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ABSTRACT

The distribution function of ion energy parallel to the magnetic field

of a modified Penning discharge has been measured with a retarding

potential energy analyzer. These ions escaped through one of the throats

of the magnetic mirror geometry. Simultaneous measurements of the

TO ion energy distribution function perpendicular to the magnetic field have
i—c

i been made with a charge-exchange neutral detector. The ion energy dis-

tribution functions are approximately Maxwellian, and the parallel and

perpendicular kinetic temperatures are equal within experimental error.

These results suggest that turbulent processes previously observed in

this discharge Maxwellianize the velocity distribution along a radius in

velocity space, and result in an isotropic energy distribution. The kinetic

temperatures observed are on the order of kilovolts, and the tails of the

ion energy distribution functions are Maxwellian for up to a factor of 7

e-folds in energy. When the distributions depart from Maxwellian, they

are enhanced above the Maxwellian tail. Above densities of about 10

particles per cubic centimeter, this enhancement appears to be the re-

sult of a second, higher temperature Maxwellian distribution. At these

high particle energies, only the ions perpendicular to the magnetic field

lines were investigated.
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INTRODUCTION

Previous investigations of a modified Penning discharge by Roth (1966)

revealed ions with approximately Maxwellian velocity distributions and

kilovolt kinetic temperatures. The diagnostic instrument used to measure

the energy distribution of ions parallel to the magnetic field lines was a

retarding potential analyzer located outside one of the magnetic mirrors.

The data reduction procedures and experimental results from an exten-

sive series of measurements with the retarding potential energy analyzer

were reported by Roth and Clark (1969).

In view of the possible application of the modified Penning discharge

to a steady-state plasma heating scheme for fusion research, it is de-

sirable to independently confirm the high ion kinetic temperatures and

Maxwellian velocity distribution observed in the ions lost along the mag-

netic field lines. The present investigation reports a comparison in

which the parallel and perpendicular ion energy distribution functions

were simultaneously measured for 163 experimental runs taken under a

range of operating conditions. Such simultaneous measurements have

not been reported in the literature of Penning discharges, although

Konstantinov et al. (1972) have measured the energy of charge-exchange

neutrals from the midplane of a modified Penning discharge. In the pres-

ent investigation, a charge-exchange neutral detector is used to measure

the perpendicular ion energy, while simultaneous observations of the

parallel ion energy are made with the retarding potential energy analyzer.

Characteristics of Modified Penning Discharge

The operating characteristics of the discharge have been described

by Roth (1966, 1971); a detailed description of the superconducting mag-
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net facility in which the discharge is operated is described by Roth et al.

(1965); and some of the physical processes responsible for ion heating

are discussed by Roth (1972). An isometric cutaway drawing of the ex-

perimental configuration is shown in Figure 1. The plasma is approxi-

mately 15 cnrin diameter at the midplane. The magnetic field consists

of a magnetic mirror with a 2.62:1 mirror ratio generated by two super-

conducting coils, the dewars of which are approximately 18 cm in diam-

eter at the magnetic mirror throats. The magnet system shown in

Figure 1 is located in a vacuum tank 1 meter in diameter and approxi-

mately 2 meters long, giving very good experimental and visual access

to the experimental volume. The parallel dewars on either side of the

experimental volume are at liquid nitrogen temperature. The anode

ring is operated at positive potentials up to 35 kV with respect to the

walls of the vacuum tank and the electrical circuit to the power supply

is completed by ions which impinge on the grounded tank walls.

The experimental investigation consists of 163 runs taken with deu-

terium gas. The maximum value of the magnetic field was 1 tesla at the

magnetic mirror throats and 0. 38 tesla at the midplane, in the vicinity

of the anode rings. From previous measurements taken with a Langmuir

probe at the throat of the mirror (Roth 1972), the electron temperature

is known to be approximately 50 eV, within a factor of 2, in this plasma.

