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" CALCULATION OF IRROTATIONAL WIND PATTERN WITH
APPLICATION TO CLEVELAND TOPOGRAPHY
by Robert Siegel

Lewis Research Center

SUMMARY

Small perturbation theory is applied to compute the deflection of the wind blowing
across land that has an irregular topography. As an illustration, the method is applied
first to the flow around a single hill of Gaussian profile. Then calculations are made for
the irregular topography on the east side of Cleveland where the elevation changes by sev-
eral hundred feet. It was found that the topography produced small wind deflections that
would not be of practical importance in air pollution dispersion studies. The calculations
were for a neutrally stable atmosphere. Although they are not investigated here, other
factors such as thermal stratification of the atmosphere, diurnal variations, and convec-
tion currents resulting from the proximity of Lake Erie and the city heat island effect are
expected to be more significant than the influence of topography.

INTRODUCTION

In order to use the diffusion equation or various dispefsion models to calculate the
dispersion of pollutants from emission sources in a city, it is necessary to know the local
wind velocities. For example in reference 1 the diffusion equation was solved numer -
ically for the Los Angeles area. The wind velocities were interpolated from measure-
ments at 32 stations throughout the city. In the simplified dispersion model devised by
Hanna (ref. 2), which is applicable for distributed area sources of pollutants, the local
concentration was found to depend inversely on the local wind velocity. Even though the
analytical result in reference 2 has a very simple form, it was found that good concentra-
tion results were obtained in calculations performed for the Los Angeles and Chicago
areas. :

One of the factors influencing the local wind velocities and flow pattern is ground
topography. In reference 3 computations were made of the smoke dispersion from an



electric power plant. Downwind in the direction of the prevailing wind were two hills
that influenced the wind pattern. The situation in greater Cleveland is somewhat sim-
ilar. On the east side of the city there is a rise in the land in the direction of the wind,
which is predominantly from the west and southwest. In this region the land also rises
to the south away from the lake as shown by the simplified contour map in figure 1. This
figure also shows the location of the Cuyahoga river valley in the central portion of the
city where heavy industry is concentrated.

The object of this report is to determine whether topography will significantly deflect
the wind that is passing over the industrial region and then blowing across the east side
of the city. This would have some bearing on the interpretation of information from pol -
lution measuring stations distributed throughout the city and would provide information
for use in dispersion computations. .

To obtain a first approximation as to whether the irregular topography would signif-
icantly deflect the wind, it was felt that boundary-layer effects could be neglected and an

- ) / //
les-2 Miles—{ g
w E
Lake Erie
S
Locations where velocity perturbations /

were computed (see fig. 5 for coordinates)

*‘/’East '*‘South—
Cleveland | Euclid

Cleveland
Heights /
%k —

Helights
*
o
\ )

Lake
Shore-

Lakewood

Cleveland

) Brookpark . o

Figure 1. - Simplified contour map of greater Cleveland area showing the increase in elevation in the southeast area. (Contour elevation lines
are in feet.)




inviscid irrotational analysis performed for a neutrally stable atmosphere. If the invis-
cid results show appreciable effects on the flow, then these results can be used as the
outer flow and the boundary layer effects can be calculated. An inviscid calculation
would not be valid in a region where there is flow separation such as on the downstream
side of a hill. However, as discussed in reference 4 (p. 29), inviscid irrotational flow
theory provides a reasonable quantitative description of the flow pattern on the windward
side of a hill. The prevailing wind direction in Cleveland is directed toward the rising
land in the region of interest here, and hence the inviscid analysis should be reasonable
for a first approximation. |

SYMBOLS
A height of undisturbed streamline above x-y plane
H dimensionless height of ground above x-y plane, h/lr
h height of ground above x-y plane
hma.x maximum height of hill
l r reference length
P pressure

intermediate variable, ¢ +in
u,v,w velocities in positive x,y,z directions
u undisturbed wind velocity in positive x direction |
\% complex potential function, & + i¥
X,Y,Z dimensionless rectangular coordinates, X is parallél to direction of undisturbed
wind
X', Y' dimensionless grid coordinates for Cleveland

