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ABSTRACT

The subject of this ihvestigation is to answer the question: - '
Whether any significant increment to accuracy éould be transferred from
a vsuper—control continental net (continental sate_llite»net or super-
transcontinental traverse) to the fundamental geodetic net (first~order
triangulation). This objective was accomplished by evaluating the
positional accuracy improvement for a triangulation station, which is
near the middle of the investigated geodetic triangulation net, by
using various station constraints ovér its geodetic position.

This investigation on a A1858 kilometer long triangulation chain
shows that the super-'control net can provide a useful constraint to -
the investigated geodetic triangulation net, and thus can improve it
only when the accuracy of super-control net is at least 1 part in
500, 000. ‘

Thé preliminary accuracy of super-transcontinental traverse is
already better than this limiting accuracy of 1 part in -500,000; how-
ever, the preliminary accuracy of continental satellite net is lower
than this limiting accuracy of 1 part in 500,000. As such, continental
satellite nets do not seem to provide any useful constraint, at least

to this particular investigated triangulation chain.
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1. INTRODUCTION"

Geodetic triangulation has been accepted as an accurate method of
determining "precise' coordinates for the triangulation stations of relatively
short chains. This well-accepted idea was also given in an article "How
aécuréte.is First-Order Triangulation?" [Simmons, 1950, pp. 53-561 with
the following introductory words: |

The question is often asked, ""How accurate is the position
of a triangulation station, " or "To what accuracy are the
distances between triangulation stations known?'" These
questions are difficult to answer, principally because
first-order triangulation gives the optimum accuracy

in the measurement of great distances and there is at
present no super yardstick to which it can be compared.

Two Ihodern technological advancements, namel_y; satellites and
electronic distance measui'ing (EDM) instruments, have questioned the
first-~order triangulation accuracy, especially if triangulation is extended
to distances longer thanv 1000 km or more. In such extended triangu-
lation systems systematic errors like lateral refractioh, propagation of
observational errors, residual polar motion effects on latitude, longitude
and azimuth, etc. [Mueller, 1969, pp. 61, 86-87; Pellinen, 1970, pp. 34-35;
Wolf, 1950, pp. 117], which cannot be eliminated, accumulate. Lately
the question has been raised whether any significant increment to accuracy
is "cascaded'" from a 1:1 million 1000 km net through a 100 km net to
local control over 10 km distances. e

The satellite triangulation and super-transcontihental traverse, being
of the highest achievable accuracy of today, i.e., super-control net of
"zeroth" order, constitute a modern geodetic super structure, within
which the classical géodetic triangulation is supposed.to provide a geodetic
control densification. _

According to the classical geodetic concept a lower order system should be
tied to a higher order system [Jordan/Eggert/Kneissl, 1958, Vol. IV. 1, p. 112].
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St:itistically, this means that the variance-covariance of the higher order
-system, as a lower limit for accuracy, be at least compatible with the
internal precision of the lower order system. For all practical reasons
the accuracy of the higher order systems should be substantially better
by a factor of two to three) than the  subordinated system, thus supplying
'1 'rig'drous constraint. in the reduction of the lower order system [Schmid,
1969, p. 4]. o | |

The objcctive of this investigation is to answer the question:
Whether any significant increment to accﬁracy could be transferred
from a super-control net to the basic geodetic‘ net (first-order triangu-
lation).'_ This objective was accomplished by evaiuating the positional
acéufacy improvement for a triangulation station, which is near the middle
s of vthe investigated geodetic triangulation net, by using various station

constraints over its geodetic position.



2. DATA AND ACCURACY ESTIMATES
2.0 Data

For the purpose of the present investigation, the triangulation of the
western-half of the United States has been considered, as this is more
accurate than that of the eastern-half of the United States [Simmons,
1950, p. 54]. The investigation is done on the chain from Moses Lake,
Washington to Chandler, Minnesota (Figure 2.0-1), as these two stations
are also common on both the continental satellite net (CSN) and the
super-transcontinental traverse (STT).. The data used was supplied by
the 'Ijriaggglg_tion_B.rﬂanch_gf_Géodesy Division, and the Geodetic Research and
Development Laboratory, both of the National Oceanic and Atmospheric

Administration, Washington.

2.01 Geodetic Triangulation Net.

The observed data used is for the period 1897-1965. The approximate
‘coordinates used are from 1965 adjustment. The details of Moses Lake -

Chandler triangulation chain are as follows:

Number of stations 191
Num ber of bases [Taped S | 27

Geodimeter ' 2
Laplace stations 13
Observed directions '_ : 919

Distance between two stations [Minimum 273m
Maximum 190 km

Total length of the chain 1 858 km.
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The supplied data Was in U. S. sign conventions, i.e., longitude
positive westWards and azimuth reckoned clockwise from south [Bouchard
and Moffitt, 1964, pp. 94, 315; Mitchell, 1948}, which was converted
internally within the program to the conventional sign conventions, »
i.e., longitude positive eastwards, azimuth reckoned clockwise from
north [er.'ossmann, 1964, pp. 5-6; Mueller, 1969, pp. 15-19]. It is
assumed that the necessary reductions hafre been applied to the observed data
and the weight function P is "apriori' knowntobea sufficient good accuracy. |
The cenfigurations and specifications for triangulation net are dealt
with in [Bomford, 1965; Bouehard and Moffitt; ,_1964; Gossett, 1950].

A typical configuration of U.S. Coast and Geodetic Survey triangulation
chain is shown in Figure 2.0-2.

2.02 Super-Control Nets.

Super-transcontinental traverse (STT) runs across the western-half
and the eastern-half of the U.S.A. (Figure.2.0-5). Its specifications, con-
figuration, reduction. of data and instrumentation are dealt with by Meade

F1967; 1969a; 1969b].

Continental satellite net (CSN) is, in general, planned in such a way.
so that the stations are around 1200 km apart and that these stations are
evenly distributed over the entire area. CSN-stations are either the
stétions of first-order triangulation net or these are connected to them.
Its specification and configuration are dealt with in [Deker, 1967; |
Mueller, 1964; Pellinen, 1970; Schmid, 1970; Shedlikh, 1970; Veis, 1960].
The continental satellite net of North American Continent comprises of
fwenty stations which can be anchored in the three world net stations;

| ’I‘hule Greenland,, Moses Lake, Washington,, and Beltsville, Maryland
Furthermore, planned is a tie to a fourth world net station - Shemya

(Figure 2, 0-4) [Schmid, 19707,
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2.1 Accuracy Estimates.

2.10 Data.
The following representative standard errors for observed data of Moses

L.ake - Chandler triangulation chain has been suggested ;[\Meade, 1970]:

Directions - 0’4
Azimuth 0’8
Base [Taped 1 part in 500, 000

Geodimeter [ 1 ppm for distance > 15km

1.5cm for distances up to 15 km

2.11 Networks.

The mean of all section closures, which is the accuracy measure for the
investigated geodetic triangulation net, is given as 1 part in 317,000 [Adams,
19307. The standard position errors of the end stations of super-transcontinental
traverse, which represent its accuracy measure, using actual,d.ata_ sets as given
by different investigators differ too much from each other. The proportional .
error, ‘which is the standard position error divided by the distance of the
station from traverse-origin, is ﬁsed for this investigation. The proportional
errérs of super-transcontinental fraVerse are given as follows: 1:740,000 over
318 kilometer long tréverse and 1:1,100,000 over 1270 kilometer long traverse
[Foreman, 19707; 1:670,000 over 270 kilometer long traverse [Gergen, 1970]
and 1:3, 000, 000 over 1858 kilometer long traverse ESSA.,, 19691. The pre-
liminary accuracy (i.e., proportional error) of continental satellite net, as
obta_ined from the supplied data, corresponds to 1:385, 000 for Chandler station, -
Because of this wide range in preliminary accuracy measures of these two super-
control nets. investigations using the following accuracies (station constraints),
are made: 1:300, 000; 1:400, 000; 1:500, 000; 1:600,000; 1:700,000; 1:1M;

~1:1.5M; 1:3M. The use of these accuracy measures, which are within the limits
of preliminary accuracies of the two super-control nets, will determine a limit on
the accuracy requirement of the super-control net, which would be necessary to

improve the geodetic triangulation net.

