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NOMENCLATURE

A shock surface area

a speed of sound

Cp drag coefficient

c airfoil chord

D drag force

F function defined by equation (19)

/ surface of integration

G function defined by equation (29)

h fluid enthalpy

/ isentropic

M Mach number

^crit Mach number at which sonic flow is reached

n normal distance

P function defined by equation (23)

p fluid pressure

q fluid velocity

R gas constant

r Mach number function defined by equation (22) or equation (C3)

s specific entropy

T fluid temperature

ast

ast
x coordinate

in



y y coordinate

5 wedge angle or flow deflection angle

7 ratio of specific heats

6 angle between shock line and x axis

p fluid density

T airfoil"thickness ratio

Subscripts

1 ahead of shock

2 behind shock

00 free stream

crit sonic velocity condition

/ isentropic

n normal component

RH Rankine-Hugoniot flow

st stagnation

x x component

y y component

IV



SHOCK WAVES AND DRAG IN THE NUMERICAL CALCULATION OF

ISENTROPIC TRANSONIC FLOW

Joseph L. Steger and Barrett S. Baldwin

Ames Research Center

SUMMARY

Properties of the shock relations for steady, irrotational, transonic flow are discussed and com-
pared for the full and approximate governing potential equations in common use. Results from
numerical experiments are presented to show that the use of proper finite difference schemes pro-
vide realistic solutions and do not introduce spurious shock waves. Analysis also shows that real-
istic drags can be computed from shock waves that occur in isentropic flow. In analogy to the
Oswatitsch drag equation, which relates the drag to entropy production in shock waves, a formula
is derived for isentropic flow that relates drag to the momentum gain through an isentropic shock.
A more accurate formula for drag based on entropy production is also derived, and examples of
wave drag evaluation based on these formulas are given and comparisons are made with experimental
results.

INTRODUCTION

Finite difference procedures using both time-dependent formulations and relaxation methods
have been developed to compute the steady, inviscid, transonic flow about arbitrary bodies. In most
of these techniques the flow is assumed to be adiabatic and irrotational - that is, isentropic - and
shock waves, if they appear at all, are not strong. The assumption that the flow is isentropic leads
to considerable savings in computer algebra and storage, and for these reasons of efficiency, the
isentropic assumption is quite useful in numerical computation. However, the implications of this
assumption in transonic flow are perhaps not fully appreciated. For example, even though the flow
is assumed to be isentropic, wave drag arising from shock "losses" can be evaluated. This seemingly
contradictory result occurs because the isentropic shock relations - the permissible weak solutions
(Lax, ref. 1) to the isentropic flow equations - do not conserve momentum in the direction normal
to the shock.

Current relaxation procedures developed to treat transonic flow also require the isentropic
assumption. Both time-dependent, finite-difference techniques and current relaxation procedures
allow isentropic shock waves to evolve naturally without the explicit use of sharp shock conditions.
Unlike the time-dependent schemes, the relaxation procedures do not attempt to follow characteris-
tics in time in order to automatically maintain the proper domain of dependence. Instead, "proper"
hyperbolic or elliptic difference formulas must be used, depending on whether the flow is subsonic
or supersonic. However, while the concept of proper differencing in transonic flow has been exten-
sively used since Murman and Cole's first successful exploitation of the idea (ref. 2), it has not been
fully explored.



Both the concept of drag in an isentropic flow and the concept of shock formation can be
studied under guidelines suggested by the theory of weak solutions. Consequently, this paper begins
with the study of the isentropic shock relations as predicted by this theory. Several numerical ex-
periments are reported for the relaxation methods which demonstrate that the differencing tech-
nique is general and can give all possible solutions. A major portion of this paper is devoted to a
detailed analysis of the drag mechanism in isentropic flow. From this analysis, a practical method
is developed for the evaluation of wave drag which does not require integration of surface pressures.
Results from this technique are also presented.

WEAK SOLUTIONS FOR TRANSONIC FLOW EQUATIONS

Consider the equations of irrotational, inviscid, adiabatic flow for a perfect gas in two
dimensions

dpq dpq
-^ + —^ = 0 (la)
ax ay

by dx

hsj. = constant

5 = constant

Equations (la) through ( Id) may be combined with the equation of state of a calorically perfect gas
to obtain two equations for the two dependent variables, the velocity components u and v

j_

T~l I , ^ r .._, -i 7-1
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According to the theory of a weak solution (Lax, ref. 1, and Lomax, Kutler and Fuller, ref. 3)
for hyperbolic systems, solutions of equations (2) and (3) may be discontinuous across a smooth
curve (which may be a shock wave) and constitute a weak solution if they satisfy the relations

tan0
7-1

-i 7-1

1 -
7-1

-, 7-1

7-1
7-1

1 -

7-1
7-1

(4)

and

( M! - w2 )
 = -tan 0 n>j - v2) (5)

Here d is the angle between the shock wave and the x axis, while the subscripts 1 and 2
indicate values before and behind the shock wave. Note that equations (4) and (5) permit a con-
tinuous solution, ul = «2

 and Vi = v2, as well as the discontinuous solution. Equations (4) and
(5) pertain to isentropic flow and admit solutions analogous to the Rankine-Hugoniot relations.