X,y,z rectangular coordinates, x is in direction of undisturbed wind

Z complex variable, x + iz

a angle with respect to -x axis of approaching undisturbed wind
¢ ' dummy z variable

n dummy y variable; imaginary part of t

dummy x variable; real part of t
dimensionless variables, £/1 - /'l r

density
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o constant in Gaussian distribution

® potential, real part of W

@ pertlirbation potential

¥ - streamfunction, imaginary part of W
¥~ streamfunction for nt? streamline

'ANALYSIS

To gain some appreciation of how the flow is affected by topographical features, the
flow across two configurations of regular geometry will be briefly examined: a two-
dimensional step and a hill with a Gaussian profile. - All of the calculations are for a neu-
trally stable atmosphere and flow separation effects are neglected.

Deflection of Flow by a Two-Dimensional Step

The geometry for the two-dimensional step is shown in figure 2. At a great distance
before reaching the step, the undisturbed flow velocity has components u = -u_ and
v =v_ so that the velocity vector is at angle « = tan'1 (v/-u,) relative to the negative
x direction. To show how the flow is deflected, the streamlines will be obtained for this
approaching flow. For an inviscid irrotational calculation it is shown in appendix A that
the velocity in the y-direction will be v_ everywhere, and the component of the velocity
vector in the x-z plane can be treated separately from that in the y-direction. In refer-
ence 5, the solution is given in the x-z plane for a two-dimensional flow approaching in
the -x direction and then passing over a step. Since the effect of the v-velocity compo-
nent is uncoupled, this solution gives the streamlines projected in the x-z plane for the
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Figure 2. - Streamline deflection by two-dimensional step.




present case. The interest now is in obtaining a streamline path projection in the x-y

plane by including the effect of the v-velocity component.
Along a streamline

& &
1]
e |<

Since v is everywhere equal to v_ this equation can be integrated to obtain

y@) = v,, / Lax 1
"~ Jstreamline ¢

where the integration is along a streamline. To obtain u along a streamline the solution
in reference 5 is used. This gives the complex potential W as a function of x and z

in terms of an intermediate variable t,

-u c,oh

W=& +i¥ = cosht (2)

m

% =x+iz =2 (t + sinh t) (3)
m

where h is the height of the step. Then the complex conjugate velocity in the x-z plane
is given by

u-iw:-ﬂ:-ﬂéi:u _Siilht_ (4)

dz dt d2  * 1+ cosht
If we let t = ¢ + in, taking the imaginary part of equation (2) gives

-u_h

¥ = sinh £ sin 7 (5)

T

Along the nth streamline, which originates at a distance A above the base plane in fig-
ure 2, ¥ is a constant. If welet ¥ =0 along z=0, then ¥ = -u A since the dif-
ference between stream function values for streamlines is equal to the volume flow be-
tween them. Hence the relation between ¢ and 7 along a streamline is, from equa-

tion (5),



TA _ sinh ¢ sin 7 (6)
h

To obtain u, take the real part of equation (4) to give

sinh & )

u=u,
cosh &£ + cos 7

Then u along a streamline is given in terms of 7 by eliminating ¢ in equation (7) by
use of equation (6). This yields

u

Uy

A 1 (8)
h 2

‘I’n sin.n cos 7 +“/sin2 n+ (Eé)
h

To carry out the integration in equation (1), the relation between x and 7 along the
streamline must be known. In addition, to be able to plot the streamlines a relation be-
tween z and 7 along a streamline is needed. These relations are obtained by taking the
real and imaginary parts of equation (3) which gives,

[£ + sinh £ cos 7] (9)

=
2=

[n + cosh & sin ] (10)

5N
N f=

Then eliminate ¢ by use of equation (6) to obtain x and z along a streamline in terms

of n
.S =l[sinh'1< TA >+E_1_] (11)
h‘I/ 4 h sin 7 h tan g
n
271/2
z =l{17 + [sin2 n +<lé> :I } - (12)
h\pn w h

By evaluating equations (11) and (12) for various 7, the streamlines projected in the
X-Z plane are plotted in figure 3(a).
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Figure 3. - Deflections for vertical step.