-9-



3. COMPUTATIONS AND RESULTS

During the earlier period of this investigation cons1derab1e thought
was given -{o the sclection and use of such formulas and methods which
would_:not only provide high a0cura01es, but also minimize or eliminate
loss of accuracy in computations. This resﬁlt'ed in using Helmert -
Rainsford - Sodano's Iterative Solutioﬁ for Inverse Problem (Appendix I),
vwhic_h are equally applicable for short and long lines, and Conjugate
Gradient Method (Section 3.2) for the adjustment of the triangulation
nets where the original observation equation coefficient Matrix (A- Matrxx)
is used, thus avoiding direct formation of normal equations where certain pro-
pertxes of the original A-Matrix are lost. - To minimize the round-off errors,
computations are done in double-precision with-double-precision: storage-

Miller-Merbach, 1970; Section 3. 281

- 3.0 Selection of Adjustment Method

Ftom the two basic adjustment methods, i.e., Method of Observation . |
Iiquations ah_d Method df Condition Equations, the‘former has been ,prefefred
fof the pt;esent'investigation due to reasons of simplicity and clarity. The
reasoning of this preference has been dealt with in many publications
fAshkénazi,- 1967, p. 167; Gotthardt, 1968, p. 180; Grossmann,» 1961,
p. 174; Helmert, I Teil, 1880, p. 556; Jordan/Eggert/Kneissl, Bd. IV. 1,
11958, p. 537; Wolf, 1968, p. 323; Wolfrum, 1969, p. 1]. Due to the large
size of the trlangulatlon net under investigation and the ava1lab111ty of digital com-
puters, iterative methods were considered because (1) they are easier to program,
‘(2) they require less storage space as the coefficient matrix of a triangulation
‘net is very sparse, (3) they use directly the original set of equations through-

out the process and hence rounding-off errors do not accumulate from one

-10-



fterative cycle to another. One important factor for deciaing to use an itera-

tive method is to know in advance whether the rate of convergence is rapid

for the system. However, if the rate of convergence is found to be slow. which
in general is the case in large systems, it can be accelerated by a certain
process rAshkenazi, 1969, p. 34; Fox, 1965, p. 194; Hilger, et al. 1967, p. 11:
Ralston, 1965, p. 437]). While searching for a suitable adjustment method this
investigator came across the Conjugate Gradient Method (Cg - Method) TRalston.
1965; Schwarz, 1968 and 1970; Wolf, 1968; Zurmihl, 19581, which has the
following distinct advantages over other iterative methods, such as Gauss-

Seidls, -Jacﬁbi~;;g:Relaxation— and-Gradient methods:

1. Original A-Matrix is used, ’Ehus avoiding the formation of normal
equations, where certain useful characteristics of A-Matrix. such as
very small coefficients méy be lost.

2. Original A-Matrix, _which has very few non-zero elements, is
easily stored in comparatively much less computer space using an
Index-Matrix,

3. No "mesh-point numbering technique' [Ashkenazi, 19671 to keep
the band-width of the system a minimum is necessary. Thus stations
can be added or taken out from the existing triangulation system with-
out caring for their numbering. |

4. Tt is a finite iterative process. Theoretically, the solution vector is
obtained in a maximum of n-steps, n being the number of unknowns.
Therefore, eigenvalues need not be calculated for determining the
convergence, However, experimentation (Sec;tion 3.4) shows that the
solution vector is not obtained in n-steps, as the orthogonality between
the 'residue—vectors is not maintained exactly (Section 3.27). Con-
sequently, the residue-vector r(®) after n-iterations is not zero-
(Section 3.29). This deviation from zero depends upon the condition of
the gsystem; the poorer the condition, the larger will be the deviation.

5. Even in case of a poorly conditioned system solution vector is obtain-

able after more iterations.

_11-



‘6. 1In large nets the ef.féct of round-off errors depends upon the elimination
séquehce in normal matrix [Korhonen, 1954]. In Cg-Method the
elimihati_on sequénce plays no role since adjustment is simultaneous,
i.e., entire data as a whole is used. |

7. Tach approximation x{') to the solution vector is closer to the true

| solution x than the preceeding one,
8. The ability to start anew at any point in the computation using the last

x(J) as initial value so as to minimize the effects of round-off errors.

3.1 Mathematical Mode! (Method of Observation Equations).

Let L'i_ be the m independent observed quantities, v, the residuals to the
observed quantities (ob.taihed from the adjustment) and x,y, z,... the n unknown
parameters to be determined. Each observation gives an observation equation,

whose generiﬂ from is
Lyt vy = fi(xy, 2, 0.0 ' C (3.1-1)

whére i=1,2,3..., .m. and f represents a linear or non-linear function. The
method of least sdua_’res however demands that (1) f should be lineaf, i.e.,

a linear relationvship between the observations and the unknowns and (2) the
number of observations (m) should be greater than those of the unknowns (n)

i. e.,i'n>n. In case of a non-—lihéar function f this is linearized by using

Taylor s.;e'.ries abqut such good approximate values of the unknowns Xo» Yor 2oy - -
such that the second and higher order tefms can be neglected. In this

case, equation (3.1-1) can be written as

L + vy = fj(Xtdx, yotdy, zo+dz, ...)
or
Ly + vy = f{(Xo0, Yo» Zoy...)+ aydx +bydy +cydz +... (3.1-2)

ie. v, = adx + bdy +edz +..+b, (3.1-3)

-12-



where

of, of of '
T 5k by = g; ¢y = 8_71 _ (3.1-4)

Vf‘iz fi (‘Ov y01 zO, »-.) - IJi.
Observation equation (3.1-3) can bc written in the matrix form as
v = Ax + ,1- (3.1-5)

That we have preferred to use weighted constraints to the station Chandler can
be seen at the end of this section. These "a priori" weighted constraints on

the station position generate ohservation equations of the form
vy = Fx (3.1-6)

where F is a rectangular matrix, whose elements are-either.zero:;or-one. Thus

the complete observation equation system can be written as

v = Ax +]
, (2.1-7)

V.= Bx + L, (3. 1-7a)

N R VN I I : -
V= [VJ» B = LF_‘ L '[o] . (3.1-8)

Observation equations for direction, l.aplace azimuth, and distance are

where

given in.Appendix 1T TGrossmann, 1961, pp. 170, 177, Wolf, 196K, pp. 32~
3247. Due to angular and linear (distance) observations the observed datia in.

) 1
a triangulation net is of a heterogeneous or digsimilar nature, This hetero-

IThe term "heterogeneous or dissimilar' observations is used when the methods
of their measurement are diverse; thus not only angles and distances, but also
distances and heights are heterogeneous observations [Wolf, 1968, p. 561;
[Schmid:and J. Schmid, 1965 p.10]uses the term "hybrid systems' for !'hetero-
geneous systems''. '

-13-



geneous data have not only more than one dimension but also different
":1Ipr‘ivori” standard errors. To make thi's data homogeneous, i.e., dimen-
' sionleés and of unit weight, it is divided by the corresponding ''a priori"
standard error g. For reasons of simplicity the mathematical model used is
. assumed to be urjcorx;elated. The resulti ng.homogenized 6bservation equation

system can be written as

(3.1-9)
v, = Fx
where. ’
v =v/o; A=Al 1=1/g
vy = Vi/oy; Fy = F/o S | ©(3.1-10)

0, = standard error of L,; 0, = standard error of x;.
Equations (3 1-9) and (3.1-10) can be written in the matrix form as

V="158+1L (3.1-9a)
1~ [1]
F] T —[OJ (3.1-10a)

Equation ;(3,1-9) is used directly for adjustment by conjugate gradients method

where

respectively.

in Sections 3.23and 3.24 where these are used without ~ 'sign‘, although the A-
matrix and 1 -vector used there are homogenized. A complete algorithm for
obtaining solution vector and N* are given in Sections 3, 24 and 3. 26 respec-
tively, which give vIPy and Q,, or Q,, for éparticular column. U.sing._ these
-quantities the "a posteriori'' variance of unit wéight (fnoz), standard errors (m,,
m)of unknowns; standard position.al error (m,) and the elements A, A, B of the
error ellipse are' computed [Gotthardt, 1968, pp. 121-125; Grossmann, 1961,

pp. 163-168; Wolf, 11968, pp. 286-292]. Variance of unit weight m& is given
by ‘

;~ 2 VTPV
m = ———————————
0 nio - | (3.1-11)

-14-



Standard errors (m,;my) of unknowns are given by:

my, = I:1:10 ,’ Qux m, = ﬁ‘]O J ny ’ . (3.1-12)

and the standard position error

2 ~ -
m;,=.m;+m, = mlo\/axerny . o (3.1-13)

The elements of the error ellipse are given by

1 2Q,, | -
6 = — arc tan , _ 3.1-14n

2 Q- Qyy ( ’
A = mg me - = semi-major axis of error ellipse | (3.1-14b)
B = m, fQ,m = semi-minor axis of error c¢llipse (3. 1-14¢)

where ' :
Qu * Q , 1 | '

Quar,otn = 0y o / Qu - Q)" + 40g (3.1-14d)

The standard errors of unknowns give the mean uncertainity of a station only
in the direction of the coordinate axes, while the error ellipse gives this in
any arbitrary direction. The standard positional err()r m,, as well as the error
ellipse possess an important characteristic that these are independent of the
coordinate system rotation, '

The geodetic triangulation net is adjusted as an independent or free net,
as it is not connected with other nets. For its unambiguoug determination,
besides the observed data which includes directions, bases and astronomical
observations, i.e., longitude and azimuth,one fixed station is required to serve
as origin [Gotthardt, 1968, p. 167; Grossmann, 1961, p. 175; Jordan/Eggert/
Kneissl, Bd. 1V. 1, 195é, pp. 534-542]. Moses Lake station is kept as origin
with its coordinates obtained from satellite triangulation results; these coor-
- dinates have been assumed to be thé best known doordinates.