The discontinuous solution of the flow conservation equations of mass, momentum, and
energy1 is given by the Prandtl relation, but a corresponding exact closed-form, discontinuous
solution of equations (4) and (5) has not been found. Across a normal shock, equations (4) and (5)
reduce to

7-1
7-1 7-1

U2 (6)

while for Rankine-Hugoniot flow the Prandtl relation for a normal shock is

7+ 1 (7)

Here the flow described by these equations is referred to as Rankine-Hugoniot flow. In Rankine-Hugoniot flow, entropy
is not conserved across a shock plane, and the Rankine-Hugoniot equations are satisfied across any arbitrary plane in the field.
An alternate flow, for example, could be described by the conservation equations of mass and momentum (the Euler equations)
and conserve entropy in place of energy across a shock wave.



A numerical evaluation of equation (6) is compared to equation (7) in figure 1 for the reference Mach
number M* = q/a*. Figure 1 shows that throughout much of the transonic range the two relations
agree well. Nevertheless, there are important differences. The possible expansion shock solution can
no longer be excluded by the second law of thermodynamics as it is in the case of Rankine-Hugoniot
flow. Also, through an isentropic shock wave, mass, energy, and entropy are conserved, but, trans-
verse momentum is not conserved. For example, at M^ = 1.4, the one-dimensional momentum
equation has the difference across the shock of

Pi
= 0.0301

P*t Pst } \ Pst Pst

Because momentum is not conserved across the shock, equation (1) contains a mechanism for drag
production.

It is also a matter of interest to examine the shock relations for the transonic small perturba-
tion equations. Consider, as a representative example, the small perturbation equation of Guderley,
(ref. 4):

3/2 _ 2

/ 7 + l \

(9b>

where

a* -

Across a normal shock wave the jump relation for the Guderley equation is

(u, ~ a*)2 = (u2 - 0*)2 (10)

Note that this relation, illustrated in figure 2 in terms of M*, has a closed-form solution and closely
approximates equation (6). The Guderley equation is not a valid approximation for subsonic, low-
speed flow.



As a final example, consider the small perturbation equation of Spreiter (ref. 5)

(l - _ _
q°°

—
ox

dv _ „
T -r — U (11)

du _ dv
dy dx (12)

In this instance, the shock relation is a function of the free-stream Mach number and is given for a
normal shock by

2(1

(7-
(13)

Figure 3 illustrates this relation for various choices of the free-stream Mach number. Clearly, this
jump relation should not be used at lower free-stream Mach numbers if one intends to approximate
Rankine-Hugoniot flow.

The transonic small disturbance equations conserve mass, momentum, and energy only to
lowest order. Consequently, unlike Rankine-Hugoniot or isentropic flow, it is not clear that only a
single mechanism produces wave drag. The normal shock relation for the Guderley equation (10) and
the Spreiter equation (13) can also be obtained by an expansion of the Rankine-Hugoniot relations,
and this approach is taken in references 4 and 5.

PROPER DIFFERENCING SCHEMES

The theory of a weak solution shows that the isentropic equations permit a possible discon-
tinuity, which might be an expansion or a compression, and it is necessary that the numerical
method be able to give these solutions. Here we are concerned with only the relaxation schemes and
survey results, which demonstrate that proper difference schemes do in fact permit all possible
solutions.

Murman and Cole (ref. 2) first demonstrated that shock waves can be established in the relaxa-
tion schemes if upwind (i.e., backwards) differencing formulas are used in the supersonic regions.
This is the correct hyperbolic differencing scheme in the sense that it marches away from an initial
data plane, and downstream influences cannot propagate upstream. Shock waves, when they form,
appear where characteristics of the same family begin to coalesce in the supersonic flow. In a sub-
sonic flow region, central difference schemes are used and these correctly bring in information from
all directions — this is proper for elliptic equations.



Results obtained by using "proper differencing" are in good agreement with the jump pre-
dicted by the weak solution. The supersonic flow about a wedge as computed by relaxing the
Guderley equations illustrates the capturing of the proper jump in figure 4. In this example, the
equations were relaxed by the interchange algorithm of reference 6. In the more complex cases of
transonic flow about airfoils, the numerical results predicted by proper mixed differencing are
considered to agree well with experiment (see e.g., ref. 7). However, these solutions usually do not
show a shock jump of the proper strength because a rapid expansion persists in the subsonic flow
immediately behind the shock that is not resolved in a relatively coarse finite difference grid. A
more detailed discussion of this flow phenomenon is given in reference 8.

The differencing schemes also permit multiple shocks to appear. An example of this flow is
shown in figure 5, and again these results are plausible since similar results are found experimentally
(see, e.g., ref. 9). The locations of these shocks have also been numerically tested and have been
found to be fixed and independent of the path along which the solution was relaxed.

Numerical experiments with shock-free profiles show that the discontinuous solution is not
spuriously forced into the flow field by the finite-difference procedure. Figure 6 illustrates the con-
tinuous surface pressure distribution about a thin "sine wave profile" in supersonic flow, which was
found by means of the Guderley equations, and figure 7 illustrates the transonic flow found about a
shock-free Nieuwland profile (ref. 10) using the method of reference 7. The very weak shocks that
do appear in this latter solution are not attributed to the finite-difference procedure but to nu-
merical truncation error and imperfection in describing the profile in the finite-difference network.

The theory of a weak solution also predicts the existence of an expansion shock, and yet this
mathematically correct solution is never obtained when proper upwind differencing is used for
supersonic flow regions. However, if downwind differencing is used in supersonic regions, the ex-
pansion shock will be found and the compression shock is excluded. Figure 8 illustrates this case as
well as the conventional "physically correct" solution.2 The important point to be made here is
that the numerical method does have the capacity to give all of the allowable mathematical
solutions, and solutions that do not model physics can be excluded.

