b
!
E

-

.
!

o

i “ m w g n ” “’
Py < -~ s “’ q o o > . iy (4

VOUGHT MISSILES
AND SPACE COMPANY
TEXAS DIVISION

m - m i
m m 3 o b o ; ! m
b s o < s g

P. 0. Box 6267 Dallas, Texas 75222

-




',2365/;%595

" Performed Under
NASA-MSC Contract -
‘ NA5944776

/z/ 73_/d 76 3

MODULAR THERMAL ANALYZER ROUTINE :
Report No. 00. 1524 '
Vo]ume I

27 March 1972

Submitted by

Vought M1ss11es and Space Company
LTV Aerospace Corporation
P.0. Box 6267
Dallas, Texas

”tbﬁ T ?.WU - | o

National Aeronautics and Space Administration
Manned Spacecraft Center
~ Houston, Texas

Prepared by:.'

Approved by:

/

R. J. French Supervisor
Environmental Control/
_ L1fe Support Systems




1.0
2.0
3.0

4.0

5.0

'TABLE OF CONTENTS

DSUMMARY L. vt e e e e e e e e e e
INTRODUCTION. . . ... . . . .. e e e e S e
ROUTINE ANALYTICAL METHODS T PP

3.1 Thermal Analysis . . . . . . ... S
3,11 Finite Difference Analysis . . . . .. I
3.1.2 Temperature Solution Methods . . . ... . ... ..

3.1.2.1 Explicit Temperature Solution . . . . . .
3.1.2.2 Implicit Temperature So]utioh' G e
'.3,1,2.3 Steady State Solution . . ... . .. ...

3.1.3 Thermal Analysis Features . . . . . . . s e e e
3.1.3.1 Conductor Calculation Methods . . . . . .
3.1.3.2 Heat Exchanger Analysis . . . . ... ..
3.1.3.3 Inline Heater Analysis . . . . . . . . ..
3.1.3.4 Cabin Analysis . . . . . . . . ... SR,
'3.1.3.5 Radiation Interchange Analyses . . . . . .

3.2 Pressure Flow Analysis . . . . . . R

3.2.1 Overall Model Descr1pt1on s p e s e e e e e

| 3,2{2 ‘Tube Conductor Determ1nat1on ...........
3.2.3 Valve Analysis . . .. ... .
3.2.3.1 Valve Position Determ1nat1on e e e e e

3.2.3.2 Flow Split and Pressure Characteristic
’ Determination . . . . . . . . . . .. . -

-3.2.4 Pressure-Flow Network Solution .A; e e e
- 3.2.5 Pump and System Pressure- F]ow Matching . . . . ..
3.2.5.1 Tabular Pump Curve Solution . . . . . ..

3. 2 5.2 Po]ynom1a1 Pump Curve Solution . . ... . .

ROUTINE OPERATIONAL DESCRIPTION B e e e

‘4.1 Preprocessing Phase . . . . . . .. ... ... e

4.2 Comp11at1on Phase . . . e e e e
4.3 Processing Phase . A e e e .
PROGRAM USAGE DESCRIPTION . . ... . . . . . . . P
5.1 Mathemat1ca1 Mode1 Bu11d1ng ....... R

19

PAGE

13
13
15
17
18
18
21
24
24
30
38
38
39
42
44



TABLE OF CONTENTS (CONTINUED)

5.1.1 Thermal Models . . . . . . . .. .. ... ... 66
5.1.2 Fluid Flow Models . . ... .. ........ 70
5.2 Input Description . . . . . .. .. e e 72
5.2.1. General Input Requirement . . . . . .. .... 72
5.2.2 Parametric Data Card . e e i e e e e 75
- 5.2.3 Network Data Block . . . . . . .. e 78
©5.2.3.1 Initial Temperatures ..... P 78
5.2.3.2 Thermal Capacitances . . . . . L. .19
5.2.3.3 Thermal Conductors . . . . . . . . . . 81

'5.2.3.4 Absorbed Heats . . .. . . .. ... .93

5.2.4 Flow Systems Data . . . . . . .. L ... 9%

| 5.2.4.1 Parameter . . . .. .......... .98
5.2.4.2 Flow Network and Subnetwork . . . . . . “100
5.2.4.3 Fluid Lump Data . . . . . . . . SR (1)
0 5.2.4.4 PumpData . . . .. . u e e . 103

'5.2.4.5 Valve Data . ... ........ L. 104

5.2.5 Curve Data . . . . . . . ... e - 1o
5.2.6 User Proqramm1ng Blocks . . . . . . . .. S . 1T2
| 5.2.6.1 General Descr1pt1on ..... . ,'}v. . 112
_ 5.2.6.2 User Subroutines . . . . . .. . . .. 115
5.3 ‘Specia1 Input/Output Features . . . . . . . . .. e . 129
~ 5.3.1 Data on Tape with Edit . . . ......... 129
5.3.2 Dump and Restart Option . .. .. .. .. ... 131
5.3.3 History Tape Options . ... . .. . . . . R K
5.3.3.1 History Tape Format., Y 1
5.3.3.2 Plotting .From H1stohy Tape . . ... . . 132
5.3.3.3 Starting From History Tape . . . .. . 133
5.3.4 Flux Tape Options . . . . . T P £ X
5.4 Run Submission Requirements . . . . . . .. ...... 135
5.4;]rxDeék Setup_Requirements ........ ;. ... 135



6.

o O W e

TABLE OF CONTENTS (CONTINUED)

5.4.2 Estimation of Computer Time and Output C e e e e

5.4.3 Data Storage Requirements . . . . . e

5.5 Output Description . . . . .+ . . . . . . . ... P
5.5.1 Normal Printing . . . . . e e e e e e e e e e

5.5.2 EXPLCT Checkout Printing . . . . . . . .. ... ..

5.5.3 IMPLCT Checkout Printing . . . . . . . . . . ..

O REFERENCES © « v v v v vt oie e v e e i e e e e

USER SUBROUTINES . . . . . . e e e A
SAMPLE PROBLEMS . .« « « & ¢ vt v v v ot e et e e e s
INPUT DESCRIPTION FOR STANDARD MOTAR PLOTTING SUBROUTINESV S
MOTAR PROGRAM LISTING . . « v . v v o v i o v v v . . S

* Contained in Volume I1

iv

142
143
147
148



(LIST OF FIGURES

FIGURE S . - | . PAGE

1 Illustration of Method Used to Determine Specular
B Surface Reflected View Factors . .. . . . . . . . . ... - 32
2 ITlustration of System and.Subsystem Concepts . . . . . 40
3 Friction Factor vs Reynolds Number . . . . . . . . . .... 43
4 Rate Limited Valve Operation ... . . . . . . T 1
5 System/Pump Curve SOTUtion © . . . v v o ... .. 52
6 MOTAR Organization . . . . . . . . . S . ... 87
-7 Example Thermal Mathematical Model . . . . . . . ... 89
8 Examp]e Flow System Mathematical Model . . . . . . . . A
9

Overall STEP 2 Flow for MOTAR . . . . . . . . . ... M3



© TABLE

11
- II1
IV,

VI

VII

VIII
- IX

LIST OF TABLES

Listing of Call Statements in Subroutine EXPLCT . . . . . 62
Listing of Calls in Subroutine IMPLCT . . . . . . . .. . 63
Summary of MOTAR Input Data « . « . - « « . o s o oo oo T3
Examples of Initial Temperatures . . . . . e e 80
"Examples of Capacitances Imput . . « « « v v v v o v . . 82
Examples of Conduction Input . . « . « . . . . ... 87
Value for GC for Various Problem Units. . T 97

Deck Setup for Run With Input Data on Cards or:Data Tape. 136

Deck Setup for Restart RUNS . . v v « « « o . . . ... 139

vi



1.0 SUMMARY ,
_ The Modular Thermal Analyzer Routine (MOTAR) is a general

thermal analysis routine with strong capabilities for performing thermal
analysis of systems containing flowing fluids, fluid system controls‘(valvgs,
heat exchangers, etc.), life support systems, and thermal radiation situations.
Its modular organization permits the analysis of a very wide range of thermal
- problems from simple problems containing a few -conduction nodes to those con-
" taining complicated flow and radiation analysis with each problem type being

analyzed with peak computational efficiency and maximum ease of use. - -

' MOTAR gives its user the ability to obtain the transient or steady
state solution of a problem using either the forward differencing, mid-
differencing or backward differencing finite difference solution methods.
Transient and steady state analyses may be performed during the course of

a single problem so that as an example, a transient analysis may be initiated
at some steady state condition. In addition any number of transient and/or
steady state problems may be analyzed on a given problem by applying the

user logic capability on MOTAR. : :

_ Numerous options are available with MOTAR for determining time
and temperature dependent thermal conductors, capacitances, and absorbed

heat values. In addition to these standard options the user may supply any

- functional relationship desired for these elements in the user logic block.

- Option are available for analysis of convection and flow .conductors which
utilizes the results of the simultaneously performed flow analysis. Also,
extensive radiation analysis capability is supplied which provides for:
determination of radiation interchange factors for any combination of
specular and diffuse radiation. A number of thermal nodes may be combined
into a single surface to greatly reduce the amount of computer time required
for determining the interchange factors and calculating the net heat flow

due to radiation interchange during the problem. Additional thermal analysis
capabilities available as options include (1) cabin air thermal and mass
 balance analysis including condensation and/or .evaporation from the walls
(2) heat exchanger simulation ability for counterflow, crossflow, and parallel
flow exchangers and (3) inline heater ‘analysis. :

A pressure/flow analysis of a fluid flow system consisting of an
arbitrary tube network may .be performed simultaneous with the thermal analysis
so that on each iteration the thermal problem is updated based upon the latest
flow conditions and vice versa. If only a pressure/flow analysis.is desired
with no thermal analysis this may also be performed on MOTAR.. The tube/flow
path methods used on previous VMSC routines for flow analysis have been re-
“placed in MOTAR with a pressure node/tube conductor network method. Using
this method the number of simultaneous equation that must be solved is reduced.
Also, the user has much more flexibility as to the type of flow system that
he may analyze. For instance, the user may connect any number of tubes at
@ Jjunction from two.to a large numbey whereas previously three-and only three



connections were permitted. Also, the connections need not follow any fixed -
pattern as before (i.e., off-center flow paths are handled automatically).
.The valve pressure drops are readily included in the pressure/f]ow balance
for all types of valves with the revised method contrary to previous

methods. Several options are ava11ab1e for obtaining fr1ct1on factors and
head loss values.

_ To enhance the pressure/flow analysis capab111ty extensive valve

and pump analysis capabilities have been included in MOTAR. The previous .
five valve types plus considerable additional capabilities have been simplified
~into three valve types. The valves have been formulated so that the control

of either cooling (space radiator) or heat (so]ar absorber) situations may

be controlled with any of the valve types. Pump options including tabulated
pump curve of pump flow vs pressure drop or polynomial curves of pressure

drop vs flow rate are available with accelerated methods .for convergence of

the pump and flow system character1st1cs

~ The input for MOTAR has been designed to give the user a high
degree of effectiveness and flexibility while maintaining an easy-to-use
‘format. The effectiveness is accomplished by providing powerful options to
the user.which permit the input of 1arge_quantities of data with a single
entry in the input. The flexibility is obtained by providing the user with
a large humber of opt1ons for each data entry. Many features were incorporated
to make. the routine easy to use which include the use of descr1pt1ve names
to identify data btocks, the ability to omit blocks not requiring input data
for a given problem, and the use of a free form input format. Several
input/output options were made available to aid the user which take advantage
of the magnetic tapes available on the Univac 1108 computer. Included in these
were the data tape/edit capability; restart tape ability, plotting -and/or
starting from a previously generated history tape and the. supp1y1nq of heat
flux values on a “tape.

The organ1zat1on and programming methods app]1ed to MOTAR ach1eved
a high degree of computer utilization eff1c1ency in terms of computer execu-
tion time and storage space required for a g1ven problem. The computer time
required to. perform a given problem on MOTAR is approximately. ?Q_tg 22 percent
that required for the currently existing w1de1y used routines .
The computer storage requirement- for %OXQR is approximately 25 percent more
than the most commonly used -routines -for the most simple problems
but the data storage techn1ques for the more comp11cated opt1ons should save
a considerable amount of space.

“Superscripts represent the referencé number for reférences found in
' Sect1on 6.0. _



- 2.0 INTRODUCTION

_ Durwng the past e1ght years the Vought Missiles and Space Company

_ (VMSC) of LTV Aerospace Corporation has been involved in the development

~of special purpose computer routines for the thermal anhalysis of systems with
flowing fluid, Tife support components and enclosure radiation. The develop-
ment of these special purpose routines was necessary to obtain the ana]yticq} 19.20

‘capability required for the design and s1mu]at1?g 9{ space radiator systems
env1ronm§§t§§ control and life support systems and fuel cell cooling
systems, since the requ1red analytical tools didn't exist. Some of the

- VMSC developed routines were used foTGtherma1 s1mu1at1o§4of the entire
spacecraft for the LM ascent §§a§g LM decent stage, and the Apollo Block I

and Block II Command Modules , v

Advances in computer technology such as the advent of the Univac
1108 Fortran V computer language made possible the assembling of the pre-
viously developed specialized capabilities into a single computer routine
without loss of computational efficiency. This assembly of these capabilities
into a user oriented routine efficient in terms of both computer time and
‘space was the objective of the Modular Thermalizer Routine (MOTAR) which
was developed by VMSC and is described in this report.



3.0 ROUTINE ANALYTICAL METHODS ) '. : -

‘ This sect1on describes the analytical methods used in the Modular:
_ Thermal Analyzer Routine (MOTAR).. MOTAR solves thermal and flow problems
simultaneously for either trans1ent or steady state temperature conditions.
In either case, it solves a discrete lumped parameter finite difference user
input Mathematical Model. Several methods of solution are available to the
~user for the transient thermal problem including explicit forward differen-
cing, implicit mid-differencing and implicit backward differencing. - Two
“methods are available for solution of the flow problem; namely, the direct
solution method using the Gauss-Jordan elimination technique for small
problems, and the successive over relaxation method for larger problems.

MOTAR conta1ns special capabilities to enhance thermal and flow
‘analysis. Capabilities related to thermal analysis of flowing and life
support systems include the calculation of flow and convection thermal con-
ductors using flow data, numerous options for determining heat exchanger
performance, and cabin thermal and mass analysis. In addition to the normal
radiation conductor capability, provisions are available for determination
of radiation interchange factors (Script - F) for any combination of specular
-and diffuse radiation. and incorporation of those factors into the thermal
analysis. These Script F values can be determined for infrared as well as
any number of wave ]ength bands for incoming non-infrared radiation. The
pressure flow analysis is augmented with numerous options for determining
friction factors, determining valve performance and balancing the system
flow rates with pump curves. S

These capab1]1t1es are discussed" in detail in Sect1ons 3 1 and 3.2
which follow. Thermal analysis capab111t1es are- discussed in 3.1 and pressure/flow
analysis capab111t1es are discussed in Section 3.2.

3.1 THERMAL ANALYSIS

_ MOTAR g1ves its user the capability to determine the approximate.
solution to the d1fferent1a1 equations which govern the transient tempera-
ture behavier in a media. This solution is obtained by approximating the
non-linear partial differential equations with a set of difference equations
which are solved by successively solving a set of algebraic equations..
Provisions have been incorporated into the solution methods to permit.the
analysis of a general n-dimensional structural problem as well-as problems
containing radiation and convection to a fluid. . Because the finite difference
method evaluates equat1on constants at very short time intervals nonlinearities
such as radiation, varying convection coefficients,- -and temperature dependent
properties are easily approximated by linearizing over the small intervals.
Numerous options are available for evaluation of these nonlinearities.

Options are also available for characterizing components commonly found .in _
flowing fluid and life support systems such as heat exchangers f]u1d heaters
and life support cab1ns o

_ The following sections destr1be the MOTAR thermal ana1ys1s capab111ty
in detail. A brief.-derivation of the finite difference equations. is g1ven
in Section 3. 1.1. The methods for solving these equat1qns are discussed in



3.1.2 and the supporting features for evaluating the noh?inear,coefffcfents
and characterizing the special components are discussed in Section 3.1.3.

3.1.1 Finite Difference AnaTysis

The nonlinear partial differential equation which. governs. the
heat conduction in a three dimensional conducting media can be derived by use
of Fouriers heat conduct1on equation and an energy balance on a differentwa}
e]ement to be - :

31 _a [k 3T} +2 [k or +i<k§l ba (M)
*p a-r‘ﬁ,<"ax_) ay<yay) 32\ 28z) T °

where T = the temperature Wh]Ch is a function
of x, y, z and Eime, T :

P = density of the material

Cp = specific‘heat of the material
kx, ky, kz ='~therma1 conductivity in d1rect1ons Xs ¥, and 2
q = 'the heat generatlon per unit vo]ume and unit.
' time

The thermal properties, o , Cp, and k, can in general be functions of
temperature which makes equation (1) a second order, nonlinear partial
differential equation. A general form of the boundary cond1t1ons wh1ch
may be encountered is g1ven by

| f](XB YB, gsT) 3T ,

Xg»YgsZg

fz(xB,YB,ZB, T ,T) *T(xB B,Z) + f (x r,T)

B’ B’ -9 N
| | - (2)
where XB,YB,ZB is the body surface

N  is the surface normal .

When f,=0, the boundary condition is that of spat1a11 variant

and t1me variant surface temperature. When f3 = 0, the boundary condition

is that of spatially variant and time variant surface heat flux. For fy,

fo and f3 all non-zero, the equation represents a convective, radiative, or
combined convect1ve/rad1at1ve boundary condition where both the heat trans-

fer coefficient and the sink temperature are spatwa]]y variant and time variant.

The equations defined by e?uat1ons (1) and (2) have been solved
- for a 1arge number of spec1a1 cases but 1n genera] approximat1ons must



be introduced in order to solve a given problem. One such'approximation

* which permits the general solution of equations (1) and (2) (subject to the

approximation) is that of finite difference representation of the differential
quantities. This permits the non- linear partial differential equation given
by (1) to be written in terms of a set of linear algebriaic equations which
“with the aid of the electronic computer can be success1ve1y solved to obtain
general prob]em so]ut1on Th1s is the approach taken in MOTAR. ‘

: Using the finite d fference method, the part1a1 derivatives
~given by equat1on (1) are approximated by differences as follows:

Let

0T = Ty - T (3)
3 v
where T n+ ] = -the temperature at node i at the f1n1te
approx1mat1on of time (1terat1on) n+ 1.
.Node i is located at x, y, z
Tin' = ethe temperature of node i at time n
AT = the finite time incremenf

We Will assume the thermal properties can be assumed constant over the
small time increment, A7 . Thus, the terms on the right side of equation
(1) become . ' . '

. o kn a T
ANZ

where N 1s'eit2er X, ¥, Or Z

We will apprdximdte , b'Tz by subdividihg eéch‘N COordjnate;into a grid
o ‘ : ON - _ L : .
in space of width AN. The approx1mat1on is then,

m- m- -
Ti;An"Ti - T1 ~ T1+An'f

- A M
N N
| o N N (4)
_ . m __+m m o m
- Tieam T+ Toram Ty
N Nt



~ Where .

N - ~is.the direction of tﬁe derivative (x,y,or z)
T.mo is the temperature of ‘the node adjacent to i in the
1-4n -N direction at time m
Tim _ 15 the<temperature of node i at time m
T... ~is the temperature of the node adJacent to i1 in the
S VHANT 4N direction at time m o
AN - is the grid with 1in the N direction
m . is the time for evaluation of the derivative

somewhere between r and 7+ Ar

If the above approxfmations ofveqUations (3) and (4) are substituted into
equation (1) we get ' v o

o n+l - n JT-m -.m m m
e T YL (T T+ Tieax T
- Pipi ' = % 7 7
AT AX AX
m m m m, --m m m
tk P Ticay T+ Tiway™ ok | Ticaz Ti 7 Tieaz 7T
Y 3 2 | 2 2
Ay~ Ay~ Az Az

If we multiply the above equation by the volume of node 1,':AV{ ». where
E Avi = AX - Ay - Az

We get

i pi A7

gy b (Mg ) ¢ sy

ntl -y - m e my\
PAV C (T T1 )= kxAyAZ<T1'-Ax T1" ) a
m




If we note that

piaV; =

wi = Mess'of ndde i A
Ay-bz. - A, = Area for conduction in the x direction
Ax-Azili Ay | = Arealfokleondﬁcfion in the y_directioh
Ax-Ay_.= A, = Area for conduction in the z'dfreCtion
-qvAv;'-=’_QTf, = The total.heat or1g1nat1ng at -node i

“at time m
then we can write the above-equation as

_ \ - ntl Coam omy /o my
) w1cp1 ( T -5 ): KxAx (Ti-Ax'Ti ) + kyPx Ti+Ax'Ti :
AT AX , .

m | m . my mooom
+ kzsx <T1 Ay )+ KxA)g(THA_y-Ti >.+ szz<T1‘-Az'T.1‘ )
A “AY \ ' :

_+,szzn (T1+AZVT1 ) s om - . . (5)
5\ ]t |

If we examine equat1on (5) term by term we see that the Teft s1de is the
rate of heat storage required to raise the temperature of the node i mass,
- Wy, at the rate of (T{" * 1 - Tyn)/A7 ~ and is thus the heat storage
rate of node i. Each of the f1rst six terms on the right of equation (5)
represent the rate of heat transfer into node i at one of the six surfaces
of the three dimensional parallelepipid from surrounding nodes. The KkA/AX-
portion of these terms represent the thermal conductance between node i and
-the adjacent node j. Qi represents the total rate of heat originating at
node i.. Thus, the right hand side represents the total heat transfer rate
into node i from its surround1ngs If we define :

U;, = kA
1]
d B | Ax ij
| an ‘”Ci = w1cp1
We can write equat1on (5) in the genera] form ~ :
, : nc , R '

P n+1 fmam, sm 6
s <I.‘___T__) Z.”ij(Tj'Tf )_* o" (8
C o\ 3=1 S .

. AT



where nc is. the number of conductances attach1ng node i to
surround1ng nodes

Ci is the-thermal,capacitance of node i

Uij “is the thermal conductance between nodes i.and j.

Equation (6) was defined in terms of conduction heat transfer only.
"It can be easily extended to analyze a flowing fluid. Consider fluid flowing

in a tube. The energy balance on an elemental length,  dx , of the fluid-
can be used to derive the governing differential equat1on
hPdX(T-T )
b4
= / _ A .
WC,_T —— | E——T S R
P | PV X
e dx —
Energy Stored = Energy in - ehergy out
| T PR 3T :
d Qo0 - - 92 -
PAAC, ST = WCT wcp(T 2 dx) hPdX (T-T,)
or
| 3T _ -n AT oy |
PACCp 37 _"chiff - -hP(T-Tt)_
(7)
where ~ p = fluid density
- AC = F]uid flow cross sectiona] area

Cp = F]u1d spec1f1c heat

T o= time
| W = fluid mass flow rate down tube.

P = wetted perimeter of flow passage
= f]uid-temperature

T
"~ T, = tube temperature
h = .convection heat transfer ‘coefficient



IfjWe make the‘fqliowihg'diffefenCe‘approxfmations for the'partial derivatives, -

Tt

— .

. X4 Ar v
—ji%j =T - Tx Ax
<] AX

. substitute fhese‘into equation (7) and multiply by AX we get fhe finite
difference fluid heat balance equation for an element of length AX and
cross sectional area AC : :

n+ e | mom
PALX C, [1__A_T_T_]- e (™7, AX] - hpax [T "
or

N+l e e moam] m m
c [T ArT ]- e, [Tu —.T.] + hAht[Tt T ] -

where T" + 1 = fluid temperature of the node at ]ocat]on
‘ X at time r +Ar
TM. = fluid temperature at X and.
. T;™ = fluid temperature of node at )
L and time r if m=nand r +Ar if
m=n+1
o = fluid temperature of node at X and time r if
' ' m=norat time 7 +Ar ifm=n+1
‘., Ttm = tube temperature of tube node at X and time -
o - if m=n or at time r +Ar ifm=n + 1
,:C' = :*WCp)broduCt for the'fluid node

Note that equation (8) can be cast in the same form as equat1on (6) with

~ one exception. The energy represented by the- pr (Tu - T) term.only flows
one direction. That is, energy flows from the upstream fluid node but not
from the downstream fluid node. Thus, if we make pr a one way conductor and
the hA convection conductor, equation (8) is in the form of equation (6) and
we see that we can extend equation (6) to include analysis of flowing fluid
and convection. ' _ - . B :

10



"Equation (6) can also be extended to include ana]ys1s of radiation
heat exchange If we define UAjj by

] 2.2
UA;; = o FA [TJ. +T, ][Tjnd

the Stephan-Baltzman Constant

i

where o

?Aij
where in this case, UAj; is the heat transfer coefficient between two:surfaces
"~ by radiation -then rad1a%1on heat transfer analysis can be included in equation
(6). Thus, with the ‘above definitions for conductances., equation (6) is
applicable for a very wide class of thermal problems which 1nc1ude conduction
radiation, convect1on and flowing fluid. '

i

the radiation interchange factor

. The Tinear a1gebriac equation (6) represents an approximation to
the nonlinear second order partial differential equation (1). To obtain the
general solution of temperature as a function of time and location in a body,
equation (6) must be written for each nodal point in the body. (The shorter
the distance between nodal points, the more accurate. the solution.) These
equations must then be solved simultaneously for values of temperature at the
node locations at time r + Ar based upon the temperature at time r and the
heat flow rate during the time between time r and r +Ar . The time is then
incremented.so that 7 becomes 7 +Ar and the process repeated. Thus,
the simultaneous equations are success1ve1y solved to obtain the temperature
~ vs time for each nodal location in the problem. The approximate solution to

equation (1) is then obtained in this manner.

As previously mentioned, the value of m in equation (6) represents
the point within. the time increment from r to r +Ar for evaluating the
flow of heat. The choice of m has a significant effect on the problem
solution formulation. For 1nstance_m = n, equation (6) becomes

[ n+1_T ] 2: [ 1.n:].{o'in .'i=1, NN.

and 1t can be so]ved exp11c1t1y for Tn + ] in terms. of known cond1t1ons at
time n as follows:

n+l_on ' ac n.ny, .n . '
T ar [ U1.J.<TJ. -Ti_)f 0 ] i=1,NN
' YT g ST ey

- Here, NN = the number of nodes. This is the explicit or forward-difference
f1n1te d1fference method

If m in equat1on (6) is n + 1, it can be re- wr1tten as



| ,., n+1 | n ne ;_ n+1 n#T_ n+l
ci(Ti 'Tiu>='Z' Ui (T-j' T )*1 9

o A 3=l | o B
~or . nc ’ nc : o
, : ' - n+l e n+l oo n+l . :
' _Ci” 20 U T s X T Ty 10
a9 - J=1 = o )

Th1s equat1on represents a set of NN simultaneous equat1ons to be so]ved for
the T's and is called the implicit backward difference method. It is much
~more difficult to solve than equation (9) but it is more efficient than (9)

"for certain types of problems because it has no stability restrictions on
- the time increment. .

Equation (9) assumes the heat transfer rates are established at
the time r , the start of the temperature iteration whereas, equation
(10) assumes the rates are established at time :7 +Ar . A third method
assumes the heat transfer rate is some weighted average between that at r
and that.at r +Ar . Let the net heat transfer rate Qnet be given by

' - o r n
v Qnet o A et '+'L]'A] Qnet_:
Then~'
. ,in#l oon ; n+l
ST T Y A Qnet +0 A] Qnet
e A AT
and : _ 4 A
n+i- n < n+1 +1'." +1
- . n n |
o (Ti. -T >- A (Z uij[rj T ]+_Q1. )
A Jg=1 . .
| ‘ ’ e, ' .n n.A‘ | ny\
¢ (1-A) ( Z Ui [Tj -T. ]+ Q, )
. AN |
. - nc | o
T , n+1 n+1 _ n n+1
or (Ei”\z ,ui) ZAUT —_(_:iT1..+AQ1._
| Ao e I 2 I At -
nc : ’
f+ N
¥ “A)<Z Uij[Tj'T] Q ) 3=1,NN
J=1 | S ()

12



Equation (11) represents-the genera] form of the implicit equation.

_When A =1 the backward difference equation given by equation (10) results..
When A = 0, the forward difference equation given by (9) results. When
A = 0.5 the solution method is ca1]ed the implicit mid-difference.

: In MOTAR, equation (9) is solved for the explicit method and
equation (11) is solved for the implicit methods. Only values for A

of 0.5 and greater are considered for the implicit methods because stab111ty

problems arise for values of a less than 0.5.

A d1scuss1on of the 1mp1ementat1on of these methods is presented
in the following section.

3.1.2 o Temperature Solution Methods

In the previous section the nonlinear part1a] d1fferent1a1 equation
govern1ng the temperature in a material was cast in the form of a set of
linear algebraic equations by use of finite difference approximation. These
equations are solved by MOTAR to obtain the approximate temperature vs time.
trace for each Tump location (or the steady state temperature distribution
for steady state problems). This is done by obtaining successive solutions
of the equations at small increments of time with each time point.solution
depending on that of the previous time. Two basic methods are currently
available to the MOTAR user for evaluating these transient equations
depending on the point in the time interval that the flow of heat is assumed
to occur. These are the explicit method wherein the heat flow rate is .
assumed to be that at the start of the time step and the implicit method
where the heat flow .can be evaluated anywhere between mean over the time .
step and the end of the time step. Each of the methods are discussed in
more detail below. Methods for steady state analysis are also discussed.

3.1.2.1 Exp]itﬁt Temperature Solution

When, in obta1n1ng the solution to the finite difference temperature
equations,the flow of heat is assumed to occur at the start of the iteration
the updated temperature for each lump can be solved directly from known values
of temperatures, heat fluxes, and coefficients and no simultaneous solution
is’ requ1red The general form of the equat1on to be solved for each node
is given by _

13.



n+ 1

»Whereb Ti = the temperature of node i at.iteration n + 1A'.
| ‘Tih‘“ . the temperathe'of node 1‘at 1ﬁeratioh n
Ar = fhe 1teration_time increment
C = the lunar capacitance =m - Cp .
| Cp’ = the'specific heat
”’uij>‘ | _;=” the conducfance between nodes i-and j
_ he. | - = the number:Of*conductences
Q {-' _ ';;v'the abéorbedvincident heat or the heat

' generated internally
NN | = the number of nodes
S1nce all times on the right side of equation (12) are known at
_ the start of each iteration T.n+1 can be solved directly. This is performed
~in MOTAR by subroutine EXPLCT1and its referenced subroutinesQ ‘
‘The values used for Uj; must be obtained by different methods de-
pend1ng on the mechanism for hea% transfer, (i.e., conduction, connection,

flowing fluid, etc.). The methods used in MOTAR for determining Ujj for
- heat transfer mechanisms are discussed in section 3.1.3. _

" Equation (12) gives a stable solution as long as the time 1ncrement
Ar , meets the fo]10w1ng requ1rement

. nlc . nrc 3 (13)
° ..+ -
: Z U‘J v Z 4 ?"/AU T '
' - d=] ' v
where nlc = Number of.linear conductor:
nrc.= Number of radiation conductor -

MOTAR has two opt1ons which the user may speicfy regarding the
. t1me increment. If option 1 'is specified, the time increment will be
“overriden" for those Tumps having smaller maximum time increments than the
'problem increment. When this occurs, the maximum time increment g1ven by
equation (13) is substituted for Ar in equation (12), resulting in a "steady
state” solution for those nodes overriden. If option 2 is specified, the entire
prob]em will be iterated at the value of the smallest maximum time increment
given by equation (13). The user may specify maximum and minimum values of
the problem iteration increment for.this opt1on and if the maximum time in-
crement of some node is below the spec1f1ed minimum 1terat1on increment the
prob]em will be term1nated :

- 14



3,1.2.2 | Imp]icit Temperature Solution

The finite d1fference tran51ent temperature equations can be

- formulated so that the flow of heat is assumed to occur at some point during
the iteration time step other than the start. With this formulation, the
set of temperature equations must be solved simultaneously as shown below.

bThe gehefél fofm of the finite difference temperature equation
assum1ng the rate of heat flow is evaluated at the fraction, A, of the iteration
is given by

nc

C, + A Z Uw) R ZA U575 1 (1-A)<Z 1J.[Tj”.-r1.”]+ an>
A o=l | =1 -
J=i - |
RO WAL T A q=1,N (14)
| AT

- Where the symbols are as defined in equation (12). A is the frac-
tion of the heat flux at the end of the time step and (1—A) is the fraction
of the heat flux at its start; i.e., if A=.5, the flux is the average between
that at the start and that at the end of the iteration resulting in the mid-
~differencing technique. If A=1.0 all the heat flow is assumed to occur at -
the end of the iteration resulting in the backward difference method.