Combining the free triangulation net with super-control net of zero order,
i. e., continental satellite net and/or super-transcontinental traverse means
constraining the scale and/or orientation of the triangulation net. The etfect of

this combination is comparable with "tennis racket and string effect, " where

..15..



the figid outer racket frame (super—confrol) constrains the loose strings
(triangulation net). If the strings are already constrained, there would be no
"Visible” effcet of the additional constrain from the rigid outer frame. This
is also the phrposc of this investigation, i.e., to evaluate whether the existing
~ geodetic triangulation is sufficiently "constrained" or needs to be constrained
by additional super-control net. Tor the present irivestigation triangulaﬁon

station Chandler, which is common to the three networks, provides constraint.

Geodetic triangulation net can be combined with the super-control
net in eit'helr of the two ways:

(1) By using the actual data, i.e., by using the actual

cdordihates with their standard errors of Chandler as obtained

from’ CSN and STT with the geodetic triangulation; or,

(2) . By adding a weight constraint to Chandler with its

coordinates from the geodetic triangulation. _

-For this investigétion, the first way could not be -used, as the super-
control net coordinates of Chandler station are not compatible with those
.obtained from geodetic triangulation. As such, the second way has beeh
prefer,red by using the actual preliminary accuracy estimates for Chandler,
which are 1 part in 385,000 and 1 part in 3 million, as obtained from
CSN éns STT, réspectively. Further investigations are made by dsihg
hypothetical standard positional error accuracy estimates of Chandler
étation, which are 1:400,000; 1:500,000; -1:600,'000; 1:700,000; 1:1M;
1:1,5M. These accuracy estimates are within the .actual preliminary
accuracy estimates of super-control nets. Thus, using these various
accuracies of super-control net, a feeling for the accuracy limit of super-
control net, which would be necessary to improve the ihvestigated geodetic

triangulation, can be obtained. .

-16-



3.2 Conjugate Gradient Method (Cg-Method).

- 4,20 Introduction. i
Although Cg-Method was develobed by E. Stiefel and M. R, Hestenes
independently from each other in 1952 lStiefel, 19552, p. 23], this has been-
used only twice') for geodetic computations lHilger and Remmer, 1967;
Wolf, 1968, p. 1851.. Its basic algorithm given in most publications FHilgex:~ and
Remmer, 1967; Schwarz; 1968 and 1970; Stiefel, 1952] is good for well- '
conditioned systems. In case of ill-conditioned systems (Section 3. 27) use of
basic algorithm means too many iterations. However, use of certain
formulas [Hestenes and Stiefel, 1952, p. 433] shows the suitability of
Cg-Method 'éven for veryv ill-conditioned systems. _
~ An attempt is made here to derive the Cg-Method and put its
algorithm together becétise this is too scattered in mut'hemati,cal liter-
“ature. The Method of Conjugate' Gradients (Cg-Method) is a non-
stationary relaxation method, which theoretically solves a system of

simultaneous linear algebraic equations

Nx + u =20 (3.2-1)

in n-iterative steps, where N is a symmetric and positive definite n x n
coefficient matrix, x is.a nx:1 vector of unknowns and u isa n x 1 vector of
" constants, In geodetic work as the columns of m x n A-matrix (observation
| equation coefficient matrix) are independent (A-matrix is of full-rank), its -
quadratic matrix ATA(=N)> is symmetric and positive definite. Then the
gystem (3.2-1) - known in geodesy as the Normal Equations - has a unique
solution,

For the derivation of this method the matrix N of equation (3. 2-1) will
be congidered symmetric and positive definite, and then the derived algorithm
will be modified for an arbitrary N-matrix and for directly using the observa-

tion equations without explicit formation of normal equations.

}) so far known to this investigator.
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3. 21 Basic 'Relaxation Method.

Certain terms of the basic relaxation methods, which are used later,
will be discussed'fifst:
To obtain the solution of (3. 2-1) by relaxation methods a trial vector x(9

instead of x in (3.2-1) is used, which gives a residue vector "r(O)
(@ = Nx(9) + u. (3. 2-2)

The aim of re laxatlon methods is to change the trial vector x(9 until the
residue vector (9, disappears.
This residue vector (% is the gradient of the quadratic function F(x(o))

given by

Fx) = —;— x(O" Nx(© + u"x(9). (3.2-3)

Differentiating partially the quadratlc function F(x(o)) w.r.t. the trial vector

x( o) we obtam : '

o . _
: %}%—b— = Nx(®) + u,- o (3. 2-4)
(3. 2-2) and (3. 2-4) give

| r(°) grad F = Nx(9 + u, - ..(3. 2-5)

Equation ('3, 2—5) indicates that the solution of (3. 2-1) is synonymous with

the problem of finding a minimum of the quadratic function F(x(o)) given by
(3.2-3) FRalston 1965, p. 439; Schwarz, 1968, p. 45]. Let h be an arbitrar-
11y selected non-zero relaxatlon dlrectlon vector, whlch corrects the trial
vector x(°) in the direction of h so as to achieve a minimum of the quadratic
function F‘(x(o)) giving a new trial vector x’, which is a linear function of

the last trial vector x( ), glven by _
x(9) + Ax(°) = x(® +an (3.2-6)

where X is the relaxation distance factor or the correction factor for the
unknown vector, which is so determined that the quadratic function F(x"

be a minimum; F(x) is considered a quadratic function of the only variable
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X\ with constant (fixed) x(°) and h. Thus
F(x") = F(x(%)+2Xh)
Using  (3.2-3)

| _F(xl) = %((X(o) +2h) " N(x(O) +3h)) + uT('x(O) + h)

- % xOTNx(?) + A (x(OTNh) + 'é‘ ¥h'Nh+u"x(%) +2u'h

Uaing (3.2-3) and (3.2-5)

F(x) = Fx( +x 1™ + —;— Xh'Nh., . | (3.2-7)

To find a minimum of F(x') in which the only variable is ), equation (3.2-7)

gives ‘ _
Qd%fﬁ =rO"h+Xh"Nh =0 - (3. 2-8)
1. e.’
O7h '
r
) “hiNh (3. 2-8a)

Equation (3. 2-8a) means that the relaxation direction vector h cannot be
selected orthogonal to the residue vector r(9, for in that casec Aot = 0

at the trial vector x(°. The new residue vector r’ is given by

/

r'= Nx'+ u | (3.2-9)

It could easily be proved that the new residue vector r’ must be orthogonal
to the last relaxation direction vector h; in other words ufter each relaxation
step the new residue vector r(®) must be orthogonal to the last relaxation

direction vector h(J'_l). »

Pi'o;jf :

From (3. 2-8)
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using (3.2-4), (3.2-5) and (3.2-6) _
RHS, =r"h=0 (3. 2-9a)

Alterﬁative Proof:

Using (3.2-5). (3.2-6) and (3.2-9)

r' = N’ +u = Nx®+xh) +u = r(@+xNh, (3. 2-9b)
" Hence .
r"ho= (¢ xND'h = Oh+ X (Nhyh
_ (o)rh | '
r
= r(O)Th - el (Nh)'h = 0 fo?k = X pyn-
i.e.,
r"h = 0,

As proved above the new residue vector r’ must always be orthogonal
to the last relaxation direction vector h; this can be considered as an
Orthogonality Condition. Equations (3.2-92) and (3.2-9b) give the

folloWing rélaxaﬁon distance factor ) W
r"h = @@ +ANh™h = r®"h+Xh"Nh = 0

NI
Aan = - TTNR

which is the same as .g_iven in equation (3. 2-8a).

Going in the relaxation direction h with the correction factor )\mi;, a |
minimum for the qﬁadratic function F(){') is obtained; this can be proved by
the second derivative of F(x) obtained from (8.2-8): |

2 ‘ ,
_d—d%ﬂ = h"Nh > 0, (3.2-10)

The second derivative in equation (3. 2-10) is always positive for every non-
zero relaxation direction vector h, as N is positive definite Thomas, 1960,

p. 130].
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Let AF be the decrease in the quadratic function F(x(9) while going from
x(9 to x’ in the relaxation direction h using A = Ay,  Considering (3.2-7)

and (3.2-8a)

. ' (971,42
A = PxD) - Fx) = - rO7h +—21x2hTNh] = +% 5;—7—;*;1 > 0, (3.2-11)

for

®™h # o
(3.2-11) gives the largest decrease of F(x(o)) in the direction h. Thus by each
‘relaxation step the current quadratic function F(x’) decreases, which proves
the convergence characteri_stic of the relaxation method. Geometrically the

relaxation method can be interpreted as follows:

X2 4
(o]
I( ')A

v

Figure 3.2-1

* -~ The quadratic function F(x()) in the case n = 2 can be represented by its
level lines F(x(°)) = constant, which are concentric ellipses in reétangular

(X1, Xg) - coordinate system (Figure 3,2-1); the common center of these con-
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| ce_ntrlic.ellip'ses coincides with the minimum point of F(x(°)), whose coox_"-_
.dinates are (X, X3), which represents the solution of the system. Let

x() be the initial point: according to (3.2-5) the corresponding residue
vector {9 will be orthogonal to the level line passing through x(. A
relaxation step means first to choose the relaxation direction vector h and
‘then to proceed in the direction of h until x', where the quadratic function
“along the relaxation di rection ig minimum. This point x’ is naturally on a
‘level line where itis tangential to the relaxation direction vector. At this
point x’,the new residuc vector r’ is orthogonal to the level line i. e. to the
relaxation direction h (3. 2-9a).

