure that it is centered on 6, 563 A.

The spectrograms are examined with a densitometer. The Lyot and Fabry-
Perot filters are calibrated with the help of a standard source or lamp.

The time involved in calibrating and checking out the magnetograph is an
open-ended question, because so few of them have been built and some of
these have taken years to become fully operational. About 10 of the 12 hours
allotted for calibration in Table 3-119 is associated with the magnetograph.
However, this figure must be regarded as speculative.

Operation

The observer locates the object of interest on the sun in the TV monitor view-
finder. He stabilizes the telescope on the object, placing either the image of
the slit or the center of the field of view on the object. The rotating mirror
has already been turned to the appropriate experiment. He then initiates the
experiment. Depending on the experiment, type of object of interest, and the
stage of development of the phenomenon, he may first take a test strip to
determine the correct exposure time (exposures will be of the order of
seconds to minutes). The observer or phototechnician is responsible for the
loading of plate magazines.

The magnetograph is expected to operate automatically once the telescope is
pointed properly and the exposure initiated. Exposure time would be about
20 min. for a Babcock type (polarization recorder) while on the order of only
a few minutes for the L/eighton type (velocity recorder). Neither of these
types is likely to create any problems from the operational point of view. An
observer or phototechnician will be needed to load the plates into plate
holders or film magazines.
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Scheduled Maintenance . . '.

The optical technician checks the mirrors, the Lyot filter, the guide
telescope, and the other optics. The electromechanical technician checks
the two TV vidicons and the plate-camera sequencing mechanisms. The
observer can assist. .

Unscheduled Maintenance

Sudden failure of a camera mechanism or TV camera is the most-likely
cause of unscheduled maintenance. The use of the magnetograph' decreases
system reliability and increases the probability of electromechanical repairs.
More motors, vidicon circuits, camera mechanisms, and delicately aligned
optics have to be maintained.

3. 2. 15. 5 Supporting Research and Technology

Supporting Research and-Technology (SRT) requirements for the 1; 5-Meter
Diffraction limited UV-Visible telescope- (Instrument No. ,46) which is a
further development beyond the 0. 8-Meter UV-Visible-IR telescope
(instrument No. 44), described in Section 3. 2. 10, are.listed below. , Full
descriptions of SRT items are given in Section 4. 3.

Research and Advance Technology

Develop methods for rapidly evaluating mirror figure and
alignment under one and zero-g environments (SRT 1).
Conduct experimental studies of precision structural properties
of mirror (SRT 2).
Develop methods for generating and maintaining diffraction
limited (5, 000 A) mirror quality in orbital environments (SRT 3). '
Develop mirror surfaces to provide high ultraviolet reflectivity,-
precision of figure and freedom from scattering (SRT 4).
Develop cantilevered mirror as. a reflective beam deflector. (SRT. 5).
Develop techniques to overcome electrostatic charge build-up and
fog producing spark discharge on roll film in hard vacuum (SRT 17).
Develop flexible film substrata of higher dimensional-stability -
than nqw available. (SRT 18). . : . - , , _ . , , _ , ..-:, : ; , . ; ; . , , . : • •
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Develop improved grating ruling techniques and equipment to
provide closer ruling spacing and greater uniformity of ruling,
spacing, blaze angle and surface finish (SRT 38).
Develop criteria for film transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flaking (SRT 39).
Investigate degradation of telescope detector and reflective surfaces
resulting from 0 exposure (SRT 42).
Investigate techniques for alignment and focusing mechanisms for
optical telescopes (SRT 55).
Investigate the dimensional stability of candidate mirror materials
(SRT 56).
Evaluate sputtering on mirror surfaces from high-energy particles
(SRT 57).

Advance development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).

Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. ; (B) development of processing,
handling, arid assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than now
available (SRT 84).
Develop photographic emulsions with improved spatial resolution
(SRT 84A).

3. 2. 15. 6 Development Cost and Schedules

The Phase D cost is shown in Table 3-121, which shows both development
and operations costs. . The development schedule is shown in Figure 3-67.
Quantities of equipment required in development are shown in Table 3-122.

3. 2. 15. 7 Instrumentation Section

Echelle Spectrograph

The echelle spectrograph on the 1. 5-m solar telescope is different from the
spectrograph on the 0. 8-m solar telescope. This spectrograph is a triple

0

range instrument designed to cover the spectral range from 1, 500 A to
O • ^^

10, 000 A with no range covering more than an octave. Each range has its
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Table 3-121
TASK COST ESTIMATE--PHASE D

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Telescope--OASF Instrument No.: 46

($ thousands)

Development total 5, 896
Engineering . 440
Detectors * .

Spectrograph film *
Collecting optics 666

1.5-m primary mirror 300
Secondary mirror : < 90
Secondary mirror alignment 276

assembly
Manual guidance 300

TV camera , . *
Control moment gyros • *

Housing • ,360
Structure - , *

Experiment sensors '. 2, 570 '
Lyot filter ; 400
Echelle spectrograph 820
35-mm plate camera 630
Solar magnetograph 720

Major hardware articles , ' 1, 560
Mockup . *
Engineering model , *
Project verification model *
Qualification model *

Operations total 2, 722
Flight instrument ,1 , 768
Backup flight instrument 707
Engineering support '247

-Phase D total 8,618** :

*Cost item not derived where overall estimate for instrument is not signifi-
cantly affected. . .

