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SUMMARY

A numerical study of finite-strength, isentropic pressure waves trans-
verse to the axis of a circular cylinder is made for the radial resonant
mode. The waves occur in a gas otherwise at rest, filling the cylinder.
A method of characteristics is used for the numerical solution.

For small but finite amplitudes, calculations indicate the existence
of waves of permanent potential form. For larger amplitudes, a shock is
indicated to occur. The critical value of the initial amplitude parameter
in the power series is found to be 0.06 to 0.08, under various types of
initial conditions.

INTRODUCTION

Combustion instability involving large pressure oscillations'in the com-
bustion chambers of rocket and jet engines has been observed. In (1), (2) and
(3), these oscillations were analyzed on the assumption that oscillations were
so weak that the classical acoustic theory is valid. However, a propagating
plane wave of finite strength will eventually develop into a shock. Thus,
one might expect that the high observed pressures imply the presence of shocks,
Actually, in a cylindrical case, a shock may possibly fail to appear owing to
the wave-scattering effect of the chamber wall. Moore and Maslen [4] studied
finite transverse waves in a circular cylinder, assuming that the disturbance
velocity potential could be expanded in a power series in amplitude. They
found solutions for the first three approximations to be periodic in time,
whereas only the first approximation is purely periodic in the plane-wave case,
They concluded that finite-strength, shock-free oscillations in a cylinder
were possible for some range of amplitude.

The present study employs numerical solutions of the dynamic equations to
find a critical value of the amplitude, up to which the power series converges
for the radial cylindrical mode, and there exists a permanent strong trans- •
verse oscillation without a shock.



FORMULATION OF THE PROBLEM

Differential Equations

An isentropic, irrotational fluid motion is governed by the following
equations :

Continuity p + V • (p̂ ) = 0 (la)

2 -2
Momentum <j> + \- + — - 2- = 2— (lb)Yt 2 Y-l P Y-l

V

State isentropy p <= p (lc)

Velocity potential Q = V<f> (Id)

where a is the speed of sound in the absence of any oscillation. By elimin-
ating p, p and c[ from eqs . (1), the following equation for velocity potential
is obtained:

„

In this report, we shall consider only axisymmetric cases (-JTT- = 0).
Also, for simplicity, y ~ 1 ~ 0 is assumed. Thus, equation (2) becomes

*tt " (i2 ' ̂r^rr + ̂ At " 7~ ̂ r = ° (3)

Denoting dimensional variables with primes, nondimensional variables are
defined:



where R is the radius of the cylinder. The resulting non-dimensional equa-
tion is

cj> - (1 - 4>2) <j> + 2<j) cf> - - <f> = 0 (4)tt r yrr r rt r r

The following boundary conditions specify no flow through the cylinder wall
and no flow at the cylinder axis:

<frr(l,t) = <frr(0,t) = 0 (5)

The corresponding dimensionless pressure is:

-<*t +-21)
p = e - 1 (6)

where p = p'/(p â ). p is the density of the fluid in the chamber when there
is no disturbance, and p is zero if there is no disturbance in the chamber.

NUMERICAL METHOD

Characteristics

Equation (4) proves to be a hyperbolic equation. Therefore, a method of
characteristics can be used for numerical solution (Ref. 5.).

Let u = <J>t , v = <|>r . (7)

Substituting equations (7) into equation (4) yields:

u -(1 - v2)u + 2v u = - v. (8)

t r r r

Directly from equation (7),

ur - vt . (9)

If we now introduce new characteristic coordinates £> n, then the first
derivatives with respect to r and t become:



9r
_ _ _ _
8? nr 8n

(10a)

_ _
3t 8n

(10b)

and equations (8) and (9) become

r V

Vn

Thus

2vn , -(l - v2)n u
1 -— vr

In order to make u and v indefinite, we have to haven n

n2(l-v2) - = 0 (ID

and

= 0 (12)

But

_i = _ 3r^
n n

and thus equation (11) becomes:

f> -2vf) -d-v', -0
n n



which yields the result

||) = -(1-v) or (1 + v) (13),(14)
n

The corresponding form of equation (12) is

)uc - (1-v
2)5 v - - v] + (1-v2)(C uc - £v_) = 0 (15)