BaSed upon this basic relaxation method- several relaxation methods have

been developed, which differ in the. selection of the relaxation direction vector

h and the relaxation distance factor A for each step.

3.22 Method of Conjugate Gradients (Cg-Method).

Based upon the basic relaxatxon method, gradlent methods were developed
where the relaxatlon dlrectlon vector h is not chosen arbltrarlly but is a
functlon of tho current or prevmus residue vectors
~ To find a minimum of the quadratic function F(x (9) (Figure 3. 2-1) the quickest
wny.ob'viously is to proceed orthogonaily from x(9 in the direction. h opposed
to the grad bF, i. e.,opposite to current residue vector ). This can be wi‘itten
in a mathematical form as: |

he) = _p(-)), . '(3.2A-1'2)

Equation (3.2-12) constitutes the principle of the Method of Steepest
Descent, Although the decrease in the quadratlc function in edch rela.xatlon
step is locally ma.x1mum the convergence in general is not good [Schwarz,
1968, p. 68]. | ' ,
~ To improve the'convergence,‘ a method called the Method of Conjugate’
Gradients was developed by Stiefel and by Hestenes independent from each

| other, using not only the current residue vector but also the previous |

iteration results so that the system theoretically® has a solution in n-relaxa-

'In practice due to round-off errors this theoretical convergence is not
achieved (Section 3, 40).
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tion_ steps,b 1 e. it converges in n-finite stepsz, n béing the number of unknowns.
. Cg-Method is thus a- medification of the Method of Steepest Descent, where
the relaxafion direction vector h() is determined alone by the existing (current)
residue vector r{'~!) according to equation (3.2-12), i.e. h(®) = -r(-)_ 1
Cg-Method equation (8. 2-12) is valid only for the first relaxation step but the

further relaxation directions are calculated by

h() = —p0=Y + ¢, - h0) forj=2 (3.2-13)
\ ' .
/

where ¢ ,-, is a Correction Factor for Relaxation Direction vector, “hich is

<h(5) = —r(t-Y) for j = 1

‘proportional to the last relaxation direction vector hl-Y), The factor €y is
so determined that the relaxation direction vectors h(®) -and h(~") are conjugate®
i.e. '

hé)TNRb-Y) = o | (3. 2-14)

(3. 2-13) ‘and (3. 2-14) give

; (=97 Nh(-Y) o
€4-1 = RGO | (3. 2-15)

The relaxation distance factor ); is determined from (3.2-8a) as:

r("'l)Th(J) i
Xy = - IO RED) (3. 2-16)

and the solution vector x is determined from (3.2-6):

x{) - X070 A, h(). (3.2-17)

The residue vector r(%) after j-th step is given by combining (3. 2-2), (3. 2—1(;)‘
and (8. 2-17):

rl) = M) +u = NxE™D4xgh0)) +u = (%07 D+u) + N0 = =00, Nh0) (3, 2-18)

2This is why it is also called the '"n-Step Method".

Due to this relationship this method is called the Method of Conjugate
Gradients. -
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The Cg-Method is thus defined by equations (3. 2-5) (3 2-12), (3.2-13), (3.2-15),
(3.2-16), (3.2-17) and (3. 2-18) after choosing a trial vector x(%); generally
x@ =0, |
o Proceeding in the same way as was used to obtain equation (3.2—9a), it .
can be .easily proved that |

| r@)Th0) = o, ’ (3.2-19)

Si_milarly it can be proved that
r)T h6=1) = o, | 3. 2-20)
Using (3.2-13), (3.2-14), (3.2-19) and (3. 2-20) we obtain

077 = rO71-h()+ €m0y = - rOThO)+ € xRV = 0 (3.2-21)

Equations (3; 2-14) and (3. 2-21) can be generalized in the following form by the

method of induction:
h(‘)TNh(J) =0  fori #3i (3.2-143)

) ) = o fori # j.  (3.2-21a)

From . equat ibné (3.2;14a)_and (3.2-21a), one can conclude that in the Cg-
Method, the residue vectors ') constitﬁte a mutually orthbgonal .'system
and thev relaxation'direétioh vector h'¥ a mutually cbnjugate system,
This gives-an important characteristic of Cg-Method. As the residue
vectors r® constitute a mutually orthogonal system in an n~'dimensiona;l
vector space, this orthogénal system can cqntain a maximum of n non-
7610 'vectdrs. Thus, at theAlatest, thé- (n+1)th residue vectof r(® mﬁst
diSappeaf,' i.é., r™=0, ‘This proves that the Cg-Method provides the
solution in a2 maximum of n-steps.

Numerical computations, however, show a deviation from the theoretical

solution in n-steps, which may be due to (1) round-off errors and (2) an ill-
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cdndition N-matrix; as these'effect‘the mutual orthogonality of the residue
vectors. Thus, the residue vector r® is not exactly zero. This deviation
does not disturb the system. In this case where more than n-iterations
are necessary to obtain the solution, the quadratic function decreases after

every iteration.

~ Equations (3. 2-15) and (3.2-16) can be written in an easier form using

(3.2-13), (3.2-18), (3.2-19) and (3.2-21):

~ Numerator of (3. 2-16)

Y Gt A C) I (R L Ll SN ()]

+r(-1T L(0-1) €41 rO-D)TR(=Y) = L3y r(3-1)
Hence (3. 2-16) can be written as

r(J—l)T r(3=Y)

)\5 = HOTNRDT - (3.2-16a)
From (3. 2-18) . |
- Nh(=1) = )\71 T A (s M (3. 2-18a)
. . J-1 . R . .

rd-y7

-1

Nlitﬁérator of (3. 2415) . =T Np(-1) < 4(1.(3'-1) _'I.(J'—z))

__1__ (r(d—l)T =1 o ChaV )i r(J—a))‘

=1

007 61
Aj-1 '
Combining (3. 2-15) and (3. 2-16a) we obtain

' r(d?'l)f_ £(3-1)

TR = 1 == iz 2). ~(3.2-152)

Although the equations (3. 2-15) and (3. 2-16) are mathematically the same as
equations (3.2-15a) and (3. 2-16a) respectively, both sets of equations are

equally good for welljconditioned systems. However, in case of ill-conditioned
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'syste'ms' equations (3.2-15) and (3.2-16) show better results [Hestenes and
Stiefel, 1952, p. 433]. Consequently, these were the equations u'sed in this
investigation. Due to the simplicity of Vequations (3.2-15a) and (3.2-16a),

they are the cquations usually given in most of the publications.

3.23 Modification of CgFMethod.

1. Ii the A~matrix’ is an arbitrary matrix and not assumed to be a positive

definite symmetric matrix, Cg~Method can be used after multiplying the system

by AT, i.e. | |
(ATA)x + AT1 = 0, (3. 2-22)

for AT A is symmetric and positive definite, if A is non-singular matrix. The

system of equations repfesented by (3.2-22) is equivalent to that givén by (3.2-1).

2. Touse the Cg-Meﬂiod for observation equations directly without formihg
normal equé.tioné (N-Mafrix), i. e., without fc)rming a symmetric positive
definite system the following procedure is used. '

Let the observation equations be written as

CAx+l = v (3.2-23)

where A is a m x n matrix of observation equation coefficients', 1l is a

m x 1 vector of absolute terms and v is a. m x 1 vector of | residuals. In
case of observations with different weights, system (3.2_-;23) is homogenized
by m_ultiply'in_g' it with correspdnding p;,, wherg py is th_e weighf of the

. observations, thus thé System becomes unitless and with unit weight.

Normal equations to (3.2-23) can be written as

ATAx + ATl =0 (3.2-24)
which are equivalent to (3. 2-22).

