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Theoretical constraints on the interpretation of fluctuations (either propagating or 
stationary) in the interplanetary medium are reviewed, with emphasis on the important 
differences between the properties of hydromagnetic waves (and stationary structures) in 
collisionless and in collision-dominated plasmas, and on the possible roles of Landau 
damping and nonlinear effects in determining the interplanetary fluctuation spectrum. 
Hypotheses about the origins of the fluctuations and their influence on the large-scale 
properties of the solar wind are reviewed. 

ABSTRACT 

INTRODUCTION 
There are three main reasons for interest in fluctuations 
in the solar wind. One, of course, is that by studying 
waves or other fluctuations we can hope to learn their 
origins, and consequently learn something about the 
solar wind or even the sun itself. Second, the inter- 
planetary fluctuations may participate actively in the 
large-scale dynamics of the solar wind. Finally, the solar 
wind, as well as other regions accessible by spacecraft, 
provide an opportunity to study plasma fluctuations 
under conditions very different from those in any 
terrestrial laboratory. 

Much recent discussion has been directed at  the 
question of the nature of microfluctuations (length scale 
5 0.01 AU) in the interplanetary medium, In particular, 
there is disagreement among observers about the follow- 
ing two questions: (1) Are these fluctuations associated 
with waves propagating relative to the solar wind, or are 
they simply structures that are stationary in the local 
solar-wind rest frame? (2) Do these fluctuations vary 
smoothly in space, or are they principally 
discontinuities-structures whose length scale is com- 
parable to or smaller than the proton gyroradius 
(- 100 km at 1 AU)? The two questions are logically 
separate, since both waves and stationary structures of 
sufficiently short length scale can appear as discontinu- 
ities. The resolution of these questions is necessary for 
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understanding the sources of the fluctuations and their 
role in solar wind dynamics. In view of the present 
uncertainties, it is desirable to review what theoretical 
constraints can be placed on the interpretation of the 
observed fluctuations. 

These constraints will be one of the topics discussed 
here. We consider mainly fluctuations of hydromagnetic 
scale in the sense that their characteristic dimension is 
long compared with the proton gyroradius (period 2 a 
few seconds in the spacecraft frame at 1 AU). Presum- 
ably these fluctuations correspond to observed discon- 
tinuities for sufficiently short length scale. We first 
review the physical processes that can influence the 
fluctuation spectrum away from its sources. I t  will be 
seen that collisionless dissipation and nonlinear effects 
may be of extreme importance in this respect. We then 
consider the various possible sources of fluctuations in 
the solar wind, and some of the ways in which 
fluctuations can influence the large-scale properties of 
the wind. 

HYDROMAGNETIC FLUCTUATIONS 
By definition, a hydromagnetic wave in a magnetized 
conducting medium is a propagating fluctuation whose 
characteristic time and length scales are long compared 
with, respectively, the gyrofrequencies and mean Larmor 
radii of the particles that make up the medium. Implicit 
in this definition is the assumption that the periods and 
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wavelengths of the fluctuations are short in comparison 
with the time and length scales for significant changes in 
the average properties of the medium. Just as large-scale 
motions in an ordinary gas are associated with sound 
waves, the large-scale motions in a magnetized con- 
ducting fluid are associated with hydromagnetic waves. 
We can expect such processes as the violent stirring in 
the solar photosphere, chromosphere and corona, or the 
collision between fast and slow solar-wind streams, 
among others, to be associated with the generation of 
hydromagnetic waves. 

The simplest approach to the theory of hydromagnetic 
waves is through the equations of magnetohydro- 
dynamics [Kantrowitz and Petschek, 1966; Landau and 
Lifshitz, 19601. Although these equations (which 
describe the behavior of collision-dominated ionized 
gases) cannot properly be used to describe hydromag- 
netic waves in the solar-wind plasma, where collisionless 
effects are important, they do provide a useful set of 
concepts and definitions that help to order the complex- 
ities of the collisionless theory. Hence, it is useful to 
review briefly the main results of the MHD theory of 
hydromagnetic waves. 

First, consider the case in which the amplitudes of the 
fluctuations are small enough that the MHD equations 
can be linearized with the usual assumptions that the 
electrical conductivity of the medium is infinite and that 
the fluctuations are thermally adiabatic. The self-consis- 
tent solutions of the MHD equations admit three true 
wave modes (the Alfvkn mode, and the fast and slow 
magnetoacoustic modes) and two classes of stationary 
fluctuations (the so-called entropy wave and the tangen- 
tial pressure balance). The AlfvCn wave is transverse and 
involves no compression of the fluid or magnetic field. 
The fast and slow magnetoacoustic waves generally 
involve compressions of both the fluid and magnetic 
field; in the limit of strong magnetic field the fast mode 
propagates with the AlfvCn speed for all directions of 
propagation, and in the limit of weak magnetic field the 
fast mode becomes a sound wave. The entropy wave is a 
static structure involving variation of fluid density and 
temperature, but not of pressure, magnetic field or 
velocity. The tangential pressure balance can occur only 
for variations that are transverse to the magnetic field 
and for which the total pressure (fluid plus magnetic) 
does not fluctuate. 

When finite-amplitude effects are significant, the fast 
and slow magnetoacoustic waves behave like sound 
waves in the sense that they can steepen and form 
shocks. On the other hand, the AlfvCn wave is more like 
an elliptically polarized electromagnetic wave. Even 
when its amplitude is large, it retains many of its 

small-amplitude features: It is noncompressive, and the 
relation between velocity and magnetic-fieid fluctuations 
is the same as in the linearized theory. The finite-ampli- 
tude AlfvCn wave may have any polarization consistent 
with constant magnitude of the fluctuation field (hence, 
for example, linear polarization is forbidden). It does 
not steepen to form shocks in a homogeneous medium. 

There are other important nonlinear effects. Nonlinear 
wave decay and mode coupling may occur, even for the 
AlfvCn wave. In the case of the magnetoacoustic modes, 
there are shock waves. In the limit of zero wavelength, 
the Alfvbn wave is known as the rotational disconti- 
nuity, the entropy wave as the contact discontinuity, 
and the tangential pressure balance as the tangential 
discontinuity. Being stationary structures, the entropy 
wave and tangential pressure balance are not subject to 
steepening effects, but may be unstable under some 
circumstances. 

COLLISIONLESS HYDROMAGNETIC WAVES 
The preceding magnetohydrodynamic picture must be 
modified in situations in which collisionless effects are 
important-when the wave frequencies are large com- 
pared with the Coulomb collision frequencies of the 
plasma particles. In this sense the protons, and to a large 
extent the electrons, are collisionless with respect to 
most interesting hydromagnetic waves throughout the 
solar wind. For example, at 1 AU protons are collision- 
less with respect to waves of period shorter than about 
12 hr (as measured in the spacecraft frame), and 
electrons are collisionless with respect to periods shorter 
than about 3 hr. At heliocentric distance r = 2R,, 
protons and electrons are collisionless with respect to 
wave periods shorter than about 10 min, and 20 sec, 
respectively. Hence, to understand hydromagnetic waves 
in the solar wind, a collisionless theory is required. 

The wave mode that is least changed by collisionless 
effects is the AlfvCn wave [Stepanov, 1958; Barnes, 
1966; Tajiri, 19671. In the limit of small amplitude, this 
wave is transverse, and its energy flux (as viewed in the 
rest frame of the plasma) is always parallel to the mean 
magnetic field direction. Its phase velocity follows from 
the dispersion relation 

Here w is the circular frequency and kll is the compo- 
nent of the wave vector parallel to the magnetic field, B 
is the magnetic field strength, p is the mass density, 
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P ( I I , I )  are the components of total fluid pressure 
transverse and parallel to the magnetic field direction, 
and CA is the usual AlfvCn speed. The collisionless 
character of the plasma appears only through the 
pressure anisotropy. As is well known, this mode 
becomes nonresonantly unstable if PiI/Pl is large enough 
that the right-hand side of the preceding expression is 
negative. Counterstreaming of different ion species along 
the magnetic field lines can produce similar effects. If a 
significant high-energy tail of the proton velocity distri- 
bution is present, the AlfvCn mode can be further 
modified by wave-particle cyclotron resonance, with 
consequent damping or growth of the wave. 

