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ABSTRACT

The subject of this investigation is to answer the question:

Whether any significant increment to accuracy could be transferred from

a super-control continental net (continental satellite net or super-

transcontinental traverse) to the fundamental geodetic net (first-order

triangulation). This objective was accomplished by evaluating the

positional accuracy improvement for a triangulation station, which is

near the middle of the investigated geodetic triangulation net, by

using various station constraints over its geodetic position.

This investigation on a 1858 kilometer long triangulation chain

shows that the super-control net can provide a useful constraint to

the investigated geodetic triangulation net, and thus can improve it

only when the accuracy of super-control net is at least 1 part in

500,000.

The preliminary accuracy of super-transcontinental traverse is

already better than this limiting accuracy of 1 part in 500,000; how-

ever, the preliminary accuracy of continental satellite net is lower

than this limiting accuracy of 1 part in 500,000. As such, continental

satellite nets do not seem to provide any useful constraint, at least

to this particular investigated triangulation chain.
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1. INTRODUCTION

Geodetic triangulation has been accepted as an accurate method of

determining "precise" coordinates for the triangulation stations of relatively

short chains. This well-accepted idea was also given in an article "How

accurate is First-Order Triangulation?" [Simmons, 1950, pp. 53-561 with

the following introductory words:

The question is often asked, "How accurate is the position
of a triangulation station, " or "To what accuracy are the
distances between triangulation stations known?" These
questions are difficult to answer, principally because
first-order triangulation gives the optimum accuracy
in the measurement of great distances and there is at
present no super yardstick to which it can be compared.

Two modern technological advancements, namely, satellites and

electronic distance measuring (EDM) instruments, have questioned the

first-order triangulation accuracy, especially if triangulation is extended

to distances longer than 1000 km or more. In such extended triangu-

lation systems systematic errors like lateral refraction, propagation of

observational errors, residual polar motion effects on latitude, longitude

and azimuth, etc. [Mueller, 1969, pp. 61, 86-87; Pellinen, 1970, pp. 34-35;

Wolf, 1950, pp. 117], which cannot be eliminated, accumulate. Lately

the question has been raised whether any significant increment to accuracy

is "cascaded" from a 1:1 million 1000 km net through a 100 km net to

local control over 10 km distances.

The satellite triangulation and super-transcontinental traverse, being

of the highest achievable accuracy of today, i.e., super-control net of

"zeroth" order, constitute a modern geodetic super structure, within

which the classical geodetic triangulation is supposed to provide a geodetic

control densification.

According to the classical geodetic concept a lower order system should be

tied to a higher order system [Jordan/Eggert/Kneissl, 1958, Vol. IV. 1, p. 112].

-1-



Statistically, this means that the variance-covariance of the higher order

system, as a lower limit for accuracy, be at least compatible with the

internal precision of the lower order system. For all practical reasons

the accuracy of the higher order systems should be substantially better

(by a factor of two to three) than the subordinated system, thus supplying

a rigorous constraint in the reduction of the lower order system [Schmid,

1969, p. 4].

The objective of this investigation is to answer the question:

Whether any significant increment to accuracy could be transferred

from a super-control net to the basic geodetic net (first-order triangu-

lation). This objective was accomplished by evaluating the positional

accuracy improvement for a.trlangulation station, which is near the middle

of the investigated geodetic triangulation net, by using various station

constraints over its geodetic position.

-2-



2. DATA AND ACCURACY ESTIMATES

2.0 Data

For the purpose of the present investigation, the triangulation of the

western-half of the United States has been considered, as this is more

accurate than that of the eastern-half of the United States [Simmons,

1950, p. 54], The investigation is done on the chain from Moses Lake,

Washington to Chandler, Minnesota (Figure 2.0-1), as these two stations

are also common on both the continental satellite net (CSN) and the

super-transcontinental traverse (STT). The data used was supplied by

the Triangulatj.on Branch of Geodesy Division, and the Geodetic Research and

Development Laboratory, both of the National Oceanic and Atmospheric

Administration, Washington.

2.01 Geodetic Triangulation Net.

The observed data used is for the period 1897-1965. The approximate

coordinates used are from 1965 adjustment. The details of Moses Lake -

Chandler triangulation chain are as follows:

Number of stations 191

Number of bases ("Taped 27
l_Geodimeter 2

Laplace stations 13

Observed directions 919

Distance between two stations f Minimum 273m
L Maximum 190 km

Total length of the chain ;i 858 km.
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The supplied data was in U. S. sign conventions, i.e., longitude

positive westwards and azimuth reckoned clockwise from south [Bouchard

and Moffitt, 1964, pp. 94, 315; Mitchell, 1948], which was converted

internally within the program to the conventional sign conventions,

i.e., longitude positive eastwards, azimuth reckoned clockwise from

north [Grossmann, 1964, pp. 5-6; Mueller, 1969, pp. 15-19], It is

assumed that the necessary reductions have been applied to the observed data

and the weight function P is "a priori" known to be a sufficient good accuracy.

The configurations and specifications for triangulation net are dealt

with in [Bomford, 1965; Bouchard and Moffitt, 1964; Gossett, 1950].

A typical configuration of U. S. Coast and Geodetic Survey triangulation

chain is shown in Figure 2.0-2.

2.02 Super-Control Nets.

Super-transcontinental traverse (STT) runs across the western-half

and the eastern-half of the U.S.A. (Figure. 2. 0-3). Its specifications, con-

figuration, reduction of data and instrumentation are dealt with by Meade

[1967;1969a;1969b],

Continental satellite net (CSN) is, in general, planned in such a way

so that the stations are around 1200 km apart and that these stations are

evenly distributed over the entire area. CSN-stations are either the

stations of first-order triangulation net or these are connected to them.

Its specification and configuration are dealt with in [Deker, 1967;

Mueller, 1964; Pellinen, 1970; Schmid, 1970; Shedlikh, 1970; Veis, I960],

The continental satellite net of North American Continent comprises of

twenty stations which can be anchored in the three world net stations;

Thule, Greenland,, Moses Lake, Washington,, and Beltsville, Maryland.

Furthermore, planned is a tie to a fourth world net station - Shemya

(Figure 2.0-4) [Schmid, 1970],

-5-
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2. i Accuracy Estimates.

2.10 Data.

The following representative standard errors for observed data of Moses

Lake - Chandler triangulation chain has been suggested ifMeade, >1B70]:

Directions 0"4

Azimuth 0."8

Base Taped 1 part in 500, 000

.Geodimeter 1 ppm for distance > 15km

.1.5 cm for distances up to 15 km

2.11 Networks.

The mean of all section closures, which is the accuracy measure for the

investigated geodetic triangulation net, is given as 1 part in 317,000 TAdams,

19301. The standard position errors of the end stations of super-transcontinental

traverse, which represent its accuracy measure, using actual data sets as given

by different investigators differ too much from each other. The proportional

error, which is the standard position error divided by the distance of the

station from traverse-origin, is used for this investigation. The proportional

errors of super-transcontinental traverse are given as follows: 1:740,000 over

318 kilometer long traverse and 1:1,100,000 over 1270 kilometer long traverse

TForeman, 1970]; 1:670,000 over 270 kilometer long traverse [Gergen, 1970]

and 1:3, 000, 000 over 1858 kilometer long traverse TESSA., 19691. The pre-

liminary accuracy (i. e. , proportional error) of continental satellite net, as

obtained from the supplied data, corresponds to 1:385,000 for Chandler station.

Because of this wide range in preliminary accuracy measures of these two super-

control nets, investigations using the following accuracies (station constraints),

are made: 1:300,000; 1:400,000; 1:500,000; 1:600,000; 1:700,000; 1:1 M;

1:1. 5M; 1:3M. The use of these accuracy measures, which are within the limits

of preliminary accuracies of the two super-control nets, wil l determine a limit on

the accuracy requirement of the super-control net, which would be necessary to

improve the geodetic triangulation net.

-9-



3. COMPUTATIONS AND RESULTS

During the earlier period of this investigation considerable thought

was "given to the selection and use of such formulas and methods which

would not only provide high accuracies, but also minimize or eliminate

loss of accuracy in computations. This resulted in using Helmert -

Rainsford - Sodano's Iterative Solution for Inverse Problem (Appendix I),

which are equally applicable for short and long lines, and Conjugate

Gradient Method (Section 3.2) for the adjustment of the triangulation

nets, where the original observation equation coefficient Matrix (A-Matrix)

is used, thus avoiding direct formation of normal equations where certain pro-

perties of the original A-Matrix are lost. To minimize the round-off errors,

computations are done in double-precision with double-precision; storage

rMuller-Merbach, 1970; Section 3. 281.

3.0 Selection of Adjustment Method

From the two basic adjustment methods, i. e. f Method of Observation

Equations and Method of Condition Equations,the former has been preferred

for the present investigation due to reasons of simplicity and clarity. The

reasoning of this preference has been dealt with in many publications

[Ashkenazi, 1967, p. 167; Gotthardt, 1968, p. 180; Grossmann, 1961,

p. 174; Helmert, I. Teil, 1880, p. 556; Jordan/Eggert/Kneissl, Bd. IV. 1,

1958, p. 537; Wolf, 1968, p. 323; Wolfrum, 1969, p. 11. Due to the large

size of the triangulation net under investigation and the availability of digital com-

puters, iterative methods were considered because (1) they are easier to program,

(2) they require less storage space as the coefficient matrix of a triangulation

net is very sparse, (3) they use directly the original set of equations through-

out the process and hence rounding-off errors do not accumulate from one

-10-



Iterative cycle to another. One important factor for deciding to use an itera-

tive method is to know in advance whether the rate of convergence i* rapid

for the system. However, if the rate of convergence is found to be slow, which

in general is the case in large systems, it can be accelerated by a certain

process TAahkenazi, 1969, p. 34; Fox, 1965, p. 194; Hilger, et al. 1967, u. 11:

Ralston, 1965, p. 437]. While searching for a suitable adjustment.method this

investigator came across the Conjugate Gradient Method (Cg - Method) FRalston.

1965; Schwarz, 1968 and 1970; Wolf, 1968; Zurmuhl, 19581, which has the

following distinct advantages over other iterative methods, such as Gauss-

idlT, Jac6bi-;;i;Relaxation- and Gradient methods:

1. Original A-Matrix is used, thus avoiding the formation of normal

equations, where certain useful characteristics of A-Matrix. such as

very small coefficients may be lost.

2. Original A-Matrix, which has very few non-zero elements, is

easily stored in comparatively much less computer space using an

Index-Matrix.

3. No "mesh-point numbering technique" fAshkenazi, 19671 to keep

the band-width of the system a minimum is necessary. Thus stations

can be added or taken out from the existing triangulation system with-

out caring for their numbering.

4. It is a finite iterative process. Theoretically, the solution vector is

obtained in a maximum of n-steps, n being the number of unknowns.

Therefore, eigenvalues need not be calculated for determining the

convergence. However, experimentation (Section 3. 4) shows that the

solution vector is not obtained in n-steps, as the orthogonality between

the residue-vectors is not maintained exactly (Section 3. 27). Con-

sequently, the residue-vector r(D) after n-iterations is not zero

(Section 3. 29). This deviation from zero depends upon the condition of

the system; the poorer the condition, the larger will be the deviation.

5. Even in case of a poorly conditioned system solution vector is obtain-

able after more iterations.

-11-



6. In large nets the effect of round-off errors depends upon the elimination

sequence in normal matrix [Korhonen, 1954]. In Cg- Method the

elimination sequence plays no role since adjustment is simultaneous,

i.e., entire data as a whole is used.

7. Each approximation x^J) to the solution vector is closer to the true

solution x than the proceeding one.

8. The ability to start anew at any point in the computation using the last

x^ J) as initial value so as to minimize the effects of round-off errors.

3. 1 Mathematical Model (Method of Observation Equations).

Let Lt be the m independent observed quantities, vt the residuals to the

observed quantities (obtained from the adjustment) and x, y, z, . . . the n unknown

parameters to be determined. Each observation gives an observation equation,

whose general from is

LI + Ti •= fi (*- y, z, . . ..), (3. 1-1)

where i - 1,2,3. . . , m and f represents a linear or non-linear function. The

method of least squares however demands that (1) f should be linear, 1. e.,

a linear relationship between the observations and the unknowns and (2) the

number of observations (m) should be greater than those of the unknowns (n)

i. e.,m>n. In case of a non-linear function f this is linearized by using

Taylor series about such good approximate values of the unknowns XQ, y0, z0, ...

such that the second and higher order terms can be neglected. In this

case, equation (3.1-1) can be written as

Li + vi = Mxo+dx, y0+dy, z0 + dz, ... )

.or
Li + Vj = ft(x0, y0, z0, ...)+a1dx + b1dy + c1dz+... (3.1-2)

i.e. Vj = atdx + btdy + Cjdz + . . .+ t i (3.1-3)

-12-



where

x = XQ ' dx, y = y0 -t- dy, /. = z0 t- dz. ...

M, . Mi Mi
a< =^' b' = 5r C' = te"~ (3'1-4)

*<i = f i (Xo, yo, Z0, .. .) - Lj.

Observation equation (3.1-3) can be written in the matrix .form as

V = Ax + 1. (3.1-5)

That we have preferred to use weighted constraints to the station Chandler can

be seen at the end of this section. These "a priori" weighted constraints on

the station position generate observation equations of the form

vx - Fx (3. 1-6)

where F is a rectangular matrix, whose elements are either' zero/or-one. Thus

the complete observation equation system can be written as

v = Ax + 1
(3.1-7)

vx = Fx

i . e . ,

V . = Bx + L, (3. l-7a)

where

v= r •• • F , , 0 - (3.1-8)

Observation equations for direction, Laplace azimuth, and distance are

given in Appendix 11 TGrossmann, 1961, pp. 170, 177; Wolf, l9fiH, pp. .'}2:<-

.'i24]. Due to angular and linear (distance) observations the observed dat;i In

a triangulation net is of a heterogeneous or die similar nature. This hetero-

'The term "heterogeneous or dissimilar" observations is used when the methods
of their measurement are diverse; thus not only angles and distances, but also
distances and heights are heterogeneous observations [Wolf, 1968, p. 561;
[Schmid and J. Schmid, 19'65 p. 10] uses the term "hybrid systems" for J'hetero-
geneous systems".

-13-



geneou.s data have not only more than one dimension but also different

"a priori" standard errors. To make this data homogeneous, i .e. , dimen-

sionless and of unit weight, it is divided by the corresponding "a priori"

standard error a. For reasons of simplicity the mathematical model used is

assumed to be uncorrelated. The resulting homogenized observation equation

system can be written as

v = Ax + 1

vx = Fx
(3.1-9)

where

v =- v/at ; A = A/oi.; 1 = 1/Oi

vx = vx/oy, Fj = F/OJ (3.1-10)

at = standard error of Lt; Oj = standard error of Xj

Equations (3. 1-9) and (3.1-10) can be written in the matrix form as

V = Bx + L (3. l-9a)

where

V = B =
A
F

L =
I

respectively.

Equation (3.1-9) is used directly for adjustment by conjugate gradients method

in Sections 3.23 and 3.24 where these are used without ~ sign, although the A-

matrix and 1 -vector used there are homogenized. A complete algorithm for

obtaining solution vector and N"1 are given in Sections 3. 24 and 3. 26 respec-

tively, which give v^v and Qxx or Qyy for a particular column. Using these

quantities the "a posteriori" variance of unit weight (m^), standard errors (mx,

my)of unknowns, standard positional error (mp) and the elements 9, A, B of the

error ellipse are computed TGotthardt, 1968, pp. 121-125; Grossmann, 1961,

pp. 163-168; Wolf, 1968, pp. 286-292]. Variance of unit weight m0
2 is given

by

vTPvm =
m-n + c (3.1-11)

-14-



Sl.andard errors (m x , 'm y ) of unknowns are given by:

mx - m0 Qxx ;

and the standard position error

mv (3. 1-12)

(3.1-13)

The elements of the error ellipse are given by

9 = r arc tan -r-
2 Qxx-Qyy

= m x = semi-major axis of error ellipse

m0 /Qmin = semi-minor axis of error ellipse

(3.1-14:1)

where
_ Qx« + Qvv
- ^" Y

1 /
~ /

,„ /"> \
(Qxx - Qyy)

. ,x
4Qxy (3. 1-14d)

The standard errors of unknowns give the mean uncertainity of a station only

in the direction of the coordinate axes, while the error ellipse gives this in

any arbitrary direction. The standard positional error mp as well as the error

ellipse possess an important characteristic that these are independent of the

coordinate system rotation.