Similar to equation (3.2-9) the residue vector r*) and the residual vector

V_(J) after j-th iterations are

~ For reasons of consistency N and u of (3.2-1) has been replaced by A
and 1, respectively. '
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r&) = ATax() + ATy o (3.2-25)

and

Ax() + 1 = v0) o (3. 2-26)
Combining (3. 2-25) and (3. 2-26) we obtain
r() = ATV, O (3.2-27)

In the algorithm of Cg-Method N can be replaced by AT A in equations
(3.2-15), (3.2-16) and (3. 2-18) and thus the expression '

h) Nh®) = h AT AR = (AR())T(an()). (3. 2-28)

Similar to equation (3.2-18) an expression for the residual vector v after

j-th iteration can be found:

v = Ax() + 1= AOD A RO+ 1 = (AxO7D+ Ly+ 2, ARC) = vl-D) + ), AR().
(3. 2-29)

Thus, the residual vector v{!) after j-th iteration can be computed in two
ways according to equatiohs (3.2-26) and (3.2-29), thus broviding a
computational check. However, to increase the stability of the relaxation
process v should be computed anew in each step according to its
definition given by equation (3.2-26) and not recursively by equation
(3.2-29). Thus, the residual vector f(J) is also to be computed
anew according to its definition by equation (3.2-27) and not recursively
by equation (3.2-18) [Liuchli, 1959, p. 259]. |
That the norm of v{) decreases monotonously while solving the
observation equations (3.2-23) by Cg-Method can be proved as followsv

from (3.2-29):

v = V(J)__ )\JAh(J)
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v Y0 = vy 0) _ oy v (AR + A ZARE))T(ARG)) 3. 2-301)
from (3.2-27) and (3. 2-19) |
» v An®) = (’ATV(VJ))Th(J) =. rMTh@) =9
(3. 2-30) kca-n he now written as |
| Q(J)TV(J) = v 1607 _ 3 2(An)T(ARO)) (3. 2-31)
Until x(¢~1) is not the solution x of (3.2-23), r('™) # 0, hence €,~, # 0
and h(") # 0; thus Ah(!) # 0 and ), > 0, hence
Xf(Ah(J))T(Ah(J)) > 0. - | (3. 2-32)

Equation (3.2-31) together with (3.2-32) proves that the norrh of residual

vector v decreases monotonously.

3.24 Algorithm of Cg-Method Using A-Matrix.

| ‘Now é complete algorithm of Cg-Method for obtaining the solution vector (x)
‘u:si‘ng directly the homogenized observation equations can be summarized in the
foliowing systematic wéy: |

Given: Homogenized observation equations Ax + 1 = V.
Select: TInitial Trial Vector x(9 = 0

- Compute:
(1) T v©® = Ax© 4
o | Relaxatioﬁ s1_:eps 3 =1,2,...n
@) -rl™) = ATy()
_ (Ar0-)TARC™Y)

(for j = 2)

(3) ‘ €y—-1 < (Ah(J—l)T(Ah(J" l))
. B -9 -
() _-T : (for j=1)
(4). " . [‘r(5—1)+€3—1h(1—1) (for j=2)
, : 3=1
& A = -0

" (Ah())7 (an()
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(6)
(7)
(7a)

Tests:_
(8)

(9)

.cos B4

x() = x079 + \; k)

v) = ax0) + 1 |

Vi) o = 07D+ AR0)

Orthogonality Test:
r(MT h) = 9
r(J"l)T r(j) = 0

b
0% = T el - °

r(OTH®)
T a0

il

vl = )

check |

3.25 Termination of Iterations.

Based upon the theory of Cg-Method and the geodetic requirements,

iterations should be terminated as soon as any of the following conditions are

fulfilled:

(a)

(b)
(c)
(d)
(e)

if- the improvement: in the ‘solution. vector: between two consecutive
iterations is neghglblly small, i.e., |x(5) x(=1)| = 1.0-107* seconds

(i.e. 1,0-10 * second in¢ or A = 3.0mm),
if r(J)Tr(J) = 0’
if (Ah())T (an(y..= 0;

if the given number of iterations is reached;

1f the round-off error (RFE) durmg 1terat10ns exceeds .a certain

accuracy hmlt whlch is given by the vu,tor difference

Ity Teonsl > Where v

= ATAx, + AT] = AV() and reoe,= AV

true cleck ”

'RFE = |AT(v(?) "V‘(;QCK)IZ

The iterations should be terminated if r¥)" r¥) <3. RFE.
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3.26 N'- Inverse of Normal Matrix.

To analyse a geodetic network variance-covariance matrix (S) is needed.
This requires the computation of N, the inverse of the coefficient matrix of
the normal equations,

-1

S=m2. Q where Q = (3.2-33)

By Cg-Method N is computed column by column and for each column of N*
the computational steps needed are the sa:rhe as those required to ebtain the
solution vector of (3.2-1). For huge systems the computational time for
obtaining one column‘ of N’ or to obtain the so]utioﬁ vector of . 241) is large
and hence in such cases only a few neceésary column vectors of N* need
to bc computcd. |

The algorxthm for computmg N'is obtained in the following way:

The inversion of N bas1cally amounts to solving the sy stem

N‘N'= E (3.2-34)
or }

N-Q = E (3. 2-34a)
~where E is a un1t matrix.
Let x be the k- th column vector of Q (= Nl) and e, the k-th column vector of E,

then q, is the solution to the system
N-qe-e, = 0. ‘ ’ (3.2-35)

qx, which is now the solution vector of (3. 2-35), can be obtained by equations
(3.2-5), (3.2-12), (3.2-13), (3.2-15), (3.2-16), (3.2-17) and (3. 2-18) after
choosing a trial vector qf() generally qf() = 0.

'Modifying this algorithm for using the A-matrix directly without explicitly
forrhing the normal equations (N-matrix) N is replaced by A'A in the above |

mentioned equations. From (3.2-35):
ATAqk -e, = 0.
Let qf? be the initial trial vector, then
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O = ATAqQ - €y (3. 2-36)

The comblete-algorithm of Cg-Method for k-th column vector of. N'14 inverse
of hormél matrix - using directly the homogenized observation equation
coefficient matrix A can be given as follows:

Given: Homogenized observation equation coefficient matrix A,

Select: Initial trial vector qf = 0

Compute;
1 r@ = -, v : i

Relaxatioh Steps j=1,2,...n

(Ar{=)yT (ARG Yy

(for j=2)

(2) ”6.1"'1 = (Ah(ﬂ“l))T(Ah‘J—l))
@ ) - ["r‘°’ ~ (for j=1)
: -r(7Y) + ¢ h07Y) (for j = 2)

_ r(j-l)rh(z) '
4 )‘J - _(Ah3)T(Ah3)

(5) q{") = qéj'l) + ,>\J h(d)
(6) @) = p(71) 4 3 AT (AR®)y

Test: _
(7)  Orthogonality Test:
Same as (8) of Section 3. 24.

Termination of Iterations: Same as in Section 3. 25.

3.27 Tll-Conditioning.

If small errors in th'_e coefficients of equation (3. 2-1), i.e.,equation (3. 2-24)
or in the solving process have little or no effect on the <olution the system is
called well-conditioned; 1f the effect is large it is called an ill-conditioned
system. [11-conditioned systems have a very poor rate of convergence. A
system can be evaluated if some information about its condition (condition
number) is known, Condition numbers can be computed by using equations

given in [Fox, 1965, p. 142; Schwarz, 1968, pp. 22-23; Zurmiihl, 1964,
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pp. 212-214]. For the present investigation condition number (K) is the ratio

of th'e largest eigenvalue (Aw,) of N to its smallest eigenvalue (Ay), i.e.,
K = >\m/>‘m : (3.2-37)

lhls condition numbe1 K should be near unity for a very well-conditioned
_ system from the point of view of solving linear equatlons [Fox, 1965, p. 199].
As mentioned in Section 3.1 eigenvalues need not to be calculated for

determmmg the convergence as Cg-Method is a finite iterative method. This
characteri stx( (i.e.,no computatlon of elgenvﬂueq) is of qpemal importance
in the casc of modified Cg-Method as the original A-matrix is directly used,
* where duc to the lack of a Square matrix (N-matrix) computation of eig.en—‘
values is hot pbssiblé. In spite of this a condition-measure can be derived

by using the (*:g—Meth_O(] algorithm in the following way:

. In. [Hestenes and Stiefel, 1952, pp. 416-4201 it is shown that

1 1

e .» < A\  <. '—Amn- | 3. 2-36)
-1 0) ), .r(J-a)Yr(J—l)‘- ' | |
e~ A2, 0 o (3. 2-39)

ROTNRGY) Oy hEDTNRO) = .
h(J)T NhY’T = AJJ—)" hﬁ-l)\' Nh(J—l) 7 (3_ 2-40)

.The laqt two equatlons qhow that if, at the begmnmg of any iteration,

P(0-37 o0~ 1) # 0 and h(-Y7 Nh() # 0 then the computed values of r{3~97r(%)
':md h()TNR(*Y) will also deviate from zero. This deviation will depend upon
the m agnitﬁde of ALPHA = ).J/)«J_l; the lﬁrger~~this ratio is the greater will
be the disturbance of the orthogonality relations, and more rapidly the round-
ingioff errors accumulate. According to equation (3. 2.—38) the condition

number K (= Xmy/Xnin) is an upper. bound of the critical ratio Ay/Xs-1, which
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- determines the §tability of the process. WhenK is near one, that is, when
N is near a multiple of the identity, the Cg-Method is relatively stable
MBeckman, 1960, p. 707.