As in the MHD theory, the collisionless AlfvCn mode is 
not greatly modified by finite-amplitude effects [Barnes 
and Suffolk, 19711. It  is still noncompressive, the usual 
relation between velocity and magnetic-field fluctuations 
still holds, and the magnetic field associated with the 
wave is of constant magnitude. Its polarization is 
indeterminate, except for the requirement that the 
magnitude of the fluctuating field be constant, which of 
course rules out plane polarization. These conclusions 
are valid for AlfvCn waves of arbitrary amplitude. It may 
also be shown that these statements are valid even when 
relativistic effects are important (although the dispersion 
relation is somewhat modified by relativity). In parti- 
cular, the criterion for the firehose instability is un- 
changed by relativity and finite-amplitude effects. 

However, just as in the MHD case, the fact that 
large-amplitude AlfvCn waves are very much like their 
small-amplitude counterparts does not mean that the 
large-amplitude waves may be superposed as in the 
linearized theory. Two large-amplitude AlfvCn waves 
interact in a nonlinear manner, generating turbulence in 
other wave modes. In fact, a large-amplitude AlfvCn 
wave may be unstable against decay, an effect that may 
be of importance for understanding solar-wind turbu- 
lence. 

Although the properties of the AlfvCn mode in a stable 
plasma do  not depend much on whether the plasma is 
collisionless or collision-dominated, the collisionless 
magnetoacoustic modes differ radically from their MHD 
counterparts. This difference is due to the strong 
resonant wave-particle energy exchange that can occur in 
the collisionless case, usually resulting in strong collision- 
less damping of magnetoacoustic modes [Stepanov, 
1958; Barnes, 1966; Tajiri, 19671. The resonant inter- 
action of importance here involves particles whose 
motion along the magnetic field is such that they see the 
wave frequency Doppler shifted to zero-that is, 
V I I  = w/kll, where vi1 is the component of particle 
velocity along the magnetic field, w is the circular 

frequency of the wave, and kll is the coniponent of the 
wave vector along the magnetic field. This kind of 
resonance is usually called Landau resonance, as opposed 
to cyclotron resonance, which occurs when the resonant 
particles see the wave frequency Doppler shifted to an 
integral multiple of their gyrofrequency. Cyclotron 
resonance is normally negligible for hydromagnetic 
waves, but Landau resonance is not. 

Physically, the resonant acceleration is due to the fact 
that in a collisionless plasma a gradient in magnitude of 
the magnetic field accelerates the guiding center of a 
particle along the magnetic field [Barnes, 19671. This 
acceleration tends to produce a small charge separation 
and an associated electric field parallel to the magnetic 
field; this electric field, which also contributes to the 
resonant energy exchange, is proportional to the gradi- 
ent in the magnetic field magnitude, and vanishes if this 
gradient vanishes. Hence the resonant energy exchange 
depends on the presence of fluctuations in magnetic 
field magnitude in the wave. Therefore, this interaction 
will occur for magnetoacoustic waves, but not for AlfvCn 
waves, because the AlfvCn mode is associated with 
fluctuations in direction, but not magnitude, of the 
magnetic field. 

Consider a stable collisionless hydrogen plasma whose 
components have bi-maxwellian velocity distributions. 
In such a plasma the resonant acceleration always 
produces damping of the waves. An example of this 
damping is shown in figure 1. The theoretical damping 
rate per unit frequency 1 Zm(w)/Re(o) 1 is plotted as a 
function of propagation direction, for small-amplitude 
magnetoacoustic waves in plasmas whose proton and 
electron temperatures are equal and isotropic. The 
resonant heating and consequent damping are maxima 
for directions of propagation such that w/kll is roughly 

,--- ---- P ' 5  } SLOW MODE p =  I / 

Figure 1. 
for magnetoacoustic waves in two isotropic plasmas. 

Damping rate versus propagation direction 
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equal to the proton and electron thermal speeds. The 
resonant heating, especially for the ions, is sensitive to 
average plasma conditions, because the heating rate is 
largely determined by the number of particles available 
for resonance. For maxwellian proton distributions, the 
proton heating rate per unit wave energy for the 
least-damped mode is roughly proportional to 
exp - [ l/Ppcos2 e ]  where p p  = 87rn KT / B 2 ,  np and Tp 
are the proton number density and temperature, B is the 
magnetic field strength, and K is Boltzmann’s constant. 
Thus the damping depends strongly on op, the ratio of 
the proton pressure to magnetic pressure. If oP 2 1, the 
damping is strong, but as oP -+ 0, the damping becomes 
exponentially weak. This dependence is illustrated 
below: 

P P  

Characteristic 
time of strongest 

0, proton damping 

1 - 2 wave periods 
0.5 - 10 wave periods 
0.2 - 200 wave periods 

- 

If one takes typical solar-wind parameters at 1 AU as 
number density n = 7 protons ~ m - ~ ,  proton temperature 
Tp = 4 X 104”K, and magnetic field B = 5 X lo-’ gauss, 
the resulting P p  =0.4. The observational study of 
Burhga et al. [1969] indicates that this parameter can 
range from less than 0.1 to more than 5.0. If we suppose 
that P p  -0.3 to 0.5 for most of the distance between the 
sun and the orbit of earth, compressive hydromagnetic 
waves will be damped out in 10 to 100 wavelengths. 
Thus jt is unlikely that magnetoacoustic waves of 
wavelength 5 0.01 AU (spacecraft wave period 5 1 hr) 
could propagate from the sun to the earth. Presumably 
any magnetoacoustic waves in the solar wind near 1 AU 
are of relatively local origin. 

In this connection it should be noted that this 
damping mechanism can be modified by distortion of 
the proton or electron velocity distributions. In parti- 
cular, it is possible to distort the velocity distributions in 
such a way that the sign of the damping rate is 
changed - that is, the wave amplitude grows. The pos- 
sibility that such a process actually generates waves in 
the interplanetary medium will be discussed later. 

COLLISION LESS STATIONARY STRUCTURES 
It is also important to consider how the absence of 
collisions modifies the MHD picture of stationary, 
nonpropagating structures-namely, the tangential pres- 
sure balance (or tangential discontinuity) and the 
“entropy wave” (or contact discontinuity). It turns out 

that the tangential pressure balance is essentially the 
same in collisionless as in collisional plasma. One can 
easily show from the guiding-center theory that equili- 
brium obtains for plane variations transverse to the 
magnetic field in an infinite plasma if 

Here PI is the total fluid pressure (including the 
electrons) transverse to the magnetic field 3, e is the unit 
vector in the direction of B, and 3 is the current 
parallel to B due to motions of the particle guiding 
centers along the field lines. The first equation is the 
usual transverse pressure balance condition, and the 
second equation specifies the current required to 
support the shear in the magnetic field. It should be 
reemphasized that this equilibrium is possible only if all 
gradients are transverse to the magnetic-field direction. 
Components of flow velocity V and pressure PI! along 
the magnetic field direction are unrestricted, although 
the values of these and other quantities can affect the 
stability of the equilibrium [Northrup and Birmingham 
19701. 

