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1.0 . SUMMARY

The Modular Thermal Analyzer Routine (MOTAR) is a general
thermal analysis routine with strong capabilities for performing thermal
analysis of systems containing flowing fluids, fluid system controls (valves,
heat exchangers, etc.), life support systems, and thermal radiation situations.
Its modular organization permits the analysis of a very wide range of thermal
problems from simple problems containing a few conduction nodes to those con-
taining complicated flow and radiation analysis with each problem type being
analyzed with peak computational efficiency and maximum ease of use.

MOTAR gives its user the ability to obtain the transient or steady
state solution of a problem using either the forward differencing, mid-
differencing or backward differencing finite difference solution methods.
Transient and steady state analyses may be performed during the course of
a single problem so that as an example, a transient analysis may be initiated
at some steady state condition. In addition any number of transient and/or
steady state problems may be analyzed on a given problem by applying the
user logic capability on MOTAR.

Numerous options are available with MOTAR for determining time
and temperature dependent thermal conductors, capacitances, and absorbed
heat values. In addition to these standard options the user may supply any
functional relationship desired for these elements in the user logic block.
Option are available for analysis of convection and flow conductors which
utilizes the results of the simultaneously performed flow analysis. Also,
extensive radiation analysis capability is supplied which provides for
determination of radiation interchange factors for any combination of
specular and diffuse radiation. A number of thermal nodes may be combined
into a single surface to greatly reduce the amount of computer time required
for determining the interchange factors and calculating the net heat flow
due to radiation interchange during the problem. Additional thermal analysis
capabilities available as options include (1) cabin air thermal and mass
balance analysis including condensation and/or evaporation from the walls
(2) heat exchanger simulation ability for counterflow, crossflow, and parallel
flow exchangers and (3) inline heater analysis.

A pressure/flow analysis of a fluid flow system consisting of an
arbitrary tube network may be performed simultaneous with the thermal analysis
so that on each iteration the thermal problem is updated based upon the latest
flow conditions and .vice versa. If only a pressure/flow analysis-is desired
with no thermal analysis this may also be performed on MOTAR. The tube/flow
path methods used on previous VMSC routines for flow analysis have been re-
placed in MOTAR with a pressure node/tube conductor network method. Using
this method the number of simultaneous equation that must be solved is reduced.
Also, the user has much more flexibility as to the type of flow system that
he may analyze. For instance, the user may connect any number of tubes at
a junction from two to a large.number whereas previously three and only three



connections were permitted. Also, the connections need not follow any fixed
pattern as before (i.e., off-center flow paths are handled automatically).
The valve pressure drops are readily included in the pressure/flow balance
for all types of valves with the revised method contrary to previous
methods. Several options are available for qbtai.ni.ng friction factors and
head loss values.

To enhance the pressure/flow analysis capability extensive valve
and pump analysis capabilities have been included in MOTAR. The previous
five valve types plus considerable additional capabilities have been simplified
into three valve types. The valves have been formulated so that the control
of either cooling (space radiator) or heat (solar absorber) situations may
be controlled with any of the valve types. Pump options including tabulated
pump curve of pump flow vs pressure drop or polynomial curves of pressure
drop vs flow rate are available with accelerated methods for convergence of
the pump and flow system characteristics.

The input for MOTAR has been designed to give the user a high
degree of effectiveness and flexibility while maintaining an easy-to-use
format. The effectiveness is accomplished by providing powerful options to
the user which permit the input of large quantities of data with a single
entry in the input. The flexibility is obtained by providing the user with
a large number of options for each data entry. Many features were incorporated
to make the routine easy to use which include the use of descriptive names
to identify data blocks, the ability to omit blocks not requiring input data
for a given problem, and the use of a free form input format. Several
input/output options were made available to aid the user which take advantage
of the magnetic tapes available on the Univac 1108 computer. Included in these
were the data tape/edit capability, restart tape ability, plotting and/or
starting from a previously generated history tape and the supplying of heat
flux values on a tape.

The organization and programming methods applied to MOTAR achieved
a high degree of computer utilization efficiency in terms of computer execu-
tion time and storage space required for a given problem. The computer time
required to perform a given problem on MOTAR is approximately 40 to 50 percent
that required for the currently existing widely used routines '4,15,24 .
The computer storage requirement for MOTAR is approximately 25 percent more
than the most commonly used routines I4>!5 for the most simple problems
but the data storage techniques for the more complicated options should save
a considerable amount of space.

Superscripts represent the reference number for references found in
Section 6.0.



2.0 INTRODUCTION

During the past eight years the Vought Missiles and Space Company
(VMSC) of LTV Aerospace Corporation has been involved in the development
of special purpose computer routines for the thermal analysis of systems with
flowing fluid, life support components and enclosure radiation. The develop-
ment of these special purpose routines was necessary to obtain the analytical ,g
capability required for the design and simulation af space radiator systems ' '
environmental control and life support systems ' and fuel cell cooling
systems, ' since the required analytical tools didn't exist. Some of the
VMSC developed routines were used foijvthermal simulation-of the entire
spacecraft for the LM ascent stage, LM decent stage, and the Apollo Block I
and Block II Command Modules '.

Advances in computer technology such as the advent of the Univac
1108 Fortran V computer language made possible the assembling of the pre-
viously developed specialized capabilities into a single computer routine
without loss of computational efficiency. This assembly of these capabilities
into a user oriented routine efficient in terms of both computer time and
space was the objective of the Modular Thermalizer Routine (MOTAR) which
was developed by VMSC and is described in this report.



3.0 ROUTINE ANALYTICAL METHODS '. ..

This section describes the analytical methods used in the Modular
Thermal Analyzer Routine (MOTARJ. MOTAR solves thermal and flow problems
simultaneously for either transient or steady state temperature conditions.
In either case, it solves a discrete lumped parameter finite difference user
input Mathematical Model. Several methods of solution are available to the
user for the transient thermal problem including explicit forward differen-
cing, implicit mid-differencing and implicit backward differencing. Two
methods are available for solution of the flow problem; namely, the direct
solution method using the Gauss-Jordan elimination technique for small
problems, and the successive over relaxation method for larger problems.

MOTAR contains special capabilities to enhance thermal and flow
analysis. Capabilities related to thermal analysis of flowing and life
support systems include the calculation of flow and convection thermal con-
ductors using flow data, numerous options for determining heat exchanger
performance, and cabin thermal and mass analysis. In addition to the normal
radiation conductor capability, provisions are available for determination
of radiation interchange factors (Script - F) for any combination of specular
and diffuse radiation and incorporation of those factors into the thermal
analysis. These Script F values can be determined for infrared as well as
any number of wave length bands for incoming non-infrared radiation. The
pressure flow analysis is augmented with numerous options for determining
friction factors, determining valve performance, and balancing the system
flow rates with pump curves.

These capabilities are discussed in detail in Sections 3.1 and 3.2
which follow. Thermal analysis capabilities arevdiscussed in 3.1 and pressure/flow
analysis capabilities are discussed in Section 3.2.

3.1 THERMAL ANALYSIS

MOTAR gives its user the capability to determine the approximate
solution to the differential equations which govern the transient tempera-
ture behavier in a media. This solution is obtained by approximating the
non-linear partial differential equations with a set of difference equations
which are solved by successively solving a set of algebraic equations.
Provisions have been incorporated into the solution methods to permit the
analysis of a general n-dimensional structural problem as well as problems
containing radiation and convection to a fluid. Because the finite difference
method evaluates equation constants at very short time intervals nonlinearities
such as radiation, varying convection coefficients, and temperature dependent
properties are easily approximated by linearizing over the small intervals.
Numerous options are available for evaluation of these nonlinearities.
Options are also available for characterizing components commonly found in
flowing fluid and life support systems such as heat exchangers, fluid heaters
and life support cabins.

The following sections describe the MOTAR thermal analysis capability
in detail. A brief derivation of the finite difference equations is given
in Section 3.1.1. The methods for solving these equations are discussed in



3.1.2 and the supporting features for evaluating the nonlinear coefficients
and characterizing the special components are discussed in Section 3.1.3.

3.1.1 Finite Difference Analysis

The nonHnear partial differential equation which governs the
heat conduction in a three dimensional conducting media can be derived by use
of Fouriers heat conduction equation and an energy balance on a differential
element to be

+ A (k aj_, t q^. i i*. i > (1)

where T = the temperature which is a function
of x, y, z and time, tj

P = density of the material

C = specific heat of the material
P

kx, ky, kz = thermal conductivity in directions x, y, and z

q = the heat generation per unit volume and unit
time

The thermal properties, P , Cp, and k, can in general be functions of
temperature which makes equation (1) a second order, nonlinear partial
differential equation. A general form of the boundary conditions which •
may be encountered is given by

V Y 7AB' B' B

*T(XB,YB,ZB)

where XD,YD,ZD is the body surface
O D D

N is the surface normal

(2)

When f;|=0, the boundary condition is that of spatially variant
and time variant surface temperature. When fg = 0, trie boundary condition
is that of spatially variant and time variant surface heat flux. For fi,
^2 and ^3 all ndn-rzero, the equation represents a convective, radiative, or
combined convective/radiative boundary condition where both the heat trans-
fer coefficient and the sink temperature are spatially variant and time variant.

The equations defined by equations (1) and (2) have been solved
for a large number of special cases T-10 but in general approximations must



be introduced in order to solve a given problem. One such approximation
which permits the general solution of equations (1) and (.2) (subject to the
approximation) is that of finite difference representation of the differential
quantities. This permits the non-linear partial differential equation given
by (1) to be written in terms of a set of linear algebriaic equations which
with the aid of the electronic computer can be successively solved to obtain
general problem solution. This is the approach taken in MOTAR.

Using the finite difference method, the partial derivatives
given by equation (1) are approximated by differences as follows:

Let
ai = i.

n+l n

AT
(3)

where T.n + 1 = the temperature at node i at the finite
approximation of time (iteration) n + l .
Node i is located at x, y, z

= the temperature of node i at time h

= the finite time increment

We will assume the thermal properties can be assumed constant over the
small time increment, AT . Thus, the terms on the right side of equation
(1) become

where N is either x, y, or z

We will approximate by subdividing each N coordinate,into a grid

in space of width AN. The approximation is then,

ytti T m y m ., - tn
o i-An i - i i+An

AN AN

AN

T m _ T m T m _ ,. r
' j -Am i + I'-tAH-'. i

y 2
* M *— ' A M ̂ *AN AN

(4)



Where

T.m

mTi

T.i+An

AN

m

is the direction of the derivative (x,y,or z)

is the temperature of the node adjacent to i in the
-N direction at time m

is the temperature of node i at time m

is the temperature of the node adjacent to i in the
+N direction at time m

is the grid with in the N direction

is the time for evaluation of the derivative
somewhere between T and r + &r . •'•

If the above approximations of equations (3) and (4) are substituted into
equation (1 ) we get

"iCDi

T m -- m
i-Ax i +

AX2

T m j m
i+Ax " i

A V 2AX

+ k
•_ in T m T T m

i -Ay i + i +Ay" i
2 , 2Ay . Ay

^t
"j m , -j m

i-Az i
T m T m"

i+Az " i
2 2Az Az

+ q

,If we multiply the above equation by the volume of node i, AV. , where

We get

AV1 = AX • Ay • Az

Az

^

i+Ax

-T m

AY AY

+ k AX AY
Z ~AZ"



If we note that

= Mass of node i

Ay-Az = A = Area for conduction in the x direction
• ' , A . •

Ax-Az = A = Area for conduction in the y direction

Ax-Ay = A = Area for conduction in the z direction

q Av = (f = The total heat originating at node i1 at time m • • ••

then we can write the above equation as

WC / T n+1 T n\ K A /Tm -T m\ k A / Tm T m\
i Pi ( i 'i U KxAx f ' i -Ax 'i + kxAx [ Ti+Ax Ti

\ ~AT / ~AX~\ 7 ~A)T \ /

k A . /T?m -T m \ K A /Tm -T m\ k A /Tm -T m \
1--AX Ti + :&_(Ti+Ay Ti ).+ k z A z( T i -Az Ti

/ AY V / ~AZ~\ /

(5)
m

AZ \ / -v-|

If we examine equation (5) term by term we see that the left side is the
rate of heat storage required to raise the temperature of the node i mass,

wi,at the rate of (Tin + ] - T-,-n)/AT and is thus the heat storage
rate of node i. Each of the first six terms on the right of equation (5)
represent the rate of heat transfer into node i at one of the six surfaces
of the three dimensional parallelepipid from surrounding nodes. The kA/AX
portion of these terms represent the thermal conductance between node i and
the adjacent node j. Q-j represents the total rate of heat originating at
node i. Thus, the right hand side represents the total heat transfer rate
into node i from its surroundings. If we define

U-. = kA
Axij

and •• Ci = WiCpi

We can write equation (5) in the general form
nc

"i.i-(wy+ V"j=i v i

8



where nc is the number of conductances attaching node i to
surrounding nodes

C. is the thermal capacitance of node i

L).. is the thermal conductance between nodes i and j.
' J

Equation (6) was defined in terms of conduction heat transfer only.
It can be easily extended to analyze a flowing fluid. Consider fluid flowing
in a tube. The energy balance on an elemental length, dx » of tne fluid
can be used to derive the governing differential equation

hP.dX(T-Tt)

ur T »WUpl > .WC /T +WLn 1 ' -p v
dT dxV
dX /

dx

Energy Stored = Energy in - energy out

or

PAcCp

where

;
Pii -

 hp(T-Tt>
(7)

P = fluid density

AC = Fluid flow cross sectional area

C = Fluid specific heat
7 = time

W = fluid mass flow rate down tube

P = wetted perimeter of flow passage

T = fluid temperature

T. = tube temperature
h = convection heat transfer coefficient



If we make the following difference approximations for the partial derivatives,

d.T = -j-n+l_jn
TT~

- Tm ..x-Ax
AX

substitute these into equation (7) and multiply by AX we get the finite
difference fluid heat balance equation for an element of length AX and
cross sectional area Ar

- hPAX [Tm-Tt
m1

or

where , Tn

Tn

Tu
m

Tm

Tt
m

(8)

= fluid temperature of the node at location
X at time r + Ar

= fluid temperature at X and

= fluid temperature of node at
and time r if m = n and r + Ar if
m = n + 1

= fluid temperature of node at X and time r if
m = n or at time 7 +Ar if m = n + 1

= tube temperature of tube node at X and time r
if m = n or at time r +Ar if m = n + 1

=•' WCp product for the fluid node

Note that equation (8) can be cast in the same form as equation (6) with
one exception. The energy represented by the WCp (Tu - T) term only flows
one direction. That is, energy flows from the upstream fluid node but not
from the downstream fluid node. Thus, if we make wCp a one way conductor and
the hA convection conductor, equation (8) is in the form of equation (6) and
we see that we can extend equation (6) to include analysis of flowing fluid
and convection.

10



Equation (6) can also be extended to include analysis of radiation
heat exchange. If we define UAjj by

where <* = the Stephan-Baltzman Constant

.. = the radiation interchange factor

where in this case, UAjj is the heat transfer coefficient between two surfaces
by radiation then radiation heat transfer analysis can be included in equation
(6). Thus, with the above definitions for conductances, equation (6) is
applicable for a very wide class of thermal problems which include conduction
radiation, convection and flowing fluid.

The linear algebriac equation (6) represents an approximation to
the nonlinear second order partial differential equation (1). To obtain the
general solution of temperature as a function of time and location in a body,
equation (6) must be written for each nodal point in the body. (The shorter
the distance between nodal points, the more accurate the solution.) These
equations must then be solved simultaneously for values of temperature at the
node locations at time r + &r based upon the temperature at time r and the
heat flow rate during the time between time r and r +Ar . The time is then
incremented so that r becomes r +Ar and the process repeated. Thus,
the simultaneous equations are successively solved to obtain the temperature
vs time for each nodal location in the problem. The approximate solution to
equation (1) is then obtained in this manner.

As previously mentioned, the value of m in equation (6) represents
the point within the time increment from r to r +\r for evaluating the
flow of heat. The choice of m has a significant effect on the problem
solution formulation. For instance m = n, equation (6) becomes

nc

' ' • ' ' ;-. 'V J=1 . • ' ;
and it can be solved explicitly for Tn + .'1 in terms of known conditions at
time n as follows:

AT
1 J=1 (9)

[ ^.T/-

Here, NN = the number of nodes. This is the explicit or forward-difference
finite difference method.

If m in equation (6) is n + 1, it can be re-written as

11



or nc nc
/
(

\

n+1

n+1 n n+1c + V u ' VT n ' V n T n+l - T n+ n '\s • ' 7 U • • I I • T . U • • I • "* I • « v/ • ' i k i k t_L ^ uj ;i Z- no j i wv 1=1,NN ,1Q,Ar J=l / J=l
This equation represents a set of NN simultaneous equations to be solved for
the T's and is called the implicit backward difference method. It is much
more difficult to solve than equation (9) but it is more efficient than (9)
for certain types of problems because it has no stability restrictions on
the time increment.

Equation (9) assumes the heat transfer rates are established at
the time r , the start of the temperature iteration whereas, equation
(10) assumes the rates are established at time r +&r . A third method
assumes the heat transfer rate is some weighted average between that at r
and that at r+ &r . Let the net heat transfer rate Qnet be given by

Qnet = -

Then :

A C +[1-»]-.C.

( nc
g

nc nc
or

0=1
nc

12



Equation (11) represents the general form of the implicit equation.
When A = i the backward difference equation given by equation (10) results.
When A = o, the forward difference equation given by (9) results. When
A = 0.5 the solution method is called the implicit mid-difference.

In MOTAR, equation (9) is solved for the explicit method and
equation (11) is solved for the implicit methods. Only values for A
of 0.5 and greater are considered for the implicit methods because stability
problems arise for values of a less than 0.5.

A discussion of the implementation of these methods is presented
in the following section.

3.1.2 Temperature Solution Methods

In the previous section the nonlinear partial differential equation
governing the temperature in a material was cast in the form of a set of
linear algebraic equations by use of finite difference approximation. These
equations are solved by MOTAR to obtain the approximate temperature vs time
trace for each lump location (or the steady state temperature distribution
for steady state problems). This is done by obtaining successive solutions
of the equations at small increments of time with each time point.solution
depending on that of the previous time. Two basic methods are currently
available to the MOTAR user for evaluating these transient equations
depending on the point in the time interval that the flow of heat is assumed
to occur. These are the explicit method wherein the heat flow rate is
assumed to be that at the start of the time step and the implicit method
where the heat flow can be evaluated anywhere between mean over the time
step and the end of the time step. Each of the methods are discussed in
more detail below. Methods for steady state analysis are also discussed.

3.1.2.1 Explicit Temperature Solution

When, in obtaining the solution to the finite difference temperature
equations,the flow of heat is assumed to occur at the start of the iteration
the updated temperature for each lump can be solved directly from known values
of temperatures, heat fluxes, and coefficients and no simultaneous solution
is required. The general form of the equation to be solved for each node
is given by '

nc

T n+1 = T n

0=1

13



where: T|n = the temperature of node i at iteration n + 1

T.n = the temperature of node i at iteration n

Ar . = the iteration time increment

C . = • the lunar capacitance = m • Cp

Cp = the specific heat

Ij-jj •= the conductance between nodes i and j

nc = the number of conductances

Q -j = the absorbed incident heat or the heat
generated internally

NN = the number of nodes

Since all times on the right side of equation (12) are known at
the start of each iteration T n+1 can be solved directly. This is performed

' T .

in MOTAR by subroutine EXPLCT and its referenced subroutines.

The values used for U-H must be obtained by different methods de-
pending on the mechanism for heat transfer, (i.e., conduction, connection,
flowing fluid, etc.). The methods used in MOTAR for determining UTJ for
heat transfer mechanisms are discussed in section 3.1.3.

Equation (12) gives a stable solution as long as the time increment,
Ar ., meets the following requirement

nlc nrc , %
U-. + T „ ^ A T 3 03)U 2- 4 >.;..Aij. T.

J=l J=l
Where nlc = Number of linear conductor

nrc = Number of radiation conductor

MOTAR has two options which the user may speicfy regarding the
time increment. If option 1 is specified, the time increment will be
"overriden" for those lumps having smaller maximum time increments than the
problem increment. When this occurs, the maximum time increment given by
equation (13) is substituted for far in equation (12), resulting in a "steady
state" solution for those nodes overriden. If option 2 is specified, the entire
problem will be iterated at the value of the smallest maximum time increment
given by equation (1.3). The user may specify maximum and minimum values of
the problem iteration increment for this option and if the maximum time in-
crement of some node is below the specified minimum iteration increment the
problem will be terminated.

14



3.1.2.2 Implicit Temperature Solution

The finite difference transient temperature equations can be
formulated so that the flow of heat is assumed to occur at some point during
the iteration time step other than the start. With this formulation, the
set of temperature equations must be solved simultaneously as shown below.

The general form of the finite difference temperature equation
assuming the rate of heat flow is evaluated at the fraction, A, of the iteration
is given by

nc

"+I/c, * A Z- O T,
\fc J = l /

+ C. T. i ='1,N• i i i

Where the symbols are as defined in equation (12). A is the frac-
tion of the heat flux at the end of the time step and (1-A) is the fraction
of the heat flux at its start? i.e., if A=.5, the flux is the average between
that at the start and that at the end of the iteration resulting in the mid-
differencing technique. If A=1.0 all the heat flow is assumed to occur at
the end of the iteration resulting in the backward difference method.

If we difine the following,
nc .

b,. = C, + A

we can write N equations from equation (14) for the N lumps in the problem.

- C/ i .- l ,N

J=l . . . -

This set of equations are solved for Tj in MOTAR at each time step using
a modified version of the successive- point-overre Taxation method. The
following is a summary of the procedure:
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1. Assume an initial temperature array called T

2. Calculate time and temperature dependent constants

3. Call PRETMP

4. Calculate values of temperature from equation one lump at a
time. Call this value T. for the ith lump. The value is then
modified by the equation T. = T. + ORP (T, - T.), ORP being
the overrelaxation parameter. The value of T.̂ 's then compared
to T.. If T. - T. is less than an input DTMXA (iteration
limit) the iteration of this particular equation is temporarily
suspended. The value of T. is set equal to T. following the
comparison. ]

5. This procedure is continued until eacfi' lump's equation has been
iterated until the error .satsifies the tolerence; i.e., until
T. - T. is less than DTMXA for each lump, is tentatively

achieved.

6. The process is repeated from step 3. As soon as the last
lump satisfies the T. - T. DTMXA, if all equations were
not iterated, the process is again begun for each lump from
step 3.

The standard SOR procedure is modified in that those equations
which satisfy the .'|T! - T.|< DTMXA are not iterated until all equations have
satisfied the relation. For some problems this procedure has some of the
features of a block-iterative solution. If in a large problem a heat source
is localized, the temperature change would, in an ordinary SOR method, pro-
pagate outward from the heat source in waves. With the above modification,
only those equations of nodes in the immediate area of the distrubance
will be iterated on the second and succeeding few iterations. After these
reach the prescribed iteration limit the procedure is restarted and the
number of nodes whose equations are iterated continuously increases.
After a certain time subsequent to the passage of the "solution wave" through
the various lumps, those lumps near the original distrubance will have
reached a steady state value such that further iterations would not alter
their temperature more than the prescribed limit applied to the iterations.
This modification therefore intuitively leads to a fewer number of iterations,
on the average.

The iteration limit, DTMXA, on the equations is assumed to be
that which guarantees the error in the iteration process to be less than
some specified amount. This amount of iteration error should be chosen to
be well within the expected truncation error.

The selection of overrelaxation parameters, ORP, is of paramount
importance to the user, in that proper selection of it.can reduce run time
significantly. Theoretical analyses of convergence rates for the successive
overrelaxation iteration are summarized in Reference 3. For elliptic
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equations with boundary conditions of the type that the function is specified
constant on the boundary, a typical predicted curve of the number of
iterations to solve the equation as a function of the overrelaxation
parameter is as shown in the sketch below. A value of'1.4 has been found
from experience to be a good first estimate.

Number of
iterations
to solve
equations

1.0 Overrelaxation Parameter (ORP) 2.0

3.1.2.3 Steady State Solution

Two methods are available in MOTAR for determining the steady
state solution for the temperature distribution in a given problem. The
first method iterates the basic explicit equation, equation (12), to so-
lution. The second method obtains the solution to the implicit equation
given by equation (14). The first method results in a block iterative Sidel
iteration method and the second results in a point iterative Sidel method
with successive overrelaxation. The second method generally converges faster
but the first requires less space and thus, can handle the largest problem.

Explicit Steady State

The explicit steady state method is basically the solution of
equation (12) with constant boundary conditions. To accelerate the con-
vergence the maximum time increment,Ar max , for each node given by equation
(13) is substituted for A' in equation (12). This results in the steady
state solution for each node with its surrounding conditions on the previous
iteration for each iteration for problems with no radiation. For problems
with radiation this results in the largest stable change permitted.

Implicit Steady State

The implicit steady state method is basically the solution of
equation (14) with constant boundary conditions, with A=l and with a large
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yalue for Ar . the time increment., so that the terms C/Ar approach
zero. This results in the equation

V- ZUiJTj ' V i=.V,n (15)

Which is solved using the iterative procedure described in section 3.1.2.2.

3.1.3 Thermal Analysis Features

this section describes some of the more significant thermal
analysis features used to enhance the temperature solution methods described
in Section 3.1.2. The items discussed are (1) conductor calculation methods,
(2) heat exchanger analysis method, (3) cabin analysis method and (4) radiation
interchange methods.

3.1.3.1 Conductor Calculation Method

The values of U-jj in equations (12) and (14) are determined by
different methods depending on the heat transfer mechanism. The methods
used to determine the conductors for conduction, convection, radiation, and
for fluid crossing the boundary from one node into another are described be-
low.

Conduction
The conductance between two nodes for conduction heat transfer

is given by:

Where k = thermal conductivity of lumps i and j
A.,-.- = the area for conduction between i and j

A X . . = the conduction distance from the center of node
TJ i to the center of node j

If the thermal conductivities of nodes i and j are different, either because
of different materials or variation with temperature, the conduction con-
ductance is given by

u,_. =
1J AX. + AX.
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Where AX. = the conduction distance from the center
of node i to the boundary between nodes
i and j

: AX. = the conduction distance in node j
J

k., k. = the thermal conductivity in nodes i and
^ j respectively

Convection Conductors

The value of D-JJ for covection between a fluid and a surface
is given by

• " • • u = hA

Where h = the convection coefficient

A = the convection area

Several methods are directly available in MOTAR for determining the heat
transfer coefficient, h .

For flow in a tube the flow regime is assurred to be laminar
when the Reynolds number is 2000 or less. For this regime the heat trans-
fer coefficient is calculated by

h = k 3.66 Fl + .0155 F2

1 X_ + .015fj Xl1

D Wr DJ

(16)

k = thermal conductivity

D = hydraulic diameter to flow

X = distance from tube enteranee

Re = Reynolds number

._ . ._4 m _ ' . - . . .

m = flow rate of fluid

M = viscosity of fluid

p = wetted perimeter of fluid flow passage
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Fl = An input factor for modifying fully
developed flow • " "

F2 = An input factor for modifying developing
flow

Equation (16) is a curve fit obtained by VMSC to approximate the Gratz so-
lution to flow in a tube for values of X^ 1 greater than 0.001.

D RePr

The convection heat transfer coefficient for flow in a tube in
the transition flow regime (2000 < Re < 6400) is approximated in MOTAR
by the following relation:

= K T 0.116 (Re2/3 - 125)(Pr)1/3J

This relation was derived by Hausen and holds only for fully developed
flow.

The relation used in MOTAR to determine h for turbulent flow
(Re > 6400) is the following:

h = .023 D (Re)-8(Pr)1 / 3

A more general option available on MOTAR for determining the heat trans-
fer coefficient is given by the relation

St(PR)2/3 = f(Re)

Where St = Stantion number

= Nu
Re Pr

= h
: CpV

V = Average fluid velocity

F(Re)= An arbitrary function of Reynonds number which
, the user can input as a table

The heat transfer coefficient is calculated by

h = K F(Re) Re(Pr)1/3
D
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Flow Conductors

As described in Section 3.1.1, equation (8) a flow conductor is
needed to analyze the problem of a fluid flowing in a tube. The flow con-
ductor is a one way conductor from j to i and is calculated by

UAj j = W Cpi

Where

UA-jj = the conductance from the upstream lump

W = the mass flow rate in the tube

Cp-j = the fluid specific heat for lump i

The flow rate can be input directly or it may be obatined from a flow
solution which is being performed simultaneously with the temperature so-
lution problem (Section 3.2)

Radiation Conductors

The value of the condudance between two nodes, i and j, by
radiation is given by

Where a = the Stefan-Boltzman Constant

= the radiation interchange factor between nodes
i and j

T = the value for conversion to absolute temperature

This relation is obtained by assuming that the heat transfer between nodes
i and j by radiation is proportional to the temperature difference between
these nodes during the iteration time span rather than proportional to the
difference in the fourth power of the temperatures. This results in the
above linearized coefficient. a and Tz are input values so that the user
may use any system of units for his problem. ̂ A may be either input or cal-
culated internally as described in Section 3.1.3.5.

3.1.3.2 Heat Exchanger Analysis .

Four subroutines have been written to facilitate the thermal analysis
of systems containing heat exchangers. These are HXCNT for analysis of counter
flow heat exchangers, HXPAR for parallel flow exchangers, HXCROS .for cross flow
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exchangers and HXEFF for any heat exchanger with an input effectiveness. These
subroutines calculate the outlet temperatures of two sides based upon the
•inlet temperatures and heat exchanger effectiveness. The relations used for
effectiveness are given by the following equations,taken from reference 17 for

ft first, t.hroi* subroutines.

Counterflow _
~~ ~~ -h- I

K M C ) I
l -

(MC)
1 - S

Where < = effectiveness

DA = overall effectiveness

(MC)- = mass, specific heat product for the side with
the smallest MC

(MC)/ = mass, specific heat product for the side with
the largest MC

The limiting case for this relation are:

(1) When (MC)S/ (MC)j =0,

' = 1 - e - UA/(MC)S

(2) When (MC)S/(MC)/ =1
UA

UA
UA ~ (MC)S+ UA

Parallel Flow

UA

The limiting cases are

(1) When (MC)S /(MC), =0,

" "UA/(MC)s- e
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(2) When (MC)s/(MC)i = 1.,

- 1 - e

,, UA
* (MC)S

2.0

Cross Flow

A. Both Streams Unmixed

= 1 - e
1? \ (MC)/ 1

Where
0.22

= LUA J

B. Both Streams Mixed

UA
t =

UA
MCC

UA
(MC)/

UA

1-e

UA
(MC)/

C. Stream (MC)S Unmixed

_ ( M C ;
TMC!

?• e
I

1 - e

UA
'(MO si

D. Stream (MC), Unmixed

UA
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Using the effectiveness as calculated by any of the above methods, the
outlet temperatures are calculated as follows:

V: — For-t-he-s-i-de-w-i-th-the-sma-l-les-t-MC-,_(-MC.)-s— : _

Touts = Tins - < (Tins - Tin/)

2. The outlet temperature for the side with the large MC is
then calculated by

Toutj = (MC)S (Tins - Touts) + Tin^

3.1.3.3 Inline Heater Analysis

Provisons for the analysis of a fluid heater have been included
in MOTAR with subroutine HEATER. This subroutine simulates an electrical
heater with a control system which turns the heater on when a specified
sensor lump drops below a set value and turns the heater off when the
specified sensor lump rises above another set valve. When the heater is
on an input quantity of heat is added to the heater node.

3.1.3.4 Cabin Analysis

A subroutine has been written for use with MOTAR which will give
the user the ability to perform thermal and mass balance analyses on
cabin air systems .

The cabin heat transfer and condensation analysis involves the
two-component flow of a condensible vapor and a non-condensible gas, with
condensation of the vapor occurring on surfaces in contact with the fluid.
Two problems of this nature have been studied extensively.

V

1. Condensation on, or evaporation from, a surface over which
a free stream of fluid is passing. In this case, for rela-
tively low mass transfer rates , the fluid properties are
assumed to be constant.

2. Dehumidifi cation of a confined fluid stream by a bank of
tubes. In this case there is a marked change in the
temperature and vapor content of the fluid, and the de-
tailed deposition of the condensate is not of primary
interest, this type of analysis is usually handled on an
overall basis similar to heat exchanges effectiveness
calculations.

: The following additional assumptions have been made with respect
to the cabin atmospheric conditions.

1. The heat of circulation in the cabin is sufficiently high
that the temperature and humidity are effectively the
same throughout the cabin.
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2. The velocity at all points where heat transfer and/or
condensation can occur is known, and is propertional to
the total mass flow rate in the cabin.

These assumptions make it possible to calculate the heat and
vapor balance in the cabin for the entire volume as a unit, and to solve
the heat transfer and condensation equations at each node independently of
the other nodes.

Cabin humidity can be determined from an overall vapor balance
in the cabin. The total vapor in the cabin at the end of an iteration is:

WV=WV
 1- + Wv in - Wv out - £ WL

Where Wv - = mass of vapor in cabin at end of iteration i
WV

1- = mass of vapor in cabin at start of iteration i-1
Wv .jn = mass of vapor flowing into cabin during iteration i
Wv out = mass of vapor flowing out of cabin during iteration i
£ WL = mass of vapor condensed during iteration i-1

Wv ,-n is determined from the known conditions of the gas flowing into the* i 1 ' Icabin.

W'v in = m in

Where m in = mass flow rate into cabin
•A in = specific humidity of gas flowing into cabin

= time increment

It is assumed that an equal volume of gas is flowing out of the cabin.
Then,

W v out m out rL
Where ^ = specific humidity in the cabin (at the end of the

c previous iteration)

and m out = m in [ft /Pin]

Where P = cabin density
\f

fin = density of gas flowing into cabin

The condensation term 2W, is determined from the calculations
for the individual nodes as described below. The properties of
the cabin atmosphere are determined from the calculated
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value of W. The vapor pressure in the cabin is

vc
Where Vc = cabin volume

Rv = gas constant
Tc = temperature of cabin gas
Pv = vapor pressure

Assuming that the cabin pressure Pc is a constant, the gas
partial pressure Pa is:

Pa = PC - pv

and . Wa = pa .

Where Wa = mass of non-condensible gas in the cabin.

Now the new value of specific humidity in the cabin can be
determined by

• • • • • • ' W " • '

The properties of the atmosphere can now be determined by

Cpc = Cpg +«AcCpv
~^ + tf/c

k Xkgc

P c = Wv + Ws

Where M = viscosity
Cp = specific heat

k = thermal conductivity
X = molecular weight ratio, Mv
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and all values are evaluated at Tp
 1" . Cabin temperature Tc can be

determined by a heat balance on the cabin atmosphere.

(T in -V~V-.2QL

. (wv + wA)

revious it
Tjn ' = temperature of gas flowing into cabin

Where Tc1" -. Tc after previous iteration

= net heat loss to cabin lumps

The heat transfer between the cabin atmosphere and the tube
and structure lumps in the cabin is defined by:

Qli = hAL1 [ Tc - TL1 ]Ar

Where h = heat transfer coefficient
AL-J = heat transfer area of lump

TLJ = temperature of tube lump

Ar = time increment

Using the Colburn-Chilton heat transfer-mass transfer analogy,
the condensation (or evaporation) at the tube lump is determined by:

A wLi = *m ALi tpv - pwi] AT.

Where WLl- = condensation on wall, Ib.

KJJ, = mass transfer coefficient

Pwj = vapor pressure at TLJ

The latent heat addition to the lump due to this condensation
is

Where A ? latent heat of vaporization (BTU/lb.)

The vapor pressure Pw-j can be determined by a relationship
derived from the Clausius-Clapey.ron equation and the perfect gas law
(Appendix K of Reference /16)
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A rTu - T o i
3To t TL. J

To-

Pwi = Pp e R9

Where P0 is known vapor pressure at a reference temperature

Three methods are available for determining mass and heat transfer
coefficient For tube lumps the equations from Reference 17 for gas flowing
normal lo the tube axis was assumed. Three different equations are used
depending on the value of the Reynold's number.

Nu = 0.43 + .533 (Re)'5 (Pr)'31 Re < 4000

Nu = 0.43 + .193 (Re)'618 (Pr)'31 4000 < Re < 40000

Nu = 0.43 + .0265 (Re)'805 (Pr)'31 40000 < Re < 400000

These equations were derived for an air- vapor mixture, but
should be relatively accurate for other similar gases. The Nusselt and
Reynold's numbers in the equations are defined using the tube diameter
for the characteristic dimension, and the velocity in the Reynold's number
is input at each lump and ratioed to the total cabin atmosphere flow
rate.

Wc_
fi = ^io

Wco

Where Wco = nominal cabin atmosphere circulation rate
vio = velocity at lump at Wco
Wc = circulation rate at time of calculation

K 1/3
Nu = 0.332 Re 'D Pr •' .

Where the Nusselt and Reynold's numbers are local values and
are defined by the distance X from the assumed leading edge. For a wall
lump of length Li which is located a distance LJO from the assumed leading
edge, the average Nusselt number can be defined as:
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Nu = 0.664 Pr 1/3 ^(Rei)-
5 - (Re0)

>5j

Where Nu is defined by LJ

Re0 is defined by L-jp

Rei is defined by L-JO + L-j

The third option is a direct user input for oonvective heat transfer coefficient.

For the determination of mass transfer coefficients, the same
equations as were used for heat transfer coefficient can be used with the
Sherwood number substituted for Nusselt number and Schmidt number for
Prandtl number. However, if the diffusion coefficient for the cabin is
approximately equal to thermal diffusivity, the Sherwood number is equal
to the Nusselt number and the mass transfer coefficient can be determined
directly from the heat transfer coefficient. That is:

Sh = Nu

KmRTgX = hx

~ ~ D I T

If D ~ a then

Km
RT9

Cp Pc

This is the Lewis re lat ionship (Reference 17) . For a mixture of
oxygen and water vapor characteristic values are .866 for the d i f fus ion
coefficient, D, and .879 for thermal d i f fus iv i ty , a, so the relat ionship
should be valid.

For cabin tube and wa l l lumps the values for AQjj and A (K.
are added to the basic heat balance equation for these lumps. Va lues 1

for A QLJ are summed for all par t ic ipat ing lumps for input to the cabin
atmosphere-heat balance. Va lues . fo r AW Lj a re also summed for a l l lumps
for cabin humi-diyt.balance, and the value for total water condensed on each
lump W L-J is maintained.

If the rate of evaporation or condensation is h igh it would be
possible for the cabin humidity to change significantly during a single
iteration. This could lead, for example, to overestimating condensation
by assuming that the humidi ty is constant in the ca lcula t ion . A test of the
approximate vapor pressure in the cabin at the end of the iteration is
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made, and the condensation or evaporation at any lump is reduced, if the
sign of the A W Li term is changed. A value Wv is calculated by:

V =

and PV' = V..
144 Vc

Then for each lump if

Py' - Pwi < Q
Pv - Pwi

a new value of AW[_i is calculated by:

AW L 1 = W f11 L
The new values of A W, • are now again summed for the new value

of 2 A WL for establishing cabin humidity for the next iteration. A test
is also made to assure that Wv' is never less than zero.

3.1.3.5 Radiation Interchange Analysis

Capabilities have been incorporated into MOTAR to facilitate the
analysis of radiation heat transfer in an enclosure. The capabilities include
the ability to:

(1) Analyze diffuse and/or specular infrared radiation in
an enclosure

(2} Analyze diffuse,,.and/or specular non-infrared radiation
for as many wave bands as desired.

(3) Consolidate several temperature nodes into a single
surface to improve computational efficiency

A radiation surface is defined as a group of temperature nodes
which may be assumed to have identical radiating properties, angle factors
and interchange factors. .

The subroutines account for the net radiation heat transfer between
a number of surfaces due to emitted radiation from each surface, reflected
radiation from each surface, and radiation from any number of incident
sources. The reflection of the energy originally emitted by another surface
or from an external source may be either diffuse, specular, or any combination
of the two.