3.28 Round-Off Errors.

Round-off errors could be mainly due to two reasons:
(1) For adjustment, the approximate values of the station coordinates are
to be used in decimal degrees, where these decimal values are rounded-off

to a certain significant digit;

(2) Due to the limited number of digits per Storége location in computers,
round-off error occurs during arithmetic operations.

A detailed study on round-off errors is given in [Miiller-Merbach, 19707,
wherein the investigations show that only double precision storage combined
with double precision computations will keep the round-off errors to a
minimum. To minimize the computer-error while adding small numbers to
large nhrﬁl)eré, the summation of scalar products r(3)7r(5), v Pv and
(AH(J))T’(Ah(J)), which are used for iterations, is doﬂe in blocks. Investigations ‘
on a system of 66 equations and 39 unknowns show that r‘¥Tr( and (AL()T
: (Ah(’)) are very sensitive to the block size while vTPv is quite insensitive to

it (Table 3.2-1). It has been found that the best convergence, that is,
solution vector for r()Tr(%)=0 after least iterations, is obtained when the ratio of
blocksize (KMM) for (Ah(Y)T(Ah(®) to that (KM) for r()7r(}) isa fﬁnction of the ratio of
the number of equations to that of unknowns. This has beeh brogrammed in
Subroutine PATSUM. The only parameter to bé determined in this subroutine
'fo.r individual probiem is the basic bloc.ksize (KM) fbr'r(J)T r*),
A characteristic measure for the round-off error (RFE), which is _required

for the termination of the iterations, is the norm rGihsburg', 1963, pp. 197-198]

RFE = |ft,m - rc;,,pla | : (3. 2-41)
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where r,,,» is the true residual vector by definition according to equation (3. 2-9)
or (3.2-27) and remp, the recursively computed residual vector according to

cquation (3.2-18). Hence
RFE = |AT(v{-v() )2 (3. 2-41a)
which pl_‘OVidC‘VS' a condition for termination of iterations, given by'

r®e®) < 3. RFE. . (3. 2-42)

Table 3_. 2-1

Effect of Block Size on T ) ARY)T (ALY and
‘'VTPV at 80th Iteration -

g »  Block _Size
.5:3 KM for KMI\i[ for ' ‘
& (Ah®Y (An'Y) rO7T A (Ah¥ ))T(Ah(”) VTPV
b RTR | or V' PV ' : _
1 -10 10 0.4127 DO3 | 0.2020 D10 0.2529 D01
2 10 15 . 0.1594 D02 | 0.7879 D08 ‘; 0.2529 D01
3 10 20 0.1087 D03 | 0.1286 D10 i 0.2529 DO1
= ~ NE 5
4 10 KMX'I;I'U— » 0.1247 D03 0.6080 D09 0.2529 DO1
NE = Number of Equations
NU =

Number of Unknowns

3.29 Residue Vector (1).

As mentioned earli_exj each approximation x() to the solution vector is
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closer to the true solution vector x than the preceeding one, the error vector
(x—x(ﬂ)) also decreases at every step. However, the residue vector r may
‘2

not decrease; normally the '"'residue square" |r|® oscillates and may even

increase. This oscillating behaviour of the residue square |r\3 could be

due to round-off erroré. Investigations have shown that the solution vector
x0) is no longer improved substantially as soon as the norm Ir|® comes down
to the range of the ndund—off errors. T-his occurs when the iterations are
continned_ beyond the number of unknowns, i.e., j >n, when the residue vector
r{®) will sooner or later begin to decrease sharply such that ultimately x()
will be as good an approximation to x as‘ it may be expected from the condition
of the system [Beckman, 1960,. p. 69; Ginsburg, 1963, pp. 192, 199;

Hestenes and Stiefel, 1952, p. 411]. The following systems were investigated:

System I 39 unknowns, 66 equations -(Figure 3.2-2)
S.ystenn‘ II: 84 unknowns, 138 equations (Figure 3.2-3)
 System III: 573 unknowns, 965 equations (Figure 3.2—4) 4

In Figures 3.2-2, 8.2-3 and 3.2-4 asterisk marks (*) show that the current

solution vector has no substantial improvement over the last solution vector, which

happens after such n-iterations where the round-off errors stop increasing.
Thus, any_of thésé solutions are as good an approximation to the final

solution-vector as could be expected from the condition of the system.

3.3 Programming

All programs were written and tested by the investigator, except the

SUBROUTINE DUMMY, by F. Fajemirokun. .

330 AfMatrix; Index Matrix and Stor'age Requirement

Structure of A-Matrix and F-Matrix.

The homogeni_zed A-Matrix, in general, contains m rows and n columns
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where m = number of observations and n = number of unknowns, which is

équai to 3 times number of stations, as for each station there are three

unknowns, namely orientation correction (dz) and the two coordinate corrections |
(dep :lhd d}). FEach row of A-Matrix containg a maximum of five non-zero
clements, which are so nrrangcc_i that the first term is the coefficient of orienta-
tion correction, the other four térms aré the coefficients of station coordinates
corrections. Each row of F-Matrix contains a maxirmum of oné non-zero element,
Thus for a large.geodetic triangulation net there will be. much more zero elements
in each row than the non-zero elements, i.e. ‘, ‘A-Matrix is a sparse matrix.

The observation equations for the same station are put together one after another.

Index Matrix and Storage Requirement.

The original A-matrix is a sparse matrix and conta‘inS'é maximum of
five non-zero elements in its each row, Thus in a iarge triangulation sy stem
of .1-4_00 observations and 820 unknowns the non-zero elements are only 0. 6%
of the original A-matrix. To save the computerl storage space for storing
thé original A-matrix, Index Matrix (11) has been used so-that the ''reduced"
A-matrix has only five columns. The elemeénts of the Index Matrix are positive
integers. A very simple algebraic expression was deduced to obtain the |
elements of Index Matrix from the A-matrix; the.low'est.element of I1-matrix
is equal to the lowest station number and its largest element is equal to 3 times
the largest station number. A program gives™Il-matrix from A-matrix.
Thus Index Matrix, also called- 'Refereﬂce-'or..;.Gui,deA.-Matrix;, "-.néduCeé
an original (m x n) A—matrix to a "reduced" (m x 5) A-matrix. Both
the ""reduced" A-matrix and the I1-matrix together need much less storage
than the original A-matrix. For example for an original (1400. % 820) A-matrix
114800 storage ldcations and for N-matrix 336610 storage locations stored in com~
pressed-fo rm are nceded, whereas the "reduced" A-matrix together with I1-
matrix needs 14000 storage locations, which is 1, 2% of the original A-
matrix and 4. 2% of the N-matrix. This would mean that the same computer,

which cannot handle an original A-matrix or N-matrix, can. easily handle

-41-



the same system usmg Index Matrlx, as well as can also handle much
larger systems. In. future dlscussmn, the term A—matrlx w111 be used

for "reduced" A-matrix.

3.31 Minimizing Round-Off Error. o

The ideas of Sectioné. 28 n/ere used to minitnize the round—off errors.
Double precision storage was used together wifh double preciSion computation;
for integers single precision wés used. Summation of scalar products
e@7e(), (ARYT(AR()y and v'Pv was done by using the subroutine PATSUM,"

which minimizes the effect of adding small numbers to large numbers.

3.32 Solution Vector Progrnm and N'-Program. -

.The algorithm of Sections 3. 24 and 3. 25 was progralnmed as a SUBROUTINE
SOLN. The algorithm 'of'Sec,tion 3. 26 was programmed as a SUBROUTINE QSOLN,
These programs were initially tested on five data sets. The results obtained by
these two subroutines were found to be the same (within cornputational accuracy)
as thoee obtained by using Gauss—Algorithm The five data sets used were:

(3,2), (10,4), (16 12), (36,24) and (66 39) - the first number = number of
ohservation equatlons 'md the second number = number of unknowns.,

The solution vector or N-column will be printed after every N-iterations
( N#Intervnl for writing c'ompute'd.out‘p.u't‘) beéides after the fulfiilment of the

~usual conditions,

3.33 Universality of Programs

Both subroutines, namely SUBROUTINE SOLN and SUBROUTINE QSOLN _

can be uSed for any fea81ble size of data, which can be accomodated on the

available computer, after changmg KM whlch is the PATSUM Basm
Block Size for RTE.. , '

The main program used tegetber with these subroutines has dimension |
statements and a data card for Number of Unknowns (NU), Number of
Equatlons (NE) and Number of Columns of Index Matrlx (NI), which can
be changed if there is need for it.

The program is universal in the sense that it can be used for varying
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data without much change and that ”mesh-point numbering technique" is
not required. Therefore, s.tations can be added or takén out from the
triangulation 'éyste'm without worrying about the band-width and size of
blocks. These programs have been tested: on systems from as small

as 2 unknowns, 3 equations up to as large- as 804 unknowns, 1397 |

equations.