On the other hand, the MHD theory of the entropy 
wave (or contact discontinuity) is essentially irrelevant 
to collisionless plasmas. This is fairly obvious physically, 
because an entropy wave would have a component of 
magnetic field parallel to its density gradient, permitting 
particles to diffuse along the gradient [Colburn and 
Sonett, 19661. The hypothetical entropy wave would 
disappear in a time of order T-J!, Cos p/Vth (L  is the 
length scale of the density gradient, vth is the proton 
thermal velocity, and p is the angle between the 
magnetic field and the direction of the density gradient). 
This time might be increased somewhat by plasma 
collective effects if the gradient is sufficiently steep, but 
we would not expect the order of magnitude of the 
eradication time to be changed by such processes. 
If we take L - 0.01 AU and Vth -40 km/sec, then 
T -  2 X lo4 sec - 6 hr is small compared with the 
characteristic solar wind flow time (- 4 days). 

Furthermore, it has been shown formally that in 
collisionless plasmas in the limit of small amplitudes, 
there are no stationary structures (other than the 
tangential pressure balance) whose length scale is long 
compared with the Debye length (- 10 m in the solar 
wind) [Barnes, 19711. Hence a true entropy wave 
simply cannot exist in a collisionless plasma. However, it 
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is also true that the dispersion relation for hydromag- 
netic waves in collisionless plasmas admits solutions 
whose frequencies are purely imaginary [Barnes, 1966; 
Tajiri, 19671. Such fluctuations do not propagate, but 
damp out in a deadbeat manner, in time T mentioned 
above. Barbeno-Corsetti [ 19691 has pointed out that 
these rapidly damped fluctuations are in a sense the 
analog of entropy waves for collisionless plasmas. The 
damping time is so short that such structures are not 
likely to be found in the solar wind. 

NONLINEAR EFFECTS 
In our discussion of waves we have not considered the 
nonlinear coupling between the various wave modes. 
Mathematical analysis of such effects is very compli- 
cated, and we are far from having a good understanding 
of the role played by nonlinear phenomena in solar wind 
fluctuations. The most pessimistic viewpoint would be 
that the solar wind is so turbulent (or otherwise 
disordered) at 1 AU that existing theories are hopelessly 
inadequate for understanding the observed fluctuation 
spectra. While this may be so, it seems more likely that 
some useful information can be gained by applying 
available theories of weak plasma turbulence to this 
problem. 

For example, we may inquire what role nonlinear 
processes play in determining the power spectra of 
magnetic fluctuations near 1 AU. Figure 2 shows typical 
power spectra from Explorer 33. Although there is 
disagreement among observers about the detailed char- 
acter of interplanetary fluctuations, and in particular of 
their power spectra, certain features seem to be estab- 
lished as typical. One such feature, indicated here, is the 
fact that the power in fluctuations of the magnitude of 
the magnetic field is normally smaller than the power in 
fluctuations of direction by about a factor of 10. These 
fluctuations could be due to stationary structures or to 
waves. The point to be emphasized at the moment is 
that to the extent that these fluctuations are waves, they 
must be either (1) AlfvCn waves, or (2)  magnetoacoustic 
waves propagating very nearly parallel to the magnetic 
field. They cannot be magnetoacoustic waves propa- 
gating obliquely to the magnetic field, because then the 
power in fluctuations of magnitude would be compa- 
rable to that in fluctuations of the various components. 

It is further agreed that correlations of magnetic and 
plasma fluctuations indicate that AlfvCn waves are often 
present in the interplanetary medium at 1 AU. On the 
other hand, there are no reported observations of 
magnetoacoustic waves. This fact, together with the fact 
that power in directional fluctuations is usually much 
greater than in magnitude fluctuations, indicates that 
obliquely propagating magnetoacoustic waves are 

present, if at all, at intensities considerably lower than 
the intensities of transverse waves. The relative absence 
of compressive waves is easily understood in terms of the 
linearized theory, which tells us that magnetoacoustic 
waves are Landau damped while. AlfvCn waves are not. 
We have further noted that the Vlasov-Maxwell equa- 
tions admit large-amplitude AlfvCn wave solutions. 
Unless for some reason nonlinear effects inhibit the 
magnetoacoustic Landau damping, the above picture is 
self-consistent as far as it goes. On the other hand, it is 
possible that several nonlinear effects could provide an 
alternate explanation of the dominance of AlfvCn over 
magnetoacoustic waves at 1 AU. 

One obvious possibility is that decay into other, 
possibly higher frequency, wave modes, rather than 
Landau damping, accounts for the relative absence of 
magnetoacoustic waves. The details of such a process 
have never been analyzed, at least in a context that is 
clearly appropriate for solar wind fluctuations. However, 
it is possible to make at least crude order-of-magnitude 
estimates of nonlinear effects. Since the solar wind 
usually appears randomly disordered, rather than orga- 
nized into neatly ordered wave packets, it seems 
reasonable to ask what one would expect from the 
“random-phase” approximation of weak-turbulence 
theory [Tsytovich, 1970; Sagdeev and Galeev, 19691. in 
this approximation one expects the rate r ~ r ,  of non- 
linear decay from one mode into another to be of order 

where o is the circular frequency of the wave, AB is the 
wave amplitude, and B is the magnetic field strength. 
This expression should be taken as an upper limit on 
I’YNL I ,  and even this upper limit is uncertain by at least 
a factor of 10. If we take ABfB - 0.1, then 
~ ’ Y N L I ~  0.01 a. Hence, it seems plausible that a wave in 
the solar wind might be significantly modified by non- 
linear processes in 100 wave periods or less. 

Therefore, large-amplitude magnetoacoustic waves 
may undergo significant dissipation by nonlinear decay 
into other wave modes, as well as by Landau damping. 
On the other hand, why do the transverse waves not 
decay into compressive waves, resulting in a sizable 
intensity of compressive waves? A tentative answer is 
that the magnetoacoustic Landau damping rate 
I ’yo I >> I r ~ r ,  I; if this is so, the nonlinear decay of 
transverse waves would be strongly inhibited. Another 
interesting possibility is the following. Recent theoreti- 
cal work by Rogister [I9701 suggests that magneto- 
acoustic waves propagating along the magnetic field may 
be much more stable against nonlinear decay than 
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Figure 2. 
power in transverse fluctuations is greater than in compressive fluctuations. 

Typical power spectra of the interplanetary magnetic field, illustrating that 

magnetoacoustic waves propagating in other directions. 
If this theory is applicable to solar wind fluctuations, 
then since fast magnetoacoustic waves propagating par- 
allel to the magnetic field are essentially identical to 
Alfv6n waves propagating in the same direction, one 
might suppose that the solar wind turbulence spectrum 
initially consisted of large-amplitude compressional 
waves, which subsequently decay, leaving only magneto- 
acoustic waves propagating parallel to the magnetic field. 
The resulting spectrum might be similar to the observed 
solar wind spectrum. This picture of solar wind turbu- 
lence may not be realistic, for at least two reasons: (1) 
Rogister’s theory is in a sense analogous to “fiied- 
phase” wave-mode coupling theories and may not be 
appropriate to the solar wind fluctuations, which appear 
to be randomly disordered; and (2) even if Rogister’s 
theory is applicable to the solar wind, the flow tends to 
convect waves so that their wave vectors become parallel 

to the wind velocity and hence oblique with respect to 
the magnetic field, and so the effect of the nonlinear 
decay would be to obliterate the entire magnetoacoustic 
spectrum. Therefore, the transverse fluctuations, if they 
are waves rather than stationary structures, must be 
AlfvCn rather than magnetoacoustic waves. In principle, 
this statement is subject to direct observational test, 
since the direction of phase propagation of an elliptically 
polarized plane wave can be determined (except for sign) 
as the direction of zero fluctuation of magnetic field; in 
general the direction of phase propagation of an AlfvCn 
wave will be different from the magnetic field direction. 