If we difine the following,

- nc .
bip = G ot A 2. U
Ar J=1
b_lJ = - A U'IJ e 1 # J . |
_ N T n. n+1 n
.C1 = (1-A) .32% Uij[fj -T; ] + Q s AQ _l T

A7
we. can writeﬁN;eqUationS fkom equation (14) for the N'Tumps’in the problem.
Z b "” - ¢, o i 1N

This set of equat1ons are so]ved for Tj in MOTAR at each time step using
a modified version of the. successive- po1nt -overrelaxation method. The
following is a summary of ‘the procedure:

15



':i 1. ;Assume an 1n1t1a1 temperature array caTTed T A
CaTcuTate t1me and temperature dependent constants

Call PRETMP

CaTcuTate values of temperature from equation one Tump.at a
time. Call this value T for the 1ith 1ump The value is then
modified by the equation'T, = T, + ORP (T, - T ) ORP being
the overrelaxation parameter The vaTue of T.'is then compared
to T.. If T, - T, s less than an input bTMXA (iteration
11m1t the 1terat1on of this particular equation is temporarily
' suspended The value of T is set equal to T f0110w1nq the
. comparison.

5.. This procedure is continued until eacﬁ']ump's equation has been
‘1terated until the error.satsifies the to]erence, j.e., until
: T is less than DTMXA for. each Iump, is tentat1ve]y
achteved , ‘

6. The process 1s"repeated frdm step 3 As soon as the last

lump satisfies the T. - DTMXA, if all equations were
not iterated, the pro&ess 15 aga1n begun for each lump from
step 3

The standard SOR procedure is mod1f1ed in that those equat1ons
wh1ch satisfy the |T' - T.|<DTMXA are not iterated until all eguations have
satisfied the relat1on For some problems this procedure has some of the
~ features of a block-iterative solution. If in a large problem a heat source
is localized, the temperature change would, in an ordinary SOR method, pro-
pagate outward from the heat source in waves. With the above modification,
only those equations of nodes in the immediate area of the distrubance
will be iterated on the second and succeeding few iterations. After these
reach the prescribed iteration 1imit the procedure is restarted and the
number of nodes whose equations are iterated continuously increases.

After a certain time subsequent to the passage of the "solution wave" through
the various Tumps, those lumps near the original distrubance will have

reached a steady state value such that further iterations would not alter
their temperature more than the prescribed 1imit applied to the iterations.
This modification: therefore 1ntu1t1ve1y Teads to a fewer number of 1terat1ons,
on the average. :

The: 1terat1on limit, DTMXA, on the equations is assumed to be
that which guarantees the error in the iteration process. to be less than
'some specified amount. This amount of iteration error: shou]d be chosen to.
be well w1th1n the. expected truncat1on error.

The seTect1on of overreTaxat1on parameters, ORP, is of paramount
1mportance to the user, in that proper selection of it can reduce run time
-s1gn1f1cant1y Theoretical analyses of convergence rates for the. successive
- overrelaxation iteration are summarized in Reference 3. .For elliptic

16



equations with boundary conditions of the type that the function is specified
constant on the boundary, a typical predicted curve of the number of ‘
iterations to solve the equation as a function of the overrelaxation
parameter is as shown in the sketch below. A value of 1.4 has been found

- from experience to be a good first estimate.

Number of
“iterations
to solve
equations

1.0 'Overrelakation Parameterv(ORP) 2.0

- 3.1.2.3 ~ Steady State Solution

Two methods are available in MOTAR for determining the steady

" state solution for the temperature distribution in a given problem. The
first method iterates the basic explicit equation, equation (12), to s0-
lution. The second method obtains the solution to the impTlicit equation
given by equation (14). The first method results in a block iterative Sidel
iteration method and the second results in a point jterative Sidel method
with successive overrelaxation. The second method generally converges faster
but the first requires less space and thus, can handle the largest problem.

Explicit Steady State

The explicit steady state method is basically the solution of
equation (12) with constant boundary conditions. To accelerate the con-
vergence the maximum time increment,Ar max , for each node given by equation
(13) is substituted for Ar in equation (12). This results in the steady
state solution for each node with its surrounding conditions on the previous
iteration for each iteration for problems with no radiation. For problems
with radiation this results in the largest stable change permitted.

Implicit Steady State

) . The implicit steady state method is basically the solution of
equation (14) with constant boundary conditions, with A=1 and with a large

17



. yaiue for Ar , the time increment ,,so that the terms C/Ar approach
- zero. This results in the equation '

s DL T 0;
Ny Xy

Which is solved using the iterative procedure described in section 3.1.2.2.

i

i=on - (15)

" 3.1.3 B Thérmalena}yéis'Features

This section describes some of the more significant thermal:
'qnalysig features used to enhance the temperature solution methods described

in Section 3.1.2. The items discussed are (1) conductor calculation methods,

v (2) heat exchanger analysis method, (3) cabin analysis method and (4) radiation
~interchange methods. ’ ' o ' '

'_3.].3f1 - Conductor ba]cdlation'Method»

‘ The values .of .Ujs in equations (12) and (14) are determined by

different methods depending“on  the heat transfer mechanism. The methods
used to determine the conductors for conduction, convection, radiation, and
for fluid crossing the boundary from one node into another are described be-
Tow, ' o T

Conduction . |
The conductance between two nodes for conduction heat transfer
is given by: L ' ’
U F )
1) AX
' My
Where K thermal cohductiVity of lumps i and j

the area for conduction between i and j
. the conduction distance from the center of node
. j to the center of node j

P
noun

" If the thermal conductivities of nodes i and j are different, either because
of different materials’ or variation with temperature, the conduction con-
ductance is given by B o _ .

oMy
k1 kj

18-



.
P
i

Where: o 'lgxif the conduction distance from the center

of node i to the boundary between nodes
iand j
AX; = the conduction distance in node j
k.;“k. = the thermal conduct1v1ty in nodes i and

J respectively

Convection Conductors

The value of Uij-for'covectfon between a-f]uid'and a surface
is given by o o : ' L

, Uij = hA

Where :-A h the convection coefficient

A the convection area ;
Several methods are d1rect1y ava11ab]e in MOTAR for determining the heat
transfer coefficient, h

For flow in a tube the flow regime 1is assurred to be laminar
when the Reyno]ds number is 2000 or less " For this regime the heat trans-
fer coefficient is ca]culated by.

h =5 3.66 F1 + .0155 F2 | |
S _1oxo+ -.0.15[1 5] s e)

- RP. D C[RF D o

k= thermal conductivity
D = hydraulic diametek to flow

X = distance from.tUbé‘enterance‘

'-Re = ‘Reyno1ds number

3 = 4m m

. IIP
m = flow rate of fluid

~ p = viscosity of fluid

P = wetted perimeter of fluid flow passage



F1 = An input factor for mod1fy1ng ful]y
developed flow

F2

n

An 1nput factor. for mod1fy1ng deve10p1ng
flow

:Equat1oh (16) is a curve f1t obtained by VMSC to approximate the Gratz so-
]ut1on to flow in a tube for values of X _1_ greater than 0.001.
: D RePr ' '

: ‘The -convection heat transfer coeff1c1ent for flow in a tube.in
the transition flow regime (2000 < Re < 6400) is approximated in MOTAR
by the fol]ow1ng relation: '

o= K '[o 116 (Re?/3 - ]25)(Pr)]/3]
This relation was derived by Hausen and -holds only for fu]]y deve]oped
flow. _

o The relation used in MOTAR to determine h for turbu1ent flow
- (Re > 6400) is the following:
R | ‘ _
h = .023 D (Re) B(Pr)”3 ,

A more general opt1on ava11able on MOTAR for determ1n1ng the heat trans-
fer coeff1c1ent 1s g1ven by the re]at1on

(PR)Z/3 5 (Re)
Where St = Stantion number
= Nu
.Re Pr v
= h .
' CpV
V= Average fluid ve10c1ty

F(Re)¥ An arbitrary funct1on of Reynonds number wh1ch
the user can 1nput as a table

The heat transfer coeff1c1ent is ca]cu]ated by .

h = K F(Ré)qRe(Pr)]/3 |

o

20



F]ow_CondUctqfs

, ~As described in Section 3;1.1, equation (8) a flow cdnductor is
needed to analyze the problem of a fluid flowing in a tube. The flow con-
ductor is a one way conductor from j to i and is calculated by

UAjj = W Cp;

Where
UA{j = the conductance from the upstream Tump
w = the maés f]ow_rate in the fube'

'Cp{ = the fluid specific heat for.lump i

- The flow rate can be input directly or it may be obatined from a flow
solution which is being performed simultaneously with the temperature so-
Tution problem (Section 3.2) ‘

Radjation Cohductoré

‘The value of the condudance between two nodes, i and j, by
radiation is given by _

Ut °7}/’.‘1‘J([Tj”z]2 +[‘T1'+TZ]2)<[TJ'+TZ] +[-T1-+Tzl)

Where . d

= the Stefan-Boltzman Constant
T = the radiation interthahgé factor between nodes
A iland J .
Tz = the value for conversion to absolute tempekature

This relation is obtained by assuming that the heat transfer between nodes

i and j by radiation is proportional to the temperature difference between
these nodes during the iteration time span rather than proportional to the
difference in the fourth power of the temperatures. This results in the
above linearized coefficient. o and T, are input values so that the user
may use any system of units for his problem. ZFA may be either input or cal-.
culated internally as described in Section 3.1.3.5.

3.1.3.2 Heat' Exchanger Analysis

Four §uproutines have been written to facilitate the thermal analysis
of systems containing heat exchangers. These are HXCNT for analysis of counter
flow heat exchangers, HXPAR for parallel flow exchangers, HXCROS .for cross flow

21



exchangers and HXEFF for any heat exchanger with an input effectiveness. These
subroutines calculate the outlet temperatures of two sides based upon the
inlet temperatures and heat exchanger effectiveness. The relations used for
effectiveness are given by the following equations taken from reference 17 for

the first rhrop quhroufines
: Q_A__ _ {]f— (MC)S }
MC)S lMCi1

L
9] “R s
1- Tﬁc_)% e '[WC)S{ ' Mch'}]

Counterf]ow

Where e = effectiveness
 UAj = 'overa1].effect1veness A
- (MC)S = mass, specific heat product for the side w1th
o R the smallest MC
| (MC)j“= mass , specific heaflproduct for the side4With

the 1argest MC
The Timiting case for this relation are:
(1) When (MC) / (MC)I

) ;' 1 - o - UA(MO)s

(2) When (Mc)g/(Mc), -1

T—C) - UA
TR - (M)A
mc)s :

Parallel Flow .

: 1+§MC35
1- -(_t)s[ 1 ]
e
T %Fﬁ%f

€ =

The‘limiting.cases are
(1) When (MC)g/(MC), = O

,¢_ .=' - é-UA/(Mc)S

22



(2) When (MC)g/(MC)y = 1.,

» UA
-2
©(MC)
€ = 1 -¢e
2.0

Cross Flow

A Both Streams Unmixed

.[_UA (MC) ,,] ()
MC); 1
<e-(m5(MC)I _-1> s 7
€ = l-e -
(MC) 0.22
Where 7 = | UA :
B. Both Streams Mixed
UA
€ = ‘MC;S
R U
s .
UA -
: (MC
Lo THeT, e MO




'Usfng the effectiveness as ca]cu]ated.by-any of the above methods; the
outlet temperatures are calculated as foliows:

1~ vForéthe+side—with~the—smallest_MC,_LMC)s :
~ Touts = T1nS - € (Ting - Tin,)-

2. The outlet temperature for the side with the ]arge MC is .
then calculated by . .

. Toutl = (MC)s (Ting - Toutg) +'TinI

(MCy

3.1.3.3 Inline Heater Analysis

Provisons for the analysis of a fluid heater have been included
in MOTAR with subroutine HEATER. - This subroutine simulates an electrical
heater with a control system which turns the heater on when a specified
sensor lump drops below a set value and turns the heater off when the
specified sensor’ 1ump rises above another set valve. When the heater is
~.on an input quant1ty of heat is added to the heater node

'3.1.3.4 Cabin Ana]ys1s

A subroutine has been written for use with MOTAR which will give
the user the ability to perform thermal and mass balance ana]yses on
cab1n air systems :

The cabin heat transfer and condensat1on ana1y51s involves the
two- component flow of .a condensible vapor and a non-condensible gas, with
condensation of the vapor occurring on surfaces in contact with the fluid.
‘Two problems of this nature have been studied extensively.

“1. Condensation on, or evaporation from, a surface-over which
a free stream of fluid is passing. In this case, for rela-
tively Tow mass transfer rates,’ the f1u1d propert1es are
assumed to be constant :

2. Dehum1d1f1cat1on of ‘a confined f1u1d stream by a bank of
tubes. In this case there is a marked change in the
temperature and vapor content of the fluid, and the de-
tailed deposition of the condensate is not of primary
“interest.. this type of analysis is usually handled on an
overall basis similar to heat exchanges effectiveness
ca]cu]at1ons

t’- The f0110w1ng add1t10na1 assumpt1ons have been made with respect
to the cabin atmospher1c cond1t1ons :

1. The heat of c1rcu1at1on in the cabin is sufficiently h1gh
that the temperature and humidity are effect1ve1y the
same throughout the cabin. o

24



‘2. The velocity at all points where heat transfer and/dr‘
condensation can occur is known, and is propertional to
the total mass flow rate in the cabin.

. These assumptions make it possible to calculate the heat and
~ vapor balance in the cabin for the entire volume as a unit, and to solve
~the heat transfer and-condensation equat1ons at each node 1ndependent1y of
~ the other nodes . : :

_ ~ Cabin humidity can be determined from an overa]] vapor balance
in the cabin. The total vapor in the cabin at the end of an iteration is:

W=y 7T Wy i - Wy out - S W

Where wv_f = mass of vapor in cabin at end of iteration i
wv“] = mass of vapor in cabin at start of iteration i-1
Wy in mass of vapor flowing into cabin during iteration i
Wy out = mass of vapor flowing out of cabin during iteration i
pX wL =" mass of vapor condensed during iteration i-1

Wy in is detérmined from the known conditions of the gas flowing into the
cabin. C o . . T

Wy 3 = ™ in Yin
- ' 1.+ Yin

mass flow rate into cabin
specific humidity of gas flowing into cabin
time increment

Where

min
¥ in

If is assumed that an equal volume of gas is flowing out of the cabin.

Then, _
Wy out = m out [ ..E&....]
: ‘ T +¢
. c :
Where ¢é = specific humidity in the cabin (at the end of the
previous iteration)
and - mout = min [& /Pin]
Where PC:> = cabin density
2in = _dehsity of gas flowing into cabin

v The condensation term X W, is determined from the calculations
for the individual nodes as descr1b%d below. The properties of
the cabin atmosphere are determined from the calculated

25



value of WQ. The~vapbr pressure_in the cabih_is

Wy

Py - Rvg;L , M
Where VC: = cabin voiume
| Ry = gas constant

Tc = temperature of cabin gas

Py = vapor pressure h

Assuming that the cabin pressure P. is a constant, the gas
'part1a1 pressure Py is:

Pa = PC - PV
cand . Wy = Pa .
' Ra T¢

Where W, = mass of non-condensible gas in the cabin.
Now the new value of specific humidity in the cabin can be
determined by
L W
Yo =
- Wa

The properties of the atmosphere can now be determined by

#c-'1_= Xig +W¥cHy
' X + ¢c
Cpc = Cpg +¢cCpv
. _ T + yYc
ke = _Xkg + Wcky
X * './;‘c
pc = W, + Wy
_ Ve
Where M. = viscosity'
Cp = specific heat
k = thermal conductivity
X = molecular weight ratio, My

Mg

. 26



and all values are evaluated at T, -1 Cabin temperature T. can be ’

‘determ1ned by -a heat balance on tﬁe cabin atmosphere.

S B -, . ’
.Tc = T¢ + ,"m in Cpc (Tip - TC1—]) - 3q

. (Wy +Wa) Cpc

i-1

Where Tc = T after previous iteration ‘
' Tin = temperature of gas flowing into cabin
QU = net heat loss to cabin Tumps

The heat transfer between the cabin atmosphere and the tube
and structure Tumps in the cabin is defined by:

Qi = hAy [ Te - T4 JAr

Where h heat transfer coefficient

AL heat transfer area of lump
T = temperature of tube Tump
Ar = .time increment

: Using the Colburn- Chilton heat transfer-mass transfer analogy,
the condensat1on (or evaporat1on) at the tube Tump is determ1ned by:

AWy = Ky A [Pv-Pei]ar

Where wLi = condensation on wa]], 1b.

K

‘Pwi = vapor pressure at T|;

‘mass transfer coefficient
\ _

~ The latent heat addition to the Tump due to this condensation
is : B

fAQX = Ale

1

Where A 1atent heat of vapor1zat1on (BTU/]b )

The vapor pressure P,i can be determined by a relationship .
derived from the -ClTausius- C]apeyron equation and ‘the perfect gas Taw
(Appendix K of Reference 16) .




A ]-'TLi ‘To_]

Pui = Po & RaTo L Ty J

Where Py is khown vapor pressure at a reference temperature
To.- - |

Three methods are available for determining mass and heat transfer
coefficient. For -tube lumps the equations from Reference 17 for gas flowing
normal to the tube axis was assumed. Three different equations are used
depending on the value of the Reynold's number. :

Nu = 0.43 + 533 (Re) > (pr) 3! ‘Re < 4000
Nu = 0.43 + .193 (Re) 818 (Pr) 3! 4000< Re < 40000
Nu = 0.43 + .0265 (Re) 39 (pr)-31 40000 < Re < 400000

. These equations were derived for an air-vapor mixture, but
should be relatively accurate for other similar gases. The Nusselt and
Reynold®s numbers in the equations are defined using the tube diameter
for the characteristic dimension, and the velocity in the Reynold's number
is input at each lump and ratioed to the total cabin atmosphere flow
rate. _ -

We
vi = wvio .
7 Weo
Where Wco = nominal cabin atmosphere circulation rate
vio = velocity at lump at Wco - o
We = circulation rate at time of calculation

_ The second option assumes flat plate flow for cabin wall Tumps.
In this case the heat transfer coefficient, for laminar flow, varies along
the plate. Hence, direction of gas flow and the Jocation of an assumed .
Jeading edge must be assumed. . The equation for flat plates from Reference is:

c ' ' . : ‘
Ng = 0,332 Re > pr /3
Where the Nusselt and Reyno1d's'numbérs are local values and
are defined by the distance X from the assumed leading edge. For a wall..
lump of length Lj which is located a distance Ljo from the assumed leading

edge, the average Nusselt number can be defined as:

28



N, = 0.664 pr /3 [(Re1)'5 ’-'(Reo)_'5]

. Where Nuvis‘defined by Lj.

The third option is a direct user input for convective heat transfer: coeff1c1ent

Rep is defined by Lig

Re1 is defined by L10 + 1

" For the determination of mass transfer coefficients, the same
equations as were used for heat transfer coefficient can be used with the
Sherwood number substituted for Nusselt number and Schmidt number for

Prandtl number.

However, if the diffusion coefficient for the cabin is

approximately equal to thermal diffusivity, the Sherwood number is equal
to the Nusselt number and the mass transfer coefficient can be determined
d1rect1y from the heat transfer coefficient. That is: = :

If D

Ilz

“

= Nu

= hy
k-

hD S
‘ a P‘C RTg

P

_h
Cp Pe

This is the:Lewis relationship (Reference 17). For a mixture of
oxygen and water vapor characteristic values are .866 for the diffusion
coefficient, D, and .879 for thermal d1ffus1v1ty, a, SO the relationship
should be va11d :

For cabin tube and wall 1umps the va]ues for A() and AQ
are added to the basic heat balance equation for these 1umps : Va1ue3\1
for A Q5 are summed for all participating Tumps for input to the cabin
heat balance. Values.for AW L are also summed for all lumps

'atmosphere

Tump w Li is ma1nta1ned

for cabin. hum1d1yt ‘balance, and the va]ue for tota] water condensed on each

- If the rate of evaporat1on or condensat1on is h1gh it would be
possible for the cabin humidity to change significantly during a single
This could lead, for example, to overestimating condensation
by -assuming that the hum1d1ty is constant in the calculation. A test of the
-approx1mate vapor pressure in the cab1n at the end of the 1terat1on is

iteration.

.29



made, and the condensation or evaporat1on at any 1ump is reduced, if the
sjgn of the A W Li term is changed A value Wy is ca]cu]ated‘by:

Wy - wv"""_lzw.Li'
-a“d; : . Py' = Wy' Rv}Tg 1
TV |
“Then for each lump if
| E\L_;_P_WT_< o

- C Pv - Py

a new value of AW i is calculated by:

o e
AWy - AWLi_[———————.—PV P"”]
' v - v

The new values of A W j are now again summed for the new value
of 2 A WL for establishing cabin hum1d1ty for the next iteration. A test
is also made to assure that W,' is never less than zero.

3.1;3.5 Rad1at1on Interchange Analysis

Capabilities have been 1ncorporated into MOTAR to facilitate the
analysis of radiation heat transfer in an enclosure. The capab1]1t1es include
the ability to:

(1) Analyze diffuse and/or specu]ar infrared rad1at1on 1n
an enclosure. '

(2) Analyze d1ffuse,and/or specular non- 1nfrared radiation
~ for as many wave bands as desired.

(3) Consolidate several temperature nodes into a single
surface to improve computational efficiency

A radiation surface is defined as a group of temperature nodes
which may be assumed to have identical radiating propert1es, angle factors,
and 1nterchange factors

The subrout1nes account for the net rad1at1on heat ‘transfer between
a number of surfaces due to emitted radiation from each surface, reflected
radiation from each surface, and radiation from any number of 1nc1dent
sources. The reflection of the energy originally emitted by another surface -
“or from an external source may be either d1ffuse specular, or any combination
of the two . , :

30



Infrared Radiation

The radiosity of a surface is defined as the flux of infrared
radiation leaving that surface with a diffuse distribution (according to
‘Lambert's Law). That energy leaving a surface which has been reflected in
a specular manner does not contribute to the radiosity of that
surface. The incident infrared radiosity is denoted by the symbol H.
-The reflectance (1- €¢) of a surface is separated into two components,
the diffuse reflectance (P ), and the specular reflectance (pS). Here
is the emmittance of the surface and is equivalent to the absorptance for
long wavelength radiation. With the angle factors (Fij) defined in the
normal way, there exist similar angle factors which relate the geometrical
ability of surface i to radiate to surface j by means of a mirror-like
reflection from specular surface k. Reference to Figure 1 indicates the
method of imagery which will enable the calculation of these reflected
angle factors. Here the angle factor to surface j is identical with the angle
factor to the image of surface J. Also the angle factor is limited by
the ability of surface i to "see" through the "window" of surface k. N1th
the specular surface angle factors so defined, an interchange factor E
is def1ned similarly to reference 18 as fo]lows

T s °f Ry t 2 (B (“",5> P+ O7)

Here F-.(k)_is the angTevfactof from i to j as:Seen in the specular surface
ks Fij ; is- the angle factor from i to Jj as seen in the double specular
ref]ec 1on rom k and | . There are an infinite number of possible
combinations of these multi-reflections. It is evident that the interchange
factors account for the specularly reflected radiant flux from the reflecting
surface. -This portion of total leaving flux is not a component of the ‘
-radiosity of that surface. The radiosity may be written

L 4, , , P

Bi = €0T;. pi.Hi, : S (18)
and, for ns surfaces,

e Z BJJJ1 N - (19)
j=1 ,

Now the interchange factors obey the. rec1proc1ty re]at1on

Ai Big = Ay E | (20)

31



NOILD3¥Ig Ni ¥ 40 3NVd

ol

NOLOVd AJIA 034237434 3DV4¥NS ¥VINI3dS INIWY3 L3G 01 GISN GOHIIW 4O NOILYALSATU ~ - 3¥09Id -

(! 30 INVId IHL NI GIUNSVINW d

% 0L TYWION
NO £'40 NOILD3r0¥d

3|01 IVWYON
04 1371vavd :
3oV3uns
- ¥VINI3dS
! AS N3 3S sV | , .
% Ni 40 2oVWI  HONO¥HL Q3sSVd ANYd

32



So, iy ’?—Bj B : | (21)

Substitution 1nto:the equation for B results in

2 (5 - RE

)B.= €0T
-J 1

ij’ 7 it (22)

" This equation represénts_a'set of Tinear, simulteneous, inhomogeneous
algebraic equations for the unknowns (Bj). The symbol &8;; is the Kronecker
delta function which is 1 when i = j ané is 0 when i # j.

Note that the coefficients of Bj in equation (22) do not form a
symetric coefficient matrix since the off diagonal terms contain - p;Eqj.
This equation can be made symetric by multiplying each equation by Aj /p;
This gives o : _ A . )

Z 13 - Ej5A3 ) Bio= S A oT . (23)
- J P-, ) . p-i 1= ]3 ns

 Written in matrix form this equation is

EB =T

: (24)
Where E is a symetric’coefficient matrix. The solution is- .
| TR DA R | (25)
or
. ns. . ‘ . o »
} = | : :
o2 % A, T* | (26)
' p. : .
o J= J
The net heat transfer rate asorbed by surface i is given by -
Q. - A([H - o147 | (27)
N itioL i _ B

Where H;i is given from equation

33



Substituting in for H; gives

—— , ' el
G o= A 1B -G oT T e T
S S (28)
BT AT LR A P A
P, '
Substituting in for B; from equation (26) into equation (28) gives .
: . ) ns . _'I ’
. Ai‘i { z: | 13 'J j aT 4. [P, + € ]oO Tﬁ}
Y J=1" o. v 3
i - 7
A B! e ' ] 4
. €, . Qi s € :R. -
= ; %1_ T 0Tj4 - [pifci =85 ity }"Ti % (29)
T o I i
Since, in stéady state; Qi =0, and Ti4 = Tj4 for all i and j we can
conclude that :
_ v ns
: . a1 o -1
py t€g - ey ‘iAi = €5 €A,
--p“‘l—.p"— =1 T,
i J#i J

Making the above SUbstitution 1n equation (29) gives

-1 4 4 _
Z 0 iR 15 - 7] (30)
: P. p. o .
_ i
If we define °F as
Mg, = €,
I3 i ‘5 A0 (31)
A
-Then ~
ns A A (32)
= or
0, ‘JL:]G F i [TJ - T1]

34



This eduation gives the heét flux between surfaces. However, each sur-
face can contain several nodes. The heat absorbed by for each node is

determined by
Z o 7F i A
]J 1 n . (33)

Where n = the node number on surface i

,‘7?‘

- Prior to each iteration, the temperature of the surfaces are determined by

A 74 R
U N L o
Ty = - nn B o n=1 (34)
| Z1A D
&

Where nn = the number of nodes on surface i

Since the heat transfer rate given by equation (33) depends on the node -
temperature, stability considerations must be taken into account. This is
handled by storing the following relation into the array containing the
sum of the conductors used for time increment calculation

(35)

o nc
_ .3 !
CON, = 4 A, o T, 2 F Ay
| J=1

.i
_ Subroutine RADIR makes the calculations necessary to obtain
Qn given by equation (33) and CONn given by equation (35). The following
is a summary of the calculations:

A. The following are performed the first time through RADIR:

1. From the user input values of Eji, Aj, and p;, the E
matrix given by equation (24) 1s formed. 1y half of the .

symetr1c matrix is stored to save space. 1
2. The E matrix is inverted in its own space to get E ~ with
elements e;

3. TheZFAjj v ques are determ1ned from equation .(31) and
stored in the surface connections data.

B. The fo110w1ng calculations are performed on each temperature
iterations:

1. {he)temperature of each surface is ca]cu]ated by equat1on

‘ 34 :

2. The heat absorbed for each node is determlned using
equation (33) and is added to the Q array.

The routine utilizes.data used for obta1n1ng‘§% . in step A as work1ng
space for step B, thus, maximizing space ut111za ion.

35



Radiation from Externa] Source :
_ As with the infrared radiation, the solar (or any other non-
1nfrared radiation) interchange factor is def1ned by

TR TS o VR

Where ptsr' is the solar specular reflectance of surface-K
'F;.(K) is the angle factor from i to J as seen in ‘the
13 specu]ar surface

F,.(K,l) is the angle factor from i to j as seen in a double
J specu]ar reflection from j to | to k back to i

The interchange factors as defined above accounts for the specu]ar]y flux
reflected from the surface. Thus, since the specu]ar component of the flux
is assumed to go directly from surface i to surface j by the interchange

~ factor, Eij, this portion of the total flux is not a component of the
'rad1aty for the intermmediate surfaces (k and 1 above) The rad1aty of
surface i is given by - :

5 = A H (36)
 Where B: is the radocity (energy 1eavjng)
| fH? | is the incident energy
‘p? is the diffuse reflectance

The energy incident upon a surface is given by

Z B ’ S'I . S : v> ‘ (37).

Where :S{ 1s the energy d1rect1y 1nc1dent on surface i from’
an externa] source

Substituting equat1on (36) 1nto (37), mu1t1p1y1ng byA /p and s1mp11fy1ng gives
the following relation for the radocity
: n

' * ' \ _ = .
1A - E1JA1 B Z E1JA1BJ = SiAy TR
| p:lg(- SRR . =1 i o ' (38)

J#i

36



This set of n equations can be written in matrix form as - .

E*B” =-5S | | : C(39)

Note that the equat1ons are written so that E* is a symetr1c matr1x which
has the solution for B* ’ _ _ -

- o S DU

B* = ‘E*f]s or B. = Z [e ] S j - _(40) '
I | J=1 |

Where[e ] is the ijth e]ement of the ‘inverse of the E* matrix

The heat flux absorbed by the i th surface is g1ven by '

*
Q_1_= aH, (41)
A.
But from equation (36) '
B.
) i (42)
H1 r)* .
Comb1n1ng equations (40), (4]), and (42) gives
n . .
*¥ . N % 1 : '
Q" = Z ®ij i Ainsj S (43)
- =1 - px ' -

If we define

JI = ef” 1 a. A.