30



Infrared Radi ati on
The radiosity of a surface is defined as the flux of infrared

radiation leaving that surface with a diffuse distribution (according to
Lambert's Law). That energy leaving a surface which has been reflected in
a specular manner does not contribute to the radiosity of that
surface. The incident infrared radiosity is denoted by the symbol H.
The reflectance (1- < ) of a surface is separated into two components,
the diffuse reflectance (P ), and the specular reflectance (ps). Here
is the emmittance of the surface and is equivalent to the absorptance for
long wavelength radiation. With the angle factors (Fij) defined in the
normal way, there exist similar angle factors which relate the geometrical
ability of surface i to radiate to surface j by means of a mirror-like
reflection from specular surface k. Reference to Figure 1 indicates the
method of imagery which will enable the calculation of these reflected
angle factors. Here the angle factor to surface j is identical with the angle
factor to the image of surface j. Also the angle factor is limited by
the ability of surface i to "see" through the "window" of surface k. With
the specular surface angle factors so defined, an interchange factor E.J •
is defined similarly to reference 18 as follows:

^ F U ( k ) •*

Here F^ ./. \ is the angle factor from i to j as seen in the specular surface
k, FJJ^ i \ is the angle factor from i to j as seen in the double specular
reflection from k and / . There are an infinite number of possible
combinations of these multi -reflections. It is evident that the interchange
factors account for the specularly reflected radiant flux from the reflecting
surface. This portion of total leaving flux is not a component of the
radiosity of that surface. The radiosity may be written

and, for ns surfaces,
ns

Now the interchange factors obey the reciprocity relation

Ai Ei := A Ei (20)
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So, H i ' " -4-^ j "1j (21)
J

Substitution into the equation for B results in

. U - lJ l1 (22)
J

This equation represents a set of linear, simulteneous, inhomogeneous
algebraic equations for the unknowns (Bj;). The symbol 6n-j is the Kronecker
delta function which is 1 when i = j ana is 0 when i ? j.

Note that the coefficients of Bj in equation (22) do not form a
symetric coefficient matrix since the off diagonal terms contain - p^E j j .
This equation can be made symetric by multiplying each equation by A-j /pn-
This gives

^ ) Bi = li_Ai
/ Pi

oT4 (23)_ _
J \ PI / Pi i = 1 , ns

Written in matrix form this equation is

(24)
Where E is a symetric coefficient matrix. The solution is

B = r'r = e : i T (25>

or

i AJ „ T <2 6>
The net heat transfer rate asorbed by surface i is given by

Q. •= A i S [H. - a T i
4 ] (27)

Where H-j is given from equation
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\r

Substituting in for H-j gives

I = Vii4 (Bi -'1^1
-4-

pi

Ai f i
P~

Ti
(28)

Substituting in for Bj from equation (26) into equation (28) gives

ns ,

P.

ns

Pi

oT. (29)

4 4Since, in steady state, Qj = o , and Tj = T- for all i and j we can
conclude that . ns

p . + f . - e . f . A .1 1 U i i
p. 0=1

eT . < . A .
iJ J J

Making the above substitution in equation (29) gives

ns

" ( ' * * e

P. P,
'I J

If we define °^ as
_

. f . A .e . .
i J. J U

(30)

(31)

then

J=l

(32)
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This equation gives the heat flux between surfaces. However, each sur-
face can contain several nodes. The heat absorbed by for each node is
determined by

ns
4 v 4

. Ai J=l

Where n = the node number on surface i

(33)

Prior to each iteration, the temperature of the surfaces are determined by
nn . . nn .
V A T V A T

A Vi n n - ^ n n
T 4 n=1 _ - n=iTi = - mr - — ̂  - -(34)

F A A .
- £1 n

Where nn = the number of nodes on surface i

Since the heat transfer rate given by equation (33) depends on the node
temperature, stability considerations must be taken into account. This is
handled by storing the following relation into the array containing the
sum of the conductors used for time increment calculation

= 4 An a Tn
3

PC (35)

J=l

Subroutine RADIR makes the calculations necessary to obtain
Qn given by equation (33) and CONn given by equation (35) . The following
is a summary of the calculations:

A. The following are performed the first time through RADIR:

1. From the user input values of E-JJ, A-j , and Pj , the E
matrix given by equation (24) is formed. Only half of the
symetric matrix is stored to save space. _-,

2. The E matrix is inverted in its own space to get E~ with
elements e-jj

3. The^A-jj values are determined from equation (31) and
stored in the surface connections data.

B. The following calculations are performed on each temperature
iterations; . -

1. The temperature of each surface is calculated by equation
(34).

2. The heat absorbed for each node is determined using
equation (33) and is added to the Q array.

The routine utilizes .data used for obtaining^A^ j in step A as working .
space for step B, thus, maximizing space utilization.
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Radiation from External Source
As with the infrared radiation, the solar (or any other non-

infrared radiation) interchange factor is defined by

Where P£S is the solar specular reflectance of surface K

F. .(K) is the angle factor from i to j as seen in the
1J specular surface

F..(K,/) is the angle factor from i to j as seen in a double
1J specular reflection from j to / to k back to i

The interchange factors, as defined above accounts for the specularly flux
reflected from the surface. Thus, since the specular component of the flux
is assumed to go directly from surface i to surface j by the interchange
factor, Eij, this portion of the total flux is not a component of the
radiaty for the intermmediate surfaces (k and / above). The radiaty of
surface i is given by

(36,

Where ef is the radocity (energy leaving)

H* is the incident energy

p* is the diffuse reflectanceKi
The energy incident upon a surface is given by

ns.
Hi =. £ BJEV+ sij=i •

Where S-j is the energy directly incident on surface i from
an external source

Substituting equation (36) into (37), multiplying byA./ptand simplifying gives
the following relation for the radocity

(38)
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This set of n equations can be written in matrix form as

E*B*=:S (39)

Note that the equations are written so that E* is a. symetric matrix, which
has the solution for B* ' -

n ,

B* = E*- ]s or B. - V1' fo*'r s ,' (40)

* i ' • J=1

Where [e. .] is the ijth element of the inverse of the E* matrix

The heat flux absorbed by the i th surface is given by
0*
Il_= aH.. . (41)

But from equation (36) n

H1 ' =

Combining equations (40), (41), and (42) gives
n

A/. "V *̂ Jd. _ "I

Q! £-J eij fli j i

J = l P*

i
If we define

*-]
ij _^L J (44)

i
Then the absorbed heat flux is given by

n

(45)

Equation (45) gives the heat absorbed by each surface. However, each surface
may contain several temperature nodes. The absorbed heat for each node is
gi ven by

' h* - ^H n^
Q n = V Q I ... . (4.6)

Where A is the area of the noden . .
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. . . Subroutine RADS0L was written to make necessary calculations to
obtain Qn given by equation (46). The following is a summary..of the
calculations:

A. The following calculations are made the first time throughDAhcni • 3
RADSOL:

1. From the user input values of E*.j., P* , and Ai, the
E* matrix given by equation (39) TS formed. Only one
half is stored since E* is symetric.

2. The E* matrix is inverted in its own space to get E*
with elements, e~|.

3. The ^*- A.jvalues are determined from equation (44) and
stored fn the surface connections data.

B. The following calculations are performed on each temperature
iteration:

1. The heat flux absorbed by each node is calculated by

L A
•A. . . Ai J=l

2. The net heat absorbed by this wave length radiation is
calculated for each temperature node on each surface by

n* = A Q*vn n _h_

This quantity of absorbed heat is added to the Q array for
node n. -

Note that the user may specify subroutine RADSOL for as many bands of non-
infrared radiation is desired. A single call is required for each band.

3.2 PRESSURE - FLOW ANALYSIS

Provisions have been included in MOTAR for the pressured flow
balance analysis of a flow system which contains a network of interconnected
tubes including any combination of series/parallel flow. The effect of
valves may be included in the pressure/flow analysis and the overall system
pressure drop and flow rate may balanced with input pump pressure and flow
characteristics.

3.2.1 Overall Model Description

The model used to mathematically describe a flow network consists
of pressure "nodes" at tube junction and flow "conductors" for the tubes
connecting the pressure nodes. The flow conductors for each tube is calculated
as the reciprocal of the sum of the flow resistance of temperature fluid lumps
in each tube. The conductor/node network method for describing the flow
system was chosen over that previously used because of the computational
advantages and the flexibility it gives the user. The computational
advantages come from the fact that the number of equations which must be
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solved simultaneously are reduced from the number of tubes to the number
of nodes between tubes. The method is more flexible because there are no
restrictions on the number of tubes which can be connected at a junction.

For analysis purposes each flow network is divided into two levels.
These are the "system" and any number of "subsystems". This subdivision is
made to divide the network into those portions not requiring simultaneous
equation solution (the system) and those requiring the solution to a set of
equations(the subsystem). Also, tied to the concepts of system and subsystem
are the two basic classes of valves in MOTAR. These are (1) valves which
dictate a given flow split based upon their position and (2) valves which
dictate a resistance to flow based upon their position (class). Class 1
valves were devised for use in the system where no pressure balance is
obtained and Class 2 valves were devised for use with the subsystem where
the valye pressure drop is included in the pressure/flow balance.

Consider Figure 2 to help illustrate the meaning of system and
subsystem. In Figure 2 (a) if value VI is of the specified flow split type
(class 1) then, the system consists of tubes 1, 2, 11, 12,18, and 19. This
is because the flow in each of these tubes is defined by the flow in tube 1
(the inlet) and the value position. Two subsystems exist for this example
which are those requiring a pressure balance. One consists of tubes 3
thru 10; the other consists of tubes 13 thru 17. In this example, if
valve VI were of the pressure drop type (class 2) then the system would be
tubes 1 and 19 and one subsystem would exist consisting of tubes 2 thru 18.

Figure 2(b) shows an example in which no subsystem is required.
If the valves VI and V2 are both Class 1 (flow splitting) then all tubes
are in the system and no subsystem exists. If valve VI is class 2, then
valve V2 must also be Class 2 and tubes 2 thru 6 belong to the subsystem.
If VI is Class 1 and V2 is Class 2, then all tubes are in the system except
3 and 4 which are in the subsystem. •

The sections that follow give a detailed description of the
analytical methods for (1) determining the conductor values for each tube,
(2) determining the conductor values for valves, (3) determining network
solutions, and (4) balancing system pressure drop and flow with pump flow
characteristics.

3.2.2 Tube Conductor Determination

The value of the flow conductor is determined for each tube by
first calculating the flow resistance for each temperature fluid lump con-
tained in the tube, summing these resistances up to obtain the flow re-
sistance of the tube and inverting the tube resistance to get the conductance
Flow conductance is defined by the relationship

<47).

Where Wjj = flow rate between pressure nodes i and j
G-JJ.. = flow conductance between nodes i and j
Pi = pressure at pressure node i
B = pressure at pressure node j
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Figure 2: Illustration of System and Subsystem Concept
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The flow resistance for each lump is then

H/ = r = — —

VI

Where R, = flow resistance for lump k

AP, = pressure drop for lump k

But AP^ is given by

= f ffC + k 257 (48)

Where f, = the friction factor for lump k

ffc = the friction factor coefficient

L^ = the lump length Tor lump k

P = the lump hydraulic diameter for lump k

^ = the dynamic head losses for lump k

W = the flow rate

g = the gravitational constant

PK = the fluid density for lump k

A = the flow area

The flow resistance is then given by

k w
R,, = f , f fc . T£ + w °k • C k 2gc p.A f c (49)

i\ • , v* ^

Two options are available for obtaining the friction factor, f^. These are
(1) it is calculated internally and (2) it is calculated internally for laminar
flow but is obtained from a table of f vs Re (where Re is the Reynold's number)
for transition and turbulent flow. For the first option the internal calcu-
lations for the three flow regimes are:

Laminar Regime: Re^ < 2000.

Where f, = friction factor for lump k

- Reynolds number for lump k
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Transition Regime: 2QOO < Re k < 4000

k
= .:2086082052 - .186,8265324

+ .06236703785

" Rek

1000
(51)

Rek I2 - .0065545818 " Rek 1 3

TOOOJ

Turbulent Regime: Re,̂ .4000

(52)
f. = .316

".25
Re,

Equation (51) for the transition regime is a curve fit between
the laminar and turbulent regimes which was derived to match the two curves
in a continuous manner. It is merely an arbitrary curve in this undefined
region. A curve of the friction factor VS Reynold's number given by the
above relations is shown in Figure 3.

The second option for friction factor uses equation (50) for the
laminar regime and a user input curve of f|< vs Re for the other regimes.
The options available forinput of the dynamic head loss, 7< , include
(1) an input constant or (2) a tabulated curve of °K vs Re.

To obtain the conductance for each tube,"the flow resistances
for all the lumps in the tube are added and then inverted. That is,

= 1 (53)

£
k

3.2.3 Valve Analysis
As discussed in Section,,, 3.2.1 two classes of valves are available

in MOTAR. For Class 1 valves the valve position dictates directly the
friction of the incomming flow distributed to the valve outlet branches.
For Class 2 valves the valve position and pressure drop characteristics
define the flow resistance for the valve branches. These resistances are
added to the other flow resistance of the tubes to obtain the over all
tube conductance prior to solving for the flow rate.

types are available to the user for both classesA number of valve
of valves which are:

(1) Rate limited . _
(2) Polynomial (replaces the polynomial)
(3) Shut-off propoitioning
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FIGURE 3

Re x 10 J (curve 1) ;

Re x 10 (curve 2)

Friction Factor vs Reynolds Number
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These valves types differ in the relationship between the sensor and the

valve position as described below.

3.2.3.1 Valve Position Determination
Described below are the methods used in the routine to obtain

the valve position. The following section will describe the use of the
valve position to obtain flow split and pressure drop information.

Rate Limited Valve
The valve position for the rate limited valve is obtained by an

• •

approximate integration of the valve rate of movement, X. X depends on
the temperature difference between the valve control set point temperature
and the sensor temperature as shown in Figure 4. With this characteristic,
the valve has no movement as long as the valve temperature error, AT,is
within the dead band. Outside the dead band, the velocity of the valve in-
creases linerarly as the error increases to a maximum rate, X max. The dead
band, rate of velocity increase/dX/d(AT), and the maximum velocity are

controlled by user input.
The relations used to obtain the valve positions are as follows:

Xi+1 = X1 + (Xi+1) (AM (54)

Where .Xi+1 = valve position at iteration i+1
X1 •=. valve position at iteration i
Xi+1 = valve velocity at .iteration i+1

. = the problem time increment

The valve position is limited by
X min, ̂  X < X max

Where X min and X max are input limits on the valve position.

The valve velocity, Xx+1, in equation (54) is given by:

Xi+1 = 0 if |Tsen - Tset I ^ Tdb
Where

Tsen = Sensor lump temperature
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Tset = Set point temperature
Tdb = Valve dead band temperature

X1+1 = dX [ Tsen-Tset-Tdb ] if Tsen > Tset + Tdb
dTAT)

X1+1 = dX [Tsen-Tset+Tdb ] if Tsen < Tset -Tdb
dTAT)

The valve velocity is limited by

Xmin £ X1+1 £ Xmax

Polynomial Valve
The polynomial valve determines the steady state valve position

as a forth degree polynomial function of the temperature error between the
sensor lump and the set point. A valve time constant is then applied to
determine how far between the previous position and the new steady state
position the valve will move. The steady state position, Xss, is given by

X = Ao + A AT + .A/AT* + A, AT3 + A. AT4
ss i f- J H

Where AT = Tsen - Tset
Tsen = the sensor lump temperature
Tset = the set point temperature
Ao, Ar A2, A3, A4 = input constants

The valve position, Xi+1 is then determined by

Where Xi+1 = valve positon at iteration i+1
X1 = valve position at iteration i
Ar = problem time increment
rr = valve time constant
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\ •• .
Note that this valve combines the capabilities of the polynomial valve and

the proportioning valve described in Reference 12. If one desires to

eliminate the effect of the time constant (and thus, give the valve an

instantaneous response), a valve for rc should be input which is small

compared to the time increment, Ar . Also, either a constant value or a temperati

lump number may be specified for the set point to permit the use of the value for

proportioning between two sides.

Shut-off Valve

Two types of shut-off valves are available. For the first, the

valve position decreases from Xmax to Xmin when the temperature of the

sensor lump drops below the specified "off" temperature Toff and increased

from Xmin to Xmax when the sensor lump exceeds a second specified temperature,

Ton. Ton must be greater than Toff. The second type of shut-off valve

works in reverse to the first. The valve position increases from Xmin to

Xmax when the sensor temperature drops below the specified Ton and decreases

from Xmax to Xmin when the sensor lump increases above the off temperature,

Toff. For the second type, Toff must be greater than Ton.

3.2.3.2 Flow Split and Pressure Characteristic Determination

For the Class 1 valves the valve position as determined by the

methods described in Section 3.2.3.1 will determine the flow split directly

between two outlet tubes. (Two are required for class 1). The flow rate
is given by , .

Wj = X Win

. . . - - - - . " . (55)
W2 = (l.-X) Win

Where X = the valve fraction of the total travel from side 1

. Win = flow rate into the valve
•
W-, = flow rate out side 1

W2 = flow rate out side 2

For the Class 2 valves, the position is used to determine the valve

resistance to flow. The valve pressure drop on one side is assumed to be
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given by

_ .(.5.6.)
AP =, E

Where E is an input constant
W is the flow through one side of the valve
X is the valve position (fraction of total possible distance)

Since flow resistance is AP/W, the valve flow resistance is given by

(57)

This value of flow resistance is calculated and added to the other flow
resistances of the tube prior to performing the operation in equation (53)

to find the tube conductor.
Class 2 valves may be either one way or two way - i.e., there may

be one tube or two tubes at the outlet. If only one tube exists on the
valve outlet the flow resistance is calculated using equation (57). above.
If a second tube exists, the resistance on side 2 is given by

(58)

3.2.4 Pressure-Flow Network Solution
After the flow conductor values have been obtained by the

methods described in Sections 3.2.2 and 3.2.3 a set of simultaneous equations
are set up and solved for each subsystem. This set of equations are
obtained by conservation of mass at each pressure node. This gives as many
equations as there are nodes in the subsystem.

For any node i the conservation equation can be written as follows.

- £w.in

Let W.n = W.

y^ G.:.IP. - p. i (60)

J=l
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Then equation (59) becomes

J=T
j - Pi] - Wi =.° . 1=1'n (60)

Where

W.

N

flow conductor between pressure nodes i and j
pressure at node i
pressure at node j
flow rate added at node i
number of pressure nodes in the subsystem

The above equation can be written as a set of simultaneous equations in P
and solved for all pressures. One pressure in the system must be specified,
The set of equation can be written in Matrix from (assuming P is the
specified pressure):

Where

GP.
(61)

j - G23

'Sn-l ,2

n-1
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Wl + Gln Pn

W2 + G2n Pn

Vl +
Gn - 1

Specified Pressure (Doesn't
have to be the last one)

The above equations are solved for pressures at each point in the system
and flow rates are then calculated for each tube (conductor) by:

(62)

Two methods of solution are available in MOTAR for solving the set of
equations given by equation (61). These are the Gauss-Jordon reduction
method, which is a direct solution method and the Seidel stationary point
Iteration method with successive overrelaxation which is an iterative
method. The user may specify which of the two methods to be used.
Normally, for the typical problem the direct method would be used. However,
for extremely large problems where the direct method proves unsatisfactory,

the iterative method may be an improvement. .
Since the flow conductors are functions of the flow rate, the set

of equations given by (61) are solved numerous times on each temperature
iteration with a new set of G.. values for each solution. The iteration
process continues until the change in the flow rates is within some user

specified tolerance before proceeding to the next iteration.
3.2.5 Pump and System Pressure - Flow Matching .

Concurrent with iterating the system flow equation to solution
on each iteration, the overall system pressure drop and flow rate must be

matched to a pump characteristic. Several types of pump characteristics
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are available to the user as options. These are (1) The system flow

rate may be specified as a constant, (2) it may be specified as a known
function of tinio, (3) the pressure drop may be specified ;r, a function

of the flow rate in a tabular form and (4) the pressure drop nwy be

specified as a function of flow rate with a fourth degree polynomial
curve.

The first two options require no balancing of the pump with the

system. Balancing is required for options (3) and (4) and iterative
procedures have been devised to obtain the solution of the pump curve

to the system characteristics with as few passes as possible through the
system pressure/flow balancing loop for these options. The procedures
used for these options are described below.
3.2.5.1 Tabular Pump Curve Solution

The matching of a tabulated pump pressure rise/flow

characteristic to the system pressure drop/flow characteristic is
accomplished by the following precedure. See Figure 5 to aid in following
the procedure.

Step 1: The initial flow rate, W-,, at the system inlet is
established either from user input on the first iteration
or the system flow of the previous iteration for subsequent

.. iterations.
.Step 2: Using W,, a solution to the flow network, is obtained using

the methods described in sections 3.2.2, 3.2.3 and 3.2.4.
Following, this solution, AP. is available establishing
point 1 on the true system characteristic curve shown in
Figure 5.

Step 3: The constants which describe the straight line approxi-
. . mation for the system pressure/flow characteristic is

. • established, (line 0 to 1 for the first pass, line
1 to 2 for the second pass, etc.)

APS = C Ws + D
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Second Approximation
To System

Flow rate, W

Third Approximation
to System

Pump Characteristic

First Approximation
/ to System

Figure 5 System/Pump Curve Solution
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(a) For the first pass,

C = AP]

-fff-

D = 0

(b) For the second and subsequent pass on a

given iteration,

C = AP2 - AP-,
ws

D = AP-, -|AP2 - AP]
ws

w1

Where AP~ and W are the values for the last solution on

the system characteristic (point 2 on
Figure 5 for .the third pass)

AP-, and W, are the values for the next to the last
solution on the system characteristic (point
1 for the third pass)

Step 4: The solution to the approximate system characteristic
and the tabulated pump characteristic is determined by
the following iterative procedure

(a) Start with Wa =. Wl
(b) Determine APa by interpolating the pump curve

• . . - • . - . a t W a . . ;
(c) Determine the flow rate given by the approximate

system characteristic at APa, Wb

Wb = APa - D
C

Where constants C and D were obtained in Step 3.
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(d) Determine the approximate solution, Wc by

W = Wa + Wbc

(e) Check the tolerence:

Is (WC - Wa) < .001 Wa

(f) If the inequality does not hold, set Wa = Wc
and repeat b thru f. If the inequality does hold
W is the solution between the pump curve and
the latest approximate to the system characteristic

and

Wsi = wc

Step 5: Check the following tolerence

Wl - Wsl
- E

If E <.'. .001 * Wr then Wgl and AP, are the solution.
If the tolerance is not met, repeat steps 2 thru 5 using
the latest flow rate, W$1 as W-, and find W$2, Ws3 etc.
until W,, the final solution is located.

3.2.5.2 Polynomial Pump Curve Solution
When the user describes the pump curve with a polynomial curve

fit, the pump characteristic is described by the relation

9 3 + A W
AP^Ao+A^ + A2W^ + A3W

J H4W

When this option is used, the procedure for matching the pump characteristic
described above to the system characteristic is identical to that described
in Section 3.2.5.1 for the tabulated pump characteristic except Step 4 is

replaced with the following Step 4A:
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Step 4A: Set up the equation for W and solve.

(a) ,Set up the equation

Since:

AP -APS =0

AP . = C W + D (C and D are obtained from Step 3,
equation (64 or 65)

AP . = Ao+A,W +A0W
2+A0W

3+A.W4p 1 p <: p 3 p 4 p

Ws = Wp

Then the equation for W_ is

(Ao-D) + (A^C) = 0

(b) Solve the equation for W usinq the Newton-Raphson

Method of solution for a .fourth.order polynomial

The remaining steps are identical to that given in Section 3.2.5.1,

55



4.0 ROUTINE OPERATIONAL DESCRIPTION

-Ih-i-S—s.e.c±-lo.o_describes the nature of the MOTAR computer rouUne
The operation of MOTAR is divisible into three phases. These, are:' (T) the
preprocessing phase which includes the reading of input data, the assembl-
ing of computer generated subroutines, and processing the input data into
a compressed data tape, (2) the compilation phase in which the computer
generated and user assembled subroutine are compiled and (3) the processing
phase during which the compressed data tape is read and the desired computa-
tion are made. A schematic of the overall flow of the MOTAR routine is given
in Figure 6 . This three phase procedure was devised (1) to permit the
tailoring of the main temperature calculation subroutines to conform with
the requirements of the data in the most efficient manner and (2) to permit
the user to perform logical operations and call user subroutines in the in-
put data.

A description of the three phases including a summary of the
subroutines used in each phase is given in the .following subsections. A
listing of all subroutines is provided in Appendix D .

4.1 PREPROCESSING PHASE

During the preprocessing phase of MOTAR the following tasks are
performed: ;

(1) A data tape is generated and/or edited when the user so
requests. . . . . ' :

(2) The input data, which is input in a free field format, is
read from cards or the final data tape,processed for more
efficient use by the computer and stored on a compressed
data tape. . . .

(3) The user logic supplied in the $PRETEMP, $POSTTEMP, $CENTRAL,
and $OUTPUT is read and written in a form compatible with
the Fortian compiler.

(4) The symbolic logic for the transient and steady state tem-
perature calculation subroutine is generated in a form
compatible with the FORTRAN compiler.

A brief summary of the elements used during the preprocessing phase is given
below:

STEP! Specifies the overlay structure of the preprocessing
phase. Elements NTWRK, SUBFLW, SUBCRV, OPBLOK, and
GETCOM overlayed. MAIN is designated as the Main
preprocessing phase routine.

MAIN The driving routine for the preprocessing phase. It calls
on subroutines SUBA and SUBB to generate a data tape,
read input and write a compressed
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data tape, read user logic and write it in required
symbolic form and generate temperature solution sub-
routines corresponding to the requirements of the input

-data-;—They-ca-1-1—on-the-fo-Howi-ng-subrou tines—t-o-per
form this: EDIT, COLCHK, NTWRK, SUBFLW, SUBCRV, PRETMP,
CENTRL, PSTTMP, SUBOUT, ISUBA, KRVS, GENOUT, GETCON,
BLOCK. These are described below.

A) EDIT Places the user input data on a magnetic tape and per-
forms edits to previously generated magnetic tapes.
Calls EXIT if an error occurs.

B) COLCHK Reads and writes data cards, skips blank columns and
locates delimiters.

C) NTWRK Reads and processes the $NETWORK data. Calls the
following subroutines to handle different types of
data:

(1) COLCHK- (Described above)

(2) INTMP - Reads and processes INITIAL TEMPERATURE
data

(3) CAPHT - Reads and processes +CAPACITANCE and
+ ABSORBED HEAT data

(4) SUBCON - Reads and processes 'CONDUCTION' con-
ductor data

(5) SUBRAD - Reads and processes 'RADIATION' conduc-
tor data

(6) SUBCNV - Reads and processes /.CONVECTION' conduc-
: tor data . . . .

D) SUBFLW Reads and processes $FLOW SYSTEMS data

E) SUBCRV Reads $CURVES data and writes it on a drum for sub-
sequent processing

F) CENTRAL (Entry point to OPBLOK) Reads user logic in $CENTRAL
block and writes it on a drum for subsequent pro-
cessing

G) PREOP (Entry point to OPBLOK) Reads user logic in $PRETEMP
block and writes it on a :crum'for subsequent pro-
cessing
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H) POSTOP (Entry point to OPBLOK) Reads user logic in $POSTTEMP
block and writes it on a drum for subsequent processinq

I) SUBOUT (Entry point to OPBLOK) Reads user logic in $OUTPUT
block and writes it on a drum for subsequent processinq

J) KRVS Process $CURVES data which was read by subroutine
SUBCRV

K) GETCON Rearranges conductor connections data for the im-
plicit temperature routines when required

L) BLOCK Writes computer generated and user logic elements in a
form expected by the Fortran compiler

Other subroutines called during the preprocessing phase are described below:

EXIT Terminates the job

NODENO Reads in node numbers for all MOTAR options including
multiple input options

SUBI Reads in integers .

SUBF Reads in real numbers

SUBS .Converts arguments from a field data character to an
integer by means of an Alpha-numeric search

ORDER Orders blocks of data in an array so that one element
of the block is in either ascending or decending order
from block to block.

CONDNO Reads in conductor numbers and connected nodes including
Multiple input options

GENOUT List an array of mixed mode numbers

GENR (Entry point to GENOUT) Lists an array of real numbers

GENI (Entry point ot GENOUT) Lists an array of integers

4.2 COMPILATION PHASE

During the compilation phase, a compilation is performed on as
many as six subroutines which were setup during the preprocessing phase and
any other subroutines which the user may desire to supply. The six sub-
routines which will normally require compilation are tabulated below:
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i STEP2 The main routine for the processing phase. Contains ;
the $CENTRAL user logic as well as logic for reading
and writing a dump tape

PRETMP A subroutine containing the logic from the $PRETEMP

POSTMP A subroutine containing the user logic from the
SPOSTTEMP block

OUTPUT A subroutine containing the user logic from the $OUTPUT
/ block

EXPLCT The transient temperature solution subroutine which
or is generated during the preprocessing phase based

IMPLCT upon the requirements of the input data

EXPSS The steady state temperature solution subroutine which
or is generated during the preprocessing phase based

IMPSS upon the requirements of the input data

The user must also compile any other subroutines required for the problem
during the compilation phase.

4.3 PROCESSING PHASE

During the processing phase the following operations are performed:

(1) The compressed data generated during the preprocessing phase
or from a dump tape is read into core

(2) The $CENTRAL logic is executed. Included in the $CENTRAL logic
are the calls to temperature solution subroutines

(3) The specified temperature solution is performed including the
.following operations:

a) Prior to each temperature iteration, the $PRETEMP logic
is executed

b) Following each temperature iteration but prior to pressure/
. flow balance on the flow systems the $POSTTEMP operations

are performed

c) The pressure/flow balance is performed when required

d) The plot tape is written on the plot interval

e) The normal output is performed on the output interval.
In addition, the $OUTPUT..operations, are performed.
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Two types of subroutines are employed during the processing phase: (1) Those
specifically designed for user calls in the four operation blocks and (2) those
designed for internal program use. The user subroutines are described in
detail in Appendix A. The subroutines designed for internal program use are
summarized below.

STEP2 •. The main routine for the processing phase of MOTAR. It
reads the compressed data tape, performs the $CENTRAL
user logic and calls one or more of the following
temperatures: EXPLCT, EXPSS, IMPLCT, IMPSS. The first
pair or the second pair may occur in the same problem

EXPLCT Temperature solution subroutines which are assembled
EXPSS during the preprocessing phase. (See Appendix A for
IMPLCT a description of the use) These subroutines call on
IMPSS a number of additional subroutines which:

a) Calculate the temperature network elements based
upon various user options

b) Perform, the, ,$PRETEMP, $POSTTEMP, and $OUTPUT user
logic

c) Performs temperature and pressure/flow calculations

d) Writes plot and dump tape

Table I and II illustrate the possible call statements in the order that they
occur for subroutines EXPLCT and IMPLCT. Only those calls needed will actually
exist for a given problem. A brief description of each subroutine is given
below:

TEMP2 Determines the time dependent temperatures by curve
linear interpolation

PFCS Obtains a pressure/flow balance for the input flow
systems. Also calculates valve positions and pressure
drop characteristics and balances the system flow
with the pump flow.

INITL Prints out initial flow rates, pressures, temperatures,
capacitances, heat storage rates, thermal conductances,
and time increments. Also calls PRINTS to write the
initial values on the history tape.

CAPAC1 Performs linear interpolations to obtain capacitance
as a function of time.

CAPAC2 Performs linear interpolations versus time and mul-
tiplies the values times constants to obtain capacitance

• •; . . values.
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>'•/•: TABLE I
LISTING OF CALL STATEMENTS IN SUBROUTINE EXPLCT

•Common and Equivalence Tables

CALL TEMP2
CALL PFCS
CALL INITL
ITIER = 0

100 CALL CAPAC1
CALL CAPAC2
CALL CAPAC3
CALL CAPAC4
CALL CAPAC5
CALL CAPAC6
CALL CONDF1
CALL CONDV
CALL COND2
CALL COND3
CALL COND4
CALL COND5
CALL RADTN
CALL ABSHT1
CALL ABSHT2
CALL ABSHT3
CALL ABSHT4
CALL ABSHT5
CALL PRETMP
CALL KNODF
CALL KOND
CALL RADT
CALL DTAU1
CALL TEMPT
TIME = TIME + TINC
ITER = ITER +1
CALL TEMP2
CALL POSTMP
CALL PFCS
CALL PRINTS
Go to 100

V Writes dump tape

RETURN '
END • ;

62



TABLE II

LISTING OF CALLS IN SUBROUTINE IMPLCT.

Common and equivalence tables

CALL
CALL
CALL

100 TIME0
TIME
CALL
CALL
CALL
CALL
CALL
CALL
TIME
CALL
CALL
CALL
CALL
CALL
CALL
TIME
ITER
CALL
CALL
CALL
CALL
CALL

TEMP2
PFCS
INITL
- TIME
= TIME + ALPHA * TINC

CAPAC1. O
CAPAC2
CAPAC3
CAPAC4
CAPAC5
CAPAC6
=' TIME0
ABSHT 1
ABSHT 2
ABSHT 3
ABSHT 4
ABSHT 5
IRHS

= TIME + TINC
= ITER + 1
TEMP 2
TEMP 1 •
POSTOP .
PFCS
PRINTS

G0 TO 100

Write dump tape

RETURN
END
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CAPAC3 Obtains the capacitance of each node of this type by
— i-nterpo-1-a-ti-ng-a—time-dependent— curve-r~a-temperature

dependent curve and obtaining the product of the two
values and then multiplying the results by an input
constant

CAPAC4 Obtains the capacitance of each node 'of this type by
interpolating a temperature dependent curve and multiply-
ing it by an input constant

CAPAC5 Obtains the capacitance of each node of this type by
interpolating two temperature dependent curves,
finding the product of the two values and multiplying
the results by a constant

CAPAC6 Obtains capacitance as a function one time dependent
and two temperature dependent curves

CONDF1 Calculates the flow conductors for all options

CONDV Calculates the convection conductors for all options

COND2 Obtains conductance as a function of time

COND3 Obtains the conductance by interpolating a temperature
dependent curve with mean temperature between the two
nodes connected and multiplying the result by a constant

COND4 Obtains the conductance between two node, one with
temperature dependent properties, and one without

COND5 Obtains the conductance between two nodes, both with
temperature dependent properties

RADTN Calculates the linearized conductance due to radiation
for a constant £/A

ABSHT1 Supplies constant absorbed heat values to nodes

ABSHT2 Supplies time dependent abosrbed heat values to nodes

ABSHT3 Obtains absorbed heat by interpolating a time de-
pendent curve and multiplying by a constant

ABSHT4 Obtains absorbed heat as the product of a time dependent
curve, a temperature dependent curve and a constant
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ABSHT5 Obtains absorbed heat as the product of a temperature
dependent curve and a constant

PRETMP Performs user logic specified by the user in the
$PRETEMP operation block

KONDF Calculates the net heat flow to each node through flow
conductors (one way) and add the quantity to the Q array
Also adds the conductance values for each node to the
DTAU array for future calculation of time increments

KOND Calculates the net heat flow to each node through the
normal two way conductors and adds it to the Q array.
Also adds the conductance values for each node in the
DTAU array for future calculation of time increments

RADT Calculates the net heat flow to each node due to
radiation conductors and adds the values to the Q array.
Also adds the required constant to.the DTAU array for
calculating time increments

DTAU1 Calculates the convergent time increment for each node
DTAU2 and applies the appropriate limits depending upon the

option

TEMPI Calculates new temperatures using the explicit method

TEMPI Calculates new temperatures using the implicit method

POSTMP Performs user logic specified by the user in the
$ POST TEMP operation blank

PRINTS Performs normal output, checkout print, writes history
tape and calculates incrementing time values.
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5.0 PROGRAM USAGE DESCRIPTION . - . . - . . . _ . . . .

MOTAR can be used to predict the transient or steady state tempera-
ture behavior in a system including the effects of conduction, convection,
andyor radTaTion; to predTct~~t~he pressure and~fTow~rat~e~~for~a~~network-of
tubes containing a flowing fluid for any combination of series and parallel
flow; to perform any general mathematical operation by supplying the required
logic to the user programming blocks including calls to the appropriate MOTAR
library subroutines, or any combination of these three uses. The following
is the sequence of events or steps that the user must follow in performing
a thermal and/or flow analysis:

(1) Mathematical models must be constructed

(2) The values describing the elements of the models must be
established and input into MOTAR in the proper format.

(3) The job must then be submitted to run on the computer system
of interest following proper preparation for that system.

(4) The answers are then received for evaluation by the user.

In developing MOTAR every effort was made to permit its user to complete the
above tasks with a maximum of effectiveness and a minimum of effort. The
input format was designed to be as powerful as possible while remaining
flexible and easy to use. The output was also designed to be flexible, giving
the user the ability to choose any of the many available output options or to
make his own output format when desired. Extensive error messages and check-
out printing should aid the user in checking out new data decks. Extensive
plotting of the output with a minimum requirement of input is available
which should also add to the user effectiveness. Many other input/output
options are included in MOTAR which take advantage of the available input/out-
put devices on the NASA computer system. Included in these are the dump and
restart options, the data tape and edit options, the start from the history
tape options, and flux curves on tape.

5.1 MATHEMATICAL MODEL BUILDING

The first step in performing a thermal or flow-pressure analysis
using MOTAR is that of building a mathematical model. The intent of this
section is to describe the nature of the thermal and flow models needed for
input into MOTAR.

5.1.1 Thermal Models

A mathematical model of the thermal problem must be constructed by
the user so that the elements of equation (6) (Section 3.1.1) can be identi-
fied for input to MOTAR. The equation is repeated for clarity:

c, <T,n+1-T") _ " r - "
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where
C-j = the thermal capacitance of node i

W. = the weight of lump i

C . = the specific heat of lump i

T.n = temperature of lump i at iteration N + 1

T.n =. temperature of lump i at iteration n

AT = the iteration time increment

U. . = the overall thermal conductance between nodes i and j
' J

Q. = the heat rate absorbed or generated by node i

nc = . the number of thermal connections

m = .the time between that corresponding to iteration n and
that corresponding to iteration n + 1 for evaluation

.of the heat flow to the node (i.e., the right side of
the equation)

N = number of nodes

The primary elements that must be identified for input are:

(1) Identification numbers for each node, i

(2) Initial Temperatures for the nodes, Ti

(3) Thermal Capacitances for the nodes , Ci

(4) Absorbed or generated heat fluxes for nodes where applicable,
Qi

(5) Identification numbers for the conductors and nodes connected,
i and j

(6) Conductor Values Uij, whether for conducting, convection,
radiation, or flowing fluid heat transfer

The thermal model of a body is constructed by subdividing it into
a number of small elements of volume. By the finite difference method of
solution the mass of each element is assumed to be concentrated at that nodal
point which lies within the volume of the element. The temperature which is
calculated represents the temperature of the point mass. Care must be taken
in the subdivision of a body into its volume elements. The size of the
volume elements or "lumps" must be small enough to give a sufficiently
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accurate temperature distribution in the body. However, if it is excessively
small a severe computer time requirement may occur. Thus, an "optimum"
size is desired. A detailed discussion on the recommended practices for
thermal model buildinq will not be attempted here. Instead, the reader is
-refered—to-Ref-erenees—I—and—1-3^ —

An example showing the method of subdividing a body into lumps and
identifying the network elements whose values must be input into MOTAR is
shown in Figure 7. Figure 7(a) shows an extended fin with a base temperature,
Tb, and convecting to an ambient temperature, Ta. Solar energy is incident
on the fin from location IT to the end of the fin, ~\2- Figure 7(b) shows
one possible nodal breakdown for building a thermal model. It consists of
5 nodes which have been arbitrarily numbered representing equal volumes
bounded by the fin temperature and the air temperature with absorbed heat on
the last three nodes. Figure 7(c) shows the thermal network of the fin for
the nodal breakdown of Figure 7(b). Identified on the network are the
elements whose values must be input. The T's represent the node temperature,
C's represent the node thermal capacitances, Q's represent the node absorbed
heats, and the G's represent the conductance values between nodes which have
also been arbitrarily numbered. The capacitances are calculated by

C(-I) .= (P)(VOL) (Cp) .

where
CM) = capacitance of node I ,

p = Density of node I

VOL = the volume of node I .