We have considered the following question: Given 
the fact that waves or other fluctuations exist in the 
solar wind, how are the fluctuations affected by the 
presence of the solar-wind plasma and of other fluctua- 
tions? We have seen that plasma kinetic theory gives us 
useful, but so far incomplete, insight into this question. 
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For example, we have seen that of the five classes of 
magnetohydrodynamic fluctuations only two, the 
Alfve’n wave and the tangential pressure balance, are 
likely to exist in appreciable quantity in the micro- 
structure of the wind. On the other hand, it is quite 
conceivable that nonlinear effects significantly modify 
the fluctuation spectra, but in ways that are obscure at 
present. 

SOURCES OF THE FLUCTUATIONS 
Even if we had a complete knowledge of the intrinsic 
properties of solar wind fluctuations, we could not 
explain the observed fluctuations without knowledge of 
their sources. Obviously, the sources of stationary 
structures and of hydromagnetic waves would be very 
different. Nevertheless, in both cases possible sources 
may be conveniently placed into three broad classes: (1) 
the source is at or near the sun; (2) the source is some 
large-scale process in the interplanetary medium far from 
the sun; and (3) the source is some instability intrinsic to 
the solar wind flow far from the sun. 

One area in which considerable systematic study has 
been made deals with the possibility that solar wind 
fluctuations at 1 AU are stationary structures, origi- 
nating at the sun, which are convected out in the wind 
[Siscoe, 1970;Siscoe and Finley, 1969,1970; Carovillano 
and Siscoe, 19691. These fluctuations are stationary in 
the local rest frame of the solar wind, but they also 
corotate with the sun, like the magnetic sector structure. 
However, these fluctuations involve the large-scale struc- 
ture of the wind, and may not have a very direct relation 
with the microstructure of the wind. Nevertheless, 
stationary microstructures may in fact originate at the 
sun. Thin, twisted filaments (of thickness -lo6 km) or 
other topological arrangements of magnetic field coming 
from the sun have been suggested [Ness, 1968; Burlaga, 
19691 . Such an arrangement of stationary structures is a 
plausible consequence of the random walk of field lines 
rooted in the solar supergranulation [Jokipii and Parker, 
19691. In addition, there is some direct evidence that 
the statistical properties of stationary structures do not 
vary much between. about 0.8 and 1.0 AU [Burlaga, 
1971 ] , which suggests that their source is nearer the sun 
than 0.8 AU. In particular, this conclusion is consistent 
with the hypothesis of solar origin of stationary struc- 
tures. 

It is also possible that stationary structures in the 
interplanetary medium could originate in the relaxation 
of some large-scale dynamical process or instability that 
takes place far from the sun. One possibility would be 
that stationary structures originate in regions of inter- 
action between fast and slow streams; however, Burlaga 

[1971] suggests that this hypothesis is not supported by 
observational data. Otherwise, the possible nonsolar 
origin of stationary fluctuations seems not to have been 
studied in detail. 

Consider now the possible sources of hydromagnetic 
waves. The most obvious hypothesis is that the waves 
originate at the sun itself. This idea very naturally 
explains the recent observations that a substantial 
fraction of the power in solar wind fluctuations may be 
identified with Alfvin waves whose propagation direc- 
tion relative to the plasma is away from the sun [Belcher 
et al., 1969; Belcher and Davis, 19711. If one assumes 
this wave efflux to be distributed in a spherically 
symmetric fashion, the net energy efflux is 
-3 X 1024ergs/sec, small compared with the estimated 
5 X ergs/sec in waves that heat the inner corona 
[Osterbrock, 19611 . In addition, only Alfvin waves 
originating near the sun would be able to reach the orbit 
of earth, because of the strong Landau damping of 
magnetoacoustic waves. The wave periods (in the space- 
craft frame) range from -2 hr down at least to 10 min 
(and probably less); Alfvin wave intensities tend to be 
higher in fast solar wind streams than in slow ones. All 
these properties (propagation direction, wave intensity, 
wave mode, wave period, and intensity-flow speed 
correlation) are qualitatively consistent with the inter- 
pretation of these waves as the remnants of a hydromag- 
netic wave flux and the coronal base, which supplies a 
significant part of the solar wind energy. 

Another large-scale process that may very well be a 
strong source of hydromagnetic waves in the solar wind 
is the collision between fast and slow streams. Most 
waves from this source would be generated in the region 
from 0.5 to 3 AU [Jokipii and Davis, 19691. Observa- 
tions indicate that the interaction regions are highly 
disturbed, with a large amount of power in compressive 
fluctuations [Belcher and Davis, 197 I]. Presumably 
these compressive fluctuations are at least partly magnet- 
oacoustic waves, which are Landau damped before they 
can propagate far from the interaction region. The wave 
dissipation produces heating of the gas; the heating 
appears to be restricted to the locality of the interaction 
region, at least at 1 AU [Burlaga and Ogilvie, 1970; 
Belcher and Davis, 19 7 1 ] . 

Waves also can be generated locally when the solar 
wind encounters a planetary obstacle. For example, 30- 
sec period waves observed upstream of the earth’s bow 
shock can be interpreted as hydromagnetic waves gen- 
erated upstream of the earth’s bow shock by cyclotron- 
resonant instability of a high-energy stream of protons 
traveling back upstream from the shock [Fairfield, 1969; 
Barnes, 1970; Rogister, 19701 . This process is illustrated 
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in figure 3. Waves generated at point B upstream are 
convected back downstream toward the bow shock, 
resulting in a region of enhanced turbulence. It should 
be pointed out that an alternate explanation of these 
waves is that they are whistlers generated at the bow 
shock and essentially standing in the wind, so that their 
frequency is Doppler shifted to the observed value of 
Perez and Northrop [1970]. This particular question, as 
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Figure 3. Schematic representation of generation of 
hydromagnetic waves upstream of the earth’s bow 
shock, by protons streaming from the shock. Straight 
solid lines represent interplanetary magnetic field lines. 

well as questions about the character of other inter- 
esting, high frequency waves upstream of the bow shock, 
has not yet been definitely resolved. In any case, it 
seems clear that waves should be generated locally in the 
solar wind whenever it encounters a planetary obstacle. 
Also, the fact that waves and, very likely, distorted 
particle velocity distributions exist upstream of the 
earth‘s bow shock emphasizes that caution must be used 
in interpreting solar wind data from earth orbiting 
spacecraft. In particular, data taken at times when the 
spacecraft is located on an interplanetary magnetic field 
line that intersects the bow shock can be contaminated 
by shock-produced effects. 

Besides the previously mentioned sources of hydro- 
magnetic waves in the solar wind, it is probable that such 
waves can be produced by a variety of processes intrinsic 
to the flow of the wind. The possible influence of 
nonlinear effects on the solar wind fluctuation spectrum 
has already been mentioned. Another possibility would 
be the Kelvin-Helmholtz instability, which can some- 
times occur when two streams in tangential pressure 

balance slip past one another. However, the observa- 
tional study of Burlaga and Ogilvie [ 1970) indicates that 
this instability is probably not a significant source of 
heating in the wind, so that this mechanism is probably 
not a significant source of waves in the wind. 