**Assumes previous development of 0. 8-m solar OA.SF Instrument No. 44;
same optics contractor for both instruments'. . .
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Table 3-122 "
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D
1. 5-Meter Diffraction-Limited UV-Visible.Normal-Incidence Telescope,

Solar (OSAF Instrument No. 46)

Functional
System

(Major Element)

Normal
incidence
telescope
solar

Subsystem

Detectors

Collecting
optics

Manual .
guidance

Housing

.

Experiment
sensors

Major
hardware
articles

Assemblies

Sp«ctrograph film

1. 5-m primary
mirror
Secondary mirror
Secondary mirror
Alignment assembly

TV camera
Control moment
gyros

Structure

Lyot filter
Echelle
spectrograph
35 -mm plate camera
Solar magnetograph

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread -
Board

2

1

1
2

1
1

1
1

1 •
1

1

Proto-
Type

2

2

2
2

1
r

i

i
i

i
i

'
, i .

.60%*.

Flight
Quality

2

1

1
1

2
2

2

2
2

2
2

-„-.- .

- 40%*

1 .

*Obtained from subsystem development quantities.
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own complete set of spectrograph optics, including predisperser, echelle

grating, focusing mirror and camera (see Table 3-123, 3-124, and 3-125).
Thus, the grating rulings, film characteristics and mirror coatings can all
be selected for the particular wavelength range. The entire spectrograph

weighs 10 kg.

The three predisperser gratings are mounted on a platen that can be trans-
lated to any of three indexed positions to bring the appropriate predisperser
into the cone of light diverging from the spectrograph slit. The predisperser
does two things: it collimates the light from the slit into the proper echelle
grating; and it restricts the wavelength range remaining within the field of
the following optics to a single order. Rotation of the predisperser permits
the selection of the order to be recorded.

The echelle gratings are also mounted so that they can be rotated about an
axis that is perpendicular to both the rotation axis of the predispersers and
the axis of the telescope. This rotation determines the portion of the order
already selected by the predisperser that will be recorded on the film format.
Typically, the spectra recorded are between the 40th and 80th orders.

The focusing mirrors collect the light for the spectral range to be recorded
and form an image at the camera image plane. To achieve the desired

O

reciprocal linear dispersion of 0. 1 A/mm, these mirrors must have a focal
length of 5m, thus explaining the large size of the spectrograph.

Three plate cameras, each weighing 20 kg, record the spectra from the three
spectrographs; they have recording formats of 100-mm length of
35-millimeter film.

Slit-Jaw Camera

The slit-jaw camera is similar to that described in Section 3. 2. 10, with the
addition of a film camera for spatial correlation of the spectrographic data.
The specific characteristics of this instrumentation device are described in
Table 3-126.
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Table 3-123
ECHELLE SPECTROGRAPH (RANGE 1) CHARACTERISTICS

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Telescope--OASF Instrument No. 46

Wavelength
Short
Long
Re s olution

Entrance Aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spatial resolution

Spectral calibration

Predisperser grating
Type
Size
Ruling frequency
Dispersion
Range of angle of diffraction
Spectral order

Main grating
Type
Size
Ruling frequency
Dispersion
Range of angle of diffraction
Spectral order

Recorder characteristics

Type
Aperture
Remote change cycle time :
Film type limitations
Exposure..per magazine load
Power consumption during cycle change

Weight

1,300 A
3,000 A
0. 002 A at 3, 000 A

20 n
2. 18 cm (1 min. field of view)

50
0.055 sec

Concave
41. 8 x 20 mm
2, 230 line/mm
1 A/mm at 3, 000
8.3° to 19.87°
1

Echelle
70. 8 x 44. 1 mm
209. 96 lines/mm 0
0. 1 A/mm at 3, 000 A
68. 01° to 74. 15° ...
30 to 69. (in 10..sections)

Film
28 x 100 (xlO) mm
2 sec
Schumann Type
128 . . , ... ,
10 W .

8kg '
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Table 3-124
ECHELLE SPECTROGRAPH (RANGE 2) CHARACTERISTICS

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Tele scope--OASF Instrument No. 46

Wavelength
Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
F/No. limitation
Spatial resolution

Spectral calibration

3,000 A
7, 000 A
0. 002 at 5, 000 A

20 n
2. 18 cm

Sf/50
0. 1 sec at 6, 000 A
(diffraction limit)

Predisperser grating
Type
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Main grating
Type
Size
Ruling frequency
Dispersion
Range of angle of diffraction
Spectral order

Recorder characteristics
Type
Aperture
Remove change cycle time
Film type limitations
Exposure per magazine load
Power consumption during cycle change
Focal length

Weight

Concave
41. 8 x 20 mm
2035. 60line/mm 0
1. 955 A/mm at 5, 000 A
17. 6° to 38. 08°
1

Echelle
121 x 45. 7 mm
472. 4 line/mm 0
0. 1 A/mm at 5, 000 A
75. 58° to 80. 5°
69. 138

Film
100 x 25 mm
2 sec
Panchromatic spectrographic
128
10 W
5. 0 m

9kg
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Table 3-125
ECHELLE SPECTROGRAPH (RANGE 3) CHARACTERISTICS

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Telescope--OASF Instrument No. .46

Wavelength
Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spatial resolution

Spectral calibration

Predisperser grating
Type " .-
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Main grating
Type
Size
Ruling frequency
Dispersion
Range of angle of diffraction
Spectral order

Recorder characteristics
Type
Aperture
Remote change.cycle time
Film type limitations
Exposure per magazine load
Power consumption during cycle change
Focal length

Weight

6,000 A0
11,0000A
0. 002 A at 5,000 A

20 p.
2. 18 cm

>f/50
0. 1 sec at 6, 000 A

(diffraction limit)

Concave
41. 8 x 20 mm
1257. 5 line/mm
3. 18 A/mm at 5,
22. 0° to 44. 21°
1 - . . . . , . - .