The geodetic triangulation net is adjusted as an independent or free net,

as it is not connected with other nets. For its unambiguoug determination,

besides the observed data which includes directions, bases and astronomical

observations, i. e. , longitude and azimuth,one fixed station is required to serve

as origin [Gotthardt, 1968, p. 167; Grossmann, 1961, p. 175; Jordan/Eggert/

Kneissl, Bd. IV. 1, 1958, pp. 534-542]. Moses Lake station is kept as origin

with its coordinates obtained from satellite triangulation results; these coor-

dinates have been assumed to be the best known coordinates.

Combining the free triangulation net with super-control net of zero order,

i. e. , continental satellite net and/or super-transcontinental traverse means

constraining the scale and/or orientation of the triangulation net. The effect of

this combination is comparable with "tennis racket and string effect, " where

-15-



the rigid outer racket frame (super-control) constrains the loose strings

(triangulation net). If the strings are already constrained, there would be no

"visible" effect of the additional constrain from the rigid outer frame. This

is also the purpose of this investigation, i. e. , to evaluate whether the existing

geodetic triangulation is sufficiently "constrained" or needs to be constrained

by additional super-control net. For the present investigation triangulation

station Chandler, which is common to the three networks, provides constraint.
Geodetic triangulation net can be combined with the super-control

net in either of the two ways:

(1) By using the actual data, i.e., by using the actual

coordinates with their standard errors of Chandler as obtained

from CSN and STT with the geodetic triangulation; or,

(2) By adding a weight constraint to Chandler with its

coordinates from the geodetic triangulation.

For this investigation, the first way could not be used, as the super-

control net coordinates of Chandler station are not compatible with those

obtained from geodetic triangulation. As such, the second way has been

preferred by using the actual preliminary accuracy estimates for Chandler,

which are 1 part in 385,000 and 1 part in 3 million, as obtained from

CSN ans STT, respectively. Further investigations are made by using

hypothetical standard positional error accuracy estimates of Chandler

station, which are 1:400,000; 1:500,000; 1:600,000; 1:700,000; 1:1M;

1:1,5 M. These accuracy estimates are within the actual preliminary

accuracy estimates of super-control nets. Thus, using these various

accuracies of super-control net, a feeling for the accuracy limit of super-

control net, which would be necessary to improve the investigated geodetic

triangulation, can be obtained.

-16-



3.2 Conjugate Gradient Method (Cg-Method).

y. 20 Introduction.

Although Cg-Method was developed by E. Stiefel and M. R. Hestenes

independently from each other in 1952 Tstiefel, 1952, p. 23], this has been

used only twice1)for geodetic computations FHilger and Remmer, 1967;

Wolf, 1968, p. 1851. Its basic algorithm given in most publications THilger and

Remmer, 1967; Schwarz, 1968 and 1970; Stiefel, 1952] is good for well-

conditioned systems. In case of ill-conditioned systems (Section 3. 27) use of

basic algorithm means too many iterations. However, use of certain

formulas [Hestenes and Stiefel, 1952, p. 433] shows the suitability of

Cg-Method even for very ill-conditioned systems.

An attempt is made here to derive the Cg-Method and put its

algorithm together because this is too scattered in mathematical liter-

ature. The Method of Conjugate Gradients (Cg-Method) is a non-

stationary relaxation method, which theoretically solves a system of

simultaneous linear algebraic equations

NX + u = 0 (3.2-1)

in n-iterative steps, where N is a symmetric and positive definite n x n

coefficient matrix, x is a nx»l vector of unknowns and u is a n x 1 vector of

constants. In geodetic work as the columns of m x n A-matrix (observation

equation coefficient matrix) are independent (A-matrix is of full-rank), its

quadratic matrix ATA(=N) is symmetric and positive definite. Then the

system (3.2-1) - known in geodesy as the Normal Equations - has a unique

solution.

For the derivation of this method the matrix N of equation (3. 2-1) will

be considered symmetric and positive definite, and then the derived algorithm

w i l l be modified for an arbitrary N-matrix and for directly using the observa-

tion equations without explicit formation of normal equations.

so far known to this investigator.
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3. 21 Basic Relaxation Method.

Certain terms of the basic relaxation methods, which are used later,

will be discussed first:

To obtain the solution of (3. 2-1) by relaxation methods a trial vector x(°)

instead of x in (3. 2-1) is used, which gives a residue vector r(°)

r<°) = Nx<°) + u. (3. 2-2)

The aim of relaxation methods is to change the trial vector x(°) until the

residue vector n°V disappears.

This residue vector r^°) is the gradient of the quadratic function F(x(°))

given by

F(x<°>) = 4x(°)TNx(°)-fuTx(°). (3.2-3)
• «

Differentiating partially the quadratic function F(X *) w.r.t. the trial vector

x'0' we obtain

= N x ° u , . ,3.2-4,

(3. 2-2) and (3. 2-4) give

r(o) = grad F = Nx(o) + u> (3.2-5)

Equation (3. 2-5) indicates that the solution of (3. 2-1) is synonymous with

the problem of finding a minimum of the quadratic function F(x(°)) given by

(3. 2-3) fUalston, 1965, p. 439; Schwarz, 1968, p. 45]. Let h be an arbitrar-

ily selected non-zero relaxation direction vector, which corrects the trial

vector x(°' in the direction of h so as to achieve a minimum of the quadratic

function F(x(°)), giving a new trial vector x', which is a linear function of

the last trial vector x(°\ given by

x' = x(°) + Ax(°) = x<°) + Xh (3. 2-6)

where X is the relaxation distance factor or the correction factor for the

unknown vector, which is so determined that the quadratic function F(x')

be a minimum; F(xl) is considered a quadratic function of the only variable
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X with constant (fixed) x(°) and h. Thus

F(x') - F(x(°) + Xh)

Using (3.2-3)

F(x') = -((x(0)+Xh)TN(x(°)
Lt

-
2

Using (3.2-3) and (3.2-5)

F(x') = F(x(°) + X r(°)Th + y >?hT Nh. (3. 2-7)

To find a minimum of F(x') in which the only variable is A, equation (3. 2-7)

gives

£) = r(°)Th •+ XhT Nh .= 0 (3.2-8)

i.e.,
r(°)Th

(3.2-8a)

Equation (3. 2-8a) means that the relaxation direction vector h cannot be

selected orthogonal to the residue vector r(°), for in that case > mln = 0

at the trial vector x(°). The new residue vector r' is given by

r' = NX' + u (3. 2-9)

It could easily be proved that the new residue vector r' must be orthogonal

to the last relaxation direction vector h; in other words after each relaxation

step the new residue vector r(J) must be orthogonal to the last relaxation

direction vector h'^"1).

Proof;

From (3. 2-8)

d F(x7) = . = d F(x') dx'
dX dx' ' dX
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using (3. 2-4), (3. 2-5) and (3. 2-6)

R.H.S. = r /Th - 0 (3. 2-9a)

Alternative Proof:

Using (3.2-5), (3.2-6) and (3.2-9)

r' •--• NX' + u = N(x(°) + Xh) + u - r(6) + X N h . (3. 2-9b)

Hence

r^h = (r<c) + XNh) T h = r<°)Th + X(Nh)Th

= r(°)Th- T^T- (Nh) T h - 0 for X = X n l n .
n Nn

i.e.,

rn h = 0.

As proved above the new residue vector r' must always be orthogonal

to the last relaxation direction vector h; this can be considered as an

Orthogonality Condition . Equations (3.2-9a)and (3.2-9b) give the

following relaxation distance factor Xmin:

r^h = (r(°) + XNh) T h = r(°)Th + X h T N h = 0

. • ' _ r(°>T h
"1B h T N h

which is the same as given in equation (3. 2-8a).

Going in the relaxation direction h with the correction factor Xmln a

minimum for the quadratic function F(x') is obtained; this can be proved by

the second derivative of F(x') obtained from (3.2-8):

3

d A
= h T N h > 0. (3.2-10)

The second derivative in equation (3.2-10) is always positive for every non-

zero relaxation direction vector h, as N is positive definite [Thomas, 1960,

p. 130].
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Let AF be the decrease in the quadratic function F(x(°)). while going from

x(°) to x' in the relaxation direction h using X = Xmln. Considering (3.2-7)

und (3.2-8a)

AF - F(x<°>) - F(x/) = -rXr(°)Th + ^ X 2 h T N h ] = + *T° > 0 , (3.2-11)
2

lor

r<°)Th t 0.

(3.2-11) gives the largest decrease of F(x'°)) in the direction h. Thus by each

relaxation step the current quadratic function F(x') decreases, which proves

the convergence characteristic of the relaxation method. Geometrically the

relaxation method can be interpreted as follows:

r* /

F(x(°) = Constant

Figure 3.2-1

The quadratic function F(x(°)) in the case n = 2 can be represented by its

level lines F(x(°)) = constant, which are concentric ellipses in rectangular

(XL Xs) - coordinate system (Figure 3,2-1); the common center of these con-
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centric ellipses coincides with the minimum point of F(x(°)), whose coor-

dinates are (x\, xa), which represents the solution of the system. Let

x*0) be the initial point; according to (3,2-5) the corresponding residue

vector r(°) will be orthogonal to the level line passing through x^°), A

relaxation step means first to choose the relaxation direction vector h and

then to proceed in the direction of h until x', where the quadratic function

along the relaxation direction is minimum. This point x' is naturally on a

level line where it is tangential to the relaxation direction vector. At this

point x',the new residue vector r' is orthogonal to the level line i. e. to the

relaxation direction h (3.2-9a).

Based upon this basic relaxation method several relaxation methods have

been developed, which differ in the selection of the relaxation direction vector

h arid the relaxation distance factor X for each step.

3.22 Method of Conjugate Gradients (Cg-Method).

Based upon the basic relaxation method,gradient methods were developed

where the relaxation direction vector h is not chosen arbitrarily but is a

function of the current or previous residue vectors.

To find a minimum of the quadratic function F(x (°)) (Figure 3.2-1) the quickest

way obviously is to proceed orthogonally from x(°) in the direction h opposed

to the grad F, i. e.,opposite to current residue vector r'°'. This can be written

in a mathematical form as:

h(J) = _r(J-0, (3,2-12)

Equation (3.2-12) constitutes the principle of the Method of Steepest

Descent. Although the decrease in the quadratic function in each relaxation

step is locally maximum, the convergence in general is not good [Schwarz,

1968, p. 68].

To improve the convergence, a method called the Method of Conjugate

Gradients was developed by Stiefel and by Hestenes independent from each

other, using not only the current residue vector but also the previous

iteration results so that the system theoretically1 has a solution in n-relaxa-

n practice due to round-off errors this theoretical convergence is not
achieved (Section 3.40).
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tion steps, i. e. it converges in n-finite steps2, n being the number of unknowns.

Cg-Method is thus a modification of the Method of Steepest Descent, where

the relaxation direction vector h(J) is determined alone by the existing (current)

residue vector r(J-1' according to equation (3. 2-12), i. e. h(J) = -r^"1). In

Cg-Method equation (8. 2-12) is valid only for the first relaxation step but the

further relaxation directions are calculated by

hO) = -r(J-1) + c j - i - h ( j ~ L ) for j 2 2 (3.2-13)

/ h(J) = -rO-1) for j = i i

where .ej-i is a Correction Factor for Relaxation Direction vector, "hich is

proportional to the last relaxation direction vector hl j~ l). The factor € j _ i is

so determined that the relaxation direction vectors h(J) and h^"1' are conjugate3

i.e.

h< J ) T Nh < J ~ l ) - 0 (3.2-14)

(3. 2-13) and (3. 2-14) give

T.(J-I)TWHO-I)
[T- (3.2-15)

The relaxation distance factor Xj is determined from (3.2-8u) as:

rf3"1)^)
J ~ " h < J > T N h < J ) ' (3.2-1G)

and the solution vector x ( J ) is determined from(3.2-U):

(3.2-17)

The residue vector r(J) after j-th step is given by combining (3. 2-2), (3. 2-1 (!)

and (3.2-17):

(3. 2-1S)

This is why it is also called the "n-Step Method".
3 Due to this relationship this method is called the Method of Conjugate

Gradients.
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The Cg-Method is thus defined by equations (a 2-5)j(a 2-12), (3. 2-13), (3. 2-15),

(3. 2-16), (3. 2-17) and (3. 2-18) after choosing a trial vector x^; generally

x(°> = 0.

Proceeding in the same way as was used to obtain equation (3.2-9a), it

can be easily proved that

rO)T h(J> = 0. (3.2-19)

Similarly it c:vn be proved that

r ( J ) T h < J ~ l ) ' = 0. (3.2-20)

Using (3. 2-13), (3. 2-14), (3. 2-19) and (3. 2-20) we obtain

rO)T r(J-i) = rO)T

Equations (3. 2-14) and (3. 2-21) can be generalized in the following form by the

method of induction:

= 0 for i ± j (3. 2-l4a)

r(0
T r(J) = 0 for i ? j. (3.2-21a)

From equations (3.2-14a) and (3.2-21a), one can conclude that in the Cg-

Method, the residue vectors r (3) constitute a mutually orthogonal system

and the relaxation direction vector h^ J ) a mutually conjugate system.

This gives an important characteristic of Cg-Method. As the residue

vectors r(3) constitute a mutually orthogonal system in an n-dimensional

vector space, this orthogonal system can contain a maximum of n non-

zero vectors. Thus, at the latest, the (n + l)th residue vector r^ n ) must

disappear, i.e., r(n) = 0. This proves that the Cg-Method provides the

solution in a maximum of n- steps.

Numerical computations, however, show a deviation from the theoretical

solution in n-steps, which may be due to (1) round-off errors and (2) an ill-
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condition N-matrix; as these effect the mutual orthogonality of the residue

vectors. Thus, the residue vector r^ is not exactly zero. This deviation

does not disturb the system. In this case where more than n-iterations

are necessary to obtain the solution, the quadratic function decreases after

every iteration.

Equations (3. 2-15) and (3. 2-16) can be written in an easier form using

(3. 2-13), (3. 2-18), (3. 2-19) and (3. 2-21):

Numerator of (3.2-16) = -rO'^hO) = -r(
3"1)T(-r(

J~1)+ f j - j h O ' 1 )

Hence (3. 2-16) can be written as

From (3. 2-18)

Nh^"1) = Y— (r^"1) - rO"2)) (3.2-18a)

Numerator of (3. 2-15) = r^'1)1 Nh<J -1) = (r(J-1) - r<J~2))

Combining (3. 2-15) and (3. 2-16a) we obtain

r(J-'i)Tr(j-i)
£M-i =

 r{j-3)Tr(j-a) 0 ^ 2 ) . (3.2-l5a)

Although the equations (3. 2-15) and (3. 2-16) are mathematically the same as

equations (3.-2-15a) and (3. 2-16a) respectively, both sets of equations are

equally good for well-conditioned systems. However, in case of ill-conditioned
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systems equations (3.2-15) and (3.2-16) show better results [Hestenes and

Stiefel, 1952, p. 433). Consequently, these were the equations used in this

investigation. Due to the simplicity of equations (3.2-15a) and (3.2-16a),

they are the equations usually given in most of the publications.

:L'2X Modification of Cg-Method.

1. If the A-matrix1 is an arbitrary matrix and not assumed to be a positive

definite symmetric matrix, Cg-Method can be used after multiplying the system

by AT, i. e.

(ATA)x + AT 1. = 0, (3.2-22)

for AT A is symmetric and positive definite, if A is non-singular matrix. The

system of equations represented by (3.2-22) is equivalent to that given by (3.2-1).

2. To use the Cg-Method for observation equations directly without forming

normal equations (N-Matrix), i. e,, without forming a symmetric positive

definite system' the following procedure is used.

Let the observation equations be written as

Ax + 1' = v (3.2-23)

where A is a m x n matrix of observation equation coefficients, 1 is a

m x 1 vector of absolute terms and v is a m x 1 vector of residuals. In

case of observations with different weights, system (3.2-23) is homogenized

by multiplying it with corresponding pt, where Pj is the weight of the

observations, thus the system becomes unitless and with unit weight.

Normal equations to (3.2-23) can be written as

A T A x + ATl ..= 0 '. (3.2-24)

which are equivalent to (3. 2-22).