Another interesting possible source of hydromagnetic 
waves is microinstability of solar wind electrons due to 
distortion of their velocity distribution by thermal 
conduction [Forslund, 1970; Perkins and Spight, 19701. 
In particular, Forslund [1970] has suggested that two 
hydromagnetic wave modes can be generated in this 
way. For example, it is conceivable that ion-acoustic 
waves, including the slow-mode hydromagnetic wave, 
could be generated by conductive instability if the ratio 
of electron to proton temperature is sufficiently high. 
Forslund has suggested that this process occurs at a 
heliocentric distance r = 10 R, for temperature distribu- 
tions of the bare two-fluid model of the solar wind. On 
the other hand, this particular instability probably 
would not occur for temperature distribptions corre- 
sponding to models with external heating. Forslund has 
also suggested that fast-mode hydromagnetic waves 
might be generated by conductive instability in the 
vicinity of 1 AU, by the inverse of the Landau-damping 
process discussed earlier. However, it seems unlikely that 
any fast-mode waves produced in this way would be 
easily observable, for several reasons. First, Forslund‘s 
mechanism generates fast-mode waves only for a fairly 
narrow range of propagation directions (51 5”); waves 
produced in this way would eventually be refracted 
outside this narrow production cone, into other direc- 
tions where Landau damping occurs, and therefore such 
waves probably would not be observable long after they 
were generated. Second, the fastest growth rate of this 
process occurs for waves whose frequency is of the order 
of the proton gyrofrequency; and since the growth time 
of a microinstability is usually also a measure of its 
quenching time, it is likely that very little power in 
hydromagnetic waves will be generated by the insta- 
bility. Probably the main effect of this instability would 
be to keep the electron velocity distribution near the 
marginally stable configuration, possibly with an asso- 
ciated “fizz” of noise whose characteristic frequency is 
comparable to the proton gyrofrequency. Altogether, 
then, it appears that although the thermal conduction 
instabilities considered by Forslund may conceivably 
have nonnegligible effects on thermal conduction and 
electron-proton energy exchange, they are not likely to 
produce readily observable hydromagnetic waves in the 
solar wind. 

It is conceivable that other microinstabilities could 
generate hydromagnetic waves in the solar wind. For 

340 



example, instabilities like the firehose associated with 
pressure anisotropy can generate hydromagnetic waves, 
at least in principle. Waves by anisotropy would be 
generated preferentially in higher-fi regions of the wind. 
According to the work of Burlaga et al. [ 19691 regions 
of high fi  tend to be associated with enhanced micro- 
fluctuations, which would be consistent with their being 
waves generated by anistropyddven microinstabilities. 
On the other hand, Belcher and Davis [ 19711 argue that 
enhanced fluctuations are better correlated with 
colliding-stream regions (which are often, but not 
always, regions of high p), and that the fluctuations are 
generated by the large-scale, stream-stream interaction 
rather than anisotropy. From a theoretical standpoint, 
anisotropy-driven instabilities generate higher frequency 
or shorter wavelength waves more abundantly than 
hydromagnetic waves; probably the main effect of 
anisotropy-driven instability is to maintain the aniso- 
tropies in a marginally stable state, and to generate a 
relatively weak background of high frequency, short 
wavelength noise. 

Altogether, it appears quite likely that most hydro- 
magnetic waves in the solar wind are generated in 
large-scale processes. Observations at 1 AU are consistent 
with the generation of a large fraction of the waves at 
the sun; in addition, other large-scale processes, notably 
the collision of fast and slow streams, contribute to the 
observed fluctuations. Interaction of the wind with a 
planetary obstacle may account for local generation of 
hydromagnetic waves. The fluctuation spectrum of the 
wind may be significantly affected by nonlinear pro- 
cesses. Other small-scale processes, such as microinstabil- 
ities, are probably a relatively minor source of 
hydromagnetic waves. 

RELATION TO LARGE-SCALE 
PROPERTIES OF THE WIND 
Hydromagnetic waves may influence the large-scale 
properties of the wind in a number of important ways. 
For example, heating due to Landau damping of 
magnetoacoustic waves, whatever their source, can have 
a significant effect on the flow. It has been shown that a 
model in which heating is due to thermal conduction 
and dissipation of an efflux of magnetoacoustic waves of 
-4-min period generated at the sun can explain the 
observed correlation between proton temperature and 
flow speed at 1 AU for a large range of flow speeds 
[Barnes et al., 1971; Hartle and Barnes, 1971; Barnes 
and Hartle, 19711. Jokipii and Davis [1969] have 
suggested that the damping of magnetoacoustic waves 
generated by the collision of fast and slow streams is 
significant for solar wind heating. Observational evidence 

indicates that this process probably produces local rather 
than global heating at 1 AU [Burlaga and Ogilvie, 19701 ; 
Belcher and Davis, 19711, but this process may well 
produce larger scale effects beyond 1 AU. 

Besides heating, the dissipation and even the simple 
propagation of hydromagnetic waves produce a force on 
the wind. It is possible that this sort of “radiation 
pressure” has a significant effect on the flow of the 
wind, especially if it acts in the region of supersonic 
flow. Belcher [ 197 11 has developed a polytropic model 
of the solar wind which includes pressure due to the 
propagation of AlfvCn waves outward from the sun. 
These waves do not damp locally, but gradually lose 
energy because they do work on the wind as they 
propagate outward. Although that model in its present 
form is probably not realistic in detail, it does show that 
radiation pressure from hydromagnetic waves may sig- 
nificantly accelerate the wind. 

Fluctuations in the solar wind are related to many 
other problems of great current interest. Hydromagnetic 
waves or other fluctuations may participate in the 
transport of angular momentum from the sun [Schubert 
and Coleman, 1968: Siscoe, 19701. Scattering and 
diffusion of cosmic rays are caused by fluctuations in 
the interplanetary medium [Jokipii, 197 11 . Scintillation 
and scattering of signals from radio sources are produced 
by interplanetary fluctuations [Hewish and Dennison, 
1967; Cohen et al., 1967; Jokipii and Hollweg, 1970; 
Hewish, 19711. Some of these problems, which are far 
beyond the scope of this discussion, are considered in 
other chapters. 

One last topic should be mentioned briefly here. There 
are numerous observations of interplanetary fluctuations 
of shorter length scale and higher frequency than 
hydromagnetic-scale fluctuations. [see review by ScarA 
19701. By combination of higher frequency magnetic 
and electric field measurements, some progress has been 
made in identifying the modes of various fluctuations, at 
least to the extent of distinguishing electrostatic from 
electromagnetic oscillations. 

Higher frequency waves (period -2 sec) as well as 
hydromagnetic waves are generated in the upstream solar 
wind by the earth’s bow shock [Russell et al., 19711. 
Probably the noise generated by microinstabilities due to 
anisotropy or to saturation of thermal conduction will 
be predominantly at frequencies comparable to or 
greater than the proton gyrofrequency. High-frequency 
noise will probably be found in most regions of rapid 
change, like shock fronts or colliding-stream regions. 

Although the smaller-scale fluctuations normally con- 
tribute a small fraction of the total fluctuation energy in 
the wind, such fluctuations probably can have some 
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effect on the large-scale structure of the wind. For 
beyond a heliocentric distance of about 10 R,, wave- 
particle interactions probably have significant influence 
on transport phenomena, perhapk completely domi- 
nating Coulomb collisions [Eviatar and Schulz, 1970; 
Newrnan and Sturrock, 19691. Modification of thermal 
conduction and proton-electron energy exchange by 
various collisionless mechanisms have been considered 
[Forslund, 1970; Perkins and Spight, 19701. Eviatar and 
Wolf [ 1968 J have discussed a possible collisionless 
viscous interaction between the solar wind and the 
earth’s magnetosphere. It is conceivable that some such 
viscous mechanism could affect the heating, and espe- 
cially the angular momentum transport of the wind. 