3.4 Number of Iterations and Computer Time

3.40 Number of Iterations.

As mentioned earliér in Sections 3.1 and 3.22,' the Cg-Method theoretically
gives the solution vector at n—1terat1ve steps (n = number of unknowns)
[LHuschli, 1959, pp. 257; Schwarz, 1968, pp- 74 and 1970 pp. 133; Wolf, 1968,
pp. 184]. Investigations, however, show that the solution vector is not
achieved in n-iterations due to round-off errors, ill-conditioning of the system,
disturbances of the orthogonality and of the conjugacy relations. In [Beckman,
1960, pp. 69; Fox, 1965, pp. 210; Hestenes and Stiefel, 1952, pp. 411] it is
mentioned that frequently (n + 1)th solution vector is significantly better than
the nth one. According to [Ginsburg, 1963,pp.192] up to 3n iterations may
b‘e' needed in case of bad conditioned éystem; while [Hilger and Remmer, 1967,
pp- 13-14] mentions that n to 'g-n iterations aré needed in case of large systems
for 4 decimal accurate solution vector and that number of required iterations’ :
strongly depends upon the condition of the matrix ATA.

~This investigation, using the actual data set (Section 2), shows that the
-number of iterations required to obtain the solution vector by Cg-—Method
using directly the A-matrix without explicitly form_ing. the N-matrix depends
upon two factors: (1) condition of the system, and (2) accuracy of the solution
vector required. The dependence of the number of iterations on the condition
of .the system has already been discussed in Section. 3,27. Using
the geodetic triangulation data (573 unknowns, 963 equations), the program
~went up to 5778 iterations without giving any 7 demmal accurate solution

vector, whlle 4 decimal accurate solution vector ‘was obtained after 1161
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iterations, i.e., 2.1 times number of unknowns (Table 3.40-1).
Each column vector q, of N* is generally coinpxite'd in less than -

1.2 n-iterations (Table 3.40-1).

~Table 8.,40-1

Covariance Vector
Experiment - Number of Solution Vector - for Column 8
Number* | Unknowns Equations | Herations Time** Iterations Time**
m sec m sec

1 573 963 1161 |9 37.13| 640 |3  45.9

2 573 - | 965 | 1177 9 .23.27| 657 3 31.91

3 573 965 | 1175 5 45.97Y 659 |2  12.59+

4 573 | 965 | 1176 |9  22.32| 682 |3  45.64

5 573 965 1164 5  53.444 674 | 2 1.77+

6 573 965 | 1162 |5 4L.164 675 |2  0.00+

7 573 965 | 1166 |9  09.46 | 631 |3  20.03

8 573 965 1159 9 24.29 | 648 3. 19.29

9 573 | 965 | 1169 |9  209.41| 608 |3  11.51

*Refer to Table 3.5-1

**Time is the Execution time on H-Compiler, Option =2 (IBM 360/75) except
those marked with a plus-(+) sign, which is the Execution time on. H-Compiler,
Option = 0 (IBM 370/165). '

3.41 Computer Time.

As for this investigation, IBM 360/75 and 370/165 are used. Factors
influencing the computer timve"are' valid only for these types of computers.
For large systems, H-Compiler with Option = 2 (IBM 360/75) is found

to be approximately 10 times faster in execution than the V'G—Compiler,
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although compilation takes a longer time in H-Compiler than in G-Compiler.
Tor (819 x 1395) system, G-Compiler took 9.58 minutes for 98 iterations,
while the ﬁ-(?ompiler took 7.00 minutes for 791 iterations. The time
given in Table 3.40-1 is thus for H-Compiler. It is noticeable that time
v'irc"q‘hit"ed v'fn’r one column covariance vector is much less than the time

required for solution vector.

3.5 Results.

- The results of the investigation are given in Tables 3.5-1 and 3.5-2,
wherein the imbrovement of the particular geodetic triangulation by super-
control net is visible only when its accuracy is at least 1 part in 500,000..
The positional improvements of Wyola (95), which is in the middle of the
triangulation chain, using various station constraints for Chandler. 3)
are shown in Figure 2.5-1. These positional improvements are relative to
free_ net adjustment results. As the preliminary accuracy of contihental
sat'eilite net is lower than 1 part in 500, 000, this cannot be aseful as a
"constraint" to the geodetic triangulationnet. On the other hand, the high
accuracy of super-transcontinental traverse, which is one part in & million,
niakes it most suitable as a "constraint" to the geodetic triangulation net.

Worth mentioning is that the longitude terms, which are Q,, and m,”
in Table 3.5-1, remain practically uneffected dufing the entire investigation.
This could be explained by the fact that station Wyola is very close to Laplace
statibns, which control the azimuth error accumulation, thus effecting the
longitude ervor [Bomford, 1965, pp. 90, 519]. Hence, due to closeness of

Laplace stations, the longitude terms remain practically uneffected.
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Table 3.5-1 -
Experiment | Accuracy . WYOLA (95)
Number 1 in ° Qxe, | Qpy | M2 | m/ Remarks
1 2.42| 6.0( 0.5 |35.2 2.9 |Free Net
2 300,000 | 2.41) 6.7| 0.5 | 38.9 | 2.9
3 400,000 | 2.41| 5.9 0.5 | 34.3 | 2.9
4 500,000 | 2.41| 4.1| 0.5 | 23.8 | 2.9
5 600,000 | 2.41| 4.1 0.5 | 23.8 | 2.9
6 700,000 | 2.41) 4.1] 0.5 | 23.8 | 2.9
7 1,000,000.| 2.41| 3.7| 0.5 | 21.5 | 2.9
8 1,500,000 | 2.41] 3.2/ 0.5 | 18,6 | 2.9
9 3,000,000 | 2.41| 2.1} 0.5 | 12.2 | 2.9
Qs Qpy and m2, mZ? are given '_in 10™*  geconds®.
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Table 3.5-2

WYOLA (95)

=

[0 . .

g 2| Accuracy ~ Positional Improvement
5 5 Relative to Experiment 1
%Z 1 in

M m, | my | m, Meters %
1 |Free Net 1.83{0.37 | 1.9

2 300,000 | 1.93/0.37( 2.0 -0.1 -5

3 400,000 | 1.81/0.37| 1.8 0.1 5 .
4 500,000 | 1.51/0.37| 1.5 0.4 21

5 600,000 | 1.51/0.37 | 1.5 0.4 21

6 700,000 | 1.51/0.37 | 1.5 0.4 21

7 11,000,000 | 1.43/0.37| 1.5 0.4 21

8 (1,500,000 | 1.33]0.37| 1.4 0.5 26

‘9 {3,000,000 | 1.08[{0.37 | 1.1 0.8 42

Standard Errors of Unknowns (m,,m,) and Standard Positional -

Error (m;) are given in meters.
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4. SUMMARY AND CONCLUSIONS

The super-control net, i.e., continental satellite net or super-trans-
continental traverse. can provide a useful constraiﬁt to thé investigated
geodetic triangulation net, and thus can improve it only when the accuracy
of .super—conti'ol net is at least 1 part in 500, 000; in this case, this
cofresponds to +3.7m standard position error for the station Chandler.

The preliminary accuracy of super-transcontinental traverse is already
better than this limitiﬁg accuracy of 1 part in 500,000. The preliminary
accuracy of continental satellite net is, however, lower than the limiting
accuracy of 1:500, 000; the preliminary standard position error for Chandler
as obtained from continental satellite net corresponds to 4. 8m, i.e.,
1:385,000. The future will show whether the limiting accurécy could be
achieved by contin.ental satellite net, especially because numerous spatial
trian@lations of CSN have produced accuracies within the rangé of 1 part
of 400, 000 and 1 part in 700, 000 (Schmid, 1965, p. 22].

Schmid 1970, pp. 23-24] indicates that continental satellite net will fall
short of an optimum solution with respect to both its coverage and its
accuracy. The three-dimensional positions of CSN-stations will ‘probably be
determined to no better than +4 meters in all components, which does not
seem to be good enough at least for this particular investigation.