Note that the boundary nodes, #6 and #7, have no capacitances since their
temperatures are specified. The conductances for 6(1) through G.(5) are
calculated by the relation for conduction which is ,

' kA

AX

where ;
k = thermal conductivity .•

A,.: = area for conduction

Ax = the conduction distance

Those for G(6) through G(10) are calculated by the relation for convection
which is

G(I) = hA

where •" •
h = convection coefficient

A = area for convection

68



Base Temperature, T

/, /2

Convection to Air at Temperature, T.

(a) Extended Fin to be Analyzed

Heat transfer by convection

T., = T
6 a

(b) Nodal Breakdown

_c_(i) C(2) C[3)

Q(s)̂ p Q(H;
G(sWr(3) G(l

(c.j Thermal Network

Figure 7: Example Thermal Mathematical-' Model
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The absorbed heat for nodes 3 through 5 is calculated by

W> = -rfs A'Qsolar-

where 7. '.
Q 1 = Incident solar energy per unit area of the fin

A = Area of incident solar heat

as Absorptivity of the fin surface to the incident heat

The input values for T's defining the initial and boundary temperature for the
problem complete the identification of the elements for the problem.

5.1.2 Fluid Flow Models

A flow problem may be analyzed with MOTAR, either simultaneously
with a thermal analysis, so that the flow solution is continually updated
based on the thermal conditions or, the flow problem may be analyzed
separately without any thermal analysis. To perform a flow analysis, the
user must input a mathematical model of the flow system. The flow system is
assumed to consist of a set of interconnected tubes such as the example
shown in Figure 8(a) which consists of two radiator panels, each containing
four tubes and connected so that they flow in parallel.

For clarity the following definitions are made at this point:

(1) A tube is any single length of pipe between two pressure nodes.
A tube "contains" fluid temperature nodes and may contain as
many of these as desired,

(2) A pressure node is located at each end of a tube. As
many tubes as desired may be connected at a node junction and
a node must exist at the junctions of two flow pipes.

We must make a mathematical model to describe the information of equation (60).
to the computer. The information required consists of

(1) Identification of the pressure node numbers

(2) Identification of the tube numbers and the two pressure
nodes connected by tube

(3) The fluid temperature nodes contained in each tube

(4) The flow geometry for each temperature fluid nodes

(5) the number of "head losses" such for items such as orifices

(6) Fluid property information
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(a) Flow System to be Analyzed

P(8)

Specified
sure Node

G(9)

(b) Pressure Node/Flow Conductor Network

Figure 8 Example Flow System Mathematical Model
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The fluid flow mathematical model may be described as a network equivalent
to an electrical resistor network. For instance, the flow system shown in
Figure fi(a) can be described by the resistance network shown in Figure 8(b).
In building a flow model the user may either build a resistance/node network
-as—shown—i-n-F-igure-8(-b-)-or-s-imp-l-y-su per impose-t-he—ident-i-f-y-i-ng-number-s-en-a
schematic of the flow system as shown in Figure 8(a). In either case the
identifying numbers and connection information is readily available if the
identifying numbers are placed on the schematic. If one adds the fluid
temperature numbers to the information shown for each tube,the information
for items 1, 2 and 3 above can be read directly from the schematic. Items 4,
5, and 6 must be obtained from knowledge about the system geometry and
materials.

5.2 INPUT DESCRIPTION

The input for MOTAR has been designed to give the user a high
degree of effectiveness and flexibility while maintaining an easy-to-use format.
The effectiveness is accomplished by providing powerful options to the user
which permit the input of large quantities of data with a single entry in the
input. The flexibility is obtained by providing the user with a large number
of options for each data entry. Many features were incorporated to make the
routine easy to use which include the use of descriptive names to identify
data blocks, the ability to omit blocks not requiring input, data for a
given problem, and the use of a free form input format. This format permits
data to be input in any column between 2 and 74;(inclusive) with data values
separated by delimiters.

5.2.1 General Input Requirements .

The user input for MOTAR consists of three parameter cards and
7 major input data blocks with each being identified by a $ followed by its
title. Some of the 7 blocks contain subordinate blocks which are identified
by a -fr followed by the block title. Some of these subordinate blocks con-
tain additional subordinate blocks which are identified by enclosing the
block name between two apostrophies. In addition to the 7 input blocks,
three additional data cards are required. The first supplies information
regarding the method for data input (cards, tape, tape with data edits, etc)
and information identifying whether the run is to be implicit or explicit.
The second card supplies time information and the third supplies input/output
option information and tolerance information for implicit runs.

A list of the possible input blocks including the major blocks and
all the subordinate blocks is shown in Table III.Only those blocks.required
to supply information need be input. If a block is empty its block title
need not be input. Also shown in Table III are three parameter cards and
their location relative to the 7 Data Block. Parameter Card No. 1 is located
immediately following the XQT STEP! card and thus is the very first data
card. Parameter cards no. 2 and 3 are located immediately following the
XQT STEP2 Card and thus, are the very last data input cards prior to the EOF
card. While all of the seven major data blocks may be input either on cards
or on tape, 'the three parameter cards must all be input as cards and must
always be supplied regardless of the type of run.
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TABLE III

SUMMARY OF MOTAR INPUT DATA

7g XQT STEP 1

PARAMETER CARD 1

$ NETWORK DATA

+ INITIAL TEMPERATURES
+ CAPACITANCE1

+ CONDUCTORS
'CONDUCTION1

'RADIATION1

'CONVECTION'
'FLOW

+ ABSORBED HEAT DATA

$ FLOW SYSTEMS

+ SYSTEM XX (CODE XX)
'PARAMETER'
'FLOW NETWORK'
'SUB-NETWORK = 1'
'SUB-NETWORK = N'
'FLUID LUMP DATA1 :
'PUMP1

'VALVES'

+ SYSTEM XXX (CODE XXX)
'PARAMETER1

$ CURVES

$ CENTRAL

$ PRETEMP .

$ POSTTEMP

$ OUTPUT

$ END

7g FOR, K STEP2

7g FOR, K TF.MPTR

7g FOR, K PRETMP

7g FOR, K PSTTMP

7g FOR, K OUTPUT

7s FOR, K TEMPSS

7g XUT STEP 2 '

PARAMFTFR CARD 2

PARAMETER CARD 3

78 EOF
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The general rules for MOTAR input which apply for the seven input
data blocks are listed below:

—— —1- T-he—i-npu-t—f-or—any—i-t-em-i-nG-1-ud-i-ng-da-ta—i-n-b-lock-s-or-
block headings can be written in free form in any columns
between 2 and 74 inclusive.

2. All blank spaces in the input are ignored. Thus, a blank
card is also ignored.

3. A comment containing any character can be written on any
card between an asterisk and column 74. Everything between
the asterisk and column 74 will be read and written out.
The comment should not extend into column 75 since this column
is used for continuation. Columns 1 and 76 thru 80 are reserved
for Edit. The asterisk for comments should not occur in
column 1.

4. A "data group"* can be continued on the following card by
any non-zero entry in column 75. This entry will cause the
data group on the card prior to the asterisk (if one exists)
to be continued on the next card.

5. Several data groups may be entered on a single card if
separated by a slash (/). For example three initial
temperatures (each being a single data group) might be put
on one card as follows:

1 = 90./5= 100. II = 97.5

6. Any system of units can be used for a given problem but all
input items must be in consistent.units. This required the
following values be input in the problem units: (1) the tem-
perature for the input units at absolute zero and the
Stephan-Boltzman constant for thermal radiation analyses and
(2) the gravitational constant (gc) for flow-pressure analysis.

7. The seven data blocks may be input in any order. All sub-
ordinate blocks may be input in any order as long as they
are input under their main heading.

* A "data group" is defined as a group of data which must be input in
a specified order, For instance, the input required for a conductor would
be a data group consisting of the conductor number, the two nodes connected
and the value of the conductance.

74



9.

10.

The heading or title for each data block or subordinate
block is entered with the proper delimeter ($, +, or ')
followed by the block title or at least the first three
letters of the title (May be input, in any column between
2 and 74 inclusive)

Any block or subordinate block not required can be omitted
including its heading card if it supplies no information.

Numbers may be input as integers or real numbers. The real
numbers may be input in pure decimal form such as 3.54 or
in exponential form such as .376E-10 where the exponent is
-10. As with all other input, blanks in numbers are ignored
so that 3. 54 would be read 3.54. Also, the user may
input as many significant figures as desired and the computer
will pick up to the maximum digit capability of the machine.

The input requirements for the parameter cards, the 7 major data
blocks, and their subordinate blocks, are described in the following sub-
sections .

5.2.2 Parametric Data Card

Three parametric data cards must be supplied on each MOTAR run
to supply data edit information, time information, input/output codes and
implicit run information. Unlike the seven data blocks, these cards must
always be supplied and the data must be entered in a fixed format. The
location-of the parameter cards relative to the other input data and system
setup cards is shown in Table III. A description of the input for each of the
three parameter cards is given below:

PARAMETER CARD NO. 1

COLUMNS FORTRAN : FORMAT
NOMENCLATURE

1-5 INDATA 15

6-10 MPLCT

PARAMETER CARD NO 2

"1-10 TIME

15

F10.0

DESCRIPTION

=0, All data supplied.on cards
=1, Card images are written on Unit B
=2, Card edits with Unit C used to

generate unit B
=3, Use unit B without edits
=-2, Same as 2 except data from Unit B

will be punched ;
=-3, Same as 3 except data from unit B

punched
=0, Explicit method of solution
7*0, Implicit method of solution

Problem Start Time
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COLUMNS FORTRAN FORMAT
NOMENCLATURES

DESCRIPTION

TTNCMN- -FT070-

21-30
31-40

41-50
51-60

TINC
STIME

WINC
PINC

F10.0
F10.0

F10.0
F10.0

61-70 TMPTIM

71-80 DQTIME

PARAMETER CARD NO. 3

1-5

6-7

8-9

RTIME

ISTART

NEWTMP

10-11 N'FLXCD

12-13 NCKOUT

14-15

16-20 MXPASS

F10.0

F10.0

•F 5.0

12

12

12

12

Blank

15

s t a bTe~t i me~i n c r em en t~f of~t"lfe—
No Overriding Option. TINCMN must be 0
for the Override or Floating Option.*
Problem Time Increment
Problem Stop Time

Print Interval
Plot Interval. If 0, no plotting will occur

Time that history tape will be read
for initial temperatures, flow rates
and value position. If 0, will be set
to TIME.

Time scale shift for flux curves. DQTIME
is added to the problem time prior to
interpolating flux cruves.

Computer Time in minutes requested for
run if 0., will be set to 5.

= 0, This problem is not being restarted
Data must be supplied for starting
problem

f 0, This problem is being restarted
Restart data is supplied on Unit L

= 0, The history tape will not be read
to obtain initial conditions

^ 0, The history tape, Unit H, will be
read at TMPTIM (Card 2) to obtain
initial conditions

,= 0, No incident heat curves will be
supplied on separate flux tape

/ 0, Some of the incident heat curves
will be supplied on Unit E

= 0, No checkout print will be given
j 0, A checkout print will be given

Maximum number of Gauss^Siedel iterations
permitted on each iteration for solution
to temperature equations. If = 0, set
to 100

See Page A-5
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COLUMNS FORTRAN FORMAT
NOMENCLATURES

21-25 ALPHA- F5.5

26-30 DTMXA F5.5

31-35 ORP F5.4

36-45 SSTEST F10.9

46-55 IPASS 110

DESCRIPTION

Point within the iteration for evalua-
tion of heat flux on implicit runs. If
ALPHA =1.0, backward difference occurs;
if ALPHA =0.5, mid difference occurs;
if ALPHA = 0 it is set to 1.0; if ALPHA
<0.5 it is set to 0.5.

Temperature Solution Tolerance. A
solution is reached when all temperatures
change less than DTMXA on a given iter-
ation. Mhen =0, set to 0.01

Overrelaxation parameter for implicit
solution. Set to 1.0 if 0.

Steady state test. Steady state is reached
when all temperatures change less than
SSTEST on a given iteration; if SSTEST =
0.0, it is set to 0.0001

Maximum number of iterations permitted
to reach steady state; if IPASS = 0,
it is set to 10000.
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5.2.3 Network Data Block ,
The "NETWORK DATA" block contains the information required to

describe the thermal network. • The information is input in four subordinate
blocks with the conductor block containing four additional subordinate blocks

NETWORK DATA block:

$ NETWORK DATA

+ INITIAL TEMPERATURES
+ CAPACITANCES
+ CONDUCTORS

'CONDUCTION1

'FLOW'
'RADIATION'
'CONVECTION'

+ ABSORBED HEATS
The blocks headed by + may be input in any order and those enclosed in apostro-
phes may be in any order but must all be contained in the conductor block. Any
block or subordiante block not required may be omitted. A description of the
input requirements and options for each of the blocks is described below.

5.2.3.1 Initial Temperatures

The initial temperatures are supplied in the block headed by:

+ INITIAL TEMPERATURE

The format for input of the initial temperatures is an integer, or a group of
integers, representing node numbers followed by an equal sign followed by the
specification of the initial temperature. Thus, the numbers on the left side
of the equal specify node numbers and numbers on the right side specify
temperatures. Several options are available for both sides.

The option for specifying the node numbers on the left of the equal
sign are described below.

OPTION 1: Single input

The input .format is: •

NN = TI

where NN = The node number

TI = the node initial temperature

If NN is a negative integer the node is a boundary and no calculation will be
made to change the temperature. Thus, it will remain at the initial value, TI
throughout the problem. If an integer is supplied instead of a real number, it
specifies a time dependent curve which describes the temperature of node NN as

78



a function of time.

OPTION 2: Multiple input separated by commas

The input format is:

Ml, N2, ---, NN = TI

where Nl, N2, —NN = the node numbers with initial
temperature, TI

As many node numbers as desired by be supplied in this manner (see Section
5.2.1 for rules on continuation cards, etc.). The node numbers, N-,, Np —NN,
may be input in any random order.

OPTION 3: Input of a group of sequential nodes

The input format is:

NT thru N2 = TI

where Nl is the starting node number of the group

N2 is the final node number of the group

This option means all nodes between and including Nl and N2 are assigned a
value of TI. Nl may be either smaller than, larger.than, or equal to N2.
It may be an integer or real as described on Option No. 1.

OPTION 4: Input of a group of nodes with equal spacing between
t h e numbers . . .

The input format is:

Nl thru N2 by N3 = TI

where Nl = the starting node number of the group

N2 = the final node number of the group

N3 = the integer spacing for the numbers between the
starting and final numbers

Using Option 4, N2-N1 must be an .integer multiple of N3.

. . Some illustrative examples of the input for the initial temperatures
are shown in Table IV.

5.2.3.2 Thermal Capacitances

The thermal capacitances for the temperature nodes are input in the
block headed by:
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TABLE IV

EXAMPLES OF INPUT FOR INITIAL TEMPERATURES

+ INITIAL TEMPERATURES

1 = 50 * Node 1 is initially at temperature
= 50.

-3 = -459.69 * Node 3 is a boundary at -459.69

2, 4, 5 =75. * Nodes 2, 4, and 5 initially at 75.

6 =11 * Node 6 temp supplied on curve 11.

7 = 62. / 8= 43. /9 = 77 * Initial temperature of nodes 7,8,
and 9 all supplied on the same
card.

10 thru 19 =102. * Nodes 10 thru 19 all have initial
temps of 102.

51 thru 55 = 21 * Temperature vs. time for nodes 51
thru 55 supplied on curve 21.

40, 42 thru 45, 74 = 100. * Initial temperatures ,of node 40,
42 thru 45, and 47 are 100.

22 thru 38 by 2 = 57. * Temps for even nodes between 22 and
38. . , :

20, 21 thru 39 by 2, 56
thru 60 = 66. * Temps for node 20, odd nodes between

21 and 39 and 56 thru 60 =66.
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+ CAPACITANCE

which is subordinate to the NETWORK DATA block. The format for input of the
thermal capacitance is specification of the node numbers on the left of an
equal and specification of the capacitance on the right of the equal. The
options for specifying the node numbers are the same as those for the initial
temperatures described in section 5.2.3.1. The values for capacitance are
specified to the right of the equal in either one, two or three values. Any
of the values (whether one, two or three values are supplied) may be integers
or real numbers (containing decimals). When integer values are supplied, each
identifies a tabulated curve to be interpolated during the run. An integer
for the first value to the right of the equal identifies a curve which is a
function of time. Integers for the second and/or third values indicate curves
to be interpolated as a function of the node temperature. Any combination of
one, two, or three numbers,any of which may be real or integers, may be input.
In the preprocessing phase (problem setup) all real numbers are multiplied
together. In the processing phase (the problem analysis) real values are
obtained from the curves identified by integers and multiplied times the constant
values to obtain capacitances on each iteration.

Some examples for capacitance input are shown in Table V.-

5.2.3.3 Thermal Conductors
Thermal conductors are input in a block headed by

+ CONDUCTORS

which is contained in the higher level $ NETWORK DATA block. The + CONDUCTORS
blocks data is contained in four subordinate blocks headed by 'CONDUCTION1,
'CONVECTION' , 'FLOW1 , and 'RADIATION', each containing the input for the type
of conductor indicated by its descriptive heading. Some of the general rules
which apply to conductors are:

(1) A conductor number must be unique regardless of the type
of conductor. That is, a conductor number used in one
block cannot again be used in that block or any of the
other three blocks.

(2) Conductor numbers do not have to be input in any particular
order. Also, they do not have to be numbered sequentially
although sequential numbering is most efficient from a
space utilization standpoint..

(3) The four conductor subordiante blocks may be input in any
order as long as they are within the +'CONDUCTOR'heading.

(4) The headings for each of the conductor subordinate block
consists of their name enclosed in quotations as follows:

(a) 'CONDUCTION'
(b) 'CONVECTION1

(c) 'FLOW1

(d) 'RADIATION'
The nine general rules previously given for input also apply.

The input format for the conductors consists of connection
identification numbers (conductor numbers, and nodes connected) on the left
side of the equal and specifications for determining the conductor value on
the right of the equal. The options for specifying connections identification
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TABLE V.
EXAMPLES OF CAPACITANCE INPUT

+ CAPACITANCES

1
11,12,13
3 THRU 10
12
13 THRU 17 BY 2

14 THRU 18 BY 2 . :

19 THRU 25,31 THRU 35

26 THRU 30

36
37
38

39

40

41

• = .35
=. .47, .06, .53
= .61, .27
= .32,62.4,22
= .32,12,22

= '- .07, 12, .5

= .57,12

= 41,. 06, 70.

= 41,5.3
= 51
.= 61,12,22

= 61, 12, .76

= 61 ,70., 22

= 61,12

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

C(l )=.35
C(11)=C(12)=C(13)= .47X.06X.53
C(3)— C(10) = .61X.27
C( 12)=. 32X62. 4XCURVE(22,T(12))
C(13)=C(15)=C(17)=.32XCURVE
(12,T)XCURVE(23,T)
C(14)=C(16)=C(18)=(. 07) (CURVE
(12,T)X.5
C(14)— C(25) ,C(31)— C(35)
=.57XCURVE(12,T)
C(26)— C(30)=CURVE(41 JIME)
X. 06*70.
C(36)=CURVE(41,TIME)X5.3
C(37)=CURVE(51,TIME)
C(38)=CURVE(61 ,TIME)XCURVE
(12,T(38))XCURVE(22,T(38))
C(39)=CURVE(61 ,TIME)XCURVE
(12,T(39))X.76
C(40)=CURVE(61,TIME)X70.X
CURVE ( 22, T( 40))
C(41)=CURVE(61,TIME)XCURVE

In the comments above,

C(N)

CURVE(M,T(N))

CURVE(MJIME)

Capacitance of node N

the interpolated value of curve M at the temperature
of node N

the interpolated value of curve M at the problem
ti me

indicates multiplication
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are the same for all four conductor blocks and are similar to those for
specifying node numbers in the + INITIAL TEMPERATURE block except the numbers
are input in groups of 3. These three numbers are conductor number, node
connected, node connected. The options for specifying the conductors
values are numerous and vary depending on which of the four subordinates
blocks the input is in. The various options for connections identification
and connection value specification are described below:

Conductor Connections Identifications
The connections identification for the conductors are input

on the left of an input equal sign and they identify the conductor number and
nodes connected. The options are the same for these identifiers (left side of
the equal) for all blocks subordinate to the +CONDUCTOR heading. The options
for connection identifications are described below:

OPTION 1: Single connection input

The input format is:
NC, Nl, N2 = VALUE

Where NC = the conductor number
. Nl ,N2 = Nodes connected
VALUE = The specified value of the conductor (many

options are avaiable depending on the type of
conductor

The order of input of Nl and N2 is important for the'FLOW block and 'CONVEC-
TION1 block.

OPTION 2: Multiple input separated by commas

The input format is:

NCI,Nil ,N21,NC2,N12,N22,—NCn,Nln,N2n = VALUE

Where NCI ,NC2 -—-NCn = Conductor numbers
Nil, N21 = First set of nodes connected

Nln,N2n • = nth set of nodes connected

Any option for determining VALUE may be used which is avaiable in the input
block under consideration.

OPTIONS: Input of a group of sequentially incremented
connections

The input format is:
NC1,N11,N21 THRU NCn,Nln,N2n = VALUE
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Where NCI = the starting conductor number
Nil = the starting node number for side 1
N21 = the starting node number for side 2
NCn = the final conductor number
Nln = the final node number for side 1
N2n = the final node number for side 2

For this option, NCn-NCl must equal Nln-Nll and N2n-N21. All the options
available for VALUE are applicable here.

OPTION 4: Input of a group of connections sequentially
incremented by an input integer

The 1nnut format is:
NC1.N11.N21 THRU NCn,Nln,N2n BY 1C,II ,12 = VALUE

Where NCI = the starting conductor number .
Nil = the starting node number on side 1
N21 = the starting node number on side 2
NCn = the final conductor number
Nln = the final node number on side 1
N2n = the final node number on side 2
1C = the increment for the conductor numbers
11 = the increment for the node numbers or side 1
12 = the increment for the node numbers on side 2

For this option, the following relations must hold:

NCn - NCI = Nln - Nil . = N2n - N21
1C ~~ II . 12

When Ix = 0, Nxn must equal Nxl for the nodes connected

'CONDUCTION' BLOCK
Numer options are available specifying the conduction

conductor values or methods for determing their values. These specifications
are input on the right of the equal sign with any of the connections
identification options discussed above on its left. The options for conduction
input are described below.

OPTION 1: Constant Conductor
The input format is:

NC, Nl, N2 = CONST

Where NC,N1,N2 = Connections identification input by any
of the available options

CONST = the constant value of the conductance

OPTION 2: Conduction in homogeneous material which is tem-
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perature dependent. Input by a temperature
dependent curve with a constant multiplier
The input format is:

Where NC,N1,N2

AX

NK (TM)

TM

NC,N1,N2 = AX, NK (TM)

= connections identifications input
by any available option

= the constant portion of the conductance
typically A/X, where A = conduction area
and X = distance

= a temperature dependent curve number
which is interpalated with temperature
TM. Normally this is a thermal con-
ductivity curve

= Mean temperature between T(N1) and T(N2)

= T(N1) T(N2)
2.0

OPTION 3: Conduction in non-homogeneous material where one
material is temperature dependent and one is not.

(A) Nl is the node containing temperature dependent
thermal conductivity.

The input format is:

' NC,N1,N2 = AXT, NK(TM) , KAX2

Where NC,N1,N2 = connections identification input by
any of the available options

AX1 =.. A/X for node Nl
NK(TM) = thermal conductivity curve for the

materials of node Nl interpolated on
each iteration at the temperature of Nl

KAX2 = the constant value of KA/X for node N2

The conductance for each iteration is obtained by

U (NC) = 1

1
AX1 K(TN1)

1
KAT2

(B) N2 is the node containing temperature depen-
dent thermal conductivity

The input format is:
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NC,N1,N2 = KAX1,AX2,NK(TN2)

Where NC,N1,N2 = Connections identification input
-by-a -n-y-o-f—the-av-a-i-1 ab-1-e-op-t-i ons-

KAX1 = The constant value for conductance,
KA/X for node 1

AX2 = A/X for node N2
NK(TN2)= the thermal conductivity curve number

for the material of node N2 interpolated
at temperature of node N2

OPTION 4: Conduction is a non-homogeneous material with that
of both nodes being temperature dependent

The input format is:

NC,N1,N2 = AX1,NK(TN1),AX2,NK(TN2)

Where NC,N1,N2 = Connections identifications input by
any of the available options

AX1 = A/X for node Nl
NK(TNl) = the thermal conductivity curve number

of node 1. Material interpolated at
temperature TNI

AX2 = A/X for node N2
NK(TN2) = the thermal conductivity curve number

of node 2. Material which is interpolated
at temperature :

The conductance is:determined on each iteration when using this option by

U(NC) = 1

1 1
(AXl)k(TNl) (AX2)k(TN2)

OPTION 5: Conductance is a function of time
The input format is:

NC,N1,N2 = NKAX (TIME)

Where NC.N1.N2 = connections .identification input
by any of the available options

NKAX(TIME) = An iteger specifiying the value of
the conductance as a function of
TIME ' :

Some examples of the 5 options for specifying the conductance values for
conduction are given in Table VI.
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'CONDUCTION1

1 ,5,6=1.3

2,6,7=.8,62

5,7,8=.19,62,11.

7,20,21=11.,.19,62

6,,7,20=.19,62,.31,72

9,21,8=11

TABLE VI
EXAMPLES OF CONDUCTION INPUT

* CONDUCTOR NO.l HAS A CONSTANT VALUE- OF 1.3

* A/X=0.8;K INTERPOLATED AT (T(6)+T( 7) )/2. ON
* EACH ITERATION; CONDUCTANCE^ KA/X

* A/X(7)=.19,K(7)=CURVE(62,T(7))),

* KA/X(20) = n.,A/X(21) = .19,K(21)=CURVE
* (62,T(21))

* A/X(7) = .19,K(7)=CURVE(62,T(7))A/X(20) = .31 ,
* K(20)=CURVE(72,T(20))

* CONDUCTANCE NO 9 GIVEN AS FUNCTION OF TIME
* ON CURVE 11

In the above

A

K

X

CURVE(M,T(N))

= Area for conduction

= Thermal conductivity

= Conduction Distance

= Interpolation of tabulated curve no. M at the
temperature of node N,T(N)
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'CONVECTION1 Block

The options which are available for determining conductor values for
convection heat transfer are primarily options for determining the convection

7ieat~trans~fer coeffufi~erft~h, since the conductor val"ues~~i"s~K"ATTr 5eTncpt~h~e
constant heat transfer area for convection. A is input as a constant value
for all the convection options. As described in Section 3.1.3.1 options
available for calculating h are (repeated here for clarity)

Option 1: h for flow in a tube

(A) LAMINAR FLOW (Re <.2000)

n=k 3.66 -Fl-t-r -°155 ' F2

+ 015_ __ .
RePr D ;RePr D'

(B) TRANSITION FLOW (2000 < Re < 6400)

h = | [.lie^Re273 - 125) (Pr)1/3]

(C) TURBULENT FLOW (Re >. 6400)

h = .023^ Re'8 (Pr)1/3

Option 2: St Pr2/3 = f (Re) or Nu = f(Re) Re Pr1/3

h =. [f(Re) Re Pr1/3]

Option 3: Heat transfer coefficient is a function of flow rate

h F f(w)

Option 4: Heat Transfer Coefficient is a function of time

h = f(t)

The nomenclature for the above equations is as follows:

h = the convection heat transfer coefficient

k = the thermal conductivity of the fluid

D ='" the hydraulic diameter of the flow passage
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x = . . the flow length from the start of the tube

Re = Reynolds number

Pr =' Prandtl 's number

Fl •= Laminar Flow fully developed factor (input)

F2 = Laminar Flow entry length factor (input)

2/3
f(Re) = A tabulated curve of ST(Pr) ' vs Re or

NU/(Re Pr1/3) vs Re

f(t) = A tabulated curve of h vs time

The MOTAR input for the convection block is headed by the input of
'CONVECTION1 . The information needed for the various options is described
below.

Input for Option 1:

NC, NF , .NT : =AHT, NTUBE, Fl ,F2

where

NC = Conductor number

NF =. fluid lump number

NT = tube lump number

AHT = Area for heat transfer

NTUBE = ; tube number for finding flow rate and fluid properties

Fl Laminar fully developed factor

F2 = Laminar entry length factor

The values for Fl and F2 are assumed to be 1.0 if they are omitted.

Input for Option 2:

NC, NF, NT = AHT, TUBE, CURVE (Re,ST Pr2/3)

Where symbols are the same as above except

CURVE(Re,STPr2/3) = a type 4 curve number which gives
2/3STPR ' as a function of Re (See Section 5.2.4 for curve

data description).
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St = Stanton number

Re = Reynolds number

Input for Option 3:

NC, NF, NT = AHT, TUBE, CURVE (w,hj

Where symbols are the same as for Option 1 except

CURVE (w,h) = a type 3 curve number of a curve which
gives h as a function of to in the tube

h = heat transfer coefficient

to = flow rate of fluid in the tube

Input for Option 4:

NC, NF, NT = AHT, CURVE (t,h)

Where symbols are the same as those for Option 1 except

CURVE (t,h) = A type 1 curve number of a curve which
gives h as a function of t

h = • heat transfer coefficient

t ' = time .

All of the options previously described for group input of the connections
identification (NC, NF, NT) are applicable to convection conductor input.

'FLOW1 Block

The inputs to define the flow conductor connections and methods
for their calculations are supplied in the conductor subordinate block headed
by 'FLOW1. Flow conductors are "one-way" conductors designed to simulate the
flow of fluid in a tube. The conductors can be utilized in other applications
however. The flow conductor is calculated by .

uu-'*i CPI
Where U-. = the conductance from node i to node j

J (but not back the other direction)

w.j = the fluid flow rate

Cp. = the fluid specific heat

90



The input for flow conductors is the same as for the other conductors on the
left of the equal sign. That is, the same options apply for the connections
identification input. The input which specifies the options and values to
be used in calculating conductor values is supplied on the right of the
equal. It consists of four input values: KODEF, FVALUE, KODEC, CVALUE as
fo11ows:

NC,NFL,NTL = KODEF, FVALUE, KODEC, CVALUE

Where NC = conductor number

NFL = fluid lump number

NTL = tube lump number

KODEF = fluid flow code

FVALUE = value or location of the value of
: . , - , . . : . flow rate

KODEC = specific heat code

CVALUE = value or location of the value for specific
heat

The method for determining the flow rate is specified by KODEF and FVALUE.
The flow options are described in the tabulation below:

KODEF FVALUE

1 Constant value specifying the flow rate
2 Curve number of a curve which supplies flow as

a function of time
3 Tube number in flow network data from which

flow can be obtained

The method for determining the specific heat is specified by the values of
KODEC and CVALUE. The various options are described in the tabulation
below:

KODEC CVALUE .

1 Constant value for the specific heat
2 Curve number of a curve which gives specific

heat as a function of temperature of NFL
3 Flow system number from which the fluid data can

be found

Any combination of KODEF/FVALUE can be used with any combination of the
KODEC/CVALUE.
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'RADIATION1 block < . , . . ' , , , ......

The radiation conductor connections and values are specified in
the conductor subordinate block headed by

7~^~- ~ "RADIATION1 ~ ~ ~~~~~
TZERO=-XXX.XX (XX = numbers)
SIGMA=XX.XX

Where TZERO = the temperature at absolute zero for
the problem temperature scale (always
negative or zero)

SIGMA = the Stefan-Boltzman constant in the
problem units

The conductor inputs consists of the connections identifications on the
left of the equal sign and specifications to identify values of FA on the
right of the equal. The options for the connections are the same as all
the other conductor options and have been previously discussed in this
section. The options for specifying the values for FA are described below

Option 1: Constant FA

Input format:

NC, Ml, N2 '= FA12

Where NC =. Conductor number

Nl , N2 = Nodes connected

FA-|2 = FA value between nodes 1 and 2 (constant)

Option 2: Constant A with temperature dependent supplied on
: a curve • . . • • • ' • • ' . ••:••••

Input format:

NC, Nl, N2 = A1 V.NF]2 (T(N1))

Where A-i = radiator area for Nl

NF1?(T(N1)) = temperature dependent curve which supplies
1 • ' . ' • . . F from Nl to N2 as, a function of T(N1). .

Option 3: Curve of FA as a function of time

Input format:

NC, Nl, N2 = NFA12(TIME)
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Where NFA-ipCTIME) = a curve number which .supplies FA
as a function of time

The FA-,? is determined by one of the three options above. The conductance is
then determined by

U12 = (S.-IGMAXFA^KC^ - TZERO)2+(T2 - TZERO)
2)]

[(T1 - TZERO) + (T2 - TZERO)]

5.2.3.4 Absorbed Heats

Absorbed and/or internally generated heat for each node is input
in the block headed by:

+ ABSORBED HEAT

This block is subordinate to the $ NETWORK DATA block. The" general format
for the input consists of (1) the identification of the node numbers on the
left of an input equal sign and (2) specification of the option to be used
to obtain the absorbed heat for the node on the right of an equal. The options
available for identification of node numbers on the left of the equal are the
same as those for initial temperatures as discussed in section 5.2.3.1.

The methods for calculating absorbed heat are specified to the
right of the equal sign by either one, two or three numbers separated by
commas. The first number may be either real or integer. An integer
specifies a time dependent curve number which is interpolated on each
iteration. A real number is simply a multiplier for other values if others
exist. The second number may also be input as a real number or an integer.
An integer for the second number specifies a temperature dependent curve
number which is interpolated at the node temperature on each iteration. A
real number for the second number is a constant multiplier. The third
number, if it exists, must be a real constant and is a multiplier.

The format for specifying the absorbed heat using the various
available options are described below.

Option No. 1: Absorbed heat is one constant, two constants or
three constants

The input format is

NN = QI, ALP,A

where NN = the identification of node numbers by any
available option discussed in section 5.2.3.1.

QI,ALP,A '= input real constants which are multiplied
together to obtain absorbed heat. The second
and third constants are optional; i.e., there
may be one, two, or three constants
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Option No.-2: The absorbed heat is a function of time with or
without constant multipliers

The input format is

NN•= NQI(TIME), ALP,A

Where

NN •= The identification of node numbers by any available
option

NQI(TIME) = an integer specifying a curve number of a time
dependent variable

ALP, A = Input real constants, and are both optional ; i.e.,
either zero, one, or two real constants may be
input

The absorbed heat is determined on each iteration by interpolating the
NQI curve and multiplying the value by ALP and A.

Option No. 3: The absorbed heat is a function of temperature with
or without constant multipliers.

The input format is

N N = Q I , NALP (T(NN)), A . . ' • . . .

Where

NN =• The identification of node numbers by any available
option

NALP(T(NN)) = An integer specifying a curve number of a tempera-
ture dependent curve

QI,A . = Input .real constants, A is optional but, QI must
be supplied (May be .1.0 if not needed)

The absorbed heat ,for nodes NN are determined by interpolating.curve NALP
at temperature of node NN on each iteration, multiplying the value by QI
and by A if available.

Option No. 4: The absorbed heat is a function of both temperature
and time with or without a constant multiplier.

The input format is

NN = NQI(TIME), NALP(T(NN)),A
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Where NN =

NQI(TIME) '=

NALP(T(NN)) =

A

The identification of node numbers by any of
the available options

An integer specifying a curve number of a
curve of a time dependent variable

An integer specifying a curve number of a
curve of a temperature dependent variable

An optional real multiplier

The absorbed heat is determined by interpolating curve NQI at time and NALP
at the temperature of node NN on each iteration, multiplying the interpolated
values and multiplying this product by A if it is available.

The absorbed heat calculated by any of the above options is
added to that already calculated by some other means. Thus, a user may
specify as many absorbed heat curves as required.
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5.2.4 Flow System Data

If the problem being analyzed by MOTAR requires a pressure/flow
-a n a-ly s-i -s-r-th e-d-a-ta—ne eel ed—t-o-d e s e-r-i-b e-the—f-1 ow-s-y-s-toni—i-s—i-n pu-t—i-n—t h e—b-l-ock—
headed by the title,

$ FLOW SYSTEMS

The input values in this block may be in any system of units, but the units
must be consistent throughout both the thermal and fluid portions of the
problem. In order to permit this, the user must supply the gravitational
constant immediately following the heading as follows:

GC = 32.174
or GC = 3.2174E1 (For feet and seconds)

TableVII gives values of GC for various units of length and time.
The $FLOW SYSTEMS block data is contained in the following

subordinate blocks:

.'$. FLOW SYSTEMS

+ SYSTEM = 1 (KODE 1)
. 'PARAMETER1

'FLOW NETWORK1

'SUBNETWORK =1'

'SUBNETWORK = NSN.'
'FLUID LUMP DATA1

'PUMP1

'VALVES'
+ SYSTEM =• 2 (KODE 2)

'PARAMETER'
.'FLOW NETWORK1

.'SUBNETWORK'= Ti i i
i i i
i i i

'SUBNETWORK = NSN1

'FLUID LUMP DATA
'PUMP1

'VALVES'

+ SYSTEM = 3

etc.
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TABLE VII VALUE OF GC JOB VARIOUS PROBLEM UNITS

UNITS

MASS

LB

\

GRAM

\ r • •

KILOGRAM

•

FORCE

LBm

r

dyne

>

Ne

r ,

wton

t

LENGTH

In,

i

Ft.

^

Yd.

\

. Centimeter

>

Cen

\

>

:i meter

i

Meter

)r

TIME

Sec

Min

Hr
Sec

Min

Hr

Sec

Min

Hr

Sec

Min

Hr

Sec

Min

Hr

Sec

Min

Hr

GC

386.1

1.390X106

5.004X109

32.1.74

1.1583X105

4.1 696X1 O8

10.725

3.861X104

1. 3899X1 O8

1.0

3600.

1.296X107

1 x 10"2

36

1.296X105

1.0

3600.

1.296X107
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The $ FLOW SYSTEM block may be omitted if no flow analvsis is required.
A flow system is defined here as a single set of interconnected

tubes which contain a fluid which can be described by a single set of properties
~Any~number~of-fJ]-ow-sys-tems-may-be-ana-l-yzed-i-n-the-s-ame-prob-l em-but—each :
required a separate set of data headed by the card

+ SYSTEM^ SN'(KODE)
Where SN = an integer describing the system number

KODE = a code indicating whether the system is one
phase flow or two phase flow

The system number must be unique for each system but consective numbering
isn't reuqired. For the current version of MOTAR, the two phase flow
capability is not included and thus, KODE is always a value of 1. Four
subordinate blocks are always required for each system. These blocks,
which are 'PARAMETERS', 'FLOW NETWORK', 'FLUID LUMP DATA', and 'PUMP'
supply information which is always required to define a system. The 'VALVES'
and the 'SUBNETWORK1 blocks are included only when they supply additional
information. The input required for each of the flow systems subordinate
blocks is described below.

5.2.4.1 Parameters
The parameters block must be supplied for each flow system.

This block is headed by the card
• t

»

'PARAMETERS'

and contains the following information:

1. Specification of the following fluid properties:
(a) thermal conductivety
(b) density
(c) viscosity
(d) specific heat

2. The node number and pressure value of the reference
pressure node.

3. Parameter values describing the characteristics
for the pressure-flow solution.

4. When a numerical solution rather than the direct
solution for the pressure equations desired, a

. . solution tolerence is required. This also a key
.-•••. input indicating a numerical solution is desired.

The above items are input by supplying a variable name
equal and the specification of its value on the right,
description of the variable names

on the left of an
The following is

Fluid Properties

KT : Fluid Thermal Conductivity
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RO
MU
CP

Fluid Density
Fluid Viscosity
Specific Heat

The value for each of the fluid properties may be specified as a constant
by supplying a real value or it may be specified as a temperature dependant
curve by supplying the value as an integer. The integer value must be
the curve number. For example, if all the values were constant they would
be specified as,

KT = .25 / RO = 67. / MU = .137 / CP - .31

If instead, the thermal conductivity and viscosity were supplied by a
temperature dependent curve, the values would be supplied by,

KT = 32 / RO = 67. / MU = 42 / CP = .31

These values must always be supplied for each system.

Reference Pressure Specification
The pressure at the pump inlet node for a closed system or

for the system outlet for an open system must be specified. This is
supplied in the following format:

P(NN) =• VALUE

Where NN = an integer representing the pressure node
number

. VALUE = a real value representing the pressure
value of the node

For example:

'P(IO) = 14.7

indicates pressure node number 10 is the reference pressure
node number with a value of 14.7.