The y coordinates of the streamline (as a function of x) are obtained by inserting
equation (8) into equation (1) to yield

A4

X/h 2
/ sin n cos n + sin? n +(Fhé) d(ﬁ-) (13)

h
TA

=

© |
8 I8

xo/h




The integration in x is carried out along a streamline using equation (11) to obtain 7(x)
so that the integrand can be evaluated at any x value. The X in the lower limit of in-
tegration is a value taken far enough before the step so that the flow has not yet been de-
flecied (xO ~ 6h was reasonable in most instances).

It is evident from equations (13) and (11) that the quantity (y/h) (-u_/v_) depends
only on the single parameter A/h which is the height of the undisturbed streamline
above the x-y plane divided by the height of the step. The quantity (y/h) (-u_/v ) is plot-
ted as a function of x/h in figure 3(b) for streamlines with three different A/h. If
-u, =V, that is, if the wind approaches the step at a = 45°, these curves are the actual

streamline paths and show the horizontal wind deflection. For v_ # -u_ the horizontal
deflection is found by multiplying the ordinate of figure 3(b) by v_/-u_.

Analysis for a Three-Dimensional Topography

For a three-dimensional variation in land elevation, the solution for the Laplace
equation governing the velocity potential would usually not be possible analytically and
could be obtained numerically by finite differences or by a technique such as in refer-
ence 6. In many instances, however, the changes in elevation are rather gradual (sev-
eral hundred feet per mile) and consequently a small perturbation theory can be applied
to obtain deviations in velocity from the free-stream value. Some of the basic aspects of
the small perturbation theory are given in reference 7. This theory was applied to a real
topography in reference 3 although the details of the analysis are not given there. The
small perturbation equations used here are derived in appendix B. The results for the
perturbation velocities are

uX,Y,2) _q, Zl 2025 (0 -2 22 g fap g
u, m . [(X _ g)2 + (Y - 77)2 . Z2:|5/2

v&Y.2) .. 3 / / X - DY - BE natan > (19)
u, 2m Lo Ji [(x SB2a -2 Zz] 5/2 |

WX,Y,Z) / f X -4 H(E,mdE dn
u_ D2y om?s Zz] 5/2 J

|




The H(X,Y) is the local elevation of the land above the X-Y plane normalized by a char-
acteristic dimension. In the integrals the X,Y, and Z are the coordinates of the location
at which the velocity perturbations are being computed. The integration over é and ﬁ
takes into account the effect that the surrounding land contour has on the velocity
perturbations.

Deflection of Flow by a Hill

As an illustration of the flow for a three-dimensional topography, the wind pattern
around a hill will be considered. For a three-dimensional topography such as a hill,
there is a relief effect (ref. 7) resulting from some of the flow being diverted around the
hill rather than having to flow over the top of it as in a two-dimensional situation. A sim-
ple hill geometry can be specified by using a Gaussian contour of revolution (all lengths
are nondimensionalized by the maximum hill height, hma.x) |

hx,Y) - Bx,Y) = o~ X2+Y /02 (15)

max

(Another function used in discussing wind flows (ref. 8) is the '""mountain'' function

[1 + (X2 + Yz)/ﬁ)z]"1 where B is a constant.) The ¢ in equation (15) determines the
steepness of the hill. Results were carried out here for o =2 and the hill contour for
this value is shown in figure 4. The H(X, Y) was inserted into equations (14), and the
integrations carried out numerically for various (X, Y, Z). Some results are tabulated in
table I(a) for the first X,Y quadrant. This is sufficient to give the entire flow pattern
because the inviscid flow is symmetric around the hill as flow separation effects are not
taken into account. The velocity vectors at various heights in the X-Z plane are shown
in figure 4(a).