* It might be useful to have a "block constrain' instead of "'chain constrain",
that is, to use four well separated satellite stations, namely 003, 102, 112 and
134 (Figure 2. 0-3) over a very large area, thus constraining the triangulation
of the western-half of the United States instead of one triangulation chain-
(""chain constrain') between stations 003 and 102. |

Super—transcbntinental traverse can provide a better constréint, if more

then two of its stations are common to the stations of geodetic triangulatibn net.
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Also, a "block constrain", as explained above, inight be more useful instead
of a "chain constrain". _
The development tendencies of instrumentation indicate that the future

super-control nets will use VLBI (Very Long Baseline Interferometry) and

Laser ranging systems.
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APPENDIX I

Helmert-Rainsford-Sodano Inverse Problem Solutioh

As the distance between stations variés from 273m to 190’km Sodano's
concept which gives formulas applicable to very short .as well as very long
lines to solve the Inverse Problem has been used. The formula renders.
accuracies on the order of 0.00001 in azimuths and a millimeter in distance
for any length of lines Helmert;1880,Vol.1; Jordan/Eggert/Kneissl, 1959, 1V.2;
Rainsfoi‘d, 1955; Rapp, 1969; Sodano, 1958, 1963 ). The iteration process
stops when the value of (A - L) (1 e., longitude on the reduced sphere - longi- -
tide on the ellipsoid) does not differ by its preceeding value by 0700001,
GIVEN:

B,, L, = Geodetic latitude and longitude of a point P,

B, L, = Geodetic latitude and longitude of anpfher point Py

' (longitude positive eastwérd, lafitudé positive northward).
REQUIRED: - | |
| Geodetic distance 8,5, direct azimuth A ; and reverse azimuth A21

(Azimuth reckoned clockwise from north). |
NOTATIONS USED: - "

I, = L, =L, = Difference of longitude on the Ellipsoid

Y = Diflerence of longitude on the reduced sphere, for which a
progressively bétter value is calculéted after each iteration
(for first approximation A = L)
o = Azimuth of the specific geodesic at the equator.
CALCULATIONS:

1. Reduced latitude B8, for each point:

B, = arc tan "(1-f)tan B,].
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2. Sphericél arc o between two points
sin g = l(sinXcos B)°+ (sin Bz cos B, - sin B, cos Bycos1)? ]2

For first abprojcima'tiér;l':fe-f A=1L =1~ L,

3. - . - _ sin )\, cosB, cos
- sin o = = .ﬁl B
v sin g
4, ' - 2sinB, sinf,
' n cos20, = cOS O - )
: : cos®ny

From this relation further relations for cos 40,, cos 60, and cos 80,
can be deduced: 7 | v
' cos40, = 2¢08°20,-1; cos60, = 4c0s®20,-3¢cos20,;

cos8a, = 2cos®40, - 1.

93]

()\—"L)' = fsin@(Aq0 + Apsingcos20, + A, sin20 cos 40, +

Ag sin30 cos6g, + +- - )
where ‘ v
o1 . 3 9 25
Ap = 1-= f(L+f+ 24 2.2 425 6
Ao " (l.f'fa) cos® o _16,f2(1 g Deosta-T0 2 cos® ry
1 . g 9 ... 75
== + 2y - = 21+ = oy —— &
Agi 1 f(1+f+£3 cos® o - 7 f2(1+ 2 cost o + o 2 cos o
: = .}_ 2 4 _1§_ )
A, = 32-f2(_1+4 f) cos® o - o 2 cos o

A = 2 8,06
Ae.—768 2 cos® q.

6. Iterate till (\- L) does not differ with its last computed value by 1.107'2
radians (as-double-precision computation is dohe). '
7. , A= L+ (0\-1L)

sin ) cos B,
- sin B85 cos B, - cos X\ sin' 8, cos B,

8. tan. A12 =

sin A cos B,
'sin B; cos B, cos A - sin B, cos B, -

tan Ag; =
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The following table

is used in the assignment of the quadrants for azimuths:

Sign of L Sign of | Quadrant of | Sign of | Quadrant of
L= TLy-1, | tan A A tanv Ag Ay
+ + I + 111
+ - ki - W -
- + I + 1
- - v - o

9. S;2 = b(Boo + B; sinocos20, + Bysin2ccosdg, + Bgsin30¢os 60,

+ Bgsin4gcos8g; + )

where »
3 5 175
= of n— 2 — —— 4 + ] 8.
Bo = 1+ 70 - 5% " 556 Y ~ Tezsa ¥
1 5 1 15 25 o
B, = - 4+ == pd . =)
2 2 Y T 1Y T 512 % 7 2048 Y
1 , 3 . 35 4
= - - -+ n
By 128 ¢ 7 512 8192 "
- l (-] 5 8
Bs 1536 © T 6144 U
_ 5 8
Be 65536
where
u® = K® = €7 cos®
b =

This completes the

semi-minor axis of the ellipsoid.

Inverse Problem solution.
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APPENDIX II

‘Observation Equations (for Ellips'oidal Geodetic Coordinate System).

NOTATIONS USED:

B,, L, = adjusted coordinates of station j (where j =1iork)
g5 Ly , J( _

B, LY = approximate coordinates of station j

‘MJ, Ny, = meridional - , nofmgl radius of curvature at station j

Z, | :_.adjustedvvorientati.on unkhown at statibn j |

Ly = observed direction from station i to station k

ok, }*, = .obServed astronop;ical a_zimuth and longitude at station i

s = measured distavnic_é of the vge()‘(_.ie‘sic ik

A?k = computed eiliﬁsoidal azimuth of the geodesic ik

s = computed distance of the geodesic ik from appfoximate cobrd‘inates of

stations i and k
Z? = computed value of orientation unknown Z,by ""mean-orientation-method"
dB,, dLy = corrections to approximate coordinates of station j

dZ, = correctibn to computed orientation unknown Z? at station j

v, = number of observed directions at station ]
1, = absolute term of the observation equation
v, = residual to the observed gquantity.
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Direction Observation Equation (Grossmann, 1961, p.177; Wolf, 1968, pp:275, 323

M, N .
Vik(oir) = 4%+ 5 - sindyc dBy - (g - cos AG- cos B - sin B)-dL,

+’;é‘-sinA&-dBk.—gg-cosA&-cosB‘?-dL‘+L,k (IL. 1)
1k ik

Ly = A% - (Ly + Z9)
(IL. 2)

_ 1
79 = v—rA?k—L,k]
.

Laplace Azimuth Observation Equation fGrossmann, 1961, p.177; Wolf, 1968, p.323].

Vik(ap) - sin A?k_'dBi - =3 - cos Ag- cos B - dL, + D_/tI)K' sin A, - dB; :
(Lap Sk Sk Stk '
- 2% oS AD, - cos B dly + by, (I 3)
ik S )
where
Ly = (A% - o) - (L] - AP sin B (IL. 4)

Distance Observation Equaﬁon (Grossmann, 1961, p.170; Wolf, 1968, p.324].

M, N .
Vik(prs) -';1'0(’SA?k‘dB1 - ‘;L sin AS, - cos BY - dL, - %‘S-cos A?,-dB,

- %..sin A}(()i' cOIS B?' dI"k + ’e/“( (II- 5)
where
Lo = S?k - S E (IL. 6)

The corrections dVBJ ,dL, and dZ, are obtained by the method of least squares; thus

the adjusted station coordinates (By, L) and orientation unknown Z; are

given by
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" DIME NSIONS:

All angular quantities are in

!

O Ly
= 72y + dz,

BY + dB. N (IL.7)

seconds of arc and linear quantities in meters.
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APPENDIX III

Programs for Solution Vector and N? bL'Cj;—Method

Due to comment cards, the programs are self-explanatory.
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16 CORTIEUE :

CIR(NFRENGER 2000
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CEQMKY 2T )0 Qe See
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CRJ) = 0.0 DA oo S

CMAIN FROGRAE O rc—wﬁTHhh Eh‘

ne 16 - g C1 4 NF

C 'COVARJANCF L
" TMPLICIT REALRR(LA=-H;N=7 ) E e ~ T e ————
[IEENS TN A(ccn.n),lv(eon a),X(Ann),rtaon), S L(oqn),r(oqo),
T1LR(cen) V) HOBD AH(QQO),PT(I,hOO)’
?klﬁT(fﬂO),XLCW(APH),fR(CQf B N o
c VARTARLES "¢ NIV ENSION ST Rhnaamwi"'“ﬂ“'
VARTARIE :.DATA CARD FOR . ' :

. MU = MOMBER "OF LIMKNAGINGT =7 T -

G PEo= NOMAER NE H“QFRUAT]”N F

C NT = MUNRFR DF COLURNS TN o

PEAD( Yy ‘30(\0) P |I,NE,P ]

" aOOn ERRMAT(A189" St i e g s iy
YCRLL nﬂan(A,11,x,P, My LK HK Il,KL,R  H AH °T QLQT chT,
1TAR i, gMYY)T T e "

STNRP _ N
T

C o . )

T SURAPDUT INETOSALMEAYTY Y
]AP HU,NF,N1) )

C .

C COVARIANCFE FATRIX nv cr

c _ -

JWPLICIT PRAL®R(A= H,h-7), o _ ‘.
TR IEENS INMTTAINEYNT VT (NR YN T UMEYYMONE Y T
JLKARE) g HKIME )y TU(NEY o KLAME ,H(NU)WAHKR *RT(l, U),PlsT(NU)
2y YLSTLHMU) yAR({NF) Bt SR T
e VARTARLFS TN QHRRDUTINF : ,
. o n ,l FF = ] 0 n n7 R ) > B e I
MEZ o= R wr v _
r\”: (J v= 6 - - B i e 1 Gt S Y b -..,?,....-__.-
TFMIN = 1 o n-no ‘ R S
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