To conclude, it is clear that the study of microscale 
fluctuations, both of hydromagnetic and smaller scale, is 
of great importance. The microscale fluctuations present 
an opportunity to directiy observe waves in a plasma 
whose fluid pressure is not small compared with its 
magnetic pressure. Furthermore, observed fluctuations 
may provide major clues for understanding important 
large-scale effects in the solar wind. Considerable prog- 
ress, partly theoretical but maifdy observational, has 
been made in these areas in the past several years. I think 
that we may expect even greater advance in our 
understanding of the nature, origin, and effects of solar 
wind fluctuations in the near future. Again, most of this 
progress will probably come from observation, partly 
from new instrumentation, new spacecraft missions, 
partly from analysis of data from existing spacecraft, 
and hopefully from multiple satellite experiments. 
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J. V. Hollweg I wish to point out that if one is careful, the idea that the nonlinear DISCUSSION 
Alfvin wave can be linearly polarized is also very reasonable. If you consider a linearly 
polarized Alfvin wave propagating parallel to the average magnetic field, Bo, the wave 
magnetic field fluctuation is perpendicular to Bo. If this is some kind of sinusoid, this 
configuration implies that there is a variation of magnetic field pressure. This would lead, 
in general, to steepening of the wave; then I agree it is questionable whether you can talk 
about an Alfvin wave. However, it turns out that this steepening appears only in 
third-order terms, so if you are content to say that you’re talking only about first- and 
second-order terms, there is no change in the AlfvCn wave profile and one can consider 
this wave to be exactly an Alfvdn wave to second order. There is an additional effect, 
though, to second order, and this is if you manipulate some of the equations you get a 
wave equation that has the properties of an ion-sound wave (this implies density 
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fluctuations and velocity fluctuations parallel to the direction of propagation) on the 
left-hand side, and a driving term proportional to the gradient of the magnetic field 
pressure of the Alfv6n wave on the right-hand side. These second-order density 
fluctuations lead to steepening, but only in the third order. 

It turns out that for 0 of the order of a half or a third or so, which is perhaps typical of 
the conditions near the orbit of the earth, you get a resonance with the sound waves and 
therefore very large density fluctuations. At that point my calculations break down, but 
nevertheless the density fluctuations can be large. But still to second order it’s an Alfvh 
wave. 

A .  Barnes As I said, there’s an exact solution for the Vlasov-Maxwell equations for all 
directions of propagation, which gives an Alfvh wave and this includes 6 = 0. It sounds as 
if you have established equations that indicate something about the mode coupling 
between the Alfvh waves and the acoustic waves and, of course, such coupling is well 
known to occur. Would you agree? 

J. K Hollweg Somewhat. But I don’t think it’s ever been described specifically. 
Furthermore, strictly speaking I have not considered coupling between Alfvh waves and 
ion acoustic waves, but rather how Alfvkn waves drive acoustic waves. There is a 
difference. 
W. C. Feldman I’m a bit confused about some of the formulas I’ve seen here for 

large-amplitude Alfvh waves. The problem concerns the anisotropy. With small-ampli- 
tude Alfvh waves the energy density of the magnetic field fluctuation should be in 
equipartition with the energy density of the plasma fluctuation. For large-amplitude 
waves, there are cases in which the magnetic energy density fluctuation is larger than the 
plasma energy density fluctuation, an effect that has been ascribed to anisotropy. When 
you look at the formulas there is a factor (Pl-PIl) divided by the energy density of the 
magnetic field. So for the large amplitudes, I would like to know which magnetic field to 
choose-the unperturbed or the perturbed? If it is the unperturbed B, how do you 
compute the temperature anisotropy that should be determined by the total magnetic 
field, especially for the large-amplitude fluctuations. 

A. Barnes I’m not sure I understand the question. In the limit of small amplitude, of 
course, you get the kinetic part of the energy of the Alfvkn waves from a standard 
formula. The energy of a small-amplitude plasma wave, of course, is magnetic energy plus 
the energy associated with the thermal and kinetic energy of the waves. In the case of an 
Alfv6n wave, the total energy turns out to be exactly U 2 ) / 4 n  for the isotropic case, 
and you can work out what it is for the anisotropic case. The difference is that there is a 
term that involves the difference between the pressures just as you would expect. I don’t 
remember what the numbers are but they are such as to make the total energy go to zero 
just when the firehose instability would take place. For an Alfvhn wave this would mean. 
that the mechanical part of the wave energy is less when Pi1 is greater and PI is less than 
the magnetic energy. This is for the small-amplitude case. I don’t really know how to 
define the wave energy for large wave amplitudes. 

H. J. Volk When you talked about decay of waves, did you mean the three-wave decay 
process? 

A. Barnes I mean anything that actually occurs. But what I basically had in mind was a 
three-wave process. 

H. J. Volk Then gamma, the growth rate you gave, which you say is proportional to 
S2(AB/B)2, should be, as I recall, proportional to AB/B. Second, near the orbit of earth 
AB/B is the order of 1 so the gravity rates would be much greater than yours and the 
fluctuation level at the orbit of earth would probably have nothing to do with what 
happens at the sun. 

A.  Barnes I believe there are two different questions here. First of all, there are two 
different classes of three-wave decays: those that occur when the waves are in fured phase 
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and those that occur when the waves are in random phase. For fixed phase waves the 
growth rate is proportional to AB/B. For random phase it is proportional to (AB/B)2. 
This, by the way, is essentially the formula that Parker used yesterday for a related 
process, which you could look at as the three-wave decay between Alfvh waves, 
magnetoacoustic waves, and maybe tangential pressure balance or something like that. So 
if you assume that the appropriate theory to use is for the solar wind random phase 
theory, then is correct. Second, I think I said that the amount of power in the 
fluctuations at earth AB/B can range from less than 0.1 to 1.0. Perhaps some of the 
experimentalists would like to comment on this, but it seems to me that from the data I 
have seen that AB/B on the order of 0.1 is typical, though certainly it can be as great as 
1.0, in which case the nonlinear decay may be much larger than I said it would be. The 
decay is proportional to after all, and so it's a very sensitive function that varies 
quite a bit. 

The other point, however, is that the expression I wrote is an upper limit. It doesn't 
include the dynamics, the cross section, for the wave-wave interaction, and it may be that 
a detailed analysis of these things would show smaller growth rates in some cases. 

N. F. Ness In connection with the question from observational data, if the nuctuations 
are normalized, and if you were to use a discontinuity as defined by Siscoe et al., the 
threshold value was 4 y out of an ambient field average of something like 5 y. If you were 
to use the 30" definition or the larger of Burlaga's, then you would have a relative 
amplitude ratio of 0.5. If you look at the time scale plots of Belcher and Davis (figs. 1,2, 
p. 383) you find that the fluctuations are of approximately equal amplitudes throughout 
the ambient magnetic field for the period ranges studied. Generally I think that AB/B at 
the periods you are considering is on the order of unity. This includes periods up to about 
1 hr. 

F. C. Michel I have a comment on these damping rates. Basically, there are two simple 
approximations one can make. One can describe the interplanetary medium as being 
made up of frozen-in fluctuations that are just convected out. Or one assumes that the 
medium is homogeneous with superimposed waves. Both of these are extreme 
approximations. Now, for the frozen-in approximation, at least in the filamentary 
picture, there are filaments unwinding or moving relative to one another. For example, if 
all filaments were radial except one that wiggled back and forth, this wiggle would tend 
to straighten out and behave in a sense as a propagating wave. Whether or not one calls 
this a wave is a matter of taste. I personally think the filamentary picture is preferable. 
But, the damping rates come from the picture of a homogeneous plasma and a 
monochromatic wave. I think that the short times appropriate for the damping time of a 
uniform plasma wave in a homogeneous medium are not appropriate for the time that it 
would take the filaments to rearrange and become uniform. 

A.  Barnes I agree. The time scales I gave for dissipation of hydromagnetic waves are 
probably quite a bit shorter than those for filaments to rearrange themselves. The latter 
would be on the order of the flow time between the sun and earth, right? And the 
homogeneous theory is applicable only if the length scale of the fluctuation is short 
compared with the scale height of the solar wind. 

L. Davis I believe that a reasonable way to investigate whether AB/B is 1.0 or 0.1 is 
through variance over periods of say 3 hr. I think it's worth trying to make a somewhat 
finer division than this because I think the effects vary more or less as the square. As I 
recall, it is rare that the square root of the variance over a period of something like 3 hr 
approaches the value of 4 or 5 y typical of the field strength. I think AB/B about 0.7 for 
these very disturbed times is a somewhat better characteristic value than 1. The square of 
that is 0.5 and on these curves which rise very steeply, the difference between 0.5 and 
1 .O for (L?&/B)~ is probably significant. 