Since measurements of the wind are often at a fixed height above the ground, a set of
calculations of this type was also performed where the height above the ground was 0. 1
of the maximum hill height. For example, for a hill 500 feet high (typical of Cleveland
topography) the results show the wind 50 feet above the ground. For this calculation,
the Z(X,Y) of equation (14) was set equal to

hmax

Figure 4(b) shows the horizontal velocity vectors at various X,Y values and illustrates
the flow deflection around the hill.
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TABLE I. - VELOCITY COMPONENTS
[Each set of three values is u/u_, v, w/u_ ]

(a) Velocity components for flow over hill with Gaussian profile (¢ = 2)

Z | Y|Dimensionless rectangular coordinate Z | Y|Dimensionless rectangular coordinate
in direction of undisturbed wind, in direction of undisturbed wind,
X X
0 1 2 3 0 1 2 3

0.5| 0| Inside hill Inside hill 0.983 0.914 1.5| 0 1.102 .073 .015 .978
0 0 0

-.229 -.125 0 .074 . 095 .071

1 | Inside hill Inside hill 0.989 0,929 1 1.092 . 066 .015 .981

-.068 -.046 0 .017 .023 .019

-.186 -.103 0 . 064 .082 .062

2 1.143 1.091 1.001 0.959 2 1.068 . 050 .014 .989

0 -.068 -.083 -.059 0 .023 .032 .028

0 -.093 -.102 -.058 0 . 041 .054 .042

3 1.075 1.051 1.009 0.984 3 1.043 .033 .013 .996

0 -.046 -.059 -.046 0 .019 .028 .026

0 -.034 -.039 -.024 0 .021 .028 .023

1 0 1.159 1.105 1.007 0.955 2 0 1.068 .051 .016 .990
0 0 0 0

0 -.123 -.146 -.095 0 .046 .063 .052

1 1.140 1.093 1.008 0.962 1 1.063 . 0417 .016 .992

0 -.030 -.039 -.030 0 .010 .014 .013

0 -.103 -.123 -.081 0 -.041 .056 . 047

2 1.097 1.067 1.011 0.978 2 1.048 L0317 .014 .996

0 -.039 -.052 -.041 0 .014 .021 .019

0 -.061 -.075 -.051 0 .028 .039 .034

3 1.057 1.042 1.012 0.992 3 1.033 .026 .012 . 000

0 ' -.030  -.041 -.035 0 .013 .019 -.019

0 -. 027 -.034 -.025 0 .016 .022 .020

11




TABLE I. - Concluded. VELOCITY COMPONENTS
[Each set of three values is u/u_, v/u,, w/u_.]

(b) Velocity components at height above ground
equal to 0.1 of the maximum hill height for
flow over a Gaussian hill (¢ = 2)

Y Dimensionless rectangular coordinate in
direction of undisturbed wind,
X

0 (1.145{1.114{ 0.980 | 0.887 | 0.509 | 0.955

0 -.140{ -.236 | -.146 | -.042 | -.007

1 (1.156 [ 1.115| 0.982 | 0.897 ! 0.923 | 0.960
0 -.044 | -.077 | -.060 | -.027 | -.011
0 -.1391 -.205 -.117 | -.033 { -. 008

2 11,147 | 1.097) 0.991| 0.940} 0.952 | 0.972
0 -.077] -.108 | -.076 | -.037 | -.017
0 -.102| -.119 | -.058 | -.016 | -.003

3 (1.088|1.058| 1.004 | 0.978 | 0.978 | 0.984
0 -.061| -.077 | -.056 | -.031 | -.016
0 -.039] -.038 | -.018| -.005 | -.001

4 11.041 | 1.029| 1.009 | 0.996 | 0.992 | 0.992
0 -.029| -.038( -.031| -.021| -.013
0 -.008} -.008 | -.004 { -,001 | -.001

Application to the Topography of Greater Cleveland

As illustrated by the results for the Gaussian hill, the small perturbation method is
adequate to provide flow deflections for gradual changes in land elevation. To insert the
land contour of Cleveland into equation (14), it was decided to use a 1 mile square grid
alined east-west and north-south and interpolate intermediate points for purposes of the
double integrations. This grid has been designed as X',Y' to distinguish it from the X
and Y directions which correspond to the horizontal directions along and normal to the
undisturbed wind. The origin of the grid was placed at downtown Public Square. The
grid and ground elevations are shown in figure 5. Lake Erie is the region of constant
elevation (584 ft) in the upper part of the figure. To normalize the distances, a char-
acteristic length of 528 feet (0. 1 mile) was selected; thus each grid spacing was 10 units.