Similar to equation (3.2-9) the residue vector r(J) and the re.sidual vector

v(J) after j-th iterations are

reasons of consistency N and u of (3.2-1) has been replaced by A
and 1, respectively.
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AT 1 ' (3 .2 -25) '

and

AxM +- 1 = y(J) (3.2-20)

Combining (3. 2-25) and (3. 2-26) we obtain

rO) = ATV( J) . (3. 2-27)

In the algorithm of Cg-Method N can be replaced by AT A in equations

(3.2-15), (3.2-16) and (3.2-18) and thus the expression

h( J )Nh( J ) = h ( J ) A T A h < J ) = (Ah( J))T(AhO>). (3.2-28)

Similar to equation (3. 2-18) an expression for the residual vector v ( J ) after

j-th iteration can be found:

v(J> = Ax(0+ 1.= A(x(J~1) + XJhO)) + .!.= (Ax('-l) + L.) + XjAh( J) - v^ + X j A h < J ) .

(3.2-29)

Thus, the residual vector v(J 5 after j-th iteration can be computed in two

ways according to equations (3.2-26) and (3.2-29), thus providing a

computational check. However, to increase the stability of the relaxation

process v(3) should be computed anew in each step according to its

definition given by equation (3.2-26) and not recursively by equation

(3.2-29). Thus, the residual vector r(J) is also to be computed

anew according to its definition by equation (3.2-27) and not recursively

by equation (3.2-18) [Lauchli, 1959, p. 259].

That the norm of v^3 ) decreases monotonously while solving the

observation equations (3.2-23) by Cg-Method can be proved as follows

from (3.2-29):

V0-0 = V(J) _ Xj
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(3.2-30)

From (3. 2-27) and (3. 2-19)

v( J)T(Ah( J>) = (ATv<'))Th< J) = rO) T hO) = 0

(3. 2-30) can be now written as

V0)MJ) = v^M3'1) - Xj3(Ah(JV(AhO)) (3.2-31)

Until x ( J ~ l ) is not the solution x of (3.2-23), rC"1) ? 0, hence Cj-^ ? 0

and h(3) i- 0; thus Ah^ ^ 0 and Xj > 0, hence

Xf(Ah< J ) ) T (Ah( J ) ) > 0. (3.2-32)

Equation (3.2-31) together with (3.2-32) proves that the norm of residual

vector v ( J ) decreases monotonously.

3. 24 Algorithm of Cg-Method Using A-Matrix.

Now a complete algorithm of Cg-Method for obtaining the solution vector (x)

using directly the homogenized observation equations can be summarized in the

following systematic way:

Given: Homogenized observation equations Ax + I - v.

Select: Initial Trial Vector x<°) = 0

Compute:

(1) v*0) = Ax(°) + 1

Relaxation steps j = 1, 2 , . . . n

W- eJ-! = /AV, ( J - I )T /AI , ( J - I ) \ ( for J s 2)

(4) h<» =r- r j f_ n „ n (for ) =
L-rr L) + c. , MJ / (fnv i ^> ii- i» ' r t j_i nx ' (lor j 2 ,

Xj = -

-28-
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(6) x(J) = xO'1) + X j h ( J )

(7) v(J) = Ax< J ) + I

<7a>

Tests;

(8) Orthogonality Test:

r ( J > T h<0 = 0

rO-i)M') =

cos

a
C° s"

= V(J)
check

3.25 Termination of Iterations.

Based upon the theory of Cg-Method and the geodetic requirements,

iterations should be terminated as soon as any of the following conditions are

fulfilled:

(a) if the improvements in the solution vector 'between two consecutive

iterations is negligibily small, i. e., |xw -x^"1') = 1.0-10"4 seconds

(i.e. 1. 0-10~4 second in <p or X = 3.0mm),

(b) if r< J)Tr< J) = 0,

(c) if ("Ah^))T(Ah(0).,== 0;

(d) if the given number of iterations is reached;

(e) if the round-off error (HFE) durin&.iterations exceeds a certain

accuracy limit, which is given by the vector difference

RFE =

The iterations should be terminated if r (3 )T r ( J ) ^3. RFE.
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3. 20 N'1 - Inverse of Normal Matrix.

To analyse a geodetic network variance-covariance matrix (S) is needed.

This requires the computation of N"1, the inverse of the coefficient matrix of

the normal equations,

S = m§. Q where Q = N"1 (3.2-33)

By Cg-Method N1 is computed column by column and for each column of N1

the computational steps needed are the same as those required to obtain the

solution vector of (3. 2-1). For huge systems the computational time for

obtaining one column of N1 or to obtain the solution vector of (3. 2-1) is large

and hence in such cases only a few necessary column vectors of N"1 need

to be computed.

The algorithm for computing N"1 is obtained in the following way:

The inversion of N basically amounts to solving the system

N-N-1 = E (3.2-34)

or

N- Q = E (3. 2-34a)

where E is a unit matrix.

Let qk be the k-th column vector of Q (=. 1ST1) and e^ the k-th column vector of E,

then qk is the solution to the system

N - q k - e k - 0. (3.2-35)

qk, which is now the solution vector of (3. 2-35), can be obtained by equations

(3.2-5), (3.2-12), (3. 2-13), (3. 2-15), (3. 2-16), (3. 2-17) and (3. 2-18) after

choosing a trial vector q|.0); generally qy3' = 0.

Modifying this algorithm for using the A-matrix directly without explicitly

forming the normal equations (N-matrix) N is replaced by ATA in the above

mentioned equations. From (3.2-35):

AT Aqk - ek = 0.

Let q$ be the initial trial vector, then
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r(°) - ATAqk(°) - ek. (3. 2-3G)

The complete algorithm of Cg-Method for k-th column vector of N"1- inverse

of normal matrix - using directly the homogenized observation equation

coefficient matrix A can be given as follows:

Given; Homogenized observation equation coefficient matrix A.

Selegt: Initial trial vector q^0' •= 0

Compute :

(1) r(°) = -ek •

Relaxation Steps jj = 1, 2, . . . n

/9\(2)

(for . j = 1)

(for j 2 2)

(5)

(6)

Test;

(7) Orthogonality Test:

Same as (8) of Section 3. 24.

Termination of Iterations: Same as in Section 3. 25.

3.27 111- Conditioning.

If small errors in the coefficients of equation (3. 2-1), i. e., equation (3. 2-24)

or in the solving process have little or no effect on the solution the system is

called well-conditioned; if the effect is large it is called an ill-conditioned

system. Ill-conditioned systems have a very poor rate of convergence. A

system can be evaluated if some information about its condition (condition

number) is known. Condition numbers can be computed by using equations

given in [Fox, 1965, p. 142; Schwarz, 1968, pp. 22-23; Zurmlihl, 1964,
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pp. 212-214]. For the present investigation condition number (K) is the ratio

of the largest eigenvalue (Xmax) °f N to its smallest eigenvalue (Xsln), i. e.,

' K = *»,/Xi, (3.2-37)

This condition number K should be near unity for a very well-conditioned
*

system from the point of view of solving linear equations [Fox, 1965, p. 199].

As mentioned in Section 3.1 eigenvalues need not to be calculated for

determining the convergence as Cg-Method is a finite iterative method. This

characteristic; (i.e.,no computation of eigenvalues) is of special importance

in the case of modified Cg-Method as the original A-matrix is directly used,

' where duo to the lack of a square matrix (N-matrix) computation of eigen-

values is not possible. In spite of this a condition measure can be derived

by using the Cg-Method algorithm in the following way:

In FHestenes and Stiefel, 1952, pp. 416-420] it is shown that

-p— < Xj < —^- (3.2-38)'

,.! ||r(J-2)|f
92-

h(3)T-Nh( J + i) _ X;, hO- _ ^.
• h < J ) T N h W " A- h< ' - l > T NhU- 1 ) (3.2-40)

The last two equations show that if, at the beginning of any iteration,

r(j-2)T r(j-i) ^ 0 and hO- l )TNh( J > ± 0 then the computed values of r( J~ l)Tr( J)

and h(^TNh(J+1) will also deviate from zero. This deviation will depend upon

the magnitude of ALPHA = \ i/\ i- l; the larger this ratio is the greater will

be the disturbance of the orthogonality relations, and more rapidly the round-

ing-off errors accumulate. According to equation (3. 2-38) the condition

number K (=XnaX />m in) is an upper bound of the critical ratio X^/Xj-!, which
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determines the stability of the process. When K is near one, that is, when

N is near :i multiple of the identity, the Cg-Method is relatively stable

TBcckman, 1960, p. 70~|.

3. 28 Round-Off Errors.

Round-off errors could be mainly due to two reasons:

(1) For adjustment, the approximate values of the station coordinates are

to be used in decimal degrees, where these decimal values are rounded-off

to a certain significant digit;

(2) Due to the limited number of digits per storage location in computers,

round-off error occurs during arithmetic operations.

A detailed study on round-off errors is given in fMuller-Merbach, 1970],

wherein the investigations show that only double precision storage combined

with double precision computations will keep the round-off errors to a

minimum. To minimize the computer-error while adding small numbers to

large numbers, the summation of scalar products rwTr^), vTPv and

(Ah(3))T(Ah(J)), which are used for iterations, is done in blocks. Investigations

on a system of 66 equations and 39 unknowns show that r (^Tr ( 3 ) and (Ah (3))T

(Ah^) are very sensitive to the block size while vTPv is quite insensitive to

it (Table 3.2-1). It has been found that the best convergence, that is,

solution vector for r(J)Tr(J)=0 after least iterations, is obtained when the ratio of

blocksize (KMM) for (AhO))T(Ah(J)> to that (KM) for rO)M3) is a function of the ratio of

the number of equations to that of unknowns. This has been programmed in

Subroutine PATSUM. The only parameter to be determined in this subroutine

for individual problem is the basic blocksize (KM) for r(J)T r(J).

A characteristic measure for the round-off error (RFE), which is required

for the termination of the iterations, is the norm TQinsburg, 1963, pp. 197-198]

RFE = Ir^-r^J2 (3.2-41)
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where r t rm is the true residual vector by definition according to equation (3. 2-9)

or (3. 2-27) and rcomp the recursively computed residual vector according to

equation (3. 2-18). Hence

RFE = |AT(v(j)-vtJ2,cl<)|2 (3.2-41a)

which provides a condition for termination of iterations, given by

r(J)T
rO) < 3. RFE. (3.2-42)

Table 3.2-1

Effect of Block Size on r (1)T r<3), (Aha>)T(Ah ( J )) and

VTPV at 80th Iteration

^
Q)
g

14
01a
X
w

1

2

3

4

Block

KM for

RTR

10

10

10

10

Size

KMM for
(Ah ( J ))T(Ah (»)

or VTPV

10

15

20

NE
rC JvT vXNU

i
I

'

r U) T
 P ( J )

i- 1.

0.4127 D03

0. 1594 D02

0.1087 DOS

. 1247 DOS

(Ah ( J ))T(Ah ( j ))

0.2020 D10

0.7879 DOS

0. 1286 D10

. 6080 D09

VTPV

0.2529 D01

0.2529 D01

0.2529 D01

. 2529 D01

NE = Number of Equations

NU = Number of Unknowns

3.29 Residue Vector (r).

As mentioned earlier each approximation to the solution vector is
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closer to the true solution vector x than the preceeding one, the error vector

(x-x(J)) also decreases at every step. However, the residue vector r may

not decrease; normally the "residue square" |rj2 oscillates and may even

increase. This oscillating behaviour of the residue square \ r \ s could be

due to round-off errors. Investigations have shown that the solution vector

x(J' is no longer improved substantially as soon as the norm |r|2 comes down

to the range of the round-off errors. This occurs when the iterations are

continued beyond the number of unknowns, i. e., j >n, when the residue vector

r'3) will sooner or later begin to decrease sharply such that ultimately x(J '

will be as good an approximation to x as it may be expected from the condition

of the system [Beckman, 1960, p. 69; Ginsburg, 1963, pp. 192.199;

Hestenes and Stiefel, 1952, p. 411]. The following systems were investigated:

System I: 39 unknowns, 66 equations (Figure 3.2-2)

System II: 84 unknowns, 138 equations (Figure 3.2-3)

System III: 573 unknowns, 965 equations (Figure 3.2-4)

In Figures 3.2-2, 3.2-3 and 3.2-4 asterisk marks (*) show that the current

solution vector has no substantial improvement'over the last solution vector, which

happens after such n-iterations where the round-off errors stop increasing.

Thus, any of these solutions are as good an approximation to the final

solution vector as could be expected from the condition of the system.

3.3 Programming

All programs were written and tested by the investigator, except the

SUBROUTINE DUMMY, by F. Fajemirokun.

3.30 A-Matrix, Index Matrix and Storage Requirement

Structure of A-Matrix and F-Matrix.

The homogenized A-Matrix, in general, contains m rows and n columns
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where m ~ number of observations and n = number of unknowns, which is

equal to 3 times number of stations, as for each station there are three

unknowns, namely orientation correction (dz) and the two coordinate corrections

(<\tr> :tnd d X ) . Each row of A-Matrix contains a maximum of five non-zero

elements, which are so arranged that the first term is the coefficient of orienta-

tion correction, the other four terms are the coefficients of station coordinates

corrections. Each row of F-Matrix contains a maximum of one non-aero element.

Thus for a large geodetic triangulation net there will be much more zero elements

in each row than the non-zero elements, i. e., A-Matrix is a sparse matrix.

The observation equations for the same station are put together one after another.

Index Matrix and Storage Requirement.

The original A-matrix is a sparse matrix and contains a maximum of

five non-zero elements in its each row. Thus in a large triangulation system

of 1400 observations and 820 unknowns the non-zero elements are only 0. 6%

of the original A-matrix. To save the computer storage space for storing

the original A-matrix, Index Matrix (11) has been used so that the "reduced"

A-matrix lias only five columns. The elements of the Index Matrix are positive

integers. A very simple algebraic expression was deduced to obtain the

elements of Index Matrix from the A-matrix; the lowest element of Il-matrix

is equal to the lowest station number and its largest element is equal to 3 times

the largest station number. A program gives?!!— matrix from A-matrix.

Thus Index Matrix, also called" Reference•• or,.Guide.Matrix; reduces

an original (m x n) A-matrix to a "reduced1-1 (m x 5) A-matrix. Both

the "reduced" A-matrix and the Il-matrix together need much less storage

than the original A-matrix. For example for an original (1400 x 820) A-matrix

114800 storage locations and for N-matrix 336610 storage locations stored In com-

pressed form are needed, whereas the "reduced" A-matrix together with Il-

matrix needs 14000 storage locations, which is 1. 2% of the original A-

matrix and 4. 2% of the N-matrix. This would mean that the same computer,

which cannot handle an original A-matrix or N-matrix, can. .easily handle
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the same system using Index Matrix, as well as can also handle much

larger systems. In future discussion, the term A-matrix will be used

for "reduced" A-matrix.

3.31 Minimizing Round-Off Error.

The ideas of Sections. 28 were used to minimize the round-off errors.

Double precision storage was used together with double precision computation;

for integers single precision was used. Summation of scalar products

rO') r
r(

J), (Ah<JV(Ah(^) andvTPv was done by using the subroutine PATSUM,

which minimizes the effect of adding small numbers to large numbers.

3. 32 Solution Vector Program and N^-Program.

The algorithm of Sections 3. 24 and 3.25 was programmed as a SUBROUTINE

SOLN. The algorithm of Section 3. 26 was programmed as a SUBROUTINE QSOLN.

These programs were initially tested on five data sets. The results obtained by

these two subroutines were found to be the same (within computational accuracy)

as those obtained by using Gauss-Algorithm. The five data sets used were:

(3, 2), (10,4), (16, 12), (36, 24) and (66, 39) - the first number - number of

observation equations and the second number = number of unknowns.

The solution vector or N^-column will be printed after every N-iterations

(N^Interval for writing computed output) besides after the fulfillment of the

usual conditions.

3. 33 Universality of Programs.

Both subroutines, namely SUBROUTINE SOLN and SUBROUTINE QSOLN,

can be used for any feasible size of data, which can be accomodated on the

available computer, after changing KM, which is the PATSUM Basic

Block Size for RTI;.

The main program used together with these subroutines has dimension

statements and a data card for Number of Unknowns (NU), Number of

Equations (NE) and Number of Columns of Index Matrix (NI), which can

be changed if there is need for it.