000 A

Echelle
179 x 45. 5 mm
208. 42 line/mm
0. 1 A/mm at 5, 000 A
22. 0° to 44. 21°
1

Film
142 x 9 mm:

.2 sec .
Panchromatic spectrographic
128 • ' •
10 W
5. 0 m
10 kg ; :-.
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Table 3-126
FIELD IMAGE INSTRUMENTATION CHARACTERISTICS

1. 5-Meter Diffraction-Limited UV-Visible-Normal-Incidence Solar
Telescope--OASF Instrument No. 46

Film camera characteristics*

Type
Aperture
Remote change cycle time
Power consumption during change
Film type limitations

Exposures per magazine load
Weight . . .

Electro-optics camera characteristics*

Type

Aperture
Resolution
Photo surface
Power consumption
Frame time
Weight

Filter characteristics

Type
Wavelength (short)

(long)
Resolution
Band centers

Weight

35 mm cine movie camera
35 x 160 mm
2 sec
10 W
All types of
spectrographic film
128 or more (1,000 ft/roll)
10 kg

TV vidicon and image
converter
25. 4 mm vidicon
20 lines /mm
Photocathode
1 0 W
Variable
4 kg

Narrow-band lyot
6,555 A

6,567 A
±0. 1 A
6,555 A, 6,563 A, 6,567 A
6 kg

*Both cameras are part of the slit-jaw camera assembly
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Magnetograph

The magnetograph is a device for determining the intensity of the sun's
magnetic field over the solar disk as called for in some of the observation
requirements. Two conceptual approaches are known, one associated with
Babcock (Reference 3-10) and one associated with Leighton (Reference 3-11).
In each of these approaches the magnetic intensity is determined by
measuring the splitting of spectral lines in the visible range resulting from
the Zeeman magnetic effect, using polarization measurements to separate
the Zeeman splitting from broadening of the lines caused by thermal effects.
In the Babcock concept, a scanning spectroheliograph is used, requiring
scanning of the desired portion of the surface of the sun, whereas in the
Leighton concept a Lyot tunable narrowband filter is used to give a picture
of the entire solar disk at once (Reference 3-12). Space for one (or possibly
both) of these instruments is provided in the instrumentation section, but no
parametric data are presented.
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LYOT FILTER
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PRIMARY MIRROR

SPOTTING SCOPE HEAT DUMP MIRROR
VIDICON SENSOR
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APERTURE MASK
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C.M.G TYPE 4 PLACES
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SPECTROGRAPHIC MIRRORS

Figure 3-66. 1.5-Meter Diffraction-Limited UV-Visible Normal Incidence Telescope, Solar. OASF Instrument No. 46
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3.2 .16 0. 5-Meter UV (Off-Axis) Normal-Incidence Telescope,
Solar-OASF Instrument N o . 5 ' ' . - ~ ~

3. 2. 16. 1 General Characteristics

Instrument No. 5 is depicted in Figure 3-68. The late-period, off-axis

telescope is essentially a magnified version of the 0. 2-m telescope and it has
an aperture that is increased by a factor of 2. 5 and a collecting area that is
6. 25 times larger. It retains the same focal ratio of 12 so that its focal length
becomes 6 m.

The instrumentation package consists chiefly ,of a concave grating spectrpgraph
0 O

to cover the range from 300 to 1,500 A at a dispersion of about 1 A/mm. To
keep the camera from becoming too unwieldy by requiring it to record a meter

of spectrum on a single exposure, the spectrum is recorded in two ranges.
The change is achieved either by changing gratings or by rotating the grating
with the accompanying adjustment of the camera.

O
A slitless spectroheliograph in the range of 170 to 650 A may be used as an
alternate mode of operation. This mode of operation is attained by replacing
the slit with a field stop, introducing an aluminum filter to block unwanted
energy, changing the camera to one capable of rapid frame change, and making
alterations in the grating pointing capability.

A slit-jaw camera, incorporating both video and film recording, is used for
comparison purposes and for guidance, with the steering torques provided by

control moment gyros.

3 . 2 . 1 6 . 2 Design Criteria

The function of this telescope is essentially the same as the smaller off-axis

telescope with the added requirement of larger collecting aperture and finer
resolution. Extension of spectral coverage to shorter wavelengths is desired
if the spectroheliograph function is to be achieved in this instrument. The
alternative is to incorporate this function in the grazing-incidence telescope
where better reflectivity is achieved at the expense of field of view.
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3. 2. 16. 3 Detailed Characteristics

The basic characteristics of the 0. 5-m UV (off-axis) normal-incidence
solar telescope have been summarized in Figure 3-3 in Section 3. 1.

Additional details about the instrument are tabulated in Table 3-127, 3-128,

and 3-129.

3. 2. 16. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument
in Table 3-130. Because the use of mari in the operation of the instrument
depends on the observation program, operational information is separately
summarized in Table 3-131.

Deployment

Protective caps and coverings on the optics and instruments are removed by
the optical technician. He inspects the mirror and the gratings of the spec-
trographs. The sun sensor, the guide telescope, and its TV vidicon are
turned on and checked out. The telescope gimbal is attached to the space
station structure (if not done before launch).