A great deal of numerical experimentation was carried out to test the concept of proper dif-
ferencing. A 6-percent-thick biconvex profile was used as a test case under conditions that give an
embedded supersonic region terminated by a shock. With the proviso that the latter end of the
supersonic region was terminated with proper upwind differencing, it was found that convergent
and accurate iteration schemes could be devised that used central or other suitable interpolative
differencing partly, and even substantially, into the supersonic region. However, the authors have
never been able to devise a fully convergent iteration scheme when the differencing operators per-
mitted disturbances to propagate both downstream and upstream throughout the entire supersonic
region. Several of these schemes partially converged with almost shocklike shapes (see, e.g., ref. 6),
and at least one scheme oscillated without diverging, but never did one of these schemes lead to a
fully convergent solution.

2
Similar expansion shock waves have been obtained with time-dependent schemes by computing in negative time. For

optimum choice of the Courant number, the same type of downwind data is utilized.



PHYSICAL INTERPRETATION OF WAVE DRAG FROM ISENTROPIC SHOCK WAVES

In previous sections of this paper it has been shown that finite difference solutions of the isen-
tropic flow relations can be arrived at that avoid physically incorrect behavior such as imbedded
expansion shocks. At the same time, embedded compression shocks can be correctly accounted for.
The question arises whether use of isentropic relations throughout a flow field including compres-
sion shocks can lead to a sufficiently accurate pressure distribution for evaluation of the wave drag.
For example, Oswatitsch (ref. 11), has related the drag to entropy production in the flow field. If
isentropic relations are used throughout an inviscid flow calculation including isentropic shocks, the
entropy production is zero by definition. Nevertheless, it can be demonstrated that integration of
the surface pressure calculated from the isentropic equations does lead to values of drag comparable
to experimentally observed values if the shock Mach numbers are less than about 1.3. For example,
figure 9 illustrates a comparison between experiment (refs. 12 and 13) and the results of drag calcu-
lations using surface pressure distributions calculated by the method of reference 7. The existence
of a nonzero drag in spite of the contrary indication from the Oswatitsch drag relation can be
attributed to the fact that momentum is not conserved across an isentropic shock. Proper inter-
pretation of the Oswatitsch drag relation as applied to isentropic flows containing discontinuities
leads to a basis for comparison of the drags computed for Rankine-Hugoniot and isentropic flows .
The purpose of this and subsequent sections is to make such comparisons and to derive alternative
methods for evaluation of the drag that are useful in conjunction with numerical solutions of the
flow fields.

Oswatitsch has derived an approximate expression for the drag of an aerodynamic object in a
steady flow in terms of the rate of entropy production

D = — f pqn(s-Soo)df (14)
<?°o Jf

where 7^, q^ are the temperature and velocity in the free stream. The integral is over a surface /
that encloses all sources of entropy production in the flow field. The quantity qn is the com-
ponent of velocity in the direction of the outward normal to the surface of integration. According
to von Karman (ref. 14), equation (14) is correct only to lowest order in s — s^. For the steady
inviscid flow considered here, shock waves are the only sources of entropy production. For a body
in a subsonic or supersonic free stream, the integration can therefore be made over all shock waves
according to the relation

rrt

D = -22- V / P lqni&sdA (15)
Qoo ^^~*

shock

where PI is the fluid density, qni the normal component of velocity ahead of the shock, As
the jump in entropy across the shock, and dA the element of shock surface area. The summation
sign indicates that the results from integration over all shocks are to be added to obtain the total
rate of entropy production in the flow field.



With proper interpretation, equation (15) applies to the weak solutions of the equations for
irrotational, inviscid, adiabatic flow considered in this report. One method of arriving at a proper
interpretation is to develop a physical model of the discontinuities so that such flows are included
within the framework of those considered by Oswatitsch. The defining relations (eqs. (1) - (5)), are
based on and are equivalent to conservation of mass, energy, and entropy in the entire flow field. It
can be shown that the jump conditions for discontinuities (eqs. (4) and (5)) correspond to conser-
vation of the component of momentum along the discontinuity but not the component of momen-
tum normal to the discontinuity. Is there a physical model that corresponds to this anomaly? An
inviscid flow can make a transition from supersonic to subsonic speed isentropically only by passing
through a shock-free diffuser. Therefore, an isentropic normal shock is analogous to a surface
covered by a large number of isentropic diffusers of vanishing extent in the streamwise direction
(sketch (a)). The gain in momentum across the isentropic shock is balanced by the thrust on the
diffusers. In the case of an oblique isentropic shock, the downstream ends of the diffusers are bent
and contracted relative to the inlet ends (sketch (b)). The force on the diffusers is normal to the
shock surface and the component of momentum tangent to the discontinuity is conserved.

With the foregoing interpretation of completely isentropic flow, including discontinuities, the
Oswatitsch drag relation applies and shows that the total drag (body plus diffusers) is zero. There-
fore, the drag on the body is equal to the .thrust on the diffusers and the body drag is given by

Di = dA (16)

shock

M2 < I

M, < I

Sketch (a). - Isentropic normal shock. Sketch (b). - Isentropic oblique shock.



Sketch (c).

where 6 is the angle of the shock relative to the
free-stream direction and A(p + pq^) is the in-
crease in momentum normal to the shock. Again,
the summation indicates that the contributions
from all shocks are to be included.

A mathematical derivation of equation (16)
that does not utilize a physical interpretation of
isentropic shocks can also be indicated. It can be
shown from the equations for continuous isen-
tropic flow that the integral forms expressing
the conservation of mass, momentum, and
energy used by Oswatitsch apply for arbitrary
closed contours that exclude discontinuities.
Sketch (c) shows an example of an appropriate
closed contour excluding a shock wave. The x
momentum conservation relation applies on this
contour.