The program is universal in the sense that it can be used for varying
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data without much change and that "mesh-point numbering technique" is

not required. Therefore, stations can be added or taken out from the

triangulation system without worrying about the band-width and size of

blocks. These programs have been tested on systems from as small

as 2 unknowns, 3 equations up to as large as 804 unknowns, 1397

equations.

3.4 Number of Iterations and Computer Time

3.40 Number of Iterations.

As mentioned earlier in Sections 3.1 and 3.22, the Cg-Method theoretically

gives the solution vector at n-iterative steps (n = number of unknowns)

[La'uschli, 1959, pp. 257; Schwarz, 1968, pp. 74 and 1970 pp. 133; Wolf, 1968,

pp. 184]. Investigations, however, show that the solution vector is not

achieved in n-iterations due to round-off errors, ill-conditioning of the system,

disturbances of the orthogonality and of the conjugacy relations. In [Beckman,

1960, pp. 69; Fox, 1965, pp. 210; Hestenes and Stiefel, 1952, pp. 411] it is

mentioned that frequently (n + l)th solution vector is significantly better than

the nth one. According to [Ginsburg, 1963,pp. 192] up to 3n iterations may

be needed in case of bad conditioned system; while [Hilger and Remmer, 1967,
3

pp. 13-14] mentions that n to —n iterations are needed in case of large systems
£

for 4 decimal accurate solution vector and that number of required iterations

strongly depends upon the condition of the matrix ATA.

This investigation, using the actual data set (Section 2), shows that the

number of iterations required to obtain the solution vector by Cg-Method

using directly the A-matrix without explicitly forming the N-matrix depends

upon two factors: (1) condition of the system, and (2) accuracy of the solution

vector required. The dependence of the number of iterations on the condition

of the system has already been discussed in Section,' 3.27. Using

the geodetic triangulation data (573 unknowns, 963 equations), the program

went up to 5778 iterations without giving any 7 decimal accurate solution

vector, while 4 decimal accurate solution vector was obtained after 1161
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iterations, i.e., 2.1 times number of unknowns (Table 3 .40-1).

Each column vector qk of N"1 is generally computed in less than

1. 2 n-iterations (Table 3.40-1).

Table 3; 40-1

Experiment

Number*

1

2

3

4

5

6

7

8

9

Number of

Unknowns

573

573

573

573

573

573

573

573

573

Equations

963

965

965

965

965

965

965

965

965

Solution Vector

Iterations

1161

1177

1175

1176

1164

1162

1166

1159

1169

Time**
m sec

9 37.13

9 23.27

5 45. 97+

9 22.32

5 53.44-+

5 41.16+

9 09.46

9 24.29

9 29. 41

Covariance Vector
for Column 8

Iterations

640

657

659

682

674

675

631

648

608

Time**
m sec

3 45.96

3 31.91

2 12.59+

3 45.64

2 1.77+

2 0.00+

3 20.03

3 19.29

3 11.51

*Refer to Table 3.5-1

**Time is the Execution time on H-Compiler, Option = 2 (IBM 360/75) except
those marked with a plus (+) sign, which is the Execution time on H-Compiler,
Option = 0 (IBM 370/165).

3.41 Computer Time.

As for this investigation, IBM 360/75 and 370/165 are used. Factors

influencing the computer time are valid only for these types of computers.

For large systems, H-Compiler with Option = 2 (IBM 360/75) is found

to be approximately 10 times faster in execution than the G-Compiler,
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although compilation takes a longer time in H-Compiler than in G-Compiler.

For (819 x 1395) system, G-Compiler took 9.58 minutes for 98 iterations,

while the M-Compiler took 7.00 minutes for 791 iterations. The time

U'ivcn in Table 3.40-1 is thus for H-Compiler. It is noticeable that time

required for one column covariance vector is much less than the time

required for solution vector.

3.5 Results.

The results of the investigation are given in Tables 3.5-1 and 3.5-2,

wherein the improvement of the particular geodetic triangulation by super-

control net is visible only when its accuracy is at least 1 part in 500,000.

The positional improvements of Wyola (95), which is in the middle of the

triangulation chain, using various station constraints for Chandler (3)

are shown in Figure .?. 5-1. These positional improvements are relative to

free net adjustment results. As the preliminary accuracy of continental

satellite net is lower than 1 part in 500, 000, this cannot be useful as a

"constraint" to the geodetic triangulation net. On the other hand, the high

accuracy of super-transcontinental traverse, which is one part in ? m i l l i o n ,

makes it most suitable as a "constraint" to the geodetic triangulation net.

Worth mentioning is that the longitude terms, which are Qyy and my
2

in Table 3. 5-1, remain practically uneffected during the entire investigation.

This could be explained by the fact that station Wyola is very close to Laplace

stations, which control the azimuth error accumulation, thus effecting the

longitude error fBomford, 1965, pp. 90, 519]. Hence, due to closeness of

Laplace stations, the longitude terms remain practically uneffected.
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Table :i.5-l

Experiment

Number

1

2

3

4

5

0

7

8

9

Accuracy

1 in

300,000

400,000

500,000

600,000

700,000

1,000,000

1,500,000

3,000,000

A

™0

2.42

2.41

2.41

2.41

2.41

2.41

2.41

2.41

2.41

WYOLA (95)

Qxx,

6.0

6.7

5.9

4.1

4.1

4.1

3.7

3.2

2.1

Qyy

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

mx
2

35.2

38.9

34.3

23.8

23.8

23.8

21.5

18. 6

12.2

m/

2.9

2.9

2.9

2.9

2.9

2.9

2.9

2.9

2.9

i

Remarks

Free Net

Qx x , Qyy and mx
2, my

? are given in 10~4 seconds2.
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Table 3.5-2

E
xp

er
im

en
t

N
um

be
r

1

2

3

4

5

6

7

8

9

Accuracy

1 in

Free Net

300,000

400,000

500,000

600,000

700,000

1,000,000

1,500,000

3,000,000

WYOLA (1

mx

1.83

1.93

1.81

1.51

1.51

1.51

1.43

1.33

1.08

my

0.37

0.37

0.37

0.37

0.37

0.37

0.37

0.37

0.37

mp

1.9

2.0

1.8

1.5

1.5

1.5

1.5

1.4

1.1

35)

Positional Improvement
Relative to Experiment 1

Meters

-0.1

0.1

0.4

0.4

0.4

0.4

0.5

0.8

%

- 5

5

21

21

21

21

26

42

Standard Errors of Unknowns ( m x , m y ) and Standard Positional

Error (mp) are given in meters.
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4. SUMMARY AND CONCLUSIONS

The super-control net, i .e. , continental satellite net or super-trans-

continental traverse, can provide a useful constraint to the investigated

geodetic triangulation net, and thus can improve it only when the accuracy

of super-control net is at least 1 part in 500,000; in this case, this

corresponds to ±3. 7m standard position error for the station Chandler.

The preliminary accuracy of super-transcontinental traverse is already

better than this limiting accuracy of 1 part in 500,000. The preliminary

accuracy of continental satellite net is, however, lower than the limiting

accuracy of 1:500, 000; the preliminary standard position error for Chandler

as obtained from continental satellite net corresponds to ±4. 8m, i. e. ,

1:385,000. The future will show whether the limiting accuracy could be

achieved by continental satellite net, especially because numerous spatial

triangulations of CSN have produced accuracies within the range of 1 part

of 400,000 and 1 part in 700,000 TSchmid, 1965, p. 22].

Schmid T]970, pp. 23-24] indicates that continental satellite net vill fall

short of an optimum solution with respect to both its coverage and its

accuracy. The three-dimensional positions of CSN-stations will probably be

determined to no better than ±4 meters in all components, which does not

seem to be good enough at least for this particular investigation.

It might be useful to have a "block constrain" instead of "chain constrain",

that is, to use four well separated satellite stations, namely 003,102, 112 and

1.34 (Figure 2. 0-3) over a very large area, thus constraining the triangulation

of the western-half of the United States instead of one triangulation chain

("chain constrain") between stations 003 and 102.

Super-transcontinental traverse can provide a better constraint, if more

then two of its stations are common to the stations of geodetic triangulation net.
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Also, a "block constrain", as explained above, might be more useful instead

of a "chain constrain".

The development tendencies of instrumentation indicate that the future

super-control nets will use VLBI (Very Long Baseline Interferometry) and

Laser ranging systems.
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APPENDIX I

Hehnerl-Ralnsford-Sodano Inverse Problem Solution

As the distance between stations varies1 from 273m to 190km Sodano's

concept which gives formulas applicable to very short as well as very long

lines to solve the Inverse Problem has been used. The formula renders

accuracies on the order of 0"00001 in azimuths and a millimeter in distance

for any length of lines fHelmert, 1880,Vol. 1; Jordan/Eggert/Kneissl, 1959, IV.2;

Rainsford, 1955; llapp, 1969; Sodano, 1958, 1963 ]. The iteration process

stops when the value of (X- L) (i. e., longitude on the reduced sphere - longi-

tide on the ellipsoid) does not differ by its preceeding value by O."00001.

GIVEN:

B!, LL =• Geodetic latitude and longitude of a point P{

Bg, Lg -- Geodetic latitude and longitude of another point P3

(longitude positive eastward, latitude positive notsthward).

REQUIRED:

Geodetic distance S12, direct azimuth A12 and reverse azimuth Aal

(Azimuth reckoned clockwise from north).

NOTATIONS USED:

L = LS - LI = Difference of longitude on the Ellipsoid

X = Difference of longitude on the reduced sphere, for which a

progressively better value is calculated after each iteration

(for first approximation X = L)

01 = Azimuth of the specific geodesic at the equator.

CALCULATIONS:

1. Reduced latitude 8i for each point:

(3, = arc tan r(l - f) tan Bi 1.
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2. Spherical arc or between two points

s inc r= r(sinXcosj32)2+(sin(33coS|81-sinj3lcosj32cos.X)s]5

For first approximation let X = L = ~L% - Lt

3. . sin X, COSB, cosB2sin a = - H — a - ts

sin ct

4. 2 sing! sin&,
cos 2(7,, = cos a - - 3 - "

cos ry

From this relation further relations for cos 4a f f l, cos 6am and cos8crn

can be deduced:

cos4am .= 2cos22am-l; cos6aB = 4cos32aa-3cos2crm;

cos8o-,0 = 2cos24crm -1.

5. (X- L) = f sina(Aoa + A2sinacos 2am + A4 sin2a cos4am +

: AS sin 3a cos 6crm + • • • • • ) ' .

where

A0 = l-

= 4 f (l +f + f2) cos2 n ~ "7 e'(l + 1 *> cos4 « + f3 cos6 cv
4 ~r 4

f 5 6cos°'-
G. Iterate till (X- L) does not differ with its last computed value by 1. 10~12

radians (as double-precision computation is done).

7. X = L + (X - L)- '

sin X cos 8S _ •
- - ' - —8. tan. A12 =

tan A-,, =

12 sin 82 cos P! - cos X sin p\ cos 83

sin X cos p\
sin 82 cos Si cos X - sin p\ cos S2
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The following table is used in the assignment of the quadrants for azimuths:

Sign of L
l.= L3-L,

-(-

+

-

-

Sign of
tan Aia

H-

-

+

-

Quadrant of
Aia

I

II

ni
IV

Sign of
tan Aaj

+

-

+

-

Quadrant of
Aai

III

W/

I

II

9. S13 = b(B0a + 62 sinacos2am + B4sin2a cos4crm + 65 sin 3 a cos 6 an

+ 63 sin 4<y cos 8aB + • • • )

where

B4 =

256
175

16384

1 2 1— u2 + —
4 16

128

15 R 25
u6 +

512

512

2048

35 8

8192 U

1536
u 6144 U

where

65536
u

u2 = K2 = e'3 cos2

b = semi-minor axis of the ellipsoid.

This completes the Inverse Problem solution.
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APPENDIX II

Observation Equations (for Ellipsoidal Geodetic Coordinate System).

NOTATIONS USED:

Bj, Lj = adjusted coordinates of station j (where j = i or k)

B°, L° = approximate coordinates of station j

Mj, Nj = meridional - , normal radius of curvature at station j

Z, = adjusted orientation unknown at station j

Llk = observed direction from station i to station k

^lic* V"i = observed astronomical azimuth and longitude at station i

s,,< = measured distance of the geodesic ik

A°k = computed ellipsoidal azimuth of the geodesic ik

s°k = computed distance of the geodesic ik from approximate coordinates of

stations i and k

Zj = computed value of orientation unknown Zj by "mean-orientation-method"

dBj, dLj = corrections to approximate coordinates of station j

dZj = correction to computed orientation unknown Z° at station j

v] = number of observed directions at station j

-tilc = absolute term of the observation equation

vlk =• residual to the observed quantity.
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Direction Observation Equation TGrossmahn, 1961, p.177; Wolf, 1968, pp:275, 323]

i*(Dlr)

lk
sin

dBi - (~o- • cos A^- cos B?- sinB?)-dL t

cos A°t • cos B^-dl^ + £* (II. 1)
lk

where
f — AU /T
^ik ~ 'Mk ~ i^lk

'/o _ _L pAo _ L ]
(II. 2)

Laplace Azimuth Observation Equation rprossmann. 1961, p. 177; Wolf, 1968, p. 323].

'
lk

' cos At • cos Bk • 'dL, + -ttt

where

*ik •= (A^c ~ «df) - (L° - X?) sin B°

(II. 3)

(II. 4)

Distance Observation Equation TGrossmann, 1961, p. 170; Wolf, 1968, p. 324].

I*(DIS) - cos

• s i n A ° c o s Ef-

where

- slk

(II. 5)

(II. 6)

The corrections dBj.dL, and dZ, are obtained by the method of least squares; thus

the adjusted station coordinates (Bj , Lj) and orientation unknown Zj are

given by
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, = Z° + dZ3

- Bj° +

L, - L? >

(II. 7)

DIMENSIONS:

All angular quantities are in seconds of.arc and linear quantities in meters.
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APPENDIX III

Programs for Solution Vector and N'1 by Cg-Method

Due to comment cards, the programs are self-explanatory.
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C. HA l iV PRnGPAP. .OF . r.G-MFTHPO FOP C n V A R I A M C F M A T R I X ' ' ' * .
" IMPLICIT RFAl>n( .A -H jn -7 ) - — - __...-.„._.

plMF-t 'Sinr.; A ( 9 c O , r . ) , I). ( c t ) 0 , S ) , X ( A O O ) , F ( AOO ) , L ( Q90 ) , M( <?9.0 ) »
11 K ( 9^0 ) , MK ( oqn ) , .n. ( 9°0 ) ,K l ( o c > 0 ) , R ( f > O O ) , H ( h 00"), AH ( 990 ) , P, T ( 1, fSOOT, "
2RI .ST ( f 00 ) , X L C T ( AOO ) , /R ( cqn ) - . - . , . ' . ' . - - . ; •

c VA.P. IAHLFS ":" nr-F.MSi.n.v ^TATFftFNT' IM ;THF MAIN Dunr,PAM ...-.-.—7^7-~.-
V / - I ! ] A P L F : D A T A C A P P FOR Mil ^1F 'IN I .

,. " Nil = MI.IMRFR 'Or ili-'KNini-'ifi <; "" ~ ""•'"
C ^ !.; - K'MMPFt? np n R S F R ' V A T ) 0 ^ FCUAT inw?
C ' MT = NUMBFR OF COIJJ^K5; JM II 'OFX M A T R I X (II) "

f ' F A D ( ''•> 15000) i'i.i,NE,N] ( " ••
" 5 0 0 0 F O R M A T (3 15')r " •-*:--•;. — ~"r - - —' ~ " - " --j----.

1 CA L L OSOLM ( A , 1 1 , Xt F , L |M » LK , MK . I L , KL ,R , M , AH , «>T , R 1ST , XLST ,

S T O P
FjM(V ''; ' ------- •"' .......... .......... ""•' ....... ~ ~ " •" --------- '~~~

c . ' • ' • • ' • •
. . . . . Sl inpOUTIMF-. 'D.sni.MfA," 'n ,X,F, L,n,LK",f '<, T L , K L , R , H , A H , R T , R L . S T , X L S T V '

]A .P ,MU, iVF. j i v ' T ) - ' .
C ..... ' .................. """ ...... " " : ..... ''[
C C P V A R I AN 'CF M A T R I X 'R'V. CT-r FTHPD •-
c ............... ..... ..... " ........... """•- - ~ - - - .......... .. ..... -..-_ ...........