1] ®ij i J ' S (44)

Then the absorbed heat'f]ux is given by
Z“"*AS R )

Equation (45) gives the heat absorbed by each surface. However, each surface
may contain several temperature nodes. The absorbed heat for each node is
given by : : '

A

%
|=
E

joo S e

~ Where A is the area of the node

37



Subroutine -RADSPL was written to make necessary ca]cu]at1ons to

obtain Qp given by equat1on 46 The followin _
ca]cu]at1ons (46) . g -is a summary of the

A. The fo]]OW1ng calcu]at1ons are made the f1rst t y
RADSOL ' ime through

1. From the user 1nput va]ues of E*; P?‘, and Ai, the
E* matrix given by equation (39) QS formed. Only one
half is stored since E* is symetric.

2. The E* matrix is tnverted in its own space to get E* -1

- “with elements, €’

3. The. fI/ ‘Ajvalues gre determined from equation (44) and -
stored gn the surface connect1ons data.

B. The fo]]ow1ng calculations are performed on each temperature
1terat1on

1. The heat flux: absorbed by each node is- ca]cu]ated by

#
Q1 :E: ?3513 i7i
S K Ai
2. The net heat absorbed by this wave length radjation is
‘calculated for each temperature node on each surface by

n - n 1

Ay
Th1s quant1ty of absorbed heat is added to the Q array for
node n.

Note that the user may specify subroutine RADSOL for as many bands of non-
1nfrared radiation is desired. A single call is required for-each band.

3.2 PRESSURE - FLOW ANALYSIS

Provisions have been included in MOTAR for the pressured flow
balance analysis of a flow system which contains a network of -interconnected
tubes including any combination of series/parallel flow. The effect of
valves may be included in the pressure/flow analysis and the overall system
pressure drop and flow rate may balanced with 1nput pump pressure and flow
characteristics. o , _

3.2.1 Overall ModeT Description

- The model used to mathematically describe a flow network consists
.of pressure "nodes" at tube junction and flow "conductors" for the tubes
connecting the pressure nodes. The flow conductors for each tube is calculated
as the reciprical of the sum of the flow resistance of temperature fluid lumps
in each tube. The conductor/node network method for describing the flow
system was chosen. over that prev1ous]y used because of the- computat1ona1
advantages and the. flexibility it gives the user. The computational
advantages come from the fact that the number of equat1ons wh1ch must be

38



solved simultaneoué]y are reduced from the number of tubes to the number
of nodes between tubes. The method is more flexible because there are no
restrictions on the number of tubes which can be connected at a junction.

: For analysis purposes each flow network is divided into two levels.
~These are the "system" and any number of "subsystems". This subdivision is
made to divide the network into those portions not requiring simultaneous
equation solution (the system) and those requiring the solution to a set of
equations(the subsystem). Also tied to the concepts of system and subsystem
are the two basic classes of valyes in MOTAR. These are (1) valves which
dictate a given flow split based upon their position and (2) valves which
dictate a resistance to flow based upon their position (class). Class 1
valVes were devised for use in the system where no pressure balance is
obtained and Class 2 valves were devised for use with the subsystem where
the valyve pressure drop is included in the pressure/flow balance.

Consider Figure 2 to help illustrate the meaning of system and
subsystem. In Figure 2 (a) if value VI is of the specified flow split type
(class 1) then, the system consists of tubes 1, 2, 11, 12,18, and 19. This
is because the flow in each of these tubés is defined by the flow in tube 1
(the inlet) and the value position. Two subsystems exist for this example
which are those requiring a pressure balance. One consists of tubes 3
thru 10; the other consists of tubes 13 thru 17. In this example, if
valve VI were of the pressure drop type (class 2) then the system would be
tubes 1 and 19 and one subsystem would exist consisting of tubes 2 thru 18.

- Figure 2(b) shows an example in which no subsystem is required.
If the valves V1 and V2 are both Class 1 (flow splitting) then all tubes
are in the system and no subsystem exists. If valve V1 is class 2, then
valve V2 must also be Class 2 and tubes 2 thru 6 belong to the subsystem.
If V1 is Class 1 and V2 is Class 2, then all tubes are in the system except
3 and 4 which are in the subsystem. ; '

The sections that follow give a detailed description of the
analytical methods for (1) determining the conductor values for each tube,
(2) determining the conductor values for valves, (3) determining network
solutions, and (4) balancing system pressure drop and flow with pump flow
characteristics. ‘ o " , :

3.2.2 Tube Conductor Detérmination

The .valgje of the flow conductor is determined.for each tube by
first calculating the flow resistance for each temperature fluid lump con-
tained in the tube, summing these resistances up to obtain the flow re-
sistance of the tube and inverting the tube resistance to.get the conductance
Flow conductance is defined by the relationship A _ '

Mg = Gig [Py - Byl o (a7)
Whére wij’ = flow rate between pressure nodes i and j
- Gjj. = flow conductance between nodes i and j

pressure at pressure node i -

Py '
pressure at pressure node j

o

39



R 12 *' :
' F14 15 17
16 '

Numbers are tube numbers
"Vl = Valve No. 1

B

(8)

Figure 2: Illustration of System_and»SUBSystem Concept

40



" The flow resistance for each Jump is then
W

O
=g

"

Where.Rk  flow resistance for Tump -k
AP = pressure drop for lump k

But APk is given by
‘ 2

- k | W
W= f e p R (a8)

Wheré_ fk.= the friction fattor for Tump k
ffc = the fricfion factor coefficienty
' Lk %‘the 1ump'1éhgth“for Tump k
D = the Tump hydraulic diameter for lump k

y = the dynamié head Tosses for lump k

W = the flow rate
9c = the gravitational constént
Py = the fluid density foh Tump k
A = the f]owvarea
The flow resistance is then given by

R = f ffe K -————"‘z
k - k™ Dk N k 29‘ pk (49)

Two.options are available for obtainin the friction factor, fy. These are

(1) it is calculated internally and (2§ it is calculated internally for laminar
flow but is obtained from a table of f vs Re (where Re is the Reynold's number)

for transition and turbulent flow. For the first option the 1nterna1 calcu-
lations for the three flow reg1mes are: .

Lam1nar Reg1me Rek < 2000

- 64 . _ 1 :
fk,,ﬁ Rek N » ’ ' . 7(50)

Where fi = = friction factor for Tump K

Al

- Rey = Reynolds number for Tump k



Transftion Regfme:’ 2000A<> Rek < 4000

£, = 2086082052 - 1868265324 Rey ~ | (51)
| - {7000 ,
+.06236703785| Re 12 - .ovessaseis | Rek |3
| 1000 |- T000
Turbulent Regime: Reé;4000 -
o (52
f = .316 ’
ST
Re,

_ Equation (51) for the transition regime is a curve fit between
the laminar and turbulent regimes which was derived to match the two curves
in a continuous manner, It is merely an arbitrary curve in this undefined
region. A curve of the friction factor VS Reynold's number given by the
above relations is shown in Figure 3. ' .

_ . The second option for friction factor uses equation (50) for the
laminar regime and a user input curve of fy vs Re for the other regimes.

The options available forinput of the dynamic head loss, K , include

(1) an input constant or (2) a tabulated curve of K vs Re.

To obtain the conductance for each tube, the flow resistances
for all the Tumps . in the tube are added and then inverted. That is,

ij A ’ : ' (53)

3.2.3 Valve Analysis : o

Bs discussed in Section 3.2.1 two classes of valves are available
in MOTAR. For Class 1 valves the valve position dictates directly the
friction of the incomming flow distributed to the valve outlet branches.
For Class 2 valves the valve position and pressure drop characteristics
define the flow resistance-for the valve branches. These resistances are
added to the other flow resistance of the tubes to obtain the over all
tube conductance: prior to selving for the flow rate. :

" A number of valve types are available to the user .for both classes
of valves which are: - : _ . L - : :
(1) Rate limited R
' " (2) Polynomial (replaces the polynomial) -
- (3) Shut-off propoitioning

42



Re x 1073 (curve 1)

(curve 2)

Re x 10

Friction Factor vs Reynolds Numﬁék

43

FIGURE 3

: H t F
o . '
71 4 :
-1 T
1 § :
T I ¥ :
oo : ; L e £ :
- 5 1 ' T
== " ~ \“w A + t
it - — ;" —F + + T
T t 7 [ B3 o 4 s
: ; : "2 1 5 ' :
: : - e f—— ! ye p
piobbheen : H I b i b sl
- : ” 4 1 :
: T i T : T —]
: - f — 1 :
b . : i 1 i : T
: : 7 7 ¥ A - -
et — == e
: i : P ¢ W R | | i
—— - 0 3 i v 1 I & A Es
T T T T T A Y A ;i T 1
i : t o f et ; : v
: i L B | T 7o) : ; :
t T T 9 = o 4 1 h 1 T
NS H T 1 P | 1 J 4 Il : I
1 ~1 ot T : : 1
. PR ¥ T 1 - : : ? 1
: (AN A ) R 1 i 1 7 s : g
: Ll : i I . f . 7 i -1
,,,,, T N T 1 i V] N T
_ ) . ¥ : I ; 1 N
: J= t H : e
5 4 t : i H
- g / MR | T f 4 : : 7
T I H I i 7
B ] J A1 R f . } T .
[ I i y S ] ; od il i |
i CTi Y R | B : ' 1 L [
X i Y . i : F | 1 N T B
: — ; J . : u“\l \ 1 : H
- _ : e it + ! : i . !
i ! ; ; [ I : m i I ! i H
T 7 R ! \ : . x4 I . i ; :
3 i | i N\ . . : pd : \ 1 :
i SEEEN N L : 1 : i : .
1 i ] N ' ! i f ; ] [ :
o | ' : _N.“, A i :
. i : - ; I : ! H
. : N i .,
AN R [ : :
-y " - $— -
(9] : X : 1 7 T
. N 1t T i
1 T h 3 ) i : : .
T . i S i :
i e e i A
T i T ; 1 Y T + :
= o : o : :
B i I Il i f 1 ;
il [ I ] [} 1= i § il
T I ¥ | L
Il i ! i N N
R M ] ] i H
. ] H 7 T I
o H i JOSSN SRS R H : I | T
— ﬂﬁ _ : ; | S A
: ] [ N y4 ]
. | { >4 T N :
i 1 ; : > "
— - — an\ﬁﬁiiw!< : o . ;
it ! . i - . N : i ! D N
K e i IR S !\“\ll..._lil. A : : : xiq..... :
T . A \ _ f \ v H 3 : ) , T
{ = i RY S i i 1 : !
NN / I i “\ . '
Ll I \ § i
- 4 SR A Y S B R T "
- RN - t 1 HRR] :
- Em ....X.:t = .\ i T [
L % | i P .
L ! _ | * . ! _
m /i . : i i
i A | :
m i _ _ -
. : .”\\, : \ ;
] \\ HEE m i .P\
; N 7 T
b A L dion o Lo
.\ i i ; i ;

N

SANDAD L X !
E N AIed TOD ﬂwm.mm ® 1344N3IN
O0Ll"6GE DIWHLINYD0OT

2H




TheseAvalves types differ in the re}ationship'between the sensor and the
valve position as described below.. '

3.2.3.1 Valve Position Determination

Descrlbed below are the methods used in the routine to obtain
the valve pos1t1on., The f0110w1ng section will describe the use of the
valve position to obtain flow split and pressure drop information.

Rate Limited Valve

The valve position for the rate 1imited valve. is obtained by an
approximate integration of the valve rate ofimovement, X. X depehds on
the temperature-differencevbefween the valve control set point temperature -

and the sensor temperature as shown in Figure 4. With this-characteristic,
the valve has no movement as long as the valve temperature error, AT;is-
within the dead band.  Outside the dead band, the velocity of the valve in-
creases Tinerarly as the error increases to a maximum rate, X max. The dead
band, rate of velocity ihckease,'dk/d(AT), and the maximum velocity are
control\ed by user input. |

The re]at1ons used to obtain the valve pos1t1ons are as fo]]ows

X' x4 (x‘ ) (Ar) y _ (54)
~Where <AX1+] = va1ve,positidn_at iteration i+l
X1 = valve position at iteration i
§;+] = valve velocity at iteration i+l
, _

= the problem time increment
The valve pos1t1on is 11m1ted by

+
X min. & X1 ]g X max

Where" X min and X max are input limits on the valve position.

The vaive ve1oc1ty, Xx+], in equation (54) is given by:
: ' X1+1 = 0 if Tsenb- Tset | < Tdb

-~ Where , -

Tsen = Sensor lump temperature

44



uoLjedadQ SA[BA po3LWL] mumm % d4nbr4

J0J4] Bunjeadus] JOSUas
IV ®A131s0d 0 - IV 3A13ebay

JULOd 38S - dwd] 4OSU3S = |V

~ pueg peag+

— e e e em e om ew ewn e

Xewy- = uwy N\ }

Xewy- = uLuy
N . A Ly

 aunjeaadus] 1Ugod 18§

/

| " — quelsuos. = VP e ———————

0'L > X >0 ApcmEmLu:H,mehv X +,o« = X ‘U0L}LSO4 dA|RA

X ¢A3100|9\ 9A|eA

aliL] 3tun 4ad uadg U013084]

45



Tset
Tdb

Set pownt temperature
Valve dead band temperature

¥V = gk [ Tsen-Tset-Tdb ] if Tsen >Tset + Tdb
d{amn) o -

$*1 2 4% [Tsen-Tset+Tdb ] if Tsen < Tset - Tdb
d(Ar)
~ The valve velocity is 1imited by

.imih < X+

< Xmax

' Po]ynom1a1 Valve
The polynomial valve determines the steady state valve position

as a forth degree po]ynom1a1 function of the temperature-error between the
sensor lump and the set point. A valve time constant is then applied to
determine how far between the previous pos1t1on and the new steady state
position the valve will move. The steady state position, Xgg» s given by

o a1l 3 4
Xss = 'A9_+ A1 AT + A2 ATT + A3 AT + A4.AT
Where AT = Tsen - Tset
Tsen = the .sensor lump temperature
Tset = the set point temperature
Ao,‘Ai, A2, A3, A4 = input constants

The valve position, x1*1 is then determined by

i1

- 'i_ ; -Ar/ c
X | XSS + (X Xss)‘e
Where X1 1 '= valve positon‘at‘iteration i+l
X1 = valve position at iteration i
" Ar = problem time increment
‘ré = valve time constant

46



_Note that this valve combines the capabilities of the polynomial valve and

the proportioning valve described in Reference 12. If one desires to
eliminate the effect of the time constant (and thus, give the valve an
instantaneous resbbhse), a valve for rc should be input which is small
compared to the time increment Ar . Also, either a constant value or a temperatt
lump number may be specified for the set point to permit the use of the value for
proport1on1ng between two sides.

Shut-off Valve .

Two types of shut-off valves are available. For the first, the

valve position decreases from Xmax to Xmin when the temperature of the
sensor lump drops below the specified "off" temperature Toff and increased
from Xmin to Xmax when the sensor lump exceeds a second specified temperature,
Ton. Ton must be greater than Toff. .The second.type of shut-off valve
works in reverse to the first. The valve position increases from Xmin to
Xmax when the sensor temperature drops below the specified Ton and decreases
from Xmax to Xmin when the sensor lump increases above the off temperature,
bef.' For the second type, Toff must be greater than Ton.
3.2.3.2 . Flow Split and Pressure Characteristic Determination

For the Class 1 valves the valve pbsition as determined by the
methods descr1bed in Section 3.2.3.1 will determine the flow split d1rect1y
between two outlet tubes (Two are requ1red for class 1). The flow rate
is given by - ' a |

X Win ‘

=T
It

1 o
_ o (55)
W, = (1.-X) Win
Where X = the va]ve fraction of the total travel from side 1
Win = flow rate into the valve |
W, = flow rate out side I

wz' = flow rate out side 2
. For the Class 2 valves, the position is used to determ1ne the valve
re51stance to,f]qw. The va]ve pressure drop on one s1de 1s assumed to be

47



given by

: O : — (56)
AP =B} W I _ _
Where E is an input constant | '
W is the flow through one side of the valve
X s the va]ve position (fract1on of tota] poss1b1e distance)
-S1nce flow res1stance is AP/w the valve .flow resistance 1s g1ven by

. (57)
| R |
Th1s value of flow res1stance is calculated and added to the other flow
resistances of the tube prior to performing the operation in eguation (53)
to find the tube conductor.
Class 2 valves may be either one way or two way - i.e., there may

be one tube or two tubes at the outlet. '1f only one tube ex1sts on the
~ valve outlet the flow resistance is calculated using equation (57) above.
'_If a second tube ex1sts, the res1stance on side 2 is g1ven by

CE W

"va f_ﬁzfl)'z' | o o (58)
3.2.4 Pressure-Flow Network Solution - -

After the flow conductor values have been obta1ned by the
methods described in Sections 3.2.2 and 3.2.3 a set of simultaneous equations
are set up and solved for each subsystem. This set of equations are
obtained by conservat1on of mass at each pressure node. This gives as many
equations as there are nodes in the subsystem. _
For any node i the conservation equat1on can be written as follows.

| | .z:wout - LWy, < S (59)
SRR . nc - ' ‘
: ' = ' - : (60)
_aed 2:wou’c ZE: Gij [ Pj_ P | o
B £ B | I

48



Then equation

Where

The above equation can be

and solved for all pressures.

(59) becomes

P.] - W. = 0

G..[P. -
ijth]. i i

.
= flow conductor between pressure nodes i and j
= .pressure at node i '

= pressure at node j

=" flow rate added at node i
number of pressure nodes in the subsystem

written as a set of simultaneous equations in P
One pressure in the system must be specified.

The set of equation can be written in Matrix from (assuminngn is the

specified pressure):

(61)
GP. = C '
Where-
. -
ZGU. —G]z.‘- Gygeeerreresens _
GZ] ZGZJ - G23 .........
‘G. =
L_",Gn-1,1 *Gn—],Z '-"'_f"E:Gh-],J
kS
. P - 2_‘




Lvn-] +Gn -1 Pn

Specified Pressure (Doesn't
have to be the last one)
The above equations are solved for pressures at each point in the'system,
and flow rates are then calculated for each tube (conductor) by:

1 _ L o 62
Wig = Gy (Py - Py) | _ (62)

"
[ep)
~U .

Two methods of solution are available in MOTAR for solving the set of
equations given by equation (61). These are the Gauss-Jordon reduction
method, which is a direct so]utidn method and the Seidel stationary point
Iteration method with sUccessive'0vefre1axafion which .is an iterative
method. The user may specify which of the two methods to'be used.
Normally, fof the typical pkob1em the direct method would be used.- However,
for extremely large problems where the direct method proves unsatisfactory,
the iterative method may be an improvement. 4 '

- Since the flow conductors are functions of the f1ow rate, the set
of equations given by (6}) are solved numerous times on each temperature
iteration with a new set df Gij va]ués for each solution. The iteration
process continues until the change in the flow rates is within some user
specified to]erance'before pkoceeding to. the next iteration.

-+ 3.2.5. Pump _and System Pressure - Flow Match1ng

_ Concurrent . w1th 1terat1ng the system flow equat1on to so1ut1on
on each 1terat10n, the overall _system pressure drop and flow rate must be
matched to a pump character1st1c Several types of pump characteristics

50



are available to the user as options. These are (1) The system flow

rate may be specified as a constant, (2) it may be specified as a known

function of time, (3) the pressure drop wmay be specified a4 a functinn

of the Flow rate in a tabular form and (4) the pressure drop may be

specified as a function of flow rate with a fourth degree poTynomia]

curve. | | |
The first two options require no ba]anoinq of the pump with the

system. Ba1anc1ng is required for options-(3) and (4) and itérative

procedures have been devised to obtain the solution of the pump curve

to the system characteristics_with as few passes'as possible through the

system pressure/flow ba]ancing loop for these options. The procedures

used for these options are described below. '

3.2.5.1  Tabular Pump Curve Solution _
~The matching of a tabu]ated pump pressure rise/flow

characteristic to the system pressure drop/flow characteristic is

accomp11shed by the following precedure See Figure 5 to aid in following

the procedure o . .

Step 1: The initial flow rate, w], at the system inlet is
estab11shed e1ther from user input on the first iteration
or the system flow of the previous iteration for subsequent‘

- . iterations. .

Step 2: Using w], a so]ut1on to the f]ow network is obta1ned using
the methods described in sect1ons 3.2.2,.3.2.3 and 3.2.4.
Following. thts solution, AP' is available establishing

v po1nt 1 on the true system character1st1c curve shown in
Figure 5.

Step 3: 'The constants ‘which descr1be the stra1ght line approx1-
mation for the system pressure/flow characteristic is
established. (Tine O to 1 for the first pass, line

1. to 2 for the second pass, etc.) |

AP_=C Wsrf D

51




Second Approximation’

~ To System .
/ -/
/
i / /
[/
’ A v ,[ First Approximation
| _ ;7 to System
- APmak Pump Characteristic —- v f
: : _ /
' : ‘ / . . .
' ' -Third Approximation
,/'“ to System
o
S
T AP
2 a
}
©
~
Q
Q
-
-
(8]
P
3
(7]
.
Q
-
o-v
‘ Wmax
_ o W(':
Flow rate, W _ W
- ' Y W
w 's3
f
Figure 5 System/Pump Curve Solution

52



(a) For the first pass,

C = APy
W
D = 0

(b) For the second and subseqﬁent pass on a
'~ given iteration, ‘

_c = AP, - AP
ws - w]
D = &P, —,:APZ - &P, ] W
W, - W

Where _AP2 and ws'are.the values for the last solution on
the system characteristic (point 2 on
» Figure 5 for .the third pass)
AP1 anq w] are the values for the next to the last
. solution on the system characteristic (point
1 for the third pass) _
Step 4: The solution to the approximate system characteriétic
and the tébu]ated pump charactéristic is determined by
_the following iterative procedure

(a) Startwith Wa = W1 . S
.(b)_ Determine APz by interpo]atiné the pump curve
~at Wi _ N ,' )
(c) Determine theAflow'rate given_by the approximate -
 system characteristic éf APa,;ﬂB, .

Wb = APa - D
. : C . -
Where constants C and D were Obtained in Step 3.

53



Determine the approximate solution, W. by

3.2.5.2

(f)

Step 5: Check the following tolerence

If E

W = Wa + Wb
¢ T

Check the tolerence:

(W - W) < .00V M,

If the inequality does not hold, set Wa = Wc -
and repeat b thru f. If the inequality does hold
wC js the solution between the pump curve and

the latest approx1mate to the system character1st1c
and

‘w] - \

<’ .001 * Wy, then Wy and AP, are the solution.

If the tolerance is not met, repeat steps 2 thru 5 using
the latest flow rate, W, as W, aed find W o, LI etc.
until wsf, the final solution is located.

Polynomial Pump Curve Solution

When the user describes the pump curve with a polynomial curve

fit, the pump characteristic is described by the relation

i e A
APp~AO+A]N + A2W + AW

4
3+ A4W

3

. When th1s option is used, the procedure for matching the pump characteristic

described above to the system characteristic is identical to ‘that described
in Section 3.2.5.1 fpr the tabulated pump characteristic except Step 4 is
replaced with the following Step 4A: ' '

54



~ Step oA :Sef-up the equation for Ws and solve.

(a) Set up the equation'

Since:
APp-APS =0 |
AP = C W, +D (C and D are obtained from Step 3,
equation (64 or 65) :
AP = Ro+A W_+A WZ+A W+ W
p p "27p "37p 4'p
W= W

Then the equation for Ws is

: 2 3
(Ao-D) +,(A]-C) WS‘+ A2W ¢t A3ws

4 _
+ AMS = 0

(b) Solve the equation for W, using the Newton-Raphson
Method of solution for a fourth order polynomial

The remaining steps are identical to that given in Section 3.2.5.1.

55



4.0 ROUTINE OPERATIONAL DESCRIPTION

This_section;desgribes the nature of the MOTAR computer ruutine."

The operation of MOTAR is divisible into three phases. These are: (1) the

preproce551nq phase which includes the reading of 1nput data, the assembl-
~ing of computer generated subroutines, and process1ng the input data into

a compressed data tape, (2) the compilation phase in which the computer
“generated. and user assembled subroutine are comp11ed and (3) the processing
phase during which the compressed data tape is read and the desired computa-
tion are made. A schematic of the overall flow of the MOTAR routine is given
in Figure 6 . This three phase procedure was devised (1) to permit the
tailoring of the main temperature calculation subroutines to conform with
the requirements of the data in the most efficient manner and (2) to permit
the user to perform logical operat1ons and call user subroutines in the in-
put data.

A descr1pt1on of the three phases including a summary df the
subroutines used in each phase is given in the .following subsect1ons A
listing of all subroutines is provided in Appendix D .

4.1 PREPROCESSING PHASE

: Dur1ng the preprocess1ng phase of MOTAR the foi?ow1nq tasks are
_performed

(1) A data tape is generated and/or edited when the user so
' requests

(2) The 1nput data, which is 1nput in a free field format, s
read from cards or the final data tape,processed for more
~ efficient use by the computer and stored on a compressed
data tape . .

(3) The user 1og1c supplied in the $PRETEMP, $POSTTEMP $CENTRAL
and $OUTPUT is read and written in a form compat1b1e with
the Fortian comp11er ’

(4) The symbolic logic for the transient and steady state tem-
' perature calculation subroutine is generated in a form
compatible with the FORTRAN compiler.

A brief summary of the elements used during the preprocess1ng phase is given
below:

STEP] .~ Specifies the overlay structure of the preprocessing
. phase. Elements NTWRK, SUBFLW, SUBCRV, OPBLOK, and
‘GETCOM overlayed. MAIN is des1gnated as the Main
preprocessing. phase rout1ne . .

MAIN f'lb‘:The dr1v1ng routine for the preprocess1ng phase It calls

on subroutines SUBA and SUBB to generate a data tape,
read input and write a compressed

56



NOILYZINVOUO dVLOW

SHOI1Y43d0
J4NLYYIdWIL1-1S0d

\

SNOILYINJIVI

> SNOTLYINITVI

M0174/34NSSIdd FINLYYIdWIL

SNOT1vd3d0

‘9 JN9I4

SINILNOYENS.
TYNOT.LdO
a0

SNOTLV3d0
YN 1Y¥IdAIL-34d

—I!Ill"ll!l'ull'

. 3dvl viva

Q3SSIYHOD
3LYY3NGI

4

 SINIINO¥ENS
QY INILNOY

1ndino

3dvl vlivad

- SINILNOYENS
- Q31VE3INID

(3SS3UdWOI
avay

—— Gwtn e -

3SYHd 9NISS3I08d

43sn aNy

a3

| — e— = — o —y

|
|
_ .
|
i
_
.
_

3SYHd NOILYTIdWOI

.

}

| [43LNdWOT 371dW0D
_ .

|

!
|
.
_

N
|

C— — —

I

T13SYHd 9NISS3II0Ud
i © 3IVYANTD L -
I

L Y1YQ
INdNT ay 3y

3SYHd- ONISSIS0dd-3Ud

I
’
I
l
{

57




_ data'tape, read user logic and write it in required
~ symbolic form and generate temperature solution sub-
‘routines corresponding to the requirements of the input

A) EDIT

B) COLCHK

'C) NTWRK

D) SUBFLW
E) SUBCRV

F) CENTRAL

G) PREOP

—datas—They—call—on—the—following—subroutines—to—per-

form this: EDIT, COLCHK, NTWRK, SUBFLW, SUBCRV, PRETMP,
CENTRL, PSTTMP, SUBOUT, ISUBA KRVS, - GENOUT, GETCON
BLOCK. These are descr1bed beTow

Places the user input data on a magnetic tape and per-
forms edits to.previously generated magnet1c tapes.
Calls EXIT if an error occurs.

Reads and writes data cards, skips bTank columns and
locates de11m1ters

Reads .and processes the $NETWORK data. Calls the
following subrout1nes to handTe different types of
data: :

tor data

(1) COLCHK - (Descr1bed above)

(2) INTMP - Reads and processes INITIAL TEMPERATURE
‘ ' - data -

(3) “CAPHT - Reads and processes +CAPACITANCE and

~ + ABSORBED HEAT data

(4) SUBCON - Reads and processes "CONDUCTION' con-

. ductor data

(5) SUBRAD - Reads and processes 'RADIATION conduc-

_ tor data
(6) SUBCNV - Reads and processes JCONVECTION' conduc-

Reads and processes $FLOW SYSTEMS data

Reads $CURVES data and wr1tes it on a drum for sub-

_ sequent process1ng

(Entry point to OPBLOK). Reads user Togic in $CENTRAL
block and writes it on a drum for subsequent pro-

- cessing

'(Entry point to OPBLOK) Reads user logic in $PRETEMP

- block and writes it on-a <Tum for subsequent pro-

cess1ng

58



H) POSTOP -

1) suBout

J) KRVS

K) GETCON

L) BLOCK

(Entry point to OPBLOK) Reads user logic in $POSTTEMP
block and writes it on a drum for subsequent processing

“(Entry point to OPBLOK) Reads user logic in $0UTPUT
.block and wr1tes it on a drum for subsequent process1nq

Process $CURVES data which was read by subroutine
SUBCRV

Rearranges conductor connections data for the im-

plicit temperature routines when required

Writes computer generated and user Togic elements in a

form expected by the Fartran compiler

Other subroutines called during the preprocessing phase are described below:

EXIT © Terminates the Jjob

NODENO Reads in node numbers for all MOTAR options including
multiple input options :

SUBT Reads in integers

SUBF Reads in real numbers

SUBS Converts arguments from a field data character to an
integer by means of an Alpha-numeric search

ORDER Orders blocks of data in an array so that one element

‘ of the block is in either ascend1nq or decending order

from block to block.

CONDNO - Reads in conductor numbers and connected nodes including
Multiple input options :

GENOUT List an array of mixed mode numbers

GENR ‘(Ehtry point to GENOUT) Lists an array of real numbers

GENI (Entry point ot GENOUT) Lists an'arréy'of integers

4.2 " COMPILATION PHASE

During the compilation phase, a compilation is performed on as
‘many as six subroutines which were setup during the preprocessing phase and
any other subroutines which the user may desire to supply. The six sub-
routines which will normally require compilation are.tabulated below:

59



STEP2

The main routine for the process1ng phase Contains
- the $CENTRAL user logic as well as logic for read1ng
and writing a dump tape

PRETMP

POSTMP
OUTPUT

CEXPLCT

or

IMPLCT,V

EXPSS
or
IMPSS

A subroutine containinq the logic from the $PRETEMP

A subrout1ne containing. the user logic from the
$POSTTEMP block

A subroutine containing the user 1oq1c from the $OUTPUT |
block

' The transient temperature solution subroutine which
is generated during the preprocessing phase based
- upon the requirements of the input data

The steady state temperature solution subroutine which
is generated during the preprocessing phase based
upon the requirements . of the input data '

The user must also compile any other subrout1nes requ1red for the prob]em
during the compilation’ phase

4.3

PROCESSING PHASE -

Dur1ng the process1ng phase the fol10w1ng operat1ons are performed:

_(1) The compressed data generated during the preprocess1ng phase

or from a dump tape 1s read into core

(2) The $CENTRAL logic is executed.: Included in the $CENTRAL logic
" are the calls to temperature solution subroutines

(3) ‘The specified temperature solution is performed including the
.fo110w1ng operat1ons _ .

e)

b

Prior to each temperature 1terat1on, the $PRETEMP logic
is executed

Fo110w1ng each temperature iteration but”prior to presSure/
flow balance on the flow systems the $POSTTEMP operations

are performed
*The pressure/flow ba]ance is performed when requ1red
‘The plot tape is written on the p]ot 1nterva1

‘The normal output is performed on the output interval.