Pressure-Flow. Solution Parameters
Four optional variables may be supplied by the user in the

'PROPERTIES1 block to define certain characteristics of the solution.
These are described below:

MPASS: An integer specifying the number of temperature
iterations between balancing of the pressures and
flow rate. It is set to one if not supplied.

MXPASS: The maximum number of. tries to balance the pressures
and flow rates for each iteration. Routine sets
to.100 if it is not supplied.
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TOL: The tolerence for terminating the pressure/flow
balance. When the fraction of change of the flow rates
in all the tubes is within TOL, the solution is reached.
If TOL is not supplied, it is set to 0.001.

A: An averaging factor to help improve the convergence rate
jfor flow systems that are very nonlinear - ie, system
wfth~tTrrbTTl"enT~f 1 ow or heacTlosses. Ft must~bira

. value greater than 0.0 and less than
The averaging factor is applied to each tube flow rate
following each pass through the pressure/flow balancing
loop as follows:

W." = A W + (l.-A) W ,,new new v ' o l d

If A is not supplied, it is set to 0.7.
FLOW: The initial system total flow rate.

EPS: The tolerance for interative solution of the pressure
flow linear simultaneous equations

Numerical Solution for Pressure Equations

For each pass through the pressure-flow balance loop on each
temperature iteration, a set of linear simultaneous equations are set up
for each subnetwork. If the variable EPS is not supplied in the properties
data, the solution to these equations is obtained using the Gauss-Jordan
Elimination procedure. If the variable EPS is/supplied, the equations are
solved using Gauss-Siedel iterative method. The solution is then terminated
when the change in pressure from one Gauss-Siedel iteration to the next is
within EPS for all pressure nodes in the subsystem.

5.2.4.2 Flow Network and Subnetworks

The pressure/flow network is described by the flow network
blocks and its corresponding subnetwork blocks for each flow system. The
flow model consists of the pressure nodes, the flow tubes connecting the
nodes and the fluid temperature nodes in each tube. (See sections
3.2.1 and 5.1.2 for descriptions of networks, subnetworks and model build-
ing methods). For the current version of the routine, the system net-
work consists only of the inlet tube, the outlet tube and any other tubes
in series with the inlet and outlet. The remainder of the system is con-
tained in the subnetworks. Each subnetwork containes a set of interconnected
tubes and are separated by network tubes.

The input requirements for each tube are the same whether the
the tube is defined in the network or subnetwork. The input format is.
as follows for each tube:

NT, NP1, NP2 = (NF1, NF2 — NFN)
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Where NT = the tube number ' ' . • ' "

NP1 = the pressure node on the upstream side of NT

NP2 = the pressure node on the down stream side of NT

NF1 --- NFN = all the fluid temperature node numbers contained
in tube NT. If the user desires to control the
conductor in the programming blocks, a blank or
zero can be.input between the ( ).

The heading card for the network data is,

'FLOW NETWORK1

The heading card for the subnetwork data is,

'SUBNETWORK = NSN'
GIN = NG
NSPR = NN

Where NSN = subnetwork number (must be unique)

NG = tube number for the tube carrying flow into
the subnetwork

NN = the pressure node number at the subnetwork

5.2.4.3 Fluid Lump Data
The flow characteristics for each fluid temperature node

contained in the system are supplied in the subordinate block headed by,

'FLUID LUMP DATA'

The following information is supplied for each fluid lump:

.1. . Fluid wetted perimeter
2. Fluid flow cross sectional area (perpendicular) to the

direction of flow
3. Fluid .Lump length .
4. Method for calculating friction factor
5. Number of velocity head losses
6. Friction factor coefficient

The input format for the fluid lump data is:

NFL = WP, CSA, FLL, FFM, NKL, FFC

Where . NFL = the fluid lump number (integer)
WP = the wetted perimeter for NFL (real)
CSA = the cross sectional area for NFL (real)
FLL = the fluid lump length for NFL (real)
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FFM = the friction factor method (integer)
NKL = the number of head losses (integer or real)
FFC = the friction factor coefficient (real)

The fo 11 owing options are avaiTabTe for~FFM— NKL— and

If FFM ="0 or not supplied, .the friction factor is calculated
internally for the full range of Reynolds
numbers using equations 50, 51, and 52.

If FFM ^ 0, the friction factor is calculated internally for
laminar flow using equation (50). FFM is then a"
curve number for a curve of friction factor VS
Reynolds number which is interpolated at values
of Reynolds numbers above 2000.

If NKL = 0 or not supplied, the head loss is 0.0

If NKL '= a real constant, that is the value of the head loss

If NKL = a non-zero integer, it is, then a curve number of a
curve of head losses VS Reynolds number

If FFC = 0, or not supplied, FFC =1.0

If FFC = a non-zero real number, then FFC = the real number.

FFC is applied to the friction factor in equation (49).

Several group input options are available for specifying the fluid lump
numbers, NFL, on the left of the equal . These include:

(1) Random fluid lump numbers separated by commas:

NFL1, NFL2, - - - NFLN=WP, CSA, FLL, FFM, NKL, FFC

(2) A number of lumps separated by a constant increment:

NFL1 THRU NFLn BY INC = WP, CSA, FLL, FFM - - - .

Where NFL1 is the starting fluid lump number of the group

NFLn is the ending fluid lump number of the group

INC is the increment between lump numbers. (If the
- increment is 1, the BY INC may be omitted)

(3) Any combination of (1) arid (2) above. This includes
multiple inputs of option (2) separated by commas.

102



.5.2.4.4 Pump Data

The total flow rate entering each flow system is specified in
the pump data which is headed by the heading:

'PUMP1

This block must always be supplied for each system. Four options are
available for specifying the entering flow rate in the 'PUMP1 block. These
are:

(1) Constant entering flow rate
(2) Entering flow rate a function of time
(3) Flow rate a function of pump pressure rise as specified by

a tabulated curve
(4) Pump pressure rise a function of flow rate as specified by a

polynomial curve

A description of the input for these options is given below.

OPTION I : Constant Entering Flow Rate

The input format is:

NT1, LNS, VALUE

Where . •••. ; .
NT1 - An integer specifying the first (entering) tube in

the system
; - . LNS = An integer specifying the last (exiting) pressure

node in the system
VALUE = A real number specifying the value of the flow rate

OPTION 2 : Entering Flow Rate A Function of Time

The input format is:

: NT1, LNS, NCURVE

Where .
NTL = An. integer specifying the tube with entering flow
LNS = An integer specifying the last (exiting) pressure

node in the system
NCURVE = An integer specifying a time dependent (Type 1)

flow rate curve

OPTION 3 : Flow Rate A Function of System Pressure Rise
Specified by Tabulated Curve

The input .format is: .

NT1, LNS, NCURVE
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Where
NT! = An integer specifying the tube with entering flow

: ^tNS—=~An—j-nteger-specifytng-the—l-ast-("exi-ttng-)-pressure
node in the system .

NCURVE = An integer specifying a curve number of a curve of
flow rate vs pressure rise (Type 5 curve)

OPTION 4 : Pump Pressure Rise A Polynomial Function of Flow
Rate

The input format is:

NT1, LNS, AO, Al, A2, A3, A4

Where
NT1 = An integer specifying the tube with entering flow
LNS = An integer specifying the last (existing) pressure

node in the system
AO, Al, A2, A3, A4 .= Curve fit constants for describing the pump curve

Using this option, the pump pressure rise is given by:

AP = Ao+Al W + A2 W2 + A3 W3 + A4W4

Where W = the flow rate

5.2.4.5 Valve Data

The input data required for each valve in a system is supplied
in the valve subordinate block headed by;

'VALVES'

Three types of valves are currently available to the user. These types
are identified by the following numbers: . . .

Type 1 - Rate Limited Valve : The valve rate of movement is
proportional to the sensed temperature error up to
a maximum movement rate.

Type 2 - Polynomial Valve : The valve steady state position is a
polynomial curve fit of the sensed error. A time constant
may be input if a time lag is desired.

Type 3 - Switching Valve : The valve position is either the
maximum position. On side one, the valve position is

, the maximum when the sensor temperature is above Tl. Side
two is the minimum when the sensor temperature drops
below T2, side one position goes to the minimum and side
two to the maximum.
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Any of the above three types may be either one sided or two sided valves.
Also, the set point may be either a constant value or a temperature lump
number for Types 1 and 2. Thus, either types one or two may be used as
(1) a single sided bypass valve for a cooling situation (radiator), (2) a
single sided bypass valve for a heating situation (solar absorber for instance)
or (3) a proportioning valve. Type 3 valves may be used as an on-off
shut off valve, an off-on shut off valve, or a switching valve.

The general input format for each valve type consists of three
integers on the left of an equal with 13 values on the right for rate limited,
17 values on the right for polynomial, and 11 values on the right for switch-
ing valves. The input values on the left are supplied in the following order:

1 - Valve Number: May be any unique integer number for
identification.

2 - Valve Class Code: (See Section 3.2.1 and 3.2.3 for descrip-
tion of Class) Only Class 2 valves are
available for the current routine configura-
tion. Thus, the valve class must be the
integer 2.

3 - Valve Type: 1 for bypass valve, 2 for polynomial valve,
3 for switching valve.

The input values on the right are described below for each of the three valve
types.

. . Bypass Valve
The list Of variables on the right of the equal must be supplied

in the following order:

1 - Entering Tube Number : The tube number of the tube supplying
the flow to the valve.

2 - Exiting Tube Number On Side 1 : The tube number of the tube
leaving the valve on the/'side to be
opened when the sensed temperature error
becomes positive. If the valve is one
sided and the characteristics of side 2
is desired (for instance, for a solar
absorber bypass) this variable should
be input as o.

3 - Exiting Tube Number on Side 2 : The tube number of the tube
leaving the valve on the side to be opened
when tfTe sensed temperature,error becomes

. - .negative. If the valve is one sided and
the characteristics of the side 1 is desire
(for instance, a radiator bypass) this
variable should be set to 0.
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4 - Initial Valve Position For Side One, XI : (Should be
between Xlmax and Xlmin.) The side
initial position is (1.0 - XI).

5 - Valve Operating Mode: If =.1, the valve operates normally
if = 0, the valve does not operate but re-
mains in its initial input position, XI.

6 - Minimum Position for Side One, Xlmin : Must be greater than
0.0. The maximum position for side 2 will
be calculated by X2max = (1.0 -Xlmin).
Xlmin. must be less than Xlmax.

7 - Maximum Position for Side One, Xlmax : Must be less than
1.0 and greater than Xlmin. The minimum
value for side 2 will be calculated by
(1.0-Xlmax)

8 - Sensor Lump For Side One or Set Point For Side 2 : If this
variable is input as an integer it identifies
the side one sensor lump to be controlled to
(a) the set point or (b) sensor lump supplied
for side 2 (next input). If this variable is
input as a real number, it represents a set
point to which the side 2 sensor lump will
be controlled.

9 - Sensor Lump For Side 2 or Set Point For Side 1 : If this
variable is input as an integer it identifies
the side two sensor lump to be controlled to
(a) the set point or (b) sensor lump temperature
on side one (previous input). If this variable
is a real number it represents a set point
to which side 1 sensor lump will be controlled.

10 - Dead Band: The dead band as defined in Section 3.2.3.1 and
Figure 4.

11 - Rate Factor: The valve rate factor as defined by Figure 4
and Section 3.2.3.1.

12 - Rate Limit : The valve rate limit as define by Figure 4
and Section 3.2.3.1.

13 - Geometric Factor : (For a valve class code of 2 only) The
value of the variable E where AP valve =
E (W 2/x2) (See section 3.2.3.2)
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Polynominal Valve

The list of variable to the right of the equal must be supplied
in the following order:

1 - Entering Tube Number : The tube number of the tube supplying
the flow to the valve.

2 - Exiting Tube Number On Side 1 : The tube number of the tube
leaving the valve on the side to be
opened when the sensed temperature error
becomes positive. If the valve is one
sided and the characteristics of side 2
is desired (for instance, for a solar
absorber bypass) this variable should
be input as o.

3 - Exiting Tube Number on Side 2 : The tube number of the tube
leaving the valve on the side to be opened
when the sensed temperature error becomes
negative. If the valve is one sided and
the characteristics of the side 1 is desirec
(for instance, a radiator bypass) this
variable should be set to 0.

4 - Initial Valve Position For Side One. XI : (Should be
between Xlmax and Xlmin.) The side 2

" . initial position is (1.0 - XI).

5 - Valve Operating Mode: If = 1, the valve operates normally
if = 0, the valve does not operate but re-
mains in its initial input position, XI.

6 - Minimum Position for Side One, Xlmin : Must be greater than
0.0. The maximum position for side 2 will
be calculated by X2max = (1.0 -Xlmin).
Xlmin. must be less than Xlmax.

7 - Maximum Position for Side One, Xlmax : Must be less than
1.0 and greater than Xlmin. The minimum
value for side 2 will be calculated by
(1.0-Xlmax)

8 - Sensor Lump For Side One or Set Point For Side 2 •: .If this
variable is input as an integer it identifies
the side "one"sensor lump to be controlled to
(a) the set point or (b) sensor lump supplied
for side 2 (next input). If this variable is
input as a real number, it represents a set
point to which the side 2 sensor lump will
be controlled.

107



9 - Sensor Lump For Side 2 or Set Point For Side 1 : If this
variable is input as an integer it identifies
the side two sensor lump to be controlled to

~ ~ ( a T p f h e selTpoTrvt or (b~) sensor lump temperature
on side one (previous input). If this variable
is a real number it represents a set point
to which side 1 sensor lump will be controlled.

10 thru 15 -Polynomial Curve Fit Constants Ao, Al, A2, A3. A4.
A5, : T h e steady state valve position on side one is
gTven by (See Section 3.2.3.1)

Xlss= Ao + A1AT + A2 (AT)
2 + A3AT3 + A4AT4 + A5AT5

16 - Valve Time Constant : The polynomial valve time constant as
" : d e s c r i b e d in Section 3.2.3.1. If a valve is desired

with no time lag, a time constant which is small
compared to the problem time increment should be input
(Must be greater than zero)

17 - Geometric Factor : (For a class code of 2 only) The value of
the variable E where

A Pvalve = E " ! • • ' •
x

See Section 3.2.3.2

Switching Valve

The list of variables to the right of the equal must be supplied
in the following order:

1 - Entering Tube Number : the tube number of the tube supplying
the flow to the valve.

2 - Exiting Tube Number On Side 1 : The tube number of the tube
leaving the valve on the side to be
opened when the sensed temperature error
becomes positive. If the valve is one
sided and the characteristics of side 2

' is desired (for instance, for a solar
absorber bypass) this variable should
be input as o.

3 - Exiting Tube Number on Side 2 : The tube number of the tube
leaving the valve on the side to be opened
when the sensed temperature error becomes
negative. If the valve is one sided and
the characteristics of the side 1 is desired
(for instance, a radiator bypass) this
variable should be set to 0.
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4 - Initial. Valve Position For Side One, XI : (Should be
between Xlmax and Xlmin.) The side 2
initial position is (1.0 - XI).

5 - V a l v e Operating Mode: If = 1 , the valve operates normally
if = 0, the valve does not operate but re-
mains in its initial input position, XI.

6 - Minimum Position for Side One, Xlmin : Must be greater than
0.0. The maximum position for side 2 will
be calculated by X2max = (1.0 -Xlmin).
Xlmin. must be less than Xlmax.

7 - Maximum Position for Side One, Xlmax : Must be less than
1.0 and greater than Xlmin. The minimum
value for side 2 will be calculated by
(1.0-Xlmax)

8 - Valve sensor lump

9 - T1, Stde 1 off temperature, Side 2 on temperature.

10 - T2, Side 1 on temperature, Side 2 off temperature.

11 - Geometric Factor : (For a valve class code 2 only) The
valve of the variable E where

APva1ve

See Section 3.2.3.2
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5.2.5 Curve Data

The tabulated curves and tables required by the input data
-blocks—and-user-subrou-t-i-nes-are-supp-1-ied—in-t-he-da-t-a-b-loe-k—headed-by^—

$ CURVES

Curves may be supplied in any order in this block. Curves are identified by
a curve number which contains within it a code identifying its independent
Variable. The last digit of each curve number is used to identify the
curve type, and thus, a curve number must contain at least two digits.

The following types of curves are currently available.

Curve Type Description

0 Any array of numbers real or integers which
the user may need for the programming blocks
or user subroutine.

1 A doublet array with time as the independent
variable.

2 A doublet array with temperature as the indepen-
dent variable.

3 A doublet array with flow rate as the independent
variable.

4 A doublet array with Reynolds number as the
independent variable.

5 A doublet array with pressure drop as the in-
dependent variable.

With these codes, the curve numbers 10, 20, 30, 100, 1000, etc., are
simple arrays for the user programming. The curve numbers 11, 21, 31, 41,
101 151, etc., are used to specify time dependent tabulated functions
which are referred to in the $ NETWORK DATA or $ FLOW SYSTEMS blocks. The
numbers 12, 22, 32 are temperature dependent curves, 13, 23, 33 are flow
rate dependent curves, etc.

The input format for the curves consists of (1) supplying the
integer curve number and (2) supplying the curve values starting on the card
following that with the curve number. The curve values are input for field
separated by commas. If more than one card is required to supply the curve
values, a continuation code (any non-zero character) must be supplied in
column 75 for each additional card added.
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A user may set up any number of locations In a curve for storing
data by supplying an S followed by the number of spaces desired. For instance
the entry

10/S, 1000

would set up curve number 10 with 1000 blank spaces. This option may be
used anywhere within a curve. For instance,

20/ 1., 3., S, 500, 2.0 ,

would set up a curve with 1., 3., 500 blank spaces and 2.0. The user should
not specify zero values for the S option.
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5.2.6 User Programming Blocks

5.2.6.1 General Description

Four input blocks are available to the user for supplying problem
-logic-and-ca-l-l-ing-on-ava:i-l-ab-Te-user-subrouttnes^, • •"" J • -" — ..*- — —~ • , , . . j w . . w. * v. . I %A M • V wi .^ w • .J U V I \SV4 \« I I I I, ,J • AM Ol I l_ J t U I W Vrf I\ J I* I I C U O C 1

may perform logical operations on the temperature network elements and, to a
lesser extent, on the pressure network elements. The user also has access to
the time parameters of the problem, the curves and 75 constant locations which
may be used either as real numbers or integers.

The four blocks differ only in their heading title and the point in
the problem sequencing that the logic of the block is called upon. The block
titles are given below with a description of their location in the problem
sequence.

BLOCK TITLE SEQUENCING

$ CENTRAL Logical operations performed only one
time for the problem. Specifies the call
to the temperature solution subroutine and
any user calls preceeding and following
it.

$ PRETEMP . Logical operations performed prior to the
temperature calculations on each iteration.

$ POSTTEMP Logical operations performed following
the temperature calculations and prior to
the pressure/Flow calculations on each
iteration.

$ OUTPUT Logical operations to be performed on the
print internal, WINC.

The location of the four user supplied logic blocks in relation to the overall
problem flow is shown in Figure 9 .

The input format for the user programming blocks is simply the
FORTRAN V Computer programming language and thus, valid FORTRAN V statement
may be used. The first 5 columns are reserved for statements numbers or.
C in column 1 for comments. The * for comments cannot be used in the
programming blocks. Per the FORTRAN language, the statements occur in
columns 7 thru 72. Column 6 is used for continuation. User supplied state-
ments for each block are combined with computer generated common
and equivalence statements to form the following subroutines:

PROGRAMMING BLOCK SUBROUTINE

CENTRAL STEP 2
PRETEMP PRETMP
POSTTEMP POSTMP
OUTPUT OUTPUT
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C XOT STEP 2J

1 CENTRAL

USER SUPPLIED
LOGIC PRIOR TO

SOLUTION

*CALL TO TEMP
SOLUTION (USER

SUPPLIED)

1
USER SUPPLIED

LOGIC FOLLOWING
SOLUTION

C END)

C EXPLCT "\
OR 1

IMPLCIT J
._ _̂ J

f
CALCULATE

NETWORK ELEMENTS

1

1 -\ ̂ y
** i iVi?*" -

CALCULATE ^"
TEMPS

1
TIME = TIME + DTIME

±
_

CALL POSTTEMP *• ** L
1
f

v̂  \̂ YF<;
\X PRINT >ta— .1, ° <ta
X̂̂ INT/

| NO PEF
LI ' '"nr
ff *

PERFORM USER
LOGIC SUPPLIED
IN PRETEMP

PERFORM USER
OGIC SUPPLIED
IN POSTTEMP

•ORMf-.FLOW BALANCE

CALL OUTPUT | ,

{FORM USER LOGIC
>PLIED IN OUTPUT

FIGURE 9 - OVERALL STEP 2 FLOW FOR MOTAR
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The user has access to a number of problem variables in each
of the programming blocks. These variables are in Labled common for each
of the blocks and thus a change in one block to the problem variables
is communic,a.ted_tQ-a-l-l_the-0-the.r—blocks-and—to-the-pr-oblems-i—V-ar-i-a-b-1-es—
available include the temperature network elements, pressure network
elements, problem time real ted variables, and user constants which may be
used as integers or real numbers.

A list and description for the variables which may be referenced
in any of the user programming blocks is given below:

VARIABLE

T(D
C(D

Q(D
U(D

PR(I)

G(I)
CURV(I)
TIME

STIME

RTIME

WINC

PINC

Cl or Kl
thru

C75 or K75

DESCRIPTION

Temperature of temperature Node I
Capacitance of temperature Node I
Heat Source for temperature Node I
Conductance for conductor I
Flow Rate for tube I
Pressure for pressure node I
Pressure conductance for tube I
Array contain all curve data
Problem time
Problem stoo time
Requested computer time (minutes)
Print interval
Plot interval for automatic plotting

Seventy-five (75) user variables which are
communicated between the user subroutines.
If used as a real number use the name CI.
When used as an integer use the name KI.
(CI and KI are equivalenced)

Any curve in the $ CURVES data may be addressed in any of the
user blocks by use of the function LUTAB(I) where I is the curve number.
The curve values are then obtained by addressing the array CURVE (J) where
0 = LUTAB(I). For example, if the fourth value of curve number 20 is
desired, we would find it with the following two FORTRAN cards:
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J = LUTAB (20)

Cl = CURV (J+4)

Cl will be assigned the values of the fourth location of curve number 2fl.
This is the third data value, however, because the first location of each
doublet table contains the number of points on the curve and the first
location of a type zero curve contains the number of values. One must be
careful when obtaining an integer value from a curve. Real variables should
always be used when addressing curve since CURVE is real. However, the
addressing variable, such as Cl above should be equivalenced to an integer
variable name for use as an integer. If the fourth value of curve 20 were
an integer in the example above, the variable name Kl would be used following
the two statements since Cl and Kl are equivalenced.

The user may address the thermal network elements by addressing
the arrays T, C, Q and U. The subscripts of T, C, and Q are the node numbers
and the subscript of U is the conductor number. The $ PRETEMP block is located
such that a definition by the user for any of the above variables overrides
the computer definition prior to an iteration. A definition of these
variables in any of the other blocks will be overriden by computer calculations
however, except for (1) boundary temperatures, (2) constant capacitances and,
(3) constant conductances. The Q values are set to zero prior to each
iteration and thus a definition of Q in any block except $ PRETMP or by the
+ ABSORBED HEAT block will be lost. The values of Q supplied in $ PRETEMP
will be added to values calculated by options in + ABSORBED HEAT.

the user has limited access to three elements of the flow net-
work in the programming blocks. Available are overall tube conductance
G(I), tube flow rate, W(I), and node pressure PR(I). Only the value of
G(I) may be controlled by the user and this may be performed only if the tube
lump number supplied for the tube is zero (with only one tube lump). Then
the user must specify the value of the conductance. The call to the
operations of the $ POSTTMP block has been placed immediately prior to the
call to PFCS, the pressure flow analysis subroutine, so that the user may
modify the G's as desired. The other variables * PR and W may be used for
sensing purposes or independent variables only.

5.2.6.2 User Subroutines

Numerous subroutines have been developed and assembled in
MOTAR for direct application by the user in the User Programming blocks.
These subroutines greatly extend the MOTAR capability giving the user
immediate access to numerous temperature solution subroutines, application,
subroutines, mathematical analysis and solution subroutines, interpolation
subroutines, Matrix analysis subroutines, and output subroutines. A large
number of these subroutines were taken directly from the SINDA computer
routine'4»l5 < jnl-s includes most of the mathematical analysis and solution
subroutines, interpolation subroutines, and Matrix analysis subroutines.
All of the temperature solution subroutines,many of the application sub-
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routines (enclosure radiation, cabin analysis, heat exchangers, inline.
heaters, etc.) and some of the output subroutines were concieved during
MOTAR development. A brief description of the available user subroutines is"
all the subroutines is given in Appendix A.

Temperature Solution Subroutines

Temperature solution subroutines are generated by the computer
during the pre-processing phase based upon the requirements of the input data.
If the $ CENTRAL block is not included in the input (ie, no logic in this
block) the computer will also generate a call to the appropriate transient
temperature solution subroutine depending on the MPLCT code in columns 6 to
10 on parameter card 1, (If the code is 0, EXPLCT will be called, if 1 ,
IMPLCT will be called). This call will be located in the processing phase
main routine, STEP 2. If any logic appears in the $ CENTRAL block, the user
must supply the call to the temperature solution subroutine in $ CENTRAL.

There are four potential temperature solution subroutines that
may be specified by the user. The subroutines will actually be different
from problem to problem since they are generated depending on the problem
content. The temperature solution subroutines are:

1. EXPLCT - Performs the transient solution using the explicit
method (two time increment options are available) ].

2. EXRSS - Performs the steady state solution for data, stored
in the explicit format

3. IMPLCT - Performs transient solution using the implicit
method

4. IMPSS - Performs the steady state solution for data stored
in the implicit format

EXPLCT and/or EXPSS must be used when the MPLCT code on parameter card 1 is
a value of 0. IMPLCT and/or IMPSS routines must be used when the MPLCT code
is 1. If the MPLCT code and the subroutine calls are inconsistent, the called
subroutine will not be found and the problem will not be run.

The user may perform any number of calls to the transient or
steady state subroutines or calls to both may exist in the same problems
For example, suppose a user desired to perform a parametric run in which the
steady state solution is desired at TIME = 0. and a transient solution is
desired starting at that condition for five different values of temperature
for node ten. The logic in $ CENTRAL when using explicit method of solution
would be:
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$ CENTRAL

DO 20 I = 1 ,5
TIME = 0.
CALL EXPSS
CALL EXPLCT

20 T(10) = T(10) + 25.

If using the implicit method of solution the calls would be

;$ CENTRAL

DO 20 I = 1,5
TIME =0.
CALL IMPSS
CALL IMPLCT

20 T(TO) = T(10) + 25.

With this type of programming a large number of problems may be performed
with a single run.

A more detailed description of the temperature solution subroutines
is given in Appendix A

Application Subroutines

Several subroutines are available to the user which provide
capabilities for specific applications. These are listed below and described
in detail in Appendix A .

RADIR -

RADSOL -

IRRADI
IRRADE

Calculates the script-F values for IR radiation within
an enclosure and uses these values to obtain the heat
transfer during the problem. Permits consolidation of
several temperature nodes on a single surface.

Calculates the script F values for radiation from an
extended source entering an enclosure and uses these
values to obtain heat transfer during the problem.
Permits consolidation of several temperature nodes
on a single surface.

Calculated the script-F values for IR radiation within
an enclosure and uses these values to obtain the heat
transfer during the problem.
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SLRADl) _ Calcuates the script-F values for radiation from
SLRADE) an entering source external to the enclosure and

uses these values to determine heat transfer during
the problem;

EFFEMS

SCRPFA

HXEFF*^
HXCNT U

HXCROS
HXPAR

Calculates the scr.ipt-F between parallel flat plates.

Calculates the script-F values for infrared radiation
within an enclosure.

Simulates heat exchanger performance under steady
state conditions - Can be used to approximate
transient conditions.

HTRINL - Simulates a fluid inline heater.

CABIN - Performs a heat and mass balance on a cabin gas con-
sidering any number of entering streams and condensa-
tion on the cabin wall.

ABLATS - Represents a simple ablation (sublimation) capability

LQSLTR - Accounts for the phase change energy of a melting
or solidifying material

Allows the user to simulate the addition of liquid
to a node

LQDVAP

Matrix Analysis Subroutines

Numerious Matrix subroutines are available to the user for per-
forming computations and manipulation on matrices of numbers. The matrices
are stored in the $ CURVES block and must be in the proper format. For sub-
routines assuming rectangular matrices this format consists of (1) an integer
specifying the number of rows in the first array data value, (2) an integer
specifying the number of columns in the second array data value and (3) the
Matrix values in row order. For subroutines designed specifically for symetric
matrices the matrices are assumed to be stored in row order with each row
starting with the diagonal value. The first value contains the size of the
square Matrix and the second value isn't used. The format is,

NC, N, BLANK, A(i;i,)A(l,2), A(l,3) - - - - A(1,N)
A(2,2), A(2,3) A(2,N)

"* ̂ -A(N,N)

A list of the matrix analysis subroutines available is given below,
tailed description of their use is given in Appendix A .

a) Special Matrix Generation

ZERO Generates a matrix such that every element is zero

ONES Generates a matrix such that every elements if one

A de-
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UNITY Generates a square matrix such that the principal diagonal
elements are unity and the remaining elements are zero.

SIGMA Generates a square matrix such that all elements on and below
the principal diagonal are unity and the remaining elements
are zero.

GENALP Generates a matrix such that every element is equal to a constant

GENCOL Generates a column matrix such that the first element is equal
to XI and the last element is equal to X2

FULSYM Forms a half symmetric matrix from a full square matrix

SYMFUL Forms a full square matrix from a .half symmetric matrix

SYMFRC Forces symmetry upon a square matrix

Forms a full square matrix given a column or row matrix
/ -

Forms a row matrix from the diagonal elements of a square matrix

DIAG

UNDIAG

DIAGAD Adds the elements of a row matrix to the diagonal elements of a
square matrix

b) Elemental Operations

ELEADD Adds corresponding elements of two matrices A and B to form
a third Z (Matrix addition)

ELESUB Subtracts the corresponding elements of two matrices to form
a third Z (Matrix subtraction)

ELEMUL Multiplies the corresponding elements of two matrices A and
B to form a third Z

ELEDIV Divides the corresponding elements of two A and B matrices
to form a third Z

ELEINV Obtains the reciprocal of each element of matrix A and place
it in the corresponding location of another matrix Z

EFSIN Generates the sine of each elements of matrix A and places it
in the corresponding location of another matrix Z

EFASN Generates the arcsine of each element of matrix <A and places
It in the corresponding location of another matrix Z,

EpCOS Generates the cosine of each element of matrix A. and places
it in the corresponding location of another matrix 'Z;
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EFACS Generates the arcosine of each element of matrix.(A) and places
it in the corresponding location of another matrix (Z) •

EEJAN-—Generates_the-tangen-t-of_each_e-lemen-t_of_ma-trJ.x_(A)_and_p-laces
it in the corresponding location of another matrix (Z)

EFATN Generates the arctangent of each element of matrix (A) and places
it in the corresponding location of another matrix (Z)

EFABS Generates the absolute value of each matrix (A) element

EFLOG Generates the natural log of each (A) element

EFSQR Generates the square root of each matrix (A) element

EFEXP Generates the exponential of each matrix (A) element

EFPOW Generates the power of each matrix (A) element

ADDALP Adds a constant to every element in a matrix

ALPHAA Multiplies every element in a matrix by a constant

MATRIX- Allows a constant to replace a specific matrix element

SCALAR Allows a.specific matrix element to be placed into a constant
location

MATADD Adds a constant to a specific matrix element

c) Matrix Operations/Solutions

INVRSE Inverts a square matrix

MULT Multiplies two conformable matrices

TRANS Forms the transpose (Z) from matrix (A)

AABB Sums two scaled matrices

BTAB Performs the matrix operation (B)* (A)(B)

BABT Performs the matrix operation'(B)(A)(B)*

DISAS Allows a user to operate on matrices in a partitioned manner
by disassembling a submatrix (Z) from a parent matrix (A)

ASSMBL Allows a user to operate on matrices in a partitioned manner by
assembling a submatrix (Z) into a parent matrix (A)
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d)

COLMLT
ROWMLT

SHIFT

REFLCT

SHUFL

COLMAX
COLMIN

SYMREM
SYMREP

SYMDAD

SYMINV

POLMLT

POLVAL

PLYEVL

Multiplies each element in a column or row of matrix (A) by
its corresponding element from the diagonal matrix (V)
which is stored as a vector

Moves an entire matrix as is from one location to another

Moves an entire matrix with the order of the column elements
reversed from one location to another

Allows the user to reorder the size of a matrix as long as the
total number of elements remains unchanged

Searches an input matrix to obtain the maximum or minimum values
within each column

Allows the SINDA user to operate on a simple row/column of a
half symmetric matrix

Adds the elements of a vector array to the corresponding
elements of the main diagonal of a half symmetric matrix

Obtains the inverse of a half symmetric matrix

Multiplies a given number of nth order polynomial coefficients
by a similar number of mth order polynomial coefficients

,*•*

Evaluates the polynomial for the input complex number X + iV,
given a set of polynomial coefficients,

Evaluates each polynomial for each X value, given a matrix with
nth order polynomial coefficients and a column matrix of
X values

POLSOV

JACOBI

Store and Recall

Calculates the complex roots, given a set of polynomial co-
efficients as the first row in a matrix

Determines the eigenvalues and eigenvector associated with an
input matrix (A)

CALL Retrieves matrices on magnetic tapes

FILE Stores matrices on magnetic tapes

ENDMOP Used in conjunction with subroutines CALL and FILE. Causes
all matrices from the logical 19 tape to be updated onto the
logical ,18 tape ••-'{



LSTAPE Will output the name, problem number and size of every matrix
stored on tape on logical 18.

MODES Solves a particular matrix dynamic vibration equation

MASS Generates an inertia matrix of a dynamic vibration system described
in terms of deflections and rotations

STIFF Generates a stiffness matrix for a dynamic vibration system
described in terms of deflections and rotations.

Interpolation Subroutines

Numerious interpolation subroutines are available to the user. Included
are the capability for (a) linear interpolation of function one, two and
three independent variables (b) parabolic interpolation of functions of one or
two variables, and (c) lagrangian interpolations up to 50th order for one
independent variable including extrapolation. Also included are options to
to take advantage of cyclic curves, point/slope interpolation and linear
extrapolation options.

A summary of the interpolation subroutines is given below. They are
discussed in detail in Appendix A.

a) Lagrangian Interpolation

LAGRAN Uses one doublet array.. Performs interpolation for order up to 50.

LGRNDA Uses two singlet arrays. Performs interpolation for order up to 50.

b) Linear Interpolation - Single Variable

POL Used one doubled array - one format
. • ' • • " • • • . • ' ; ' . ' • . ' " .

Uses one doublet array - another format

Uses two singlet arrays

Uses D1DEG1 and multiplies the interpolation by the Z value

Uses D1D1DA and multiplies the interpolation by the Z value

.
DIDEG1

D1D1DA

D1D1WM

D1TMDA

D1MDG1 Uses the arithmetic mean of two input values as the independent
variable; uses a doublet array

DIM-IDA Sames as D1MDG1 except two singlet arrays are used

D1M1WM Uses D1MDG1 and multiplies the interpolation by the Z value
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D1M1MD Uses D1M1DA and multiplies the interpolation by the Z value

D1DG11
D1D11M
D1D1M1

D11DAL
D11D1M
D11MD1

D11MD1
D11MWM
D11M1M

Performs interpolation on an array of X's to obtain an array
of'Y's •

Identical to D1DG11, D1D11M and D1D1M1, except for the use of
singlet arrays and call on DID!DA

These are indexed subroutines which use the arithmetic mean of
two input values as the independent variable

c) Linear Interpolation - Two Single Variables

CV01WM Performs two single variable linear interpolations

d) Parabolic Interpolation - Single Variable

D1DEG2 Uses LAGRAN and a doublet array

D1D2DA Uses LGRNDA and two singlet arrays

Uses LAGRAN and multiplies the interpolation by the Z value

Uses LGRNDA and multiplies the interpolation by the Z value

D1D2WM

Dl2MDA

D1MDG2 Uses the arithmetic mean of two input values as independent
variable; uses doublet array

D1M2DA Sames a D1MDG2 except two single arrays are used

D1M2WM Uses D1MDG2 and multiplies the interpolation by the Z Value

D1M2MD Uses D1M2DA and multiplies the interpolation by the Z value,

e) Cyclical Interpolation Arrays

D11CYL
DA11CY Reduces core storage requirements and uses linear interpolation

D12CYL
DA12CY

D11MCY
DAI IMC

Identical to D11CYL and DA11CY except that parabolic interpolation
is used

Identical to D12CYL and DA12CY except that the interpolation is
multiplied by the value in address Z

DA12CY Identical to D11MCY and DAI IMC except that parabolic interpolation
DA12MC is used
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f) Point Slope Interpolations

GSLQPE Generates a slope array so that point slope interpolation can
be used

PSINTR
PSNTWM Point slope interpolation

g) Bivariate Interpolations

BVSPSA
BVSPDA Uses an input Y argument to address a bivariate array

BVTRN1 Constructs a bivariate array of Y's versus X and Z from an
BVTRN2 input array of Z's versus X and Y

D2DEG1 Performs bivariate linear interpolation

D2DEG2 Performs bivariate parabolic interpolation

D2D1WM Uses D2DEG1 and multiplies the interpolation by the W value

D2D2WM Uses D2DEG2 and multiplies the interpolation by the W value

D2MXD1 Identical to D2DEG1 and D2DEG2 except that the arithmetic mean
D2MXD2 of two X values is-used as the X independent variable

D2MX1M Identical to D2D1MM and D2D2WM except that the arithmetic mean
D2MX2M of two X values is used as the X independent variable

h) Trivariate Interpolations

nonppi
D3D1WM Performs trivariate linear interpolation

i) Linear Extrapolation

ITRATE Linearly extrapolates a new guess on the basis of Zero error

Output Subroutines :

A number of subroutines are available to the user which permit the
generation of printed, plotted or tape output for various situations in addition
to the standard printing and plotting options. These subroutine provide
the capability for printing individual values arrays and matrices; for
plotting; and for writting and reading from magnetic tapes. The available
subroutines are summarized below and described in detail in Appendix
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a) Network Printout

TPRNT Prints thermal node temperature
CPRNT Prints thermal capacitances
QPRNT Prints the nodal heat flow values
UPRNT Prints thermal conductances
DTPRNT Prints the time increments
COPRNT Prints the thermal network capacitances, heat flow, values,

time increment and the conductances
WPRNT Prints flow rates
PPRNT Prints pressures
VPRNT Prints valve positions

b) Floating Point

PRINTL A11°WS individual floating point numbers to be printed for
reference temperature, capacitance, etc.

c) Array Printout

GENOUT Allows the output of any array of integers, floating point,
- or both

GENI Prints out an array of integer
GENR Prints; out an array of real numbers

PRINTA Allows the user to printout an array of values five to the
line

PRNTMA Allows the user to print up to 10 arrays in a column
PRNTMI format

PUNCHA Enables a user to punch out an array of data values in
any desired format

d) Plot Package

PRNPLT Prints out a plot on the line printer

PLOTX1
PLOTX2
PLOTL1 Call upon a large package of subroutines specifically for the
PLOTL2 SC-4060
PLOTX3
PLOTX4

e) Tape Input/Output

READ Enables the user to read and write arrays of data as binary
WRITE information on magnetic tape
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f) Matrix Output

row and column number

PUNCH Punches out a matrix, size n*n, one column at a time in any
desired format

SYMLST Prints out and identifies the element values of a half symmetric
matrix

9) Special

PNTABL Provides output information for users of subroutine ABLATS
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Mathematical Subroutines

Several user subroutines are provided for mathematical operations
and solutions. Capabilities provided the user include integration, root
determination of cubic and quartic equations, polynomial calculation, simul-
taneous equation solution, least squares curve fit, and complex number
calculations. These subroutines are summarized below.

a) Area Integration

SMPINT Performs area integration by Simpson's rule and trapezoidal
TRPZD rule using equal increments

TRPZDA Performs area integration by the trapezoidal rule with non
uniform increments

b) Roots

NEWTRT Utilizes Newton's method to obtain one,root of a cubic or
NEWRT4 quartic equation

c) Polynomial/Simultaneous Linear Equations

PLYNML Calculates the value of the dependent variable for an,.Nth order
PLYARY polynomial
PLYAWM

SIMEQN Solves a set of linear equations (10 or less) by the factorized
inverse method .

d) Curve Fit/Temperature Derivative

LSTSQU Performs a least squares curve fit to an arbitrary number of
X, Y pairs to yield a polynomial equation of up to order 10

Complex Variable Subroutines

a) Multiplication Operation

CMPXMP Multiplies two complex numbers or the corresponding elements
CMPYI of arrays of complex numbers

b) Pivision,Operation

CMPXDV Divides two complex numbers or the corresponding elements
CDIVI of complex numbers

c) Roots

CMPXSR Obtains the complex square root of a complex number or array
CSQRI of complex numbers
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Array Data Handling Subroutines

The capability of the MOTAR user to manipulate data stored in
the $CURVES data is enhansed by use of numerious array data manipulation
-S.ubr_ou_t.i.ne.S-._JM subroutines available are listed below and described In
detail in Appendix A.