If PL 1C IT PFAI,*P.( A -H , f -7 )

) L K ( !-' E ) , ;;K f ME ) , ! L ( MF ) , K L ( f'F ) , P ( MI I) , H ( i 'I t } , AH ( MF ) , R T ( 1 , MJ ) • i P L ST ( ML" )
? , y L . S T ( M I ! ) , A R ( M F ) ' " ~ T-"-" : "'"':•'

C V A P . J A B L F ? IN -SiiiAR.oi.lt INF : M » Kf :
niFF = l.o n-07 • • - - ' • - - -- - —*- -- „—._,._.

............ MI- 6.= 6*MF "": ..... ' '•' ......... ' :' " "~~"" "
F^'IN = 1.0 D-0«

•r • • • |M - I W T . F R V A ' L - FHR VIP ITF-nilTPUT (STATFf 'PMT MR. II1?)
N - ^.-on • • - . .

T. KH = COnF FOR ADJUSTFn STATinH CnORP. ' PUfTHPH "OUTPUT
K P = < ? 5 . . . _ _ _ _

c . ...... '. ......... ................ """". '"''"" " ' ~
f, Kl: = PATSUM BASIC RLHCK^JZF (FOR RTR)

KM "= 50 ............. ' ....... ...... ~ ~ " ' "'
FKTR = '
K ?-;;-i = '

C. li'-'pilT : A - M A ' T R I X ' AMn I1-I1ATPIX

IT 11 J = ] , M F . ;
R F A n {i ) - :; - • -LTJ ), p (j), TA (J, K), K = i,«;), I LT:I 1, L K (J) V"

I t K( J) ,( i l - ( J , K ) i K = l , 5 ) f K L ( J )

O P 1 0 - . j =. ' I ,N' -F • . • • " • . ; • . • .
—iFd.r j ) .MF.LK'(j ;v.nRvf rrjr. ' 'F.«K{ j).~nr. iL(jr.^p;"«<L( j ) ) ' GO TO ?soo ••"

t-R IT F ( fi , #,000 ) ( L ( J ) , r ( J), ( A ( J, K ) , K=l, *•) , I L (J-V, L K ( J ) , ~ -
l t - K ( J) , ( T] ( , I ,K ),!<-! , r O , K L ( J ) t J=_1^'F) _J_ _

"1 ' R F A D f 5-1 5?on )
I F ( r.-FMi. tp.^ocio ) r.f TO 9000

" ..... " ' M K ' = '-'FNH ' ........ '•- ...... "
i - . ' p ]TF( f« ,M?) M'K

'nn 1.2 j = i,Mlr ....... -
i? EUM = o.o no

........ F fr iK ) •='•'!. . n -no ............ "~ ~

R ( J ) = n. n nn



RISK J) = o.o no :
" 16 x( j )""=" rv;o"no ':." •^-•••""••; -/•••—-

C A L L f--Sr.ALF( ' l . .O .n-04fE.-,-KH.|-;i.;.) •
on -i? ' J = it>vu ' "'"" • 'T~

IF R « J ) •= -F ( J )
' FL<VLST = O'.O'no — -~

KPUNT - ?.
KKOIIMT = 1 ...... ;": " "i"~~~~~
RTR = OiP HO

..... R T R L S T = OVO' DO """" ""
OP 46 K - 1,NII

' "4'6"XLS'T('K)'" = OVOTDO" "' "'
CA I. L PA TS 1 !M ( R , M 1 , Kf-' , RTR )

" l - i R I T ^ t ^ t f r O ? ) RTRvK'nUiVT"""" "
" ] F ( R T R L S T . F O . O . M ) np TO PI

AS FLAST = ARTAK/AHTAH •";"'" '"
fU RTRLST .= RTR. •'•.-.-, .

'IF(KOUNT-l) ft5»P5i'8n:~ "
F5 DP F6 1=],MH
86 H( I ) = -R ( IT. ....... -.-.--- ,r-..-.

GO TO 90
'88 00 89 I = "1'VMI'J ...... ~ ........ -;'i~— .-
R9 'H( I ) = - R ( I ) + ELAST*HU),

"90 CHMTlMlIF . ............ .̂..-...-.,-T̂ _,- ....... _..

JJ = 1 .. -
92"AH('J'J') '"=' 0'.7TW -—— '-^ -

on 9? K'K = it'0 1 • ' . ..:.
• : • M s = i i ( J j ,;K K • j .......... :••-••-- - — -------- - •

IF(MS-.HO.'P) Gil Tb!95: , 'c •.? .
...... »'H'C.iJT" '=• AH CJ'.I ) +A ajJIKKpmMST;

95 CPNTIKIF ''' " ,
...... " J'J =' JJ + 1 •"• : ........ "'•'""-.

'I.F( JJ *GT .NF ) l-O TO .97 -;~
GO r n ' 9 ? " "v" ......... ;~" ..... —- :•—• -— -— .

9 7 CPN'T'IMIR . ' - ; . . , . . . . . .

" " CALL PATSliM{AH,;>iFfKKlf-Vi*HT:AH') '•" """ " '
J F I A H T A H . L F . l . O n-.l̂ ? ) . 'C-n TO 2300

" FLAI1J = 0.0 DO ,-.-.;--•- T-^H. --------- -

HTR - 0.0 DO • :

". ..... DO 3). J = • iVMl'l. ..... "••'--;'-•:•'— ....... ' ...... - .......

?1 HTR =. HTR + H(.n*R'-|j:-)'
..... A L P H A " = 0 .0 'DO" ' ' ........ '"~: ........ "

FL^f 'J = - ( H T R / A H T A H ) . , ', ..

ALPHA = FLAtWFL'- 'LST '
"'••"" i 'F(Knnr'.!T.co.2) ~ GO TfV'oV ......

GO TO 96
" 93 " ! ' 'RTTF ' { f i f 617 ) ' KOI IWT ,i;A'L;PHA"

96 F L N L S T = FLA'-M : '
no 100 i

].oo xm = xt i
• • IF(KOU"WT. GF. Mil) G O T O --'IffK':" •''"" .......... "' '•"* ...... ~"~ ...........

GO TO 10?- . . '
'106. DO 10'f "! = ' ' l , f ' U , ? - ------- T-"--' ...... --"• .......... -" -------------- '. --• ------

] F ( D A * S ( X L . S T < 1 + 1 )-X,(-I +1V,),.. LF.L.On-07.&NOi D A R S ( X L S T (
l.LF.1.0 n-07) GP TO 1.04-' " ':~. ' •—••.-- - - • - • • ........

GP TO 105 : :" • . • . .

PTR,!<ni!MT" -;-"--— "' ~ ."
- "59~

WRITEI6.61 .7)'." knuMT,



V ' P l T f : ( 6 , 6006) M K • - • ' - .
" R I T F ( 7 , 7 0 0 6 ) 'NK , K PUNT' r":"" •
js = i • • • . - ; •
nn 302 I = i.,.vu,3' " "v — - • • • • • - • , - •--
H R I T F ( 6 , 6 6 0 0 ) J S , X ( I ) , X(1 + 1 ) , X ( I + 2 ) , K D

Y ' J S =" OS + I." """•"-••-—'--•;• -"•-:
? 0 2 CCTT IM.IF . . • • - ' , ' : '

IHKKPUNT. F0 .5 ) GP"TP""TR"~" : "•''""
r-r« TO j.0 . .

18 " R T T P ( 7 , 6 1 3 ) ' .R.TR,Kr iUMT ' .-•"•-"••• '
W R I T F (6, 6006) MK. - • •
N R I T F f 7 , 7006) NK'rKOUMT ."""• "":"'"
,'5 = } ;
DO 303 " 1 ='1 i'M),"3 "• — ••-
U R I T F ( 7 , 7 f O O ) J S f X ( I ) t X ( I - H ) » X ( I 4 ? ) , K D
j? = js + i . - "'.

3Ci?, C.r NT JM.IF . . •. -'.
19 KKPI.IMT = -KKHUMT + ];-":~"~ -.- -" ' "

]F (KKn i !MT, r ,E .6 ) GP TO 17
GH Tn ).05 '." '"" """' ' • • - - — - - - - — —

17 H P I T F ( 6 , 6 0 6 ) KKHUN'T . ,
GO TO 1 "" """"~ -

10? Cnt- 'TINIE
nri'107 i .='"r,M(r.- "" ~~ ~ '

107 R L S T f I ) = R( I) . • '•>
on no i ='T.twir-- —•-•—^~- --•

no R( i) = o.o- no ; :-
 :

J = 1' ". "" ",," """ ";~
10? DP 101 K = 1 , W I .'

MS -" 11 (jf k ) "• • • " • ;• ~-~:~' ""'•"
101 R ( K S ) = R. (MS) + FLAfM#A(j , .K) '*A'HU')

\l = J-+ I" - " - - -.- : ™: -----
]F( J-NF) 102, 10?, 10?!

"103 CDMT7MUF. •' - - • • • • • ; - • - - • • -—•—• :—

r-n IOB i = -j. , f - ' i »
108 R ( I ) -= R ( I ) -f R L S T ( I ) -•.-----—•--

48
W R I T E ( 6 , 6 0 2 ) RTR,KPUNT.

' RTH = 0.0 00 ~~ ~ ; :
D P 9 1 J = l,l-'ll : . ' - . _ . '

" 91 RTH = RTH 4- P;(jT*m J): :" ~~—r~~'~"
84 J F ( O A f S ( R T H ) . G t . l . O P-09) . ;GP TO

" GO TP R2 '"' -" -~ - - • — - ; - '
201 | - 'P ITF (6 ,60? ) RTH,KPdM . . .

R2 CPNTINUE "..'.' V --.-•"- "— •j-;_.—;-,^-.: ;— - -

R L S T R = 0.0 no .;". ' .
* 'OP ^7 "I"' = r,iVI!'"" " ". :•-—;—:•- - —

47 PLSTR = RLSTR + P.LST< i )*p-'(-i). '
IF(PABS(RLSTR l.GT.l .0 n-09r' GH-.Tn 200
GP TP 49 :

200 WRITF{6,604) - R L S T R .
49 DP 50 1=1 t f>'l!
.50 XI.ST( I ) =',X(T)••"••'•

JJ = 1
' 35 A R ( J J ) = 0.0 00 '

.DP 3? KK = I,MI
- • • • • • M S = I I (JJ ,KK ) ' •

. - . I F ( M S . F O . O ) r,n TT
- " " - A R U M ) = A P ( j j ) + A( JJ;KKT*P.(MSV
3 3 C O N T J M I F . • : • • • , • •60"

= JJ+1.-



' ] F ( J J:. fVT . Vt
" "On 'TCi 35' •',-

34 r.ONTT NIJF. ; .".;

HO 36

] F ( KPf.iMj . P.O.. 1 ) 'G'n -'-Tf&VXfl '
113 IFCRTR .LF.'; FNilK) ' " CrT'TO? ?'l'QO"

' '
J F.'Kfi-Uf-'T- (K ' -n t i ' - 'T / f i .N •} • • • - H4,

HR]TR( ; 6 , fP? )
V.IR rt-'E ( 6 , '
HRJTF. <6: .

6,6400)
( 6 t 6 3 7 )

E (6, A006) ' WKr;:''-;

no ?

JS = JS
30 ). COMT'I i'-il ) P
1 If CPMT'j i -OHF

"KnilMT..= ;

J F( KTHIN'T .'BO-'rW -6 •'). '-

? 1 00 V! R It F ( 6 , 6.1.-1 ')o -. KOl,lw;R.ir,P :

?300* K' '
?000 ^

6, 617)v
6t''60'0''6'r

W R ) T B ( 7 , 7 0 0 f )

o r 3 0 0 - i , = ; i , N i i > 3 , - . . • . ' . ' . . ' . - '
w'R'i IF ( 6 ;; '0:fff> ) >i5; v x M i's» x i i +1 1; x (
W R I T E (7, 7600 ) J S , X ( ).) »'X ( I+i'J VX ( T+? .J .K f>

300

2?00 t-'R]TFI6,MOO> L ( J ) , LK IJ ) ,M( J) , f'K ( J ) , I Lf J ) »KI < J ) , J
602' FORMAT (1H , ' RTP = • , P?5. 1 6, 10X, "<n(|l'T= • f/ ! S ) "' ,: ..................... '
603 FORWATMH ., 'R/n CC"1 JiTAry PTH= I,r)2ti.)6»l Kpi.lNT= SI5)

'FflRMAT'( I'M. •',•".' 'R LAST NOT COM JUG AT f- TO'R'SIOX, 'RL^TRs '",025.16, J.'OX,

606' FORMAT (iwi, l*t«** SHLUTIOM VFCTHR"^ OOFS' MHT ir'oROVF"-*^5>**"' ,"

' 610 - 'FORMAT (IHlt ' I TPR AT IHiiS CPMPLE f ̂ D ' , 20X , ' KniJMT= » , I ?» 5X, "R tR= ',
1D25.H-)

~ 611 FHRMATdHli « P T R VAfH^HPS ' t ?OV , "<niiMT= » , I«%, n?«i. i;6) '• - • • • — . ' .......
612 FORM>T( -IHlt T-fLl'MN VFCTPR= • » J •» )

'613' FnRN'AK IX, 'SOLUTION VECTOR DOES 'in? I 'IPRPV/E » , "5X , ' P TR= ',017.8,
1?X, i K R J M T s - ' . , IS)

fclA FHRMATO.H1, 'T C RMIMATF FflR AHTAH=0»/ /« Kni«MT= ' , I 5, l^Xi
1P25.1H

617' FORMATdH ",'»Knil')T= » , I «T, 1 OX,1 AL PH A= • , 07«5 . 1 A, «««l|D>cp
ICPNOITinN MUMf FR ««««)

5?00" FORMAT ( 15 y" ~ — — - -- •
6000 F P R M A T I 1X,?IA,F7.7,4Fl?.5,n,7IA,n)
6001 :F.ORMAT.(iHO,''«;.: MU * Mftc- MI«//3IS)

• •. • < * <, '
-61-



AD06- Ff ia 'MAT ( IHOt 2X, ' C D V A R IAMC.F V E C T O R FHR cni,U.MK'=
6031 F-TiR,".(VT( 1H , ' RTH= ' , n?*'; 16 ) '•- "' " .' ......... "
60/tl FhRMAT (1H . , « 9 L S T R = « ,n?5 . 16) .
M.OO rrRMMf IH , ' snvpTHi t - r - ' - 'ROMn'//?!*; ' ) ..-.-. ,-.-.-
A A O O F O R M A T ( ].H , 'Ki i l lMT= ' , I S 1 1 OX t ' AHT AH= ' , 025 i 16 )

-S900 F O R M A T (1 HI ,' ITFi-U<TTnM ':;,:!?) . .
7006 FPPf - 'AT( mX , ' C O V A RI ANT.'F. ' VPCTn.R. TOR' COLUr-'N= TV I ^ » ?X V « KPUMT= ' ' ,
7600 FhRMAH !?t
^000 R F T U R N

F:MD

-62-



f, MA IN PROGRAM OF CG-METHOD FOR SOLUTION VECTOR
' IMPLICIT REAL*8TA-H,cy-7) ..... " ...... •• : ' " r— ----- ........ - -••-.- •-••- • --•

0 IMFNS ION. A ( 990 ,5 ),li ( 990, 5} ; X (600 ) , FL ( 990) , V( 990 ) , AX ( 9^0 ) , L ( 990 ) ,
........ 1M (990 ) "»LK(990 ) , MK ( 990 ) , L'M ( 990 ) ,ML ( 990") 'I'M'M ( 990 ) , I L ( 99 0 )', KL ( 9C0 ) , .

?l.'-M 990 ) , R { 600 ) , H ( 600 ) , AH ( 990 ) ., ; Vf.HPCK.J 990 ), RT ( 1 , 600 ) , RLST ( 600 ),
--------- ; '7XLST( 600 ) ,R1 ( 600) ,T,HV< 990 ) TAR ( 990 ) ••.-*—•-- ....... ................... — - .......... -. ..... -

V A R I A B L E : niMENSIOMS IN THE MAIN .PROGR'AM
i: " " V A R I A B L E : PA TA C A R D FOR Nil PE"Nf": ; ..... ".""• ............. " ...... ." ........
C Nil = MUMPER Of UNKNOWNS . , '-
C • ' jvP = DUMBER ( iF 0^5FRVAT)OM' lEbUAT JONjS ':'' • • • - - •
C • NT = • < • • • ' MI-HIE P. OF COLUMN'S IN INDEX M A T R jX '.( I 1 )

• ............. R FA' 0 (3 , 5 000) MJ,>!E,N"r ": .................. ..--..---.--. ..... ........ ....... —,.-,.._ ...... -....- ....... ......