The normalized elevation H(X,Y) above lake level, which was taken as the base plane,
was then given by

H(X, Y) = elevation as.tzéx, Y) - 584

The calculations for the wind were made at a level 50 feet above the ground so that the Z
in the integrals of equation (14) is given by

12
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7 = H(X,Y) + 20
528

In the analysis, the undisturbed flow is in the X direction. This would correspond
to a wind from the west when X is alined with the X' on the grid of figure 5. The pre-
vailing wind in Cleveland is from the west or southwest. To obtain results for a south-
west wind it is necessary to use a rotation of coordinates to obtain the ground elevations
H(X,Y) used in the integration. For a southwest wind the X-Y integration coordinates
are rotated counterclockwise 45° from the X'-Y' cocrdinates in figure 5. Hence, to ob-
tain H(X,Y), the corresponding X', Y' are found from

x'=‘/2_5(x -Y) Y'=}/_§(X+Y)
2

and then the H is obtained at these X', Y' in figure 5.

The main topographical features evident on figures 1 and 5 is that the west side of
greater Cleveland is quite flat. Relative to the surrounding land there is a decrease of
elevation of a few hundred feet in the Cuyahoga river valley where heavy industry is lo-
cated. The main feature is a rise in elevation of several hundred feet on the east side
into the ''Heights'' area (Cleveland Heights and Shaker Heights). The land rises from
west to east and from north to south so that an elevated plateau exists in the form of a
rounded corner when viewed from above. With regard to the dispersion of pollutants, it
is desired to know whether the wind from the west or southwest that passes over the in-
dustrial section is significantly deflected when passing into the heights area.

The wind velocity perturbation integrals in equation (14) were carried out at loca-
tions X' =40, 60, and 80 for Y' = -40, -20, 0, and 20. As shown in figure 5, these
locations are in the region of the largest elevation change and hence provide the largest
wind deflections. The results for the velocity perturbations are summarized in table II
and will be discussed in the next section. It is evident, however, that the velocity per-
turbations are quite small.

DISCUSSION

To obtain an indication of the flow deflection by topographical features, the stream-
line deflection was computed for an initially uniform horizontal wind incident at an angle
across a step as shown in figures 2 and 3 The u component of velocity decreases as
the step is approached as shown by the spreading of the streamlines projected in the x-z
plane. The decrease in u component provides more time for the v component to move

14



TABLE II. - VELOCITY COMPONENTS FOR WIND
ACROSS CLEVELAND AT LOCATIONS
50 FEET ABOVE GROUND

[Each set of three values is u/u_, v/u_, w/u_.]

(a) Southwest wind

Y X' N
1 40 | 60 | 80 W E
-40|0.997 [0.998] 1. 001
-.007| .002|-.003 S

.008 | .009( .005

-20{0.999 [ 1.004 | 1. 001 v
.005| .004| .004 v v
.008| .006| .009

0/0.996(1.005(1.011
.012| .004|-.005 X'
.001] .004| .002

u
0
20{1.000|1.006| 1.011 // SW wind
.002| .002| -.005
.000| .000] -.003
(b) West wind
, : N
Y X
40 | 60 | 80 w E
40| 1.004 | 0,998 0.993
-.006 -.005| -.003 s
.017| .011| .007
-20] 0.998| 1.001| 1.000 Y, ¥, v
.007| .001| .000
.020| .010| .013
0{0.980{0.995 1.011 w X' X u
.004| .003| .002
.006| .012| .008| W wind
20| 0.993{ 0.998| 0.985
.010| .021] .oo09
.009| .030| .008
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the flow along the y-direction. Consequently, during the approach to the step, the flow
is turned along the y-direction. At the crest of the step the opposite effect occurs; the