Alignment

The phototechnician takes a series of spectrograms, cine exposures (movie
camera), and slit-jaw camera photographs to verify that the system is work-
ing. He checks the TV-monitor viewfinder and the boresighted alignment of
the guide telescope (including TV vidicon attached) with the optical axis of
the main telescope.

There are two instruments on the back end: (1) a normal-incidence grating
spectrograph with a plate camera attached and (2) a slitless spectrograph
with a cine camera attached. These are simple instruments and because of
the simplicity of the telescope itself, only focusing is required.
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Table 3-127
COLLECTOR PARAMETERS

0. 5-M UV (Off-Axis) Normal-Incidence.Solar Telescope--
OASF Instrument No. 5

Aperture

Primary focal length

Effective focal length

Total field of view

Angular Resolution

On axis

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary f /No.

System f/No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system focal plane

0. 5 m

6 m

6 m

2 arc min.

0. 5 arc sec at 800 A

0%

170 A

1, 500 A

12

12

34 arc sec/mm

68. 8 lines/mm

3. 5 mm

Calibration

The test photographs taken for the alignment check, together with comparison
photographs and a microdensitometer suffice for .the general calibration
requirements. Each observation of a prominence requires a test strip to.
determine proper exposure time. After experience has been gained, the
observer should be able to estimate exposure time satisfactorily without the
need o f test strips. . . . . .
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Table 3-128
INTERFACE CHARACTERISTICS

0. 5-Meter UV (Off-Axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 5

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

1, 800 kg
10. 8 m3

Long cylinder

Method of accomplishing
Deployment
Alignment
Calibration

Operation
Experiment change

Remove plastic bag
No in-flight alignment
Photography of spectrum of
quiet sun
Remote photography
Grating and slit change

Stowage requirements (launch)
Mechanical
Electrical

Plastic-bag packaging
None

Experiment data handling
Format
Processing
Recording media

Mode of data recovery

35 x 600 mm photo plate
On board
Photographic emulsion
(Schumann)
Change plate canister

Pointing requirements
Pointing accuracy (acquisition) ± Manual

Power consumption
Stowed
Standby
Operate

None
= 117 W
= 125 W
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Table 3-129
GUIDANCE AND CONTROL CHARACTERISTICS

0. 5-Meter UV (Off-Axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 5

Guidance characteristics

Coarse
Initial acquisition field of view

Intermediate
Field of view

Fine
Field of view
Resolution
Residual error

Manual

N/A

±40 arc min.

±0 .05 arc-sec
±5 arc-sec

Control characteristics

CMC
Type:

Wheel momentum:
Gimbal stops
Spin motor power (start)

(run)
.Servo power (peak)

.(average)
Max. torque

Weight
Diameter
Length

Single degree of
freedom
-250 Ib-ft-sec
±50°
=120 W
=18 W
= 8 0 - W . . .
=10 W
=200 oz -in.
= 100 Ib

=36 in.
overall =50 in.
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Table 3-130
SETUP AND MAINTENANCE REQUIREMENTS

0. 5-Meter UV (off-axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 5

Special Special
Average No. Skill* Average Equip Equip
Times/ Duration of Identifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation Man (W) (Ib) ( f t^)

Deployment

Alignment -----
Calibration

2

1

1 21
1 14
1 8
None requir

2 —
1
1 — - 3 1

•ed in orbit
Scheduled 6 1
maintenance 1 14

Unscheduled 1/3 1 1 12
maintenance

*Skills are identified by number in Table 3-3

40

10

100

1

3

Table 3-131

OPERATION SUPPORT AND REQUIREMENTS
0. 5-Meter UV (off-axis) Normal-Incidence Solar Telescope--

OASF Instrument No. 5

Time per Start Time
Observa- No. Skill Man- (hours from

tion of Identifi- hours/ start of Number of
ORDS No. (hours) Men cation* observation observation) Observations

043

044

051

060

1. 0

1. 0

0. 17

1. 25

1

1

1
1

1
1

5

5

5
8

5
8

1. 1
1. 1

0.25
0. 2 (avg)

1. 3
0.2 (avg) .

-0. 05
-0.05

-0. 08
+48

-0.05
+48

12

12

Open

Open

*Skills are identified by number in Table 3-3

330



Operation

The observer manually points the telescope (which has been following the sun
with the use of its sun sensor) at the desired object or area of interest by
watching the guide-tele scope TV monitor. After the test strips have been
taken, if needed, he initiates the exposure and sets the timer. After exposure,
the films, plates, etc. are developed by the observer, or by a phototechni-
cian, inside the space station.

Scheduled Maintenance

The optical technician examines the optics for damage or deterioration. The
electromechanical technician checks the camera-sequencing mechanisms on
the spectrogfaphs and cine camera for deterioration. He also checks the TV
vidicon and monitor circuits for weakened components; modular replacements
are used if necessary. . . .

Unscheduled Maintenance - •

Unscheduled maintenance is required in the case of;unusual electronic failure
of the sun sensor or TV camera, or in case of a mechanical failure such as
in the camera sequencing mechanisms.

3.2. 16. 5 Supporting Research and Technology

The 0. 5-Meter UV Off-Axis Telescope (Instrument No. 5) is a scaled-up
version of the 0. 2-Meter UV Off-Axis Telescope (Instrument No. 4) discussed
in Section 3. 2. 11. Supporting research and technology (SRT). requirements,
which are the same for both instruments, are listed below. Full descriptions
of SRT items a r e given i n Section 4 . 3 . . . .