13000 FORMAT (3 15)
..... CALL S O L ' i M ( A t l ) , , X , F I . . , V , A X , L t M t L K , M K , L M , M L , ^ N , I LVKL , LM, R , H",

1 A H , V C H F C K , R T , R L S T , X L S T , R 1 , C H V , A R , M U , M E , N I )
............ S T O P " " ........ """"•"" ...... ' ................ " ......... ......................... " ............. " ...... """" ............ ................

END _
"c .................. ....... ~" ................ ' """ .......................... ~ ................. *~ ..... ''' .................... : " .................

SLIBRHUT I WF SOl.N ( A , 1 1, X , FL , V , AX , L , M , LK , ?-'K , LIY, f'L t f'^M L , KL , L'-1. , R , H,
'" ....... 1 A H , V C H E C K , R T , RLST,XLS'T,Rl . ' ; r ;HV,-AR,MMf.N!EfMI ' ) ..............
C SOLUTION OF O B S E R V A T I O N FpUATIOWS PV CG-NVETHOO

'c ..... ' ..... " .......... • ..... : ' ........ '""": ........ ' '"" .' "":" '' ..... ••:: ....... '" ...... ........ "• ....... ~ ..... ......... ......
IMPLICIT R F A L * f l ( A - H , 0 - Z ) •: . -

...... "~ ....... D J M E N S I O N ' A f M F ,NI ITIITNE iNI T, X (NU )VFL-(;NfF.)'VV( MF )', AT( NETVL ( WE ) T- .............
1 1M { NE ) t LK ( HE ) t MK ( NF ) , LN ( N'F )., ML ( ME ) t MN (='»i)| ) -, I L (:NF > , KL (.-MR-) , L M CNE ) ,

•" • " • ..... " ?R(NU) tH(NU)»AH(NF;JvVt^FCKfK!E) iRTXiVNU :^LST(NIM,XLSir(N^ "
3 t C H V ( N F . ) . , A R (NE ) . . •' '". ' ' . ' ' :•"': • ' - ::;:J'̂ ~. V ' .

.... .....-.— p-fr^j^Q--!'-- ........ ..;....,.-..,..,.,.,-.-.-.;-..... ........... ..........̂ -.̂ ._ -....._ . ...... .............. ....... - ............ ,- .„_........_.

C V A R I A B L E S IN SURROMTI :WE AR:E : N *. •••Iff *&.. IK ..,. K M . .
........... ~" DI:FF" = 1 .0 0-07 ..... ---"rT'-r"—--- -• ........ -^•---^--i--" ...... - .......... — , = .........

'

MF3 = 3*NE

ME.6 = -6*NE
" ' ....... "'FM'IN ~ 1.0 n-09" ....... ;•— - ..... -—"-—-.: •: .-—-.v.-™--™ — .. ........ ......

C N = I N T E R V A L FOP 1 l-.'"RltE-oi)TPIIT . (,S;TA-T-|:MiE:N.T W . 1 1 5 )
.......... ...... :

;N '= '£00' '"" ;<---•<-—-"•:-.-.:,••• ... --..-.̂ . ......... -._.;_- :>->;.£C..rr_.. v. . . ...... .

C IM = I N T E R V A L FOR CALCUL ATI-NG RFE { S:TATEM;ENT MR. 7?)
'IM = ?00 ......... ' :" t'".~.~~"\' ...... .••-—••r^fy-;— •-"•:-• •- '

C IR = MUMPER OF

IKOUNT = 1 .• / ' .vV. ' : . ••
""".'" ..... KKOUNT = ] • - - - . ..... -•-•-v---;-v-r!-;-— ....... ;•— ..... v "~'̂ ~"~ ......

c KO = CODE FOR •AP :J'USTEP'.STAT.ION cnriRbjAPpNCH-0

., ,. Kp- -_-••• a —••••l—f--̂ ::̂ ;̂ -.:.-:-- -•;"; '~:̂ ^~^ --•••••••-.••
C . IRFE ; = 'CODE " " '

C IRTR = CODE FOR 'RTR^PlN'tfHEO OUTPUT " ..'
" .......... T R T R '= 81 ....... ....——.-.—-•.---..,..-._... ....... - ...... -_;,_„. ....... .... ........... .

C • . • • " ' • '"'•••:.'- • ' • ' . . ' . • ; • • ; . - • • - . ' ; : ' • • ' •
~ C ........ KM '=•• P'ATSUM BA'SIC^WLOCKST-ZE (FOP 'RTR1V --------- r .......... ....... .......

K M = 5 0 ' • • ' • " ' ' ' • ' ' .
-" ...... ...... F K T R - =' nFLOATIVEI /nFLO* tTMU) ' ....... " ...-—.,- .......... - ........

K'-'iM ^lOINt* FKTP-nFLOAti<<M ) )
"C ............... INPUT : " A - M A T P IX', T l->'Af P IX '"AN'O'T-VFCTOR .............. '

DO 2 J = 1 f f "5 . • v, ' • : . .
. . . . . . . . . R F A O d ) 7 ' ••Lt. jAiMtv')-, ( f t ( J ,K) ; ,K=T i t =) , IL { .M,LK( J ) ,

1 MK ( J ) , ( I 1( J , K ) , K ; i i", 5 } > KL ( J ) , ML ( J ) , MM ( J ) , FL ( J ) ,1 '• U )

DO JO J = 1,.VF , . •:; , .. .

I F ( L ( J )'. ME .LK ( .iV.ORV-rHt ) ̂ N.F ; i'r'KTJ 1 .OR . IL ( .» KNF. i< |. ( ,i ) ) GO "TO.-? TOO
: "" " '•"'•'• '.-63- . ' - ' •



IF( . . I. (J) .HF.ML< J) .OR.: '( J).ME.M>!( j» no TCI 26oo

HRIT r l 6 ,6000 ) ( L ( J ) , M ( J ), ( A ( Jt K ) t X= 1, ^ ) , T L (;J V> L K ( J ) ,
").'!••'• K( J ) , ('! 1 rj'»K.) ,K = 1 ,5 ) ,KL ( J)tML"( J ) » K N ( . I ) t FL ( J Kflf- 'J J > , J = l, WE") ---.-•-—.

V I R I T P f 6,60.01) Ml l ,MFiMI •'^J
r"

< , •-V-;!;-. , . , ' • ' • • ' : ' : ' . , .

CALL f - 'SCALF . (1 .0 0-'Q>.fFl tNF'il)- '. : „. y • '
onn j =• iyKui :"" ';":V'r"" .• --^-^:-:~—7;-—----- ~ .-~^-~-

11. X( J) = 0.0 00 \ , ,, . . . : ' '.

C A F T F R THIS tAP.O RF.'AP X-VFCTOP IF MPRP ITF.RATt f)NS ARF'MF.FDFO j:IITH" CnVEN "X'

16 R(J ) =. 0.0 00
PH ).c; ' J "=' !.»>•'E ~- . ""...,
vr.HFCK (,i) = o.o no : -..."'

' 15 V ( j ) - o . o ' D O . ' ' ' : . " "~ ---n;--- r
j - i • • •' ' - ~ ' - X " > V .. ' " ' •

on 30 K. = I , M I
1-'< = IK J'.KT - ; - - •• - ; • ; - -

IF ( (-'S. E O . O ) GO TO 30

30

I F ( J . G T . i\'fE ) GO T 0 AO . . .: • . •' vu. _
CP TO ?0. """"•• ......... -••;— .:,- .̂:~-T.̂ ~f-

40 CONTINUE . :. '.'•'•-:\ ;'". \'A"!
C A L L DGMAr>n( :A:<VFL, :V,l»F,YT)7"' :: ..... ;~;f""
VPV •= o.o. n.o . • .. •. • :••.•;;
C A L L P'AT5:'l.)1l-'.'rvV'>.|Ff!<>'N'i;VT>V;.r".: ..... ̂ '•;"
C A L L ' -SCALFd.O n OA , VPV4 1 »l').V. :
W R ! T F ( 6 , 6 0 7 0 ) .VPV . • • • -^"^ ..... rr'-"^
F L A S T = 0.0 00 ;>^ '
FLKL^T '= 0.0 'DO •'""" ... . . . . . --- ;̂--H-;-:-;—
R F F = 0 . 0 0 0 • ' . ' . "

" ' KPUMT -' 1 '.' ....... . . . - - - . . —-=--
RTR - 0 .0 no . • - . . ' . . , •

' i5 R T R L S T = RTR • • • - . • - - • • - --•-•— ̂

00 A6 K = It Ml) ' " .
X L S T ( K ) = X ( K ) """' . . . . . . " . . . . . . . . . . .

46 P.LSKK ) -- R ( K )
'DP 30 'K '= " l ' ,wu ' :' ...... '" '

r-0 R ( K ) - 0.0 DO

65 DO 60 K = 1,MI

60 R ( M S ) = R ( ^ S ) + i 6 ( J t K ) * V ( J ) : _ _
J = ' J 4 - 1 " " ........ "•' ............. '" ........... '- ........... ~

I F ( J - M F ) 65,65,70
70 CTNT JI-UF 'V " ...... - - . - - - . , - .

IF( IKTillMT-( IKO| iMT/ IM)*n ' ) 71t7?,71
7? nr 7? K = i:tNir • . • • - ; ........ . ..... - - • • - • •
73 Rl ( K ) = 0.0 00

- . ' • • = ] ' T • '•". • . ' • ' " ' """•• - ..... - • • ' : : — •• -
74 On 75 K= 1 tMI

7f> R l ( V S ) = P.I ( M S ) . + A ( . I , K ) * V C H F G K ( J)
••" J =' J -!• 1 ...... '" ...... '-• ' .......... "."

IF(J- f ! f ; ) 7^,74,76
76' C P N T T H t F ....... . .......... "•"••

RFE = O.o no
DP 77 I - 1,NU)



77 RFF = RI:E + ( R (I )-R 1 ( I ) )*

RFE = 3*RFF . .
' ~ " J 'F (RTR.LR .PFF . ) GO' TO V-"" "

GO TO 71 . ;
14 • V»R i f p ( f, , (£,07 y-— I KOUWT ,"R F F' t'R:T R

GO TO 9000 '
71 C A L L PATS.I ! i - - (R*Mi.UKM","PT1)

'

43 IF( iKntiNT-{ jKonh'T/pOfcif- . ' ) 49,44, AR
""44- V'R'I "IT- (7 ,701 ) " lkoO.HT'VRTR f Kni>MT' t IRTR" ' - " r " '

W R I T F I 7,701 ) IKOUNt' :,RFF,KntlNT, IRFF.
' 4P R'L'S.TR' = 0.0 no '" ...... ..... .....

DO 47 I = l,iVII
• : u~t R L S T P = R L < T R +."RL!St ( I ) *R ( I )

I F ( O A B S ( R L S T R IVGT.liO P-09) GO TO 200
"" ........ •; GO'.TO 49 " ". .......... '"Jr""' '."."" """ " ......... """'""

200 ' HRI-TF(6,6.04) RLSTRvIKPliMT
"49 IFrKPUMT.FO.l ) " GO>;:Tn"P3' ...... -..-.•— ...

RTH = 0.0 no
' W 91 " J '= 'IV'MIIT -;-+-—• •- ....... -•• --..-—-

91 RTH = RTH +• R (J ) *H( . J> :.

83 RTH = 0.0 DO . .
R4 I F( D A H S f RTH) .GT. 1 .0'- D-09 ) GO TO '201'

G'n TO 82 . .
" 20 1 VR I'T F ( 6» 6f'? ) .RTH > IKOIINT ........ """.".

B?. I F ( R T R L S T . P O . O . O ) : GO Tn 81~":' "••jj' =""r ...... " ..... ,.....,..,.- ........ ...... .-- . . -,
35 AR( JJ) = 0.0 DO.. : ;:

..... DO' ??" XK '- ' r ,Mr" -—•--'•- .............. .-.— _:
MS=I1( J J t K K )
; t F ( M S ' . E O ; 0 ) GO" T.n-3'3 '".' ....... - - - • - - — . . - • —

AR( . I J ) = ARUJ.-) :+' > ( J J » K K ) * R ( M S )
33 'CPN 'TTNUE ' '"'' ---- "~ ..... ------ • -------- • " • • " .......... --------

JJ = JJ-t-1
........... 1F( j j ' .GT.MF). Gn"tn"34 — ....... ........... -.-..— .

GO TO 35 . .
......... 34' crwT J'NUE " * ~ ........... : ~

A R T A H : = o.o no

36 A R T A H = A R T A H + AR ( I ) *AH ( I )
' EL AST = -ARTAH/A'HT AH~'.' " .....
81 IF(KOIIMT-l) 85 ,85 ,88

-R5 DP "P6 I = l,Mli - ...... •"•• --------- :•——••
R6 H( I ) •- -R( 1 )

...... ..... " GO T P ' 9 0 ~ ....... """ """"
8fi 00 89 I = 1 ,^ll

90 CONTINUE
T, ...... GPTOGOM-ALITY ..... TEST 'RET . RLST AMD P ," AMP' 'RV> A^n H

HTH - 0.0 "0 . . :

..... • ..... " no P 7 • i - = i. , wu ..... • : ....... - ••-"— ....... •— ............. ~ ..... —~ ....... -
87 HTH = HTH -^ H( I )'»H( I )

EMRMR2 = nsnRT.(RTRLST) . >
" ' EMRf-''H = PSPRTCHTH) •-;•' "" ~ ......... ------ ..... " ...... ---------- •"" ' ............... ~ .......

ORTH1 = (RLSTR)/(ENRMR1)*(FNRMR2)
--pRTH?'^ ( PTH ) / ( Ff-'RMR] ')« ( ENP"H) ....... -——- ----- ..... ---------------- ...... --------- ....... --

I F ( n A K S ( O R T H l ) .GT.UO P-05 .0R.PABS(ORTH2 J .GT . 1.0 0-05) GO TO 9R
GP TP 99 ' ' ----- ~~ ....... ..... "-" ; ----------- ~f ........ - - - - • • • - - - • • - ......... - ............ -- .....

..... .---.'•. - - - ...... .-- .-65-., .. .-



HRTH1
99 jj r-. \ ~ - ...... ' - • - ; ; " •• ••• : -: ..... .-
9?. AHUM) = 0.0 00

OP or « ! < • = 1, !•.'!" •• .................... •'" ...... " ""
n ? = l l ( J J , K K )

......... ] n I ' iS.FP.pj : GP TO 9r> " ..... • • - — - • • • — .
A H ( J J ) = A H ( J J ) + A { J J , K K ) * H ( M S )

"95 C P f ' T J M I F ........... .............. 7.'" ..... " .......... - ......... '."""
JJ = JJ + 1 . '•. '• -

.......... iFUj.r-T.r-F.T 'en TR"<?7"""r ...... " ........... ' ...... ~
G P T O 9 2 ' • ' • - . - . . •

..... 97 CPNTJMl iP 'T' ...... ....... V"" "".": ..... ' ..... "; ........
C A L L PA .T$ I IM( AH,MF. ,K I . - .M,AHTAH)
1F( AHTAH.LF . l .0 D-l?) ~GP T0""2?00'
FLAMJ = n.o no . :

HTR = 0. 0 ~PO ' "' ..... ---:•- .............. ;— ' .....
nn 31 j = 1 , MM

"?•]" HTR = HTR' '+ H( .n= :=R ' (v l } ...... "" ..... :;"""" .......
A L P H A = 0.0 DO

..... FL/.I-U = - ( H T R / A M T A H ) ............. .,...—.-.-... ......
l F (F I . .MLST.Fc i .O .O DO) Gn TO 96
A L P H A = FLAf/J/FU-iLST • - ; - ' - • - . . . . . . . . . . . . . ••

51 r F ( K n i l W T . F O ; ? ' j GO TO 93

93 K ' R I T F ( 6 , 6 1 7 ) T K O U M T , A L P H A

..... ™"cn in 96 ........... '' ""' ........ "
96 FLMLST = FLAMJ

DP 100 I = I, Ml I" ..........