J [P cos(«,x) + pqxqn~\ df = 0

where n is the direction of the outward normal. For completely isentropic flow, conditions in the
far flow field (including the wake) are the same as in the free stream so that the integral on the outer
contour is zero. The integral over the body is equal to the drag. Evaluation of the integral over the
isentropic shock then leads to equation (16).

COMPARISON OF DRAGS RESULTING FROM WEAK RANKINE-HUGONIOT

AND ISENTROPIC SHOCK WAVES

It has been shown that weak isentropic shocks closely approximate Rankine-Hugoniot shocks
so that the shock positions and upstream local Mach numbers can be assumed to be similar for the
two types of flow over a given airfoil at the same free-stream Mach number. Consequently, the drag
from an isentropic calculation can be compared with that from a calculation based on Rankine-
Hugoniot shocks by comparing the integrands of equations (15) and (16) over a range of shock
Mach numbers, thus avoiding the necessity for a complete knowledge of the flow field. For this
purpose, equation (15) can be rearranged in the form

D =

shock (17)



where M^ is the free-stream Mach number and a*is the speed of sound at a local Mach number
of 1. For isentropic flow, equation (16) can be put in a similar form

D: =

shock
jR

dA (18)

where

(19)

The quantity
Mach number M.

is the entropy jump across a Rankine-Hugoniot shock with upstream
(based on the normal component of upstream velocity q n l ) . The quantity

A(p + pq2
 nl) • is the momentum increase normal to an isentropic shock with the same normal

component Mach number A^,. In equations (17), (18), and (19), pt is the fluid density immedi-
ately upstream of the shock and qnl the normal component of upstream velocity.

From the jump conditions for a normal isentropic shock (eqs. (Ic), (Id), and (6)), the
Rankine-Hugoniot normal shock relations, and the equations of state (e.g., ref. 15), it can be shown
that both numerator and denominator of equation (19) are of order (Mnl - 1) for weak shocks.
The quantity F(Mm ) is equal to 1.0 to lowest order in (Mnl - 1) and deviates from 1.0 by less than
15 percent for Mni < 1.4. For a supersonic free stream with weak oblique shocks, the factor in
square brackets in equation (18) is

1 + O[M«, - (20a)

Thus to lowest order in (Mnl — 1) the drag for supersonic isentropic flow with oblique shocks
(eq. (18)) is identical to that for supersonic flow with Rankine-Hugoniot shocks (eq. (17)).
However, for a subsonic free stream with weak normal shocks, the isentropic flow solution
yields a drag that differs from that for the corresponding flow with Rankine-Hugoniot shocks. In
this case

sine F(Mnl) ^ (20b)

and to lowest order in (Mjn - 1) does not match the factor outside the integral in equation (1 7).
Table 1 summarizes the factors entering the expression for the isentropic drag and indicates a correc-
tion factor D/Df for supersonic and subsonic flow.
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TABLE 1 - FACTORS IN EXPRESSION FOR DRAG IN ISENTROPIC FLOW (EQ. (18))

Flow Mach number sin 0
Correction factor

Supersonic free stream (Mx > 1 .0)

weak oblique shock

Subsonic free stream (M^ < 1 .0)

weak normal shock

1.0

(*-'-')

'1.0

The assumptions used in the derivation of the correction factors listed in table 1 may be
summarized as follows:

1.

2.

3.

4.

5.

6.

1.

Inviscid adiabatic flow of a perfect gas.

Exact isentropic flow relations apply along streamlines in regions where there are no
discontinuities.

Terms of order (s - s^)2 and higher are negligible in Rankine-Hugoniot flow.

Terms of order (Mn j - 1 )4 and higher are negligible in the evaluation of entropy
increase through Rankine-Hugoniot shocks.

Terms of order (Mn j - 1 )4 and higher are negligible in the evaluation of momentum
increase through isentropic shocks.

The location and upstream local Mach number of shocks is the same for Rankine-Hugoniot
and isentropic flow.

Oblique shocks are at angle sin~l(M00~
l ) and normal shocks perpendicular to the

free-stream direction.

The limits of validity of these assumptions will be discussed later.

Previous approximate treatments of transonic flow are typically based on a different set of
assumptions. For example, in ref. 16 an expansion procedure is described that is based on the limit
process (6 -»• 0, M^ -> 1; k = (1 - Af£,)/62/3 and 5 l f3y fixed) where 6 is the thickness to chord
ratio. The assumptions for table 1 are less restrictive than the lowest order equations from the
expansion in 5 of reference 16, but are equivalent to them at M^ = 1. Thus both apporaches lead
to the prediction that the correction factor D/D^ is equal to 1.0 at M^ = 1.0 to lowest order in 6
(and hence lowest order in (Mnl - 1) for shocks). However, the results in table 1 are not restricted to

11



MOO ~* 1 so I°n8 as the shocks are weak and hence apply to thick airfoils near the point of drag rise.
If the drag rise Mach number is as low as 0.7, the correction factor indicated in table 1 becomes
40 percent.

The magnitude of the correction is illustrated in figure 9 where it is applied to isentropic
calculations and the results compared to wind-tunnel data. In these cases the assumption that
F(Mnl )(qnlja*) -+ 1.0 breaks down quite rapidly with increasing shock strength as will be shown
later.

