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SUMMARY

An analysis is presented to compute the film thickness,

pressure and load relations between a rigid ball and rigid

groove in normal approach when lubricated by a fluid with an

exponential pressure-viscosity relationship. The geometry of

the ball-groove system is reduced to the equivalent system of

a paraboloid approaching a flat plate.

Exact and approximate solutions are presented for the load

and pressure relations. There is found to be a limiting load

for a given geometry and lubricant regardless of the rate of

approach.

INTRODUCTION

Comparatively little work has been done on squeeze films

between curved surfaces. In reference 1,the squeeze film

between a ball and spherical seat was investigated for the

case of a constant viscosity lubricant. In reference 2 the

elastohydrodynamic lubrication of shperes in normal approach

was investigated using an exponential pressure-viscosity

relationship. In reference 2, an analytical solution for the case

of rigid surfaces and a numerical solution for deformable surfaces

up to moderate pressures and for large film thicknesses are

presented. For the range of pressures and film thicknesses

considered in reference 2 it was found that the rigid surface

solution yields results close to the elastic solution.



The work reported herein extends the analysis of reference 2

to the case of a sphere approaching a cylindrical groove. The

direction of approach is normal to the two surfaces.

ANALYSIS

The system under consideration together with the coordinate

system used is shown in figure 1. In accordance with standard

notation, the radius of curvature is considered positive when

the center of curvature lies within the body.

If the film thickness is much smaller than the radii of

curvatures, then the customary parabolic approximation may be

made and the system is approximately equivalent to a paraboloid

approaching a flat plate as shown in figure 2. The equivalent

radii of curvature in the x-z and y-z planes are given by

R RGx
R = 77

RGx

where the signs of RG and RG are taken as defined previously.

Using the parabolic representation, the film thickness at x y

is given by
2 2

h = hn + *— +
 y— (1)

u 2R 2R
x y

= h0 + Ax
2 + By2



The Reynolds equation for the lubricant film is given in

reference 3.

, /z

The pressure-viscosity relationship will be considered

to follow the exponential law:

(3)

This relationship has been shown in reference ^ to be invalid
O o

at high shear when the pressure exceeds 3«8 10 N/m ( 55 000 psi).

However, in reference 2 it is found that elastic considerations

become important as the central pressure increases beyond a

value equivalent to o( P = 5
—fi ?

For a synthetic paraffinic lubricant («: = 1.3 10~ m /N)
Q p

this corresponds to a central pressure of 3.86 10 N/m (56 000 psi),

Thus, the breakdown of the exponential pressure-viscosity

relationship and the rigid surface approximation occur at about

the same pressure.

Substituting the pressure-viscosity relationship (3) in

the Reynold's equation (2) and considering the lubricant to

be isothermal, the following partial differential equation

is obtained

A



The particular solution to this equation is

(5)p = - - in /1 -i- —•— ?
<* V (A + B)*i

letting

(A + B)

this equation becomes

p = - Un ( 1 - 4 } (6)
<* A h /

In accordance with the arguments presented in reference 5

and reference 6 that the pressure distribution is only weakly

dependent upon the shape of the boundaries, equation (6) will

be considered as the complete solution.

The normal load is obtained by integrating over the area

and since the pressure drops off rapidly with distance from

the origin, the upper limits on x and y will be taken as infinity.

Therefore the load W is given by»

po QO

(7)

Integrating (7), the expression for W is found to be



2 ,2

W = ~ ;=== I h,n
ct/Al 0 V h()

2

A simpler approximation for the pressure and load may be

obtained by writing the pressure as a seriesi

1-L ln / k2 1 F k2 k4 k6 1
(1 - ^ = -1 -V - T - *-Z ---
V h2/ o([ h2- 2h4 3h6 J

For small values of k/h* hi^ier order tens can be neglected

and therefore i

(9)

Integrating as beforei

oo .00
2

J^ dx dyh
0 O

solutions may be written in dimensionless form as

followsi



« + ^AO\rjt—g\ _ ̂  (11)

and for the approximate expression!

2
(12)

'o

A comparison of the exact and approximate solutions for the

load parameter versus central film thickness is shown in figure 3«

The limiting case for the exact expression as hQ-> Jc is«

= In 4= 1.386

This is the same value obtained by Christenson (ref. 2) for

the case of a sphere and plate.

As in the case of the sphere on a flat plate this implies

a limiting load for a given fluid and geometry which is given

by the expression

w = 2.772 7T/Rx Rv ^rt
oc

The pressure distribution may also be written in dimensionless

form by use of the variables:

H = hAQ

H = hAQ



K =

P = <x p

X

then

H - 1 + X +2 . ,2

and for the exact solution

P • -In - K2/}!2)

and farther approximate solution

P « K2/H2

Typical pressure distribution along the major axis for the

exact and approximate solutions for K = 0.7 are shown in

figure .̂

CONCLUDING REMARKS

The pressure distribution follows the same trend as for rigid

spheres in normal approach and differs considerably from the

Hertzian pressure distribution. As in the case of spheres>

there is a limiting load which is reached when the central

pressure approaches infinity. In reality, of course, significant

elastic deformation will occur before this load is attained and

the pressure distribution will be altered.
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APPENDIX - SYMBOLS

A !/2Rx,
 m -1

-1B l/2Ry, m" (in)

H dimensionless film thickness =

h film thicJcness, m (in)

hQ central film thickness, m (in)

K k/hn

k 3^u6h<*/ (fl + B), m (in)

P dimensionless pressure
2

p pressure, N/m (psi)

^Pg central pressure, N/m (psi)

R radius of ball, m (in)

RGX radius of curvature of groove in x-z plane, m (in)

RG radius of curvature of croove in y-z plane, m (in)

RX radius of curvature of paraboloid in x-z plane, ra (in)

R radius of curvature of paraboloid in y-z plane, m (in)

W normal load, N (Ib)

X dimensionless coordinate -

Y dimensionless coordinate = y/y 2hQR
J

x,y,zf Cartesian coordinate, m (in)
? 1

c* pressure-viscosity exponent m /N (psi )
p p

JU absolute viscosity, N-sec/m (Ib-sec/in )
o o

ambient viscosity, N-sec/m (Ib-sec/in )



1 BALL APPROACHING GROOVE SEPARATED BY LUBRICANT

FILM
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Fig. 2 EQUIVALENT SYSTEM - PARABOLOID APPROACHING

FLAT SURFACE
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Fig. 3 COMPARISON OF APPROXIMATE AND EXACT SOLUTIONS
FOR LOAD VARIABLE
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Fig. 4 EXACT AND APPROXIMATE PRESSURE DISTRIBUTIONS
FOR k = 0.7
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