100 X(I) = X( I )+F|.AHj*H( I )
IF( iKPUMT.Gn.N i i2 ) • GP :
G P T D 1 0 3 • , . . . . • ' • • . '

107 .DP 10?. I '='". 1 ,"MI),3' •--;—"—•-•-•--— ;••:-:--•-— ........ ...... ......... - ...... ~ ..... -"•••. •: ..........

JF( OABSIXLSTf 1 + 1 )-X( 1+1 ) ). LB'. l.OD-04. AMD. DABS ( XLST ( ]•+? )-X( 1+2) )
1. IE. i.o D-OM : GO TP io'?" 'V; :T" -•••"•'-!,-•-;••-. • • -•-•--~-^ ..... - ..... ......... ...._,.......

GO TO 103 . . • -i'n? CPMTJHIP " ' ...... - T . - - ........... - ..... • • • - • • - ....... -• ............. ......... _.,...—...,.-. ........ .,... .................. ..
W R I T F ( 6,606 ) KKOI-l iVT . • "' -

..... W R I T (-: (6 ,6 i ?) iKhuMT,RTP"."-; i :"'';' "" ; ": ...... """ ........ ; ' ............. "" ......... ........ '""
H R I T F ( 7 » 7 0 1 ) IKn i iMT , -RTP,KPI lMT» IRTR
V. 'PITF.(6 ,6n i ) 1.IKnili>'T,RFF,KPUNT. ......... ":" • ' • .............. "" .......... ~'~"~ ........ ..... "'
WR I T P ( 7,701. ) IKfUJMT , RFF. , KOHNT , -

' " W R J T f r ( 7 , 7 1 ? ) IKOi.'MT,RT'P. . . . . . . r !
V i R I T F C 6 t f t0^1 ) RI.STR .

. . . . . " l-'RITF (6 ,60?1 ) R T H . . . . . . . . """
I K O L i M T j F L A S T , FLAMJ

1KPHWT,AHT/ .H "
WR ITF'( 6,617 ) IKOHMT,. A L P H A
V I R I T E ( 6 , 6 0 0 6 ) • . . - . . . . .

JS = 1
...... PP ?0? T = UHII,? ' "•"" ...... "

V . ' R I T P ( 6 , 6 6 0 0 ) , ! S , X ( 1 ) , X ( H - 1 ) , X <
i . 'R iTF(7,76oo ) j'sixn )
js = js • +• i .

'30? CP
on
V ( I ) = A X ( I ) + FLCI.)"

HP ] T FT ( 6 , f-'i 00 ) ( V ( I ) , I = ]•% "MR T'T" "
C A L L P A T S I I M ( \ / ,M.P ,KMM,VpV ' ) . . " I :
"C^LL ^-SCALF.d.o 0 PA , VPV.l ,;i;)V



W R I T E ! 6, 6070) VPV . ;.'
...... FM = ~ D S P R T ( V P V ' / ( N E - N U + !R) I"""'

V > R I T F ( 6 r 6 0 5 ) FH.
......... KKPDN'T "=' KKOI1MT > T ..... "' "'•"'? ...... """

IF(KKOUMT.GF. .6) GP TO 17
GO TP ' 10? ..... " ...... """' ..... -::---.--—•; ••-

17 W R I T E I 6, 606) KKOUMT :':' ' " . ' •
...... - ..... "GO' TP "900'0 ..... • ......... ----•;-•>*----— "•-'-- ..... •

103 GftNTINUF • ' , .
• ...... iF(KpuMT.F.p.r) ..... 'GO fp:roi~~ ..... ""7"' ..... ~

GO TO 104 . ' • • '
" 10 r DO 'no " r'^'1 , NfT~ ..... --^-?- ••——-— ...... — - ..... :•• •

110 V C H F C K ( I ) = V ( I ) •+ FIA'MJ*AH(:I)
...... .""GO TO 106 '; ........ ~ ....... """""' ..... •' ..... " "~

104 OH 105 1= J. ,ME
105 V C H E C M I ) " = VCHFCKU ) .'V •••FLTAM'J*'AHm~ "
106 VCHCKV = 0.0 DO : .

................ f .ALL""PATSliM( VT.HF.CK , K'EVK'^' »'VCHCKV )"~~
C A L L MSCALFU. .O D 04 , VCHCKV, 1 , 1 )

..... 'jj '.=••• i ........ •-"". ............. ' ...... "•'""'' ......... 7 ......... .......... :
120 A X ( ' J J ) = 0.0 00

....... DP 1?0 KK' = l.,NI --------- -"•• ..... "•-" ...... - ..... - - • — - ' -
MS = IK JJVKK)

....... - ..... :i F( MS .FO.O:) -GO- Tn"i?o: " " ........ ~~ ....... ...... ~"r"
A X ( J J ) = A X ( J J ) + A ( J J , K K ) ! : < X ( M S )

"' 1'?'0" CPNTTN'UF. - ....... " .-'•••;-—". ..... -•^•-•^•-~ • - - • .....

JJ = JJ + 1 . : ; : ' • ' . . •' '

IF( jj.Gt.HF.) • G n - T n
GO; TP 120 :"
'CPK!TJ KlIE' """ .......... "
VPVLSt = VPV .

150 V( I ) = AX( I ) + FL( I) '•*.; .
............ v p v " = o.o no" " " : ..... —•-•--—-•-.--

CALL P A T S U M ( V > M F » k M M , y ' p V ) - .
. . . . . . . . " C A L L I - ; SCALE( 1.0 0 0'4VyPV71»l)

CHNVPV. = O A R S ( V P V - V P V ' L s t )
.......... " ) F ( C H M V P V . L F . 1.0"D-0"4').' G.P fp

GO TO 119 .
?200' V R T T F ( 6, ft If,.) XnUNT , CHNVPV ' .......... '"'~.

119 CONTIMUF
........... DP' 11 6 '! = 1, 'WR ....... •--—--••.--— ......... -...>

C H V ( I ) = O A P . S ( V ( I J-VGHF.CK (I )')
........ J F ( C H V ( I ).GF..1.0 D-021'VGP. TP ll;*

GO tP 117 .'•.'
116 W R 1 T E ( 6 , 6 ? ? ) I ,V( DtVCHF.CKCI ) .........

• 117 CfN
I F ( DA R S ( VC.HCK V- VP'» ) . GT . 1 . 00-0? ) GP< TO' 2800

2800 '.-.'RITF.l 6,616) KPUMT , VCHCK V, VPV :

- 11? -CPNT'If.iUF ......... - ..... ~~-. -»-;•--•-•- •-•—••-

• I F t R T R . L P . F M T . w ) ••GO ^0'' '
•••"•• ..... inRTR.LE.r.o n-ofi) ' -GP'T

IF ( IKf lUMT.PP. U GO TO „ 1.1-5

115 V . 'R ITF IA , 6°00) Knii^TylKPUNT'. - •
f, 60?.) RT.P.,:<PirNTVIK'hl!^T--" --

F( 7,701 ) IKPUNt,R;T.P,KPliHT,IRTR
" W R 1 T F ( 6 ' » 60V) JKPIIMT'j'R^Pf'kriliNT '" ~"" :V —
V I R I T F I 7,701 ). iKfU.INT,.PtFF.:>K'f:itJiNT,lRFF

•• ' W R I T F.( 6, 6041) Rrs,TR":-';™--Tr̂ ,-̂ ,;tr • - • • - • - - • • ----
- ' - . - • . -vv.:- - V - " " -67-.



V ! R ] T F ( 6 , 6 1 7 ) JKPUN'T, A L P H A
H R I T R I 6 ,6006)

on 301 .j -. i ,MU,? ".'•;. , . . ; , . . • :
' V.'R JTE ( 6, 6600 ) JS ,X ( D ,X CI*! ) ,X n>7 ) ,KO '"• "-'

JS- = JS •*• 1 . '
30] C P N T J W F ; ' " ........ : ............... "' ...... ' ..... ' ""~ ....... "•"" .....

W R I T E f 6,6007) , " , . ' . ' . . -

W R I T F ( 6,6070) VPV ' ' . .(..
V - R I T F ( 6 , 6 0 F O ) "' VCHCKV'."1 " -•-—-
FM = n S O R T ( V P V / ( M F - t | U - H R j;)\.
W R I T E (6, '6O5) 'FM " ""'"" "~~^

11A CONTIMHE .." . • ••'.I

80 I F ( R T H . L F . P F F ) - GO TO 70 ,:;;.,.;
........... GO "TO' 79 ...... -,-.....-...-....- ~-..:~.p-;i.~

78 WRITE(6,61?) IKOI^MT
......... IKPUNT '=•

no TO 12
........ 79 KPUNT"=

= IknilMT." f 1 , ; • ' " • ' • •
FO;NF'6) " T-PT.T-n '2,000 > " ' " '."" '"

IF(kniJNT, LT .ME6) GO T,fi • -Vs
?000 W P I T F ( 6 , 6 ] 0 ) fIKni.lNT'-~-T"' ...... ............ ;~ -
?300 VmiT'FJ 6,6] .A) !KnijivT, A.HTAH ' .
?100 W R I T F ( 6 , 61 1)' IK.6uNTvRTR-~'"~"":--i~"r" -

W R I T F ( 7 , 7 0 1 ) . i'K'ni.)NT.VRTR-tk
:0J;MT., I RTR

H R I T E ( 7 , 7 0 1 ) I K fll J W t , K F F , K 0U'N T , I R F E
' W R I T E (6 ,6041) "RLSTR —.—;-;;-•-— •;

H R I T F ( 6, 6031 ) R T H , ' " ' : : !
• . . . . . . . . . . . . . . . . W P I T F ( 6 t 6 2 ? ) IKniJWT

W R I T E ! 6,6400) I KfUJMT
............... WP]TF(6, '617)" I'KOU^T

WRITE( .6 ,6006) ' . .

00 300 1 = 1,MIJ,3

W R I T E ( 7 , 7 6 0 0 ) J S , X ( ! ),X{r+ii
..... ' ".!?' =' ..IS >' 1 ..... "' " "* ...... : ..... ̂ :
300 CONTINUE . '. ;.. ;
...... W R I T E (6, 6007) """" ....... - r— -•----

C A L L j- iSC.ALF I 1.0 D .02t.'V,MEV'l.)
~ ........ WP I TF ( 6 ,67OO ) ( V ( i ) -j:i =TV^E'rr

W R I T F ( ' 6 j 6 0 7 0 ) \IP\I ' .-. ' •;'•

FM = DSORT ( V P V / (MF-Ml)-i-IR )) ' .: L: ,
V 'RITE. I 6i 601? ) ~ F.'-' ........ '''• -•-..——_—.-..-.-.— -.•-- --- -

GO TO 9000 - .'. ,'. \ . '
V ; R I T E ( 6 , 6 1 . 0 0 ) L ( J ) YLICt yTfM ("J r;>iX{ J ) VI L ( J1 i KL ( J) , J " -

?600 W R I T E ( 6 ,6500 ) . . ,L ( J ) , ML ( J ) , -M( J ) , MM( J ) ,'J •
""601 F P R M A T l IP ,MKnijf-'.T= -'.M^T^XV'RFf^^"1 , P?^.'l 6 , ?X ,"«.KPUMT = ' '

602 FORMAT. (1H , ' PTR = • , 0?..5> i.:6,.ipX , ''Kf)UMT= ' , I? , 10X, ' I KnwT= ' ,15)
• '60? ' F O R M A T c i H , ' R A n .cnwjlfGA,r.y*j/~-; '•; RTW- ' ',n5?..re,'« ; - IKPIINT= ' ,15) '

60A FORMAT (1H , ' P . L ^ S T POT; Cfl^ijbGATF. '..TP R » , ) OX, 'RtSTR = • , n?5. 1 6, 10X,

605 F O R M A T U H , ' S T A M D A R D , jERW}Ri,;P.F liNIT WFir,HT.= ',01?.4)
'606 " ; F O R M A T ( 1H1 , ' **<<*VrS^t;|iT^j|j^VEG:T]PP OOESr^nji 1MPRPVF'"**»** '«



115,5X, ' T I M E S ' ) . .,.- - - .. ,.. :,..-. ,- .
6 0 7 " F O R M A T ( 1 H ' T F^RHlNA^IOf^OF ] TF. R A'f'j 0'N'S~'TM' F TO PTR . LF .RFE '•"'/'/"

l«IKr.lUNT = ' ' " ' " ' ' •
610 "FOR'MAK IH).
611 FORMAT (1 HJ.

'M 2" FORMAT! 1H*

: :',R2r'. 1* , ?X., ' RTR =
1 if F'R'A.T;j6NS:"CnM-pLFTED',V20XV' IXntlNT=' ', If.)
'RTR'., VANISHES',.20X, ' IKOUMT= '• ,I 5, 5X , ' RTR =

'IKOUNT^
',025..

61?" FORM

FORMAT ( 1.H1, 'TFR'Mr̂ ;AT.F;;.'FhP.""AHTAH = Ol//'fknUt'!T='« » J ?', lOX,' ' A'h'T AH= ' ," "
1D25.16) -'• , .;.;; - . ' ; • " - • ' .'.• '

' 6"16 'FORMAT! 1H ';, ' VCHCK^ ̂F;VPV ' VI nxV I5» 2D25;'16'V ............... ~" "' ..... '. ' '•"' ............
617 FORMAT (1H , ' IK;OU.MT=jV;f "ii5 » 10X t ' ALPHA= « , n??. 16» '««UPPER BOUND
" "ic'PNniTioM MiiwFvfR-: <<;<:<:<:<' y ....... "" ....... ;--.-

:--- • - - • • -- •— . ...... - -- ......... -
61 P. FORMAT (1.H ,' **>>*>::* " /:."*i'KhlJiyiT= ' , I?, 10X, ' VPV INr.RFASF= ',025.16)

"'620 'FORMAT( 1H' ,'' ORTHnG'flN'/C'pr.TY "T FST : ' '" , 'ORTH1 rRlSTR - ' , 01 6.9," 5X , " ". ......
l ' O R T H 2 = RTH= ','oi'6<;9i'i3.i<,vMKOUMT= ' , 15 ) '

'62? ' .FORMAT! ].H ,'' ' KOIIN'T^'IrtTi'SX , ' f.L A?T= ' «','F20. 10 , ?X , ' FLAMJ= "'', F20. 10 )'
623 FORMATdH , ' != « , I SiV''" '• . 'V= ' , F20. 10, 10V , ' VCHF.CK= •' * F20. 10 )
7 r a T O R M A T I J^,n25nnVl;Mf3lPXTI2) . . . . . . . . . . . . . . . . . ."""" ' ; • • - • . . . . . . . . . . . r - . . . . . . . . . . . . . . . . . .
712 F O R M A T C 5 X , ' IKOU^'f ="v'«"-t-.l5 <i ' R.TR= ',F20. 10)

6000' FORMAT(lX,2I^:F7^2^Fi2.5',:i3,7IA,I3,?'R,F11.4,l?) .............. ~" ..... - -------
6001 F O R M A T I I H O , ' MU '.'/.MF.-- • N I ' / / 3 I 5 ) :
"6006 "FORMAT( 1HO ,2X VI'I ';,'i?;̂ p Z «7'22X ," 'PHI ' ''i-2'O'X V LAf-mpA ' ): ...... ' ...... -—•-•: ....... —
6007 FORMAT ( J HO, -'*,*Xt*V t-iv)̂ '*** ' ) •
6031 FORMAT! 1H "', ' PTH= l: p̂;S:Vl6 )"'": ."" ". ---------- -•"• ..... "" ....... "";""" .............. --------- ..—.-_-- ...... .........
6041 FORMATilH , ' '
6070 F O R M A T ! ] :H">
6080 FORMATdH i ' VCHEfcK;yi»^D-?5 .16 ) ; .