(a) Addition Operation

ADDARY Adds the corresponding elements of two specified length
arrays to form a third array

ARYADD Adds a constant value to every element in an array to
form new array

SUMARY Sums an array of floating point values

(b) Subtraction Operation

SUBARY Subtracts the corresponding elements of one array
from another to form a third array

ARYSUB Subtracts a constant value from every element in an
array to form a new array

(c) Multiplication Operation

MPYARY Multiplies the corresponding elements of two arrays to
form a third

ARYMPY Multiplies each element of an array by a constant value
to form a new array

SCLDEP Multiplies the dependent or independent variables of a
SCLIND doublet type interpolation array

(d) Division Operation

DIVARY Divides the elements of one array into the corresponding
elements of another array to produce a third array

ARYDIV Divides each element of an array by a constant value
to produce a new array

ARYINV Inverts each element of an array in its own location

ARINDV Divides each element of an array into a constant value
to form a new array

ADARIN Calculates one over the sum of inverse's of an array of values

(e) Distribution of Array Data

SHFTV Shifts a sequence of data from one array to another
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SHFTVR Shifts a sequence of data from one array and places data in
reverse order in another array

FLIP Reverses an array in its own array location

GENARY Generates an array of equally incremented ascending values

BLDARY Builds an array from a variable number of arguments in the
order listed

BRKARY Distributes values from within an array to a variable number of
BKARAD arguments in the order listed

STOARY Places a value into or takes a value out of a specific array
ARYSTO location

STFSEQ Stuffs a constant value into a specified length array or group
STFSQS of sequential locations

SLDARY Moves array data values back one or two positions and updates
SLDARD the last one or two values

STORMA Constructs historical data arrays during a transient analysis

(f) Singlet/Doublet Array Generation

SPLIT Separates a doublet array into two singlet arrays

JOIN Combines two singlet arrays into a doublet array

SPREAD Applied interpolation subroutine DIDIDA to two singlet arrays
to obtain an array of dependent variables versus an array
of independent variables

(g) Comparison Operation

MAXDAR Obtains the absolute maximum difference between corresponding
MXDRAL elements of two arrays of equal length N

5.3 SPECIAL INPUT/OUTPUT FEATURES

Described below are the features available on MOTAR to permit the
utilization of the magnatic tape capability of the Univac 1108 computer on in-
put and/or output. Described are the data on tape with edit capabilities,
restarting from and generating a restart tape, generating a history tape,
starting from a history tape, plotting from a history tape and using flux
curves from magnetic tapes.

5.3.1 Data on Tape with Edit

The input data described in Section 5.2.3 thru 5.2.6 must be
supplied to the computer in the form of punched cards on the original run.
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However, the data may be stroed on magnetic tape for input to subsequent
runs by use of the Data Tape with Edit feature which is available on MOTAR.
This feature increases the convenience and effectiveness of the use since
the handling of large decks are not required. Also, the reliability of the
tape reader is much higher than that for the card reader.

The EDIT routine is called by parameter INDATA input incolumns
4 and 5 on parameter card 2. Possible inputs are:

(1) INDATA = 0, All data is supplied on cards.

(2) INDATA = 1,

(3) INDATA = 2,

(4) INDATA = 3,

All data is supplied on cards and the card
images are written on tape on unit B. (Should
be specified as an output tape on job card)

Use data input on tape on unit C with desired
changes on cards to write a new data tape on
Unit B. (C is input tape and B is output tape)

Use the data read in from unit B without change,
Parameter cards 1 and 2 are read in from cards.
(B is input tape) • ... . .

If INDATA =-2, or -3, the card images on Unit B are punched.
When INDATA = +2, the deck set-up consists of parameter cards 1

and 2, the EDIT control cards (described below), and the new data cards
(with the same format as the cards being replaced).

The EDIT control cards, used only when INDATA has a value of
+ 2 are:

COLUMN

1

6-15

FORMAT

Al

110

16-25 110

NAME DESCRIPTION

ID * in column 1 identifies the
card as an EDIT control card

K3 Card number of first card to
be removed.if K3 is.positive
and K4>0. If K3 is negitive
K31 is the card number of the
card for which a merge correction
will be performed. If K4 is
blank or zero, cards change
cards between this card and the
next EDIT Control card will be
add immediately following
card K3.

v,

K4 Card number of last card to
be removed prior to inserting
the change cards in the data.
If K3 is negitive, K4 is ignored.
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As mentioned above, when K3 is negative, the merge option of edit is used.
With this option the change card submitted.after (K3) will be read in
5 column fields. For each 5 column field on the change card that is blank,
no change will occur to the same field on the original card K3 . If any
characters occur in a 5 column field that field on the original card will
be replaced with the characters on the change card for the merged card. A
$ in the 5th column of a 5 column field will cause that field to be blanked
on the new merged card.

5.3.2 Dump and Restart Option

MOTAR is set up so that the problem is dumped on the third
file of Unit I when either (1) the requested computer time, RTIME, or (2)
the problem stop time, STIME, is exceeded. If the user assigns an output
tape on Unit I this unit will contain the dumped information (on the second
file) and must be saved if the problem is to be restarted. If restarting
is planned the user must also save the K tape which contains the complied
computer generated program.

When restarting a problem the user supplies the I tape from
a previous run on the problem to be restarted as an input L tape positioned
to the proper file (usually the third file). Also, the K tape received
previously on output is assigned as an input unit K on restart. The deck
setup for restart is described in Section 5.4.1.

i
When more than one call is made to a temperature solution

routine (EXPLCT or IMPLCT) the dump information for each call is contained
on the odd file of Unit I starting with the third. That is, the first call
will dump on the third file; the second call on the fifth file, etc. The
even files contain history information discussed in Section 5.3.3.

5.3.3 History,Tape Options
The history tape contains information to permit automatic

plotting of problem temperatures, flow rates, and pressures and valve positions
as a function of time. This tape is written to permit the user to obtain
the analysis results in the convenient plotted form with a minimum of user
effort. A second feature..of the history tape is the ability of the user
to start a new problem from any time point for which data is written
start from history tape option) The format of the history tape, plotting
from the history tape and starting from the history tape are described
below.

5.3.3.1 History Tape Format

History records are always written on the even files of Unit I
with one history file for each call to a transient temperature solution
subroutine (EXPLCT or IMPLCT). Normally problems will have only one call and
thus, the history records are written on the second file with the dump for
restart (Section 5.3.2) written on the third file. If the history files are
to be saved for future use, the user must assign and save an I output tape
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in the control cards (See Section 5.4.1) when making the run.

The history tape file on Unit I contains a number of logical
-r-ee-or-ds-equa-l—t-o-t-he-number— of— h-i-st-or-y-t-imes-p-1-u-s—two-:—T-he-f-i r-s-t- r-eeord-
contains a title and an integer count of the number of items to be written
on the history tape. The second thru the next-to-last records contain the
information to written on the history tape with a record for each time point.
The history write interval, PINC, is specified on parameter card 2, columns
41 thru 50. When this interval is zero, it is set to the stop time minus
the initial time so that two time points are plotted (at start and end of the
problem).

The format for the history tape is as follows:

Record No. 1

Title (Written internally) including date and time of run
in 12A6 format, 0, 0, 0, 0, 0, 0, No. of pressure nodes, number
of valve positions, 0, 0, 0, number of tubes, 0, 0, number
of nodes.

Record No. 2

Initial problem time pressures, valve positions, flow rates,
node temperatures

Record No. 3

Second history time, pressures, valve positions, fl
Flow rates, Node temperatures

Record No. N+1 (Where N = number of history time slices to
be written)

Last history time, Pressures, Valve positions, Flow rates,
Node temperatures

Record No. N+2

Same as last record except time is negative.

5.3.3.2 Plotting From History Tape . '.'•'-•

The data written on the history tape may be used to generate
SO 4020 CRT plots of the pressures, valve positions, flow rates and/or node

132



temperatures versus time. To accomplish this the user must submit a separate
run using the plot routine, PLOTA, with the history tape as an input. In
addition the user may combine the'points of two or more history tapes into
one so that the results of several runs may be presented on one plot frame
This may be performed using either the PLOTA routine or the MCOMB routine.
The MCOMB routine will shift the time point in addition to combining tapes
if desired. The user may also plot the results of two separate runs on
the same frame for comparison by using the routine COMPAR. Care must be
taken when us'ing this routine since a linear interpolation is performed at the
comparison times prior to plotting.

The input descriptions for the routines PLOTA, MCOMB, and
COMPAR are described in Appendix C.

5.3.3.3 Starting From a History Tape

The user may use the history tape data to start a problem.
When using this option the problem input data supplied either on cards or
on a data tape (using options 5.3.1) is input along with a history tape
containing the desired starting conditions. A non-zero input in columns
8and 9 of parameter card 3 and a value for TMPTIM in 61 thru 70 of parameter
card 2 will cause the temperatures and valve positions to be read from the
history tape on unit H at the first time point on the tape following
TMPTIM. These new values will replace those of the original input.
When using this option, there must be a one-to-one correspondence between the
temperature nodes, and values in the model and on the history tape. Other-
wise, the user may modify the model at will making this a very useful
option.

5.3.4 Flux Tape Option

Incident heat curves may be read from tape by putting a non-
zero value in column 6 of parameter card 3.

Restrictions on this option are:

(1) The initial block of curve data must be input on cards or data

. . (2) Particular curves must have the same number of points on
each block of data read in as were input on cards initially

(3) Each curve may have a different number of points

(4) The curve data must be read in the same order the curves
are in the data deck

(5) The first point on each curve in each block of data must be
the. same as the. last point on that curve in the previous
block of data
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(6) All incident heat curves must be in a single block by
themselves.

-The-da-ta—i s-pead-f-pom-a-bi-nary—tape-wh-i ch-has—the-f ol-l ow-i-ng-
format:

Record No. 1

First Read Time

Record No. 2

Number of points on Curve No. 1 (Integer), Integer 1, Curve 1
independent variables, Curve 1 dependent variables, Number of
points on Curve 2, Integer 1, Curve 2 independent variables,
Curve 2 dependent variables, etc. for all curves.

Record No. 3

Second Read Time

Record No. 4

Same as Record No. 2

Record No. 5

Same as Record No. 1 but for the third read time.

Etc. until all blocks of data are on tape.

The amount of data which can be read in from tape is unlimited.
The amount of data which can be read in a given block is dependent upon the
data space available in the computer. It is possible to restart a problem
which reads incident heat curve data from tape. The tape rewinds when the
program is restarted; however, when the program calls for more incident heat
curve data, it searches for the proper program time before reading. To use
this option the flux tape must first be generated by G.'E. routine LTVFTP
which writes a flux tape in the proper format for use in the LTV routines.
Incident heat start-up cards are also generated by this routine.

The following operations should be performed when using the
flux tape option:

(1) Set flux tape code (NFLXCD) to one 'in column 6 of
parameter card.3.

(2) Input start-up incident heat curves for all incident heats
that will be read from the flux tape. Also, label all such
curves as curve type.
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(3) Assign the incident heat flux tape as input tape E.

5,4 RUN SUBMISSION REQUIREMENTS

This section describes procedures required to submit a MOTAR
run on NASA/MSC Univac 1108 Computer. Included are (10 the card deck setup
requirements (2) methods for estimating the amount of computer run time and
and page output requirements and (3) methods for estimating storage require-
ments to establish maximum problem size.

5.4.1 Deck Setup Requirements

The MOTAR input data described^in section 5.2 must be combined with
the required system control cards price to submitting a run on the NASA/MSC
Univac 1108 computer. The required control cards differ depending upon the
input/output options and the corresponding devices required for a given
problem.

Two fundamentally different types of runs may be made with
MOTAR. These are (1) the runs in which the input data is supplied on cards
or an input data tape (startup runs), and (2) runs which use a previously
generated compressed data tape, and program elements as input (restart runs).

The deck setup for runs with the input data supplied by cards
or data tape is shown in Table VIII. Included in the list shown in Table VIII
are all the I/O unit that can possibly be assigned which include units
A, B, C, E, F, H,.I, and K. All of these units, except A, are optional
and thus would not all be required for most problems. All may be used if
required however. A description of the I/O devices is given below.

A is the device (logical ,Unit 1) to which the basic program
tape should be assigned. It is always an input tape :

. B is the device Clogical Unit 2) to which the final data
tape (after editing) is assigned. When INDATA, parameter
card number 2, is 1 or 2, B is an output tape. When
INDATA is 3 B is an input tape. .

C is the device (logical Unit 3) to which the data tape to
be edited is assigned. C is required only when INDATA=3
and is always an input tape when assigned.

E is the device (logical Unit 7) to which the flux tape is
assigned when NFLXCD, parameter card.3 is^0. E is always
ari input

F is reserved for making program edits to A
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TABLE VIII : Deck Setup for Runs with Input Data on
Cards or Data Tape

'8Z-

8 -

'8 -
7,8 -

RUN
MSG

PIT (Required only if user plotting subroutines are used)
ASC, A = XXXX

ASG B = DATA or XXXX

' o "J» *-O — —

o noo r
o — —

'8-

AS6 C = XXXX

ASG_E = XXXX
ASG_F = RFC

ASG_H = XXXX
ASG_I = DUMP

ASG_K = PROG

ASGJ.
_ XQT _ CUR

TRW _ A
IN _ A
TRI _ A

TOC

XQT _ STEP1

(Parameter Card No. 1)

o noa IN
o — —

8 —

or 7g ASG

Optional Assign Cards

K,L if not planning a restart in the future

"•Input data deck or data edits

78 _ FOR, K _STEP2, STEP2

78 _ FOR, K _ TEMPTR, TEMPTR

78 _ FOR, K _ PRETMP, PRETMP

78 _ FOR, K _ POSTMP, POSTMP

78 _ FOR, K _ OUTPUT, OUTPUT

78_FOR, K_TEMPSS, TEMPSS

User Subroutines

136



TABLE Vm CONTINUED

7g _ XQT _ CUR

__TRW _ K

_ _ O U T _ K - . ' . . ' •

TEF K
-- - Required only if restarting is planned on future runs

ERS
_ _ TRW _ K

___ IN _ K

__ TRI _ K

7g _ XQT _ STEP 2
(PARAMETER CARD 2)

(PARAMETER CARD 3)
78-EOF
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is the device (logical Unit 10) to which the history tape
is assigned when NEWTMP^fcO . H is always an input tape.

I is the device (logical Unit IT) which is assigned for
writing history records for future plotting and for writting
the dump for restart. I is always an output tape.

K is the device (logic Unit 13) which will contain the basic
program from Unit A, plus the programs generated during the
preprocessing phase. K should be saved as an output tape if
restarting is planned in the future. If no restarting is
planned, K should be assigned to a Fostran file.

L is the device (logical Unit 14) which contains the compressed
data for input to the processing phase. On a restart run,
it is an input tape; on other runs it.i.s a Fostran file.

In addition to the above, two FH 432 drum files - M and N are used
during the preprocessing phase. Thus, the user should identify the fact that
two such files are needed on the MSG card.

The deck setup for runs With the input data supplied by a com-
pressed data tape or restart tape is shown in Table IX For this type of
run, Units A and L are required and units E, F, H, and I are optional. The
units are the same as described above.

5.4.2 Estimation of Computer Time and Output

The computer time required for a MOTAR run using the EXPLCT
routine on the Univac 1108 may be estimated by the following relation:

rTTMP _ STIME - TIME T (NODES) FC (1+2 FVP) + 1.'23 x 10"5
uint .DTIME L 810,000 :

+ HFC + NCC + NFL 1
306,000 75,600 104,400

Where CTIME = the required computer time in minutes

STIME = the problem stop time in the problem units

TIME = the initial problem time in the problem units

DTIME = the problem time increment
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TABLE IX Deck Setup for Restart Runs

78z - RUN
78n-MSG
78-PLT

7g _ AS6 _ A = XXXX

7g _ ASG _ E = XXXX

7g _ ASG _ F = PCF
78 _ ASG _ H = XXXX Optional Control Cards

7g _ ASG _ I = DUMP

7g _ ASG _ L = START

7g _ XQT _ CUR

__ PEF _ L/2 : • .

TRW A

_ _ TRI _ A

__TOC

7g _ XQT _ STEP 2

PARAMETER CARD 2

PARAMETER CARD 3

7g _ EOF
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PTIME = , the problem print interval

NODES = the number of nodes in the problem

FC = the sum of the conduction conductors plus
the number of radiation conductors divided
by number of NODES

FVP = the approximate fraction of capatance
and conductors that contain variable
properties

NFC = Number of flow conductors

NCC =• number of convection conductors

NFL = number of fluid lumps

For the Univac 1106, CTIME should be multiplied by approximately 1.7. The
time required for the IMPLCT solution routine is given by,

- STIME - TIME I" (NODES) FC (1+2 FVP)
" DTIME |_ 150,000

+ NFC + NCC + NFL
85,000 21,000 104'400

The above estimates do not include any provisions for user programmer sub-
routine time. Additional time should be allowed for any such programs.

The number of page of printed output using the standard
output options may be estimated as follows,

NP - NTUBES + NPN + NODES STIME - TIME
170 PTIME

Additional pages should be allowed for any output subroutines or write
statements specified by the user in addition to the standard.

5.4.3 Data Storage Requirements

The basic storage requirements for a thermal problem using
the EXPLCT solution subroutine is given by:
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NSPTH = 5*NODES+3*NTC+4*NCC+3*NFC+NSPCC+3*NTSPC+3*NAH
+4*NCURY+SNPTS+ISANFS+7*(NSUBS+1)+(MXPNSS-l)2+6*
NTBS+21(MXPNSS-1)+l0*NFLTPS+20*NVLVS+NPN+4*NFL

Where NSPTH = total thermal space required

NODES = number of nodes required

NIC = total number of conductors

NCC = number of convection conductor

NFC = = number of flow conductors

NSPCC = number of special option conduction
conductors (not constant)

NTSPC = number of types of special capacitances
(each group entry, is a type)

NAH = number of specified absorbed heat values

NCURV =' the total number of curves

SNPTS = the sum of the number of points

NFS = the number of flow systems

NSUBS = the number of subsystems

MXPNSS = the number of pressure nodes in the sub-
system with the maximum number of pressure
nodes

NTBS = the number of flow tubes

NFLTPS = the number of fluid lump types

- NVLVS = the number of.valves

NPN . = the number of pressure nodes

NFL = the number of fluid lumps

The storage requirements for a thermal problem using the IMLCT method of
solution is that given above plus 2*NTC.

5.5 OUTPUT DESCRIPTION :

Two types of standard output are available with MOTAR. The
first is a normal print at the input print. The second is a check out print
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which occurs on every iteration when requested (When NCKOUT on parameter
card 3 in non-zero). This checkout print consists of a normal print plus
a considerable amount of addition information which is jjsefu1 in checkinq out
the input data deck. The check~oiTt pri~ntr~format<r~for thlT"EXPLCT and~IMPLC T
solution subroutines are different.

In addition to the two standard output options available on
MOTAR, the user may specify any of a large number of user output subroutines
these are not described in this section but a description may be found in
Appendix A.

The normal MOTAR printing, the EXPLCT checkout printing,
the EXPLCT checkout printing and the IMPLCT checkout printing are described
below.

5.5,1. Normal Printing

Some examples of normal printing are given in the sample
problems described in Appendix B. A explanation of .the terms apperaring
in the normal print is given below. The units are always the problems units.

The beginning of a print interval is indicated by the printout
of the time parameters. This is followed in order by the flow rates per tube,
the pressures per pressure node, the valve positions per valve and the tem-
pertures per node. These are described below as they appear.

Time Parameters

MISSION TIME - The mission time in the problem units

COMPUTATION INTERVAL- The computation time increment in the
problem units

COMPUTER TIME - The amount of computer time used to this point
(since the XQT SETP2) in minutes

Flow Rates

Flow rates are printed in numerical order by tube in
the problem units. Five flow rates are output on each line
with the tube number of the fifth flow rate printed to the
right of it. . ;

Pressures

Pressures are printed in numberical order by pressure node
in the problem units. Five pressures are printed out per line
with the pressure node number of the fifth pressure printed
out to the right of it.
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5.5.2

Valve Positions

. The valve positions are listed one to a line in order
of valve number. Each is identified with its number.

Temperatures

Temperatures are printed out in numerical order of the node
numbers. The output is the problem unit. Temperatures are
printed out five to a line with the lump number of the last
temperature on each line printed just to the right of it.

EXPLCT Checkout Printing

The checkout printing may be used to examine internally
calculated values such as heat transfer coefficients, frictional and bend
loss pressure drops, and maximum time increments. An examination of the
time increments for each lump may reveal that certain lumps which are not
thermally important to the solution have small time increments. In that case
the time increment may be selected such that fewer iterations are required.
Care should be exercised that the lumps with overridden time increments do
not affect the transient analysis.

An explanation of the terms appearing in the checkout
printing for the EXPLCT routine is given below:

CHECKOUT PRINT FOR PRESSURE-FLOW COMPUTATION SUBROUTINE

MPASS - Number of temperature iterations between pressure balance
MXPASS - Maximum number of passes to balance in PFCS
NSS - Number of Subsystems in this system
LOCI - Starting location in the subsystem data for the subsystems

of this system
NVLOC - Starting location in the valve data for the valves of

this system
LOCP - Starting location in the pump data for the pumps of this

system
TOL - Subsystem solution tolerence.
EPS - Relaxation tolerence for numerical equation solution
NTB - Tube number
W(NTB) - Flow rate in tube NTB
NFRM - Upstream pressure node for tube NTB
NTO - Downstream pressure node for tube NTB
NF - Number of fluid lumps in tube NTB
LN - Fluid lump number
T(LN) - Temperature of fluid lump number LN
LOC4 - Location in the fluid lump data array for.lump LN data
WP - Wetted peirmeter of lump number LN
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CSA2
MFF
HL

RO
MU
RE
FFC
FF
R(LN)
PCHK
KPASS
NPASS
INLT
NPR
NT
LOC2

LOC3

NP
NTU
G(NTB)

Time Parameters

Flow cross-sectional area squared for lump LN
Method code for determining friction for lump LN
Number of head losses in fluid lump LN
-F-lu-id—lump-1 engt-h-d-i-v-i ded-by-d-i amet-er—for—lump-LN-
Density of fluid lump LN
Viscosity of fluid lump LN
Reynolds number of fluid lump LN
Friction factor coefficient for fluid lump LN
Friction factor for fluid lump LN
Flow resistance for fluid lump LN
Pressure at the upstream node for tube NTB
Number of passes thru the system
Pass number for balancing subsystem
Inlet tube number for the subsystem
Specified pressure node for the subsystem
Number of tubes in the subsystem
The starting location in the tube data for the
tubes of this subsystem
The starting location in the fluid lump data for
the fluid lumps in this subsystem .
Number of pressure nodes in the subsystem
Number of tubes upstream of subsystem
Flow conductor for tube NTB

MISSION TIME - The mission time in the problem units

COMPUTATION INTERVAL - The computer time increment in the problem
units

COMPUTER TIME - The amount of computer time used at this
point (since XQT STEP2) in minutes

Flow Rates

Flow rates are printed in numerical order by tube in the
problem units. Five flow rates are printed per line with the number of the
fifth being identified by an integer at the end of the line.

Pressures

Pressures are printed in numerical order by pressure node in
the problem units. Five pressures are printed out per line with the pressure
node number of the fifth pressure printed out to the right of it.

Valve Positions

valve number.
The valve positions are listed one to a line in order of

Each is identified with its number.

144



Temperatures

Temperatures are printed out in numerical order of the node
number. The output is in the problem units. Temperatures are printed out
five to a line with the lump number of the last temperature on each line
printed to its right.

Capacitances

Capacitances are prined out in numerical order of the node
number. The output is in the problem units. These are printed out five to
a line with the lump number of the last capacitance on each line printed
to its right. .

Heat Storage Rates

Heat storage rates are printed out in numerical order of
the node number. The output is in the problem units. These are printed
out five to a line with the lump number of the last rate on each line printed
to its right.

Conductances

Conductances are printed out in numerical order of the conductor
number. The output is in the problem units. These are printed out five to a
line with the conductor number of the last conductor on each line printed
to its right.

Time Increments

Time increments which are used in the temperature calculation
are printed out in numerical order of the node number. The output is in
the problem time units. These are printed out five to a line with the
lump number of the last time increment on each line printed to its right.

CHECKOUT PRINT FOR FLOW CONDUCTOR COMPUTATION SUBROUTINE

NC - Conductor number

NFL - Lump number of the "from" lump

NTL - Lump number of the "to" lump

T(NFL) - Temperature of the from lump;

KODEF - Code specifying method for obtaining flow rate

CP - Specific heat
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CHECKOUT PRINT FOR CONVECTION CONDUCTOR COMPUTATION SUBROUTINE

NC - Conductor number

NFL - Fluid lump number .

NTBL - Tube lump number

NFS - Flow system number

NTB - Tube number

MHTC - Code for identifying method for heat transfer coefficient
calculation

LOC5 - Location in the type data array for the flow data for this
lump .

AHT - Heat transfer area

Fl - Entry length laminar flow multiplying factor

F2 - Fully developed laminar flow multiplying factor

T(NFL) - Fluid lump temperature

CP - Specific heat

VIS - Viscosity

CON - Conductivity .

W(NTB) - .Flow rate in tube NTB

WP - Wetted perimeter

RE - Reynold's number

PR - -Prandtl number

D - Hydraulic Diameter

H - Heat transfer coefficient

X/D - Distance from tube enterance divided by hydraulic diameter

U(NC) - Calculated conductor value

ST - Stantion number when MHTC = 3, otherwise, zero
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5.5.3 IMPLCT Checkout Printing

The checkout printing for the IMPLCT routine is identical
to that for the EXPLCT routine given in Section 5.5.2 with the additions/"
described below.

CHECKOUT PRINT FOR IMPLICIT TEMPERATURE CALCULATION SUBROUTINE

NPASS

NODE

T(NODE)

RHS(NODE) -

C(NODE)/TINC -

QSUM(NODE) -

The pass number in obtaining the temperature solution

The temperature node number

The temperature of NODE

The right hand side for NODE as given by the right
hand side of Equation 14

The capacitance of NODE divided by the problem time
i ncrement

The value given by RHS(NODE) minus the second term on
the left side of Equation 14

n+1 ,.USUM(NODE) - The coefficient of If" ' in Equation 14

DELTAT - The temperature change for the pass for NODE after
applying the overtaxation parameter

TNEW - The temperature of NODE following the pass
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APPENDIX A

USER SUBROUTINES

1.0 INTRODUCTION

This appendix presents a description of all user subroutines
currently available in MOTAR. Table A-l presents the location of each of
the seven categories of subroutines. Table A-2 presents an alphabetical
listing of the user subroutines with the corresponding page numbers.

. Table A-l

Section Category Page

2.1 Temperature Solution Subroutines A-4

2.2 Application Subroutines A-l4

2.3 Matrix Subroutines A-36

2.4 Interpolation Subroutines A-59

2.5 Output Subroutines A-76

2.6 Mathematical Solution Subroutines A-89

2.7 Array Operations and Manipulations A-96

A-l



Table A-2

ALPHABETICAL LISTING

NAME PAGE NAME PAGE NAME PAGE

AABB
ABLATS
ADARIN
ADDALP
ADDARY
ALPHAA
ARINDV
ARYADD
ARYDIV
ARYINV
ARYMPY
ARYSTO
ARYSUB
ASSMBL
BABT
BKARAD
BLDARY
BRKARY
BTAB
BVSPDA
BVS'PSA
BVTRN 1
BVTRN2
CABIN
CALL
CDIVI
CMPXDV
CMPXMP
CMPXSR
CMPYI
COLMAX
COLMIN
COLMLT
COPRNf
CPRNT

CSQRI
CVQ1HT
CVQ1WM
DAI 1 CY
DAI IMC
DA12CY
DAI 2MC
DIAG
DIAGAD
DISAS

A-47
A-32
A-100
A-45
A-97
A-45
A-100
A-97
A-99
A-100
A-98
A-102
A-98
A- 48
A-48
A-102
A-102
A-102
A-48
A- 72
A-72
A-72
A-72
A-28
A-54
A-94
A-94
A-94
A-93
A-94
A- 50
A-50
A-49
A-78
A-78

A-93
A-66
A-66
A- 69
A-70
A-69
A-70
A-41
A-41
A-48

D I VARY
DPRNT
D1DEG1
D1DEG2
D1DG1I
D1D1DA
D1D1IM
D1D1MI
D1D1WM
D-1D2DA
Dl D2WM
D1IMD1
D1IMIM
D1IMWM
D1MDG1
D1MDG2
D1M1DA
D1M1MD
D1M1WM
D1M2DA
D1M2MD
D1M2WM
D11CYL
Dll DAI
D11DIM
D11MCY
D11MDA
D11MDI
D12CYL
D12MCY
D12MDA
D2DEG1
D2DEG2
D2D1WM
D2D2WM
D2MXD1
D2MXD2
D2MX1M
D2MX2M
D3DEG1
D3D1WM
EFABS
EFACS
EFASN
EFATN

A-99
A-78

' A-62
A- 67
A-65
A-62
A-65
A-65
A- 64
A-67
A-67
A-66

. A-66
A-66
A-64
A- 68
A-64
A-65
A-65
A-68
A- 68
A-68
A-69
A-65
A-65
A-70
A-64
A-65
A-69
A-70
A-67
A- 73
A-73
A-73
A-73
A- 74
A-74
A-74
A-74
A- 75
A- 75
A- 44
A- 43

, A- 43
A- 43

EFCOS
EFEXP
EFFEMS
EFLOG
EFPOW
EFSIN
EFSQR
EFTAN
ELEADD
ELEDIV
ELEINV
ELEMUL
ELESUB
ENDMOP
EXPLCT
EXPSS
FILE
FLIP
FULSYM
GENALP
GENARY
GENCOL -
GENI
GENOUT.
GENR
GSLOPE
HEATER
'HXEFF .
HXCNT
HXCROS
HXPAR
IMPLCT
IMPL5S
INVRSE
IRRADE
IRRADI
ITRATE
JACOB I
JOIN
LAGRAN
LGRNDA
LIST
LQDVAP
LQSLTR
LSTAPE
LSTSQU
MASS
MATADD

. A-43
A- 44
A-20
A- 44
A-44
A-43
A-44
A-43
A- 42
A- 42
A- 42
A- 42
A-42
A-55
A-5
A-7
A-54
A-101
A-41
A- 40
A-101
A- 40
A-81
A-81
A-81
A-71
A-27
A- 22
A-23
A-24
A-26
A-7
A-ll
A- 46
A-17
A-17
A-75
A-53
A-105
A-61
A-61
A-87
A- 35
A-34
A-55
A-93
A-57
A-45

A-2



Table A-2
Alphabetical Listing (Continued)

NAME

MATRIX
MAXDAR
MODES
MPYARY
MULT1 1 \J L* 1

MXDRAL
NEWRT4
NEWTRT
ONES
PLOTL1
PLOTL2
PLOTX1
PLOTX2
PLOTX3
PLOTX4
PLYARY
PLYAWM
PLYEVL
PLYNML
PNTABL
POL •
POLMLT
POLSOV
POLVAL
PPRNT
PRINT
PRINTA
PRINTL '
PRNPLT
PRNTMA
PRNTMI

J PSINTR
PSNTWM
PUNCH
PUNCHA
QPRNT
RADIR
RADSOL
READ
REFLCT
ROWMLT
SCALAR
SCLDEP
SCLIND
SCRPFA
SHFTV
SHFTVR
SHIFT

PAGE

A-45
A- 106
A-56
A-98
A-46
A- 106
A-91
A-91
A-40
A-83
A- 83
A-83
A-83
A-84
A- 84
A-92
A-92 .

. A- 52
A-92
A-88
A-63
A-52
A- 53
A-52
A- 79
A-80
A-80
A-80
A-82
A-81
A-81
A- 7.1
A-71
A-88
A-81
A- 78
A-15
A-18
A- 87
A-49
A- 49
A-45
A- 99
A-99
A- 21
A-101
A- 101
A-49

NAME

SHUFL
SIGMA
SIMEQN
SLDARD
SLDARY
SLRADE
SLRADI
SMPINT
SPLIT
SPREAD

STFSEQ
STFSQS
STIFF
STOARY

STORMA
SUBARY
SUMARY
SYMDAD
SYMFRC
SYMFUL
SYMINV
SYMLST
SYMREM
SYMREP

. TPRNT
TRANS
TRPZD
TRPZDA .

' UNDIAG :
UNITY
UPRNT
VPRNT
WPRNT
WRITE'
ZERO

PAGE

A-50
A-40
A-82
A-104
A-104
A-20
A-20
A-90
A-105
A-105

A-103
A-103
A-58
A-102

A-104
A-98
A-97
A-51
A-41

. A-41
A-51
A-88
A-51
A-51 .
A-78
A-47
A-90
A-90
A-41
A-40
A-78
A-78
A-79
A-87 &
A-40 £j
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2.0

2.1

SUBROUTINE DESCRIPTION

TEMPERATURE SOLUTION SUBROUTINES (Computer generated and
vary from problem-to-problem)

_P_AGE_
EXPLCT

EXPSS

IMPLCT

IMPSS

Calculates transient temperatures using the explicit method
of solution. Two time increment options are available.

A-5

Calculates the steady state temperature distribution using data A-7
stored for explicit problem.

Calculates transient temperatures using the implicit methods A-7
of solution including mid-difference, backward difference or
any point between.

Calculates steady state temperature distribution using data
stored for implicit problems.

A-11
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SUBROUTINE NAME: EXPLCT

PURPOSE;

This subroutine obtains the transients temperatures using the explicit
forward differencing solution method described in Section 3.1.2.1. The
calculations for each node are given by equation (12) and the stability criteria
is given by equation (13). Two options are available for application of the
stability criteria. There are

(1) Override or Floating Option - (Specified by 0 in columns
11 through 20 of parameter card 2):

.: Temperature calculation is made for each lump using the input
time increment or the maximum stable increment (equation 13),
whichever is smaller.

(2) No Overriding Option - (Specified by a nonzero entry for TINCMN
in columns 11 through 20 of parameter card 2):

Temperature calculations for all lumps are made using the
input time increment or the smallest maximum stable increment
whichever is smaller (all lumps use the same increment).
A minimum value for the time increment is specified by
the user and the problem is terminated if the maximum stable
increment drops below the input minimum.

EXPLCT is generated during the preprocessing phase of MOTAR bashed upon the
input data and thus will vary in actual form from problem to problem, depending
upon the requirements. A functional flow chart is shown in Figure A-l,
which shows the order of calculations including the calls to the user programming
blocks. Many of the operations shown will not be present when the data
doesn't require them.

RESTRICTIONS:

Must be called from the $CENTRAL block. MPLCT code in columns 6 to 10 of
parameter card 1 must be 0 or blank.

CALLING SEQUENCE: EXPLCT s

A-5



C EXPLCT J

CALCULATE INITIAL
CONDITIONS

PERFORM $ OUTPUT
OPERATIONS

CALCULATE TEMPERATURE
AND TIME DEPENDENT

CAPACITANCES AND CONDUCTORS

CALCULATE ABSORBED OR
GENERATED HEAT SOURCES

PERFORM $ PRETEMP

PERFORM NORMAL TEMPERATURES
CALCULATIONS

ADVANCE TIME

OBTAIN CURVE DEPENDENT
TEMPERATURES

PERFORM $ POSTTEMP
OPERATIONS

PERFORM PRESSURE/FLOW
ANALYSIS

TIME TO WRIT
HISTORY TAPE

WRITE HISTORY
TAPE

WRITE ON HISTORY TAPE,
DUMP TAPE AND OUTPUT

r RETURN. )

FIGURE A-1: FUNCTIONAL FLOW CHART OF SUBROUTINE EXPLCT
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SUBROUTINE NAME: EXPSS

PURPOSE:

This subroutine obtains the steady state temperature d i s t r i b u t i o n for
problems with the data stored in the explicit format. It is compatible
with the EXPLCT subroutine and, thus, may be used on the same problem.
It iterates the basic transient explicit temperature equation (Equation
12) to a solution while holding time constant. Convergence is accelerated
by applying the maximum stable time increment given by Equation 13 to
each node. This method results in a block iterative solution method.
Compared with subroutine IMPSS, the convergence is slower but less

* storage space for the data is required.

A functional flow chart for EXPSS is shown in Figure A-.2.

RESTRICTIONS:

MPLCT code in columns 6 thru 10 of parameter card 1 must be 0. Must
be called from $CENTRAL

CALLING SEQUENCE: EXPSS

SUBROUTINE NAME: ' IMPLCT

PURPOSE:

This subroutine calculates the transient temperature distribution
using the implicit method of solution discussed in Section 3.1.2.2.
Either backward difference, mid-difference or any point in between
may be specified by the value of ALPHA in columns 16 thru 20 of parameter
card 3, which is constrained to be between 0.5 and 1.0. When ALPHA
is 1.0 the solution is backward-difference; when ALPHA is 0.5 the solution
is mid-difference. A modified version of the successive-point-over
relaxation iteration method is used for equation solution. The over-
relaxation parameter, ORP, is supplied in columns 26 thru 30, and the
solution tolerence DTMXA is supplied in columns 21 thru 25, both on
parameter card 3.

Figures A-3 and A-4 provide functional flow charts of IMPLCT and TEMPI
which is called from IMPLCT. As may be seen, the $PRETEMP operations
are preformed during the relaxation loop of TEMPI, and thus, the user
calls in $PRETEMP are considered during relaxation. The user may not
reference the C array from $PRETEMP when using IMPLCT but may perform
operations on the Q, U, and T arrays. C operations may be performed
.in the $POSTTEMP block.
RESTRICTIONS:

MPLCT code in column 10 of parameter card 1 must be 1. IMPLCT must
be called from $CENTRAL. The C array is not available to the user in
the $PRETEMP operations block.

CALLING SEQUENCE: IMPLCT
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C EXPSS j

CALCULATE INITIAL
CONDITIONS

COEFFICIENTS, ABSORBED HEAT VALUES
AND TEMPERATURES

CALCULATE TEMPERATURE DEPENDENT
COEFFICIENTS AND ABSORBED HEAT

PERFORM $ PRETEMP OPERATIONS

PERFORM TEMPERATURE CALCULATIONS

PERFORM $ POSTTEMP
OPERATIONS

ji

IS
TEMP CHANGE

LESS THAN INPUT
TOLERENCE

IS
NO. OF ITERATIONS

GREATER THAN
X VALUE

WRITE ERROR
MESSAGE

IS
ETIME>RTIME

WRITE ERROR
MESSAGE

PERFORM STD P'RINTOUlT^ERFORM
- ' ' $ OUTPUT OPERATIONS

I
RETURN

FIGURE A-2; FUNCTIONAL FLOW CHART OF SUBROUTINE EXPSS
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PERFORM $ OUTPUT
OPERATIONS

WRITE
HISTORY TAPE

C IMPLCT J

INITIALIZE PROBLEM

DETERMINE CAPACITANCES,
CONDUCTORS AND ABSORBED
HEATS, AT MEAN TIME

DETERMINE RIGHT HAND SIDE
OLD TIME

ADVANCE TIME

INTERPOLATE FOR TIME DEP. TEMPS

TIME T
RITE HISTORY

TAPE

NO

rCALL TEMP SOLUTION
| SUBROUTINE. TEMPI

PERFORM $ POSTTEMP
OPERATIONS

PERFORM PRESSURE/
FLOW BALANCE

YES

WRITE MESSAGE

STOWRITE ON HISTORY TAPE,
DUMP TAPE AND OUTPUT

RETURN

YES

FIGURE A-3: .FUNCTIONAL FLOW CHART OF IMPLCT

A-9



C TEMPI J

INITIALIZE CONSTANTS

LPASS = TRUE

DTMX,
IS \. NO
r~r DTMA ̂ v. , , &b 1 . r 1 MA/ ">

-̂

CALL $ PRETEMP OPERATIONS
AT NEW TIME

•+1YES

IS
NO.