If f) = -(1-v) ^ 0, eq. (15) becomes
O t n

- v -(1 + v)U ru? - £tvc) = 0

Thus, [£t - (1 - v)C rHu5 + (1 + v)v ] = v

And since

3£) = 1£) +3£) K) , li)
3t; 3t; 3t; 3r; 3t;

n r n t r

we have the characteristic equation

, - , _ .
3? + 1 + v - = ^ v

n n n

or

, , ,, , , ,
aT> + (1 + v) 3F> = 7 v

n n

If, on the other hand, -r—) = 1 + v ^ 0, then
ot

i^ - (I - v)v?] '+ S rt2vu5 - (1 - v )v? + (1 - v)uel = - v

and in a similar manner, we obtain the second of the pair of characteristic
equations:



9v = -v on
3r \- v) /-ia \(16a)

3u
It"

,
- V)

3v \
V)

/T/:I.\
(16b)

The pressure field is, (from Eq. (6))

p = exp[-(u + - 1. (17)

Numerical Calculation (Ref. 6)

v i 1 ty\/
A ••-.

V

(V
•

B

Fig. 1. Finding a new mesh point.
Characteristics - AD and - BD are
of opposite families.

In all cases, the differential
coefficients are replaced by the
divided differences over an interval,
and other quantities are replaced by
the arithmetic -mean over the inter-
val. For example, over the range
AD in Fig. 1, the equation

— = 1 + v will be replaced by the
dt
equation = [1 +

where [1 + v]AD signifies an arithme-
tic mean over the interval A and D
i.e., 1 + 1/2 (v + v ).

Suppose we know all values v, u, t and r at points A and B; then we can
find these values at point D as follows: Eq. (16) is replaced by

(tD -

(tD -

vdt*
(20)

[V + 1]BD (VD - V = (tD

And from eqs . (18) and (19),

For the calculation of this integral, see Appendix A.

6



1]AD - 1] BD
[v - [v -

(22)

1]AD(tD
(23)

Also, from eqs. (20) and (21),

7 vdt 7 vdt + VA[V-I]AD-VB[V+I]BD

I^AD - CV+I]BD

- [v - vdt x (25)

Thus, we can find the values of u, v, r and t at the new point. Furthermore,
using the foregoing equations, if we know all the information at the points
1, 2, ........ , 10 on line A-A' of Fig. 2, we can calculate new values at
the points I1, 2, , 10" on line BB1 .

Fig. 2. Grid of characteristics illustrating the process of calculation from
the known state AA' to the new state BB'.



Shock Occurrence

ID,
.Shock

Fig. 3. A shock occurrence, where two characteristics of the same family
cross. (At point P, 2 characteristics of family (I) are crossing.)

A shock is taken to be indicated by the intersection of two characteris-
tic lines of the same family. Following such an occurrence, the development of
a shock will obey the Rankine-Hugoniot conditions. In this paper, the
object is to find the possibility of the shock formation as a function of
wave amplitude. Therefore, the calculations do not consider the propagation
of the shock after it has first been indicated by coalescence of character-
istics. However, it may be noted that, in our method, the time level at each
stage of calculations is not the same. Therefore, in order to describe the
wave shape at the time the shock is first indicated, additional calculations
are needed to fill the empty (t,r) space up to that time. Referring to Fig.
4, the upper right hand side (cross hatched part) must be filled in.

0 Y-—̂ . j.o

Fig. 4. Distribution of grid points when shock is indicated.



Initial Conditions

Equation (4) is non-linear; therefore, the choice of initial condition
is very important for this particular study. For example, if a function
with singularities in the first derivatives is picked as an initial velocity
distribution, then a shock may occur very early at a very small magnitude.
In order to provide a suitable variety of initial conditions, the following
three problems are posed:

(a) Use the power-series solution (see ref . [4] and also Appendix A)
to the 2nd order approximation as an initial condition

<f> = e<|>(1) + e2<j>(2) + . . . (26)

and perform calculations for various values of initial amplitude e.

(b) Use the solution of the power series to the 2nd order approximation
with the velocity magnitude = 0.1 as initial condition and put the velocity
disturbance at the outer boundary as a function of pressure at the wall,
vwall = - °P (ref-

vwall = - ° ' P

This gives a gradual amplification of the transverse oscillation and the rate
of this magnification depends on the coefficient a. This case corresponds
to the response of a vigorous burning zone near the wall. This response may
be considered to provide a simple model of combustion instability.