It is of interest to consider the efficacy of applying the foregoing correction factors when the
shocks are not weak. For that purpose several approximations used in the foregoing derivations have
been examined in more detail. The Oswatitsch drag relation (eq. (14)) is itself an approximation
that depends on the assumption that the velocity and thermodynamic state in the far wake do not
differ appreciably from free-stream conditions. This fact may not be significant unless the relation
is to be used for quantitative rather than qualitative evaluation of the drag. Since the relation will be
used for that purpose in this report, the magnitude of error introduced by the Qswatitsch approx-
imation is of particular interest. An exact relation for inviscid flow over airfoils has been derived,
corresponding to the Oswatitsch drag relation, which is found to be in error by no more than 4
percent in the range of interest (free-stream Mach numbers between 0.7 and 2.0 and shock Mach
numbers up to 1.4). The derivation is given in appendix A.

In the derivation of correction factors listed in table 1, use was made of assumption (6)
that the shock position and shock Mach number Mnl were approximately the same for isen-
tropic flow and flow with Rankine-Hugoniot shocks. It is difficult to assess the validity of this
assumption in the case of strong shocks without obtaining the two solutions. When the free stream
is supersonic exact solutions for flow over wedges are available for such a comparison. It is shown
in appendix B that the correction factor of 1.0 for oblique shocks in a supersonic stream given in
table 1 is valid for shock Mach numbers less than 1.4, even though the shock Mach number Mnl is
not the same for Rankine-Hugoniot and isentropic flows. This result is due to the compensating
effect of higher order terms in equation (20a). It has not been shown that the same compensating
effect is valid for the subsonic case. Further details of the effects of shock strength are given in
appendix B.

SHOCK INTEGRATION METHOD FOR EVALUATING WAVE DRAG

It is difficult to evaluate the wave drag accurately by integrating the pressure distribution on a
body when the pressure is determined from a finite-difference solution. This difficulty arises be-
cause the drag is equal to a small difference between pressure forces on forward-facing and
rearward-facing surface elements and there is difficulty in specifying the body shape with suf-
ficient accuracy in a finite-difference grid. The calculations of figure 9, for example, showed
a small "tare" drag — a slight thrust at subcritical speed — which had to be subtracted from the
results. In contrast, the evaluation of lift and moment is less sensitive to small errors in a finite-
difference solution because these quantities do not involve small differences.

The previously developed relationships between drag and shock jump conditions offer a method
for accurately obtaining wave drag that is not as sensitive to the body geometry or small numerical

12



errors. In this section, specific formulas for that purpose are presented that are based on flow condi-
tions before the shock. Thus,the effect of the expansion singularity that can exist behind a normal
shock in transonic flow (noted earlier) is excluded from these formulas. The required formulas are
summarized below and detailed information on the derivations is given in appendix C. Results from
sample calculations using this approach will be given later.

For isentropic flow the drag coefficient of an airfoil can be evaluated by means of equation
(16) as follows

C•D
r PI

/ AP —
J. ,
shock

sn 9 dz (21)

where z is the distance along the shock. To evaluate the integrand (for j = 1.4) the following
quantities must be computed at each point on the shock surface. The relation

W!2(sin 9 - cos 9 Vj
(22)

is solved for r in the interval 0 < r < 1. (Any conventional technique for finding roots can be used
to evaluate r since the left side of equation (22) is monotonic in the interval from 0 to l).The
quantities AP, pl/p!X, #m/<7oo can then be evaluated (for j = 1.4) from the relations

( l + / - 5 / 2 ) ( l + r + r2 + r 3 + r 4 + r s +/-6) _ 1
( l+ r 7 ' 2 ) , - 5 ' 2 J

(23)

Pi

1 -J «oo

—I 5 /2

(24)

= —rsi
"oo L

sin 0 — cos i (25)
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where 0 is the angle of the shock with respect to the x axis. If 80° < 6 < 100°, the factor
cos 6 O ^ / M J ) is negligible. Also if errors in drag of the order of 5 percent are tolerable, sin 6
can be set equal to 1.0 and v^ neglected compared to ut

2 in the above relations when the free
stream is subsonic.

For flow with Rankine-Hugoniot shocks, the drag coefficient of an airfoil can be evaluated
according to equation (A4) as follows

9 f Pi n i
D=} I / *G - — dz (26)

*- , ,shock Poo Hoo

At each point on the shock surface the following quantities are to be computed (7 = 1.4)

ul ["sin 6 - cos 9 ( V J / M ,L v

£*" ' . I +s . * ! . * / . f / , . ^ 11 'P I C \ f*)Q\

AG= 1+ 1--4 1-e7 "j- \ / l + l--=4 I-,7 " S " (29)

where Asx = sl - s^ is the deviation of the specific entropy ahead of the shock from the free-
stream value. If only one shock wave is present or if errors in drag less than.4 percent are tolerable,
Asj can be set equal to zero. Furthermore, expansion of equation (29) to order As/R and
Ast IR leads to the Oswatitsch approximation

AC -

which also leads to evaluation of drag accurate to within 4 percent for values of Mn l < 1 .4 (see
appendix A). The quantities pjp^ and qnl /q^ are given in equations (24) and (25).
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If a finite-difference solution of the flow equations with Rankine-Hugoniot shocks is available,
equations (26) through (29) are appropriate for evaluation of the drag coefficient. If finite-difference
solutions with isentropic shocks are of interest, equations (21) to (25) provide an accurate value of
G£) corresponding to integration of pressure forces on the body. However, the drag coefficient from
equations (26) through (29) is also of interest for isentropic flow solutions, since it corresponds to a
"corrected" value under the assumption that the position and Mach number based on the normal
component of velocity ahead of the isentropic shock are approximately the same as for a Rankine-
Hugoniot shock. With a subsonic freestream this assumption is valid near the point of drag rise
where the shock is not strong, but its validity has not been established for cases in which the shock
strength is appreciable. The difference between the two drag coefficients is perhaps indicative of the
possible error in either value when the shocks are strong.