LPASS = .FALSE

.NO
CALCULATE NEW

NODE TEMP

iI
IS

EMP CHANG
GT THAN

TO

SET NODE NO
NEGATIVE

IS
MAX PASS
XCEEDESET NODE NOS. POSITIVE

IS
LPASS
TRUE

WRITE ERROR

FIGURE A-4: FUNCTIONAL FLOW CHART OF TEMPI
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SUBROUTINE NAME: IMPLSS

PURPOSE:

This subroutine calculates the steady state temperature distribution
for problems with the data stored in the implicit format. It is
compatible with IMPLCT in that data stored for either may be used
with the other. Thus, IMPLCT and IMPLSS may be used on the same
problem.

Subroutine IMLSS performs the same basic iteration procedure performed
in IMPLCT except the time is held constant and the capacitance is
assumed to be zero. Functional flow charts of IMPLSS and TEMPSS which
it calls are shown in Figure A-5 and A-6.

The values of the overrelaxation parameter, ORP, and the solution tolerence,
DTMXA, are supplied on parameter card 3.

RESTRICTIONS:

MPLCT code in column 1.0 of parameter card 1 must be 1. IMPLSS must
be called from $CENTRAL. The C array is not available to the user in the
$PRETEMP operations block.

CALLING SEQUENCE: IMPLSS
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YES

NO

NO

YES

WRITE ERROR

C IMPLSS J

•>±I_
INITIALIZE PROBLEM

.DETERMINE ABSORBED
HEATS, AT MEAN TIME

DETERMINE RIGHT HAND SIDE
OLD TIME

INTERPOLATE FOR TIME DEP. TEMPS

YES

CALL TEMP SOLUTION
SUBROUTINE TEMPSS

PERFORM $ POSTTEMP
OPERATIONS

PERFORM PRESSURE/
FLOW BALANCE

PERFORM STOP
PERFORM $ OUTPUT

RETURN

TEMPSS

FIGURE A-5: FUNCTIONAL:FLOW CHART OF IMPSS
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( TEMPSS J

INITIALIZE CONSTANTS

LPASS = TRUE

\ NO
Ŝ

CALL $ PRETEMP
AT NEW

OPERATIONS
TIME

YES LPASS = .FALSE

NO
CALCULATE NEW

NODE. TEMP

«

MO ! 1! ^Ki' r\innt; wn, ;
NEGATIVE

IS
THE.MAXIMUM

CHANGE.
GT.TOL

SET.NODE NOS. POSITIVE |

FIGURE A-6: FUNCTIONAL FLOW CHART OF TEMPOS
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2.2 APPLICATION SUBROUTINES r : " r -,.. : . - ; . .-,•--•;:-•-

thermal Radiation Exchange PAGE

RADTRCFlWlTre~s~th~e~srri~pt~FA~va1Ws~for~rR~r^^
closure and uses these values to obtain the heat transfer due to
radiation. Permits consolidation of several nodes on one ra-
diating surface . ... . : . . . . . . . . . . . . . . . . . . . A-lFi

IRRADTIRRADE Simulates a radiosity network within a multiple grey surface
enclosure containing a non-absorbing media. . . . . . . . . . . A-17

RADSOL Calculates the script FA values for non-infrared radiation in
an enclosure and uses these values to obtain heat transfer
during the problem. Permits consolidation of several nodes on
one radiating surface A-18

SLRADI Similar to IRRADI and IRRADE but designed to solve for the
SLRADE solar heating rates within an enclosure ..... A-20

EFFEMS Calculates the effective emissivity between parallel flat plates A-20

SCRPFA Obtains the script FA value for radiant transfer within an
enclosure . A-21

Heat Exchanger and Heater

UVppp

HXTNT Simulates heat exchangers under steady state conditions for con-
HXTRns stant effectiveness, counter flow, cross flow, and parallel flow
HXPAR conditions respectively . A-22/A-26

HEATER Simulate a fluid inline heater. . . . . . . . . . . . . . . . . A-27

Cabin Analysis

CA.BIN Performs a heat and mass balance on a cabin gas considering
any number of entering streams and condensation on the cabin
wall .,'!.' . A-28

I ; -

Phase Change

ABLATS Represents a simple ablation (sublimation) capability A-32

LQSLTR Accounts for the phase change energy of a melting or solid-
ifying material A-34

LQDVAP Allows the user to simulate the addition of liquid to a node . A-35
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SUBROUTINE NAME: RADIR

PURPOSE:

RADIR calculates the script-F values for infrared radiation heat trans-
fer within an enclosure and uses these values to obtain the heat trans-
fer during the problem. Several temperature nodes may be combined on a
single surface for radiation heat transfer purposes. Also, the user may
analyze problems with specular, diffuse or combinations of specular
and diffuse radiation. See Section 3.1.3.5 for definitions and detailed
description of methods.

RADIR calculates the script-F values on the initial call. This is per-
formed by the procedure outlined in Section 3.1.3.5, Equations 23, 25
and 31. These values are stored for future use in the A6 array supplied
by the user. The heat flux values are then calculated on all iterations
by:

(1) Calculating the temperature of each surface using equation 34

(2) Calculating the absorbed heat for each node by the relation
of equation 33

The value given by equation 35 is added to the conductor sum for each
node so that the proper conveyence time increment may be obtained. As
many enclosures as desired may be analyzed but each enclosure requires
a different call to RADIR. RADIR must be called in $PRETEMP.

RESTRICTIONS:

Must be called from $PRETEMP

CALLING SEQUENCE:

RADIR (Al (1C) ,A2(IC) ,A3(IC) ,A4(IC) ,A5(IC) ,A6(IC))

Where the arrays are formated:

Al (1C) ,n,SNl ,SA1 ,NN1 ,SN2,SA2,NN2, ............ SNn,SAn,NNn
A2(IC),SE1,SE2 ----- SEn
A3(IC),SR1,SR2 ----- SRn
A4(IC),SNF1,SNT1 ,EFT1 ,SNF2,SNT2,EFT2,— SNFm,SNTm,EFTm
A5(IC),NNO(1,1) ,AN(1,1) ,NNO(1,2) ,AN(1,2) ---- NNO(1 ,NN1.) ,AN(1 ,NN1 ) ,

NNO(2,1),AN(2,1) ,NNO(2,2),AN(2,2) ---- NNO(2,NN2) ,AN(2,NN2),
i i i i i . . i *

NNO(n,l ) ,AN(n ,1 ) ,NNO(n,2) ,AN(n,2) ---- NNO(n,NNn) ,AN(n,NNn)
A6(IC), S, NSPACE

A-15



The following definitions apply in the above calling sequence.

A1,A2, A6 Location for arrays supplied in the
$CURVE block. The user must use the
LUTAB function to find the location
(see Section 5.2.5)

n The number of surfaces

SN1 ,SN2,...SNn Node number for surfaces - must be
boundary nodes

SA1,SA2, SAn Total area for each surface
v .

NN1 ,NN2,....NNn Number of temperature nodes on each
surface

SET,SE2,....SEn Emissivity values for each surface

SRI,SR2,....SRn Diffuse reflectivity values for each
surface

SNF1 ,SNT1 ,EFT1 Connections data: Surface number
from, surface number to, E value
from SNF1 to SNT1, etc.

NNO(X,Y) Temperature node numbers on surfaces;
Node number Y on surface X

NSPACE Number of spaces needed to store script-
FA values - NSPACE must be an integer
values of n/2(n+l)

m The number of surface connections
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THERMAL RADIATION EXCHANGE

SUBROUTINE NAMES: IRRADI or IRRADE

PURPOSE:

These subroutines simulate a radiosity network* within a multiple gray
diffuse surface enclosure containing a non-absorbing media. The input is
identical for both subroutines. However, IRRADE utilizes explicit equations
to obtain the solution by relaxation and IRRADI initially performs a
symmetric matrix algebra inverse and thereafter obtains the exact solution
implicitly by matrix multiplication. The relaxation criteria of IRRADE
is internally calculated and severe enough so that both routines generally
yield identical results. However, IRRADE should be used when temperature
varying emissivities are to be considered and IRRADI should be used when
the surface emissivities are constant. Both subroutines solve for the J
node radiosity, obtain the net radi.ant heat flow rates to each surface and
return them sequentially in the last array that was initially used to
input the surface temperatures. The user need not specify any radiation
conductors within the enclosure. .

RESTRICTIONS:

The Fahrenheit system is required. The arbitrary number of temperature
arguments may be constructed by a preceding BLDARY call. The emissivity,
area, temperature-Q and upper half FA arrays must be in corresponding order
and of exact length. The first data value of the FA array must be the
integer number of surfaces and the second the Stefan-Boltzmann constant
in the proper units and then the 'FA floating point values in row order.
The diagonal elements (even if zero) must be included. As many radiosity
subroutine calls as desired may be used. However, each call must have
unique array arguments. The user should follow the radiosity routine by
SCALE, BRKARY or BKARAO to distribute the Q'-s to the proper source location.

CALLING SEQUENCE; lRRADl(AAdC),AzdC),AFAdC)aATQ(IC))
or

where the arrays are formatted as follows:
MdC),Al,A2iA3.tA4f..iAN.

AFA(IC)JN,a1FA(l,l)tFA(l,2),FA(l,3)iFA(li4),FA(lyS),..JFA(lJN)
- . - : - . .FA(2f2.)tFA(2t-3)tFA(2t4)tFA(2,5),..tFA(2,N)

FA(N-2,N-2),FA(N-2fN-l)tFA(N-2,N)

. .
where FA(l,2) is defined as A(l)*F(lt2). .After the subroutine is performed
the ATQ array is ATQ(IC),Q1,Q2JQ3, . . ,QN
Since FA](lf2).=FA2 (2,1) only the upper half triangle of the full FA matrix
is required. IRRADI inverts this half matrix in its own area, hence
approximately 300 surfaces may be considered using MQTAR on a 65K core
machine. '

*"Radiation Analysis by the Network Method," A. K. Oppenheim, Transaction
of the ASME, May 1956, pp. 725-735.
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SUBROUTINE NAME: RADSOL

PURPOSE:

RADSOL calculates a pseudo script-F for radiation from an external
source entering an enclosure and uses these values to calculate the net
heat transfer to each node due to the entering source. A number of
temperature nodes may be combined on a single surface for radiation
purposes. Also, problems with specular, diffuse, or combinations of
specular and diffuse radiation may be analyzed. Section 3.1.3.5 should
be consulted for definitions and descriptions of methods.

RADSOL calculates the pseudo script-F values on the initial call. This
is performed by equations 38, 40, and 44 of section 3.1.3.5. The values
are stored in the A7 array supplied by the user. The heat flux values
are then calculated on each iteration by equations 45 and 46.

The user may analyze as many enclosures as desired by supplying a call
statement for each enclosure. Also, a user may analyze several wave
length bands of radiation for any enclosure by supplying a call state-
ment (and appropriate data) for each wave length bands.

RESTRICTIONS:

Must be called from the $PRETEMP operations.

CALLING SEQUENCE:

RADSOL (A1(IC),A2(IC),A3(IC),A4(IC),A5(IC),A6(IC),A7(IC)

Where the arrays are formated:

Al ( IC) , n,SNl,SAl ,NN1 ,SN2,SA2,NN2, - - - - - - Snn,SAn,NNn
A2(IC),SE1,SE2, -SEn
A3(IC),SR1,SR2, - -.-. - - -SRn
A4(IC),SHT1,SHT2 SHTn V
A5(IC),SNF1,SNT1 ,EFT1,SNF2,SNT2,EFT2, - - -SNFm,SNTm,EFTm
A6(IC),NNO(1,1),AN(1,1),NNO(1,2) ,AN(1,2) - - -NNO(1 ,NN1) ,AN(1,NN1),

NNO(2,1),AN(2.1),NNO(2,2),AN(2,2) NNO(2,NN2) ,AN(2,NN2)
i i i i i i »

NNO(n,l),AN(n,l),NNO(n,2),AN(n,2) - - -NNO(n,NNn),AN(n,NNn)
A7(IC), S, NSPACE

The following definitions apply in the above calling sequence
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A1.A2, A6 Location for arrays supplied in the
- $CURVE block. The user must use the

LUTAE function to find the location
(See Section 5.2.5)

n = the number of surfaces

SN1,SN2,...SNn Node number for surfaces must be bound-
ary nodes

SA1,SA2,...SAn Total area for each surface

NN1,NN2,...NNn Number of temperature nodes on each
surface ,

SET,SE2,...SEn Emissivity values for each surface

SRI,SR2,...SRn Diffuse reflectivity values for each sur-
face

SHT1,SHT2,...SHTn Incident heat flow on surfaces may be curve
1,2, --- n or constant

SNF1,SNT1,EFT1 Connections data: Surface number from
surface number to, E value from SNF1 to
SNT1, etc.

NNO(X,Y) Temperature node numbers on surfaces:
Node number Y on surface X

NSPACE . Number of spaces needed to store script-
FA values - NSPACE must be an integer
values of n/2(n+l)
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FHERMAL RADIATION EXCHANGE

SUBROUTINE'NAMES; SLRADI or SLRADE

PURPOSE:

These subroutines are very similar to IRRADI and IRRADE but are designed to
solve for the solar heating rates within a enclosure. , SLRADI inverts a half
symmetric matrix in order to obtain implicit solutions, while SLRADE obtains
solutions expliclty by relaxation. SLRADE should be used when temperature
varying solar absorptivities are to be considered. The second data value of
the AFA array must be the solar constant in the proper units. The AT array
allows the user to input the angle (degrees) between the surface normal and
the surface-sun line. The Al array allows the user to input an illumination
factor for each surface which is the ratio from zero to one of the unshaded
portion of the surface. The solar constant (s), AT and AI values may vary
during the transient for both routines. No input surface temperatures are
required. The absorbed heating rates are returned sequentially in the AQ
array, the user may utilize SCALE, BRKARY or BKARAD to distribute the
heating rates to the proper source locations.

RESTRICTIONS:

These routines are independent of the temperature system being used. All
of the array arguments must reference the integer count set by the SINDA
preprocessor and be of the exact required length. As many calls as desired
may be made but each call must have unique array arguments.

CALLING SEQUENCE: . •'SLRKQl(AA(IC)fAt(IC)tAFA(IC)1AT(IC
:)tAI(IC),AQCIO))

Or SLRN)l(MCIC),AsClC),AFA(IC)tAT(IC)tATClC)tAQfTC))

SUBROUTINE NAME: EFFEMS

PURPOSE:

This subroutine calculates the effective emissivity E between parallel
flat plates by the following equation: :

• E = 1.0/(1.0/2?J + 1.0/FI •- 1.0)
where El and E2 are the emissivities of the two surfaces under consideration.

RESTRICTIONS;

Arguments must be floating point numbers. .

CALLING SEQUENCE; 'EFFEMS(£i,E2,ff)
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THERMAL RADIATION EXCHANGE

SUBROUTINE NAME: SCRPFA

PURPOSE:

To obtain the script FA value for radiant transfer within an enclosure.
The input arrays are formatted as shown for subroutines IRRADI and IRRADE.
The second data value in the AFA array 1s used as a final multiplier, 1f
l.O the script FA values are returned; 1f a then script a FA values are
returned. The script • FA values are returned in the ASFA array which Is
formatted identical to the AFA array and may overlay it.

RESTRICTIONS; .

All array arguments must reference the integer count set by the MOTAR
preprocessor and all arrays must be exactly the required length.

CALLING SEQUENCE: SCRP FA ( AA (1C) , At (1C) t AFA (1C) , ASFA (1C) )

NOTE: Subroutine SWLSf( ASFA ( 1C )+3t ASFA (icM) may be called to list the
matrix values and identify them by row and column number. This routine
and the implicit radiosity routine finalize the half symmetric coefficient
matrix and call on SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symmetric
inverse.
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.SUBROUTINE NAME: HXEFF

PURPOSE:

This subroutine obtains the heat exchanger effectiveness either from
a user constant or from a biariant curve of effectiveness versus the
flow rates on the two sides. The effectivenss thus obtained is used
with the supplied flow rates, inlet temperatures and fluid properties
to calculate the outlet temperatures using the methods described in
Section 3.1.3.2. The user may specify a constant effectiveness by
supplying a real number and may use the LUTAB*function to specify the
effectiveness as a bivariant function of the two flow rates. The user
also supplies flow rates, specific heat values, inlet temperatures and
a location for the outlet temperatures for each of the two sides. The
flow rate array may be referenced to obtain flow rates and the temperature
array may be used for temperatures. The LUTAB function may be used to
obtain the specific heat values from a temperature dependent curve or
a constant value may be supplied.

RESTRICTIONS:

HXEFF should be called in the $PRETEMP operations block. The value for
EFF, the first argument must never be zero.

CALLING SEQUENCE:

HXEFF(EFF,W1 ,W2,CP1 ,CP2J1N1 J1N2JOOT1 JOOT2)

Where EFF

,W1';W2.

CP1,CP2

TIN1.TIN2 -

TOUT!JOUT2 -

is (1) the effectiveness if real, (2) LUTAB (IEFF)
where IEFF is a curve number of a bivariant curve of
effectiveness versus Wl and W2. (See page A-60A)

are the flow rates for side 1 and 2 respectively.
May reference the flow rate array, W(I) where
I is the tube number

are the specific heat value for side 1 and side 2
fluid respectively. Constant values may be input
or LUTAB may be used to reference curves in $CURVES

are inlet lump temperatures - Usually T(LI1) and
T(LI2) where LI1 and LI2 are the inlet lumps on
side 1 and side 2

are the outlet lump temperature locations where the
calculated values will be stored

* See page 114
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SUBROUTINE NAME: HXCNT

PURPOSE:

This subroutine calculates the heat exchanger using the relation described
in Section 3.1.3.2 for a counter flow type exchanger. The value of UA
used in the calculations may be specified as a constant by supplying
a real number or it may be specified as a bivariant function of the two
flow rates by using the LUTAB*function. The user also supplies flow
rates, specific heat values, inlet temperatures and a location for the
outlet temperatures for each of the two sides. The flow rate array
may be referenced to obtain flow rates and the temperature array
may be used for temperatures. The LUTAB function may be used to
obtain the specific heat values from a temperature dependent curve or a
constant value may be supplied.

RESTRICTIONS:

HXCNT should be called in the $PRETEMP operations block.
UA, the first argument must never be zero.

The value for

CALLING SEQUENCE:

HXCNT(UA,W1 ,W2,CP1 ,CP2,T1N1 J1N2JOUT1 JOUT2)

Where UA

W1,W2

CP1.CP2

TOUR-TOUT2

is (1) the heat exchanger conductance if real,
(2) LUTAB (IUA) where IUA is a curve number-
of a bivariant curve of conductance versus
Wl and W2 (See page A-60A)

are the flow rates for si del and side 2
respectively. May reference the flow rate
array, W(I) where I is the tube number

are the-specific heat values for side 1 and
2 fluid respectively. Constant values may be
input or LUTAB may be used to reference curves
in $CURVES

are the outlet lump temperature locations
where the calculated values will be stored

See page 114
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SUBROUTINE NAME: HXCROS

IWOSI:.:

This subroutine calculates the heat exchanger using the relations de-
scribed in Section 3.1.3.2 for a counter flow type exchanger. The value
of UA used in the calculations may be specified as a constant by supply-
ing a real number or it may be specified as a bivariant function of the
two flow rates by using the LUTAB*function. Any one of the following
four types of cross flow exchangers may be analyzed (see Section 3.1.3.2
for the relations):

1) Both steams unmixed
2) Both streams mixed
3) Stream with smallest MCp product unmixed
4) Stream with largest MCp product unmixed

The type is specified by the last argument in the call statement. Also
supplies flow rates, specific heat values, inlet temperatures and a location
for the outlet temperatures for both sides. The flow rate array may be
referenced to obtain flow rates and the temperature array may be used
for temperatures. The LUTAB function may be used to obtain the specific
heat values from a temperature dependent curve or a constant value may
be supplied.

RESTRICTIONS:

HXCROS should be called in the $PRETEMP operations block. The value
for UA, the first argument must never be zero.

CALLING SEQUENCE:

HXCROS(UA,W1 ,W2,CP1,CP2,T1N1,T1N2JOUT1,TOUT2,K)

Where UA - is (1) the heat exchanger conductance
if real, (2) LUTAB (IUA) where IUA is
a curve number of a .bivariant curve of
conductance versus Wl and W2.

Wl,W2 - are the flow rates for side 1 and side 2
respectively. May reference the flow
rate array, W(I) where I is the tube
number

CP1,CP2 - are the specific heat values for side 1
and side 2 fluid respectively. Con-
stant values may be input or LUTAB may
be used to reference curves in $CURVES

* See page 114
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TINT,TIN2 - are Inlet lump temperatures - Usually
T(LI1) and T(LI2) where LI1 and LI2
are the inlet lumps on side 1 and
side 2

TOUT1,TOUT2 - are the outlet lump temperature locations
where the calculated values will be
stored

K is the code specifying type of cross flow exchanger:

Both steams unmixed : K=l
Both streams mixed : K=2
Stream with small WCp Unmixed : K=3
Stream with large WCp unmixed : K=4
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SUBROUTINE NAME: HXPAR

PURPOSE:

This subroutine calculates the heat exchanger using the relation described
in Section 3.1.3.2 for a parallel flow type exchanger. The value of UA
used in the calculations may be specified as a constant by supplying a
real number or it may be specified as a bivariant function of the two
flow rates by using the LUTAB*function. The user also supplies flow
rates, specific heat values, inlet temperatures and a location for the
outlet temperatures for each of the two sides. The flow rate array
may be referenced to obtain flow rates and the temperature array may be
used for temperatures. The LUTAB function may be used to obtain the
specific heat values from a temperature dependent curve or a constant
value may be supplied.

RESTRICTIONS:

HXPAR should be called in the $PRETEMP operations block.
UA, the first argument must never be zero.

The value for

CALLING SEQUENCE:

HXPAR(UA,W1,W2,CP1,CP2,T1N1,T1N2,TOUT1 JOUT2)

Where UA

W1,W2

CP1.CP2

TIN1JIN2

TOUT1,TOUT2

is (1) the featexchanger conductance if real,
(2) LUTAB (IDA) where IUA is a curve number of
a bivariant curve of conductance versus Wl
and W2. (See page A-60A)

are the flow rates for side 1 and 2 respectively.
May reference the flow rate array, W(I) where
I is the tube number

are the specific heat values for side 1 and
side 2 fluid respectively. Constant values
may be input or LUTAB may be used to reference
curves in $CURVES

are inlet lump temperatures - Usually T(LI1)
and T(LI2) where LI1 and LI2 are the inlet
lumps on side 1 and side 2

are the outlet lump, temperature locations
where the calculated values will be stored

* See page 114
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SUBROUTINE NAME: HEATER

PURPOSE:

This subroutine simulates an electrical heater with a control system
which turns the heater on when the sensor lump temperature falls below
the "heater on" temperature TON, and turns the heater off when the sensor
lump rises above the heater off temperature, TOFF. When the heater is
on, the input Q value is added to the Q location specified by the user.
When the heater is off, the no heat is added.

RESTRICTIONS:

HEATER must be called in the $PRETEMP operations block.

CALLING SEQUENCE:

HEATER (TSEN,TON,TOFF,HT,Q)

Where TSEN is the sensed temperature
TON is the heater on temperature
TOFF is the heater off temperature
HT is the heater heat rate .
Q is the location for storing the heat
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SUBROUTINE NAME: CABIN

PURPOSE: .

This subroutine performs a thermal and mass balance on a cabin air
system. The cabin air is assumed to be a two component gas mixture
with one condensible component and one noncondensible component. The
cabin air is assumed to be well mixed so that the temperature and
specific humidity are constant throughout. The cabin may contain
any number of entering streams each with different temperature and
humidity conditions. The cabin air may transfer heat to its surround-
ings any number of nodes with the heat transfer coefficient obtained
by one of the three options:

1. User input coefficient
2. Relations for flow over a flat plot
3. Relations for flow over a tube bundle

The relations describing the second and third options are given in
Section.3.1.3.4-r The mass transfer coefficient for determing the rate
of condensation or evaporation is determined by the Lewis relation which
related the mass transfer coefficient directly to the connection heat
transfer coefficient. By the Lewis Relation, if the diffusion coefficient
is approximately wqual to the thermal diffusivity, the Sherwood number
is approximately equal to the Nusselt number, thus giving a direct re-
lation. (See Section 3.1.3.4 for details) Mass and heat transfer rates
are determined at each node that interfaces the cabin gas as well at
entering and exiting streams and a new cabin gas temperature and humidity
is determined each iteration based upon the heat and mass balance.
An account is kept of the condensate on the walls when condensation
occurs but the condensate is assumed to remain stationary and not flow
to other wall nodes.

Limits are applied when necessary to prevent more condensation
than the vapor existing under severe transitent condition and to prevent
evaporation of more liquid than exists at each wall lump.

As many cabins as desired may be analyzed in a given problem,
but each must contain separate input information.

RESTRICTION'S: . . . . . . .
CABIN must be called in $PRETEMP

CALLING SEQUENCE:

CABIN (Al, A2, A3, TC, A5, A6, A7..A8)
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Where Al is an array location * in $CURVES of an array contain-
. ing the entering flow rate information. The format

of the array is :

NS,FR1,PSI,TE1,FR2,PSI2,TE2 -— FRns

A2 is an array location * in $CURVES of an array con-
taining curve numbers in $CURVES for property
values. The format of the array is:

NFLC ,NMUO ,NMUV ,NCPO ,NCPV ,NKO ,NKV ,NLAT

A3 is an array location in $CURVES of an array con-
taining pertinent constants. The format of the
array is:

RA,RV,VC,PC,XC,WV,PSIC, PO, TO, CONV

T. is the cabin gas temperature which must be a boundary
node.

A5 is the location in $CURVES of an array containing
node numbers and connection heat transfer coefficient
values for nodes surrounding the cabin gas. The
format of the array is:

A6 is the location in $CURVES of an array containing
node numbers and information to permit calculation
of convection coefficients for flat plates.
The format is:

LN1,XX1,XIrAI1,VIW01,LN2,XX2,XI2,AI2,

A7 is the $CURVES location of an array containing
node numbers and information to permit cal-
culation of convection coefficients for tube
bundles. The format is:

DIn3'AIn3'VIWOn3

A8 is a working space array which must
contain a number of spaces equivalent
to three times the sum of the number
of nodes with input heat transfer co-
efficients plus the number using flat
plot relations plus the number using tube
bundles.

* See page 114



The following symbol definitions apply in the above:

NS Number of incoming streams

-ER-.J - ^ - EnterJ-ng-fLlow_r-a-te-for_s-trearM

Specific humidity for entering stream i

TE.j Temperature of entering stream i

NFLC Curve number for circulation flow rate vs time

NMUO Curve number for noncondensible viscosity vs
temperature

NMUV Curve number for condensible visocity vs temperature

NCPO Curve number for noncondensible specific heat vs
temperature

NCPV Curve number for condensible specific heat vs
temperature

NKO Curve number for noncondensible thermal conduction
vs temperature

NKV Curve number for condensible thermal conduction vs
temperature

NLAT Curve number for latent heat of condensible vs
temperature

RA Gas constant for non-condensible component
RV Gas constant for condensible component
VC Cabin volume

PC Cabin Pressure

XC
WV Initial vapor weight in cabin
PSIC Initial specific humidity for cabin
LN. Cabin wall lump
HA Heat transfer coefficient times area
nl Number of wall lumps which have input HA values
n2 Number of wall lumps which have HA calculated by ,

flat plate relations
n3 Number of wall lumps which have HA calculated by

tube bundle relations
XX; Distance from leading edge for flat plate heating

1 for ith flat plate node
XI. Length of flat plate in flow direction for ith flat

1 plate node

A-30



AI. Heat transfer area for flat plate or tube node

DI. Tube outside diameter for tubes in the bundle
for i th tube node

VIWO Ratio of velocity at the lump to the circulation
flow rate

To The reference temperature to be used for estimating
the saturation pressure of the condensible
component. Should be near the range of saturation
temperature expected

Po The saturation pressure at To for the condensible
component

CONV Conversion factor to make the quantity XLAM/Rv/
To dimensions less where XLAM is the latent
heat of vaporization and Rv is the gas constant
for the vapor. If XLAM is BTU/lb, Rv is
FT-LB/°R and To is °R, CONV=778.
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PHASE CHANGE

SUBROUTINE NAME:

PURPOSE:

ABLATS

To provide a simple ablation (sublimation) capability for the SINDA user.
The user constructs the 3-D network without considering the ablative.
Then in $ POSTTEMP he simulates 1-D ablative attachments by calling ABLATS.
ABLATS constructs the 1-D network and solves it by implicit forward-back-
ward differencing (Crank-Nicholson method) using the time step set by the
execution subroutine. Separate ablation arrays (AA) must be used for each
ABLATS call. Required working space is obtained from unused program common.
Several ABLATS calls thereby share unused common. The user must call
subroutine PNTABL (AA) in the OUTPUT CALLS to obtain ablation totals and
temperature distribution.

RESTRICTIONS:

ABLATS must be called in POSTTEMP and may be used with any execution
subroutine. Subroutines DIDEG1 and NEWTR4 are called. All units
must be consistent. The Fahrenheit system is required. Temperature
varying material property arrays must not exceed 60 doublets. Bivan ate
material properties may be simulated by calling BVSPSA prior to ABLATS.
Cross-sectional area is always considered unity. Thermal conductivity,
Stefan-Boltzmann constant and density units must agree in area and
length units.

CALLING SEQUENCE: ABLATS (AA (1C) ,R, CP, G,T,C)

where C is the capacitance location of the 3-D node attached to.
T is the temperature location of the S-D node attached to.
G is the location of the material thermal conductivity or the

starting location (integer count) of a doublet G vs T array.
CP is the location of the material specific heat or the starting

location (integer count) of a doublet Cp vs T array. ̂
E is the location of the material, density or the starting location

(integer count) of a doublet R vs T array.
AA(IC) is the starting location of the ablation array which must be

formatted as follows:
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M(IC)+1 the ablative line number, a user specified identification
integer.

2 integer number of sublayers (NSL) desired, ABLATS subtracts
from this the number of sublayers ablated.

3 the initial'temperature of the material, ABLATS replaces this
with the outer surface temperature, always in degrees F.

4 the impressed cuter surface heating rate per unit area,
radiation rates not included.

5 material thickness; this is replaced by the sublayer thickness.
6 surface area of the 3-D node attached to, need not be unity.
7 ablation temperature, degrees F.
8 heat of ablation.
9 Stefan-Boltzmann constant in consistent units.
10 surface emissivity
11 space "sink" temperature, degrees F.
12 SPACED where N equals NSL + 4.

NOTE: The outer surface radiation loss is integrated over the time step.

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 3* (NSL+1) dynamic storage core locations.
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PHASE CHANGE

SUBROUTINE NAME: LQSLTR

PURPOSE;

This subroutine accounts for the phase change energy of a melting or
solidifying material. The temperature limits for the reaction must be
specified (over at least a 1 degree range) and the phase change energy
supplied as a constant rate over the range (Btu/°F). The network is
constructed to include the capacitance effects of the phase change
material. The network solution subroutines are allowed to calculate _
incorrect answers based on capacitance effects only; a call to LQSLTR in
POSTTEMP then performs a corrector operation to account for any phase
change occurring (reversability allowed) and returns corrected temper- ^
atures The user is required to store the old temperature of the material
(in'rPOSTTEMP ) and supply it as an argument to LQSLTR. This subroutine
has a "00" loop built in and can be applied to several sequential nodes
at once.

RESTRICTIONS:

The number of sequential nodes that this subroutine is to be applied to
must be supplied as the integer N. All other arguments must be or
address data values.

CALLING SEQUENCE; LQSL1R(N>TLJTH fS(DV)1C(DV)JT0(DV) tTN(DV)}

where N is the integer number of nodes to be operated on
TL is the low temperature of the range
TH is the high terrrperature of. the range
S(DV) is the first value of the phase change energy rate
C(DV) is the first value of the nodal capacitances
T0(DV) is the first value of the old temperatures
TN(DV) is the first value of the new temperatures
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PHASE CHANGE

SUBROUTINE NAME:

PURPOSE:

This subroutine allows the user to simulate the addition of liquid to a
node. The network data is prepared as though no liquid exists at the
node and is solved that way by the networlc execution subroutine. Then
LQDVAP, which must be called in POSTTEMP , corrects the nodal solution
in order to account for the liquid. If the nodal temperature exceeds the
boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point 1s cal-
culated and considered as absorbed through vaporization. If the liquid
is completely vaporized the subroutine deletes its operations. The method
of solution holds very well for explicit solutions, but may introduce
some error when large time steps are used with implicit solutions.

RESTRICTIONS:

This subroutine must be called In POSTTEMP .

CALLING SEQUENCE: LQDVAP (T,C,A(IC))

where T. -Le the temperature location of the node.
C -is the capacitance location of the node.
A + 1 contains the initial liquid weight.

2 contains the liquid specific heat.
3 contains the liquid vaporization, temperature.
4 contains the liquid heat of varporization.
5 receives the liquid vaporization rate (weight/time)
6 receives the liquid vaporization total (total weight)
? contains the liquid initial temperature.
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2.3 MATRIX SUBROUTINES

Input Format

Unless otherwise noted, the matrices require input as positive numbered
arrays with integer number of rows and columns as the first two data
values followed by floating point element values in row order.

Special Matrix Generation

2ER0 Generates a matrix such that every element is zero.

0NES Generates a matrix such that every element is one .

UNITY

SIGMA

GENALP

GENC0L

FULSYM

SYMFUL

SYMFRC

DIAG

UNDIAG

DIAGAD

A-40

A-40

Generates a square matrix such that the principal
diagonal elements are unity and the remaining
elements are zero . . . .;. . . . . ... . A-40

Generates a square matrix such that all elements on
and below the principal diagonal are unity and the
remaining elements are zero A-40

Generates a matrix such that every element is equal
to a constant A-40

Generates a column matrix such that the first element :
is equal to XI and the last element is equal to X2 .,.;. A-40

Forms a half symmetric matrix from a full square
matrix. A-41

Forms a full square matrix from a half symmetric
matrix. A-41

Forces symmetry upon a square matrix ........... A-41

Forms a full square matrix given a column or row
matrix A-41

Forms a row matrix from the diagonal elements of a
square matrix . . . . . . . . . . A-41

Adds the elements of a row matrix to the diagonal
elements of a square matrix . . . . . . . . . . . . . . A-41

Elemental Operations
ELEADD Adds corresponding elements of two matrices [A]

and [B] to form a third [2] (Matrix addition). .... A-42

ELESUB Subtracts the corresponding elements of two matrices
to form a third [Z] (Matrix subtraction) ....... A-42
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ELEMUL Multiplies the corresponding elements of tv;o matrices
[AJ and [B] to form a third [Z] (this is NOT
matrix multiplication) A-42

ELEOIV Divides the corresponding elements of two [A] and '
[B] matrices to form a third [Z] (this 1s NOT
matrix division).. . . A-42

ELEINV Obtains the reciprocal of each element of matrix [A] i
and place it in the corresponding location of
another matrix [Z] A-42

EFSIN Generates the sine of each element of matrix [A] and <
places 1t in the corresponding location of
another matrix [Z] A-43

EFASN Generates the arcsine of each element of matrix [A] and
places it in the corresponding location of another
matrix [Z]. A-43

EFC0S Generates the cosine of each element of matrix [A] and
places it in the corresponding location of another
matrix [Z] ..... A-43

EFACS Generates the arcosine of each element of matrix [A]
and places it in the corresponding location of
another matrix [Z]. . . . A-43

EFTAN Generates the tangent of each element of matrix [A]
and places it in the corresponding location of
another matrix [Z] A-43

EFATN Generates the arctangent of each element of matrix [A]
and places it in the corresponding location of
another matrix [Z]. A-43

EFABS Generates the absolute value of each matrix [A]
element A-44

EFL0G Generates the natural log of each [A] element . . . . ; . . A-44

EFSQR Generates the square root of each matrix [A] element. . . . A-44

EFEXP Generates the exponential of each matrix [A] element. . . . A-44

EFP0W Generates the power of each matrix [A] element.;! A-44

ADDALP Adds a constant to every element in a matrix. . A-45

ALPHAA Multiplies every element in a matrix by a constant A-45

MATRIX Allows a constant to replace a specific matrix element. . . A-45
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. .: ..... .__ _. PAGE
SCALAR Allows a specific matrix element to be placed into a

.constant location. . A-45

MATADD Adds a constant to a specific matrix element A-45

Matrix Operations/Solutions

INVRSE

MULT

TRANS

AABB

BTAB

BABT

DISAS

ASSMBL

C0LMLT \
R0WMLT J

SHIFT

REFLCT

SHUFL

C0LMAX V
C0LMIN J

S.YMREM \
SYMREP J

SYMDAD

SYM1NV

Inverts a square matrix . . . A-46

Multiplies two conformable matrices A-46

Forms the transpose [Z] from matrix [A] . . A-47

Sums two scaled matrices. A-47

Performs the matrix operation [B] [A][B] . . A-48

Performs the matrix operation [BJCAJCB]1, . . . A-48
Allows a user to operate on matrices in a partitioned

manner by disassembling a submatrix [Z] from a
parent matrix [A]. A-48

Allows a user to operate on matrices in a partitioned
manner by assembling a submatrix [Z] into a parent
matrix [A] ........'... A-48

Multiplies each element in a colunm or row of matrix
[Aj by its corresponding element from the diagonal
matrix [V] which is stored as a vector ... . . . . . . . A-49

Moves an entire matrix as is from one location to
another A-49

......... : . . . ' . - - * . . . . - ; •

Moves an entire matrix with the order of the column
elements reversed from one location to another . . . . A-49

Allows the user to reorder the size of a matrix as
long as the total number of elements remains
unchanged. . . . . . ... . . . . . . . . . . , A-50

Searches an input matrix to obtain the maximum or
minimum values within each column. A-50

Allows the SINDA user to operate on a simple row/
column of a half symmetric matrix .A-51

Adds the elements of a vector array to the correspond-
ing elements of the main diagonal of a half
symmetric matrix . . . . . . . . . . . . .A-51

Obtains the inverse of a half symmetric matrix A-51
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P0LMLT Multiplies a given number of nth order polynomial
coefficients by a similar nurrber of mth order
polynomial coefficients A-52

P0LVAL Evaluates the polynomial for the Input complex
number X + 1V, given a set of polynomial coefficients. . A-52

PLYEVL Evaluates each polynomial for each X value, given a
matrix with nth order polynomial coefficients and
a column matrix of X values * A-52

P0LS0V Calculates the complex roots, given a set of polynomial
coefficients as the first row in a matrix . A-53

JAC0BI Determines the eigenvalues and eigenvector associated
with an input matrix [A] . A-53

Store and Recall

CALL Retrieves matrices on magnetic tape . . . . A-54

FILE , Stores matrices on magnetic tape A-54

ENDM0P Used in conjunction with subroutines CALL and FILE.
Causes all matrices from the logical T9 tape to be
updated onto the logical 18 tape A-55

LSIAPE Wi l l output the name, problem number and size of
every matrix stored on tape on logical 18 A-55

Applications

M0DES Solves a particular matrix dynamic vibration equation • • . A-56

MASS Generates an inertia matrix of a dynamic vibration
system described in terms of deflections and
rotations- A-57

STIFF Generates a st i f fness matrix for a dynamic vibration
system described in terms of deflections and
rotations A-58
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SPECIAL MATRIX GENERATION

SUBROUTINE NAMES: ' ZERg or gNES

PURPOSE:

These subroutines generate a matrix [Z] such that every .element is zero
or one respectively. _ _ , ; _

RESTRICTIONS;

The matrix to be generated must contain exactly enough space in addition
to having the integer number of rows and columns as the first two data
values. The NR and NC arguments are the Integer number of rows and
columns respectively.