This is as much as an order of magnitude below the ion temperature at

the same operating conditions. Any atomic deuterium generated in the

plasma volume has ample opportunity to recombine on the walls before

it can return to the experimental volume, as a result of the long mean
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free paths for binary collision processes. Because of the rather large

vacuum tank wall area and the cold liquid nitrogen surfaces on either

side of the plasma volume, it is unlikely that a significant population of

atomic deuterium can exist in the plasma. For this reason it was as-

sumed that the neutral background gas consisted of molecular deuterium

gas. The principal ionized species within the plasma was taken to be

ionized deuterium atoms D+. It is believed that D+ dominated the plasma

because investigation of the spectrum of electrostatic potential fluctu-

ations yielded a peak at the ion cyclotron frequency of D^ (when such a

peak could be observed) and peaks were absent or much fainter by com-

parison at the ion cyclotron frequency appropriate to ionized molecular

deuterium, D«.

The 163 experimental runs spanned a range of the positive anode

voltage from 5 kV to 35 kV, and neutral background pressures, p , from
-5 -53.9x10 to 12.0x10 torr, where the neutral deuterium pressure has

been corrected for the gage factor of this apparatus. It is estimated

from previous work (Roth, 1972) that the ion density at the midplane of
9 10the modified Penning discharge ranged from approximately 10 to 6x10

particles per cubic centimeter in this investigation.

Diagnostic Instruments

The ion energy distribution function was measured by two non-

perturbing diagnostic techniques, one parallel to the magnetic field lines,

and the other perpendicular to the magnetic field lines. In Figure 2(a)

is a schematic drawing of the retarding potential energy analyzer used

to measure the parallel distribution function of ions leaving the plasma
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through the magnetic mirror throat. The analyzer was located approxi-

mately 20 cm outside the magnetic mirror throat and 10 cm from the

magnetic axis. The analyzer was parallel to the local magnetic field

line and measured the parallel component of the ion energy. The raw

data, taken on an X-Y recorder, represents an integrated ion energy

distribution function. A computer program determines, by iteration,

the integrated Maxwellian distribution which best fits the raw data, in

the sense of minimizing the mean square error between the logarithm^

of the best fitting distribution and of the raw data. Using the logarithm

of the value of the data point rather than the actual value of the data

point tended to give approximately equal weight to all portions of the

data curves. By comparing the best fitting computer solution to the

raw data, one may assess the extent to which the raw data are

Maxwellian by observing the extent to which the best-fitting curve is

also a good fit. The principal source of error for this application of

the retarding potential energy analyzer is in the iterative procedure used

to reduce the data, which sometimes does not converge to the proper

kinetic temperature (this was determined by obtaining a best fit to

"pseudo-dataj7',' an integrated Maxwellian of specified kinetic tempera-

ture). These convergence problems give rise to errors in the parallel

ion kinetic temperature which may be as high as twenty percent. The

analytical theory, error analysis, and experimental application of the

retarding potential energy analyzer have been discussed by Roth and

Clark (1969).
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The charge-exchange neutral detector used in these investigations is

a geometric duplicate of that developed at Fontenay-aux-Roses (Valckx

1964). The particle detector electronic system was developed at the

NASA Lewis Research Center. A schematic of this instrument and its

location with respect to the plasma is indicated on Figure 2(b). The re-

tarding potential energy analyzer and the neutral detector were positioned

to sample the anode sheath, approximately 1 cm from the inner circum-

ference of the anode ring. Fast ions in the sheath between the plasma

and the anode ring charge exchange on the background of neutral molecu-

lar deuterium gas, and the resulting fast deuterium atoms then move

along straight lines to the walls of the vacuum vessel. In the neutral

detector,, some of the fast neutrals pass through a series of slits

and are reionized by a nitrogen gas cell, which is maintained at pres-

sures of approximately 100 microns. The reionized fast particles then

pass through additional focusing slits into a set of 90° electrostatic de-

flector plates. The energy of the ions which may pass through the 90°

deflector plates is determined by the potential applied across them. By

changing the voltage applied between the deflector plates, one may sweep

out the energy distribution function of the reionized particles. The ions

are passed through a second series of slits and impinge on a photomulti-

plier detector, which counts individual particles.
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The particle flux at the photo multiplier is only indirectly related to

the ion distribution function inside the confined plasma. To obtain the

original ion distribution function, one must correct for the charge ex-

change process of atomic deuterium ions on molecular deuterium,

D+ + D2 - D+ + D°

One must also correct for the reionization cross-section in the nitrogen

gas cell, and for the energy resolution of the electrostatic analyzer.