"6').00" FORMAT ( l'H~, ' SOMFT^ liignviR'Ofiffi' X/7 15
6200 FORMATdK , ' MOT : MATGl i ; ] : ' //5 1 5 )
64 00 F OR M A T ( 1 H
6600 FDRMAT ( 1H
6700 ' FORMAT ( 6F20 .
6900 FORMAT ( tHl, ' :'IT|R*A1ftlON ' , 2 15 )
7"600 FORMAT ( I SVSF̂ SS'iT̂ XĴ f )'
9000 RETURN , . -.- -̂ .cŜ .;:;-.
..... ~ ...... EN'D ..... " ....... -..—..— ;rr~™--:;T;-̂ --

,' ': I K l̂l iOT=}V||l i;5-V ' 1 OX , ' A HT A H =" J':7l>?5';T6; ) " ' "
, 15, VF23'i ii?i ?:X , 1 1 ) i :' :
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St'PRnUT I N F PATMJM'< R r W M '
IMPLICIT "' :

RTR = o.o no
NP •=1-MJ/1<M" ' ..........
NL = NU-(NP*KM-)
; ) F CN'L"'..CEVP")'.' " Gf

RTRl ="0'.0 DO "
nn ?A j.'.s- ii ,i

-•••~2/r~RTRT"'="'KTRr' + ":
RTR = RTR + RTRI,

25 " COWT I l-'ll F •'•' : ~
IF ( KM.GT.HII) GO TO 28

'' ' DP 21 "7 '=""! »>!P' ^

RTRI = 0.0 DO . . " ;.. .',•.••
' 'DP 22 ...... J = JJVI'I ~"" ....... .-;"""-
22 RTRI = RTRI + P. ( J )*R ( J )
"71 "'RTR = RTR •"+ RTRI '. •-—---•--

RffTURN -
"?p. ' • WR n't-' ( fcf'6V) ........... "" ...... ""~ ...... ~~ — "
61 FORM/M(fiX,'» IN PATSUM» KM GT
" ;" "RFTURN" "'' ...... "" ..... ~~" ....... •'"-""

END . : •!"•'.' •'.•'•-
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f- :

""SUPROUT IMF OUMMY^A iB,C , P,T,"S IG'V.
DOUBLE PRECISION A:-' IX , ̂ -'!<» Cf-' ] <, P?l <, T^K, SI f,N,:SCA LE

"ENTRY M!-'
DIMENSION

F O R M A T f < A 4 , 2 7 X , 15, 5H R P W S C X , 15 ,6H COL?S< '
"JUtf iA^jA ' ........ ' ....... ~ ....... " ..... .......... ...... "•' ....... —--- ..... ----- ----------- ....... — ......
PO ? 1 1 -'It I A , . . '" .

»^A2j<v;ifl:Ti,"J"J»"fA< -------- ~t — '•"" -• -----------------
ROWI5,/ / ' / lX, lP5n?0.f l«. - '

"""" ....... " ...... ..... ' ...... ....... ---......._._ ..... ...
ENTRY MP1INCHXA, IA , JA ,N 'AM< _ •
- j j . j f«^jA*jA-]</3£r " ........ """ : " .............. ........ ....... ""
V/R I TR*? , 4< C XAX H*:3-2< , AS J I *3- 1 < , AX] I*3< , MAi'., 1 1 , !I«1 , JJ<

4
RETURN

..... ENTRY
ENTRY GMPRDXA tR tC,N,M,L<'

DO 10
1KHKGM

- "DO'10

JISJ-N"

DO 10 'i#.!
JP^IRf.l

10 CXlR<-*0?!'IR-<f>;A^J
RETURN
ENTRY (V

ENTRY

R ........ "TR'SO
JK^-M

........ ~"DD" i?0" K H 1 ,T

DO ?0 Jf

no 20 1^
"UfUJf. 1

20 T.^IR<i-'C5:!R"
RETUP-i'^ . . . .

------- ..... 'ENTRY T2,«ULTSATW»^»P'»L"Vf'l i"C<

DO 3P K-j;i ,L
....... •" - 00-30 • JSliiV

IP/'K-L
.......... I R'S'I R f. ]. ..... "

no 30. i/u,M



30 'C
R FT URN

6'0 '.•"UTP?;
70 FORf- 'AT^30Hl***NnT A VAL jlX tiPF.RM JON — JA-'U5 t.4H
....... "* 16H." CALL

RFTURN
....... F.NTRY MSC

........ on mo JST, jj
100 /"•J<

ENTRY , ' /AOD5<A,R, 1A, JA tC<

. CP TO ?00
' 'ENTRY" 'MSU&T '5'A', R VI A ,'J A'7r<"

?00' JJVUA*JA"~~' '
DP ?no J'-'l, JJ

300 r.5< j<i>A<;-; J<GS ir,i

~" "FMTRY 'f.:r
O J # i I A * J A
on AOO j ' r i ,JJ ............. ~ ........... " .........

'•00 P5'J<^/ -v^ j< -.
............ RFTl iPN ..... " ............ * ........... .—•-•»-..

E N T R Y . M A T H A ' / ' A , I A , J A ,P ,C iT< . ;

' "

...... "'"'On' 600 K;
IK?;IKF. T A

no 500 JM, i A
IM?'.J-IA .....
jRf IK '

T > ? I T < ? . ' O . O r O
DO 500 I r ' l t I

500

......... ~" nn 600 i« i , i A"
I

'600 ' C
f> |M '

"""ENTRY M A . V A T S A , ! ft , JA , P ','.C'i'T<."
I R r O " • ' • • ; '

'DO 800 K ? H V I A "~ : "

DP 700 J-. '1,JA
- IFWIIK • • • -

IMjV.J-.JA

nn 7no i',', r, jA "" ~—
-72-



If-1;' J"f ,JA
........... I'R;!IRf. I A ' ..............
700 T 5< . 1 T < * T ?•'. I T < r, P V I i.i < * ft ',-: ] p <r
' " ........ DO £00 J;!]. , I A ' ' ""

..... DO eno I---:). , JA
] B ? ; I B G I A

POO " 'c* i R < = ' C
RFTURM

-73-



REFERENCES

Adams, Oscar S. (L930). "The Bowie Method of Triangulation
Adjustment as Applied to the First-Order Net in the Western
Part of the United States, " U. S. Department of Commerce,
Coast and Geodetic Survey, Special Publication No. 159..
U.S. Government Printing Office, Washington.

Ashkenazi, V. (1967). "Solution and Error Analysis of Large Geodetic
Networks," Survey Review, No. 147, pp. 194-206.

Ashkenazi, V. (1969). "Solution and Error Analysis of Large Geodetic
Networks, " Survey Review, No. 151, pp. 34-80.

Badekas, John (1969). "Investigations Related to the Establishment
of a World Geodetic System, " Reports of the Department of
Geodetic Science No. 124, The Ohio State University, Columbus.

Bookman, F. S. (1960). "The Solution of Linear Equations by the
Conjugate Gradient Method, " Mathematical Methods for Digital
Computers, Vol. I, edited by Anthony Ralston and H. S. Wilf.
John Wiley and Sons, New York.

Bomford, G. (1965). Geodesy. Oxford University Press, London.

Bouchard, H. and Moffitt, F. H. (IS34). Surveying. International
Textbook Co. , Scranton, Penn.

Deker, Hermann (1967). "Die Anwendung der Photogrammetrie in
der Satellitengeodasie, " Deutsche Geodatische Kommission,
Relhe C, Heft NY. llil.

ESSA (1969). "Precise Traverse Chandler, Minnesota to Moses Lake,
Washington, " Environmental Science Services Administration
Coast and Geodetic Survey, Rockville, Md. , May 12.

Foreman, Jack (1970). "Spatial Traverse: Scale for Satellite
Triangulation, " Paper presented at American Geophysical Union
National Fall Meeting, San Francisco, December 7-10.

-74-



Fox, L. (1965). An Introduction to Numerical Linear Algebra.
Oxford University Press, New York.

Gaposchkin, E.M. and Lambeck, K. (1970). "1 9G9 Smithsonian
Standard Earth (II), " Special Report No. 315. Smithsonian
Astrophysteal Observatory, Cambridge, Mass.

Geonautics (1969). "Geodetic Satellites Observation Station Directory, "
Prepared for National Aeronautics and Space Administration.
Geonautics, Inc. , Virginia, July.

Gergen, John (1970). "The Analysis of a Short Segment of the U. S.
Coast and Geodetic Survey High-Precision Transcontinental
Traverse, " Master of Science Thesis, The Ohio State
University, Columbus.

Ginsburg, T. (1963). "The Conjugate Gradient Method, " Numerische
Mathematik, 5, pp. 191-200. Springer Verlag, Berlin.

Gossett, F .R. (1950). "Manual of Geodetic Triangulation, "U.S .
Department of Commerce, Coast and Geodetic Survey, Special
Publication No. 247. U.S. Government Printing Office,
Washington.

Gotthardt, Ernst (1968). Einfuhrung in die Ausgleichungsrechnung.
Herbert Wichmann Verlag, Karlsruhe.

Grossman, Walter (1961). Grundzlige der Ausgleichungsrechnung.
Springer-Verlag, Berlin.

Grossmann, Walter (L964). Geodatische Rechnungen und Abbildungen
in der Landesvermessung. Verlag Konrad Wittwer, Stuttgart.

Helmert, F.R. ^1380). Die mathematischen und physikalischen Theorien
der Hbheren Geod'asie, I. Teil. B. G. Teubner Verlag, Leipzig.

Hestenes, M. R. & Stiefel, E. (1952). "Methods of Conjugate Gradients
for Solving Linear Systems, " Journal of Research of the National
Bureau of Standards, Vol. 49, No. 6, December, pp. 409-436

Hilger, F. & Remmer, W. (1967). "Das Rechenprogramm AUGL zur
netzweisen Ausgleichung einzelner oder mehrerer Triangulations-
Ordnung in einem Guss, " Deutsche Good'atische Kominission,
Reihe B, Heft Nr. 139.

-75-



Jordan/Fggert/Kneissl (1958). Handbuch Per Vermussungskundc, Bd. IV?

T. Teil. J. B. Metzlersche Verlagsbuchhandlung, Stuttgart.

-lordtin/Kggert/Kneissl (1959). Handbuch Per Vermessungskunde, Bd. IV.
2. Teil. J. B. Metzlersche Verlagsbuchhandlung, Stuttgart.

Korhonen, J. (1954). "Einige Untersuchungen liber die Einwirkung der
Abrundungsfehler bei Gross-Ausgleichungen. Neue-Ausgleichung
des sudfinischen Dreieckskranzes, " Mathematisch-Naturwissen-
schaftliche Sektlon der Philosophischen-Fskult'at der Universit'at
Helsinki, 26. May.

Krakiwsky, E. J. (1968). "Sequential Least Squares Adjustment of Satellite
Triangulation and Irilateration in Combination with Terrestrial
Data, " Reports of the Department of Geodetic Science No. 114.
The Ohio State University, Columbus.

Lauschli, P. (1959). "Iterative Losung und Fehlerabschatzung in der
Ausgleichungsrechnung, " Zeitschrift fur Angewandte Mathematik
und Physik, Vol. X. Birkh'auser Verlag, Basel, pp. 245-280.

Meade, B.K. (1967). "High-Precision Geodimeter Traverse Surveys in the
United States, " Paper presented at the XIV General Assembly of
IVGG, Lucerne.

Meade, B.K. (1969a). "High-Precision Trans-Continental Traverse Surveys
in the United States, " Paper presented to XI. Pan American
Consultation on Cartography, Pan American Institute of Geography
and History, Washington, D.C.

Meade, B.K. (1969b). "Corrections for Refractive Index as Applied to
Electro-Optical Distance Measurement,' ' Paper presented to the
Symposium on Electromagnetic Distance Measurement and Atmospheric
Refraction, International Association of Geodesy, Boulder, June.

Meade, B.K. (1970). Private Communication. July.

Mithchell, Hugh C. (1948). "Definitions of Terms used in Geodetic and
other Surveys, " U. S. Department of Commerce, Coast and Geodetic
Survey, Special Publication No. 242. U. S. Government Printing
Office, Washington.

Mueller, Ivan I. (1964). Introduction to Satellite Geodesy. Frederick Unger
Publishing Co. , New York.

-76-



Mueller, Ivan I. (1969). Spherical and Practical Astronomy ns Applied to
Geodesy. Frederick Unger Publishing Co. , New York.

Muller-Merbach, H. (1970). On Round-Off Errors in Linear Programming.
Springer-Verlag, New York.

Pellinen, L. P. (1970). "Expedient Means of Joint Processing of Ground and
Cosmic Triangulation, " Bulletin of Optical Artificial Earth
Satellite Tracking Stations-USSR. Joint Publications Research
Service, Washington, D.C.

Rainsford, H.F. (1955). "Long Geodesies on the Ellipsoid, " Bulletin
G^odesique, No.. 37, pp. 12-22.

Ralston, A. (1965). A First Course in Numerical Analysis. McGraw-Hill
Book Co., New York.

Rapp, R. H. (1969). "Geometric Geodesy Notes, " Unpublished.

Schmid, Hellmut H. (1965). "Precision and Accuracy Considerations
for the Execution of Geometric Satellite Triangulation." U. S.
Department of Commerce, Coast and Geodetic Survey, Rockville,
Maryland.

Schmid, H. H. and Schmid, E. (1965). "A Generalized Least Squares
Solution for Hybrid Measuring Systems," U. S. Department of
Commerce, Coast and Geodetic Survey, Rockville, Maryland.

Schmid, Hellmut H. (1966). "The Status of Geometric Satellite Triangu-
lation at the Coast and Geodetic Survey." U. S. Department of
Commerce, Coast and Geodetic Survey, Rockville, Maryland.

Schmid, Hellmut H. (1969). "A New Generation of Data Reduction and
Analysis Methods for the Worldwide Geometric Satellite
Triangulation Progr-am, " Paper presented at the Department
of Defense Geodetic, Cartographic and Target Materials
Conference, October 30.

Schmid, Hellmut H. (1970). "A World Survey Control System and its
Implications for National Control Networks, " Paper presented at
the Canadian Institute of Surveying, Halifax, April.

Schmid, Hellmut H. (1971). Private Communication, June.

-77-



Schwarz, H. R. (1968). Numerik Symmetrischer Matrizen. B.C. Teubner,
Stuttgart.

Schwarz, H. R. (1970). "Die Methode der konjugierten Gradienten in der
Ausgleichungsrechnung, " Zeitschrift fur Vermessungswesen, No. 4.

Shediikh, M. (1970). "Role of Satellite Geodesy in Further Bevelbpmeht of
Continental Astronomical Geodetic Networks, " Bulletin of Artificial
Earth Satellite Tracking Stations-USSR. Joint Publications Research
Service, Washington, B.C.

Simmons, Lansing G. (1950). "How Accurate is First-Order Triangulation?"
The Journal, Coast and Geodetic Survey, No. 3, April, pp. 53-56.

Sodano, E.M. (1958). "A Rigorous Non-Iterative Procedure for Rapid Inverse
Solution of very long Geodesies, " Bulletin Geodesique. No. 47/48,
pp. 13-25.

Sodano, E.M. (1963). "General Non-Iterative Solution of the Inverse and
Direct Geodetic Problems, " Paper presented to the XIIIIVGG
General Assembly, Berkley.

Stiefel, E. (1952). "tiber einige Methoden der Relaxationsrechnung, "
Zeitschrift fur angewandte Mathematik und Physik, Vol. Ill,
pp. 1-33. Birkhauser Verlag, Basel.

Thomas, G. B. (1960). Calculus and Analytical Geometry. Addison-Wesley
Publishing Co., Reading, Mass.

Veis, George (i960). "Geodetic Uses of Artificial Satellites, " Smithsonian
Contributions to Astrophysics, Vol. 3, No. 9. Smithsonian Institution,
Washington, B.C.

Wolf, Helmut (1950). "Bie strenge Ausgleichung grosser astronomisch-
geodatischer Netze Mittels schrittweiser Annaherung, "
Verbffentlichungen des Instituts Fur Erdmessung. No. 7, Bamberg.

Wolf, Helmut (1968). Auggleichungsrechnung nach der Methode der kleinsten
Quadrate. Ferd. Dummlers Verlag, Bonn.

Wolfrum, O. (1969). "Iterative Verfahren der Ausgleichung nach vermittelden
Beobachtungen und einige Beispiele ihrer Anwendung bei geodatischen
Lagenetzen, " Beutsche Geod'atische Kommission, Reihe C,
Heft Nr. 143.

-78-



Zurmiihl, R. (1958). Matrizen. Springer-Verlag, Berlin.

Zurmuhl, R. (1964). Matrizen und ihre technischen Anwendungen.
Springer-Verlag, Berlin.

-79-