N. F. Ness I think that the use of the standard deviation to measure AB/B for these 
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nonlinear wave modes is not correct. One should look at the time history and look at the 
amplitude, peak to peak, relative to the magnitude of the field to obtain a correct 
e st ima te . 
COMMENTS 
L? W. Forslund Barnes mentioned (p. 340) that there are a number of micro- 
instabilities in the solar wind that occur due to the heat flux and velocity space anisotropies. 
I would like to review briefly some of their properties and how they may arise. 

A number of properties of the plasma were described earlier in studies of the large-scale 
structure of the steady-state solar wind. In particular, there are at least three properties 
that illustrate how the dynamics of the expansion can cause a departure of the plasma 
from thermodynamic equilibrium. One simple case is that proton temperature is distinct 
from that of the electrons because of the weak collisional coupling. A second effect arises 
if there are few collisions between the proton components-that is, a velocity anisotropy 
between the components parallel and perpendicular to the magnetic field. This can arise 
in the electron component also if collisions or wave interactions are sufficiently weak. A 
third effect arises in any model one chooses-collisionless, exospheric, one-fluid, or even 
two-fluid magnetohydrodynamic. There exists a heat flux outward from the sun (unless 
an isothermal approximation is made). This effect appears microscopically as a third 
moment of the electron and ion distribution functions. 

I shall describe briefly how these last two types of velocity space anisotropy give rise to 
plasma instabilities. In particular, the plasma, if it can, will try to destroy these departures 
from thermodynamic equilibrium, since they are a free energy sohrce on a microscopic 
scale. How might one determine the various ways the plasma in the solar wind can tap the 
free energy, relax closer to an equilibrium thermodynamic state, and in a sense approach 
the properties of a one-fluid model? The important thing to recall, as Perkins mentioned 
earlier (Chap. 3, p.213, is that the transport properties of the plasma can be altered due 
to instabilities. A model analysis shows “feedback” superimposed on the steady-state 
dynamic expansion of the solar wind with the possibility of giving better agreement with 
observation of the large scale features. In particular, the recent model of Brandtefal. 
[1969] illustrates how an alteration of the heat flux, by arbitrarily modifying the 
transport coefficients, can make the model calculations agree better with observation. 

Turning now to the process by which a heat flux may give rise to instabilities, assume a 
spherically symmetric model including a spiral magnetic field and no net electric charge 
flow out from the sun. Hence, on the average, the current parallel to the magnetic field is 
zero, which taken with the fluid equations may be written as 

where ill is the parallel current, g1 the electrical conductivity, K ,  the usual transport 
coefficient, J/ the angle of B with the radial direction, n the number density, p the 
pressure, and 0, the electron temperature. For zero current one has to balance the 
current from the temperature gradient with the current from the effective electric field. 
The dimensionless parameters that enter into the determination of the transport 
coefficients AE are complex, but basically they can be thought of as corresponding to the 
electric field normalized to the runaway field-the field in which the electrons will be 
accelerated freely. We also define the quantity BT, the ratio of the mean free path for 
collisions to the scale length of the temperature gradient, in this case the scale length of 
the solar wind. The zero current condition requires that AE = 0.35 BT. For collisional 
heat conduction, these two parameters must be small compared to unity, which in fact 
they are not in the solar wind. As Montgomery has shown (Chap. 3, p.210), there is a 
significant discrepancy between the observed value of BT and that predicted by 
Spitzer-Hkm theory. 
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Within linear transport theory the equilibrium electron distribution function is given by 

where 6 is the angle of v with respect to the gradients, the function foe@) is the 
maxwellian distribution, and the transport parameters A E  and BT multiply the perturbed 
distribution functions DE and DT describing the current flow and the heat flux. Figure 1 
illustrates the way in which the distribution gives rise to instability. The third moment of 

LEFT : SLICE THROUGH f ,  PARALLEL TO 8 
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Figure 1. Linearized electron distribution function in 
a combined electric field and temperature gradient. 
BT= 0.9, A E =  0.32. 

the electron distribution function averaged over velocities perpendicular to B shifts the 
peak of the distribution away from the protons even though they have a net velocity that 
matches the proton flow speed. Free energy then exists due to the shift of this peak. That 
is, if waves can exist in the region between the electron and ion peaks they can extract 
some of the heat flux energy from the electrons and produce turbulence. We have 
described here how a heat flux instability can arise for a collisionally driven distribution 
function, but as Parker pointed out earlier (Chap. 3), collisions are not absolutely 
necessary for instability to occur. In collisionless exospheric models a distribution 
function very similar to that in figure 1 can arise. At a given distance from the sun there 
will be a velocity cutoff for trapping electrons, as Perkins has pointed out (p. 215), due 
to an electrostatic potential barrier at large radius from the sun and a magnetic mirror at 
small radius. Above that velocity a flux of escaping electrons gives rise to a shift of the 
electron peak away from the average velocity, again generating a local source of free 
energy. 

Table 1 summarizes briefly some solar wind model values for BT as well as the 
observational values. Recall that in these models or in the actual solar wind the heat flux 
increases with BT. Close to  the sun (-lo&,) values of BT-O(O.~) exist for a number of 
models. At 1 AU, BT generally becomes very large, implying that the heat-conduction law 
will break down because of purely collisionless expansion effects or wave-particle 
interactions that arise from instabilities. The observations give significantly smaller values 
for B T  In the observations of Montgomery (Chap. 3,p. 210), the actual value OfBTwas 
less than 0.2 on the average, significantly lower than that from model calculations, 
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-0.4 -1.5 e = O0 

-0.1 -0.8 too 

indicating that the models are actually not very good and should be modified. By 
reducing the value of BT in their model, Brandtetal. [1969] obtained much better 
agreement with observations at 1 AU. 

Figure 2 summarizes the instabilities that can arise. A number of waves can be driven 

ION-ACOUSTIC 

(kn 0, Te >> 1 
Ti 

WAVES 

1 1 %  I ' 4.3 [(Zi 
ELECTROSTATIC ION CYCLOTRON WAVES 
Te T. 3/2 

.?, 1 19~1 > 1.3 (t) 
MAGNETOACOUSTIC WAVES 

t 0 N  CYCLOTRON WAVES 

Figure 2. Conditions for instability. 
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unstable provided that they can exist in the valley between the electrons and ions of 
figure 1 .  Ion-acoustic waves are most easily excited if the ions are very cold. For electrons 
much hotter than ions, the critical BT for ion acoustic waves is shown at the top of figure 
2. If the ions are very cold, the second term is small and for B ~ > 0 . 0 7 ,  ion-acoustic 
waves are unstable. This is very easily satisfied in all the models very near the critical 
radius and close to the sun (table l), implying that the heat conduction should be 
modified there in a manner perhaps similar to what Brandt et al. [ 19691 did. 

A number of other waves can be driven unstable as indicated in figure 2. The formulas 
are approximate but show that as the plasma /3 increases the critical value for BT 
decreases. Thus, these waves will presumably grow farther out in the solar system than 
will the ion-acoustic waves, although actually they are still unstable fairly close to the 
sun. 