The flux I(V) of individual particles reaching the photomultiplier may be

written

I(V) = Con.noax(V)v.f(V)k(V)Ga(V) (1)

where V is the ion energy in electron volts, C is a geometrical and
s-

dimensional constant, f(V) is the desired ion energy distribution, k(V)

is the reionization probability of atomic deuterium in a nitrogen gas cell

and is given by Barnett, et al. (1964), G0(V) is a correction for the
3,

energy resolution of the analyzer, and results from the fact that the rel-

ative energy resolution, dV/V, is independent of energy. Thus, the

energy resolution involves correction by a factor

G a (V)~V (2)

The factor n.n a (V)v. is the number of charge exchange reactions/
1 O X 13

cm -sec in the volume sampled by the analyzer, n. and n are the ion

and neutral number density, respectively, and vi is the deuterium ion

velocity. The charge exchange cross section <r (V) is available in



8

Barnett, et al. (1964), and is known from 70 eV < V < 200 keV. The

correction factor k(V) for the nitrogen gas cell is known for energies

over the range 2 < V ^ 100 keV, and is

k(V) ~ V0' 56 (3)

over this range Valckx (1964), Barnett et al. (1964).

One may convert the raw data for I(V) to the distribution function of

ion energy in the plasma, f(V) by using Eqs. (1) to (3) to obtain

CjKV)
f(V) = L (4)

V2-06ax(V)

where C« is a constant for the apparatus. The ion energy distribution

function obtained from Eq. (4) was used as input to a computer program

which obtained a Maxwellian distribution with a least squares best fit to

the experimentally determined ion energy distribution f(V). Because

the correction factor, k(V), was not known for nitrogen gas below 2 kV,

raw data below 2 kV were not utilized in obtaining the best fitting

Maxwellian distribution. The principal error in applying the neutral

detector arose from establishing the zero level and rounding off errors

in reading the raw data. These errors, combined with uncertainties in

the charge-exchange cross-sections, may have introduced an error of as

much as 10 percent in determining the perpendicular ion kinetic tem-

perature.
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EXPERIMENTAL RESULTS

In Figure 3 is shown a characteristic example of data which were

taken simultaneously with the retarding potential energy analyzer and

the charge exchange neutral detector. The anode voltage was 8 kV, and
_ c

the neutral background gas pressure was 5.2x10 torr of deuterium.

Figure 3(a) is the energy distribution function measured with the charge

exchange neutral detector, corrected with Eq. (4), and plotted as a

function of energy on a semi-logarithmic graph. The corrected raw data

are indicated by the round symbols and the Maxwellian distribution which

best fits this raw data is indicated by the triangular symbols. In Fig-

ure 3(b) is shown the integrated energy distribution function measured

with the retarding potential energy analyzer. The round symbols are

the raw data and the triangular symbols are the best fitting

integrated Maxwellian distribution. Figure 3(a) gives a perpendicular

component of the ion kinetic temperature, Vj_- = 620 eV, and Figure 3(b)

a best-fitting parallel kinetic temperature, V|| = 559 eV. It is charac-

teristic in Figure 3 that both the parallel and perpendicular ion energy

distribution functions are approximately Maxwellian, that the Maxwellian

tail of the neutral detector data extends over approximately 7 e-folding

lengths in energy, and that the parallel and perpendicular ion energies

are approximately equal within the scatter in the data of the two diag-

nostic methods employed.