CALLING SEQUENCE: lVW(NR,NCtZ(IC))

or Wl$(NRtNC,Z(IO) ,

SUBROUTINE NAMES: UNITY or SIGMA

PURPOSE:

These are square matrix generation subroutines. UNITY generates a square
matrix such that the main diagonal elements are one and all other elements
are zero. SIGMA generates a square matrix such that all elements on and
below the main diagnoal are one and the remaining elements are zero.

RESTRICTIONS: .

The matrix [z] to be generated must contain exactly enough space in
addition to having the integer number of rows and columns as the first
two data values. The integer number of rows and columns are equal and
must be input as the argument N. ..... . ..

CALLING SEQUENCE:

or

SUBROUTINE NAMES: GENALP-or SENCgL.

PURPOSE:

These are special matrix generation subroutines. GENALP will generate a
matrix such that every element is equal to a constant C. GENC0L.will
generate a column matrix such that the first element is equal to XI and
the last element is equal to X2- The intermediate elements receive equally
incremented values such that a linear relationship is establisned between
row number and element value.

RESTRICTIONS;

The NR and NC arguments refer to the integer number of rows and columns
respectively, xi, *2,and C must be floating point values. The generated
matrices must contain exactly enough space in audition to naving tne
integer number of rows and columns as the first two data values.

CALLING SEQUENCE: GWMLP(NR,NC,C,Z(IC))

or GENC0LU^*2
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SPECIAL MATRIX FORMULATION

SUBROUTINE NAMES: FULSYM or SYMFUL •'

These subroutines allow the SINDA user to form a half symmetric matrix from
a full square matrix or form a full square matrix from a half symmetric
matrix, respectively. The arguments must address the matrix array integer
count set by the preprocessor, the array lengths must be exact.

RESTRICTIONS:

The half symmetric matrix must be formatted as shown for subroutine IRRADI
(Section 6.8) and the full square matrix must conform to the standard
format. .

CALLING SEQUENCE:

or SYMFUL(SM(IC),FM(IC))

Where FM is the full matrix and 'SM is the symmetric matrix.

SUBROUTINE NAME: SYMFRC

PURPOSE:

This subroutine may be used to force symmetry upon a square matrix. The
main diagonal elements are untouched and all others are treated as follows:

RESTRICTIONS:

The addressed matrix must be square and formatted as described in Section 4.2.2.3

CALLING SEQUENCE: SYMFRCUflCV) .

SUBROUTINE NAMES: DIAG or UNDIAG or DIAGAD

PURPOSE:

Given a 1*N or N*T matrix [y], subroutine DIAG forms a full square N*N
matrix [z]. The ['/] values are placed sequentially on the main diagonal
of [z] and all off diagonal elements are set to zero. Subroutine UNDIAG
forms a 1*N matrix [T/] from the diagonal elements of an N*N matrix [z].
Subroutine DIAGAD adds the elements of a 1*N matrix [y] to the diagonal
elements of an N*N matrix [Z]. -

RESTRICTIONS:

Both matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: DIF(G(V(ICJ,2(10

or /UNQIAGtzriC

or DIAGAp(ydC;jzriCj) . A-41



ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ELEADD or ELESUB

PURPOSE;

These subroutines add or subtract the corresponding elements of two matrices
respectively^ :— __

m*n m*n m*n
±[z] = U] t IB] , 2.. = a.,,-

RESTRICTIONS:

All matrices must be of identical size and have the integer number of rows
and columns as the first two data values. The [z] matrix may be overlayed
into the [A] or [5] matrix.

CALLING SEQUENCE: ELEADDU(TC>> 3B(IC) ,Z(IO)

. or ELESUBUflC^BCIC^ZCIc;)

SUBROUTINE NAMES: . ELEMUL or ELEDIV

PURPOSE:

These subroutines multiply or divide the corresponding elements of two
matrices respectively.

m*n m*n m*n
[2] = W */ [s] , a -• a.. */ b.i;j ..

RESTRICTIONS:

All matrices must be of identical size and have the integer number or rows
and columns as the first two data values. The [z] matrix may be overlayed
into the [A] or. [s] matrix.

CALLING SEQUENCE: ELEMUL UriCV ,B(IC) }Z(IC))

or ELEDlVUfIc;,BfIc;jZfIC'>>)

SUBROUTINE NAME: ELEINV

PURPOSE:

This subroutine obtains the reciprocal of each element of the \.A\ matrix
and places it in the corresponding element location of the [z] matrix.

z..

RESTRICTIONS:

The matrices, must be of identical size and have the integer number or rows
and columns-as the first tv:o data values. The [z] matrix may be overlayed
into the [/Q matrix.

CALLING SEQUENCE: LLEm(A(IC),Z(IC)) A_42



ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ; EPSIN or EFASN

PURPOSE;

These subroutines perform elementary functions on all of the [A] matrix
elements as follows:

1j' or Z1j =

RESTRICTIONS:

The matrices must be identical 1n size and have the integer number of rows
and colunms as the first two data values. The [Z] matrix may be overlayed
into the [4] matrix.

CALLING SEQUENCE: EFSINUYlC>),Z(JCV)

or EFASN (A(IC) ,Z(IO)

SUBROUTINE NAMES: EFC0S or EFACS

PURPOSE;

These subroutines perform elementary functions on all of the [/l] matrix
elements as follows:

z.- = cosine(a..) or a^. = arccosine(a..)

RESTRICTIONS;

The matrices must be identical in size and have the integer number of rows
and columns as the first two data values. The [z] matrix may be overlayed
into the [-4] matrix.

CALLING SEQUENCE: EFC9S(A(IC),Z(IC))

or EFACSUdc^ZCICJ)

SUBROUTINE NAMES: EFTAN or EFATN

PURPOSE:

These subroutines perform elementary functions on all of the [4] matrix
elements as follows:

z... = tangent(a..) or z. . = arctangent(a..)
I J ij 1J 1J

RESTRICTIONS:

The matrices must be of identical size and have the integer number of rows
and col UMTS- as the-first two data values. The [z] matrix may be overlayed
into the [z] matrix. :

CALLING SEQUENCE:

or
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ELEMENTAL OPERATIONS

SUaROUIINE-NAMES: EFABS or EFL0G or EFSQR

PURPOSE:

These subroutines perform elementary functions on all of the [4] matrix
elements as follows respectively:

Z i j= Or zij = } o geaM °r aij =

RESTRICTIONS:

The matrices must be identical in size and have the integer number of
rows and columns as the first two data values. All in the [4] matrix
must be positive for EFL0G or EFSQR.

CALLING SEQUENCE;: HbBS(A(IC) ,Z(IC) )

EFL0 (A(IC)tZ.(IC)\

SUBROUTINE NAMES: EFEXP or EFP0W

PURPOSE:

These subroutines perform elementary functions on all of the [4] matrix
elements as follows:

2ij = e3lj or 2ij = aija

RESTRICTIONS:

The matrices must be identical in size and have the integer number of
rows and columns as the first two data values. The [Z] matrix may be
overlayed into the [A] matrix. The exponent a may be an integer or float-
ing point number. However, if any elements in [-4] are negative then a
must be an integer.

CALLING SEQUENCE: IFWP(A(IC) ,Z(IC))

or
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ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ADDALP or ALPHAA '

PURPOSE:

To add a constant to or multiply a constant times every element in a
matrix.

or 2ij=C*aij

RESTRICTIONS;

The matrices must have exactly enough space and contain the integer
number of rows and columns as the first two data values. C and all elements
must be floating point numbers. The [Z] matrix may be overlayed into the
[/l] matrix.

GALLING SEQUENCE: mfiLP(C,A(IC) ,Z(IC) )

or ALPHAA(C,/iriCV.,zriCV)

SUBROUTINE NAMES: MATRIX or SCALAR or MAT ADD

PURPOSE : . .

The subroutine MATRIX allows a constant to replace a specific matrix element,
subroutine SCALAR allows a specific matrix element to be placed into a
constant location, and subroutine MATAAD adds a constant to a specific
matrix element. The integers J and J designate the row and column position
of the specific element.

or c=z.. orZ.. = z..

RESTRICTIONS:

The matrix must have the integer number of rows and columns as the first two
data values. Checks are made to insure that the identified element is
within the matrix boundaries. J

CALLING SEQUENCE: MATRIX^I^Zf 1C)}

or SCALAR(ZYJC;jJJc7/C)

. o r
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME; INVRSE

PURPOSE:

To invert a square matrix.

n*n n*n n*n
given U] , [z] =

RESTRICTIONS:
\

The matrices must be square, identical in size and contain the integer
number of rows and columns as the first two data values. The output matrix
[-4] may be overlayed into the [xl] matrix.

CALLING SEQUENCE: IMRSI(A(IC),Z(IC) )

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME: MULT

PURPOSE: To multiply two conformable matrices together.

m*n m*p p*n

RESTRICTIONS;

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. If [Aj and [5]
are square, [z] may be overlayed into either of them.

CALLING SEQUENCE: Wn(A(IC)3B(IC),Z(IC})

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires n*m dynamic storage locations.
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: TRANS

PURPOSE: .
m*n n*m

Given a matrix [A] form its transpose as [z]

RESTRICTIONS:

Both matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. The output matrix
[Z] may be overlayed into the [A] matrix.

CALLING SEQUENCE: . TRANSUdCV,Z(IC))

DYNAMIC STORAGE REQUIREMENTS; '

This subroutine requires n*m dynamic storage locations.

SUBROUTINE NAME: AABB

PURPOSE: .

To sum two scaled matrices:

m*n m*n m*n
[Z] = C1\.A\ + C2[B} , z:1j = . C^.j + C2*b...

RESTRICTIONS:

All matrices must be of identical size, contain exactly enough space and
contain the integer number of rows and columns as the first two data
values. The output matrix [Z] may be overlayed into either of the input
matrices.

CALLING SEQUENCE: MBB(C1,A(IC)JC2,B(IC)JZ(IC) )
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAMES: BTAB or BABT

PURPOSE:

To^perfornrthe following matrix operations, respectively:

n*m n*m. m*m m*m
[Z] = [B? UJ [B]

m*m m*n n*n n*m.
or [Z] = [B] [4] [B]1

RESTRICTIONS:

The matrices must be conformable, contain exactly enough space and contain
the integer number of rows and columns as the first two data values. Sub-
routines MULT and TRANS are called on.

CALLING SEQUENCE: Wt&(A( 1C) ,

or

DYNAMIC. STORAGE REQUIREMENTS: .

Due to subroutines MULT and TRANS this subroutine temporarily requires
2*m*n+6 dynamic locations.

SUBROUTINE NAMES: DISAS or ASSHBL

PURPOSE:

These subroutines allow a user to operate on matrices in a partitioned
manner by disassembling a submatrix [z] from a parent matrix [A] or
assembling a submatrix [z] into a parent matrix [A].

RESTRICTIONS:

The 1 and J arguments are integers which identify (by row and column number
respectively) the upper left hand corner position of the submatrix within
the parent matrix. All matrices must have exactly enough space and con-
tain the integer number of rows and columns as the first two data values.
The NR and NC arguments are the integer number of rows and columns respectively
of the disassembled submatrix. If the submatrix exceeds the bounds of the
parent matrix an appropriate error message is written and the program
terminated.

CALLING SEQUENCE: DI S AS (A (1C) , I, J, NRt NC, Z (1C) )

or
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINES NAMES: CgLMLT or R0WMLT

PURPOSE:

To multiply each element in a column or row of matrix [x5] by its correspond-
ing element from the matrix [K] which is conceptually a diagonal matrix but
stored as a vector; i.e., 1*N or N*l matrix. The matrix [Z] is the product.

RESTRICTIONS:

The matrices must have exactly enough space and contain the integer number
of rows and columns as the first two data values. The matrices being
multiplied must be conformable.

CALLING SEQUENCE: C0LMLTUfICVJ V(IC)}Z(IO)

or
SUBROUTINE NAMES: SHIFT or REFLCT

PURPOSE: '

These subroutines may be used to move an entire matrix from one location
to another. SHIFT moves the matrix exactly as is and REFLCT moves it
and reverses the order of the elements within each column. The last
element in each column becomes the first and the first becomes the last, etc.

RESTRICTIONS:

The matrices must be of identical size and the integer number of rows and
columns must be the first two data values. The [Z] matrix may be over-
Taye.d into the [*] matrix.

CALLING.. SFQUENCE: SUin(A(IC) ,Z(IC)}

or

DYNAMIC STORAGE REQUIREMENTS:

REFLCT uses three dynamic storage locations plus an additional one for each
row.
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME;

PURPOSE:

This 'subroutine allows the user to reorder the size of a matrix as long as
the total number of elements remains unchanged. The row order input matrix
[A] is transposed to achieve column order and then reformed as a vector by
sequencing the columns in ascending order. This vector is then reformed
into a column order matrix by taking a column at a time sequentially from
the vector. The newly formed column matrix is then transposed and output
as the row order matrix [z].

RESTRICTIONS:

The matrices must be identical in size and have their respective integer
number of rows and columns as the first two data values. The number of
rows times columns for [A] must equal the number of rows times columns of ,[z]

CALLING SEQUENCE: SmL(A(IC},Z(IC))

SUBROUTINE NAMES: C0LMAX or CgLMIN.

PURPOSE:

These subroutines search an input matrix to obtain the maximum or minimum
values within each column respectively. These values are output as a single
row matrix [4] having as many columns as the input matrix [A]*

RESTRICTIONS:

Each matrix must have its integer number of rows and columns as the first
two data values.

CALLING SEQUENCE: WLMM(A(IC),Z(IC) )

or c0LMiNUac;,zric; j'
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MATRIX OPERATIONS AND SUBROUTINES

SUBROUTINE NAMES: SYMREM or SYMREP

PURPOSE:

These subroutines allow the SINDA user to operate on a single row/column of
a half symmetric matrix. SYMREM will remove a particular row/column from
the half symmetric matrix and place it into an array of the exact length
to hold it. SYMREP will take an array and replace it into a specific row/
column of the half symmetric matrix. .

RESTRICTIONS:

The half symmetric matrix must be formatted as shown for .subroutine IRRADI
in Section 4.2.2.3. The integer K must designate the row/column to be operated
on. If K is an integer zero, the main diagonal will be removed or replaced.

CALLING SEQUENCE: WWm(K.3SM(IC),A(IC) )

: or SYMREP (K3A(IC) ,SM(IO)

SUBROUTINE NAME: SYMDAD

PU_R_POSE_: ~

This subroutine will add the elements of a vector array to the correspond-
ing elements of the main diagonal of a half symmetric matrix. If any of the
elements is less than zero, they are set to zero.

RESTRICTIONS:

The half .symetric matrix must be formatted as shown for subroutine IRRADI
in Section 6.8. The vector array must be input as a positive array and be .
the same length as the matrix order.

CALLING SEQUENCE: SWOfiD(VAdC),SM(IC))

SUBROUTINE NAKE: SYMINV

PURPOSE:

This, subroutine obtains the inverse of a half symmetric matric matrix which
is also symmetric and returns it in the same area as the input matrix. This
subroutine is called internally by subroutines SCRPFA, IRRADI and SLRADI.

RESTRICTIONS:

This subroutine contains no error checks, exercise extreme caution when
using it.

CALLING SEQUENCE: SYMINV(/U£W,'V)

Where 'A(DV) addresses the 1,1 element and A' is the matrix order.
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME; P0LMLT

PURPOSE:

thThis subroutine performs the multiplication of a given number of n order

-polynomfa"l~coefftcfents~by~~a~riTfri"lar number of~m^ ~orUer~polynomi"al—co^
efficients. The polynomials must be input as matrices with the number of
rows equal and each row receives the following operation:

(c-j jCgiCg,.. . .c^) = (a, .a^,...,a ) * (b, ,bp».. . »b ) ,k=m+n-l

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: ?$LVL1(A(IC) ,8(10 3C(IO)

SUBROUTINE NAME: P0LVAL

PURPOSE:

Given a set of polynomial coefficients as the first row of matrix [A], this
subroutine evaluates the polynomial for the input complex number Af+iY. The
answer is returned as £/+iT/.

RESTRICTIONS: .• .

[A] may be m*n but only the first row is evaluated.

CALLING SEQUENCE: P0LVAL(AfICV,Ar
>y.>{/, V)

SUBROUTINE NAME: PLYEVL

PURPOSE:

Given a matrix [-4] containing an arbitrary number, NRA, of the n order
polynomial coefficients and a column matrix [X~\ containing an arbitrary
number, NRX, of X values, this subroutine evaluates each polynomial for each
X value. The answers are output as a matrix [z] of size NRX*NRA. Each set
of.polynomial coefficients in [A] is a row in ascending order. An x value
evaluated for the polynomial creates a. row in [z] where the column number
agrees with the polynomial row number.

RESTRICTIONS:

The matrices must have .exactly enough space and contain their integer
number of rows and columns as the first two data values.

CALLING SEQUENCE: PLVEVL(A(IC),X(IC)tZCIC))
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MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: PgLSgV

PURPOSE: '" •'

Given a set of polynomial coefficients as the first row-in matrix [A~\, size
(m,n+l), this subroutine calculates the complex roots which are returned as
matrix [Z], size (n,2). Column 1 contains the real part and column 2 the
imaginary part of the roots.

RESTRICTIONS:

This subroutine presently is limited to n = 20. It internally calls on RTP0LY
and utilizes some double precision.

CALLING SEQUENCE: PQLSW(A(IC),Z(IC))

SUBROUTINE NAME: JAC0BI

PURPOSE: ••;.', . : .

This subroutine will find the eigenvalues [E] and eigenvector matrix [Z]
associated with an input matrix [/*].

n*n n*n n*n n*n
LA]' [z] = [z] [£]-..

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Note that
matrix [£•] is a diagonal matrix but is stated as a vector.

CALLING SEQUENCE: JAC0BI(/1(TC; tE(IC):tZ(IC))

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 2*n*n+6 dynamic storage locations.
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STORE AND RECALL

MATRIX DATA STORAGE AND RETRIEVAL

The ability to store and retrieve matrices from tape is easily achieved
throuh the use of the FILE and CALL subroutines. Matrices are identitied

for the matrix. The CALL subroutine searches the Matrix Input Tape and
brings the desired matrix into core. The FILE subroutine writes a matrix
onto the Matrix Output Tape. Subroutine ENDM0P causes all matrices from
the Matrix Output Tape to be updated onto the Matrix Input Tape. In case
of duplicate matrices, the one from the Output Tape replaces the one on
Input Tape. A matrix which has been filed cannot be called until an ENDM0P
operation has been performed. To create a new tape the user merely sets
control constant N0C0PY nonzero and has a scratch tape mounted for the
Input Tape. The user should check the section on control cards and deck
setup to determine control card requirements.

SUBROUTINE NAMES: CALL or FILE

PURPOSE:

To allow the user to retrieve or store matrices on magnetic tape as de-
scribed above. The H argument must be a six-character alphanumeric word
and N must be an integer number, both of which are used to identify the
matrix.

RESTRICTIONS:

See above. The matrix must have exactly enough space and contain the
integer number of rows and columns as the first two data values.

CALLING SEQUENCE: CftLl(H,N3A(IC))

or riLE(A(lC)}H,N)

DYNAMIC STORAGE REQUIREMENTS:

Each of these routines requires 256 words of dynamic storage.
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STORE AND RECALL

SUBROUTINE NAMES: ENDM0P or LSTAPE '.-

PURPOSE:

Subroutine ENDM0P should be used in conjunction with subroutines CALL and
FILE; see above. It causes matrices which have been filed by FILE on the
Matrix Output Tape to be updated onto the Matrix Input Tape. A call to
subroutine LSTAPE will cause the output of the name, problem number and
size of every matrix stored on the.Matrix Input Tape.

RESTRICTIONS:

See above.

CALLING SEQUENCE: ENDM0P .

or LSTAPE

DYNAMIC STORAGE REQUIREMENTS: ... .

Each of these routines requires 256 words of dynamic storage.
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APPLICATION - DYNAMIC VIBRATION

SUBROUTINE NAME: MOPES

PURPOSE:

This, subroutine solves the following dynamic vibration equation

m*n m*n n*n n*n n*n
[z] - [B] [Z] JL

2

where [4] is the input inertia matrix associated with the kinetic energy
and [S] is the input stiffness matrix associated with the strain energy.
[Z] is the output eigenvector matrix associated with the frequencies of
vibration W. which are output in radians/sec as [#] and in cycles/sec as
[C], both [fl] and [C] are n*n diagonal matrices but stored as vectors.

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
number of rows and columns as the first two data values. Subroutine
JAC0BI is called on.

CALLING SEQUENCE: MVOlS(A(IC),B(IC),Z(IC)tRCIC),C(IC))

DYNAMIC STORAGE REQUIREMENTS: '

This subroutine requires 3*n*n+9 dynamic storage locations. An amount
equal to 2*n*n+6 of these locations is required by subroutine JAC0BI.
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APPLICATION — DYNAMIC VIBRATION

SUBROUTINE NAME: MASS

If a dynamic vibration problem is referred to a set of coordinates con-
sisting of the deflections, c,, and the rotations, e., at N collocation
points along the beam under consideration, then this1subroutine generates
the 2N by 2N inertia matrix [A] which appears in the following expression
for kinetic energy:

en

RESTRICTIONS:

The mass and inertia data input to this subroutine are to be supplied as
piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determines the ultimate size, 2N by 2N, of the output
inertia matrix, is also chosen arbitrarily.

CALLING SEQUENCE: MASS (X (1C), Dt-fPL (1C), RIPL (1C), CM(IC), A (1C) )

where X is the matrix (N X 1) of collocation points referred to an
arbitrary origin.

Df-fPL is the matrix (NDM X 4) of distributed mass per unit length
slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col 4 is the mass value at the front of the slice.

. ,-A'IPL . is the matrix (NRI X 4) of distributed rotary inertia per unit
length slices. The columns here are similar to DMPL.

CM is the matrix (NCM X 4) of concentrated, mass items, where
Col .Vis the attach point location for each item.
Col 2 is the mass at this location.
Col 3 is the location-of its center of gravity.
Col 4 is the moment of inertia about the C. or G.

A is the output (2N X 2N) inertia matrix.

NOTE: Having application to Dt-fPL, RIPL and CW, it is noted that the location
of the values may not go beyond the limits of the collocation points in
either direction.

A-57 • '--.'



APPLICATION — DYNAMIC VIBRATION

SUBROUTINE NAME: STIFF

If a dynamic vibration problem is referred to a set of coordinates con-
_j>isting of the deflections, ?., and the rotations, 9., at N collocation

~poi7rts~a"Von"g~the-beam-under~c6nsiderationT-then-this— subroutine-generates—
the 2N by 2N stiffness matrix [K] which appears in the following expression
for the strain energy:

{v- Vr""n

en

RESTRICTIONS:

The stiffness and shear data input to this subroutine are to be supplied
as piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determine the .ultimate size, 2N by 2N, of the output
stiffness matrix, is also chosen arbitrarily.

CALUNG_SEC|yENCE_:' Sim(X(IC),EI(IC),GA(lC),K(IC)}

where X is the matrix (N XI) of collocation points referred to an
arbitrary origin.

El is the matrix (NEI X 4) of bending stiffness slices, where
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.
Col 4 is the stiffness value at the front of a slice.

GA is the matrix (NGA X 4) of shear stiffness slices, where
the columns here are similar to those for the El distribution.

.K is the output stiffness ma'trix size 2N by 2N,

NOTE: Having application to El and GA, it is noted that the location of the
values may not go beyond the limits of the collocation points in either
direction.
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2.4 INfERPOLATION/EXTRAPOLATION SUBROUTINES

Lagranglan Interpolation
LAGRAN Uses one doublet array . ..:....'. A-61
LGRNDA Uses two singlet arrays . . A-61

Linear Interpolation - Single Variable
D1DEG1 Uses one doublet array. . . . . A-62
POL Uses one array with Independent variables followed by

dependent variables . A-63
D1D1DA Uses two singlet arrays A-62
D1D1WM Uses D1DEG1 and multiplies the interpolation by the

Z value . . A-64
D11MDA Uses D1D1DA and multiplies the interpolation by the

Z value. . A-64
D1MDG1 Uses the arithmetic mean of two Input values as the

independent variable; uses a doublet array . 'A-64
D1M1DA Same as D1MDG1 except two singlet arrays are used
D1M1WM Uses 01MDG1 and multiplies the interpolation by the

Z value. . • A-65
D1M1MD Uses D1M1DA and multiplies the interpolation by the

Z value . . ; . A-65
DIDGII] Performs interpolation on an array of X's to obtain
D1D1IM)
DIDlMl)
D11DAI)
D11DIM)
D11MDI »
D1IMD1 )
D1IMWM >
D11MIMj

an array of Y's . . . . A-65

Identical to DIDGII .D1D1IM and D1D1MI, except for
the use of singlet arrays and call on D1D1DA ...... A-65

These are indexed subroutines which use the arithmetic
mean of two input values as the independent variable A-66

A-66

Linear Interpolation_ - Two Single Variables
CVQ1HT \ Performs two single variable linear interpolations . . .
CVQ1WM J

Parabolic Interpolation -Single Variable

D1DEG2 Uses LAGRAN and a doublet array . . . A-67
D1D2DA Uses LGRNDA and two singlet arrays A-67
D1D2WM Uses LAGRAN and multiplies the interpolation by the

Z value A-67
D12MDA Uses LGRNDA and multiplies the Interpolation by the

Z value. .-.-- . .... ... . . . . . A-67
D1MDG2 Uses the arithmetic mean of two input values as

independent variable; uses doublet array A-68
D1M2DA Same as D1MDG2 except two single arrays are used. ..... A-68
D1M2WM Uses D1MDG2 and multiplies the interpolation by the

' Z value . A-68
D1M2MD Uses D1M2DA and multiplies the interpolation by the

Z value. A-68
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Cyclical Interpolation Arrays
D11CYL) Reduces core storage requirements and uses l inear

-DA-MCY-J —Inter po-1-aH-on «—.—»—»--.—.—.—.— .-.—A=69-
D12CYL\ Identical to D11CYL and DA11CY except that parabolic ;
DA12CYJ interpolation is used A-69
D11MCY\ Identical to D12CYL and DA12CY except that the inter- ;
DA11MCJ polation is multiplied by the value in address Z. . ... A-70

) Identical to D11MCY and DA11MC except that parabolic
DA12MC; interpolation is used j. A-70

Point Slope Interpolations

GSL0PE Generates a slope array so that point slope interpola-
tion can be used , . . . A-71

PSINTR) Point slope interpolation :.. A-71
PSNTWMJ

Bivariate Interpolations

BVSPSA) Uses an input Y argument to address a bivariate
BVSP'DAJ array. . . . . \. A-72
BVTRN1) Constructs a. bivariate array of Y's versus X and Z
BVTRN2J from an input array of Z's versus X and Y A-72
D2DEG1 Performs bivariate linear interpolation . A-73
D2DF.G2 Performs bivariate parabolic interpolation '. A-73
D2D1WM Uses D2DEG1 and multiplies the interpolation by the

W value. A-73
D2D2WM Uses D2DEG2 and multiplies the interpolation by the

W value. A-73
D2MXD1\ Identical to D2DEG1 and D20EG2 except that the arith-
D2MXD2/ metic mean of two X values is used as the X

independent variable .A-74
D2MX1M) Identical to D2D1WM and D2D2WM except that the arith-
'D2MX2MJ metic mean of two X values is used as the X .

independent variable A-74

Tri vari ate Interpola t i ons

D3DEG1 \ Performs trivariate l inear in terpola t ion A-75
D3D1WM/ :

Ljjiear J.xt r a p e l a t ion . • . - . . .
1TRATE Linearly extrapolates a:'new guess on the basis of

Zero error. .-. . . A-75
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The following are the formats for bivariant and trivarant
arrays.

Bivariate

This type of array is used to represent a function of two indepen-
dent variables: Z = (X ,Y ) . Data values for a bivariate array are input in
the following order:

n , XI , X2 , . . . , Xn
,. . . , Zln

Y2,Z21,Z223. . . , Z2n

Ym,Zml,Zm2, . . ., Zmn

Where: n = Number of X values (integer)

m - Number of Y values (this value is not input explicitly)

Zji = f ,(.Xi, Yj); X, Y, & Z = floating point values

XI (i = l,2,...,n) is strictly increasing in i.
Yj ( j ••= l,2,...,m) is strictly increasing in j.

The value of m is not input explicitly because the value of n (input as the
first data value) and the number of points (generated by the preprocessor)
are sufficient to define the location of any element in the array.

Trivariate Array

This type of array may be thought of as two or more bivariate arrays,
where each bivariate array is associated with a third independent variable.
Trivariate arrays are used to represent functions of the form F = f(X,Y,Z) for
the purpose of evaluating such functions by interpolation. The data values in
a trivariate array are input in the following order:

- NX1,NY1,Z1,X1, X2,...,Xn • . .
Y1,F11,F12,.. ,Fln

Y2,F2i,F22,..,F2n bivariate "sheet" for zi

Ym,Fml5Fm2,. . ,Fmn
NX2,NY2,Z2,X1, X2,...,Xj

' Y2,F21,F22,.. ,F2j

Yk,,Fkl,Fk2,.. ,FKj

NX3,NY3,Z3,. ...... ,...,..

A trivariate array may contain as many bivariate "sheets" as'desired. The
number of X and Y values in:each sheet must be specified as integers NX and
NY, respectively. NX and NY need not be the same for all sheets.
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LA6RANGIAN INTERPOLATION

SUBROUTINE NAMES: LAGRAN or LGRNDA

PURPOSE:

These subroutines perform Lagrangian interpolation of up to order 50. The
first requires one doublet array of x, Y pairs while the second requires
two singlet arrays, one of x's. and the other of y's. They contain an
extrapolation feature such that if the X value falls outside the range of
the independent variable the nearest dependent Y variable value is returned
and no error is noted.

n n y _ .
T = Pn (X) = Z 7k n £r - £f ,n=l,2,3 ..... BOmax.

k=0 1=0 *K " *'
m

RESTRiaiONS:

All values must be floating point except 17 which is the order of interpola-
tion plus one and must be an integer. The independent variable values
must be in ascending order.

CALLING SEQUENCE: LAGRAN (X>y,A(IC) ,N)

. or .LGm>k[x,

NOTE: ,

A doublet array is formed as follows:

and singlet arrays are formed as follows

X13X23X3,... ,XN
Yl,.YS,Y3t...tYN'
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LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAME: D1DEG1

PURPOSE: .

This subroutine performs single variable linear interpolation on a doublet
array of X,Y pairs. !

RESTRICTIONS:

All values must be floating point numbers. The x independent variable
values in the doublet array must be in ascending order.

CALLING SEQUENCE:

where: X = Input value of -independent variable
A = Doublet array of XtY pairs
Y = Output value of dependent variable

SUBROUTINE NAME: DID! DA

PURPOSE:

This subroutine performs single variable linear interpolation on a pair
of singlet arrays containing corresponding values of X and Y.

RESTRICTIONS:

All values must be floating point numbers. The X independent variable
values in the AX array must, be in ascending order. The number of values
in the AX and Ay arrays must be the same.

CALLING SEQUENCE:. DM)]Db(X,AX(IC) ,AY(IC) ,Y)

where: X - Input value of the independent variable
AX = Singlet array of X values
AY = Singlet array of Y' values corresponding

to the X values in AX
Y = Output value of the dependent variable
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FUNCTION NAME:

-P4JRP-OSE-:

POL

This function subroutine performs single variable linear interpolation on a
single array consisting of all the independent variables followed by all the
dependent variables. The first location of the array contains the number
of independent variables, the second contains an integer 1 (at the start)
followed by all the independent variables and all the dependent variables.
POL is useful for performing single variable interpolation on curves that
are not type zero curves that are set up during the preprocessing phase.

RESTRICTIONS:

The first location mast contain the number of independent variables and
the second curve location contains the integer 1. The independent variables
are next followed by the dependent variables. Note that POL is a function.

CALLING SEQUENCE: POL (A,X)

Where A is the array location

X is the value of the independent variable

Since POL is a function it must appear on the right of the equal of a
Fortran statement.
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LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: D1D1WM or D11MDA

PURPOSE:

These subroutines perform single variable linear interpolation by calling
on D1DEG1 or D1D1DA respectively. However, the interpolated answer is
multiplied by the values addressed as Z prior to being returned as Y.

RESTRICTIONS:

Same as D1DEG1 or D1D1DA and Z must be a floating point number.

CALLING SEQUENCE: DlDlWM(Ari/irJCi;jZJy)

Or D}WDt((X3AX(IC)fAY(IC)3Z,Y}

SUBROUTINE NAMES: D1MD61 or D1M1DA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two
singlet arrays respectively.

RESTRICTIONS:

See D1DEG1 or D101DA as they are called on respectively.

CALLING SEQUENCE: DWJD^(X!tX2tA(IC)iy)

or DW}DH(X2 fX2 tAX(IC) fAY(IC),y)
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LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: ; P1M1WM or DTMTMD

PURPOSE:

Thesis subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. The interpolated answer is
multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as D1MDG1 or D1M1DA and Z must be a floating point number.

CALLING SEQUENCE: PlMlWMU^X^fltfjZ,*) or mMWD(XlJX21AX(ICJJAY(IC)fZ,Y)

SUBROUTINE NAMES: D1DG1I or P1D1IM or D1D1MI

PURPOSE:

These subroutines perform single variable linear interpolation on an array
of X's to obtain an array of J's. D1D1IM multiplies all interpolated
values by a constant Z value while D1D1MI allows a unique Z value for each
X value. They all call on D1DEG1.

RESTRICTIONS:

The number of input X's must be supplied as the integer N and agree with
the number of Y and Z locations where applicable. Z values must be float-
ing point numbers.

CALLING SEQUENCE: D]DGM(N,X(DV) ,A(IC) tY(DV))

or WlIM(N,X(DV)-tA(IC)tZty(DV))

or mDWl(N,X(DV)JA(IC))Z(DV)JY(DV))

SUBROUTINE NAMES: D11DAI or PIT DIM or D11MDI

PURPOSE:
— —-" "" \

These subroutines are virtually identical to D10G1I, PI P.I IM'and D1D1MI
respectively. The difference is that they require singlet arrays for
interpolation and call on D1D1DA.

RESTRICTIONS:

Same as D1DG1I, D1DlIM:and D1D1MI.

CALLING SEQUENCE: D11DKl(NJX(DV)1AX(IC) ,AY(IC),Y(DV))

or D}WW(N f X(DV) J AX(IC) J AY(IC) t Z } Y(DV))

or mWDl(N f X(DV) J AX(IC) f AY(IC) ) Z(DV) i Y(DV))
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LINEAR INTERPOLATION -SINGLE VARIABLE/TWO SINGLE VARIABLES . ,

SUBROUTINE NAMES: PIIMD1 or D1IMUM or D1IMIM

PURPOSE: '

These are indexed subroutines which use the arithmetic mean of two input
values as the independent variable for linear interpolation. The array of
answers (y) produced are left as is (D1IMD1), are all multiplied by a
single factor (D1IMWM), or each answer is multiplied by a separate factor.

RESTRICTIONS:

The interpolation array addressed must have an even number of input values
and the independent variables must be in ascending order. These routines
call up D1D1WM. N is the number of times the operation is to be performed.

CALLING SEQUENCE: V\IW\(N,Xl(DV)JX2(DV)>A,y(DV))

or D\im4(N,Xl(DV)tX2(Dy)tA,ZfY'(DV))

Or DUMM(N,XKDV)iX2(DV)tA,Z(DV),Y(DV))

LINEAR INTERPOLATION -TWO SINGLE VARIABLES

SUBROUTINE NAMES: CVQ1HT or CVQ1HM

PURPOSE:

These subroutines perform two single variable linear interpolations. The
interpolation arrays must have the same independent variable X and dependent
variables of, let's say, R(X) and S(X) . Additional arguments of 7, Z and
T complete the data values. The post interpolation calculations are
respectively:

y = s(X)*(R(X)-T)

or y = Z*S(X)*(R(X)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common indepen-
dent variable. All values must be floating point numbers.

CALLING-SEQUENCE: W\H1(X,AR(IC) ,AS(IC) ,T,Y)

or W\m(x,AR(ic)tAS(ic)tT,z,Y)'.:'
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PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: D1DEG2 or D1D2DA

PURPOSE:

These subroutines perform single variable parabolic interpolation. The
first requires a double array of X, I pairs while the second requires
singlet arrays of X and y values. They call on subroutines LAGRAN and
LGRNDA respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA respectively.

CALLING SEQUENCE: DlDEG2UJ4fIC';,Y)

or

SUBROUTINE NAMES: D1D2WM or D12MDA

PURPOSE:

These subroutines perform single variable parabolic interpolation by
calling on LAGRAN or LGRNDA respectively. However, the interpolated
answer is multiplied by the value addressed as Z prior to being returned
as y. .

RESTRICTIONS:

Same as LAGRAN or LGRNDA and Z must be a floating point number.

CALLING SEQUENCE: D1D2VM(X,A(IC),Z,y)

or m2VDH(xtAX(ic),Ay(ic)tzty)
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PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: D1MDG2 or D1H2DA

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. They require a doublet or
two singlet arrays respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA as they are called on respectively.

CALLING SEQUENCE; DWG2(X1,X2,A(IC),Y)

or DW2DK(X2,X2JAX(IC),AY(IC),!) .

SUBROUTINE NAMES: D1M2WM or D1M2MD

PURPOSE:

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. The interpolated answer
is multiplied by the Z value prior to being returned as T.

RESTRICTIONS:
*

Same as D1-MDG2 or D1M2DA and Z must be a floating point number.

CALLING SEQUENCE: DW2m(X2,X2fA(IC),Z,y)

or V\V(2Yti(Xl)X2,AX(IC)tAy(IC),Z,Y\

A-68



CYCLICAL INTERPOLATION ARRAYS

SUBROUTINE NAMES: D11CYL or DAI ICY

PURPOSE:

Thesis subroutines reduce core storage requirements for cyclical interpolation
arrays. The arrays need cover one period only, and the period (PR) must be
specified as the first argument. Linear interpolation is performed, and
the independent variable must be in ascending order.

RESTRICTIONS:

All values must be floating point. Subroutine INTRFC is called on by both -
D11CYL and DAI ICY, then D1DEG1 or D1D1DA respectively.

CALLING SEQUENCE: D)KVL(PR,X,A(IC)ty)

or

SUBROUTINE NAMES: D12CYL or DA12CY

PURPOSE: '

These subroutines are virtually identical to D11CYL and DA11CY except that
parabolic interpolation is performed.

RESTRICTIONS:

See D11CYL and DA11CY. Subroutines LAGRAN and LGRNDA respectively are
called on,

CALLING SEQUENCE:

or
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CYCLICAL INTERPOLATION ARRAYS

SUBROUTINE NAMES: D11MCY or DAI IMC

PURPOSE:

These subroutines are virtually identical to D11CYL and DAI ICY except that
the interpolation is multiplied by the floating point 2 value prior to
being returned as y.

RESTRICTIONS:

Call on subroutines D1DEG1 and D1D1DA respectively.

CALLING SEQUENCE: Q'\Ŵ (PRJX,A(IC),Z,Y]

or VKC\M,(pRtx,AX(ic)tAy(ic),z,y)

. SUBROUTINE NAMES; D12MCY or DA12HC.

PURPOSE:

These subroutines are virtually identical to D11MCY and DAI IMC except that
parabolic interpolation is performed.

RESTRICTIONS: .

Calls on subroutines LAGRAN and LGRNDA respectively.

CALLING SEQUENCE: ViZWX(PRtX,A(IC) ,Z,y)

Or VK\Z\\t(PR,XtAX(IC),-Ay(TC),Z,y)
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POINT SLOPE INTERPOLATION

SUBROU1INE_NAMES.:_ GSLgPE,

PURPOSE:

This -subroutine will generate a slope array so that point slope interpola
tion subroutines can be used Instead of standard linear interpolation sub
routines. The user must address two singlet type arrays and a singlet
slope array will be produced.