(c) Start with the procedure of case (b) , but after the magnitude of
the oscillation reaches some prescribed value, then stop the amplification
(set 0=0) and watch the oscillation proceed. By this technique, the direct
effect of the wall amplification condition on the shock formation may be
minimized. Also, such an amplification cut-off would represent the limiting
effects of unspecified damping mechanisms. Further, using small values of a
should also minimize any direct effects of amplification rates on the waves..

Error Estimation

There are no constraints imposed on the spatial mesh size, and At is
automatically determined once the spatial grid size is given.

By using a Taylor series analysis of the equations, truncation errors
for each equation can be estimated.

£) = v-1 (13)



The Taylor series is

r . - r i + 1 - ) A t + f ) A t ' + 0(A t3) (28)
n ,

Applying Eq. (13) for both points i and i+l, we get

Integrating eq. (16a) gives

u .. - u. + [-r- v + v] - [-r- v + v] = /. — v dt
_L ^ * i -i ^ • -L Li+l i

n

. ' Vi - X
n,i

We add above two equations and divide by 2:

Mt> +£> . l - [ v - l ] _ (29)
n » i+l n > i i > i+l

Comparing Eq. (28) and (29) gives the truncation error:

TE = [ - ) ]At + 0(At2) (16a)
4 9t2

v.) + 1] - / v dt

whence :

= ;i+1 7 v dt
10



Truncation error for this equation is only that for the integration. (See
Appendix B)

For the integration, the assumption is made that the velocity profile
between 2 grids (i & i 4- 1) is linear, i.e.,

V — Vi+1 i .
v = v. + T Ar1o i Ar 1

But a Taylor Series expansion yields

v —v
i+1 ±

v = v. H :
o i Ar

Fig. 5. A characteristic line
between 2 grid points i and i+1.
0 is a point on this character-
istic line.

+ 0(Ar3).

So the error in the velocity due to the
linear assumption is

max

where (. 2) is the maximum value of
max

on the characteristic line between

i and i+1. As is shown in Appendix A,
the integration was carried out as
follows.

v dr v

Thus, the resulting truncation error is of order:

T.E. - (>
1 ArJ

' [v+1]. _ r
max i,i+l

11



RESULTS

For all calculations, 51 grid points are chosen. Thus, Ar is 0.02
initially.

Case (a). - The following calculations were performed for initial
conditions given by two terms of a power series in e (eq. (26)):

Table 1: Shock occurrences for various initial wave magnitudes.

Initial ^ At Time
Magnitude

0.1

0.175

0.195

0.200

0.250

0.300

0.350

e

(4.485 x 10~2)

(7.849 x 10~2)

(8.746 x 10~2)

(8.970 x 10~2)

(1.1213 x 10"1)

(1.3456 x 10'1)

(1.5698 x 10"1)

Shock

No

No

Yes

Yes

Yes

Yes

Yes

(R/ao)

—

—
13.5

5.2

2.2

1.5

1.3

Fig. 6 shows the behavior of a wave with initial magnitude 0.30 (e =0.1346).
From this figure and with the table above, it is clear that as time goes on,
a sharp wave front appears for the waves which'have comparatively large
initial magnitudes and the crests grow, eventually being followed by shock
formation.

Changes of wave magnitude with time for each initial magnitude is descri-
bed in Fig. 7. By magnitude is meant the highest wave amplitude during a
half-cycle of wave oscillation. Every wave increases its magnitude at first,
but lower magnitude waves often reach a certain amplitude, decay almost to
their own initial conditions. Waves repeat this process with a period almost
equal to three times that of the wave oscillation period.

The amplitude of this magnitude change is of order (e3)3, i.e., 3rd order
in the power series for velocity. Since there is no damping factor like
viscosity in this problem, the difference between initial condition and the

*
Definition of Magnitude (see also Appendix B): Magnitude = 0.581864
where 3 is the first zero of first order Bessel function, i.e., J1(3)=0.

12



exact solution for the differential equation does not attenuate and presumably
causes these fluctuations of wave magnitude. Fig. 8 indicates the possibility

Table 2: Order of the change of wave magnitude. (eB)3 is the order of the
3rd order approximation of the power series solution for velocity.

Initial Magnitude

0.1

0.175

0.195

0.200

(eg)3

0.0051

0.0272

0.0378

0.0407

A (Magnitude of

~ 0.0025

~ 0.025

~ 0.045 .

~ 0.050

Wave)

of the existence of a wave magnitude above which the wave grows to a shock,
but below which it oscillates in the cylinder forever. An initial wave magni-
tude around 0.180 seems to be the borderline for this particular initial
condition. (e value of the series is 0.08.)

