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SUMMARY

An analysis is presented to compute the film thickness,
pressure and load relations between a rigid ball and rigid
groove in normal approach when lubricated by a fluid with an
exponential pressure-viscosity relationship., The geometry of
the ball-groove system is reduced to the equivalent system of
a paraboloid approaching a flat plate.

Exact and approximate solutions are presented for the load
and pressure relations. There is found to be a limiting load
for a given geometry and lubricant regardless of the rate of

approach,

INTRODUGTION

Comparatively little work has been done on squeeze films
between curved surfaces. In reference 1, the squeeze film
between a ball and spherical seat was investigated for the
case of a constant viscosity lubricant. In reference 2 the
elastohydrodynamic lubrication of shperes in normal approach
was investigated using an exponential pressure-viscosity
relationship. In reference 2, an analytical solution for the case
of rigid surfaces and a numerical solution for deformable surfaces
up to moderate pressures and for large film thicknesses are
presented, For the range of pressures and film thicknesses
considered in reference 2 it was found that the rigid surface

solution yields results close to the elastic solution.



The work reported herein extends the analysis of reference 2
tc the case of a sphere approaching a cylindrical groove. The

direction of approach is normal to the two surfaces.
ANALYSIS

The system under consideration together with the coordinate
system used is shown in figure 1, In accordance with standard
notation, the radius of curvature is considered positive when
the center of curvature lies within the body.

If the film thickness is much smaller than the radii of
curvatures, then the customary parabolic approximation may be
made and the system is approximately equivalent to a paraboloid
approaching a flat plate as shown in figure 2. The equivalent

radii of curvature in the x-z and y-z planes are given by
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where the signs of RGx and RGy are taken as defined previously.
Using the parabolic representation, the film thickness at x y

is given by

x2 2
h =hy+%—+ Y (1)
2R 2R
x y

hy + Ax? + py?




The Reynolds equation for the lubricant film is given in

reference 3.
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The pressure-viscosity relationship will be considered

to follow the exponential law:

%P

Y P (3)

This relationship has been shown in reference 4 to be invalid
at high shear when the pressure exceeds 3.8 108 N/m2 ( 55 000 psi).
However, in reference 2 it is found that elastic considerations
become important as the central pressure increases beyond a
value equivalent to X P = 5

For a synthetic paraffinic lubricant (<= 1.3 1078 mz/N)
this corresponds to a central pressure of 3.86 108 N/m2 (56 000 psi).
Thus, the breakdown of the exponential pressure-viscosity
relationship and the rigid surface approximation occur at about
the same pressure.

Substituting the pressure-viscosity relationship (3) in
the Reynold®’s equation (2) and considering the lubricant to
be isothermal, the following partial differential equation

is obtained
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The particular solution to this equation is
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letting
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In accordance with the arguménts presented in reference 5
and reference 6 that the pressure distribution is only weakly
dependent upon the shape of the boundaries, equation (6) will
be considered as the complete solution.

The normal load is obtained by integrating over the area
and since the pressure drops off rapidly with distance from
the origin, the upper limits on x and y will be taken as infinity,

Therefore the load W is given by:

S
=4//pdxdy (7)
0 o

Integrating (7), the expression for W is found to be
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A simpler approximation for the pressure and load may be

obtained by writing the pressure as a series:
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For small values of k/h, higher order tens can be neglected

and therefore:
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Integrating as before:
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The solutions may be written in dimensionless form as

follows:
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and for the approximate expression:
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A comparison of the exact and approximate solutions for the
load parameter versus central film thickness is shown in figure 3.

The limiting case for the exact expression as ho-> k is:

Wex
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This is the same value obtained by Christemson (ref. 2) for
the case of a sphere and plate.

As in the case of the sphere on a flat plate this implies
a limiting load for a given fluid and geometry which is given

by the expression
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The pressure distribution may also be written in dimensionless

form by use of the variables:

H=h/ho

h/ho
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P=oap
X =x/J2R g
_ o
Y =y/ 2Ryho
then
H=1+%x%+Y

and for the exact solution

g
"
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and farther approximate solution

P = K2/ H?

Typical pressure distribution along the major axis for the
exact and approximate solutions for K = 0,7 are shown in

figure U4,

CONCLUDING REMARKS

The pressure distribution follows the same trend as for rigid
spheres in normal approach and differs considerably from the
Hertzian pressure distribution. As in the case of spheres,
there is a limiting load which is reached when the central
pressure approaches infinity. In reality, of course, significant
elastic deformation will occur before this load is attained and

the pressure distribution will be altered.
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APPENDIX - SYMBOLS

1/2R , n™"  (in)

1/2Ry, m~r (in)

dimensionless film thickness = h/ho
film thickness, m (in)

central film thickness, m (in)
k/h, .

/T3/uohoz/ (A +B), m (in)

dimensionless pressure

pressure, N/'m2 (psi)
central pressure, Nﬁnz (psi)

radius of ball, m (in)

radius of curvature of groove in x-z plane, m

radius of curvature of groove in y-z plane, m

(in)

(in)

radius of curvature of paraboloid in x-z plane, m

radius of curvature of paraboloid in y-z plane, m

normal load, N (1b)

dimensionless coordinate

x// 2hoR,
v/ / 2hoRy

Cartesian coordinate, m (in)

dimensionless coordinate

pressure-viscosity exponent mz/N (psi™!)
absolute viscosity, N-sec/m2 (lb-sec/inz)

ambient viscosity, N-sec/m2 (lb-sec/inz)

(in)

(in)



Figo. 1 BALL APPROACHING GROOVE SEPARATED BY LUBRICANT
FILM
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Fig. 2 EQUIVALENT SYSTEM - PARABOLOID APPROACHING
FLAT SURFACE
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Fig. 3 COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS
FOR LOAD VARIABLE
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Fig. 4 EXACT AND APPROXIMATE PRESSURE DISTRIBUTIONS
FOR k = 0.7
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