NUMERICAL EVALUATIONS OF WAVE DRAG

The wave drag formulas, equations (21) and (26), have been incorporated in a relaxation rou-
tine developed for equations (1) and (9). The program was written for thin airfoil boundary condi-
tions and in these tests employed a uniform, finite-difference grid with a relatively coarse spacing
(20 points along the chord). For these reasons, the usual means of evaluating drag by a pressure
integration is not very satisfactory.

Computational results for wave drag based on conditions ahead of the shock wave are illus-
trated in figure 10 for flow over a biconvex profile. The experimental data of Knechtel (ref. 17), at a
Reynolds number of about 2 million, are also shown for comparison. The numerical calculations are
actually based on equation (9), but the shock relations as shown by figure 2 are essentially identical
to those of equation (1). The data were used in evaluating both equation (21) and (26) as shown in
fip'ire 10, and although the difference in wave drag is increasing as M^ increases, the percentage
difference diminishes. This trend is predicted by the correction factor listed in table 1, even though
the calculations indicate that the assumption qni ^ a* is violated on this airfoil as M^ increases.

The agreement between the inviscid calculation and the experiment is considered to be reason-
ably good even though a coarse mesh is used. Furthermore, shock induced separation of a fully
developed turbulent boundary layer is not expected to occur until Mn — 1.30 to 1.4 (refs. 18 and
19)3, and the numerical calculations indicate that Mn = 1.35 is not reached until M^ ->• O(0.93).
In the absence of boundary-layer separation, the inviscid calculations correspond to infinite
Reynolds number and are likely to be a better approximation to full-scale flight conditions than the
low Reynolds number data of the wind tunnel.

An essential point is that the wave drag is evaluated independently of the pressure distribu-
tion at the nose of the profile. Therefore, if a method employing thin airfoil assumptions can
accurately predict the strength and location of a shock, wave drag can be accurately evaluated.
The drag calculations based on either equation (21) or (26) is also independent of how well the
method captures the expansion singularity that trails the normal shock in transonic flow. Indeed,

It is fortuitous that for transonic flow over airfoils the inviscid and isentropic assumptions (see fig. 1) break down
almost simultaneously.
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this method of computing wave drag is insensitive to any overshoots or oscillations behind a shock
and the small precursor waves common to many shock capturing (e.g., ref. 20) schemes should not
present a very formidable problem.

Any drag calculation is sensitive to the location of the shock wave, and the shock location
itself is very sensitive to numerical truncation errors that accompany any finite-difference pro-
cedure. Because the drag rise is sharp, a numerical procedure employing a relatively coarse grid may
yield a result with substantial error. However, the Mach number at which a given drag is reached
should be predicted within ±0.01 or ±0.02. Reliable, high Reynolds number transonic experiments
are now required, which can be used to calibrate the numerical calculations.

CONCLUDING REMARKS

In this paper an attempt was made to assess the assumption of isentropic flow in the numeri-
cal calculation of transonic flow. Study of the properties of weak solutions shows that the com-
pressible irrotational flow equations do admit shock waves through which momentum is not
conserved. Results from a series of numerical experiments also demonstrated that relaxation pro-
cedures that use proper differencing do give the correct mathematical behavior and that incorrect
physical behavior such as embedded expansion shocks can be avoided.

With this established background, a detailed analysis of the drag mechanism in isentropic flow
was presented. It was shown in this study that a correction factor is appropriate if the drag is to be
evaluated from a solution that includes isentropic shock waves. The method of evaluation that was
developed for the wave drag is relatively insensitive to the use of approximations such as thin airfoil
boundary conditions when the shock location and strength are adequately predicted. Examples of
the use of this technique were presented and the results compared with experiments.

It is conjectured that in the absence of strong viscous effects, current finite-difference solutions
which utilize transonic approximations, supplemented by methods developed in this paper, are
adequate for prediction of the wave drag near the point of drag rise or for predicting the Mach num-
ber at which a given level of wave drag will occur.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif. 94035, July 10, 1972
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APPENDIX A

EXACT RELATION BETWEEN ENTROPY PRODUCTION AND

WAVE DRAG IN INVISCID FLOW

The drag relation of Oswatitsch (Eq. (14)), is based on the approximation that the velocity and
thermodynamic state in the wake do not differ appreciably from free-stream conditions. It is of in-
terest to determine the corresponding exact relation for inviscid flow. An exact relation contained
in the derivation of Oswatitsch can be written

D = q 0 0 j p q n \ \ - - - \ d f (Al)

where qx is the component of velocity in the free-stream direction, and the surface of integration
/oo is sufficiently far from the object on which the drag is exerted that at f^ the deviation of the
pressure from the free-stream pressure is negligible. The only contribution to this integral is in the
wake. Therefore, qx can be evaluated by considering the flow along streamlines from -°° to the
wake region. For inviscid flow, the total enthalpy, hs{-h + (l/2)<?2 , is conserved

and the total pressure, psf - p + (\/2)pq2 , depends on the entropy increase according to the
relation

and

p = Poo (in the far wake)

Combining these relations with the equations of state for a perfect gas and rearranging them accord-
ing to relations given in reference 15 leads to an expression for qJqoo in terms of M^ and s — s^ .
Substitution of that expression into equation (Al) yields

= (loo j PqnG(M00,s-s0^df (A2)
/oo
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where

G(MOO,S-SOO) = i -1/1+ — 2
(7-DM, 2 (A3)