Research and Advance Technology

Develop mirror surfaces to provide high UV reflectivity, precision
of figure, and freedom from scattering (SRT" 4).
Develop higher than current reflectivity in coating's for XUV below

. . 900 A (SRT 7). : , • - ' . . . ; . . :

Extend XUV filter technolqgyo to provide structurally sturdy trans-
mission filters of about 100 A bandpass in the region from 170 A
longward (SRT 10).

331



Develop XUV-sensitive imaging tubes for use below 1,050 A
(SRT 11).

Develop techniques to overcome electrostatic charge build-up and
fog-producing spark discharge on roll film in hard vacuum (SRT 17).

Develop criteria for film-transport mechanisms suitable for roll
film in hard vacuum to avoid emulsion cracking and flaking (SRT 39).
Investigate degradation of telescope detector and reflective surfaces
resulting from 0., exposure (SRT 42).

Investigate the dimensional stability of candidate mirror materials
(SRT 56).

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82).
Assess materials for external use to evaluate (A) hard vacuum
effects on materials, finishes, etc. , arid (B) development of
processing, handling, and assembly techniques (SRT) 83).

Supporting Development

Develop image tubes with greater special resolution than currently
obtainable (SRT 84).

3. 2. 16. 6 Development Cost and Schedules
The Phase D cost is shown in Table 3-132, which shows both development
and operations costs. The development schedule is shown in Figure 3-69.
Quantities of equipment required in development are shown in Table 3-133.

3. 2. 16. 7 Instrumentation Section

Concave Grating Spectrograph

Unlike the 0. 2-in off-axis telescope (OASF Instrument No. 4), this telescope
has two (rather than one) instrumentation devices in the instrumentation
section. The first is a larger version of the concave grating spectrograph
described in Section 3. 2. 11. 1, the most striking difference being the size
and aspect ratio of the film strips used (Table 3-134). To prevent the strips
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Table 3-132
TASK COST ESTIMATE--PHASE D

0. 5-METER UV OFF-AXIS NORMAL-INCIDENCE TELESCOPE,
SOLAR (OASF Instrument No. 5)

($ thousands)

Development total 4, 010

Engineering 300
Detectors *

35-mm strip film *
Spectrograph film *

Collecting optics 50
0. 5-m primary mirror ' 50

Manual guidance 250
Housing 150

Structure . *
Experiment sensors 2, 200

Normal-incidence spectrograph 500
35-mm plate camera 700
Slitless spectroheliograph 1, 000

Major hardware articles 1, 060
Mo ckup *
Engineering model *
Project verification model *
Qualification model *

Operations total 1, 852

Flight instrument 1. 203
Backup flight instrument 481
Engineering support 1.68

Phase D total 5, 862**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

**Assumes previous development of 0. 2-m off-axis OASF Instrument No, 4;
same optics contractor for both instruments.
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Table.3rl33
PRIMARY. INSTRUMENT EQUIPMENT.. LIST--DE/VELQPMENT'.PHASE D

0. 5-meter. UY; Off-Axis Normal-Incidence Telescope, .'Solar
(6ASF Instrument No. 5)

Functional
System
(Major

Element)

0. 5-m
UV off-
axis
telescope
solar

Subsystem

Detectors

Collecting
optics

Manual
guidance

Housing

Experi-
ment
sensors

Major
hardware
articles

Assemblies

35 -mm strip film
Spectrograph film

0. 5-m primary mirror

Structure (inc optics
support)

Normal-incidence spec-
trograph
Slitless spectroheliograph
3 5 -mm plate camera

Mockup
Engineering model
Project verification
model
Qualification model

Quantity -,>: ,

Bread-
board

2
2

1

1

1
1'

1

- — —

.

Proto^
type

r:

. . , - 1

• Ji

•:• 1 -: •'.

\

1
• ' • - l . " •

.---
1

60%*

•• r .'

: !Flight
,, Quality

'• ' '•"' 2

, .f 2:

. 1

. . ; ; • . 2

1

1
1

40%*

. r";l

^Obtained from subsystem development quantities
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Table 3-134
CONCAVE GRATING SPECTROGRAPH CHARACTERISTICS

0.5-Meter UV (Off-Axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 5

Type

Wavelength
Short
Long
Res.olution

Entrance aperture
Slit width
Slit height:

Incident radiation
f/No. limitation
Spatial resolution

Main grating
Type
Size
Ruling frequency
Dispersion
Angle of diffraction range
Spectral order

Recorder characteristics
Type
Aperture
Remote change cycle time
Film type limitations
Exposure per magazine load
Power consumption during cycle change

Weight

Normal incidence

300 A
1, 500 A
0. 02 A at 800 A

3, 750^

12
0. 64 sec

Concave
232 x 236 mm
3, 600 lines /mm
lA/mm at 800 A
-10. 37° to +14. 600
1

Film
10 x 600 mm (X2)
5 sec
Schumann emulsion
128
10 W

52. 5 kg (including
45 kg for plate
camera)
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from becoming prohibitively long, each exposure is divided into two steps,
each with its own grating, or if a suitable design ca'nbe~implemented, with
a shift of the grating position. Serious consideration should also be given to
reducing the dispersion by a factor of two to record it all on a single frame.
The reason for this is that even with the reduced dispersion the film form'at
is 60 cm long.