In addition, the_$0UTPUT,operqtions;are»performed.-

60



Two types of subroutines are employed during the processing phase: (1) Those
specifically designed for user calls in the four operation blocks and (2) those

desqued for internal program use. The user subroutines are described in

"~ detail in Appendix A. The subroutlnes des1gned for 1nterna1 proqram use are
summarized below. , ’

STEP2 -~  The main routine for the processing phase of MOTAR. It
‘ reads the compressed data tape, performs the $CENTRAL
user logic and calls . one or more of the following _
" temperatures: EXPLCT, EXPSS, IMPLCT, IMPSS.. The first -
.pair or the second pair may occur in the same problem -

EXPLCT - Temperature solution subroUtines which are assembled
EXPSS " during the proprocessing phase. (See Appendix A for
IMPLCT  a description of the use) These subroutines call on

IMPSS a number of additional subroutines which:

a) Ca]cu]ate the temperature network e]ements based
_upon various user opt1ons '

1og1c _
.c) Pekforms ‘temperature and préssure/flow calculations
d) Wr1tes p]ot and dump tape

~Table I and II 111ustrate the possible call statements in the order that they

- occur for subroutines EXPLCT and IMPLCT. Only those calls needed will actually
exist for a given problem. A brief description of each subroutine is given
below: ‘

TEMPZI " Determines the ‘time dependent temperatures by curve
' 11near interpolation . .

PFCS Obta1ns a pressure/f]ow balance for the input flow
_  systems. Also.calculates valve positions and pressure
drop characteristics and. balances the system flow
with the pump flow. _ '

INITL- - Prints out initial flow rates, pressures, temperatures,
- - capacitances, heat storage rates, thermal conductances,
-and time increments. Also calls PRINTS to write the
initial values on the h1story tape..

CAPAC]_;f' 'Performs - Tlinear 1nterpo]at1ons to obta1n capac1tance
I as a funct1on of -time.
CAPACZ _ Performs linear 1nterpoTat1ons versUs’tihe and mul-

: tip11es the values t1mes constants to. obta1n capac1tance :

va1ues



S TmLET
LISTING OF CALL STATEMENTS IN SUBROUTINE EXPLCT

Comrion ahd_EquiVa]enCé Tables

CALL TEMPZ
CALL . PFCS
'CALL - INITL
- ITER = 0
100 CALL CAPACI
CALL CAPAC2
CALL CAPAC3
CALL CAPAC4
CALL CAPACS
CALL CAPAC6
- CALL. . CONDF1
CALL CONDV
CALL "COND2
- CALL COND3
- CALL COND4
- CALL CONDS5
CALL RADTN
CALL ABSHTI1
CALL ABSHT2
CALL ABSHT3
- CALL ABSHT4 -
CALL 'ABSHTS
CALL PRETMP -
CALL KNODF
CALL KOND.
CALL RADT
CALL DTAUI1
CALL TEMPT. ' .
TIME = TIME + TINC
ITER = ITER + 1 B
CALL TEMPZ2
CALL POSTMP
CALL - PFCS .
- CALL PRINTS
Go to 100 _

1} Mrites dump tape

RETURN ~
END

62

LA



CALL
CALL
CALL
TIMEQ
TIME
CALL
CALL
CALL
CALL
CALL
CALL
TIME
CALL
CALL
CALL
CALL
CALL
CALL
TIME
ITER
CALL
-~ CALL
CALL
CALL
CALL
GP" TO

100

END

. CTABLE 1T |
~ LISTING OF CALLS IN SUBROUTINE IMPLCT

l» Common and equivalence tables

TEMP2 . ,
PFCS

INITL

= TIME '

= TIME + ALPHA * TINC
CAPAC1 O
CAPAC2
CAPAC3
CAPAC4
CAPACS

CAPAC6

= TIMEQ -

ABSHT 1

ABSHT 2
- ABSHT 3

ABSHT 4

ABSHT 5 -

IRHS
= .-TIME + TINC

ITER + 1

TEMP 2
TEMP 1 -
POSTOP
PFCS
PRINTS
100 -

‘Write dump tape

RETURN . -



‘CAPAC3

-0bta1ns the capac1tance of each n0de of this typeAby '

CAPAC4

CAPAC5

CAPAC6

CONDF1
CONDV
COND2
COND3,

COND4

COND5

RADTN

ABSHT1
ABSHT2
ABSHT3

ABSHT4

- dependent curve and obta1n1ng the product of the two
~ values and then multiplying the resu]ts by an input

constant

‘Obtains the capacitance of each node of this type by
-1nterpo1at1ng a temperature dependent curve and multiply-.

ing it by an input constant

Obtains the capacitance of each node of this type by
interpolating two temperature dependent curves,
finding the product of the two values and multiplying
the results by a constant

Obtains capacitance as a function one time dependent
and two temperature dependent curves

Calculates the flow conductors for all options
Calculates the convection conductors for all options
0bta1ns conductance as a funct1on of time

0bta1ns the conductance by interpolating a temperature
dependent ‘curve with mean témperature between the two

nodes connected and multiplying the result by a constant

Obtains the conductance between two node, one with
temperature dependent. properties,-and one without

~Obtains the conductance between two nodes, both with

temperature dependent properties

Calculates the linearized conductance due to rad1at1on
for a constant A

- Supplies constant absorbed heat values to nodes
Supplies time dependent abeérbed heat values tc'nodes

' Obtains absorbed heat by interpo]attng a time de-

pendent curve and mu]tip]ying by a constant

~ Obtains absorbed heat as the product of a time dependent

curve, a temperature dependent curve and a constant

64



ABSHTS
PRETMP

~ KONDF
KOND
RADT

DTAU]
DTAU2
TEMP1
TEMPI
POSTMP

PRINTS -

0bta1ns absorbed heat as the product of a temperature
dependent curve and a constant

Performs user logic spec1f1ed by the user in the
$PRETEMP operation block

Calculates the net heat flow to each node through flow

conductors. (one way) and add the quant1ty to the Q array
Also adds the conductance values for each node to the

- DTAU array for future calculation of time increments

Calculates the net heat flow to each,ndde through the
normal two way conductors and adds it to the Q array.

Also adds the conductance values for each node in the
DTAU array for future calculation of time increments

Calculates the net heat flow to each hode due to
radiation conductors and adds the values to the O array.

" Also adds the required constant to.the DTAU array for

calculating time increments’

Calculates the convergent time increment for each node
and applies the appropriate 1imits depending upon the
option .

Calculates new temperatures us1ng the exp11c1t method

. Calculates new temperatures us1ng the: 1mp11c1t method

Performs user 1og1c specified by the user in the

$ POST TEMP operation blank

Performs normal output, checkouf priht,’writes history
tape and calculates incrementing time values.

e e e e e e em M L i —— — L ———



5.0 PROGRAM USAGE DESCRIPTION

" MOTAR can be used to predict the ‘transient or steady state tempera-
ture behavior in a system 1nc1ud1nq the effects of conduction, convection,

and/or radiation; to predict the pressure and flow rate for™ a—network—oT
tubes containing a flowing fluid for any combination of series and parallel
flow; to perform any genera1 mathematical operation by supplying the required
1og1c to the user programming blocks including calls to the appropriate MOTAR
11brary subroutines, or any combination of these three uses. The following -
is the sequence of events or steps that the user must fol]ow in performing

a thermal and/or flow analys1s .

(1) Mathemat1ca1 models must be constructed

(2) The values describing the elements of the models must be
established and input into MOTAR in the proper format.

(3) The jobimust then be submitted to run on the computer system
of interest following proper preparation for that system.

(4) The answers are then received for evaluation by the:user.’

In developing MOTAR every effort was made to permit its user t0'cbmp1ete the
above tasks with a maximum of effectiveness and a minimum of effort. ' The
input format was designed to be as powerful as possible while remaining
flexible and easy to use. The output was also designed to be flexible, giving
the user the ability to choose any of the many available output options or to
make his own output format when desired. Extensive error méssages and check-
out printing should aid the user in checking out new data decks. Extensive
plotting of the output with a minimum requ1rement of input is available

which should also add to the user effectiveness. ~Many other input/output
options are included in MOTAR which take advantage of the available input/out-
put devices on the NASA computer system. Included in these are the dump and

restart options, the data tape and -edit options, the start. from the history
tape options, and flux curves on tape. :

| 5.1 MATHEMATICAL MODEL BUILDING

The first step ‘in performing a thermal or f]ow-pressure-ana]ysis
using MOTAR is that of building a mathematical model. The intent of this
section is to describe the nature of the thermal-and flow models needed for
1nput into MOTAR. :

5.1.1 Therma] Mode]s

; A_mathematjca] model of the thermal problem must bé constructed by
the user so that the elements of equation (6) (Section 3.1.1) can be identi-
- f1ed for input to MOTAR The equat1on is: repeated for c]ar1ty

| o nc S oqm o

C. (T n+l _ _n v u o B

i T - i _) - |2 Yis (Tj"Tf)fr- Q |- A=lLN
| ar 0 Ly o A

66



Ci = . .the thermal capacitance of node i

W, = ‘the weight of Tump i~

Cpi = the specific heat of lump i

T1.n+]= - temperature -of Tump i at iteration N + 1

T1.n = temperature of 1ump-1 at iteration n-

AT = the iteration time increment

‘Uij = the overall thermal conductance betwéen nqdes iand j

Qi = the heat rate absorbed or generated by node 1

nc = _ the number of thermal connections

m = the time between that corresponding to iteration n and
that corresponding to iteration n + 1 for evaluation
of the heat flow to the node (i.e., the right side of
the equation) :

N = number of nodes

The primary e]ements_that must be identified for input are:

(1)

(6)

Identification numbers for each node, i

'Initia1.Tempekatures for the nodes, Ti

Thermal Capacitances for the nodes, Ci

Absorbed or generated heat fluxes for nodes where applicable,

Qi

Identification numbers for the conductors and nodes connected,
iand j A _

Conductor Values Uij, whether for cdnducting, convection,
radiation, or flowing fluid heat transfer

The thermal model of a body is constructed by subdividing it into
a number of small elements of volume. By the finite difference method of
solution the mass of each element is assumed to be concentrated at that nodal
point which Ties within the volume of the element. The temperature which is
calculated represents the temperature of the point mass. 'Care must be taken
in the subdivision of a body into its volume elements. The size of the
volume elements or "Tumps" must be small enough to give a sufficiently

67



accurate temperature distribution in the body. .However, if it is excessively
small a severe computer time requirement may occur. Thus, an "optimum" -
size is desired.- A detailed discussion on the recommended practices for

- thermal model building will not be attempted here. Instead, the reader is

—refered—to—References——and—13-

: An example showing the method of subdividing a body into Tumps and
1dent1fy1ng the network elements whose values must be input into MOTAR is
shown in Figure 7. Figure 7(a) shows an extended fin with a base temperature,
Tb, and convecting to an ambient temperature, Ta. Solar energy is incident
on the fin from location 17 to the end of the fin, 12. Figure 7(b) shows
one possible nodal breakdown for building a thermal model. It consists of
5 nodes which have been arbitrarily numbered representing equal volumes
bounded by the fin temperature and the air temperature with absorbed heat on
the last three nodes. Figure 7(c) shows the thermal network of the fin for
the nodal breakdown of Figure 7(b). Identified on the network are the
elements whose values must be input. The T's represent the node temperature,
C's represent the node thermal capacitances, Q's represent the node absorbed
heats, and the G's represent the conductance values between nodes which have .
a]so been arb1trar11y numbered. The capac1tances are ca]cu]ated by

(1) = (P)(VOL) (Cp)
where -
C(1) ;.‘capacitancevof node I .
'h p = Dens%ty of hode,I. o
_&VOLE =" the volume ofvnode'I'

' Note that the boundary nodes, #6 and #7 have no- capac1tances since their
 temperatures are specified. The conductances for G(1) through G(S) are
calculated by the relation for conduct1on which 1is ,

6(1) = B
where _»t_‘ .
K = thermal conductivity
A,j = aree»for conduction
Ax = the conduct1on distance

Those for G(6) through G(]O) are ca]cu]ated by the re]at1on for convect1on
which is .

hA-

G(I) =
where. oo S .
. : h = convection coefficient

]

area for convection

68



Base Temperature, Tb

T = TA (a) Extended Fin to be Analyzed
T b - _ : '
0 .1' . 2‘ e 3 . L . 5 |
| .Wtransfa‘ by convection
T =T, : :

. -~ (b) Nodal Breakdown _
e eg2) c(3) - koo dasy

Q(u YT at

(c) Thermal Network

Figu}é 7.  Example Thermal Mathematica]‘Mode1‘

69



The absorbed heat for nodes 3 through 5is calculated by -

(1) = as A.Qsoiar'

where L L , ] , R
Qsolar = _Inc1dent so]ar energy per un1t area. of the fin
A. = "Area of incident solar heat.
a = Absorptivity of the fin surface to the'incident heat

The input yalues for T's defining the- initial and boundary temperature for the
~problem comp]ete the jdentification of the elements for the problem.
5.1.2 Fluid Flow Models ‘

A flow problem may be analyzed with MOTAR, either simultaneously
with a thermal analysis, so that the flow solution is continually updated
‘based on the thermal conditions or, the flow problem may be analyzed
separately without any thermal ana]ys1s To perform a flow analysis, the
user must input a mathematical model of the flow system. The flow system is
assumed to consist of a set of interconnected tubes such as the example
shown in Figure 8(a) which consists of two radiator panels, each containing
four tubes and connected so that they flow in parallel.

For c]ar1ty the f0110w1ng def1n1t1ons are made at this point:

(1) A tube is any single 1ength of pipe between two pressure nodes.

: A tube "contains" fluid temperature nodes and may contain as-

umany of these as des1red . _ :

(2) A pressure node is located at each end of a v-tube. As
many tubes as desired may be connected at a node junction and
a node must exist at the junctions of two f]ow pipes

We must make a mathematical model to describe the 1nformat1on of equation (60)
to the computer The 1nformat10n required consists of

(1) Identification of the pressure node numbers'-'

(2) Identification of the tube numbers and the two pressure
nodes connected by tube

(3) The f]uid temperature nodes contained in each tube
(4) The flow geometry for each temperature fluid nodes ‘
(5) The number of "head 1osses such for 1tems such as or1f1ces

(6)~ Fluid property information :

- 70



&

cleclo

O ®D ©

- (a) Flow System to be Analyzed

G(6)

Specified
sure Node

(b) Pressure Node/Flow Conductor Network
Example Flow System Mathematical Model

Figure 8

71



~The fluid flow mathematical model may be described-as a nétwork equivalent
to an electrical resistor network. For instance, the flow system shown in
- Figure 8(a) can be described by the resistance network shown in Figure 8(b).
In building a flow model the user may either build a resistance/node network
as—shown—%n—Figure48Gb%—or—simply—superimpose—the—identiﬁying—numbers—on—a

schematic of the flow system as shown in Figure 8(a). In either case the
identifying numbers and connection information is readily available if the
identifying numbers are placed on the schematic. If one adds the fluid
temperature numbers to the information shown for each tube,the information
for items 1, 2 and' 3 above can be read directly from the schematic. Items 4,
5, and 6 must be obtained from knowledge about the system geometry and
mater1als » _

5.2~ INPUT DESCRIPTION

The input for MOTAR has been designed to give the user a high -
degree of effectiveness and flexibility while maintaining an easy-to-use format.
The effectiveness is accomplished by providing powerful options to the user
which permit the input of large quantities of data with a single entry in.the
input. The flexibility is obtained by providing the user with a large number
of options for each data entry. Many features were incorporated to make the
routine easy to use which include the use of descr1pt1ve names to identify
data. blocks, the ability to omit blocks not requiring .input. data for a
~given problem, and the use of a free form input format. This format permits
data to be input in any column.between 2 and 74 . (inclusive) with data values
separated by de11m1ters . o

5.2;1 Genera] Input Reqyirements

v The user 1nput for MOTAR consists of three parameter cards and
7 major- input data blocks with each being identified by a $ followed by its
title. Some of the 7 blocks contain subordinate blocks which are identified
by a + followed by the block title. Some of these subordinate blocks con-
tain additional subordinate blocks which are identified by enclosing the

- block name between two apostrophies. In addition to the 7 input blocks,
three additional ‘data cards are required. The first supplies information
regarding the -method for data input. (cards, tape, tape with data edits, etc)
and information identifying. whether the run is to be implicit or explicit.
‘The second card supplies time information and the third supplies input/output
option 1nformat1on and tolerance information for 1mp11c1t runs.

A 11st of the poss1b1e 1nput b]ocks 1nc1ud1ng the. magor b1ocks and
all the subordinate blocks is shown in Table III. On]y those blocks required
to supply information need be input. If a block is empty its block title-
need not be input. Also shown in Table III are three parameter cards and
their location relative to the 7 Data Block. Parameter Card No. 1 is located
immediately following the XQT STEPI card and thus is the very first data
card. Parameter cards no. 2 and 3 are located immediately fo]]ow1ng the
XQT STEP2 Card and thus, are the very last data input cards prior to the EOF
card. While all of the seven major data blocks may be input either on cards
or on tape, the three parameter cards must all be 1nput as cards and must
a]ways be supp]1ed regard]ess of the type of run.

72



7

8

" TABLE IID

SUMMARY OF MOTAR INPUT DATA

© XQT STEP 1

PARAMETER CARD 1
NETWORK DATA

+ INITIAL TEMPERATURES
+ CAPACITANCE'
+  CONDUCTORS

~ "CONDUCTION"

'RADIATION’

' CONVECTION®

: PLOW' -

~+ ABSORBED HEAT DATA

$

\l\l\l\lm\l%%%%%%

PARA

FLOW
B

SYSTEMS

SYSTEM XX (CODE XX)
'PARAMETER"

'FLOW NETWORK'
'SUB-NETWORK = 1°
'SUB-NETWORK = N’
'FLUID LUMP DATA'
'PUMP '

'VALVES

SYSTEM XXX (CODE XXX)

~ 'PARAMETER'
CURVES:

CENTRAL
PRETEMP
POSTTEMP

END

" FOR,

~ FOR,

FOR,
FOR,
FOR,
FOR,

- ouTPUT

K STEP2

K TEMPTR
K PRETMP
K PSTTMP
K OUTPUT
K TEMPSS

- XUT STEP 2 /
METFR CARD 2

PARAMETER CARD 3

7g

EOF.

73



_ The genera] rules for MOTAR 1nput wh1ch apply for the seven 1nput'
data blocks are listed below:

1 The— —input—for—any—item— —including— data—qn b]ocks or

block headings can be written in free form in any columns
between ‘2 and 74 inclusive. A

2. ATl blank spaces in the 1nput are 1gnored Thus, a blank
: _card is a]so ignored. :

3. A comment containing any character can be written on any
~card between an asterisk and column 74. Everything between
~ the asterisk and column 74 will be read and written out.
The comment should not extend into column 75 since this column
is used for continuation. Columns 1 and 76 thru 80 are reserved
for Edit. The asterisk for comments should not occur in
column 1. ' =

4. A "data group"* can be continued on the fo]]ow1ng card by .
any non-zero entry in-column 75. This entry will cause the
data group on the card prior to the aster1sk (if one exists)
to be cont1nued on the next card.

5. Severa1 data - groups may be entered on a single card if
separated by a slash (/). For example three initial
temperatures (each being a single data group) m1qht be put
on one card as follows:

= 90. /5 100. /7 = 97. 5

6. Any system of un1ts can be used for a g1ven prob]em but a]]
input items must be in consistent .units. This required the.
following values be input in the problem units: (1) the tem-

~ perature for the input units at absolute: zero .and the
Stephan-Boltzman constant for thermal radiation analyses and
(2) the grav1tat1ona1 constant (gc) for f]ow pressure ana]ys1s.

7. The seven data b]ocks may be 1nput in any order A]] sub-

ordinate blocks may be 1nput in any order as 1ong as they
are 1nput under the1r main head1ng

* A "data group" is def1ned as a. group of data wh1ch must be 1nput in

a specified order, - For instance, the input required for a conductor would
‘be a data group consisting of the conductor number, the two nodes connected
and the value of the conductance. »

74



8. The heading or title for each data block or subordinate
" block is entered with the proper delimeter ($, +, or ')
followed by the block title or at least the first three
Tetters of the title (May be input-in any column hetween
2 and 74 inclusive) -

- 9. Any'blbék or subordinate block not required can be omitted
. including its heading card if it supplies no information.

10. Numbers may be input as integers or real numbers. The real
numbers may be input in pure decimal form such as 3.54 or
in exponential form such as .376E-10 where the exponent is.
~-10. As with all other input, blanks in numbers are ignored
so that 3. ~ 54 would be read 3.54. Also, the user may
input as many significant figures as desired and the computer
will pick up to the maximum digit capability of the machine.

The input requ1rements for the parameter cards, the 7 major data
blocks, and their subordinate b]ocks, are descr1bed in the fo]]ow1ng sub-
sections. —

5.2.2 Paraméfric Data Card

Three parametric data cards must be supplied on each MOTAR run
to supply data edit information, time information, input/output codes and
implicit run information. Unlike the seven data blocks, these cards must
always be supplied and the data must be entered in a fixed format. The
Tocation'of the parameter cards relative to the other input data and system
setup cards is shown in Table III. A description of the 1nput for each of the
~ three parameter cards is given below:

 PARAMETER CARD NO. 1

COLUMNS FORTRAN ./ - FORMAT A
NOMENCLATURE - DESCRIPTION

-~ 1-5 INDATA .. I5 : =0, A1l data supplied.on cards
. ' : S =1, Card images are written on Unit B
=2, Card edits with Unit C used to
generate unit B
=3, Use unit B without edits
=-2, Same as -2 except data from Unit B
will be punched = .
=-3, Same as 3 except data from unit B
_ S - punched
6-10 MPLCT . 15 . =0, Explicit -method of solution
: : : #0, Implicit method of solution

PARAMETER CARD NO 2

1-10  TIME .- . F10.0 Problem Start Time-

75



" COLUMNS. FORTRAN . - FORMAT DESCRIPTION

. NOMENCLATURES
—1T1=20 TINCMN ‘ F1070 — Minimum—stable time increment for the
' : ' - No Overriding Option. TINCMN must be 0
' - | . a for the Override or Floating Option. *
21-30 TINC - F10.0 Problem Time Increment '
31-40 STIME - F10.0 =~ Problem Stop Time
41-50  WINC  ~ F10.0 Print Interval o
51-60 PINC - ~ F10.0 - . Plot Interval. If 0, no plotting will occur
61-70  TMPTIM F10.0 . " Time that history tape will be read
- for initial temperatures, flow rates
_ and value pos1t1on If 0, will be set
S S » to TIME. .
71-80 . DQTIME - F10.0 Time scale shift for flux curves. DQTIME

is added to the problem time prior to
interpolating flux cruves.

 PARAMETER CARD NO. 3

1-5 - RTIME . F 5.0 - Computer Time in m1nutes requested for

S - - N run if 0., will be set to 5.

6-7- - - ISTART - I2 " =0, This problem is not be1ng restarted

g L D ‘Data must be supp11ed for start1ng
problem

# 0, This problem is being restarted
: Restart data is supp11ed on Unit L

8-9  NEWTMP o I2 0 o = 0, -The h1story tape will not be read
: ‘ ’ to obtain initial conditions
#.0, The history tape, Unit H, will be
-~ read at TMPTIM (Card 2) to obtain
1n1t1a1 cond1t1ons

10-11 NFLXCD . 12 =0, No' 1nc1dent heat curves w111 be
' - supplied on separate flux tape
# 0, Some of the incident heat curves
will be supplied on Unit E

12-13  NCKOUT 12 = 0, No checkout print will be given
o S : # 0, A checkout print will be given ..
14-15 ~ Blank - - |

16-20 MXPASS C 15 ,Max1mum number of Gauss S1ede1 1terat1ons

permitted on each iteration for solution
to temperature equat1ons If = 0, set
“to 100 :

* )
See Page A-5

76



COLUMNS. FORTRAN - FORMAT : o
S NOMENCLATURES. . o DESCRIPTION

21-25  ALPHA F5.5 Point within the iteration for evalua-
: ' ' tion of heat flux on implicit runs. If
ALPHA = 1.0, backward difference occurs;
-if ALPHA = 0.5, mid difference occurs;
if ALPHA = 0 it is set to 1.0; if ALPHA
<0.5 it is set to 0.5.

(]

26-30  DTMXA ' F5.5 ‘Temperature Solution Tolerance. A~
: ' solution is reached when all temperatures
change less than DTMXA on a given iter-
ation. When =0, set to 0.01

31-35  ORP . F5.4 Overrelaxation parameter for implicit
: solution. Set to 1.0 if 0.

. 36-45.  SSTEST F10.9 Steady state test. Steady state is reached

' ' a ‘ when all temperatures change Tess than
SSTEST on a given iteration; if SSTEST =
0.0, 1t is set to 0.0001

46-55 IPASS 110 Max imum number of iterations permitted
_ ' to reach steady state; if IPASS 0,
it is set to 10000.

77



5.2.3 Network Data Block

The "NETWORK DATA" block contains the information required to
describe the thermal network. ' The information is input in four subordinate
bTocks with the conductor block containing four additional subordinate blocks

as—shown—in TabTe—III—The—foTTOWTng—subordTnate—bﬂockS‘are‘tont1nued in—the
NETWORK DATA block: ,

$  NETWORK DATA

+  CINITIAL TEMPERATURES
+  CAPACITANCES.
+ - CONDUCTORS -

"' CONDUCTION'
'FLOW'
"RADIATION'
* CONVECTION'

+ . PABSORBED HEATS

The bTocks headed by + may be input in any order and those enclosed in apostro-
phes may be in any order but must all be contained in the conductor block. Any
block or subordiante block not required may be omitted. A description of the
input requirements and options for each of the blocks is described below.:

5.2.3.1  Initial Temperatures
The 1n1t1aT temperatures are supp11ed in the block headed by

+ INITIAL TEMPERATURE

The format for input of the 1n1t1a1 temperatures is an inteqer or a group of

integers, representing node numbers followed by an equal sign followed by the

specification of the initial temperature. Thus, the numbers on the left side

of the equal specify node numbers and numbers on the right side spec1fy
temperatures. Severa] ‘options are available for both sides.

The option for spec1fy1ng the node numbers on the Teft of the equal -
sign are described beTow :

OPTION 1: SingTe input

The 1nput format is:

NN =TI
where NN ﬁ‘The node number-
'TI = the node 1n1t1a1 temperature

If NN is a negat1ve 1nteger the node is a boundary and no ‘calculation will be

made to change the temperature Thus, it will remain at the initial value, TI

throughout the problem. If an integer is supplied instead of a real number, it
spec1f1es a time dependent curve which describes the temperature of node NN as

78



a function of time. _
| OPTION 2: | Multiple input sepakated by commas
TheefnpUt format is:
NT, N2, » NN =TI

where N1, N2, ---NN = the node numbers with initial
temperature, TI

As many node numbers as desired by be supplied in this mannef (see Section
5.2.1 for rules on continuation cards, etc.). The node numbers, N], N2 ---NN,
may be input in any random order. - :
OPTION 3: - "Input of a group of sequential nodes

The 1nput format is:

N1 thru N2 TI

where N1 is the start1ng node number of the group -

N2 is the final node number of the group

This option means all nodes between and including N1 and N2 are assigned a
value of TI. NI may be either smaller than, larger than, or equal to N2.

It may be an integer or real as described on Option No. 1.

OPTION 4:- Input of a group of nodes with equa1 spac1ng between
. . 'the numbers . S

The input format is:

N1 thru N2 by N3 = TI

where N1 = the starting node number of the group
N2 = the final node number of the group
N3 = the integer spacing for:the‘numbers between the

starting and final numbers
Using Option 4, N24N1 must be an integer multiple of N3

- A Some 111ustrat1ve examples of the 1nput for the 1n1t1a1 temperatures
' are shown in Table IV,

5.2.3.2 Thermal Capacitanéés

The thermal capac1tances “for the temperature nodes are input in the
b]ock headed by: o

79



.  TABLE IV |
EXAMPLES OF INPUT FOR INITIAL TEMPERATURES

INITIAL TEMPERATURES

1= 50, , . Node 1 is initially at temperature
-3 =_44$§.69 : | * Node 3015 a.boundary at -459. 69

2, 4,5 = 75. ~ * Nodes 2, 4, and 5 initially at 75.

6 = 11 ‘ : | * Node 6 temp supplied on curve 11.

7=62. /8 43. /9 = 77 * Initial temperature of nodes 7, 8,
' : ' ' and 9 all supplied on the same
card.

10 thru 19 = 102. * Nodes 10 thru 19 all have initial
: ' temps of 102.

51 thru 55 = 21 ' * Temperature vs. time for nodes 51
S - thru 55 supplied on curve 21.

40, 42 thru 45, 74 = 100. * Initial temperatures .of node 40,
D : 42 thru 45, and-47 are 100.

22 thru 38‘by-2 = 57. * Temps for even nodes between 22 and
- 38. e .

20, 21 thru 39 by 2, 56

“thru 60 = 66. * Temps for node»20;-odd>nodes between
. ' 21 and 39 andg56'thru 60 =66.

80



+ CAPACITANCE

~‘which is subordinate to the NETWORK DATA block. The format for input of the
thermal capacitance is specification of the node numbers on the Teft of an
~equal and specification of the capacitance on the right of the equal. The
.options for specifying the node numbers are the same as those for the initial
temperatures described in section 5.2.3.1. The values for capacitance are
specified .to the right of the equal in either one, two or three values. Any
of the values (whether one, two or three values are supplied) may be integers
or real numbers (containing decimals). When integer values are supplied, each
_ identifies a tabulated curve to be interpolated during the run. An integer
for the first value to the right of the equal identifies a curve which is a
function of time. Integers for the second and/or third values indicate curves
to be interpolated as a function of the node temperature. Any combination of
one, two, or three numbers,any of which may be real or integers, may be input.
In the preprocessing phase (problem setup) all real numbers are multiplied
together. In the processing phase (the problem analysis) real values are
obtained from the curves identified by integers and multiplied times the constant
values to obtain capacitances on each iteration.

Some examples for capacitance input are shown in Table V.-

5.2.3.3 | - Thermal Conductors
Therma1‘conductors are input in a block headed by

+ CONDUCTORS

which is contained in the higher level § NETWORK DATA block. The + CONDUCTORS
blocks data is contained in four subordinate blocks headed by 'CONDUCTION',
"CONVECTION', 'FLOW', and 'RADIATION', each containing the input for the type
of conductor indicated by its descriptive head1ng Some of the general rules
wh1ch apply to conductors are:

(1) A conductor number must be unique regardless of the type
of conductor. That is, a conductor number used in one
block cannot again be used in that b]ock or any of the’
other three blocks.

(2) Conductor numbers do not have to be 1nput in any particular
order. Also, they do not have to be numbered sequentially
-although sequent1a1 numbering is most eff1c1ent from a
-space utilization standpoint.,

(3) The four conductor subordiante blocks may be input in any

' order as long as they are within the +"CONDUCTOR' heading.