RESTRICTIONS:

The X independent variable array must be in ascending order. All arrays
must be of equal length and contain floating point numbers.

CALLING SEQUENCE:

SUBROUTINE NAMES: PSINTR or PSNTWM

PURPOSE:

These subroutines perform linear interpolation and require arrays of the ?
points and slopes which correspond to the independent variable X array,
All values must be floating point numbers. PSNTWM multiplies the inter-
polated answer by Z prior to returning it as Y.

RESTRICTIONS:

The independent X and dependent Y and slope arrays must be. of equal length.

CALLING SEQUENCE:

or ?s\nm(xtAX(ic),Ay(ic),AS(ic),z,y)
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BIVARIATE INTERPOLATION

SUBROUTINE NAMES: BVSPSA or BVSPDA

PURPOSE:
*

These subroutines use an input Y argument to address a bivariate array and
pull ,off a singlet array of Z's corresponding to the X's or pull off a
doublet array of X, z values, respectively. The integer count for the
constructed arrays must be exactly N or 2*N respectively. To use the
singlet array for an interpolation call the X array can be reached by
addressing the N- in the bivariate array.

RESTRICTIONS:

As stated above, and all values must be floating point.

CALLING SEQUENCE: B\ISPSb(Y,BA(IC) ,AZ(IC))

or BVSPOH(ytBA(IC),AXZ(IO)

SUBROUTINE NAMES: BVTRN1 or BVTRN2

PURPOSE:

These subroutines construct a bivariate array of Y's versus X and Z.from
an input bivariate array of Z's versus- land Y. BVTRN1 should be used when
the z values increase with increasing Y values and BVTRN2 when the Z values
decrease with increasing Y values.

RESTRICTIONS:

The user must appropriately place the X and Z values and spaces for y's in
the array to be constructed. These subroutines will fill the Y spaces.
The new array can differ in size from the old. Subroutine D1DEG1 is called
and its linear extrapolation feature applies.

CALLING SEQUENCE: BVTRNl (BA0(IC),1

or B^RH2(BA0(IC) )BAN(IO)

* See page A-60A
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BIVARIATE INTERPOLATION

SUBROUTINE NAMES: D2DEG1 or D2DEG2_

PURPOSE:

These subroutines perform blvaHate linear and parabolic interpolation re-
spectively. The arrays must be formatted as shown for Bivari ate Array
Format.*

RESTRICTIONS: For D2DEG1 , N>2,M>2 See Bivari ate
For D2DEG2 , N>3 ,M>3 Array Format

CALLING SEQUENCE:

or D2DEG2U,y,£/ic.rc;iz)

SUBROUTINE NAMES: D2D1WM or D2D2WM

PURPOSE: ••'•"'•

These subroutines perform bivariate linear or parabolic interpolation by call
ing on D2DEG1 or D2DEG2 respectively. The interpolated answer is multiplied
by the f/ value prior to being returned as Z.

RESTRICTIONS:

Same as D2DEG1 or D2DEG2 and A/ must be a floating point value.

CALLING SEQUENCE: D2DlWM(XJyJB4(IC,)J?/,Z)

or D2D2Vi'MU,y,B/KlC';,A'JZ)

.* See page A-60A
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BIVARIATE INTERPOLATION

SUBROUTINE NAMES: D2MXD1 or D2MXD2

PURPOSE:

These subroutines are virtually identical to D20EG1 and D2DEG2 except that
the arithmetic mean of two X values is used as the X Independent variable
for interpolation.

RESTRICTIONS:

Same as D2DEG1 or D2DEG2.

CALLING SEQUENCE: D2MW\(X1,X23?,BA(IC) ,Z)

or V2MW2(Xl>X2fy,BA(IC)3Z)

SUBROUTINE NAMES: D2MX1M or D2MX2M

PURPOSE:

These subroutines are virtually identical to D2D1WM and D2D2WM except that
the arithmetic mean of two X values is used as the X independent variable
for interpolation.

RESTRICTIONS:

Same as D2D1WM and D2D2WM.

CALLING SEQUENCE: D2MX1MU:,X23Y)BA(IC)JVJZ)

or
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TRIVARIATE INTERPOLATION

SUBROUTINE NAMES:. D3DEG1 or D3D1WM

PURPOSE:

These subroutines perform trivariate linear interpolation. The interpola-
tion array must be constructed as shown for Trivariate Array Format. Sub-
routine D2DEG1 is called on which calls on D1DEG1. Hence, the linear
extrapolation feature of these routines applies. Subroutine D3D1WM
multiplies the interpolated answer by F prior to returning it as T.

RESTRICTIONS:

See Trivariate Array Format* F must be a floating point value.

CALLING SEQUENCE: D3KG}(X ty fZ tTA(IC) tT)

or D3V\m(X1Y3Z,TA(IC),F,T)

LINEAR EXTRAPOLATION

SUBROUTINE NAME: ITRATE

PURPOSE:

Given two old guesses and their corresponding errors, this routine linearly
extrapolates a new guess on the basis of zero error.

t'n

u Gn' Gn Go

The new guess and error are positioned in the old locations and the extrapo-
lated new guess is returned in the new guess location.

RESTRICTIONS:

If the error function being plotted has changes of slope, the user must
insure that his guesses are quite accurate or divergence will be assured.

CALLING SEQUENCE: ITRATE(E0;G0tEN;GH)

* See page A-60A
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2.5 OUTPUT SUBROUTINES
Network Printout

TPRNT Prints thermal node temperature A-78
CPRNT Prints thermal capacitances. A-78
QPRNT Prints the nodal heat flow values A-78
UPRNT Prints thermal conductances A-78
UPRNT Prints the time increments ' ̂.73
COPRNT Prints the thermal network capacitances', heat'flbw values',

time increment and the conductances A-79
WPRNT Prints flow rates A-79
PPRNT Prints pressures A-79
VPRNT Prints valve positions ] /\_yg
Floating Point

PRINT ) Allows individual floating point numbers to be
PRINTL/ printed for reference temperature, capacitance,

etc. . . A-80
»

Array Printout

PRINTA Allows the user to printout an array of values five
to the line A-80

PRNTMA Allows the user to print up to 10 arrays in a
PRNTMI column format A-81

PUNCHA Enables a user to punch out an array of data values
in any desired format . ' . . . ' A-81

GENOUT Prints out any general array containing both integers
and real numbers • • A-81A

GENI Prints out an array of integer A-81 A
GENR Prints out an array of real numbers A-8TA
Plot Package "• •

PRNPLT Prints out a plot on the line printer. A-82

PL0TX1
PL0TX2
PL0TL1 Call upon a large package of undocumented ;
PL0TL2 subroutines specifically for the SC-4060 . A-83/
PL0TX3 .
PL0TX4
SC-4060 Plot Symbol Dictionary A-85

SC-4020 Plot Symbol Dictionary A-86

Tape Input/Output

READ \ Enables the user to read and write arrays of data
WRITE) as binary information on magnetic tape .......... A-87
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Matrix Output

-LIST

PUNCH

SYMLST

Special

PNTABL

Uie-eIenien-ts_of_a_nTa-tr_1 x and idcntl f 1 es each by
Its row and column number ....... ..... .. A-87

Punches out a matrix, size n*n, one column at a time
in any desired format .......

Prints out and identifies the element values of a
half symmetric matrix ....... ........... A-88

Provides output information for users of subroutine
ABLATS A-88
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Network Printout Subroutines

SUBROUTINE NAMES: TPRNT. CPRNT, QPRNT, UPRNT, DPRNT. or COPRNT

PURPOSE:

These subroutines provide the user with the ability to printout the elements
of the thermal network. The purpose of each is listed below.

TPRNT Prints all the thermal network temperatures in the T array

CPRNT Prints all the thermal network capacitance in the
C array

QPRNT Prints all the values in the Q array

UPRNT Prints all the conductance values in the U array

DPRNT Prints all the values in the DTAU (time increment)
array

COPRNT Calls CPRNT, QPRNT, UPRNT and DPRNT

These subroutines are normally called in the OUTPUT block but may be called
from other operations blocks. However, an excessive amount of output may
occur if they are called from PRETMP or POSTMP.

RESTRICTIONS:

NONE

CALLING SEQUENCE: TPRNT, CPRNT, QPRNT, UPRNT, DPRNT or COPRNT
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SUBROUTINE NAMES: WPRNT. PPRNT. or VPRNT

-PURPOSE-:

These subroutines provide the user with the ability to printout the fluid
flow rate, the pressure of the pressure nodes, and valve positions. WPRNT
prints flow rates; PPRNT prints pressures, and VPRNT prints valve positions,
These subroutines are normally called from the OUTPUT block but may be
called from other operations blocks if desired.

RESTRICTIONS: NONE

CALLING SEQUENCE: WPRNT, PPRNT, or VPRNT
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FLOATING POINT PRINTOUT

SUBROUTINE NAMES: PRINT or PRINTL

PURPOSE:

These subroutines allow individual floating point numbers to be printed.
The arguments may reference temperature, capacitance, source locations,
conductors, or unique array locations. In addition, subroutine PRINTL
allows each value to be preceded or labeled by a six-character alphanumeric
word. The number of arguments is variable but the "label" array (LA) used
for PRINTL should contain a Hollerith label for each argument.

RESTRICTIONS:

Integers must first be floated.

CALLING SEQUENCE:

or

ARRAY PRINTOUT

SUBROUTINE NAME: . PRINTA

PURPOSE:

This subroutine allows the user to print out an array of values, five to
the line. The integer array length N and the first data value location
must be specified. Each value receives an indexed label. The user must
supply a six-character alphanumeric word L to be used as a common label
and an integer value M to begin the index count.

RESTRICTIONS:

The array values to be printed must be floating point numbers. If L is
supplied as a literal Hollerith data value (instead of a reference to a
user constant containing same), it must be entered in FORTRAN-compatible
H-type notation (e.g., 4HTEMP).

CALLING SEQUENCE: PRINTAU^flW^tf)

If the label was the word 'TEMP1 , a was 3 and 'M was 6, the line of output
would look as follows:

TEMP ( 6)value TEMP ( 7)value TEMP ( Rvalue
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SUBROUTINE NAME: PRNTMA or PRNTMI

-PURPO-SE-

: This subroutine allows the user to print out up to 10 arrays in a column
i format. The individual elements are not labeled but each column receives
' a two-line heading of 12 alphanumeric characters/line. The two-line head-
ing must be supplied as a single array of four words, six characters each.
The user must supply the starting location of each label array and value
array. The number of values in each value array must agree and be supplied
as the integer A'. The value arrays must contain floating point numbers.*

RESTRICTIONS: ;

Labels must be alphanumeric while values must be floating point.* All
floating point value arrays must contain the same number of values.

CALLING SEQUENCE: '^KHim(NiLAl(DV)JVAl(DV)tLA2(DV)3VA2(DV)t...)

Pmim(N,LAl(DV)JVAl(DV)JLA2(DV)1VA2(DV),...)

*VA1 only must address an array of integers for subroutine PRNTMI.

ARRAY PRINTOUT ' ',

SUBROUTINE NAME: PUNCHA •

PURPOSE:

This subroutine enables a user to punch out an array of data values in
any desired format. The F argument must reference a FORTRAN F0RMAT which;
has been input as an array, including the outer parenthesis but deleting
the word F0RMAT.* The second argument must address the first data value
of the array of sequential values. The third argument, .N, must be the
integer number of data values in the array.

CALLING SEQUENCE: ?U\\Ct\k(F(DV),A(DV),N) ]
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SUBROUTINE NAMES: GENOUT, GENI or GENR

PURPOSE:

These subroutines print out arrays of numbers 10 to a line. GENOUT prints
either real numbers, integer or both. GENI and GENR print integers and
real numbersarrays respectively. The integer are written in a 19 format
and the real numbers in a E12.4 format.

RESTRICTIONS:

GENI writes arrays of integers only. GENR writes arrays of real numbers
only.

CALLING SEQUENCE: GENOUT (A, ISTRT, ISTP,'NAME'
GENI (A, ISTRT, ISTP.'NAME1

GENR (A, ISTRT, ISTP, 'NAME')

Where A is the array location
ISTRT is the first value in A being written
ISTP is the last value in A being written

'NAME' is a title of 22 Hallerith words for identification
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PLOT PACKAGE

SUBROUTINE NAME: PRNPLT

PURPOSE:

This subroutine will print out a plot of data on the line printer. It is
intended primarily for plotting temperature histories which were accumu-
lated in the OUTPUT CALLS block. One or two curves of up to 100 points
each may be plotted on each frame (page). Y-axis scaling is automatic. No
units are associated with the X-axis, and no X.values are used; one point
is plotted for each print wheel position along the X-axis. Points on the
first curve will be printed as 'X's, and points on the second curve will
be printed as 'O's. Where points overlap, an asterisk, •'.*', is printed.

RESTRICTIONS:

If NA and/or NB is greater than 100, only the first 100 points in the
corresponding array of Y-values (YA and/or IB) will be plotted. The argu-
ment LP normally has a value of 50 when standard 11 x 14 computer paper
is used. The smallest Y increment represented by a line is one unit, so
the narrowest range covered by the Y axis will be LP units. One graph only
may be plotted on a single page. When a point to be plotted has a value
which lies exactly between the values associated with two adjacent lines,
then the point will be printed on both lines.

CALLING SEQUENCE: PmPll(TT(DV)3MA,YA(DV)JTA(DV)3NB,YB(DV)iTB(DV),LP )

where: TT = Main title (4 Hollerith words) : .'
• NA•= Number of points for the first curve

(integer; must be greater than zero)
YA - Y values for the first curve
TA = Title for the first curve (4 Hollerith words)
NB = Number of points for the second curve

(may be zero)
IB = Y.values for the second curve
TB = Title for the second curve (4 Hollerith words)
LP = Number of printer lines which may be used to plot values

(at least tuo less than "the number of lines -an a page)
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PLOT PACKAGE

SUBROUTINE NAMES: PL0TX1 or PL0TX2 or PL0TL1 or PL0TL2 '

PURPOSE:

These F0RTRAN V coded quick plot subroutines call upon a large package of
undocumented subroutines specifically for the SC-4060. They will produce
up to four graphs per frame and several variables may be plotted per graph.
A suitable grid will be drawn with certain lines emphasized. The grid
lines will have reasonable numerical indicia and centered title will be
printed for both axes and at the top of the graph.

PL0TX1 and PL0TL1 will compute the minimum and maximum values of the stored
X and Y arrays to be plotted and call upon PL0TX2 or PL0TL2 which use the
values as grid limits for the graph. The user may set the grid limits by
calling PLOTX2 and PLOTL2 directly. The X, Y and top titles (XT, IT and TT
respectively) must consist of nine alphanumeric words of six characters each.

RESTRICTIONS:

The user should consult Appendix D to check tape designation requirements.
The X and Y values must be floating point numbers. The user must call sub-
routine PLTND after all his plotting is done. No limit may be zero for log
plots.

CALLING SEQUENCE:

PL0TX1 (N,IS,TX(DV),TY(DV),TT(DV) ,NP,AX(DV) ,AY(DV) )
or

PL0TX2 (N, XL,XR, YB, YT, IX,TX(DV) ,TY(DV), TT (DV) ,NP,AX(DV), AY(DV) )
or

P\.WL](N,ISJTX(DV),TY(DV),?T(DV),NP,AX(DV),AY(DV),LM)

. PLWL2(N,XL,XH,YB,YT,IS,TX(DV),TY(DV),TT(DV),NP,AX(DV),AY(DV),LM}

where: N is the integer number of graphs per frame (1,2,3 or 4);
•if zero, the grid from the previous plot call is used,

IS is the integer identifying the plotting symbol (1-244)
TX is the address of the X title
TY is the address of the Y title

• TT is the address of the top title
NP is the integer number of XY values or points to be plotted^

if negative the points will be connected by straight lines.
AX is the address of the X array
AY is the address of the Y array
XL is the floating point X axis left limit
XR is the floating point X axis right limit
YB is the floating point Y axis bottom limit

, YT is the floating point Y asis top limit
• . . LM is a)i integer identifying the log plotting mode;

if less than zero plot log X versus linear Y,.
if equal to zero plot log X versus log Y,
if gre.ater than zero plot linear X versus log Y
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PLOT PACKAGED "

SUBROUTINE NAMES: PL0TX3 or PL0TX4

PURPOSE:

These subroutines are similar to PL0TX1 and PL0TX2 but have six additional
arguments which allow the user to modify the grid as desired.

RESTRICTIONS:

See P10TX1 and PL0TX2.

CALLING SEQUENCE: .

or

where the arguments are identical to PL0TX1 and PL0TX2 except for

DXjDY these floating point values are used in spacing the grid
lines which are centered on the zero values. If zero, no
grid lines will be drawn. th th

L,M these integers cause every L vertical and M horizontal
grid line to be redrawn for emphasis. If zero, no grid
lines will be emphasized. If negative, a square grid will
be produced. th th

•Itj these integers cause every I vertical and J horizontal
grid line to be labeled with its value. If zero, no grid
lines will be labeled. If negative, the labels will be
placed outside the grid, otherwise they will appear on the
zero axis.
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PLOT PACKAGE

SC-4060 PLOT SYMBOL DICTIONARY

(for use with quick plot subroutines only)

Integer Symbol Integer Symbol Integer Symbol Integer Symbol
1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A

B

C

D

E

F

G

H

I

J

K

L

M

N

0
P

Q
R

S

T

U

V

w
X

Y

2

0
1
2

3

31
32
33
34

35
36
37
38
39

40

41

42

43

44

45

46

47

48

49

50

51.
52

53

54

55

56

57

58

59

60

4

5

6

. 7

8

9

(blank)
•

>
'(close quote)

$

(
)
/

-(minus)
+
*

=

a x
b
c
d
e
f

g
h
i

J
k
1

61
62
63
64
65
66
67
68

69
70

71

72

73

74

88

89

90

91

92

93

94

95

96

97
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PLOT PACKAGE:

SC-4020 PLOT SYMBOL DICTIONARY -

(to be used at installations
NASA/MSC, where an SC-4060
to simulate an SC-4020)
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TAPE INPUT/OUTPUT

SUBROUTINE NAMES: READ or WRITE

PURPOSE: •

Thes.e subroutines enable the user to read and write arrays of data as binary
information on magnetic tape. The first argument L must be the integer
number of the logical tape being addressed. The second argument X must
address the first data value of the array to be written out or starting
location for data to be read into. The third argument N must be an integer
For WRITE, it is the number of data values to be written on tape as a record,
For READ, it is the number of data values to be read in from tape from the
next record, not necessarily the entire record.

RESTRICTIONS: '

The user should check Appendix D to determine which logical tapes are avail-
able and control card requirements. All processed information must be in
binary.

CALLING SEQUENCE:. KEM>(L,X(DV),N)

or URnE(LtX(DV),N)

MATRIX PRINTOUT

SUBROUTINE NAME; LIST

PURPOSE: •

This- subroutine prints the elements of a matrix [4] and identifies each by
its row and column number. The user must supply an alphanumeric name ALP
and integer number NUM to identify the matrix. This is to maintain con-
sistency with subroutines FILE and CALL.

RESTRICTIONS:

The matrix must have its integer number of rows and columns as the first two
data values.

CALLING SEQUENCE: LlSl(A(IC),ALP,NUM)
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SUBROUTINE NAME: PUNCH

PURPOSE:

This subroutine punches out a matrix. [/!] ..size n*m, one column at a time
in any desired format. The argument F0R must reference a F0RTRAN format
statement that has been input as a positive array. It must include the
outer parenthesis, but not the word F0RMAT. The argument HEAD must be a
single BCD word used to identify the matrix. Each column is designated
and restarts use of the F0RMAT statement.

RESTRICTIONS:

The matrix [>5] must have exactly enough space and contain the integer
number of rows and columns as the first two, data values.

CALLING SEQUENCE: ?\MW(A(IC)3EEAD,F0R(IC)Y

DYNAMIC STORAGE REQUIREMENTS:

This subroutine required n+3 dynamic storage locations.

SUBROUTINE NAME: SYMLST

PURPOSE :

To print out and identify the element values of a half symmetric matrix.
:This output subroutine is most generally used with subroutine SCRPFA.

CALLING SEQUENCE: SYMLST (>t

where A(DV) adresses the 1,1 element and N is the matrix order.

SPECIAL

SUBROUTINE: PNTABL

PURPOSE: . - '

To provide output information for users of subroutine ABLATS. The ABLATS
routine performs ablative simulation calculations but since it Is called
in $ POSTTEMP, it performs no output. The user must call PNTABL in tlie
$ OUTPUT block and reference the ablative array of the ABLATS call.
When the ablative material is expended, ABLATS will call PNTABL directly
and will also cause current problem time to be printed.

RESTRICTIONS:

This routine is called in conjunction with subroutine ABLATS only, see
Section 2.2

CALLING SEQUENCE: WJfl&L(AA(IC))

A-88



2.6 MATHEMATICAL SOLUTION SUBROUTINES

Area Integration

SMPINT) Performs area integration by Simpson's rule and
TRPZD j trapezoidal rule using equal increments. . .' A-9(

TRPZDA Performs area integration by the trapezoidal rule
with non uniform increments ..... • • A-9(

NEWTRT \ Util izes Newton's method to obtain one root of a
NEWRT4 / cubic or quartic equation .• A-91

Polynomial/Simultaneous Linear Equations

PLYNML ) Calculates the value of the dependent variable for
PLYARY > an Nth order polynomial • A'9<

. P L Y A W M J

SIMEQN Solves a set of linear equations (10 or less) by the
factorized inverse method v A-9<

Curve Fit/Temperature Derivative
LSTSQU Performs a least squares curve fit to an arbitrary,

number of X,Y pairs to yield a polynomial
equation of up to order 10 A-9;

Complex Variable Analysis

CMPXSR Obtains the complex square root of a complex number
CSQRI or array of complex numbers. A-9;

CMPXMP Multiplies two complex numbers or the corresponding
CMPYI elements of arrays of complex numbers. . .... A-9'

CMPXDV Divides two complex numbers or the corresponding
CDIVI elements of complex numbers A-91
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AREA INTEGRATION

SUBROUTINE NAMES; SMPINT or TRPZD

—PURPOSE-:

These subroutines perform area Integrations by Simpson's rule and the
trapezoidal rule respectively. Simpson's rule requires that an odd
number of points be supplied. If an even number of points 1s supplied,
SMPINT will apply the trapezoidal rule to the last incremental area but
Simpson's rule elsewhere. The respective operations are:

A - DX*(n+4y2+2Y3+4Y4+...+YN)/3

Or A = DX*(Yl+2y2+2Y3+2Y4+...+YN)/2

RESTRICTIONS:

The DX increment must be uniform between all the Y points. All values
must be floating point except N which must be an integer.

CALLING SEQUENCE: SNPW{(NtDX,Y(DV),A)

or lW>ZD(NtDXty(DV)tA)

SUBROUTINE NAME: " TRPZDA
•

PURPOSE.; ,

This subroutine performs area integration by the trapezoidal rule. It
should be used where the DX increment is not uniform between the y values
but the corresponding x value for each y value is known. The operation
performed is as follows:

A = TJ- i Ui-*1-l)*(yi+Yi-l) , i = 2,N

All values must be floating point numbers except the array length N which
must be an integer.

CALLING SEQUENCE:
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ROOTS

SUBROUTINE NAMES; NEUTRT or NEURT4 . • .

PURPOSE:

These subroutines utilize Newton's method to obtain one root of a cubic
or quartic equation respectively. The root must be in the neighborhood
of the supplied initial guess and up to 100 iterations are performed in
order to; obtain an answer within the specified tolerance. If the tolerance
is not met, an answer of 1038 is returned. The respective equations are:

f (X) = A2+A2*X+A3*X2+A4*)(3 = 0.0±r

or g(X) =

where X starts as the initial guess HI and finishes as the final answer RF.
T is the tolerance.

RESTRICTIONS:

All data values must be floating point numbers.

CALLING SEQUENCE: NEWTRTUfZW,!*, /?!,/?*•)

OR NEWRT4(/UW;,r,/?I,tfF)
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POLYNOMIAL/SIMULTANEOUS LINEAR EQUATIONS

SUBROUTINE NAMES: PLYNML or PLYARY or PLYAWM

PURPOSE": -- - - : - - -

These subroutines calculate Y from the following polynomial equation:

y = Al+A2*X+A3*X2+A4*X3+...+AN+l*/

The number of terms is variable but all the A coefficients must be input
no matter what their value.

RESTRICTIONS:

All values must be floating point numbers except for the degree of poly-
nomial N which must be integer.

CALLING SEQUENCE: ?LWm.(XiAlfA2fA3i...iANty)

or PLYARY (Ntx, A (DV) ,y)

Or VV<im(N,XtA(DV)tVtZ)

SUBROUTINE NAME: ' SIMEQN

PURPOSE:

This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output
values are communicated as a single specially formatted positive input
array. The array argument must address the matrix order (N) which is input
by the user. The first data value must be the integer order of the set (or
size of the square matrix) followed by the coefficient matrix .[/i] in column
order, the boundary vector {B} and space for the solution of vector |s[.

M J5| . {B\

RESTRICTIONS:

The integer count and matrix size must be integers, all other values must
be floating point. The coefficient matrix is not modified by SIMEQN.
Hence, changes to \B\ only allow additional solutions to be easily obtained.

CALLING SEQUENCE: SIMEQN (A(DV))

where the array is formatted exactly as follows:

) ,B1,.. . ,BN,S13.. . ,SN
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CURVE FIT/TEMPERATURE DERIVATIVE

SUBROUTINE NAME: LSTSQU •

PURPOSE:

This subroutine performs a least squares curve to fit to an arbitrary
number of X, Y pairs to yield a polynomial equation of up to order 10.
Rather than using a double precision matrix inverse, this subroutine calls
on the subroutine SIMEQN to obtain a simultaneous solution.

RESTRICTIONS: .

All values must be floating point numbers except N and M which must be
integers, N is the order of the polynomial desired and is one less than
the number of coefficients desired. M is the array length of the inde-
pendent X or dependent Y values.

CALLING SEQUENCE: LSTSQU(tf, M,X(W),y(DV),A(DV))

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 2*M dynamic storage core locations.

SUBROUTINE NAMES: CMPXSR or CSQRI

PURPOSE:

These subroutines obtain the complex square root of a complex number or an
array of complex numbers respectively. Their respective operations are:

A + iS = N/C + \D , i = J-l

or /ij + isj = vc-j + iz?j , j = 1 ,A'

RESTRICTIONS:

All numbers must be floating point except N which must be an integer.

CALLING SEQUENCE: CMPXSR(C1,C^JB)

Or CSQRI (NtC(DV),D(DV), A (DV),B(DV)}
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SUBROUTINE NAMES: CMPXMP or CMPYI

PURPOSE:

These subroutines will multiply two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A + '15 = (C + W)*(E + IF) , i =

or Aj + iBj = (Cj + 10j)*(Zj+iFj) , j= M

RE STRICT I 'QMS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: ' CMPXMP ( C, 0,£,F, 4, B)

Or QMl(N>C(DV),D(DV),E(DV)fF(DV)aA(DV)fB(DV))

DIVISION OPERATION .

SUBROUTINE NAMES; CMPXDV or CD I VI

PURPOSE;

These subroutines will divide two complex numbers or the corresponding
elements of arrays of complex numbers. Their respective operations are:

A + Is = (c + D̂}/(E + iF) , j = v/̂ l"

or Aj + iBj = (cj + ioj)/(Fj + iFj) , j = 1,/y

RESTRICTIONS:

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXDV(c,D,£,F,>l,B.)

or CDlV(N,C(Dy),D(DV)fE(DV),F(.DV)9A(DV),B(DV))
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2.7 ARRAY OPERATIONS AND MANIPULATIONS

Addition Operation

ADDARY Adds the corresponding elements of two specified length
arrays to form a third array A-97

ARYADD Adds a constant value to every element in an array to
form new array. A-97

SUMARY Sums an array of floating point values ... A-97

Subtract!on Operation

SUBARY Subtracts the corresponding elements of one array
from another to form a third array. . A-98

ARYSUB Subtracts a constant value from every element in an
array to form a new array A-98

Multip!ication Operation

MPYARY Multiplies the corresponding elements of two arrays to
form a third. . A-98

ARYMPY Multiplies each element, of an array, by ft constant value
to form a new array A-98

SCLDEP Multiplies the dependent or independent variables of a
SCLIND doublet type interpolation array A-99

Division Operation

DIVARY Divides the elements of one array into the corresponding
elements of another array to produce a third array • . • A-99

A.RYDIV Divides each element of an array by a constant value
to produce a new.array. . A-99

ARYINV; Inverts each element of an array in its own location. . . . A-100

ARINDV Divides each element of an array into a constant value
to form a new array A-100

ADARIN Calculates one over the sum of inverses of an array of values A-

p.istribution of Array Data .

SHFTV Shifts a sequence of data from one array to another A-101
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SHFTVR Shifts a sequence of data from one array and places
data in reverse order in another array. . . . A-101

-FL-I-P- -Rever-ses-an-ar-ray—in—i-ts-own-ar-ray—1-Oca.t.ion : A=

GENARY Generates an array of equally incremented ascending
values A-10J

BLDARY Builds an array from a variable number of arguments
in the order listed A-102

BRKARY Distributes values from within an array to a variable
BKARAD number of arguments in the order listed A-102

STOARY Places a value into or takes a value out of a
ARYSTO specific array location A-102

STFSEQ Stuffs a constant value into,a specified length
STFSQS array or group of sequential locations. A-103

SLDARY Moves array data values back one or two positions and
SLDARD updates the last one or two values. .. A-104

STORMA Constructs historical data arrays during a transient
analysis A-104

Singlet/Doublet Array Generation

SPLIT Separates a doublet array into two singlet arrays A-105

Combines two singlet arrays into a doublet array A-105JOIN

SPREAD Applies interpolation subroutine DID!DA to two singlet
arrays to obtain an array of dependent variables
versus an array of independent variables A-105

Comparison Operation

MAXDAR Obtains the absolute maximum difference between
MXDRAL corresponding elements of two arrays of equal

length N. A-106
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ADDITION OPERATION

SUBROUTINE NAMES: ADDARY or ARYADD

PURPOSE:

Subroutine ADDARY will add the corresponding elements of two specified
length arrays to form a third array. -. Subroutine ARYADD will add a con-
stant value to every element in an array to form a new array. Their
respective operations are:

or 41' = Bi + C , i = 1 jt

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE: MX>Mt.(NtB(DV)tC(DV)tA(DV) )

or

The answer array may be overlayed into one of the input array areas.

SUBROUTINE NAME: SUMARY \

PURPOSE:

To sum an array of floating point values:

5 = £ 4i , i = 1 ,N

RESTRICTIONS:

The values to be summed must be floating point numbers and the array
length <v must be an integer.

CALLING SEQUENCE: SUMARY (NtA(DV),s)



SUBTRACTION OPERATION

SUBROUTINES NAMES; SUBARY or ARYSUB

PURPOSE:

Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a
constant value from every element in. an array to form a new array. Their
respective operations are: :

>li = Bi - Ci , i = l,tf
or A\ - B\ - C , i = M

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE: SUBPR1(N,B(DV),C(DV)JA(W))

Or ARYSUB (N, B (DV)JCiA(DV))

The answer array may be overlayed into one of the input array areas.

MULTIPLICATION OPERATION

SUBROUTINE NAMES: MPYARY or ARYMPY

PURPOSE:

Subroutine MPYARY will multiply the corresponding elements of two arrays
i to form a third. Subroutine ARYMPY will multiply a constant value times
1 each element of an array to form, a new array. Their respective operations
; are:

j. Ai = Bi * Ci , i = 1 ,N

\ or >4i = Si * C , i = 1,0

RESTRICTIONS:

All data values to be operated on must be floating point numbers. The
array length N .must be an integer.

CALLING SEQUENCE: HmWt(N3B(DV),C(DV)tA(DV))

or KKtMm(N,B(DV),CtA(DV))

The answer array may be overlayed into one of the input array areas,
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MULTIPLICATION OPERATION

SUBROUTINE NAMES: SCLDEP or SCLIND

PURPOSE: ' ;

These subroutines will multiply the dependent or Independent variables of
a doublet type interpolation array respectively. Their respective '
operations are:

41 = X*A\ , i = 2,4,6,8 n

or 41 = X*A\ , 1 = l,3,5,7,...,n-l

RESTRICTIONS: •

All values must be floating point. The arrays must be referenced with the,,
integer count form. i

CALLING SEQUENCE: SCLDEP(A(1C)tX)

or SCLINO(AfICJ,X) \

DIVISION OPERATION

SUBROUTINE NAMES: PIVARY or ARYDIV

PURPOSE:

Subroutine DIVARY will divide the elements of one array into the correspond-
ing elements of another array to produce a third array. Subroutine ARYDIV
will divide each element of an array by a constant value to produce a new
array. Their respective operations are:

A\ - Bi/Ci , i = 1,N

or A\ = BMC , i = 1,»

RESTRICTIONS

All data values to be operated on must be floating point numbers. The
array length N must be an integer.

CALLING SEQUENCE: DIWK((NfB(DV),C(DV)tA(DV))

or hWDlV(N3B(DV)fCtA(DV))

The answer array may be overlayed into one of the input array areas.
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DIVISION OPERATION

SUBROUTINE NAMES: ARYINV or ARINDV

PURPOSE: '

Subroutine ARYINV will invert each element of an array 1n Its own location,
Subroutine ARINDV will divide each element of an array Into a constant
value to form a new array. Their respective operations are:

Ai = 1.0/-41 , i = 1,W

or 41 = B/Ci , 1 » l,tf
^

RESTRICTIONS:

All data values must be floating point numbers. The array length W must
be an integer.

CALLING SEQUENCE:

or KHl\\m(NsC(DV)tB,A(DVl)

(The ARINDV answer array may be overlayed into the input array area.)

SUBROUTINE NAME: ADARIN

PURPOSE:

Subroutine ADARIN will calculate one over the sum of inverses of an
array of values. This subroutine is useful for calculating the
effective conductance of series conductors. The operations are:

V = 1.0/1(1. /Xi] , i = 1,2,. . . , W

RESTRICTIONS:

All data values must be floating point numbers. The array length W
must be an integer.

CALLING SEQUENCE:

ADARIN (N, X(t>l/), V)
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: SHFTV or SHFTVR or FLIP

PURPOSE:

Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR win shift a sequence of data from one array and place
It 'In another array. 1n reverse order. Subroutine FLIP will reverse an
array 1n Us own array location. Their respective operations are:

=5(1) , 1 = I..IY

or A(J

or 4(i)new = A(n-i+2)old , 1 = 2,n+l

RESTRICTIONS:

The data values to be shifted or reversed in order may be anything. The
N must be an integer.

CALLING SEQUENCE: SHFTV (N,B(DV)tA(DV))

Or SHnVR(NfB(DV),A(DV)}

or fllP(A(IO)

The answer array may not be overlayed into the input array.

SUBROUTINE NAME: GENARY

PURPOSE :

This subroutine will generate an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number of
values in the array to be generated and the space for the generated array.

RESTRICTIONS;

All numbers must be floating point.

CALLING SEQUENCE: GERAXf(B(DV)tA(DV)) ..

where B(l) - minimum value

B(2) - maximum value

B(3) = length of array to be, generated (floating point)
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAME: BLDARY

PURPOSE;

This'subroutine will build an array from a variable number of arguments
in_the_order 1 isted. The operation performed is:

A\ = X\ , i = 1 ,n

RESTRICTIONS : '.

Data may be of any form. The subroutine obtains the integer array length
n by counting the arguments.

CALLING SEQUENCE: BU)MV(A(DV)iXlfX2tX3>. ..,*«)

SUBROUTINE NAME: BRKARY or BKARAD

PURPOSE:

These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value into
the location while the second adds it to what is in the location.
Respective operations are:

Xi = A\ , i = l,n

or Xi = ATi +. /li , 1=1 ,n

RESTRICTIONS:

Floating point numbers must be used for BKARAD. The integer array length
n is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE: &WLNM(A(DV),XliX2,X3, . . . ,Xn)

or BKPRM(A(DV) tX2,X2 fX3,...,Xn)

SUBROUTINE NAMES: ST0ARY or ARYST0

PURPOSE:

These subroutines will place a value into or take a value out of a specific
array location respectively. Their respective operations are:

Ai - X , i = V , N > 0

or X * A\ , i = ff , S > 0

RESTRICTIONS; , .

The value may be anything but N must be an integer.

or
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SUBROUTINE NAMES: STFSEQ or STFSQS

PURPOSE:

Both subroutines will stuff a constant data value into a specified length
array or group of sequential locations. STFSEQ expects the constant data
value to be in the first array location while STFSQS requires it to be
supplied as an additional argument. The respective operations performed
are:

A\ = Al , 1 = 2,N

or >li = B , i = 1 ,W

RESTRICTIONS;

W must be an integer but the constant data value may be integer, floating
point or alpha-numeric.

CALLING SEQUENCE: STFSEQUfDW,tf)

or STFSQS(B,fl>;lW)
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DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES; SLDARY or SLDARD

—PURPOSE-:— — '• ,

These subroutines are useful for updating fixed length interpolation arrays
during a transient analysis. The array data values are moved back one or
two positions, the first one or two values discarded and the last one or
two values updated respectively. The "sliding array" thus maintained can
then be used with standard interpolation subroutines to simulate transport
delay phenomena. Their respective operations are:

/li = /li+1 , i = 2,N

and >li » X , i = N + 1

or Ai = Ai+2 , i = 2,N-1

and A^ = X and »i+l = Y , i = N

RESTRICTIONS:

The addressed arrays must have the array integer count N as the first value.
For SLDARD, N must be even.

CALLING SEQUENCE: SLDf(R\(xJA(IC))

SLDARDU,J,/lfIC7)

SUBROUTINE NAME: ST0RMA

PURPOSE;

This subroutine is useful for constructing historical data arrays during a
transient analysis. It can take the place of several ST0ARY calls. The
operations are as follows:

AKN) = XI
: A2(N) = X2

A3(N) = X3
" • , . . « " - • •

• . -
•

RESTRICTIONS:

N must be or reference an integer, the X's may be any value.

CALLING SEQUENCE: Sl&Kftb(NfXltAl(DV)tX2tA2(DV)JX3,A3(DV)J... )
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f

SINGLET/DOUBLET ARRAY GENERATION

SUBROUTINE NAMES; SPLIT or J0IN

PURPOSE:

These subroutines separate a doublet array Into two singlet arrays or com
bine two singlet arrays Into a doublet array respectively. Their
respective operations are:

Ci = A2\ , 1 » I,//
or

RESTRICTIONS; •

The arrays may contain any values but N must be an integer. N is the length
of the B and c arrays and the A array must be the length of 2a.

CALLING SEQUENCE; SPin(NfA(DV)JB(DV),C(DV))

or m̂(N,B.(DV)JC(DV)JA(DV))

SUBROUTINE NAME; SPREAD

PURPOSE :

This subroutine applies interpolation subroutine DID! DA to singlet arrays
to obtain an array of dependent variables versus an array of independent
variables. It is extremely useful for obtaining singlet arrays of various
dependent variables with a corresponding relationship to one singlet
independent variable array. The dependent variable arrays thus con-
structed can then be operated on by array manipulation subroutines in
order to form composite or complex functions. Doublet arrays can first
be separated with subroutine SPLIT and later reformed with subroutine J0IN.

RESTRICTIONS;

All data values must be floating point except N which must be the integer
length of the array to be constructed. The arrays fed into D1D1DA for
interpolation must start with the integer count. X is for independent and
Y is for dependent. I is for input and 0 is for output.

CALLING SEQUENCE: SPREAD(tf,mc; ,Y(IC)JXI(DV)tY0(DV))
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COMPARISON OPERATION

SUBROUTINE NAMES: MAXDAR or NXDRAL

P-UREOSE-: _ '. :

These subroutines will obtain the absolute maximum difference between
corresponding elements of two arrays of equal length N. The array values
must be floating point numbers. The operation performed is

D = • A\ - fll , 1 - M'max
Subroutine MXDRAL also locates the position P between 1 and N where the
maximum occurs.

RESTRICTIONS:

The N argument must be an integer. The D and P arguments are returned as
f loa t ing point numbers.

CALLING SEQUENCE: W®AR(N,A(DV) tB'(DV),D)

or \mm.(NJA(DV),B(DV)1D,P)
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