'.:• ' i>: •"•!•".'••' •-- '•'

Slitless Spectroheliograph

The second instrumentation device is a slitless Spectroheliograph. ^In this

device, the slit is replaced by a field stop, and a different grating is intro-
duced to cover a much shorter wavelength (see Table 3-135); the grating is
adjusted to focus on a different camera outfitted with unbacked metallic thin

~ i'J; : ' • • - ' . • 1 ' .'
film filters; and the grating is provided with a drive to change recorded
wavelengths. As stated previously this instrument is contingent on the'" :

development of reflection enhancement techniques for the wavelength range
O . . . ; . . , . . . - • ' •

shortward of 500 A; otherwise, it must be incorporated into' one bf: the
grazing incidence telescopes. ..,. . : • • - , - _ . . - , , • • • ; ; V

Slit-Jaw Camera . , ;:~

A slit-jaw camera (weight, 15 kg) similar to that described-ih Sec-'1"
tion 3. 2. 11. 7 is included. •' ' '"•-. '• ' • :>';': • !
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Table 3-135
S LIT LESS SPEC TROGRAPH CHARACTERISTICS

0. 5-Meter UV (off-axis) Normal-Incidence Solar Telescope--
OASF Instrument No. 5

Type

Wavelength
Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/No. limitation
Spatial resolution

Main grating
Type
Size
Ruling frequency
Range of angle of diffraction
Spectral order

Recorder characteristics
Type
Aperture
Remote change cycle time
Film type limitations
Exposure per magazine load

Weight

Normal incidence

170 A
650 A
1 A at 600 A

Slitless stop 35.8 mm
35. 8 mm

12
1 arc sec

Concave
232 x 236 mm
3, 600 (lines/mm)
To be determined
1

Film
70 x 100 mm
5 sec
Schumann
128

32. 5 kg (including
25 kg for plate
camera)

338



SLIT JAW CAMERA-
•SPECTROHELIOGRAPH APERTURE

•SLIT

SOLUTION SUSPENSION
GIMBAL RING

CONCAVE GRATING ACCESS FOR
CAMERA REMOVAL-

0!5M

SECTION A-A

Figure 3-68. 0.5-Meter UV Off-Axis Normal Incidence Telescope, Solar. OASF Instrument No. 5
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3. 2. 17 0. 125-Meter High-Dispersion Spectroheliograph Normal-
Incidence Telescope, Solar-OASF Instrument No. 7

3.2. 17. 1 -General Characteristics • • -

The high-dispersion Spectroheliograph is an outgrowth of the instrument
described in Section 3. 2. 12 insofar as it uses similar optics as a predis-
perser. section (Figure 3-70). The high dispersion, however, is. achieved,
with a concave echelle section. A field stop at the fo.cus of.the ,predisperser
permits the energy from a 10 x 10 arc-min. portion of the sun to pass through
to the echelle grating while the remaining energy is reflected out of the sys-
tem by the mirrored face of the field stop. This instrument is derived from
the Lyman alpha Spectroheliograph and the stigmatic high resolution Lyman
alpha line spectrograph from the Naval Research Laboratory (Reference 3-13).
The present Spectroheliograph contains the following basic items: A turret
•with four concave gratings each of which serve the dual function of objective
mirror and predisperser; a field stop which limits the field of view .to . ;
10 arm-min. ; a concave echelle grating which disperses the spectrum along
the film strip, and a camera. Ancillary equipment includes a video, guidance
telescope, control moment gyros for pointing control and the necessary
hardware for mounting the Spectroheliograph to the telescope.

3 . 2 . 1 7 . 2 Design Criteria

The observation requirements, on -which the concept of this spectrohelio-
o

graph is based, are quite specific. A wavelength range from 304 to 1,. 216 A,
o . . . . ' . ! ' —

a field of view of 10 arc min. , a resolution of 1 A, and a dispersion of
o . . . .

0. 02 A/mm and a focal length and aperture are recommended. Taken one at
a time, all the requirements can be met rather readily with the exception of
the dispersion. Fundamentally, high dispersion is achieved either by keeping
the .angle of diffraction very high, where its sine is close to unity and cosine
extremely low, or by using a long focal length. A combination of these
approaches has been taken in which a concave echelle grating blazed at a very
high angle, and in which a large radius of curvature is used.
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The echelle grating requires prefiltering or predispersion. Since narrow-
o

band filters are not readily available over the 300- to 1, 200 A range, order
separation is achieved by predispersion. Order selection is achieved by a
slight tilt of the predisperser. Four pairs of gratings are postulated to keep
the operation of the gratings near the design angles, since the combined
grating systems will be corrected to reduce aberrations.

The instrument described in the following pages of tabular data is a first
approximation and must be considered preliminary in all respects.

3. 2. 17. 2 Detailed Characteristics

The basic characteristics of the 0. 125-Meter High Dispersion Spectrohelio-
graph Normal Incidence Telescope, Solar have been summarized in Fig-
ure 3-3 in Section 3. 1.

Additional details about the instrument are tabulated in Tables 3-136, 3-137,
3-138 and 3-139.

3. 2. 17. 4 Utilization of Man

Setup and maintenance requirements are summarized for this instrument in
Table 3-140. Because man's utilization in the operation of the instrument
depends on the observational program, operational information is separately
summarized in Table 3-141.

Deployment

The optics, including a boresighted guide telescope with TV vidicon, are
aligned on the ground and only focusing is done in orbit. The sun sensor arid
spectroheliograph optics are uncovered and the gimbal ring attached to the
space station. The optical technician inspects the concave gratings for
damage.

Alignment

Minor focus adjustments are made as needed, as determined from test plates
made during calibration.

342



Table 3-136
COLLECTOR PARAMETERS

0. 125-Meter High-Dispersion Spectroheliograph
Normal-Incidence Telescope, Solar--

OASF Instrument No. 7

Aperture

Primary focal length

Effective focal length

Total field of view

Angular resolution

On axis .. . .