(4) The headings for each of the conductor subordinate block
consists of their name enclosed in quotations as follows:

: (a) 'CONDUCTION'
(b) 'CONVECTION'
(c) 'FLOW'
(d) 'RADIATION'-
: The nine general rules previously given for input also app]y
The input format for the conductors consists of connection
~identification numbers (conductor numbers, and nodes connected) on the left
side of the equal and specifications for determining the conductor value on
the right of the equal. The options for specifying connections identification

81



TABLE V

EXAMPLES OF CAPACITANCE INPUT

+ CAPACITANCES

-
1,12,13
3 THRU 10
12
13 THRU 17 BY 2
14 THRU 18 BY 2
19 THRU 25,31 THRU 35

26 THRU 30

In" the comments above,

c(N) o =

CURVE(M,T(N))

CURVE(M,TIME)

= .35 * C(1)=.35 .

= .47,.06,.53 * ¢(11)=C(12)=C(13)=.47X.06X.53
= .61,.27 * ((3)---C(10)=.61X.27

= .32,62.4,22 * ((12)=.32X62.4XCURVE(22,T(12))
= .32,12,22 * (13)= c(15 =C(17)=.32XCURVE

B * (12,T)XCURVE(23,T)
= .07,12,.5 * c(14) C(16)=C(18)=(.07) (CURVE
. - “* (12,T)X.5

= .57,12 * c(14)—--c(25) c(31)---c(35)

' * = 57XCURVE(12,T)

= 41,.06,70. * (26)---C(30)= CURVE(41,TIME)

* . X.06*70.

= 41,5.3 * ((36)=CURVE(41,TIME)X5.3

= 5] * * (37)=CURVE(51,TIME) :

= 61,12,22 * ((38)=CURVE(61,TIME)XCURVE

- * (12,T(38) ) XCURVE(22,T(38))

= 61,12,.76 - * ((39)=CURVE(61,TIME)XCURVE
. * (12,7(39))X.76

= 61,70.,22 * (40)=CURVE(61,TIME)X70.X

: ' * CURVE(22, T(40))
= 61,12 * C(41)= CURVE(61 TIME)XCURVE
’ *

(12 T(41))

Capacitance of node N

the interpolated va]ue of curve M at-the temperature
of node N

~ the interpolated va]ue of curve M at the problem
time ,

~indicates mu]tip]ication

82



are -the same for all four conductor blocks and are similar to those for
specifying node numbers in the + INITIAL TEMPERATURE block except the numbers
are input in groups of 3. These three numbers are conductor number, node
connected, node connected. The options for specifying the conductors

values are numerous and vary depending on which of the four subordinates
blocks the input is in. The various options for connections identification
and connection va]Ue specification are described below:

Conductor Connections Identifications

The connections identification for the conductors are input
on the left of an input equal sign and they identify the conductor number and
nodes connected. The options are the same for these identifiers (left side of
the equal) for all blocks subordinate to the +CONDUCTOR heading. The options
for connection identifications are described below:

OPTION 1: Single connection input

The input format is:
'NC, N1, N2 = VALUE

Where NC = the conductor number
. N1,N2 Nodes .connected _
VALUE The specified value of the conductor (many
options are avaiable depending on the type of
conductor

The order of input. of ‘N1 and N2 is 1mportant for the'FLOW' block and 'CONVEC-
TION' block. .

OPTION 2: Mu1t1p1e input separated by . commas
The input format is:

NC],N]],N2],NC2,N12,N22,---NCh,N1n,N2n, = VALUE

Conductor numbensA _
First set of nodes connected

Where NC1,NC2 ----NCn
N11, N2

:N1n ,N2n nth set of nodes connected

M

Any option for determ1n1ng VALUE may be used which is ava1ab1e in the input
block under consideration.

OPTION 3: Input of a group of sequent1a11y incremented
’ connections :
The.input format is:

NCT,N11,N21  THRU NCn,NTn,N2n = VALUE

83



Where NCI the>start1ng conductor number

'N11 = the starting node number for side 1
" N21 = the starting node number for side 2
NCn_ = the final conductor number
Nin = the final node number for side 1
~N2n = the final node number for side 2

For this option, NCn-NC1 must equal NIn-N11 and N2n-N21. ATl the options
~available for VALUE are applicable here. '

v OPTTON 4: Input of a group of connections’ sequent1a11y
' " incremented by an input integer
" The innut format is:

NC1,N11,N21 THRU NCn, N]n ,N2n BY IC 11,12 = VALUE

Where NCI =~ the starting conductor number
- N11 = the starting node number on side 1
N21 = the starting node number on side 2
NCn = the final conductor number
"NIn = the final node number on side 1.
" N2n = the final node number on side 2
IC- = the increment for the conductor numbers
"I1 - = the increment for the node numbers or side 1
122 =

the increment for the node numbers on side 2
_'Forvthjs,opfion;.the‘fo11owing're1etions must hold: | |

. Necn_ - NC1 = Nln_- NI1. = N2n - N2l
T IC T

When I, = 0, Nyn must equal Nyl for the nodes connected

'CONDUCTION' BLOCK

Numer —~ options are available specifying the conduction
conductor values or methods for determing their values. These specifications
are input on the right of the equal sign with any of the connections

identification options discussed above on its 1eft The options for conduction
input are described be]ow ’ o i

OPTION 1 Constant Conductor

The 1nput format 1s ,
NC, N1, N2 = CONST .
Where NC,N1,N2 "= Connect1ons ident1f1cac1onninput by any
o -~ of the available options
CONST -~ = the constant value of the conductance

_ 0PT10N12= lCdndUct1on in homogeneous mater1a1 whlch is tem-

84



perature dependent. Input by a temperature
dependent curve with a constant multiplier
The input format is: '

NC,N1,N2 = AX, NK (TM) .

connections identifications input

by any available option

AX = the constant portion of the conductance
typically A/X, where A = -conduction area
and X = distance '

Where NC,N],NZ

 NK(TM)

= a temperature dependent curve number
which is interpalated with temperature
TM. Normally this is a thermal con-
: ductivity curve
™ = Mean temperature between T(N1) and T(N2)

= T(N1) + T(N2)
2.0 .

OPTION 3: Conduction in non-homogeneous'matekiai where one
: material is temperature dependent and one is not.

(A) N1 is the node containing temperature'dependent
thermal conductivity.

The input format is:

" NC,N1,N2 = AXT, NK(TM), KAX2

connections identification input by .

Where  NC,NT,N2
: any of the available options

AX1 =_ A/X for node N1
NK(TM) = thermal conductivity curve for the
materials of node N1 interpolated on
each iteration at the temperature of NIl
KAX2 =

'the constant value of KA/X for node N2

- The conductance for each iteration is obtained by

U (NC) = ' 1

1 o1
AXT K{TNT) - KAX

(B) N2 is tﬁe node containingAtemperature depen-
.dent thermal conductivity '

- The input format is:

85



" NC, N] N2 = KAX] ,AX2 NK(TN2)

Connertwons identification input

1]

Where  NC,NI,N2.

by—any—of—the—ava-ilable-options-

KAX1 = Theé constant value for conductance,
' KA/X for node 1
AX2 = A/X for node N2
NK(TN2)= the thermal conductivity curve number

for the material of node N2 1nterpo]ated :
.at temperature of node N2

, 0PTION_4: Conduction is a non-homogeneous material with that
~of both nodes being temperature dependent

The input format is:

NCNT.NZ = AXT,NK(TNT),AX2.NK(TNZ)

where‘_ NC,N1,N2 Connections identifications input by

any of the available options

- AX1 = A/X for node NI v
- NK(TN1) = the thermal conductivity curve number
. of node 1. Material 1nterpo]ated at
' _temperature TNT -
AX2" = .A/X. for node N2 :
NK(TN2).- - = the thermal conductivity curve number

~of node 2. Material wh1ch is interpolated
at temperature . :

The’conductance,js:determined,on each iteration when;using,this¢option by-

ey =

+

] 1
(AXT)k(TNT) (AX2)k(TN2)

OPTIONVS Conductance is a function of t1me :
: The 1nput format is: .

NC,NT,NZ = NKAX :(TIME)

Where  NC,N1,N2 = connect1ons 1dent1f1cat10n 1nput
by any. of the available options

-NKAX(TIME) = An iteger’ spec1f1y1nq the value of
E the conductance as a funct1on of
TIME :

Some examp]es of the 5 options for spec1fy1ng the conductance values for
conduction are given 1n Tab]e VI.

86 -



| EXAMPLES

' CONDUCTION'
1,5,6=1.3 - o *
2,6,7=.8,62 o
- *
5,7,8=.19,62,11. . -
| .
7,20,21=11.,.19,62 *
6,,7,20=.19,62,.31,72 *
9,21,8=11 . x

In the above

TABLE VI _
OF CONDUCTION INPUT

CONDUCTOR NO.1 HAS A CONSTANT VALUE OF 1.3

A/X=0-.8;K INTERPOLATED AT (T(6)+T(7))/2. ON
EACH ITERATION; CONDUCTANCE = KA/X

A/X(7)=.19,K(7)= CURVE(62 T(7)))
KA (8)=11.

KA/X(20)=11.;A/X(2])=.19,K(2])=CURVE
(62,7(21))

A/X(7)=.19,K(7)= CURVE(62 T(7))A/X(20)=.31,
K(ZO) CURVE(72 T(20)) :

CONDUCTANCE 'NO -9 GIVEN AS FUNCTION OF TIME
ON CURVE T1

A = vArea for conduction

K | - Therha] conductivity

X N = Conduction Distance

_CURVE(M,f(N)) = Interpolation of tabulated curve no. M at the

temperature of node N,T(N)

87



CONVECTION' Block -

- The options which are available for determining cohductor'va1ue§ for
convection heat transfer are primarily options for determining the convection

heat transfer coefficient, h, since the conductor values is hA, A being the

~constant heat transfer area for convection.
for all the convection options.

; A is input as a constant value
As described in Section 3.1.3.1 options -

available for calculating h are (repeated here for clarity)
Option 1: h 'for-flow'in a tube
(A)  LAMINAR FLOW (Re < 2000)

- .0155 -

h_';% 3.66 .»F1.%_1_.l+ v Fe .:KJ/3
RePr " D" U 'RePr »p)'
(B) -TRANSITION,FLON (2060 < Re < 6400)
h= %— 'y"[.v]16i'(Re'2/3 - 125) (Pr)]./3] i
(c) T.leRB.:ULEvNT' FLOW (Re > 6400) |
~h ?:.023 %-,Re'8 (Pr)]/3'
Optioh 2:"-‘SI.t’P1r~2/3 = f‘(Ré) or Nu = f(Re) Re_Pr]/3>
h =X [f(Re) Re Pr'/3]
Option 3: Heat tkqnsfef coeffiéient.is a funcfion of flow rate
R,
Option.ﬁ; fHeat’Tfansfer Coefficient is a functibﬁlbf time

h
Thé,ndmenclature

h

c

D

(1) |
fbrﬁthe above'equatiOns is as follows:
‘the ﬁonvection heat transfer coefficient

the thermal conductivity of the fluid

,ﬁ-:the_hydrau11c_d{ametér of the flow péSsagé

88



X = . the flow length from the start of the tube -

Ré‘ = Reynolds number
Cpr = Prandti's number |
Fi = : -Lahinar»F]ow_fu11y developed factor (input)
F2 - ~ Laminar Flow entry length factor (input)
f(Re) = A tabulated curve of ST(Pr)2/3 VS Re.or

' NU/(Re-Pr]/3) vs Re
f(t)

A tabulated curve of h vs time

The MOTAR input for ‘the convection block is headed by the input of
"CONVECTION'. The information needed for the various options is described
below. - .

Input for Option 1:

NC, NF, NT -="AHT, NTUBE, F1,F2

where

NC =  Conductor number
NF = fluid Tump number

NT = tube Tump nunber

MHT = Area for heat transfer

NTUBE = - tube number for finding flow rate énd fluid properties

F1' - Eahinar fully deve]oped-facfor ' |

Fe = ;Laminar entry length factor

The values for F1 and F2 are assumed to be 1.0 if they are omitted.

Input for Obtion 2:

NC, NF, NT = AHT, TUBE, CURVE (Re,ST Pre/3)

_Where‘symbols are the same as above except

CURVE(Re,STPrz/B) = a type 4 curve number which gives
sTPR?/3
~data desqriptipn).

as a function of Re (See Section 5.2.4 for curve

89



_ Stb_ Stanton number

~Re Reynolds number

Input for Oﬁfﬁon 3:
~ NC, NF, NT = AHT, TUBE, CURVE (w,h)
Where symbols are the same as for Option 1 except

CURVE'(W,h)“ = a type 3 curve number of a ‘curve which
- ' -gives h as a function of w in the tube

1

h "heat:transferAcoefficient'

_ : W flow rate of fluid in the tube
Input for Option 4: |
NC, NF, NT = AHT, CURVE (t,h)

Where symbols are the same as those for Option I'except

1]

A type 1 curve number of -a curve which

CURVE (t,h)
oo : gives h as a function of t

~h- | heat transfer coefficient

time

-t

A1l of the options previously descr1bed‘for group input of the‘conneét1ons
identification (NC, NF, NT) are app11cab1e to convection conductor input.

'"FLOW' Block

- The inputs to define the flow conductor connections and methods
for their calculations are supplied in the conductor subordinate block headed
by 'FLOW'. Flow conductors are "one-way" conductors des1gned to simulate the
flow of fluid in a tube. The conductors can be utilized in, other applications
~however. The flow conductor is calculated by

Usj = W5 Cpy
Where Ui' = the conductance from node -i to node J
| J (but_not back the other direction)
W = the fluid flow rate.
CPi = .the fluid specific heat

90



The input for flow conductors is the same as for the other conductors on the

left of the equal sign. That is, the same options apply for the connections

identification input. The input which spec1f1es the options and values to

be used in.calculating conductor values is supplied on the right of the

eq$?1 It consists of four input values: KODEF, FVALUE, KODEC, CVALUE as
fo ows :

NC,NFL,NTL - = KODEF, FVALUE, KODEC, CVALUt
| Where 'NC'l = conductor number
| NFL =  fluid 1umb humber
NTL . = tube lump number
KODEF - fluid flow code
FVALLE =  value or Tocation of the value of
RPTE o flow rate v
o KODEC = specific‘heat code |
CVALUE = value or ]ocat1on of the value for specific

heat

The method for determining the flow rate is specified by KODEF and FVALUE.
~The flow options are described in the tabulation below:

KODEF FVALUE

1 ! Constant value specifying the flow rate

2 Curve number of a curve which supplies flow as
a function of time

3 ~ ~ Tube number in flow network data from which

flow can be obtained

- The method for determining the specific heat is spec1f1ed by the values of
KODEC and . CVALUE. The various opt1ons are described in the tabulation

below: .

KODEC © CVALUE

1 - Constant value for the specific heat
-2 - . Curve number of a curve which gives specific
. ' heat as a function of temperature of NFL
3 ' - Flow system number from which- the f1u1d data can
S be found

_ Any combination of KODEF/FVALUE can be used w1th any comb1nat10n of the
KODEC/CVALUE .



'RADIATION b10ck

The rad1at1on conductor connections and va]ues are spec1f1ed in
the conductor subord1nate block headed by , .

, "RADIATION' : - ' - '
TZERO==XXX. XX ~ (XX = numbers)
- SIGMA=XX.XX _ 4

- the temperature at.absolute zero for
‘the problem temperature scale (always
negative or zero)

‘Where . TZERO

the Stefan-Boltzman constant_in the
problem units

SIGMA

The conductor inpdts'eonsists of the. connections identifications on the‘
left of the equal sign and specifications to identify values of FA on the
right of the equal. . The options for the connections are the same as all
-the other conductor options and have been previously discussed in this
section. The options for specifying the values for FA are described below

Option 1: Constant FA |

Input format:
NC, N1, N2 = FAq,
Where . NC. = Conductor -number

Nodes connected

N1, N2
FA12.dV= FA value between nodes 1 and 2 (constant)
Obtion-Zt Constant A w1th temperature dependent supp11ed on
S .a- curve ' .
"tinput‘fOkmat:i
"NC, N1, N2 =._A],/‘_NF]2 (T(NT))

Where VA]- = radiator area for NI
NF12(T(NI)) = temperature dependent curve which supplies
o F from N1 to N2 as a funct1on of T N]?

Option 3: 'CurVe of FA'as a function qf time-
Inputdformat: o
©NC, NT, N2 = NFA{,(TIME)

92



Where - NFA]Z(TIME) = a-curve number which supplies FA
S , as a function of time

.The FA]2 is determined by one of the three opt1ons above. The conductance is
then determ1ned by

_l u]2 = (SiGMA)(FA]Z)[(T] - TZERO)2+(T2 - TZER0)?) ]
' [(Ti - TZERO) + (T, - TZERD)]

5.2.3.4 Absorbed Heats

‘Absorbed .and/or internally generated heat for each node 1s 1nput
in the block headed by :

+ ABSORBED HEAT

This block is subordinate to the $ NETWORK DATA block. The general format

for the input consists of (1) the identification of the node numbers on the
left of an input equal sign and (2) specification of the option to be used

to obtain the absorbed heat for the node on the right of an equal. The options
available for identification of node numbers on the left of the equal are the
same as those for initial temperatures as discussed in section 5.2.3.1.

The methods for calculating absorbed heat are specified to the
right of the equal sign by either one, two or three numbers separated by
commas. The first number may be either real or integer. An integer
specifies a time dependent curve number which is interpolated on each
iteration. A real number is simply a multiplier for other values if others
exist. The second number may also be input as a real number or an integer.
An integer for the second number specifies a temperature dependent curve
number which is interpolated at the node temperature on each iteration. A
real number for the second number is a constant multiplier. The third
number, if it exists, must be a real constant and is a multiplier.

_ The format for specifying the absorbed heat using the various
available options are described below.

- Option Nd.l]: Absorbed heat is one constant two constants or
_ ‘three constants
The input format is
NN = QI, ALP,A

where NN =  the identification of node numbers by any
o available option discussed in section 5.2.3.1.

_input real constants which are multiplied
together to obtain absorbed heat. The second
and third constants are optional; i.e., there
may be one, two, or three constants

(]

QI,ALP,A

93



Option No. 2: The absorbed-heat is a function of time with or
without constant multipliers

The input format is

'NN-= NQI(TIME), ALP,A"

Where
NN. = The identification of node numbers by any available
A » ~ option
NQI(TIME) ~ = an integer specifying a curve number of a time
‘ dependent variable
ALP, A = Input real constants, and are both optional; i.e.,

either zero, one, or two real constants may be
input

The absorbed heat is determined on each iteration by interpolating the
" NQI curve and multiplying the value by ALP and A.

Option No. 3: The absorbed heat is a function of temperature with
: ’ or w1thout constant multipliers.

The 1nput format is

NN = QI NALP (T(NN)),

- Where
NN = The identification of node numbers by any available
option -
NALP(T(NN)) = An-integer specifying a curve number of a tempera-
ture dependent curve
QI,A .= Input: real constants, A is optional but, QI must

be supplied (May be.1.0 if not needed)
The absorbed heat for nodes NN are determined by interpolating.curve NALP
at temperature of node NN on each iteration, mu1t1p1y1ng the va]ue by QI
and by Aif ava11ab1e

Opt1on No 4: The absorbed heat is a function of.both temperature
and time with or without a constant multiplier..

The inpdt format is

N = NQT(TIME),‘NALP(T(NN)),A

.94



Where NN- = The jidentification of node numbers by any of
' o the available options

NQI(TiME)- '

= An integer specifying a curve number of a
curve of a time dependent variable
: NALP(T(NN)) = An integer specifying a curve:number of a
C curve of a temperature dependent variable
A = An optional real multiplier

The absorbed heat is determ1ned by 1nterpo]at1ng curve NQI at time and NALP
at the temperature of node NN on each 1terat1on, multiplying the interpolated
values and multiplying this product by A if it is available.

The absorbed heat calculated by any of the above options is
added to that already calculated by some other means. Thus, a user may .
specify as many absorbed heat curves as required.



5.2.4 " Flow System Data

If the problem being analyzed by MOTAR requires a pressure/flow

anatysisy—the—data—needed to—descr1beﬂthe—flOW—system—qS—qnput_qn_the_block
~ headed by the t1tle,.f '

$ FLOW SYSTEMS

The input values in this block may be in any system of units, but the units
must be consistent throughout both' the thermal and fluid portions of the
problem. In order to permit this, the user must supply the’ grav1tat1ona1
constant 1mmed1ate1y following the heading as follows:

GC
or GC

32.]74
3.2174F1 (For feet and seconds)

i n

TableVII gives values of GC for various units of length and time.
The $FLON SYSTEMS block data is conta1ned in the following
subord1nate blocks: _

$ FLOW SYSTEMS

+ SYSTEM = 1 (KODE 1)
. "PARAMETER'
~ 'FLOW NETWORK'
'SUBNETWORK = 1°
. 'SUBNETWORK = NSN''
'FLUID LUMP DATA'
'PUMP!
- 'VALVES®
+ SYSTEM = 2 (KODE 2)
' PARAMETER'
'FLOW NETWORK'
'SUBNETWORK = 1°
'SUBNETWORK = NSN'
'FLUID LUMP DATA

'PUMP"
~'VALVES'

4 SYSTEM = 3

-étc..

96



- TABLE VII VALUE OF GC FOR VARIOUS

PROBLEM UNITS

UNITS

| GC
MASS | FORCE LENGTH TIME
LB LBm In. Sec 386.1
Min 1.390X10°
He 5.004%10°
Ft. Sec 32.174
| Min 1.1583110°
Hr 4.1696X10°
Yd. Sec 10.725
Min 3.861x10%
. * Hr 1.3899x108
GéKM dj;e' . Centimeter ASec 1.0
| Min 3600,
y ! ‘Y Hr 1.296x10’
KILOGRAM | Newton | Centimeter | Sec 1 x 1072
| Min 36
Hr 1.296X10°
Meter Sec 1.0
1 |  Min 13600,
 % Hr 1.296X107

97




'f.The $ FLOW SYSTEM' b]ock may be omitted 1f no flow ana]vs1s is requ1red
' A flow system is defined here as a single set of interconnected

tubes which contain a fluid which can be described by a single set of properties.

Any—number—of—flow-systems—may—be—analyzed—in—the—same— prob]em—but each
required a separate set of data headed by the card .

+ SYSTEM.= SN (KODE)

Where SN

an integer describing the system number

a cdde'indicating whether the system is one
phase flow or two phase flow

KODE

The system number must be unique for each system but consective numbering
isn't reugired. For the current version of MOTAR, the two phase flow
capability is not included and thus, KODE is always a value of 1. Four
subordinate blocks are always required for each system. These b]ocks,

which are 'PARAMETERS', 'FLOW NETWORK', 'FLUID LUMP DATA', and 'PUMP'

supply 1nformat1on wh1ch is always requ1red to define a system. The 'VALVES'
and the 'SUBNETWORK' blocks are included only when they supply additional
information. The input required for each of the flow systems subordinate
blocks is descr1bed below 4

5.2,4.1 * Parameters
The parameters block must be supplied for each flow system.
This block is headed by the card

"PARAMETERS '
--and contains the foi]bwing 1nf0rmatioh:

1. Specification of the following fluid propert1es
(a) thermal conductivety
(b) density :
(c) viscosity
(d) specific heat
2. The node number and pressure va]ue of the reference
K pressure node.
3. Parameter values describing the character1st1cs
- for the pressure-flow solution.:
- 4. When a numerical solution rather than the direct
' ~solution for the pressure equations desired, a
solution tolerence is required. This also a key
input indicating a numerical solution is desired.

The above items are input by supplying a variable name on the left of an
equal and the specification of its value on the right. The following is a
descr1pt1on of the variable names -

Fluid Properties
KT : F1u1d Therma] Conduct1v1ty

98



~ RO : Fluid Density
- MU : Fluid Viscosity
CP : Specific Heat

The value for each of the fluid properties may be specified as a constant
by supplying a real value or it may be specified as a temperature dependant
curve by supplying the value as an integer. The integer value must be
the curve number. - For examp]e, if all the va]ues were constant they would
be specified as,

KT = .25 /RO =67./ MU =.137 / CP = .31

If instead, the thermal conductivity and viscosity were supplied by a
temperature dependent curve, the values would be supplied by,

KT =32/ RO =67. /M =42/CP= .3
These va]Ues must always be supplied for each system.
~ Reference Pressure Specification
The pressure at the pump inlet node for a closed system or

for the system outlet for an open system must be spec1f1ed This is
supplied 1n the following format :

P(NN) = VALUE

an integer representing the pressure node

Where NN
: number

VALUE = a real value represent1ng the pressure
' value of the node
%For‘exahple: |
P(10) = 14.7

indicates pressure node number 10 is the reference pressure
node number with a value of 14.7.

Pressure-Flow Solution Parameters

Four optional variables may be supplied by the user in the
'PROPERTIES block to define certa1n characteristics of the solution.
These are described below:

MPASS:  An integer specifying the number of temperature
. iterations between balancing of the pressures and
flow rate. It is set to one if not supplied.

MXPASS : The méximUm number of tries to balance the pressures

and flow rates for éach iteration. Routine sets
to. 100 if it is not supplied. ‘

99



TOL:  The tolerence for terminating the pressure/flow
"+ - " balance. When the fraction of change of the flow rates
' in all the tubes is within TOL, the solution 1s reached.
. If TOL is not supplied, it is set to ‘0.001.

A: "_An averaging factor to he]p improve the convergence rate
for flow systems that are very nonlinear - ie, system

~with turbulent flow or head losses. It must be a
. value qreater than 0.0 and less than
The averaging factor is applied to each tube f]ow rate
~ following each pass. through the pressure/f]ow balancing
- loop as fo]lows

wnew = A wnew * (]';A) wo]d

~ If A is not supplied, it is set to 0.7.
FLOW: The initial system total flow rate..

EPS: The to]erance for. 1nterat1ve solution of the pressure
f1ow 11near s1mu1taneous _equations

Numerical Solution for Pressure Equations

- For each’ pass ‘through the pressure -flow balance loop on each
temperature iteration, a set of linear simultaneous equat1ons are set up
for each subnetwork. If the variable EPS is not supp11ed in the properties
data, the solution to these equations is obtained using the Gauss-Jordan
Elimination procedure. If the variable EPS 1is supplied, the equations are °
solved using Gauss-Siedel iterative method. The solution is then terminated
when the change in pressure from one Gauss-Siedel iteration to the next is
within EPS for all pressure nodes in the subsystem. A

5.2.4.2 Flow Network and Subnetworks

The pressure/flow network is described by the flow network
blocks and its corresponding subnetwork blocks for each flow system. The
flow model consists of the pressure nodes, the flow tubes connecting the
nodes and the fluid temperature nodes in each tube. (See sections
3.2.1°and 5.1.2 for descriptions of networks, subnetworks and model build-
_ing methods). For the current version of the routine, the system net-
work consists only of the inlet tube, the outlet tube and any other tubes
in series with the inlet and outlet. The remainder of the system is con-
tained in the subnetworks. Each subnetwork containes a set of interconnected
tubes and are separated by network tubes. :

The 1nput requ1rements for each tube ‘are the same whether the
the tube is defined in- the network or subnetwork "The .input format is.
as fo]]ows for each tube S

NT, NP] ‘NP2 = (NF1, NF2 --- NFN)

100



Where " NT

= the tube number“ -
NP1 = the pressure node on the upstream side of NT
NPZ. = the pressure node on the down stream side of NT
NF1 —-5 NFN = all the fluid temperature node humbers coritained

in tube NT. If the user desires to control .the
~ conductor in the programming blocks, a blank or
" zero can be . input between the ( ). :
The heading card for the network data is,
'"FLOW NETWORK'

The heading card for the subnetwork data is,

'SUBNETWORK = NSN' |
- GIN = NG
NSPR = NN

Where NSN = subnetwork number (must be unique)

NG = tube number for the tube carry1nq f]ow into
: : the. subnetwork
NN - = the pressure node number at the subnetwork
5.2.4.3 Fluid Lump Data

The flow. characteristics for each fluid temperature node
contained in the system are supplied in the subordinate block headed by,

'FLUID LUMP DATA'

The fo]lowihg information is supplied for each fluid lump:

1.. Fluid wetted perimeter

2. Fluid flow cross sectional area (perpendicular) to the
direction of flow .

3. Fluid.Lump length : :

4. Method for calculating friction factor

5. Number of velocity head losses

6. Friction factor coefficient

The input format for the fluid']ump data is:
NFL = WP, CSA, FLL, FFM, NKL, FFC

Where ~ NFL = the fluid Jump number (integer)
' WP = the wetted perimeter for NFL (real)
CSA = the cross sectional area for NFL (real)
FLL =

the fluid lump length for NFL (real)

101



the friction factor method (integer)

FFM =
NKL = the number of head losses (integer or real)
FFC = the friction factor coefficient (real)

The following ept1ons are avaiTable for FFM;NKL—and—FFC:

0 or not Supplied,_the friction factor is calculated
internally for the full range of Reynolds
numbers using equations 50, 51, and 52.

If FFM

i

If FFM-# 0, the friction factor is calculated internally for
laminar flow using equation (50). FFM is then a
curve number for a curve of friction factor VS
Reynolds number which is interpolated at values
of Reyno]ds numbers above 2000. -

If NKL = 0 or not supplied; the head loss is 0 0

If NKL>= a real constant, that is the value of.the head loss

Tf NKL =,athen—zero‘integer, it fs,fhen a curve nimber of a
' “curve of Head losses VS Reynolds number

If FFC = 0, or not supplied, FFC = 1.0

If FFC'= a non-zero real number , then FFC = the real number.

FFC'is applied to the fr1ct1on factor in equat1on (49).

Several group input options are available for spec1fy1ng the f1u1d 1ump
numbers NFL on the left of the equa1 These 1nc1ude :

(1) Random f1u1d 1ump numbers separated by commas
V NFL], NFL2, - - .- NFLN=WP, CSA, FLL, FFM, NKL, FFC
~(2) A hqmber of 1umps separated by a constant “increment:
. NFL1 THRU NFLn BY INC = WP, CSA, FLL, FFM'---;-. |

Where NFL1 is the starting fluid Tump number of the group
NFLn is the ending fluid Tump number of the group
INC - is the increment between lump numbers. (If the
- "~ increment is 1, the BY INC may be omitted)

(3) Any combination of (1)-ahd'(2) above. This'inc]ddes
multiple inputs of option (2) separated by commas.