Due to the irregularity of this oscillation, we failed in the attempt to
find a repetition of identical wave patterns after a certain number of cycles
for an initial magnitude of 0.175. However, as seen in Fig. 9, the wave shape
of magnitude 0.175 after 16 cycles still is not steep at all. At least this
helps to justify our conclusion that no shock occurs.

Convergence and stability of the finite difference scheme were also
checked to determine if round-off or truncation error could, be the source of
fluctuations of wave magnitude. In Fig. 10, comparison is made between calcu-
lations with 51 grid points and with 76 grid points for the initial velocity
magnitude 0.175. The results show that the effect of the increment in number
of grid points is almost negligible, and imply the convergence of the finite
difference scheme. As for round-off error, calculations with double-precision
accuracy were made at the wave magnitude 0.7 and the results are shown in the
following table. After 243 calculation steps, the difference is still 0(10~5)
and very small. Thus the finite difference scheme is very stable.

13



Table 3: Effect of round-off error; single precision (accuracy of 7 deci-
mals) and double precision (accuracy of 16 decimals).

Time Steps

0

53

103

143

193

243

Position
(Double)

0.488473
(0.488490)

0.474543
(0.474523)

0.482243
(0.482259)

0.474554
(0.474553)

0.473359
(0.473345)

Time

1.05907
(1.05909)

2.06016
(2.06021)

3.06948
(3.06952)

4.03490
(4.03493)

5.03056
(5.03058)

Velocity

Initial Condition

0.544833 x 10~}
(0.544851 x 10 )

0.510547 x 10~̂
' (0.511077 x 10 )

-0.643517 x lO'ij-
(-0.643588 x 10 )

0.997936 x 10~*
(0.998079 x 10 )

-0.923763 x 10~|
(-0.923878 x 10 )

Pressure

-0.445474 x 10"|
(-0.445476 x 10 )

0.426178 x 10~|
(0.426278 x 10 )

-0.397105 x 10~}
(-0.397099 x 10 )

0.213518 x 10~|
(0.213533 x 10 )

0.313444 x 10'?-
(0.313555 x 10 )

Case (b). - For oscillations driven by wall amplification (eq. (27)),
six of a values were chosen and the results are shown in Fig. 11-A and B.

Table 4: Shock occurrences for various rates of wall amplification.

0.20

0.15

0.10

0.05

0.03

0.01

Time

5.1

6.1

11.1

18.3

31.1

72.2

Shock

Position

0.14

0.92

0.74

0.003

0.07

0.08

Magnitude

0.356

0.307

0.390

0.361

0.355

0.238

14



A shock is most likely to occur at the center, but now the boundary condi-
tion v = - op is introduced at the outer surface. Thus, when the wave is mov-
ing inward towards the center of the cylinder, it is at the same time being
pulled back at the wall, decreasing the energy flow toward the center. Thus,
until the strength of the wave gets big enough to overcome this pullback, a
shock will not be generated. That is the reason why the shock is developed
at such a high magnitude in this case in contrast to cases (a) and (c) below.

When a is below 0.05, a weak shock is generated almost at the center of
the cylinder and is different from the ones when a is above 0.1. Figs. 12 and
13 show the wave patterns for a = 0.05 and a = 0.1 just before the shock is
generated. Also Fig. 14 shows- the process of wave amplification for these two
cases.

In the case a = 0.01, the amplification of wave magnitude is very small,
as can be seen in Figs. 11-A and B. But still a shock is generated. This
implies that the power series converges up to a certain value of e, and this
£ is no bigger than 0.090 (magnitude of velocity = 0.2).

Case (c). - In this case, the value a = 0.05 is chosen and the amplifica-
tion is stopped at various times but always when most of the kinetic energy
is transferred into potential energy. Thus, all actions of stopping amplifi-
cation occur at the same phase of the oscillation.

Figs. 15 and 16 show the results. In Fig. 16 time is measured from the
time when the amplification is stopped. Thus, t = 0 line in Fig. 16 is
equivalent to the a = 0.05 line in Fig. 15.

Compared to Case (a), this case has much less fluctuation of magnitude,
as was anticipated. From Fig. 16, one can see that the largest magnitude at
which a transverse wave canoscillate in the cylinder without growing into a
shock is somewhwere around 0.13 (e = 0.058). This figure .is a little smaller
than the result obtained for Case (a) (0.18). Thus the history of the oscill-
ation must be an important factor in this problem.