Poorest in field of view

Obscuration of aperture

Minimum wavelength

Maximum wavelength

Primary f/No.

System f /No.

Scale at system focal plane

Resolution at system focal plane

Linear field of view at system focal plane

0 . 1 2 5 m . . . - . - • • .

2. 5 m

2 . 5 m

10 arc min.

o
1 arc sec .at 600 A

o
2 arc sec at 600 A

0% . .

304 A

1, 216 A

20

20 - .

80 arc sec/mm

80 linesVmm

7. 5 mm

Calibration

A series of plates of the plages and inner corona, and then of various-
standard lamps, establishes a basis for estimating required exposures. For
certain types of observation, the calibration procedure may be lengthened
beyond the value suggested in Table 3-140.
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Table 3-137

INTERFACE CHARACTERISTICS
0. 125-Meter High-Dispersion Spectroheliograph

Normal-Incidence Telescope, Solar--
OASF Instrument No. 7

General
System weight (less expendables)
System volume (launch configuration)
System shape (launch configuration)

Method of accomplishing
Deployment
Alignment

Calibration
Operation

Experiment change

Stowage requirements (launch)
Mechanical
Electrical

Experiment data handling
Format
Processing
Recording media
Mode of data recovery

Pointing requirements
Pointing accuracy i(acquisition)

Power consumption
Stowed
Standby

Operate

«300 kg
=2. 75 m:

cylinder

Uncapping only

No in-flight alignment -
remote
Photography of quiet sun
TV control of photography
Substitution of grating
assembly

Plastic-bag packaging
None

Film strip 35 x 250 mm
None on-board
Photographic film (Schumann)
Manual change of film
magazine

±lc

None
55 W
=55 W, peak 60 W
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Table 3-138
GUIDANCE AND CONTROL CHARACTERISTICS
0. 125-Meter High-Dispersion Spectroheliograph

Normal-Incidence Telescope, Solar--
OASF Instrument No. 7

Guidance characteristics

Coarse

Initial acquisition field of view
Resolution
Residual error

Intermediate

Field of view
Resolution
Residual error

Fine

Field of view
Resolution
Residual error

Control characteristics

CMC

Type

Wheel momentum
Gimbal stops
Spin motor power (start)

(run)
Servo power (peak)

(average)
• Max. torque

Weight . .
Diameter

• Length ' '

±7-1/20

±15 arc min.
±10

±2°
±20
±5 arc min.

±40 arc min...,
±0. 02 arc sec
±0. 1 arc sec

Single degree of* freedom,
viscous damped
640 oz-in.-sec."•"•'• ""'.;
±60° : " • . . , . . . " , ' r - V " .
40 W ,

6 W
1 0 W . . . . : ' . - .

I- 5 W - . . . : : . . . /:-,• :\

3. 8 oz-in. '
16 lb .; • . j; . .- . . . . . ' • - •
Sin. '" / : •••••••••<• ' ' "- "i
8-1/2 in. -1 •
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Table 3-139
SLITLESS SPECTROHELIOGRAPH CHARACTERISTICS

0. 125-Meter High-Dispersion Spectroheliograph
Normal-Incidence Telescope, Solar--

OASF Instrument No. 7

Type

Wavelength
Short
Long
Resolution

Entrance aperture
Slit width
Slit height

Incident radiation
f/no. limitation
Spatial resolution

Predisperser grating
Type
Size
Ruling frequency

Dispersion
Angle of diffraction range
Spectral order

Main grating
Type
Size
Ruling frequency

Dispersion
Range of rangle of diffraction
Spectral order

Recorder characteristics
Type
Aperture
Remote change cycle time
Film type limitations
Exposure per magazine load
Power consumption during cycle change
Power consumption during calibrate

Weight-

Spectroheliograph (Tousey)

304 A
1, 216QA
0. 02 A at 600 A

No slit, aperture 7. 25 mm
7. 25 mm

20
1 sec

Concave
125 mm
-500, 707, 1, 000, and
1, 414 line/mm o

angstrom/mm at 600 A
0° to 6° (dispenser)
1; radius 5 m

Concave echelle
24 x 200 mm
1, 200, 1, 700, 2, 400, and
3, 400olines/mm 0
0. 02 A/mm at 300 A
62° and 70°
-14 - 20; radius 5 m

Film
35 and 250 mm
5 sec
Schumann Emulsion
25
10 W

5 W
40 kg (incl. 30 kg for plate
camera)
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Table 3-140
SETUP AND MAINTENANCE REQUIREMENTS
0. 125-Meter High-Dispersion Spectroheliograph

Normal-Incidence Telescope, Solar--
OASF Instrument No. 7

. . Special,Special
Average No. Skill Average Equip Equip
Times/ Duration of Idehtifi- Hours/ Power Weight Volume

Operation Year (hours) Men cation* Man (W) (Ib) '. ( f t 3)

Deployment

Alignment

Calibration

Scheduled
maintenance

Unscheduled
maintenance

1/2 ' 1 24

None

1 1 21

1

1/3

1 12

1 14

1 12

1/2

1

1/2

1/2

15 10

15 30

^Skills are identified by number in Table 3-3.

Table 3-141 '
OPERATION SUPPORT AND REQUIREMENTS.'