102



- 5.2.4.4 Pump‘Datai

. The total f]ow rate enter1ng each f]ow system is spec1f1ed in
the. pump data wh1ch is headed by the head1ng

'PUMP*

This block must always be supplied for each system. ~ Four opt1ons are -
available for specifying the entering flow rate in the 'PUMP block. These
are:

Constant entering flow rate

Entering flow rate a function of time ,

Flow rate a function of pump pressure rise as specified by

a tabulated curve :

(4) Pump pressure rise a function of flow rate as specified by a
polynomial curve

S — S~ .
W N —

'A description of ‘the input for these options is given below.
| OPTION I _:- Constant Entering Flow Rate
'The.input format is: | |

'NT1, LNS, VALUE

Where. . L o ' N -
: NTT - An integer specifying the first (entering) tube in
the system :
. LNS = An integer specifying the last (exiting) pressure
©~node in the system
VALUE =

A real number specifying the value of the flow rate
OPTION 2 5‘_EnterinQ‘F]ow Rate A Function of Time
The'tnput'tdrmat is:

 NT1, LNS, NCURVE

Where e o f : .
NTL = An integer specifying the tube with entering flow
~ LNS = An integer specifying the last (exiting) pressure
. node in the system
NCURVE = An integer specifying a time dependent (Type 1)
. f]ow rate curve :
OPTION 3 : F]ow Rate A Function of System Pressure Rise

Spec1f1ed by Tabulated Curve
The input . format is:

'NT1, LNS, NCURVE

103 -



:Where
NT

J-MC——
LNS

NCURV

OPTION 4

V: The inpu
NT
Where

~NT1
LNS

RO, AT, A2, A3, A4

Us1ng th1

Where W =

A0+A1 W+ A2 W

1 = An integer specifying the tube w1th'entering flow

-—An—1nteger specifying— the—ﬂast—tex1tnng) pressure
node in the system
E = An integer specifying a-curve number of a curve of
flow rate vs pressure rise (Type 5 curve)

Pump Pressure Rise A Po]ynom1a1 Function of Flow
‘ Rate : _
t format is:
1, LNS, A0, A1, A2, A3, A4

An integer specifying the tube with entering flow
An integer specifying the last (ex1st1ng) pressure
node in the system -

Curve fit constants for descr1b1ng the pump curve

S opt1on, the pump pressure rise is g1ven by:

2+ A3 W Aat

the_f1ow rate

5.2.4.5 Valve Data

The input data requ1red for each valve in a system is supplied

in the valve subordin

Three types of va]ves

ate block headed by;
"VALVES'

are currently ava11ab1e to the user. ' These types

are identified by . the following numbers:

Type 1 -

‘Rate Limited Va]ve The valve rate of movement is
proport1ona1 to the sensed_temperature error up to

jva maximum movement rate

Type 2 -

Po]ynom1a1 Valve : The valve steady state position is a
polynomial curve fit of the sensed error. A time constant

' e:'may be input if a time lag is desired.’ L 3

Type 3. -

"two is the minimum when the sensor temperature drops

SwitChing'Va1ve : The valve position is either the

‘maximum position. On side one, the valve position is

the maximum when the sensor temperature is above T1. Side .-

below T2, side one pos1t1on goes to the minimum and s1de'

“two to the max1mum

104



Any of the above three types may. be either one sided or two sided valves.

Also, the set point may be either a constant value or a- temperature: 1ump

number for Types 1 and 2. Thus, either types one - or two may be used as

(1) a single sided bypass valve for a cooling situation (radiator), (2) a

sin le sided bypass valve for a heating situation (solar absorber for instance)
%3) a proportioning valve. Type 3 valves may be used as an on-off

shut off valve, an off-on shut off valve, or a switching valve. -

The %eneral input format for each valve type consists of three
1ntegers on the left of an equal with 13 values on the right for rate limited,
17 values on the right for polynomial, and 11 values on the right for switch-
ing valves. The input values on the left are supplied in the following order:

1 - Valve Number: May be any unique 1nteger number for
S identification.

2 - Va]ve Class Code: (See Section 3.2.1 and 3.2.3 for descrip-
_ tion of Class) Only Class 2 valves are
available for the current routine configura-
tion. Thus, the valve class must be the
integer 2 :

3 - Vé]ve Type: 1 for bypass valve, 2 for polynomia1 valve,
' : 3 for- switching valve.

The 1nput va]ues on the: right are descr1bed be1ow for each of the three valve
types : : : o

Bypass Va]ve
: The Tist of var1ab1es on the r1ght of the equal must be supp11ed
in the fo110w1ng order:

1 - Enter1ng Tube Number : The tube number df the tube supolyinq
the flow to the va]ve

2 - Exiting Tube Number On Side 1 The tube number of the tube
Teaving the valve on the-side to be
opened when the sensed temperature error
becomes positive. .If the valve is one
sided and the characteristics of side 2
is desired (for instance, for a solar
absorber -bypass) this variable should

" be input as o. :

3 - Exiting Tube Number on Side 2 : The tube number of the tube .
: Teaving the valve on the side to be opened _
‘when the sensed temperature error becomes
-negative. If the valve is one sided and
the characteristics of the side 1 is desire
(for instance, a radiator bypass) this
variable shou]d-be set to O.

105




g In1t1a1 Valve Position For S1de One X1 (Shou]d-be

4
between XImax and. X1m1n ). The side 2
initial position is (1.0 - X1).

5 _Va]ve Operating Mode: If =.1, the valve operates normally

10
n
12

13

if = 0, the valve does not operate but re-.
mains in its initial input position, XI.

M1n1mum Position for Side One XImin : Must be greater than

0.0. The maximum position for side 2 will
be calculated by X2max = (1.0 -XImin).
XImin. must be less than Ximax.

Max1mum Position for Side One, XImax : Must be less than

1.0 and greater than XImin. The minimum
value for side 2 will be ca]culated by
(1. 0 XTmax)

: Sensor Lump For Side One or Set Point. For S1de 2 1 If this

variable is input as an integer it identifies
the side one sensor lump to be controlled to

~(a) the set point or (b) sensor lump supplied

for side 2 (next input). .If this variable is
input as a real number, it represents a set
point to which the side 2 sensor lump will

be contro]]ed

Sensor Lump For S1de 2 or Set Point. For S1de 1 : Iflth1s

Rate Limit : The

Geometric Factor :

variable is input as an integer it identifies
the side two sensor Tump to be controlled to

(a) the set point or (b) sensor lump temperature
on side one (previous input). "If this variable
is a real number it represents a set point

to which side 1 sensor lump will be controlled.

Dead Band: The dead band as def1ned in Sect1on 3.2.3.1 and

F1gure 4.

Rate Factor: The valve rate factor aSvdeffhed by Figure 4

and Section 3.2.3.1.

valve rate ]1mit as define by Figure 4
and Section 3.2.3.1.

(For a.valve class code of 2 only) The

value of _the variable E where AP va]ve =
E (W 2/x2) (See section 3.2.3.2)

106



Polynominal Valve

The list of variable to the right of the equal must be supplied
1n the following order:

1 - Enterfng'Tube'Numbef : The tube number of the tube sup01y1nq '
‘ the flow to the va]ve

2 - Exiting Tube Number On Side 1 : The tube number of the tube
: leaving the valve on the side to be
opened when the sensed temperature error
becomes positive. If the valve is one
sided and the characteristics of side 2
is desired (for instance, for a solar
absorber bypass) this variable should:
be input as o. :
3 - Exiting Tube Number on Side 2 : The tube number of the tube
' leaving the valve on the side to be opened
when the sensed temperature error becomes
negative. If the valve is one sided and
the characteristics of the side 1 is desirec
(for instance, a radiator bypass) this
: variable shou]d be set to 0.
4 - In1t1a1 Va]ve Pos1t1on For- Side One, X1 : (Should be
o : between XImax and X1m1n ) The side 2
“initial pos1t1on is (1.0 - X1).
5 - Va1ve Operating Mode: If =1, the valve operates normally
' if = 0, the valve does not operate but re-
mains in its initia] input position, X1.
6 - Minimum Position for Side One, Xlmin: Must be greater than
0.0. The maximum pos1t1on for side 2 will
be calculated by X2max = (1.0 -XImin).
XImin. must be less than XImax.
7 - Maximum Position for Side One, Xlmax : Must be less than
' 1.0 and greater than XImin. The minimum
value for side 2 will be ca1cu1ated by
_ (1.0-X1Imax) '
-8 - Sensor Lump For Side One or Set Po1nt For Side 2 : If this

variable is input as an 1nteger 1t identifies
the side one sénsor lump to be controlled to
(a) the set point or (b) sensor Tump supplied
for side 2 (next input). If this variable is
input as a real number, it represents a set
point to which the side 2 sensor Tump will

be controlled. :

107



9 - Sensor Lump ‘For Side 2 or Set Point For Side 1 : If this
variable is input as an integer it identifies
the side two sensor lump to be controlled to

(@) the set point or (b) sensor lump temperature
on side one (previous input). If this variable
is a real number it represents a set point

to which s1de 1 sensor lump will be contro]]ed

10 thru 15 - Po]xnom1a1 Curve Fit Constants Ao, Al, A2, A3, A4,
' : A5 : The steady state valve pos1t1on on s1de one is
given by (See Section 3.2.3.1)

x1ss= Ao + ATAT + A2 (AT)Z + A3aT3 + A4aT® + AsaT®

.16 - Valve Time Constant : The polynomial valve time constant as
‘ -described in Section 3.2.3.1. If a valve is desired -
with no time lag, a time constant which is small
compared to the problem time increment should be input
(Must be greater than zero) '

17 - Geometr1c Factor : (For a c]ass code of 2 on]y) The value of
: the var1ab1e E where

- 2
valve ~ E ﬂf
X

AP

 See Section 3.2;3,2

Switching Valve

The 1ist of var1ab1es to the r1ght of the equal. must be supplied
in the fo110w1ng order

1 - Enter1ng Tube Number : The tube number of.the_tube supp]yinq
: o the flow to the valve.

2 - Exiting Tube Number On Side 1 : The tube number of the tube
: leaving the valve on the side to be

opened when the sensed temperature error
becomes positive. If the valve is one
sided and the characteristics of side 2
is desired (for instance, for a solar
absorber bypass) this variable should"
be input as o.- '

3 - Exiting Tube Number on Side 2 : The tube number of the tube
‘ : leaving the valve on the side to be opened
when the sensed temperature error becomes
negative. If the valve is one sided and
- the characteristics of the side 1-is desired
(for instance, a radiator bypass) this
variable should be set to 0.

108



4 - Initial.Valve Position For Side One, X1 : (Should be
v between XImax and XImin.) The side 2
initial position is (1.0 - X1).

5 - Va]ve Qperat1nngode If =1, the valve operates normally
if = 0, the valve does not operate but re-
mains in its initial input position, X1.

6 - M1n1mum Pos1t1on for Side One, XImin : Must be greater than
0.0. The maximum position for side 2 will
‘be calculated by X2max = (1.0 -XImin).
XImin. must be less than XlImax.

7 - Maximum Position for Side One, XImax : Must be less than
1.0 and greater than XImin. The minimum
value for side 2 will be calculated by
(1.0-X1max)

8 —,Vaive sensor 1ump
9 - Tf; Stde 1 off temperature, Side 2 on temperature.
10 - Tzsfside 1 on temperature, Side 2 off temperature.

11 - Geometric Factor : (For a valve class code 2 only) The
' valve of the variable E where

BAPyatve = E;J%?— o

See Section 3.2.3.2



5.2.5 Curve Data

The tabulated curves and tables required by théAinp t data
b

\/-2

u
: b+ocks—and~user—subr0ﬂ%ines—are—supplied—in—the—data—bloek—headed Y-

$ CURVES

Curves may. be supplied in any order in this block. Curves are identified by
a curve number which contains within it a code identifying its independent
variable. The last digit of each curve number is used to identify the
-curve type, and thus, a curve number must contain at least two digits.

“The fol]owing types of curves are currently avai]ab]e.'

Curve Type . ’ Description -
0 - Any array of numbers real or integers which

the .user may need for the programming blocks
. or user subroutine.

1 - .A doublet array with time as the independent
. variable. . :
2 A doublet array with temperature as the indepen-
dent variable. - ' '
3 A doublet array with flow rate as the independent
: variable. S o L ’
4'_,, A doublet array with Reynolds number as the

independent variable.-

5 A doublet array with pressure drop as the in-
dependent variable.

With these codes, the curve numbers 10, 20, 30, 100, 1000, etc., are -
simple arrays for the user programming. The curve numbers 11, 21,.31, 41,
101, 151, etc., are used to specify time dependent tabulated functions _
which are referred to in the $ NETWORK DATA or $ FLOW SYSTEMS blocks. The
numbers 12, 22, 32 are temperature dependent curves, 13, 23, 33 are flow
rate dependent. curves, etc. ‘ » : -

The input format for the curves consists of (1) supplying the
_ integer curve number and (2) supplying the curve values starting on the card
following that with the curve number. The curve values are input for field
separated by commas. If more than one card is required to supply the curve
values, a continuation code (any non-zero character) must be supplied in
column 75 for each additional card added. -

1100



A user may set up any number of 1ocat1ons in a curve for storing

data by supplying an
the entry’
' 10/S,

would set up curve. number ‘10 with 1000 blank spaces.

used anywhere w1th1n

' 20/ 10’

S followed by the number of spaces desired.

1000

a curve. For instance,

s, 500, 2.0

For instance

This option may be

would set up a curve with 1., 3., 500 blank spaces and 2.0. The user should

not spec1fy zero va]

ues for the S option.



5.2.6 User PnogrammingiBlocks
5.2.6.1 . General Qescription '

Four input blocks are available to the user for supplying prob]em

]og1c—and catling-on—available—user-subroutines—Tn—these—blocks—the user
may perform logical operations on the temperature network elements and, to a
lesser extent, on the pressure network elements. The user also has access to
the time parameters of the problem, the curves and 75 constant 1ocat1ons which
may be used either as real numbers or 1ntegers

The four blocks differ only in their head1ng t1t1e and the po1nt in
the problem sequencing that the Togic of the block is called upon. The block

titles are given be]ow with a descr1pt1on of the1r location in the problem
sequence. :

BLOCK TITLE _ ‘ o SEQUENCING
"'$-CENTRAL ~ Logical operations performed only one

time for the problem. Specifies the call
to the temperature solution subroutine and.
any user calls preceeding and following
it.

. $ PRETEMP . Logical operations performed prior to the
' o - temperature calculations on each iteration.

$ POSTTEMP - Logical operations performed,fo11ow1nq
o the temperature calculations and prior to
the pressure/Flow calculations on each
1terat1on

$ OUTPUTj : , Logical operations to be performed on the
: g print internal, WINC.

The location of the four user supplied 1og1c b]ocks in re]at1on to the overall
problem flow is shown-in Figure 9 .

The input format for the user programming blocks is simply the
FORTRAN V Computer programming language and thus, valid FORTRAN V statement
may be used. The first 5 columns are reserved for statements numbers or
C in column 1 for comments. The * for comments cannot be used in the
programming blocks.- Per the FORTRAN language, the statements occur in
columns 7 thru 72. -Column 6 is used for continuation. User supplied state-
ments for each block are combined with computer generated common -
and equivalence statements to form the following subrout1nes

: PROGRAMMING BLOCK ~ SUBROUTINE

CENTRAL © STEP 2
PRETEMP o ~PRETMP
POSTTEMP - © pOSTMP

OUTPUT ~ OUTPUT

12



XOT STEP 2

USER SUPPLIED
LOGIC PRIOR TO
SOLUTION

Y

CALL TO TEMP

SOLUTION (USER}

SUPPLIED)

CENTRAL

EXPLCT
OR
IMPLCIT

USER SUPPLIED

LOGIC FOLLOWING

SOLUTION

END

CALCULATE
NETWORK ELEMENTS

Y

CALCULATE
TEMPS

!

'CALL PRETMP F

.* | 1)’_,
. ‘E@¥§ _

| TIME = TIME + DTIME

Y

———————l | 0GIC SUPPLIED

CALL POSTTEMP

Y

CALL PFCS

YES

PERFORM USER
LOGIC SUPPLIED
IN PRETEMP

PERFORM USER

IN POSTTEMP

PERFORM: FLOW BAI.ANCE

RETURN

- CALL OUTPUT

J .

PERFORM USER LOGIC

SUPPLIED IN OQUTPUT

" FIGURE 9 - OVERALL.STEP 2 FLOW FOR MOTAR

113




The.user haS acceéé to a number of prob]em variables in each
of the programming blocks. These variables are in Labled common for each
of the blocks and thus a change in one block to the problem variables

is communicated to_all_the_other blocks—and—to—the—problems—Variables
available include’ the temperature network elements, pressure network
elements, problem time realted variables, and user constants which may be
used as integers or real numbers. _
A 1list and description for the variables which may be referenced
in any of the user programm1ng b]ocks is g1ven below: .

VARIABLE | DESCRIPTION

T Temperature of temperature Node I
- C(1) o | ~Capacitance of temperature'Node I
Q(r)y Heat Source for temperature Node I
u(1) . : Conductance for conductor I
CW(I). . Flow Rate for tube I
PR(I) g Pressure for pressure node I
G(I) Pressure conductanqe'for tube I
,_CURV(I) Array contain all curve data
CTIME. Problem time
STIME  Problem stop time
RTIMEiI. " Requested computer time (minutes)
WINC Print interval o
PINC Plot -interval for automatic plotting
C1 or KI | L '
thru Seventy-five (75) user variables which are
C75 or K75

communicated between the user subroutines.
If used as a real number use the name CI.
When used as an integer use the name KI.
(CI and KI are equivalenced)

Any curve in the $ CURVES data may be addressed in any of the

user blocks by use of the function LUTAB(I) where I is the curve number.
The curve values are then obtained by addressing the array CURVE (J) where
J = LUTAB(1). For example, if the fourth value of curve number 20 is
desired, we would find it with the following two FORTRAN cards:

114



(<
1]

LUTAB (20)
C1

CURV (J+4)

C1 will be assigned the values of the fourth location of curve number 20.
This is the third data value, however, because the first location of each
doublet table contains the number of points on the curve and the first
location of a type zero curve contains the number of values. One must be
careful when obtaining an integer value from a curve. Real variables should
always be used when addressing curve since CURVE is real. However, the
addressing variable, such as C1 above should be equivalenced to an integer -
variable name for use as an integer. If the fourth value of curve 20 were
an integer in the example above, the variable name K1 would be used following
the two statements since Cl and K1 are equivalenced.

" The user may address the thermal network elements by addressing
the arrays T, C, Q and. U. The subscripts of T, C, and Q are the node numbers
and the subscript of U is the conductor number. The $§ PRETEMP block is located
such that a definition by the user for any of the above variables overrides
the computer definition prior to an iteration. A definition of these
variables in any of the other blocks will be overriden by computer calculations
however, except for (1) boundary temperatures, (2) constant capacitances and,
(3) constant conductances. The Q values are set to zero prior to each
iteration and thus a definition of Q in any block except $ PRETMP or by the
+ ABSORBED HEAT block will be lost. The values of Q supplied in $§ PRETEMP
will be added to values calculated by options in + ABSORBED HEAT.

" The user has 1imited access to three elements of the flow net-
work in the programming blocks. Available are overall tube conductance
G(I), tube flow rate, W(I), and node pressure PR(I). Only the value of
G(I) may be controlled by the user and this may be performed only if the tube
Tump number supplied for the tube is zero (with only one tube lump). Then
the user must specify the value of the conductance. The call to the
operations of the $ POSTTMP block has been placed immediately prior to the
call to PFCS, the pressure flow analysis subroutine, so that the user may -
modify the G's as desired. The other variables, PR and W may be used for
sensing purposes or 1ndependent var1ab1es only.

5.2.6.2 User'Subroutines

Numerous subroutines have been developed and assembled in
MOTAR for direct application by the user in the User Programming blocks.
These subroutines greatly extend the MOTAR capability giving the user :
immediate access to.numerous temperature solution subroutines, application.
subroutines, mathematical analysis and solution subroutines, interpolation
subroutines, Matrix analysis subroutines, and output subroutines. A large
number ?f'these subroutines were taken directly from the SINDA computer
routinel4 This includes most of the mathematical analysis and solution
subroutines, 1nterpo]at1on subroutines, and Matrix analysis subroutines. '
A11 -of the temperature solution subroutines ,many - of the app11cat1on sub-



routines (enclosure radiation, cabin analysis, heat exchangers, inline
heaters, etc.) and some of the output subroutines were concieved. during
MOTAR development.. A brief description of the available user subroutines is

‘given below for each category of subrout1nes., A deta11ed*descr1pt1on or
.a]] the subroutines 1s given 1n Appendix A.

Temperature So]ut1on Subrout1nes

v Temperature solution subroutines are generated by the computer
.dur1ng the pre- process1ng phase based upon the requirements of the input data.
If the $§ CENTRAL block is not included in the input (ie, no logic in this
block) the computer will also generate a call to the appropriate transient
temperature solution subroutine depending on the MPLCT code in columns 6 to
10 on parameter card 1. (If the code is 0, EXPLCT will be called, if 1,
~IMPLCT will be called). This call will be located in the processing phase
main routine, STEP 2. If any logic appears in the $ CENTRAL block, the user
must supply the call to the-temperature solution subroutfne in § CENTRAL.

‘ There are four ‘potential temperature solution subroutines that

may be spec1f1ed by the user. The subroutines will actually be different

from problem to problem since they are generated depending on the prob]em
content. The temperature solution subroutines are:

1. EXPLCT - Performs the trans1ent solution using the explicit
- method (two time ‘increment opt1ons are available)

2, EXP§S'e Performs the. steady state so]ut1on for data. stored
. : in the exp11c1t format : .

23, IMPLCT - Performs transient so1ut1on us1nq the 1mp11c1t
' method : :

4, IMPSS - Performs the steady state so]ut1on for data stored
. ~in the implicit format ‘ :

EXPLCT and/or EXPSS must be used when the MPLCT code on:parameter card 1 is

a value of 0. IMPLCT and/or IMPSS routines must be used when the MPLCT code
is 1. If the MPLCT .code and the subroutine calls are inconsistent, the ca]]ed
subroutine will not be found and the problem will not be run.

The user may perform any number of calls to the trans1ent or
steady state subrout1nes or-calls to both may exist in the same problems
For. example, suppose a user desired to perform a parametric run in which the
steady state solution is desired at TIME = 0. and a transient solution is
desired starting at that condition for five different values of temperature
for node ten. The Togic in $ CENTRAL when’ us1ng explicit method of solut1on
would be:

116



$ CENTRAL

DO 201 =1,5
TIME = 0.
CALL EXPSS

\ CALL EXPLCT
20 T(10) = T(10) + 25.

If using the implicit method of solution the calls would be
'$ CENTRAL

DO 20 I =1,5
TIME = 0.
CALL IMPSS
CALL IMPLCT
20 T(TO) = T(10) + 25.

W1th this type of programming a large number of problems may be performed
with a s1ng]e run.

A more .detailed description of the temperature solution subroutines
is given in Appendix A~

Application Subroutines

Severa1'subrbutinés are available to the user which provide
capabilities for specific applications. These are listed below and described
~in detail in Appendix A : ' :

RADIR - Calculates the script-F values for IR radiation within
an enclosure and uses these values to obtain the heat
~ transfer during the problem. Permits consolidation of

. several temperature nodes on a single surface.

RADSOL -~ Calculates the script F values for radiation from an
- . extended source entering an enclosure and uses these
-values to obtain heat transfer during the problem.
Permits consolidation of several temperature nodes
on a single surface. :

%Egﬁgé - . Calculated the scrithF values for IR radiation within

- an enclosure and uses these values to obtain the heat
transfer during the problem.

nz -



. Calcuates the script-F values for radiation from-
an entering source external to the enclosure and
uses these values to determine heat transfer during

- the prob]em

- SLRADI
SLRADE

Calculates the script-F between parallel flat plates.

EFFEMS " -

SCRPFA - Calculates the script-F values for 1nfrared rad1at1on
w1th1n an enc]osure

HXEFFY

HXCNT = Simulates heat exchanger performance under steady

HXCROS |~ state conditions - Can. be used to approx1mate

HXPAR . transient conditions.

HTRINL - Simulates a fluid inline heater |

CABIN -  Performs a heat and mass ba1ance on a cabin gas con-

sidering any number of enter1ng streams and condensa-
t1on on the cab1n wall. : .

ABLATS - Represents a s1mp1e ab]at1on (sub]imétion)‘tapability _

LQSLTR' - Accounts for the phase change energy of a me1t1ng
: or. so]1d1fy1ng material -

‘LQDVAP' -. Alldws the user to s1mu1ate the add1t1on of ]1qu1d
to a node

Matr1x Analys1s Subroutines

Numer1ous ‘Matrix subrout1nes are avajlable to the user for per-
forming computat1ons and manipulation on matrices of numbers. The matrices
are stored in the $ CURVES block and must be in the proper format. For sub-
routines assuming rectangular matrices this format consists of (1) an integer
specifying the number of rows in the first array data value, (2) an integer
specifying the number of columns in the second array data value and (3) the
Matrix values in row order. For subroutines designed specifically for symetric
matrices the matrices are assumed to be stored in row order with each row
starting with the diagonal value.. The first value contains the s1ze of the
“square Matrix and the second value isn't used. The format is,~ '

NC, N, BLANK, A(T;1)A(1,2), A(1,3) = = = = A(T,N)
A2,2),  A(2.3) - - - - AZ,N)
T ‘(Nn)

A 1ist of the matrix analysis subroutines available is_given below. A de-
tailed description of theirvuse is given in Appendix A .

~a) Special Matrix Generation
ZERO Generatesgafmatrix such that every element is zero

ONES ‘Generates '@ matrix such that every elements if one

118



b)

UNITY
SIGMA

GENALP
GENCOL

FULSYM
SYMFUL

-SYMFRC

DIAG
UNDIAG
DIAGAD

Generates a square matrix such that the principal diagonal’
elements are unity and the remaining elements are zero.

Generétes a square matrix such that all elements on and below
the principal diagonal are unity and the remaining elements
are zero. .
Generates a matrix such that every element is équal to a constant

Generates a column matrix such that the first element is equal
to X1 and the last element is equal to X2

Forms a half symmetric matrix from a full square matrix
Forms a full square matrix from a half symﬁetrié'matrix,

Forces symmetry upon a square matrix |

Forms a full square matrix given a column or row matrix

Fo;ms a row matrix from the diagonal elements of a square matrix

Adds the elements of a row matrix to the diagona1'e1ements of a
square matrix

E]ementa] Operations

ELEADD

‘ELESUB

ELEMUL

- ELEDIV

ELEINV
EFSIN
EFASN

EFCOS

Adds correspond1ng elements of two matr1ces A and B to form
a third Z (Matrix addition)

Subtraéts the corresponding elements of two matrices to form
a third Z (Matrix subtraction)

_ Mu1t1p11es the correspond1nq e]ements of two matr1ces A- and

B to form a third Z

Divides the corresponding e]ements of two A and B matrices
to form a third Z

Obtains the reciprocal of each element of matrix A and place
it in the corresponding location of another matrix Z

Generates the sine of each elements of matrix A and places it
in the corresponding location of - another matrix Z

Generates the arcsine of each element of matrix :A and places:

Tt‘in,the correSpondjng location of another matrix "Z:

Generates the cosine of each element of matrix A, and places
it inﬁthe corresponding location of another matrix ‘7.

19



EFACS . Generafes.the arcosine of each element of matrix‘(A) and p]aceé
‘ it in the corresponding location of another matrix (Z) -

EETAN_ Genenaxes_ihe_iangent_of_each_element_of,mainix;LA)_and_placec
' : it in the corresponding location of another matrix (Z)

EFATN Generates- the arctangent of each element of matrix (A) and places
' it in the corresponding location of another matrix (Z)

EFABS _Generates the absolute value of each matrix (A) é1ement
EFLOG 'AGenerafes the nétura] log of each (A) element |

EFSQR Generates the square root of each matrix (A) element
EFEXP  Generates the expohentia] of each matrixv(A) e]ément
EFPOW Generatés,fhe pdwer of each matrix (A) element

ADDALP Adds a constant to every e1ement,in a'matrix:

ALPHAA Mu]tipiies every element in a matrix by a-COnstaht
MATRIX- Allows a constant to fep]ace‘a~specific'matrik element

SCALAR  Allows a.specific matrix element to be placed into a constant
location

MATADD Adds a constant to a specific matrix element

Matrix Opérafiohs/sblutions

INVRSE Inverts a square métrix

MULT Mu]tip]fes two conformable matrices
TRANS Formékthe transpose (Z) from métrix'(A)
AABB Sums two scaled matrices |
BTAB Pekfbkms thé matrix operation (B)t (A)(B)
BABT Performs'the matrfx operation (-B)_(A)(B)t

DISAS A]Towéla_uSer to operate on matrices in a partitioned manner
by disassembling a submatrix (Z) from a parent matrix (A)

ASSMBL  Allows a user to operate on matrices in a pértitioned manner by
assembling a submatrix (Z) into a parent matrix (A)

120



d)

COLMLT

ROWMLT

SHIFT .

REFLCT

SHUFL

~ COLMAX
COLMIN

SYMREM
SYMREP

SYMDAD

SYMINV
POLMLT

POLVAL

PLYEVL

POLSOV

- JACOBI

Mu1t1p11es each element in a co]umn or row of matrix (A) by
its correspond1ng element from the d1agona1 matrix (V)
which is stored as a vector

Moves an entire matrix as is from one location to another

Moves an entire matrix with the order of the column elements
reversed from one location to another

Allows the user to reorder the size of a matrix as long as the -
total number of elements remains unchanged

Searches an input matrix to obta1n the maximum or minimum values
w1th1n each column

A]]ows»the SINDA user to operate on a simple row/column of a
half symmetric matrix

Adds the elements of a vector array to the corresponding
elements of the main diagoha] of a half symmetric matrix

0bta1ns the 1nverse of a half symmetr1c matr1x

Multiplies a given number of nth order polynomial coeff1c1ents
by a similar number of mth order polynomial coefficients

BICN

.'Eva]uates the po]ynom1a1 for the input comp]ex number X + iV,

given a set of polynomial coefficients,

Eva]uates each polynomial for each X value, given a matrix with
‘nth order po]ynom1a1 coefficients and a co]umn matrix of :
X values -

Calculates the complex roots, given a set of po]ynom1a1 co-
eff1c1ents as the first row in a matrix

Determ1nes the eigenvalues and e1genvector assoc1ated with an
input matrix (A)

Lt

Store and Recall

CALL

- FILE

ENDMOP

Retrieves matrices on magnetic tapes
Stores matrices on-magnetic tapes”
Used in eonjuhc£1on with subr60t1ﬁes CALL and FILE. Causes

all matrices from the 1og1ca1 19° tape to be updated onto the
1oglca1 18 tape L



- LSTAPE"  Wi1l output the name, -problem number- and s1ze of every matrix
- stored on tape on 1og1ca1 18. N _

e) Applications

MODES So]vés'a particular matrix dynamic vibratioﬁ.equation

MASS Generates an inertia matrix of a dynamic'vibration system described
in terms of deflections and rotations v

STIFF Generates a st1ffness matrix for a dynam1c vibration system
described in terms of def]ect1ons and rotations.

Interpolation Subroutines

Numerious interpolation subroutines are available to the user. Included
are the capability for (a) 1inear interpolation of function one, two and
three independent variables (b) parabolic interpolation of functions of one or
two variables, and (c) lagrangian interpolations up to 50th order for one.
independent variable including extrapolation. Also included are options to
- to take advantage of cyclic curves, po1nt/s1ope interpolation and linear
extrapolation options..

A summary of the interpolation subroutines is given be1ow They are
d1scussed in detail: in Appendix A. _

-a) Lagrangjan Interpolat1on‘

LAGRAN  Uses one doublet array,. Performs interpolation for order up to 50.
LGRNDA  Uses two singlet arkays; Performs interpo]ation for order up to 50.

b) Linear Interpolation - Single Variable

. POL - -Used one doub]ed array - one format
DIDEG] :'Uses .one’ doub]et array - another format

Z'D1D1DA Uses two s1ng1et arrays o _
DIDIWM  Uses D1DEG] and mu1t1p11es the 1nterpo1at1on by the Z value
D]]MDA Uses - D]D]DA and multiplies the 1nterpo1at1on by the Z value

- DIMDG1  Uses the arithmetic mean of two 1nput values as the independent
‘ variable; uses a doublet array

DIMIDA  Sames as DIMDG] except two singlet arrays areJuséd"

D]MTWM Uses QlMDG]‘and multiplies the interpolation'by the Z value

122



e)

DIMIMD

D1DG11
DIDITM
D1DIMI

D11DAL
D11D1IM
D1IMD1

D11MD1
D11MWM
D1IMIM

Linear

Uses DIMIDA and multiplies the interpolation by the Z value

Performs interpolation on an array of X's to obtain an array
of Y's -

Identical to DIDGIT, DID1IM and DIDIMI, except for the use of
singlet: arrays and call on DIDIDA o

These are indexed subroutines which use the arithmetic mean of
two input values as the independent variable

Interpolation - Two Single Variables

CVQTHT
CVQTWM

Performs two single variable Tinear interpo]atﬁbns

Parabolic Interpolation - Single Variable

D1DEG2

D1D2DA

D1D2WM

DI2MDA

D1MDG2

DIMZ2DA

DIM2WM

D1M2MD

Uses LAGRAN and a doublet array

Uses LGRNDA andltwo singlet arrays ,

Uses .LAGRAN and multiplies the interpolation by the Z value
‘Uses LGRNDA and multiplies the interpolation by the Z value

Uses the arithmetic mean of two input values as'independent
variable; uses doublet array

~ Sames -a DIMDG2 except two single arrays are used
Uses DIMDG2 and multiplies the interpolation by the Z Value
Uses DIM2DA and multiplies the interpolation by the Z value .