In Figure 4 is a second example of the perpendicular and parallel

ion energy spectra, under conditions which yielded kinetic temperatures
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of nearly 2 kilovolts. The operating conditions were an anode voltage of
_ K

35 kV, and a neutral background gas pressure of 4. 3x10 torr of deu-

terium. In Figure 4(a) is the neutral detector spectrum with a best-

fitting perpendicular kinetic temperature of V, = 1942 eV. In Figure 4(b)

is the retarding potential data, with a best-fitting parallel kinetic tem-

perature of V|| = 1705 eV. The knee on the latter data indicates that the

magnetic field line on which the retarding potential analyzer was located

was floating at a positive potential of V* = 2200 volts, an unusually high

value for this experiment, but only 6 percent of the applied anode volt-

age. Figures 3 and 4 are characteristic in that, due to instrumental

limitations, it was possible to take valid data at higher ion energies with

the neutral detector than with the retarding potential energy analyzer.

Ion energy distributions analogous to those shown in Figures 3 and 4

were obtained for all 163 runs. Kinetic temperatures obtained from the best-

fitting Maxwellian distributions are shown in Figure 5. On the small

number of occassions for which a two-temperature Maxwellian distribu-

tion was observed with the neutral detector, the lowest of the two kinetic

temperatures was plotted in Figure 5. On the abscissa is the kinetic

temperature derived from the parallel component of ion energy, meas-

ured with the retarding potential energy analyzer. On the ordinate is

the kinetic temperature derived from the perpendicular component of

ion energy measured with the charge exchange neutral detector. There

is approximate agreement of the parallel and perpendicular components

of the ion kinetic temperature over the range of data taken.
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The agreement of Vj^ with Vy, and the degree of data spread may

be estimated by fitting the data in Figure 5 to the relation

and obtaining the median and relative standard deviation of C«. In

Figure 6, the cumulative probability of Cn for 163 runs is plotted on

probability graph paper. The author's best estimate of the Gaussian

distribution to the data is indicated by the straight line. The median

value of Cn, C^, is the intersection of the the best- fitting straight line

with the 50 percent line.

92=1 .04 (6)

which implies that the perpendicular energy is slightly higher than the

parallel energy. The relative standard deviation of the data population,

the horizontal distance between the intersection of the best- fitting

straight line with the median and the one standard deviation lines, was

approximately

6(C2)

C2
= 0.26 (7)

Thus, the parallel and perpendicular ion kinetic temperatures are equal

to within the estimated experimental error. The parameter C« was

plotted as a function of the independent variables (anode voltage and

neutral gas pressure) for the 163 runs, and no systematic trend of C2

was observed. The same physical process which is responsible for

making C2 a fixed constant apparently operates over the entire range

of parameters investigated.
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Two general types of anomalous ion energy distributions were ob-

served in the perpendicular ion energy distribution function. Both were

characterized by an increase of the observed distribution function above

the best fitting Maxwellian value in the tail of the distribution. This

enhancement of the Maxwellian tail assumed two forms. One of these

was a two-temperature Maxwellian distribution, in which the Maxwellian

tail was dominated by a hotter component of lower density, giving the

type of ion energy distribution function illustrated in Figure 7. Two

temperature distributions were observed only at plasma densities

above approximately 10 particles per cubic centimeter. This two

temperature Maxwellian distribution apparently results from the ana-

lyzer sampling two separate'regions with different ion kinetic tempera-

tures.

Two temperature Maxwellian distributions may also occur as a

result of a population of hot impurities superimposed on the distribution

function of the principal species. Such impurities, with each species

having a distinct ion temperature, have been described by Stirling (1972).

This explanation is unsatisfactory for the present experiment, however,

since observation of the Penning discharge plasma with a bench spec-

trometer revealed no detectable impurity lines. Ion energy distribu-

tions similar to Figure 7 have been reported by Artsimovich (1972) in

connection with the Tokamak series of experiments. Artsimovich re-

ported that two-temperature Maxwellian distributions occurred in the
12 3Tokamak at number densities below 10 particles/cm .
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A second anomalous departure from the Maxwellian distribution was

observed in approximately a dozen cases, at higher neutral gas pressures.