u component increases, and the flow is turned toward its original direction. The ordi-
nate in figure 3(b)can be interpreted directly as the streamline deflection for an incidence
anglé of a = 45° (v, = -u,). Streamlines for any other angle can be found by multiplying
the ordinate in figure 3(b) by voo/ -u =tan o. The parameter A/h is the fraction of the
step height at which the streamline of the incoming undisturbed flow is located above the
x-y base plane. The streamlines near the ground are deflected the most as a result of
having the largest decrease in u velocity when approaching the step. The results show
that the deflections for incidence at 45° are of the order of a few step heights; when
passing over a 500-foot cliff, the wind originating 50 feet from the ground would be hor-
izontally displaced about 1000 feet.

For a three-dimensional flow around a hill there is a relief effect with regard to the
acceleration of flow over the crest of the hill. This is because the flow is partially di-
verted around the sides of the hill. The flow is also decelerated somewhat as it ap-
proaches the hill in a fashion similar to the approach to a step. These two factors con-
tribute to the decrease in the u velocity (the component in the incident flow direction)
for the flow approaching the hill and produce the values of u/u_ that are less than 1 in
table I. To illustrate the three-dimensional calculation technique, a few results were
carried out for a hill of Gaussian cross section (fig. 4). The results in figure 4(b) are
for a height above the ground of one-tenth of the maximum hill height. The turning of the
flow is always small; the perturbations of the velocity components (table I) are in the
range of several percent.

Since the variations in greater Cleveland land elevation are in the range of several
hundred feet, the preceding calculations for simple geometries would lead one to expect
that the deflections of the wind by the topography would be rather small. Two sets of
calculations were carried out, and both substantiate this expectation. The velocity per-
turbations for flow across the east side of the city were at most only a few percent of the
" mean velocity in the regions of greatest change in ground elevation. This was true for
winds from the west and from the southwest. The w/uoo components are approximately
equal to the slope of the land in the x-direction as would be expected for gradual changes
in contour. Note that u is in the direction of the undeflected wind and v and w are
normal to that direction. Since the velocity perturbations are small, it is felt that the
topographical features would represent a second-order effect on the wind deflection as
compared with other factors. Factors of possible significance are convection currents
resulting from temperature inequalities arising from the lake adjacent to the city, heat
island effects, diurnal temperature variations, and thermal stratification of the atmos-
phere. These would provide complicated transient wind variations.
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CONCLUSIONS

A small perturbation technique was applied to compute the three-dimensional veloc-
ity perturbations for wind blowing across the topogr;lphy of greater Cleveland. The cal-
culations were irrotational and for a neutrally stable atmosphere. The velocity perturba-
tions were found to be small, indicating that the small perturbation technique used in the
analysis was adequate. It is concluded that the topographical features of greater Cleve-
land provide only a second-order effect on the wind as compared with other factors of
possible significance such as diurnal temperature variations and heat island effects.

Lewis Research Center,
National Aeronautics and Space Administration
Cleveland, Ohio, August 21, 1972,
501-24.
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APPENDIX A

INVISCID IRROTATIONAL EQUATIONS

For inviscid flow in three dimensions, the Euler equations are

g ™
u-—aE+Va—u+W§E=__]:_a.R

oxX oy 0z p 0x

Wy, w1 | A1)

ox oy 0z p oy

w13 )

ox oy 0z p 0z

For flow across the two-dimensional step in figure 2, there is no variation in the y-
direction so that 3/0y = 0. Then equations (A1) become

W, gt 1
X oz p X

ua_v+wﬂ=0 $

(A2)
oxX 0z

AL 1Y

0x 0z p oz _J

For irrotational motion

v _ ou _ ow oV _ ou ow _

— -==0 — - = — - =

oxX 0oy dy 0z 0z oX

and with 9/9y = 0 these yield 9v/3x =0, and @v/dz = 0. Hence, v must be a constant

throughout the flow and is v everywhere. The Euler equations (eqs. (A2)) then further
reduce to
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uﬂl_-i-w.?_l.l.:_l.a_p

ox 0z p X

(A3)

ua_“,+wa_“.7=__].'.?£

ox 0z p 0z

which are the two-dimensional equations for u and w in the x-z plane.