Cyclical Interpolation Arrays

D11CYL

- DATICY

D12CYL
DA12CY

D1IMCY
DATIMC

DA12CY
DA12MC

Reduces core storage requirements and uses linear interpolation

- Identical to D11CYL and DA]]CY except that parabo11c 1nterpo]at1on

is used

Ident1ca] to D12CYL and DAT2CY except that the 1nterpo]at1on is
mu1t1p11ed by the value in address Z

Ident1ca1 -to D1IMCY and DATIMC except that parabo]1c interpolation
is used -

123



f) Point Slope Interpo]at1ons

GSLOPE Generates a slope array so that point s]ope 1nterpo]at1on can
be used.

PSINTR

PSNTUM - Point slopeﬁ1nterp01at1on

g) Bivariate Interpolations

BYSPSA . | . N .
gysppp  Uses an input Y argument to address a b1var1ate array.

BVTRN] ~Constructs a Bivariate array of Y's versus X and Z from an
BVTRN? input array of Z's versus X and Y :

D2DEG1  Performs bivariate 1inear.interpo1ation

D2DEG2 | Performs bivariéte paraboTic interpo]atidn

D2D1WM Uses D2DEG1 and multiplies the 1nterp01at1on by the W value
DZDéWM. Uses DZDEGZ and multiplies the interpolation by the W value

D2MXD1 Ident1ca1 to D2DEG1 and D2DEG2 except that the arithmetic mean
. D2MXD2 of two X values is-used as the X 1ndependent variable

D2MXIM  Identical to D2DTWM and D2D2WM except that the arithmetic mean
D2MX2M of two X values is used as the X independent variable

h) Trivariate Interpo1atioh§'

D3DEGT ' TR o .
D3D1WM ‘Performs trivariate linear interpolation

i) L1near Extrapo1at1on

ITRATE Linearlyeextrapo]ates a new guess on the basis of Zero error.

Output Subroutines

A number of subrout1nes are available to the user which permit the
generation of pr1nted plotted or tape output for various situations in addition
to the standard printing and plotting options. These subroutine provide
the capability for printing individual values arrays and matrices; for
- plotting; . and for writting and reading from magnet1c tapes The available
subrout1nes are summar1zed below and described in detail in Append1x

128



b) -

c)

d)

e)

FHH_‘é) Network Printout

TPRNT Prints thermal node temperature

CPRNT Prints thermal capacitances

QPRNT Prints the nodal heat flow values

UPRNT Prints thiermal conductances

DTPRNT Prints the time increments

COPRNT Prints the thermal network capacitances, heat flow values,
~ time increment and the conductances

WPRNT Prints flow rates

PPRNT Prints pressures

VPRNT - Prints valve positions

Floating Point

EE§N$L Allows 1nd1v1dua1 floating point numbers to be pr1nted for

reference temperature, capacitance, etc.

Array Printout _

GENOUT A]]owi the output of any array of integers, f]oat1ng point,
- or both

GENI - Prints out an array of integer ‘

GENR - . Prints. out an array of real numbers

'PRINTA  Allows the user to pr1ntout an array of values five to the

11ne

PRNTMA  Allows the user to print up to 10 arrays in a co]umn

- PRNTMI format

PUNCHA- Enables a user to punch out an array of data va]ues in

any desired format

Plot Package

PRNPLT  Prints out a plot on the line printer

© PLOTXT
 PLOTX2

PLOTLT = Call upon a large- package of subrout1nes spec1f1ca]1y for the
PLOTL2 SC-4060 :
PLOTX3 -

PLOTX4

Tape Input/Oufput

READ Enables the user to read and write arrays of data as binary

- WRITE information on magnetic tape

125



£) Matrix Output:‘

EIST Prints—the—elements—of—a—matrix—and—identifies each—by its
’ row and column number
- PUNCH Punches out a matrix, size n*n, one column at a t1me in any

desired format

"~ SYMLST Pr1nts out and 1dent1f1es the element values of a ha1f symmetr1c
matr1x : ‘

9) Special

PNTABL  Provides output information for users of subroutine ABLATS

126



’Mathematica] Subroutines

, - Several user subroutines are provided for mathematical operations
and solutions. Capabilities provided the user include integration, root
" determination of cubic and quartic equations, polynomial calculation, simul-
taneous equation solution, Teast squares curve fit, and complex. number.
calculations. These subroutines are summarized below.

a) ‘Area Integration

SMPINT Perfofms'area integration by Simpson's rule and trapezoida1
TRPZD rule using equal increments

TRPZDA  Performs area integration by the trapezoidal rule with non:
uniform increments

b) Roots.

NEWTRT  Utilizes Newton's method to obtain one,foot of a cubic or
NEWRT4  quartic equation

c) Polxnomia]/Simu]tahebus Linear Equetions'

PLYNML - Calculates the value- of the dependent var1ab1e for an.Nth order
- PLYARY po]ynom1a1 v
PLYAWM

SIMEQN Solves a set of linear equat1ons (10 or less) by'the factorized
-1nverse method - , :

d)  Curve Fit/Temperature Derivative

'LSTSQU Pekfdrms_a‘]east squares curve fit to an arbitrary number of
' X, Y'pairs to yield a polynomial equation of up to order 10

Comp]ex Variable Subroutines

a) Mu1§1p11cat1on 0perat1on

CMPXMP Mu1t1p11es two complex numbers or the correspond1ng elements '
CMPYI of arrays of complex numbers v _

b) DiviSjon Operation

CMPXDV  Divides two complex numbers or the correspond1ng e]ements
CDIVI of comp]ex numbers

c) Roots

CMPXSR  Obtains the complex sqhare_robt of a complex number or array
CSQRI of complex numbers

127




Array Data Hand1ing Subrout1nes

The capab111ty of the MOTAR user to man1pu1ate data stored in -

the $CURVES data is enhansed by use of numerious array data man1pu]at10n
subroutines.
detail in Appendix A.

(a) Addition Operation

The subroutines available are listed below and descr1bed in

N

Adds. the correspond1ng elements of two spec1f1ed 1ength
arrays to form a th1rd array

Adds a constant value to every element in an array to

Sums an array of floating point values

Subtracts ‘the cokresponding elements of one array
- from another to‘form a third array

Subtracts a constant value “From every e]ement in an
array to form a-new array

Mu]t1p11es the corresponding e]ements of two arrays to
Mu1t1p]1es each element of an array by a constant value

Multiplies the dependent or independent variables of a
doublet type interpolation array

Divides the elements of one arkay into the corresponding
elements of another array to produce a third array

Divides each element of an array by a constant value

Inverts each element of an array in jts own location

Divides each element of an array into a constant value

ADDARY
ARYADD
form new array
SUMARY
Subtraction Operation
SUBARY
ARYSUB
Mu]t1p11cat1on Operation
MPYARY
form a third
ARYMPY
: “to form a new array
- SCLDEP
SCLIND -
Division Operation
DIVARY
ARYDIV  Di
to produce a new array
~ ARYINV
ARINDV
‘ to form a new array
ADARIN

(e)

Ca]cu]ates one over the sum of  inverses of - an array of values

D1str1but1on of Array Data

SHFTV

Sh1fts a sequence of data from one array to another

128



SHFTVR  Shifts a sequence of data from one array and p]aces data in
reverse order in another array

FLIP | Reverses.an array in its own array 1ocation'
GENARY  Generates an array of equally incremented aseendinq values

BLDARY  Builds an'array from a variable number of arguments in the
' order Tlisted .

BRKARY  Distributes values from within an array to a variable number of
BKARAD arguments in the order listed

STOARY Places a value into or takes a value out of a spec1f1c array
_ARYSTO lTocation

STFSEQ  Stuffs a constant value into a specified length array or group
STFSQS of sequential locations

SLDARY Moves array data values back one or two pos1t1ons and updates
SLDARD the last one or two values

- STORMA  Constructs historical data arrays during a transient analysis

(f) Singlet/Doublet Array Generation
‘ SPLIT Separates a doublet array into two singlet‘arnays :
JOIN Combines two singlet arrays into a doublet array‘
SPREAD  Applied interpolation subroutine. DIDIDA to two singlet arrays
L - to obtain an array of dependent variables versus an array
of independent variables

(g) Comparison Operation

MAXDAR  Obtains the absolute maximum difference between corresponding
MXDRAL elements of two arrays of equa] 1ength N

5.3 ' SPECIAL INPUT/OUTPUT FEATURES

Described below are the features available on MOTAR to permit the
utilization of the magnat1c tape capability of the Univac 1108 computer on in-
put and/or output. - Described are the data on tape with edit capabilities,
restarting from and generating a restart tape, generating a history tape,

starting from-a history tape, plotting from a history tape and using flux
curves from magnetic tapes. -

5.3.1  Data on Tape with Edit

The 1nput data described in Section 5. 2 3 thru 5 2.6 must be
supp11ed to the computer in the form of punched cards on the original run.

129



However, the data may be stroed on magnetic tape for input to subseguent
runs by use of the Data Tape with Edit feature which is available on MOTAR.
This feature increases the convenience and effectiveness. of the use since
the handling of large decks are not required. Also, the re11ab1]1ty of _the

tape reader is much higher than that for the card reader. o

The EDIT routine is called by parameter INDATA 1nput 1ncolumns
4 and 5 on parameter card 2. Poss1b1e 1nputs are: = _

(]).'INDATA = 0, A1l data is supp11ed on cards.
(2) INDATA =1, Al data is supp11ed on cards and the card
’ ' - images are written on tape on unit B. (Should
_ -be specified as an output tape on job card)
(3) INDATA = 2, Use data input on tape on unit C with desired
S changes on cards to write a new data tape on
Unit B. (C is input tape and B is output tape)
(4).,INDATA_ = 3, Use the .data read in from unit B. w1thout change

Parameter cards 1 and 2 are: read in from cards.
(B is 1nput tape) - L

If INDATA —-2 or -3, the card images on Unit B are punched

When INDATA —-+2 the deck set-up consists of parameter cards 1
and 2, the EDIT control cards (described below), and the new data cards
(w1th the same format as the cards being replaced).

The EDIT control cards, used only when INDATA has a value of
+ 2 are:

COLUMN FORMAT -~ 'NAME - DESCRIPTION

1 . Al ID - * in cb]umn 1 identifies the
o I . card as an EDIT contro] card

6-15 110 ‘ K3 ' Card number of first card to
S . -~ . 'be removed.if K3 is.positive.
~and K4>0. If K3 is negitive
K31 is the card number of the
card for which a-merge correction
~will be performed. If K4 is
blank or zero, cards change
‘cards between this card and the
next EDIT Control card will be
add immediately fo]10w1ng
- card K3.
: . ~
16-25 I10 - K4 Card number of last card to
- . : -~ be removed prior to inserting
the change cards in the data.
If K3 is negitive, K4 is ignored.

130



As mentioned above, when K3 is negative, the merge option of edit is used.
With this option the change card submitted after (K3) will be read in
5 column fields. For each 5 column field on the change card that is blank,
no change will occur to the same field on the original card K3 . If any
characters occur in a 5 column field that field on the original card will
be replaced with the characters on the change card for the merged card. A
$ in the 5th column of a 5 column field will cause that field to be blanked
on the new merged card.

5.3.2 - Dump and Reétart Option

MOTAR is set up so that the problem is dumped on the third
file of Unit I when either (1) the requested computer time, RTIME, or (2)
the problem stop time, STIME, is exceeded. If the user assigns an output
tape on Unit I this unit will contain the dumped information (on the second
f11e) and must be saved if the problem is to be restarted. 'If restarting

is planned the user must also save the K tape which contains the complied
computer generated program

When restarting a problem the user supplies the I tape from
a previous run on the problem to be restarted as an input L tape positioned
to the proper file (usua]]y the third file). Also, the K tape received
previously on output is assigned as an input unit K on restart. The deck
setup for restart'is described in Section 5.4.1.

l

When more than one call is made to a temperature solution
routine (EXPLCT or IMPLCT) the dump information for each call is contained
on the odd file of Unit I starting with the third. That is, the first call
will dump on the third file; the second call on the fifth file, etc. The
even files contain history information discussed in Section 5.3.3.

5.3.3 ‘ H1story Tape Options

The history tape contains 1nformat1on to perm1t autematic
plotting of problem temperatures, flow rates, and pressures and valve positions
as a function of time. This tape is written to permit the user to obtain
the analysis results in the convenient plotted form with a minimum of user
effort. A second feature of the history tape is the ability of the user
to start a new problem from any time point for which data is written
start from history tape option) The format of the history tape, plotting

from the history tape and start1ng from the h1story tape are described
below.

5.3.3.1 H1story Tape Format

H1story records are always wr1tten on the even f11es of Unit I
with -one history file for each call to a transient temperature solution
subroutine (EXPLCT or IMPLCT). Normally problems will have only one call and
thus, the history records are written on the second file with the dump for
restart (Section 5.3.2) written on the third file. If the history files are
" to be saved for future use, the user must assign and save an I output tape

131



in the control cards (See Section 5.4.1) when making the run.

The history tape file on Unit I contains a ndmber of logical

records—equal—to—the—number—of—history—times—plus—two-—The—first-record
~contains a title and an integer count of the number of items to be written
on the history tape. The second thru the next-to-last records contain the
information to written on the history tape with a record for each time point.
The history write interval, PINC, is specified on parameter card 2, columns
41 thru 50. When this interval is zero, it is set to the stop time minus

the initial time so that two time po1nts are p]otted (at start and end of the
problem). . -

‘The format for the history tape is as follows:.

'Record'No. 1

Title (Written internally) including date and time of run

in 12A6 format, 0, 0, O, O, 0, O, No. of pressure nodes, number
of valve pos1t1ons, 0, 0, 0, number of tubes, 0, 0, number

of nodes. o

Record No. 2

In1t1a1 problem t1me pressures, valve positions, flow rates,
node temperatures .

Record No. 3

- Second h1story t1me pressures, va]ve pos1t1ons, f1
F1ow rates, Node temperatures

Record No. N+1 . (Where N = number of history time slices to
; be written)

Last history time, Pressures, Valve positions, Flow rates,
Node temperatures . _

Record:No N+2

Same as ]ast record except time is negat1ve
5.3.3.2 P]ott1ng From H1story Tape . _ o

The data wr1tten on the h1story tape may be used to generate
SC .4020 CRT plots of. the pressures, valve positions, flow rates and/or node. :

132



temperatures versus time. To accomplish this the user must submit a separate
run using the plot routine, PLOTA, with the history tape as an input. In
addition the user may comb1ne the ‘points of two or more history tapes into
one so that the results of several runs may be presented on one plot frame
This may be performed using either the PLOTA routine or the MCOMB routine.

The MCOMB routine will shift the time point in addition to combining tapes

if desired. The user may also plot the results of two separate runs on

the same frame for comparison by using the routine COMPAR. Care must be

taken when using this routine since a linear interpolation is performed at the
comparison times prior to plotting.

The 1nput descriptions for the routines PLOTA MCOMB, and
COMPAR are described in Appendix C, . _

5.3.3.3 Starting From a History Tape

The user may use the history tape data to start a problem.
When using this option the problem 1nput data supplied either on cards or
on a data tape fusing options 5.3.1) is input along with a history tape
containing the desired starting conditions. A non-zero input in columns
g and 9 of parameter card 3 and a value for TMPTIM in 61 thru 70 of parameter
card 2 will cause the temperatures and valve positions to be read from the
history tape on-unit H at the first time point on the tape following
TMPTIM. These new values will replace those of the original input.
When using this option, there must be a one-to-one correspondence between the
temperature nodes, and valies in the model and on the history tape. Other-
wise, the user may mod1fy the model at will making this a very useful
option.

5.3.4 - Flux Tape Option

Incident heat curves may be read from tape by putting a non- |
zero ‘value in column 6 of parameter card 3.

Restrictions on this option are:
(1) 7The-jnitia1 block of,curvebdata must be input on cards or data

(2) Particular curves mUst'have the same number of points on
- each block of data read in as were input on cards initially

(3) Each curve may have a different numbef bf pdints

(4) The curve data must be read in the same order the curves
- are. in the data ‘deck

(5) 'The first point on each curve in each block of data must be
the. same as the last point on that curve in the previous
block of data

133



»(6)2 A]] 1nc1dent heat curves must be in a s1ng]e b]ock by
themse]ves : _

The_data_qs*read_from -a— b1nary_Iape which— has_iheufollow1nq

format:

Record No. 1
First Read Time

Record_No. 2,

‘Number of points on Curve No. 1 (Integer), Integer 1, Curve 1
independent variables, Curve 1 dependent variables, Number of
points on Curve 2, Integer 1, Curve 2 independent variables,

Curve 2 dependent variables, etc. for all curves.

Record No. 3

Second Read Time-

.Record‘No.,4

Same as Record No. 2

Record No. 5
Same as Record No. 1 but for the third read time.
Etc until all blocks of data are on tape.

The amount of data which can be read in from tape is unlimited.
The amount of data which can be read in a given block is dependent upon the
data space available in the computer. It is possible to restart a problem
which reads incident heat curve data from tape. The tape rewinds when the
- program is restarted; however, when the program calls for more incident heat .
curve data, it searches for the proper program time before reading. To use
this option the flux tape must first be generated by G. E. routine LTVFTP
which writes a flux tape in the proper format for use in the LTV routines.
Inc1dent heat start up cards are also generated by this routine.

The fo]]ow1ng operations should be performed when using the
flux tape option:

(1) Set flux tape code (NFLXCD) to one in column 6 of
- parameter card, 3.

(2) Input start-up incident heat curves for ali-incident heats

-~ that will be read from the flux tape Also, label all such
~curves as curve type. S o

134



.(3), Assign the incident heat flux tape as input tape E.

5.4 RUN SUBMISSION REQUIREMENTS

This section describes procedures required to submit a MOTAR
run on NASA/MSC Univac 1108 Computer. Included are (1) the card deck setup
requirements (2) methods for estimating the amount of computer run time and
and page output requ1rements and (3) methods for estimating storage requ1re—
ments to estab11sh maximum problem size.

5.4.1 ~ Deck Setup Requirements

‘The MOTAR input data described ‘in section 5.2 must be combined with
the required system control cards price to submitting a run on the NASA/MSC
Univac 1108 computer. The required control cards differ depending upon the
input/output opt1ons and the corresponding devices requ1red for a given
problem.

: Two fundamentally different types of runs may be made with
MOTAR. These are (1) the runs in which the input data is supplied on cards
or an input data tape (startup runs), and (2) runs which use a previously

generated compressed -data tape, and program e1ements as input (restart runs).

- The deck setup for runs with the input data supp]1ed by cards

‘or- data tape is shown in Table VIII. Included in the 1ist shown in Table VIII
are all the I/0 unit that can possibly be assigned which include units

A, B, C, E, F, H, I, and K. A1l of these units, except A, are optional

and thus would not all be required for most problems. A1l may be used if
required however. A descriptian of the 1/0 devices is given below.

A s the device (logical .Unit 1) to which the basic program
- tape should be assigned. It is a]ways an 1nput tape

B' - js the deyice (]ogica] Un1t 2) to wh1ch the f1na1 data
‘tape (after ed1t1ng) is ass1gned When INDATA, parameter
card number 2, is 1 or 2, B is an output tape When

.INDATA is 3 B is an 1nput tape. S

C s the device (logical Unit 3) to wh1ch the data tape to
- be'edited is assigned. C is required only when INDATA=3
and is always an input tape when assigned.

E . is the device (logical Unit 7) to which the Flux tape -is

4.7ass1gned when NFLXCD, parameter card.3 1s¢0 E is always
an input , , o .

F s reServed,for making program edits to A

135



TABLE'VLfI:_'Deck Setup for Runs with Input Data on
o Cards or Data Tape

RUN

Tg7 —

Tgn MG B

78 __PLT . (Required only if user plotting subroutines are used)
7g _ ASC, A = XXXX '

8 _ AsG nﬁ‘= DATA or XXXX

g _ ASG_C = XXXX

g — ASG_E = -XXXX' S

7 _ASG_F = PFC : Optional Assign Cards

78 _ ASG_H = XXXX o

7g _ASG_I = DUMP | |
7g _ASG K ="PROG . 7g ASG K,L if not planmning a restart in the future
78 _ASG_L ' S : :

7g _XQT _CWR
__TRW _A

__IN _A

. _TRI'_A

__Toc _

Tg _ XQT _'STEP

‘(Parameter Card No. 1)
Input data deck or data edits

7g _ FOR, K _ STEP2, STEPZ
7g _ FOR, K _ TEMPTR, TEMPTR
7g _ FOR, K _ PRETMP, PRETMP
Tg _ FOR, K _ POSTMP, POSTMP
7g _ FOR, K _ OUTPUT, OUTPUT
Tg _ FOR, K _ TEMPSS, TEMPSS

j}-User Subroutines

136 -



TABLE VII CONTINUED

- — - K B 'Reduired_ only if restarting is planned on future runs

TRI - K

7o _XQT _STEP 2
- (PARAMETER CARD 2)
'(PARAMETER CARD 3)

74 _ EOF o

137



H s the device (logical Unit 10) to which the history tape
is assigned when NEWTMP;EO H is always an input tape.

- writing history records for future plotting and for writting
the dump for restart. I is always an output tape.

K s the device (logic Unit 13) which will contain the basic
.program from Unit A, plus the programs generated during the
prepracessing phase. K should be saved as an output tape if
~“restarting is planned in the future. If no restarting is
-planned, K should be assigned to a Fostran file.

L is the device (logical Unit 14) which contains the compressed
data for input to the processing phase. On a restart run,
it is an 1nput tape; on other runs it 1s a Fostran file.
In addition to the above, two.FH 432 drum f11es - M and N are used
during the preprocessing phase. Thus, the user shou]d 1dent1fy the fact that
two such files are needed on the MSG card.

: The deck setup for runs_w1th the input data_SUpp]ied by a com-

pressed data tape or restart tape is shown in Table IX - For this type of
run, Units A and L are required and units E, F, H, and I are optional. The
units are the same as described above

5.4.2 Est1mat1on of Computer Time and Output o

The computer time required for a MOTAR run us1ng the EXPLCT
routine on the Univac 1108 may be estimated by the following relation:

_ : ‘ -5
_ STIME - TIME [ (NODES) FC. (12 FVP) + 1:23 x 10

CTIME = =Py [ “810,000 o
4 HEC + NCC +  NFL ]

306,000 75,600 . 104,300

_ Where _ CTIME the required computer time in minutes

STIME = the problem stop time in the problem units
- TIME. = .the initial prob]em'timetin the problem units
‘DTIME = the problem time increment

138



TABLE IX ' ‘Deck Setup for Restart Ruhs;

NN N N N NN N NN

gz — RUN
8n __ MSG
g _ PLT _
g — ASG A = XXXX
g — ASG _ E = XXXX
g — ASG _ F = PCF - .
3 _ ASG __H = XXXX Optjona1 Control Cards
8;— ASG _ I = DUMP
g — ASG _ L = START
8 XQT - CUR :
_ _PEF _L/2
__TRW _A
__IN_A
__TRI _A
_._ToCc
_ XQT _ STEP 2

PARAMETER CARD 2
PARAMETER CARD 3

EOF

78 =L

139



PTIME

~the problem print ihtefva] )

NODES = the number of nodes in the problem
FC = - the sum of the conduction conductors plus
the number of radiation conductors divided
by number of NODES
‘FVP = the approx1mate fraction of capatance
and conductors that conta1n variable
properties :
NFC = Number of flow conductors
- NCC = number of convection conductors
NFL = number of fluid lumps

For the Univac 1106, CTIME should be" mu1t1p11ed by approx1mate1y 1.7. The
time required for the IMPLCT so]ut1on rout1ne is g1ven by, _ v

_ STIME - TIME [ (NoDES) FC (142 FvP)
U DTINE [ 150,000

+ NFC '+ NCC +  NFL ]
85,000 21,000 104,400

The above estimates do not include ahy'bkoviéions'for user programmer sub-
routine time. :Additional time should be allowed for any such programs.

The number of page of printed output using the standard
output opt1ons may be estimated as fo]]ows, .

NP = NTUBES + NPN-+ NODES . STIME - TIME
170 ‘ PTIME

Additional pages should be allowed for any output subroutines or wr1te
statements specified by the user 1n addition to the standard

5.4.3 ‘Data Storage Requ1rements»

The bas1c storage requ1rements for a therma1 problem using
the EXPLCT so]ut1on subroutine is given by:

140



NSPTH = 5*NODES+3*NTC+4*NCC+3*NFC+NSPCC+3*NTSPC+3*NAH
+4*NCURY+SNPTS+ISANFS+7*(NSUBS+1)+(MXPNSS- 1)2+6%
NTBS+2](MXPNSS 1)+]O*NFLTPS+20*NVLVS+NPN+4*NFL

Where NSPTH

i

NODES

B

NTC =

NCC =

NFC =
NSPCC

1]

NTSPC

NAH =
NCURV

L]

- SNPTS
NFS =
NSUBS.

MXPNSS

)

{]

NTBS
NFLTPS

1

NVLVS

NPN . =
NFL =

1

total thermal space required
number of nodés required
total humbef of conductors
number of convection conductor
number of flow conductors

number of special option conduct1on
conductors (not constant)

number of types of special capacitances
(each group entry. is a type)

number of specified absorbed heét values
the total number of curves

the sum of the number of points

the number of flow systems

the number of .subsystems

the number of pfessure nodes in the sub-
system with the maximum number of pressure
nodes

the number of f]dW'tubes

the ndmber of fluid ]ump.types
the<nuﬁber Qfﬁva]ves,;

the number of pressure nodes-

the number of fluid Tumps

The storage requ1rements for a thermal problem using the IMLCT method of
so]ut1on is that given above plus 2*NTC. ,

5.5 OUTPUT DESCRIPTION

' Two types of standard output are available w1th MOTAR. The
f1rst is a normal pr1nt at the input pr1nt The second is a check out print

141



which occurs oh every iteration when requested (When NCKOUT on pardmeter
card- 3 in non-zero).  This checkout print consists of a normal print plus
a considerable amount of addition information which is useful in checking out

the input data deck. The checkout print formats for the EXPLCT and IMPLCT
solution -subroutines are different.

In addition to the two standard output opt1ons available on
MOTAR the user may specify any of a large number of user output subroutines
these are not described in this section but a descr1pt1on may be found in
: Append1x A.

Thevnorma] MOTAR printing, the EXPLCT checkout printing,
the EXPLCT checkout printing and the IMPLCT checkout pr1nt1nq are described
below.

5.5.1. Normal Printing

Some examples of normal printing are given in the samp]e
prob]ems described in Appendix B. A explanation of the terms apperaring
in the normal print is given below. The .units are always the problems units.

The beg1nn1ng of a pr1nt 1nterva1 is 1nd1cated by the pr1ntout
of the t1me parameters. This is followed in order by the flow rates per tube,
the pressures per pressure node, the valve positions per valve and the tem-
pertures per node These are described below as they appear

T1me Parameters

MISSION TIME - The mission time in the problem units

' COMPUTATION INTERVAL The. computation t1me 1ncrement in the
problem units

| COMPUTER TIME - The amount of computer time used to this point
: "~ (since the XQT SETP2) in minutes
- Flow Rates e
F]ow rates are pr1nted in numerical order by tube in
the problem units. Five flow rates are output on each line .

with the tube number of ‘the fifth flow: rate pr1nted to the.
.Tr1ght of it. _ . _ ‘

Pressures
Pressures are printed in numberical order by pressure node
in the problem units. Five pressures are printed out per 11ne

- with the pressure node number of the f1fth pressure pr1nted
out to. the r1ght of it. ,

142



Valve Positiohs

. The valve positions are listed one to a line in order
~of valve number. Each is identified with its number.

Temperatures

Temperatures are printed out in numerical order of the node
numbers. The output is the problem unit. Temperatures are
printed out five to a Tine with the lump number of the Tast

- temperature on each line printed just to the right of it.

5.5.2 'EXPLCT Checkout Printing

. The checkout printing may be used to examine internally
calculated values such as heat transfer coefficients, frictional and bend
loss pressure drops, and maximum time increments. An examination of the
time increments for each Tump may reveal that certain Tumps which are not
thermally important to the solution have small time increments. In that case
the time increment may be selected such that fewer iterations are required.
Care should be exercised that the lumps with overridden t1me increments do
not affect the transient analysis.

An ‘explanation of the terms appearing in the checkout
printing for the EXPLCT routine is given below:

- CHECKOUT PRINT FOR PRESSURE-FLOW COMPUTATION SUBROUTINE

MPASS - Number of temperature iterations between pressure balance
MXPASS - Maximum number of passes to balance in PFCS
NSS - Number of Subsystems in this system
LOCI - Starting location in the subsystem data for the subsystems
: of this system -
NVLOC - Starting location in the va]ve data for the va]ves of
A : - this system
LOCP ---Starting location in the pump data for the - pumps of th1s
- ~ system
TOL - Subsystem solution tolerence
EPS - - Relaxation tolerence for numerical equatlon solution
NTB - Tube 'number
W(NTB) - . Flow rate in tube NTB
NFRM - - Upstream pressure node for tube NTB
NTO - Downstream pressure -node for tube NTB
NF - Number of fluid Tumps in tube NTB
LN - Fluid Tump number
T(LN) - Temperature of fluid Tump number LN
LOC4 - "Location in the fluid Tump data array for.lump LN data

WP - Wetted peirmeter of Tump number LN

143



CSA2 . - Flow cross-sectional area squared for lump LN

MFF - - Method code for determ1n1ng friction for 1ump LN
HL - Number of head losses in fluid Tump LN

FlL/D -——Flu4dalump—4ength divided— by—d1ameter~f0r Jump—LN
RO . - Density of fluid Tump LN

MU - - - Viscosity of fluid lump LN

RE- - Reynolds number of fluid lump LN

FFC - Friction factor coefficient for fluid lump LN
FF - Friction factor for fluid lump LN

- R(LN) - Flow resistance for fluid lump LN

‘PCHK .~ - Pressure at the upstream node for tube NTB

KPASS - Number of passes thru the system

NPASS - Pass number for balancing subsystem

INLT - Inlet tube number for the subsystem
_NPR - Specified pressure node for the subsystem

NT - Number of tubes in the subsystem

LOC2 - The starting location in the tube data for the

tubes of this subsystem -

LOC3 . - The starting location in the fluid lump data for

o the fluid lumps in this subsystem S
NP - Number of pressure nodes in the subsystem

NTU . - Number of tubes upstream of subsystem
CG(NTB) - '

Flow conductor for tube NTB

Time Parameters .