Equations (A2) and (A3) can also be derived from a relation given by Lighthill (ref. 21). The
integrand in equation (A2) is equal to the integrand of equation (Al) on the surface of integration
/oo far from the body, but not elsewhere. Other surfaces of integration can be considered for
evaluation of equation (A2) if it can be shown that the same value of the integral will be obtained.
Since G is a function only of M^ and 5 — s^, within a region where entropy changes do not
occur, G is constant along streamlines. Therefore, G can be taken outside the integral for surfaces
that enclose segments of stream tubes of infinitesimal cross-sectional area. The integral over such
surfaces of the remaining integrand pqn is zero. Consequently, /^ may be moved across regions
in which entropy is constant without affecting the value of the integral in equation (A2). The sur-
face /„, may therefore be replaced by any surface / that encloses all changes of entropy (and
hence changes of G). For the steady inviscid flow considered here, shock waves are the only source
of entropy changes. Therefore equation (A2) can be replaced by

shock

As in equation (15), the subscript 1 denotes conditions immediately upstream of the shock,
is the upstream component of velocity normal to the element of shock area dA and AG is the
jump in G across the shock corresponding to the jump in s — s^ according to equation (A3). The
summation sign indicates that results from integration over all shocks are to be added. Expansion of
equation (A3) to lowest order in s — s^, substitution in equation (A4) and rearrangement lead to
equation (15), which was derived from the approximate Oswatitsch drag relation. It should be noted
that there are restrictions on the applicability of the exact relationship between drag and entropy
increase derived here. In addition to the assumptions of inviscid adiabatic flow, the pressure in the
far wake was taken to be equal to the free-stream pressure and the direction of flow in the far wake
was taken to be that of the free stream. The presence of trailing vortices in three-dimensional flow
would require a separate treatment.

Figure 11 shows the fractional error of the Oswatitsch drag relation corresponding to the
lowest order approximation O(A.s/R) of the jump in G across a shock wave. The fractional error
is plotted versus the shock Mach number based on the component of velocity normal to the shock
with free-stream Mach numbers of 0.7, 1.0, and 2.0. For shock Mach numbers Mni less than 1.4
the error is less than 4 percent if the free stream Mach number is greater than 0.7.
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APPENDIX B

ASSUMPTIONS USED TO DETERMINE THE DRAG

CORRECTION FACTORS OF TABLE 1

In the derivation of the correction factors listed in table 1 it was assumed that the shock
position and shock Mach number Mn l are approximately the same for isentropic flows and flows
with Rankine-Hugoniot shocks if the shocks are weak. It is of interest to examine these assumptions
when the shocks are not weak. Figure 12 shows the variation of the function F(Mnl) and the
product (qni /a*) F(Mnl) versus M n l . The deviation of the latter quantity from 1.0 suggests that
for strong shocks, a correction factor considerably different from that indicated in table 1 may be
appropriate for subsonic flows. For supersonic flow with oblique shocks sin 6 and qn i /a* depend
on MOO as well as Mn l . Figure 13 shows the variation of sin 6 (qnja*) F(Mnl} (isentropic
flows) versus M^ with Mnl as parameter. For comparison, the factor

contained in equation ( 1 7) is also shown in Figure 1 3 as a solid curve. For weak shocks (Mn t < 1 .0 1 )
the factor inside the integral of equation (18) closely approximates the factor outside the integral
in equation (17). For stronger shocks, however, the deviation is appreciable.

It is difficult to assess the validity of assumption (6) (listed after table 1 ) in the case of strong
shocks with subsonic free stream in the absence of data for both cases. When the free stream is
supersonic, however, exact solutions for flow over wedges provide the necessary information. A suit-
able configuration is one incorporating forward facing and rearward facing wedges separated by an
extended region of constant thickness as shown in sketch (d).

It is useful to consider separately cases in
which the entropy production is confined to
either the forward shock or the rear shock by
letting either 5^- or 8r approach zero while
holding t fixed. Since the extent of the shock
tends toward infinity, it might be questioned
whether the resulting entropy production can
be neglected as 5 approaches zero. However,
this question is answered by the following
observation. If we let both 5- and d

Sketch (d)

approach zero, the total drag (and hence the total entropy production) will approach zero. Further,
if we let 8f alone approach zero, the pressure Pf will approach p^, and the flow immediately
ahead of the rearward-facing wedge can be taken to be the same as that in the free stream. In that
case the drag coefficient (based on a chord length //sin 8f) is
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sin 8f

With 8s -> 0, the pressure pf on the rearward-facing wedge is determined by the Prandtl-
Meyer expansion through the turning angle 8f starting from free-stream conditions. This remains
true whether the rear shock is isentropic or a Rankine-Hugoniot shock. Consequently it is clear
that the drag is the same regardless of whether isentropic or Rankine-Hugoniot shocks are used as
long as 6^ is less than the value at which the shock at the end of the body becomes curved. Accord-
ing to equation (A4) the drag is related to the entropy production in the rear shock, entropy pro-
duction being negligible in the front shock. Or with isentropic shocks the drag is related to the
momentum defect across the rear shock according to equation (16). Since the drags are equal for
the two types of flow, it follows that the shock Mach number based on the velocity component nor-
mal to the shock must be different for an isentropic than for a Rankine-Hugoniot shock. Without
making calculations we find that in this case the isentropic drag correction factor of 1 .0 for weak
oblique shocks in table 1 remains valid for a wide range of shock strengths even though the assum-
tion of equal shock Mach numbers used in the construction of figure 1 3 is not valid.