Thig departure is illustrated in Figure 8 and shows an ion energy distri-

bution function with a bump on the Maxwellian tail at an energy which

roughly corresponds to the voltage applied to the anode ring. Such a

distribution function may be due to physical processes in the weak plasma

penumbra which surrounds the modified Penning discharge.

DISCUSSION AND CONCLUSIONS

The present investigation has demonstrated generally good agree-

ment between the parallel and perpendicular kinetic temperatures ob-

served with non-perturbing diagnostics in a modified Penning discharge.

These observations provide an independent confirmation of the results

reported by Roth and Clark (1969), in which a sophisticated data reduc-

tion procedure was applied to raw data obtained from the modified

Penning discharge with a retarding potential energy analyzer. The

Maxwellian ion energy distributions observed in the distribution functions

parallel and perpendicular to the magnetic field are consistent with a

model in which the turbulent processes described by Roth (1971) tend

to Maxwellianize the distribution function along a radius in velocity space>

such that the ion energy is isotropic in velocity space.

The modified Penning discharge has been shown to be capable of

gengrating a steady-state plasma of kilovolt ion energies and with an

energy distribution function that is Maxwellian and virtually isotropic

in velocity space. The modified Penning discharge may therefore be of
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interest in controlled fusion experiments, particularly in those toroidal

systems in which one desires to create an approximately isotropic dis-

tribution of hot ions.
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FIGURE CAPTIONS

Figure 1. - Isometric cutaway drawing of the modified Penning discharge

and the superconducting magnetic mirror facility. The approximate

location of the retarding potential energy analyzer, and of the fast

neutral energy analyzer are shown schematically.

Figure 2. - Apparatus for measurement of the parallel and perpendicular

ion energy distribution functions.

(a) Retarding potential energy analyzer, located approximately

4 cm from the plasma axis and 20 cm outside the magnetic

mirror throat.

(b) Schematic drawing of the charge-exchange neutral detector.

The line of sight of the detector was tangent to the sheath be-

tween the plasma and the anode ring approximately 6 cm below

the magnetic axis.

Figure 3. - Example of the parallel and perpendicular Maxwellian ion

energy distribution functions measured with the instruments shown on

Figure 2 for an anode voltage of 8 kV and a deuterium gas pressure of
_5

5.2x10 torr. On each graph is shown the measured data, and the

Maxwellian distribution which best fits the measured data.

(a) The ion energy distribution function perpendicular to the

magnetic field as measured with the charge exchange neutral

detector, with V± = 620.

(b) The ion energy distribution function parallel to the magnetic

field measured with the retarding potential energy analyzer,

with V,, = 559 eV.
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Figure 4. - Same as Figure 3, with an anode voltage of 35 kV, and a
_ K

deuterium gas pressure of 4. 3x10 torr.

(a) Charge exchange neutral detector data with V, = 1942 eV.

(b) Retarding potential energy analyzer data with V,, = 1706 eV.

Figure 5. - The parallel and perpendicular ion kinetic temperatures deter-

mined from the neutral detector and the retarding potential energy an-

alyzer for the 163 experimental runs.

Figure 6. - Cumulative probability of observing the value of C« from

Eq. (5) for the population of 163 experimental runs.

Figure 7. - Example of a two-temperature Maxwellian distribution ob-

served with the neutral detector at ion number densities above about
10 *?10 /cm , taken at an anode voltage of 10 kV, and a background pres-

_ K
sure of 7. 8x10 torr of deuterium gas.

Figure 8. - Example of an ion energy distribution function measured with

the neutral detector with a bump on the Maxwellian tail, taken at an
-4anode voltage of 11 kV, and a background pressure of 1.17x10 torr of

deuterium gas.
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