Figure 3 summarizes some numerical results obtained recently for the electromagnetic 
and electrostatic ion-cyclotron waves driven unstable by a current. This is relevant here 
since a 1 -to-] correspondence exists between current-driven instabilities and heat-conduc- 

' tion instabilities with the two differing by a numerical factor of the order of unity. Here 
we show the /3 dependence of the critical drift velocity for electrostatic ion-cyclotron 
waves with Te = Ti. As /3 is increased the critical drift speed increases drwly, but in the 
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Figure 3. Marginal stability curve for the electrostatic 
ion cyclotron wave as a function of fl for Te/Ti= 1 and 
contours of  maximum growth rate of the electromug- 
netic ion cyclotron wave versus fl for Te/Ti= 1; VD is 
the electron drift velocity or net shift in the electron 
peak from that of the ions; a, is the electron thermal 
velocity. 

neighborhood of = 0.01 it starts to rise more sharply. Figure 3 also shows the maximum 
growth rate contours of the electromagnetic ion-cyclotron wave obtained by numerically 
searching the full hot plasma electromagnetic dispersion relation. Note that these 
contours drop to very low drifts as 0 increases; 0 - 0.01 is probably typical when close to 
the critical radius and analytically depends exactly on what kind of model is used. At any 
rate, near 10 R ,  the electromagnetic ion-cyclotron mode may indeed be unstable along 
with the ion-acoustic wave and cause modification of the transport coefficients. These 
results need to be extended to 0 = 1 to determine more carefully what happens as one 
approaches the orbit of earth. 

Thus we see that there are a moderate number of instabilities that can take place due to 
heat conduction. With the exception of the ion-acoustic mode, the most unstable modes 
have wavelengths about that of the ion gyroradius, although most of the instabilities can 
grow at very long wavelength but at reduced rates of growth. What sort of turbulence 
they produce is uncertain, but one would expect a peak at around the ion gyroradius. 

I would next like to discuss the instabilities that can occur from the proton and 
electron anisotropy created by the nearly adiabatic expansion of the plasma out from the 
sun. It is known that a very large anisotropy, Tl<<TII, should develop which in turn 
should destabilize Alfvkn waves, thus reducing the anisotropy, more closely approaching 
the values found in the solar wind. We have recently looked at finite gyroradius effects on 
these instabilities more carefully, both analytically and numerically and by searching the 
electromagnetic dispersion relation over a range of wave numbers kll, propagation angles, 
anisotropies, and 0, and by studying the maximum growth rates. We have uncovered 
several interesting effects. [Kennel and Scar- 19681 discussed the case for waves 
propagating exactly along the field lines, but we have recently looked at the oblique 
firehose instability, which has zero real frequency at large angles to B and continues to 
have zero frequency as one approaches finite gyroradius. For Tl<<TII and zero real 
frequency, the condition for marginal stability 
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is found where P+ is the proton pressure along the field relative to the magnetic pressure, 
A+ is the proton anisotropy l-Tl/Tll, RL,, is the proton gyroradius, andZ ' i s  the 
plasma-dispersion function, involving only parallel wave numbers. The electron aniso- 
tropy enters in the usual firehose fashion. In the asymptotic long wavelength limit the 
coefficient of P+A+-+l, giving the usual criterion for firehose instability. However, for 
finite gyroradius, this coefficient has a maximum of 1.65, thus reducing the anisotropies 
and 0, which can give rise to instability. As will be shown later, this may be significant. 
For the parallel whistler mode one can also show that this occurs at finite gyroradius, as 
indicated by Kennel and Scarf [1968] and also more recently by Hollweg and Vdlk 
[I9701 . In particular, one can derive an expression from Kennel and Scarf if the 
anisotropy A?@. 1) 

Here the left-hand side of the expression is the normal firehose criterion. The finite 
gyroradius effect destabilizes the firehose-that is, permits it to function for parameter 
values below the hydromagnetic firehose Iimit. Since both modes have lower thresholds at 
finite gyroradius, the nonlinear evolution will stabilize these waves and reduce the 
anisotropy before the hydromagnetic limit is reached. Thus, in the firehose case, it 
appears that the short wavelength turbulence is very important. 

Figure 4 is a scatter plot of proton pressure anisotropy from Eviatar and Schulz 
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Figure 4. Contribution of protons to PlI-l/3 during a 
typical time period (Eviatar and Schulz). 

[1970] using the Vela 4 data. The hydromagnetic firehose limit is indicated by the top 
dashed line assuming isotropic electrons. Weakly anisotropic electrons will drop the line 
somewhat. From this line, one would draw the conclusion that the plasma is rarely near 
the firehose limit. However, with the inclusion of the factor 1.65, the marginal stability 
line drops down to the lower dashed line, and the firehose instability may develop more 
frequently in the solar wind. 
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In figure 5 we have plotted contours of maximum growth rate obtained numerically for 
the kll instability, with 0 along the magnetic field plotted horizontally and the anisotropy 
plotted vertically. The normal firehose limit is given by the right-hand dashed line. The 
growth rate contours with very small values are the Kennel and Scarf [ 19681 mode with 
phase velocities out on the tail of the proton distribution. Going to the right one moves 
continuously over the firehose instability. We can see that this parallel mode operates at 
fairly low 0, but a key question is whether or not it can isotropize the body of protons. 

Finally, I should mention that if one includes the combination of heat flux and 
anisotropy, a number of these modes have even lower threshold, implying that at least in 
some states of the solar wind these instabilities are almost certainly present and should be 
included in a complete model either in the form of transport coefficients in a fluid model 
or in some more detailed way as, for example, in an exospheric model. 
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Figure 5 
for 0- A- = 0.2. 

Maximum growth rates of Whistler mode anisotropy instability in units of s1, 
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COMMENTS 
I3 J. Volk Forslund has discussed (p. 346) heat current instabilities and anisotropy- 
induced instabilities. Hollweg, Pilipp, and I have been working on anisotropy instabilities 
to see whether one can, without heat current, reduce the proton anisotropy and at the 
same time heat the protons, because it turns out from the fluid models that the protons 
always come out too cool. This then is in some contrast to the model of Kennel and Scarf 



who used, as we do, parallel propagating hydromagnetic waves. Because in their 
model-although this is the most likely candidate to  reduce the proton anisotropy-at the 
same time the protons are cooled, and this is not in line with the two-fluid model. So we 
include an electron anisotropy and try to see whether the electrons, which are hot and 
anisotropic, can both lower the anisotropy and heat the protons. 

In the right-hand side of figure 1 we have plotted wi, the imaginary part of w (the 
growth rate) versus a,., which is the real frequency. Both are normalized to the proton 
gyrofrequency. This is a numerical calculation. I show you that particular case, although 
it does not involve the best parameter one could choose, to demonstrate what one obtains 
in general. Starting for small k ,  the firehose is excited in this particular example, and then 
the curve turns down; there we come to the Kennel and Scarf mode. For still larger k the 
curve turns back and up and develops into a negative frequency, left-hand mode. It is 
clear that in the left-hand mode the protons are in cyclotron resonance and therefore will 
be heated. However, if you look at the parameters they.are quite stringent. In this 
particular example, the ratio of parallel to perpendicular temperature of the protons is 
equal to 5. We took the 0 of the protons equal to 2 and the ratio of electron to  proton 
parallel temperatures as also being equal to 2. And we need a rather large electron 
anisotropy (Tll/Tl)e which we took in this case to be 1.8, which is much larger than 
observed under average conditions. So this is then rather unrealistic. If one now includes a 
heat current, one can reduce the electron anisotropy somewhat. This radiation can easily 
bring the plasma below the firehose limit, which is nice, but the electron anisotropy still 
remains at about 1.5, which is quite high. We then conclude that although one can show 
that this instability not only heats the protons, but also reduces their anisotropy, this 
mechanism generally won't work and that you rather should take heat current induced 
instabilities like those discussed by Forslund, or you heat the protons by, say, the Barnes 
mechafiism or any other wave mechanism. Thus, my conclusion would be that probably 
the Kennel and Scarf mechanism is the best one, besides perhaps the oblique firehose 
case, to reduce proton anisotropy, and the couplings between electrons and protons 
should rather be done by the heat current rather than trying to eliminate energy by 
introducing electron anisotropies. 
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Figure 1. 
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