As another example, consider the case in which bf approaches zero so that the strength of the
rear shock is negligible and the pressure on the rearward-facing wedge deviates from the free-stream
pressure by a negligible amount. Then the drag coefficient based on a chord length t/sin 8s is

CD = --T | — ~ U sin V (8r -+ 0)
~M \ Pa* I f ^^ I

In this case pf and the drag do depend on whether isentropic or Rankine-Hugoniot shock relations
are used. It is necessary to evaluate the two drags to make a comparison. This has been done using
the relations for flow over a wedge given in reference 22 and the corresponding relations for wedge
flow with isentropic shocks given in appendix C. Figure 14 shows CQ versus 8f for the two types
of flow at free-stream Mach numbers M^ - 1.4 and 2.0. At M^ = 1.4, the two drags are quite
close until the critical wedge angle (at about 9.5°) is approached. The unfaired points correspond to
the strong family of oblique shocks for which the shock would be curved near the wedge and the
drag coefficient is not given correctly by the above formula. The Mach number based on the
component of velocity normal to the shock, Mn i , is indicated at individual points for comparison.
At A/oo = 2.0, the deviation between the two drags is imperceptable in this plot even when the shock
Mach number based on the normal component of velocity is as large as 1.4. These results show that
the difference in Rankine-Hugoniot and isentropic shock strengths is not always enough to make
the two drags equal. Nevertheless, for the cases considered, the weak shock correction factors of
table 1 are more nearly valid than the correction factors arrived at by retaining for strong shocks the
assumption that the isentropic shock Mach number is the same as the Rankine-Hugoniot shock
Mach number for the same airfoil. There is no assurance that this is true for cases in which the free-
stream velocity is subsonic.
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APPENDIX C

DERIVATION OF JUMP CONDITIONS ACROSS ISENTROPIC SHOCK

An isentropic normal shock is defined by the isentropic channel flow relations (e.g., ref. 15)
plus the requirement that the stream tube area of the subsonic state be equal to that of the super-
sonic state. From equation (4.19) of reference 15 this requirement is expressed by the relation

M,2

7+1
7-1

M
(Cl)

where A/1 and M2 are the Mach numbers ahead of and behind the shock. Replacing M2
 2 on the

right with MI 2 (M2
 2 /Ml

 2) and solving for Ml
 2 yields

2 - 2M,2 =
7-1

i —r

r-r
(C2)

where

r =\ (C3)

Also, from equations (Cl) and (C3)

7- 1
= r (C4)

The pressure ratio across the shock can be found from equation (4.14b) of reference 15 and is
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or upon substitution of equation (C4),

= 7-1) (C5)

Pi

Since p2 #2 = Pi fli > the velocity ratio can be evaluated from the relation for density variations in
isentropic flow (equation (4.14c), ref. 15) and we obtain

- = r
P2

The pressure and velocity ratios could be expressed in terms of the Mach number ahead of the
shock, M! if equation (C2) could be solved for r in terms of MI . This is not possible without
resorting to numerical techniques. The numerical inversion can be made less troublesome if the
reciprocal of equation (C2) and the identity

\ - r n ' -
t _ r - \ + r + r 2 + . . . t n 1 (n integer)

are used to obtain

2

r + r2 +r3 + . . . r = (C8)

(7 ~ I)MI 2

With 7 = 7/5, the polynomial on the left is r + r2 + r3 + r4 + r5. The root of Interest lies in the
interval

1 \T-i
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There is only one real root in this interval since all the terms on the left are positive and increase
monotonically with increasing r.

Once the quantity r is determined, the momentum loss across the shock can be evaluated in
terms of r with the aid of the foregoing relations. From isentropic flow relations in reference 15,
we have

JL/&-iU*.-i
41

Substituting equations (C2), (C5), (C6), and (C7) and rearranging leads to the expression

1 +r.7-1

27 7-1
(C9)

The foregoing normal shock relations apply also to oblique shocks upon replacement of ql

by the normal component of velocity qnl and replacement of Ml by Mn l , the Mach number
corresponding to q n i . Then for the general case (oblique or normal shocks)

r + r2 + r3 + . . . r 7-1 _
(7 -DM 2

ni
(CIO)

(Cll)

l - r7-1

l '

.7-1
, 1 + r + r2 + . . .r

27 \ r
7+1

1 +r
7-1

27

7-1
(C12)
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. Q,

If the flow ahead of the shock is at an angle
Shock 5j with respect to the x axis (i.e., qxl - ql

cos 5!), and the shock is at an angle 6 with
respect to the x axis, it can be seen from sketch
(e) that

sin 0-

X Axis

Sketch (e). - Velocity components ahead of shock.

With the aid of the relationship

<?oo 9oo COS6!

or in terms of the dimensionless velocities
MI = qxi/as t ,v l .=qyl/as t ,

•- fsi
"oo L

/ \
sin 6- cos 8 ( V I / M ! ) (C13)

1 -
7-1

the density ratio pi /p^ can be expressed as

-1

_P£
Poo

' -1

1 — "oo2

1

7_1

(C14)

Also the shock Mach number based on the component of velocity normal to the shock is related to
the dimensionless velocities by

M
«! [sin 6 - cos 0 (vt /«,)]

«i ~ (C15)
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Figure 1. - Jump relations for normal shock.
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Lifting quasi elliptic airfoil
Mao= 0.7557 a= l .32°
Thickness ratio = 0.1212

1 Numerical solution, ref. 7
Exact solution, ref . 10
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Figure 7. — Transonic flow for shock-free airfoil.
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Figure 8. — Expansion shock solution compared to compression shock solution.
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