The u and w
components are thus uncoupled from the constant v =v_ component.
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APPENDIX B

SMALL PERTURBATION ANALYSIS FOR THREE-
DIMENSIONAL VELOCITY DISTRIBUTION

The quantities u, v, and w are the velocity components, and for the situation con-
sidered here [u - u_| << [u_|, |v|] << |u_]|, and |w| << |u_|. Let the velocity poten-
tial be é(x,y,2) =u_x + ¢(X,y,z) where ¢ is the perturbation potential. Then 8¢/0x =
u, + d¢/ox =u, 3&/3y = 3¢/dy =v, and 9%/0z = 3¢/dz = w. The local elevation of the
ground above the x-y base plane is given by h(x,y) (fig. 6). At the surface of the ground
the boundary condition requires that the streamlines are tangent to the surface. Hence
at the surface

Then within the approximation of small perturbation theory

w=ud—z=[u°°+(u -uoo)](E=uwd-Z1
dx surface

dx
Using w = 9¢/0z and the fact that dz/dx| ¢ .. = 3h/3x gives
0z ox

Equation (B1) expresses the derivative normal to the x-y plane of the unknown pertur -
bation potential in terms of the known free-stream velocity and slope in the undisturbed
flow direction of the land contour. For small perturbation theory this boundary condition
at the surface of the ground is applied at the base plane z =0 (fig. 6).

The solution for the perturbation potential requires solving Laplace's equation
qu) =0 in the half space 0 <z < « subject to the boundary condition that the normal
derivative at z = 0 is given by equation (B1). The Greens function for this problem is
given in reference 9 as - : ‘ '
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Figure 6. - Geometry for small perturbation theory.

lim 1 1
€% rl0 + .
‘ {[(f, -x)2 . (n - 92+ (¢ - z)2]1/2 [(5 -x)2 4+ (n - 2+ (¢ + 2)2] 1/2}

- : . (B2)

[(5 L L Z2]1/2

Then from Greens fundamental solution (ref. 9)

o(x,y,2) = -L//g_@dg dn
47 ~ ot

plane

Substituting equations (B1) and (B2) gives

¢x,y,2) = _1_1_0_0/” /‘°° 1 A 4¢ ap (B3)
i N=-e0 JE=—c0 [ -0+t -9+ 22 |1/2 %
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Integrate by parts with respect to £ to obtain

uoo h
o(x,3,2) = - ==
2 6 - %%+ (n- 92 + 2]
n:-oo

g:-oo

” ( l)z(g - x)h
] 2

(5 - %2 + (n- 92 4 223/

dé¢pdn

-0

u, 00 00 ]
P(x,,2) = — 2(x g)h(g,zn) 757 dg dn
w ) S [w-0%r5-m?e2?]

Divide all lengths by a characteristic dimension 1. to obtain the dimensionless form

PX,Y,Z) = M (X - DH(E,n) atan (B4
& - D% (¥ -7 4 222

The velocity components are given by

ux,y,2) _;, 1 3¢x,y,2) _,, 3¢

u_ u ox X

o0

V(X,Y, z) = _l a?("yY} z) = ié >

(B5)
u, u ay oY

w(x,y,2) _ 1 9¢(x,y,2) _ 3¢
u u 0z 02

(] o0
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By differentiating ¢ the velocity components are obtained as

L8 / / 206 - D% (70?2 2 g S a
o [ - B2+ (v -2+ 22]%/2

v(X,Y,2) _3_/' / X - H - 1) H(E,maE d
u_ w | ) [(x e -n?s Zz] 5/2

j

r (B6)

¥E.L.E) . / / £ H(E,mdE d7
X &) + (Y - n) +Z]/
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