For all cases (a,b, and c), it appears that there exists a permanent
potential form for this resonant mode of transverse oscillation in the circu-
lar cylinder f°r sufficiently small but finite values of e.

For the purpose of checking whether the above results are sensitive to
the value of 0, one calculation was made stopping amplification around
velocity magnitude 0.2 for the case of a = 0.01. The result is shown in
Fig. 11-B. A shock is still generated in this case at the position R = 0.14.
So we may conclude that the above results are quite independent of the value
of a, as long as a is reasonably small.

15



CONCLUSION

Numerical solutions have been obtained for the one-dimensional resonant
mode (n = 0) of the nonlinear oscillation transverse to the axis of a circu-
lar cylinder.

Three types of calculations are performed, and each indicates the
existence of a permanent potential form for this resonant mode (n = 0). There
is apparently a critical value of e for the power series to converge. The
value is around 0.06 = 0.08. Above this value, the wave develops a shock
pattern, but below it, the wave oscillates in the cylinder for an indefinite
time, probably permanently, as suggested in Refs. 3 and 4.

16
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APPENDIX A

Calculation of Integral / — vdt and / — vdt

On the line AD, we have

dr = [1 + v] dt.

Thus, the integration becomes,

,D
Vdt - AD A r

(A-l)

Integration along characteristic
lines AD and BD.

Assuming linear velocity profile along the characteristic line AD, we can
evaluate the integral. The result is,

fl rA r - V + [VA -

* In the case when point A is at the center of the cylinder, i.e. r. = 0,
we have

"D,D 1

In a similar way, we can integrate the equation on the line BD.

•p\ -I -t •*• T\ \ T) T\ S *~ -n

rD — Vdt = f ry-
B r [v-lj. D B D

B D'BD B D D

* In the case when point D is at the center of the cylinder, i.e., r
we have,

'I 7^-TI^-

- o,

18



APPENDIX B

The equation is

b - (i - <f>2) <j> = 2<j> <{> = .-<}>
tt r rr YrYrt r r

subject to <j>r(l,t) = <j>r(0,t) = 0.

We expand the velocity potential in a power series in amplitude
parameter e:

Then, the first order equation is

1 . o

with the following boundary conditions:

d> (l,t) = <j) (0,t) = 0

From the boundary conditions,

= §(t) jft

where 3 is a constant such that J (B) = 0, i.e., 3 = 3.83171. Also, g(t)
will be cos (3t) or sin (Bt) , so we can get a solution in the form,

= cos (Bt) JQ(Br) (B-2)

The second order equation is

. ( 2 ) (2) 1 , (2) . . ( l ) . ( l )
m ~ <P ~ — <f> = - 2cf> <ptt rr r r Yr rt

19



Introducing eq. (B-2) into the above equation yields

*tt} ' *rr' - 7 *r2) = *3jl (Sr) Sln (26t)

By the same technique of separation of variables,

<j>(2) = gf(r) sin (2Bt). (B-3)

and, for the function f(r),

frr + 7 fr + 43
2f = - S2J2 (gr) (B-4)

with the boundary conditions:

fr(0) = fr(l) = 0

Using a Green's-Function method, the inhomogeous Bessel's equation (B-4)
is solved:

f = J (2gr)
I / \J

T /O rt \

-P — T f *) Q-*~\ -- \ •-'— T f 0 Qi-̂fR - JQ (2Br) - Y(2gy
 T
0
 (23r)

The Wronskian is

_ _2_ J(23)
irr Y(2g)

Then

TT R Y (2g)
f = y {/I x Jn(2x) j2 (x) dx /r > J (2Br)

z u u i j (,zp; u

x JQ(2x) J
2 (x) dx YQ(2Br)

x J2 (x) YQ (2x) dx JQ (2Br)} (B-5)

20



The integrations in eq. (B-5) are carried out by using the trapezoidal rule.
Thus the solution of the original equation, to second order, is,

<j> = e cos (0t) J (gr) + e2g sin (23t) f (r) (B-6)

where f(r) is given by Eq. (B-5). Then initial conditions (at t = 0) for u
and v are

u = <f>t (t = 0) = 2(3e)
2 f(r)

(B-7)

v = ̂  (t = 0) = - (eg) J^Br)

and the magnitude of the initial wave pattern is defined by

Mag. = 0.581864

Also, the magnitude of wave over a certain cycle is defined by the largest
amplitude of the wave during the period.

21
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