0. 125-Meter High-Dispersion Spectroheliograph
Normal-Incidence Telescope, Solar--' ;

OASF Instrument No. 7 . . -

Time per . • . . Start. Time . . '.. .. : . . ' . . . -
Observa- No. Skill Man- (hours from

tion of Identifi- hours/ start of .' Number of
ORDS No. (hours) ; Men cation* observation observation) Observations

070 . 0. 02 1

1

5

8 :

,0. 05, '

o:. or
-0. 03,. . . 600. .

- ' '+48^ ' • • ' • • - - - '• -;

*Skills are identified by number in Table 3-3.
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Operation

In observations of the plages, exposures will be made in series of one every
10 to 30 sec for 10 min., and then one per hour for 12 hours.

In the corona observations, the telescope field of view covers the entire sun
so that all that need be done is to keep the telescope centered on the sun with
the aid of the sun sensor. Exposures will be made at the rate of one frame
per minute for 20 min.

Scheduled Maintenance

The optical technician inspects the optical surfaces for damage or deteriora-
tion and makes changes in modes of observation as may be required. The
electro-mechanical technician inspects the plate camera sequencing mechan-
ism for possible sources of failure.

Unscheduled Maintenance

Only a failure of one of the camera mechanisms would be likely to require

unscheduled maintenance.

3. 2. 17. 5 Supporting Research and Technology

The 0. 125-Meter XUV High Dispersion Spectroheliograph (Instrument No. 7)
is a high-dispersion version of the 0. 25-m XUV Spectroheliograph (Instru-
ment No. 6) discussed in Section 3. 2. 12. The difference in performance is
derived from the use of a double dispersion spectrograph in place of a single
dispersion spectrograph. The use of crossed grating system to increase the
dispersion of Spectrographs is a current technique, not requiring appreciable
refinement. Thus, the design and fabrication of the single dispersion Spec-
troheliograph (Instrument No. 6) is a stage in the development of the high-

' dispersion Spectroheliograph (Instrument No. 7). The two instruments
require identical Supporting Research and Technology (SRT) activity. Full
descriptions of SRT items are given in Section 4. 3.
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Research and Advance Technology

Develop mirror surfaces to provide high-UV reflectivity,
precision of figure, and freedom from scattering (SRT 4).
Develop fabrication techniques for non-circular aspherics
(SRT 6). .

Develop ruling techniques for ruling gratings on aspherics
(SRT 9).

Extend the XUV filter technology to provide structurally sturdy
transmission filters of about 100 A bandpass in the wavelength
region from 170 A longward (SRT 10). .

Develop techniques to overcome electrostatic charge build-up
and fog-producing spark discharge on roll film in hard vacuum
(SRT 17).
Develop improved grating ruling techniques and equipment to
provide closer ruling spacing and greater uniformity of ruling
spacing, blaze angle and surface finish (SRT 38).
Develop criteria for film-transport mechanisms suitable for
roll film in hard vacuum to avoid emulsion, cracking, and
flaking (SRT 39). ' . . - . .
Investigate degradation of telescope detector and reflective
surfaces resulting from 09 exposure (SRT 42).

Ci • . •

Advance Development

Assess materials for internal use to determine if rapid aging and
breakdown are caused by internal atmosphere (SRT 82). .
Assess materials for external use to evaluate (A) hard vacuum,
effects on materials, finishes, etc., and (B) development of
processing, handling, and assembly techniques (SRT 83).

Supporting Development

Develop image tubes with greater spatial resolution than currently
available (SRT 84). -

3 .2.17.6 Development Cost and Schedules '

The Phase D cost is shown in Table 3-142, which shows both development
and operations costs. The development schedule is shown in Figure 3-71.
Quantities of equipment required in development are 'shown in Table, 3-143;
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Table 3-142
TASK COST ESTIMATE--PHASE D

0. 125-Meter XUV High-Dispersion Spectroheliograph
Normal-Incidence Telescope, Solar--

(OASF Instrument No. 7)
($ thousands)

Development total 2, 385
Engineering 180
Detectors *
Collecting optics 75

0. 25-m collecting
optics (concave
grating) 75

Fine guidance (automatic) 400
Optics *
Control moment
gyroscope *
Sensor *

Housing 50
Structure 50

Experiment sensors 1, 000
Slitless Spectroheliograph
(plate camera) 1, 000

Major hardware articles 630
Mo ckup *
Engineering model *
Project verification model *
Qualification model *

Operations total 1, 102
Flight instrument 716
Backup flight instrument 286
Engineering support 100

Phase D total 3, 487**

*Cost item not derived where overall estimate for instrument is not
significantly affected.

**Assumes previous development of 0. 25-m Spectroheliograph OASF
Instrument No. 6; same optics contracts for both instruments.
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Table 3-143
PRIMARY INSTRUMENT EQUIPMENT LIST--DEVELOPMENT PHASE D

0. 125-Meter XUV High-Dispersion Spectroheliograph
Normal-Incidence Telescope, Solar--

(OASF,Instrument No. 7)

Functional
System

(Major Element)

0. 125-meter
XUV high-
dispersion
spectro-
heliograph

Subsystem

Detectors

Collecting
optics

Fine
guidance
(auto.-
matic)

Housing

Experi-
ment
sensors

Major
hardware
articles

Assemblies

0. 25-m collecting
optics (concave
grating)

Guidance .optics
sensor
Control moment
gyroscope

Structure (including
optics support)

Slitless spectro-
heliograph (plate
camera)

Mockup
Engineering model
Project verification
model
Qualification model

Quantity

Bread-
board

1
1

1

1

1

Proto -
type

1

2
2

2

1

1

1

60%*

Flight
Quality

1

2
2

2

2

1

40%*
1

*Obtained from subsystem development quantities.
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