MISSION TIME - The mission-time'in the problem unifs

“The computer t1me 1ncrement in the problem

COMPUTATION INTERVAL
: : un1ts

COMPUTER TIME The amount of computer time used at this
: point (since XQT STEP2) in.minutes

Flow Rates

Flow rates are'ph1hted in numericéW order by tube in the
problem units. Five flow rates are printed per line with the number of the
fifth being 1dent1f1ed by an 1nteger at the end of the. 11ne

Pressures
Pressures are printed in numerical order by pressure node in

the prob]em units. Five pressures are printed out per line with the pressure
‘'node number of the fifth pressure printed out to the right.of it.

Va1ve Positions

, The valve pos1t1ons are listed one to a 11ne in order of
valve number. Each 1s identified with its number.

© 144



Temperatures

Temperatures are printed out in numerical order of the node
number. The output is in the problem units. Temperatures are printed out
five to a line with the lump number of the last temperature on each line
printed to its right..

Capacitances

' Capacitances are prined out in numerical order of the node
number. The output is in the problem units. These are printed out five to
a line with the lump number of the last capac1tance on each 11ne printed
to its right.

Heat Storage Rates

Heat storage rates are printed out in numerical order of
the node number. The output is in the problem units. These are printed
out five to a line with the lump number of the last rate on each line printed
to its r1ght

Conductances

A Conductances are printed out in numerical order of the conductor
number. The output is in the problem units. These are printed out five to a
1ine with the conductor number of the last conductor on each line printed
to its right.

Time Increments

T1me 1ncrements wh1ch are used in the temperature calculation
are pr1nted out in numerical order of the node number. The output is in
the problem time units. These are printed out five to a Tine with the
Tump number of the last time increment on each line printed to its right.

CHECKOUT PRINT FOR FLOW CONDUCTOR>COMPUTATION SUBROUTINE

NC - ?1'Cohductor number
NFL - Lump number of the "from" lump
NTL - Lump number of the "to" Tump
' T(NFL) - Tempefature of the from Tump.
KODEF - . Code specifying method for obtafning fTow rate
cp - Specific heat



CHECKOUT PRINT FOR CONVECTION CONDUCTOR COMPUTATION SUBROUTINE

NC Conductor number
NFL - Fluid lump number
NTBL - Tube lump number
NFS ;  F]dw sysfem number
NTB 4"Tube-number
MHTC - ~'Code for identifying method for heat transfer coeff1c1ent
' ca]cu]at1on
LOCS - %3;;t1on in the type data array for the flow data for this-
| AHT -. Heat transfer area
F1 - Entry 1ength 1am1nar f]ow mu1t1p1y1ng factor
Fe - Fully developgd laminar flow mu1t1p1y1nq_factor
- T(NFL) - Fluid lump temperature | |
P - Specific heat
VIS - Viscosity
CON - Conductivify
“W(NTB) - .Flow rate in tube NTB
WP - Wetted per1meter
RE - .Reynold's_number
lPR ~ -Prandtl number
D - Hydraulic Diameter i
H - Heat transfer coefficieﬁt
X/D -~ D1stance from tube enterance divided by hydrau11c diameter
U(NC) - Ca]cu]ated conductor va]ue |
~ -Stantjon number when MHTC = 3, otherwise, zero

ST

146



5.5.3 - IMPLCT Checkout Printing

' The checkout pr1nt1ng for the IMPLCT routine is identical
‘to that for the EXPLCT routine given in Sect1on 5.5.2 with the additions/
described below.

* CHECKOUT PRINT FOR IMPLICIT TEMPERATURE CALCULATION SUBROUTINE

NPASS | - The pass number in obtaining the temperature solution
NODE - The temperature node number
- T(NODE) - The temperature of NODE
~ RHS(NODE) - The r1ght hand side for NODE as given by the right
hand side of Equation 14 ‘
C(NODE)/TINC - The capacitante of NODE divided by the problem time
' increment _
QSUM(NODE) - The value given by RHS(NODE) minus the second term on
- the left side of Equation 14
' “USUM(NODE) - The coefficient of Tin i Equation 14
DELTAT - The temperature change for the pass for NODE after
applying the overrelaxation parameter
TNEW - The temperature of NODE following the pass

147



6.0

- REFERENCES

Mvers, D. E. Ana[yt1ca1 Methods in Conductlon Heat Transfer,

10.
.

12.

13.
14.

15.

McGraw-Hill, 1971

Nuttal, H., "A Note on a Classical Problem in the Mathematical
Theory of Heat Conduction" Int. J. Engn Sci. 5(1) 39 (1967).

Re1tze1 J., "Use of Boundary Sources in Problems of Heat
Conduct1on", J. Appl. Phys. 38 (10), 3808 (1967).

Crosbie, A. L. and Viskanta, R., "A Simplified Method for Solving
Trans1ent Heat Conduction Problems with Non-linear Boundary
Conditions", J. Heat Transfer 90(3), 358 (1968).

Po]yakov,qu. A., "Exponential Point Method in Nonsteady-State Heat
Transfer", High Temperature 5(1), 117 (1967).

“ Haimo, Dz'R "Series Representation of Generalized Temperature
Functions", HASA CR-81746, Southern I1linois Un1vers1ty,

Edwardsv111e, I11. (1966).

Lynch J. H "Heat Conduct1onaas an Equ1va1ent Eigenvalue Problem”,
NASA - T™M X- 1362 (1967). .

Sparrow,_E. ‘M. and HaJo-Sheikh, A., "Transient and Steady Heat
Conduction in Arbitrary Bodies With Arbitrary Boundary and Initial
Conditions", J. heat Transfer 90(1), 103 (1968).

_Schneider, P. J., Conduction Heat Transfer Add1son Wesley, 1955.

Carslaw. and Jagger, Head Conduct1on in Solids.

Leach, J. w "Thermal Equilibrium Extrapo]at1on Techn1que",
VMSC Rept 00 1083, 30 July 1968.

Gadd1s, J. L. "Explicit Finite leference Heat Transfer .Program -
LvvM25" LTV Report No 00.823, 29 July 1966.

Dus1nberre G. M., Heat Transfer Ca]cu]at1ons Qy F1n1te D1fference, h

Internat1ona1 Textbook Co., 1961.

Smith, J. P. , “SINDA Users Manua]", TRW Report 14690—H001—R0—00,
Apr11 1971 Lo , :

Ish1moto T. and Fink, L.C.. "Systems Inprove Numer1ca1 D1fferen1ng
Analyzer Eng1neer1ng Program Manua] " TRw Report 14690-H002-R0-00,
June 1971 e : .

148



16.

17.

18,

19.

20.

21.

22.

23.

24.

25.

Hardi, P. D., Howell, H. R. , Williams, J. L. ,"Lunar Module Ascent
Stage Thermal Simulator"”, LTV Report No. 350.3, 11 August 1957.

Eckert, E. R. G., and Drake, R. M., Heat and Mass Transfer, McGraw-Hill
Book Company, Inc., New York, New York, 1959

Sparrow, Eckert, Jonsson, "An Enclosure Theory for Radiative Exchange
Between Specularly and Diffusely Reflecting Surfaces, " Trans. ASME 84,
294, 1962

French, R. J., "Computer Program for Space Radiator Analysis and Design",
VMSC Report No. 00.391, 25 February 1964.

Gaddis, J. L., "Implicit Finite Difference Generalized Heat Transfer
Program"- LTV Routine number LVYVM22, VMSC Report No. 00.809, 21 July 1966.

Hixon, C. W., Hardi, P. D. and Williams, J. L., "Apollo Block II Command
Module Thermal Simulator" VMSC Report No. 350.2, 28 July 1967.

Oren, J. A., "Computer Program and Performance Predictions for

Apollo Block II Power Generation and Heat Rejection System," VMSC Report
350.7, 29 September 1967 _ '
French, R. J. and Gaddis, J. L., "Computer Program for Apollo Fuel Cell
Rad1ator Condenser Cooling System Ana]ys1s“, VYMSC Report 00.704, 30 October
1965, revised 17 December 1968. _ A

Emmons, H. T., Hardi, P. D., and Williams, J. L., "Lunar Module Descent
Stage Therma] S1mu1ator", Report No. 350.4, 18 August 1967.

W1111ams, J. L., "Apo]lo Block I Command Module Computer Program and
Thermal Model", VMSC Report 00.808, 28 November 1966.

149



* APPENDIX A
* USER SUBROUTINES

1.0 INTRODUCTION

This appendix presents a description of all user subroutines
currently available in MOTAR. Table A-1 presents the location of each of
‘the seven categories of subroutines. Table A-2 presents an alphabetical
listing of the user subroutines with the corresponding page numbers.

Table A-1

Secfioﬁ o o - Category S ~ Page
Z:i - .‘ :"Temberéture Sbiutibn Subroufines , | A-4
2.2 _ App]icatidn Subroutines A-14
2.3 . Matrix Subroutines : A-36
2.4 ' o Interpolation Subroutines - ; | A-59.
2.5 o Outpﬁt'sdbroutines | - | R A-76
2.6 _. - __Mathémétical Solution Subroutines : A-89
2.7 _ .'.» Array'Opérations and Ménipu]ations ” - A-96

A-1.



NAME

AABB

ABLATS
ADARIN
ADDALP

ADDARY
ALPHAA

ARINDV
ARYADD
ARYDIV
ARYINV
ARYMPY
ARYSTO
ARYSUB
ASSMBL
BABT
BKARAD
BLDARY
BRKARY
‘BTAB

BVSPDA

BVSPSA
BVTRN T
BVTRN2
CABIN
CALL

CDIVI

CMPXDV

CMPXMP .

' CMPXSR
CMPYI

COLMAX
COLMIN
COLMLT

~COPRNT

- CPRNT
CSQRI

CVQTHT.

CVQIWM
DA11CY
- DATIMC
“DA12CY
DA12MC
DIAG

- DIAGAD
DISAS .

ALPHABETICAL LISTING

NAME

 DIVARY
DPRNT

D1DEGT
DIDEG2
DIDG11
DID1DA

DIDTIM

DIDTMI
DIDTWM
D1D2DA
D1D2WM

D1IMDI1

D1IMIM
D1IMWM
DIMDGI
DIMDG2
DIMIDA
DIMIMD
DTMIWM
DTM2DA
DIM2MD
DTM2ZWM
DT1CYL

© D11DAI

D11DIM
DTIMCY
D11MDA
D11MDI
D12CYL
D12MCY
D12MDA
D2DEG]
D2DEG2

~ 'D2DTWM

D2D2WM
D2MXD1
D2MXD2
D2ZMX1M
D2MX2M

D3DEGT

D3DTWM

- EFABS
EFACS

EFASN

“EFATN

Table A-2

PAGE

A-99
~ A-78
* A-62

A-74
A-74
A-74
A-75
A-75
A-44
A-43
A-43
A-43

A-2

NAME

'EFCOS

EFEXP

. EFFEMS

EFLOG
EFPOW
EFSIN
EFSQR
EFTAN
ELEADD

-ELEDIV

ELEINV
ELEMUL
ELESUB
ENDMOP

EXPLCT -

EXPSS
FILE
FLIP
FULSYM
GENALP
GENARY

~ GENCOL -
CGENI

GENOUT.
GENR
GSLOPE

. HEATER.
HXEFF

HXCNT

" HXCROS

HXPAR

IMPLCT
IMPLSS
INVRSE
TRRADE
IRRADI
TTRATE

JACOBL.

JOIN

'LAGRAN
LGRNDA
LIST.
LQDVAP
LQSLTR
LSTAPE
LSTSQU

- MASS

MATADD

>)>J>>:’>>>>>->>>>>>>>>J|>J>J>3>>>>>JD>>>>>>>>>>

[ T s T e e e T
AP WNIN = e et DO O =~ O SN
— —

RN
POV WWOONN—OIN— =D =JYNONNNMNDNOOOSE B~ INOTOT S

CMINWOTPROISN— —0O WO O —



Table A-2
Alphabet1ca1 L15t1ng (Cont1nued)

NAME . PAGE . NAME . PAGE

MATRIX A-45 SHUFL - A-50
MAXDAR A-106 SIGMA - A-40
'MODES A-56 - SIMEQN . - A-82
MPYARY A-98 - SLDARD A-104
MULT A-46 SLDARY A-104
MXDRAL - A-106 SLRADE A-20
- NEWRT4 A-91 ~ SLRADI A-20
NEWTRT A-91 SMPINT A-90
ONES A-40 ~ SPLIT A-105
PLOTL1 A-83 SPREAD - A-105
PLOTL2 A-83
PLOTX1 ‘A-83
PLOTX2 A-83
PLOTX3 A-84 STFSEQ - A-103
PLOTX4 A-84 STFSQS .~~~ A-103
PLYARY A-92 CSTIFF A-58
PLYAWM A-92 - . STOARY A-102
 PLYEVL . A-52 : ‘
PLYNML A-92 STORMA A-104
PNTABL A-88 SUBARY A-98
POL -  A-63 SUMARY  A-97
POLMLT A-52 SYMDAD “A-51
POLSOV ‘A-53 SYMFRC A-41
POLVAL A-52 - SYMFUL . A-41
. PPRNT A-79 SYMINV A-51
PRINT A-80 SYMLST - A-88
PRINTA A-80 SYMREM - A-51
PRINTL ~ A-80 . SYMREP A-51
PRNPLT A-82 . TPRNT A-78
PRNTMA A-81 - TRANS . A-47
PRNTMI. A-81 TRPZD A-90
PSINTR A-71 _TRPZDA . A-90
PSNTWM A-71° " UNDIAG *- A-41
PUNCH A-88 CUNITY A-40
PUNCHA. : A-81 UPRNT: A-78
_QPRNT A-78 'VPRNT A-78 -
RADIR A-15 ' WPRNT A-79
RADSOL . A-18 WRITE" A-87
READ A-87 ZERO ~A-80
REFLCT A-49 IR .
ROWMLT A-49
SCALAR A-45
SCLDEP - A-99
SCLIND A-99
SCRPFA A-21
SHFTV A-101
SHFTVR A-101

SHIFT A-49

A-3



2.0

SUBROUTINE_DESCRIPTION

TEMPERATURE SOLUTION SUBROUTINES (Computer generated and

2.1
vary from problem-to-problem)
_ ' PAGE
EXPLCT Calculates transient temperatures using the explicit method A-5
of solution. Two time increment options are available. :
EXPSS Calculates the steady state temperature d1str1but1on using data A-7
stored for explicit problem.
IMPLCT ~ Calculates transient temperatures using the implicit methods - A-7
of solution including mid-difference, backward difference or
any point between. _
IMPSS Calculates steady state temperature distribution using data A-11

stored for 1mp11c1t problems.

A-4



© SUBROUTINE NAME: . Beer
PURPOSE : |

‘This subroutine obtains the transients temperatures using the explicit

forward differencing solution method described in Section 3.1.2.1. The
calculations for each node are given by equation (12) and the stability criteria
is given by equation (13). Two options are available for app11cat1on of the
stability criteria. There are

(1) Override or Floating Option - (Spec1f1ed by 0 in columns
11 through 20 of parameter card 2):

Temperature calculation is made for each lump using the input
time increment or the maximum stable increment (equat1on 13),
whichever is smaller.

(2) No Overriding Option - (Specified by a nonzero entry for- TINCMN
: in columns 11 through 20 of parameter card 2):

Temperature calculations for all Tumps are made using the
input time increment or the smallest maximum stable increment
whichever is smaller (all Tumps use the same increment).

A minimum value for the time increment is spec1f1ed by

the user and the problem is terminated if the maximum stab]e
~increment drops below the input minimum.

EXPLET is generated during the preprocessing phase of MOTAR based upon the

input data and. thus will vary in actual form from problem to problem, depending
upon the requirements. A functional flow chart is-shown in Figure A-1,

which shows the order of calculations including the calls to the. user programming
blocks. Many of the operations shown will not be present when the data

doesn't require them.

" RESTRICTIONS:

Must be called from the $CENTRAL block. MPLCT code in co]Umns 6 to 10 of
parameter card 1 must be 0 or blank. _ ' '

CALLING SEQUENCE: EXPLCT

A-5



EXPLCT )
CALCULATE INITIAL
CONDITIONS

Y

CALCULATE TEMPERATURE
AND TIME DEPENDENT
CAPACITANCES AND CONDUCTORS

CALCULATE ABSORBED OR
GENERATED HEAT SOURCES |

I

PERFORM $ PRETEMP

&..

"PERFORM NORMAL TEMPERATURES

CALCULATIONS

g

ADVANCE TIME

OBTAIN CURVE DEPENDENT
TEMPERATURES .

‘

PERFORM $ POSTTEMP
a OPERATIONS -
N | , l _

NO PERFORM PRESSURE/FLOW
ANALYSIS -

< TIME: FOR
ouTPUT

PERFORM $ OUTPUTH
OPERATIONS

IS TIME YES

2 STIM

WRITE HISTORY
TAPE

[ WRITE ‘MESSAGE | -

WRITE ON HISTORY TAPE,
DUMP_ TAPE AND OUTPUT

(' RETURN.

| FIGURE .A-1: FUNCTIONAL FLOW CHART OF SUBROUTINE—EXPLCT

A-6



SUBROUTINE NAME: ~ EXPSS
PURPOSE : |

This subroutine obtains the stecady state temperature distribulion for

- problems with the data stored in the explicit format. It is compatible
with the EXPLCT subroutine and, thus, may be used on the same problem.

"~ It jterates the basic transient explicit temperature equation (Equation
12) to a solution while holding time .constant. Convergence is accelerated
by applying the maximum stable time increment given by Equation 13 to
each node. This method results in a block iterative solution method.
Compared with subroutine IMPSS, the convergence is slower but less

.storage space for the data is required. -

A functional flow chart for EXPSS is shown in Figure A-2.

RESTRICTIONS:

MPLCT code in coTumné 6 thru 10 of parameter card 1 must be 0. Must
be called from $CENTRAL .

'CALLING SEQUENCE: EXPSS
'SUBROUTINE NAME: IMPLCT

PURPOSE :

This subroutine calculates the transient temperature distribution

using the implicit method of solution discussed in Section 3.1.2.2.

Either backward difference, mid-difference or any point in between

may be specified by the value of ALPHA in columns 16 thru 20 of parameter
card 3, which is constrained to be between 0.5 and 1.0. When ALPHA

“is 1.0 the solution 1is backward-difference; when ALPHA is 0.5 the solution
is mid-difference. A modified version of the successive-point-over
‘relaxation iteration method is used for equation solution. The over-
relaxation parameter, ORP, is supplied in columns 26 thru 30, and the
solution tolerence DTMXA is supplied in columns 21 thru 25, both on
parameter card 3. -
Figures A-3 and A-4 provide functional flow charts of IMPLCT and TEMPI
which is called from IMPLCT. As may be seen, the $PRETEMP operations
are preformed during the relaxation loop of TEMPI, and thus, the user
calls in $PRETEMP are considered during relaxation: The user may not
reference the C array from $PRETEMP when using IMPLCT but may perform
operations-on the'Q, U, and T arrays. C operations may be performed
.in the $POSTTEMP block. S

 RESTRICTIONS:
MPLCT code in column 10 of parameter card 1 must be 1. IMPLCT must

be called from $CENTRAL. The C array is not available to the user in
the $PRETEMP operations block. _

CALLING SEQUENCE: ‘ IMPLCT



‘ EXPSS .

|CALCULATE INITIAL
~ CONDITIONS

:

CALCCULATE ACL TIME DEPENDENT

COEFFICIENTS, ABSORBED HEAT VALUES

AND TEMPERATURES

i

‘| CALCULATE TEM

PERATURE DEPENDENT

| _.COEFFICIENTS AND ABSORBED HEAT

4

PERFORM $ PRETEMP OPERATIONS _

.«

PERFORM TEMPERATURE C

ALCULATIONS

PERFORM- $ POSTTEMP
OPERATIONS

TEMP CHANGE YES
LESS THAN INPUT >
TOLERENCE~"
IS - YES .
RO. OF ITERATIONSN T WRITE ERROR

GREATER THAN

~ MESSAGE

NO

WRITE ERRQOR

MESSAGE

PERFORM STD PRINTOUT?ﬁERFORM
__$ OUTPUT OPERATIONS

~RETURN

FIGURE A-2: FUNCTIONAL FLOW CHART OF SUBROUTINE EXPSS

‘A-8




IMPLCT |

INITIALIZE PROBLEM

| DETERMINE CAPACITANCES,
CONDUCTORS AND ABSORBED
HEATS, AT MEAN TIME

|

DETERMINE RIGHT HAND SIDE
- OLD TIME .

ADVANCE TIME

~ [INTERPOLATE FOR TIME DEP. TEMPS
S | ~ [cALL TEMP SsoLUTION |
SUBROUTINE, TEMPI TEMP!

o PERFORM § POSTTEMP
; OPERATIONS

R :
'PERFORM PRESSURE/
FLOW BALANCE

PERFORM $ OUTPUT

OPERATIONS IS TIME

>STIME

YES

WRITE
HISTORY TAPE

WRITE MESSAGE

WRITE ON HISEORY TAPE,
'DUMP TAPE AND OUTPUT

RETURN :

 FIGURE A-3: FUNCTIONAL FLOW CHART OF IMPLCT
' A-9 -




( Tewr )

CALL $ PRETEMP OPERATIONS

AT _NEW TIME

LPASS = .FALSE

NO

CALCULATE NEW
NODE- TEMP

IS
EMP CHANG
GT THAN

NO  ["SET NODE NO.
- "NEGATIVE

"15

NO _
THIS LAST

NODE

Y IS\ e
NO MAX PASS N0

~EXCEEDE

SET NODE NOS. POSITIVE

YES
WRITE ERROR

l |
— RETURN

FIGURE A-4: FUNCTIONAL FLOW CHART OF TEMPI
A-10




- SUBROUTINE NAME: o IMPLSS

PURPOSE :

This subroutine calculates the steady state temperature distribution
: for problems with the data stored in the implicit format. It is
‘compatible with IMPLCT in that data stored for either may be used
with the other. Thus, IMPLCT and IMPLSS may be used on the same

problem. .

Subroutine IMLSS performs the same basic iteration procedure performed
in IMPLCT except the time is held constant and the capacitance is

‘assumed to be zero. Functional flow charts of IMPLSS and TEMPSS which
it calls are shown in Figure A-5 and A-6.

The values of the overrelaxation parameter, ORP, and the solution tolerence,
DTMXA, are supp11ed on parameter card 3.

RESTRICTIONS:

MPLCT code in column 10 of parameter card 1 must be 1. IMPLSS must
be called from $CENTRAL. The C array is not available to the user in the
$PRETEMP operations block. - '

CALLING SEQUENCE : ' IMPLSS



( wpLss )

INITIALIZE PROBLEMJ

YES

WRITE ERROR

NO -

IS

e

\DETERMINE ABSORBED - |-
HEATS, AT MEAN TIME

4

DETERMINE RIGHT HAND.SIDE :
OLD TIME

INTERPOLATE FOR TIME DEP. TEMPS
CALL TEMP SOLUTION lg. ' TEMPSS
SUBROUTINE TEMPSS S

PERFORM $. POSTTEMP
OPERATIONS

. 2
PERFORM PRESSURE/
FLOW BALANCE

YES

NO. OF ITER
NGT. MAX.

YES

WRITE ERROR
=

S——
PERFORM STOP
__PERFORM $ OQUTPUT

( RETURN

-

FIGURE A-5: FUNCTIONAL FLOW CHART OF IMPSS

. A-12



INITIALIZE CONSTANTS

a0

TRUE

CALL $ PRETEMP OPERATIONS

AT NEW TIME

LPASS = .FALSE.

NO

CALCULATE NEW
NODE. TEMP

. . N(\
. S b e
i t,n[x_g‘q (g}: S Y SEV NGDE MO,

TS GT TN 1 NEGATIVE

<@

NO

< THIS LAST

\\\\3905

THE MAXTHLM YES
CHANGE .
GT.TOL

@ N0 MAX PASS ™S, NO

"SET .NODE HOS. POSITIVE XCEEDED” -

- T T ) / °
e

WRITE ERROR

s S
— ( ReTuRv )
FIGURE A-6: FUNCTIOMAL FLOW CHART OF TEMPSS
e Y SER |




‘”éléA>"

" APPLICATION SUBROUTINES = o oo

o Thermal Radiatfon’Exchange

RADTR

IRRADI
IRRADE

RADSOL

SLRADI

" SLRADE

" HXCNT
~ HXCROS

EFFEMS

SCRPFA

Aenclosure .........

PAGE

Calculates the scr1pt‘FA_vaTueﬁ_for_iR*rad1at1on within—an en=
closure and uses these values to obtain the heat transfer due to

. radiation. Permits consolidation of severa] nodes on one ra-

diating surface e e e e e e e e e e e ..

Simulates a radiosity network w1th1n a mu1t1p1e grey surface
enc]osure containing a non-absorbing media. . . . . . . . ..

Calculates the script FA values for non-infrared radiation in . -

an enclosure and uses these values to obtain heat transfer
during the problem. Permits consolidation of" severa1 nodes on

one radiating surface. . . . . . .« ¢ . . L L 0 L0 e e e e

Similar to IRRADI and IRRADE but designed to solve for the
solar heat1ng rates within an enclosure . , . . . .. .. ...

Calculates the effective em1ss1v1ty between parallel flat plates

Obtains the scr1pt FA value for rad1ant transfer w1th1n an

Heat Exchanger and Heater

HXEFF -

HXPAR
HEATER

Simulates heat exchangers under steady state conditions for con-

stant effectiveness, counter flow, cross f]ow, and parallel flow

conditions respect1ve1y

---------------------

Simulate a fluid inline heater.

-----------------

Cabin Analysis

CABIN.

Phase Change

Performs a heat and mass balance on a cabin gas considering .
any numben of entering streams and condensation on the cabin
wall

----------------------------

ABLATS

“LQSLTR

LQDVAP

Represents a simple ablation (sub]imation) capability . . . . .

Accounts for the phase change energy of a me1t1ng or solid-
ifying material . . . . . . . . . . . L e e e e e e .

Allows the user to simulate the addition of Tiquid to a node

A-14-

A-15

A-20
A-20

A-21

A-22/R-26



.~ SUBROUTINE NAME:  RADIR

" Where the arrays are formated:

PURPOSE :

RADIR calculates the script-F values for infrared radiation heat trans-
fer within an enclosure and uses these values to obtain the heat trans-
fer during the problem. Several temperature nodes may be combined on a
single surface for radiation heat transfer purposes. Also, the user may
analyze problems with specular, diffuse or combinations of specular

and diffuse radiation. See Section 3.1.3.5 for definitions and detailed
description of methods.

RADIR calculates the script-F values on the initial call. This is per-
formed by the procedure outlined in Section 3.1.3.5, Equations 23, 25

“and 31. These values are stored for future use in the A6 array supplied

by the user. The heat flux values are then calculated on all iterations

by: : _ :
(1) Calculating the temperature of each surface using equation 34

- (2) Ca]cu]ating the absorbed heat for each node by the relation
of equation 33

The value given by equation 35 is added to the conductor sum for each

node so that the proper conveyence time increment may be obtained. As
many enclosures as desired may be analyzed but each enclosure requires
a different call to RADIR.. RADIR must be called in $PRETEMP.

RESTRICTIONS:

Must be called from $PRETEMP

CALLING SEQUENCE:

RADfR'(A1(IC),A2(IC5,A3(IC),A4(IC),A5(IC),A6(IC))

A1(IC),n,SNT,SAT ,NNT,SN2,SA2,NN2,............ SNn,SAn,NNn
A2(IC),SE1,SE2----- SEn ‘ ‘
A3(IC),SR1,SR2-----SRn
A4(IC),SNF1,SNT1,EFT1,SNF2,SNT2,EFT2,-~-SNFm,SNTm,EFTm
A5(IC),NNO(1,1),AN(1,1),NNO(1,2),AN(T,2)----NNO(1,NN1.) ,AN(T,NNT),
NNO(Z,]),AN(Z,]),NNO(Z,Z),AN(Z,Z)----NNO(Z,NNZ),AN(Z,NNZ),

* NNO(n,1),AN(n,1),NNO(n,2) ,AN(n,2)----NNO(n,NNn) ,AN(n,NNn)

A6(IC), S, NSPACE '



The;follonng deffnftieﬁsﬁapﬁly in the above calling sequence.

CAlLAZ,...

$CURVE block. The_ user_must_use_the

Location for arrays supp11ed in the

SNFT,SNT1,EFTT

NNO(X,Y)

NSPACE

LUTAB function to find the location
(see Section 5.2.5)

The.number of surfaces

Node - number for surfaces - must be
Total.area for each surface

Number of temperature nodes on each

Emissivity'va]ues for"each surface

A6
.
SN1,SN2, . . .SNn
: : o boundary nodes -
SA1,SA2,....SAn
NNT,NN2,. .. .NNn
' - surface
© SE1,SE2,....SEn .
SR1,SR2,....SRn

Diffuse ref]ect1v1ty values for each
surface

Connections data: Surface number
from, surface number to, E value
from SNF1 to SNT1, etc.

Temperature node numbers on surfaces;
Node number Y.on surface X

Number of spaces needed to store script-

FA values - NSPACE must be an integer
values of n/2(n+1)

The number of surface connections



THERMAL RADIATION EXCHANGE

SUBROUTINE NAMES: = IPRADI or IRRADE
PURPOSE :

These subroutines simulate a radiosity network* within a multiple gray
diffuse surface enclosure containing a non-absorbing media. The input is
identical for both subroutines. However, TRRADE utilizes -explicit equations
to obtain the solution by relaxation and IRRADI initially performs a

- symmetric matrix algebra inverse and thereafter obtains the exact solution
implicitly by matrix multiplication. The relaxation criteria of IRRADE
is internally calculated and severe enough so that both routines generally
yield identical results. However, IRRADE should be used when temperature
varying emissivities are to be considered and IRRADI should be used when
the surface emissivities are constant. Both subroutines solve for the J
node radiosity, obtain the net radiant heat flow rates to each surface and
return them sequentially in the last array that was initially used to
input the surface temperatures. The user need not specify any radiation
conductors within the enclosure.

RESTRICTIONS:

- The Fahrenheit system is required. The arbitrary number of temperature
arguments may be constructed by a preceding BLDARY call. The emissivity,
area, temperature-Q and upper half FA arrays must be in corresponding order
and of exact length. The first data value of the F4 array must be the
1nteger number of surfaces and the second the Stefan-Boltzmann constant
in the proper units and then the F4 floating point values in row order.

The diagonal elements (even if zero) must be included. As many radiosity
subroutine calls as desired may be used. However, each call must have
unique array arguments. The user should follow the radiosity routine by
SCALE, BRKARY or BKARAD to distribute the Q's to the proper source location.

CALLING SEQUENCE: IRRADI(44(1C), Ae (IC), AFA(IC) ,ATQ(IC))
‘ .. or IRRADE (AA(IC), Ac(IC) ,AFA(IC),ATQ(IC))

where the arrays are formatted as follows:

AA(IC),A1,A2,A3,44,

Ae(IC),el,e2,€3, e4 . ,cN

AFA(IC) N,o, FA(] 1) FA(I 2),FA(1,3),FA(1,4),FA(1,5), FA(I,N)
FA(2,2),FA(2,3),FA(2,4) ,FA(2,5),..,FA(2,N)

. FA(N—Z N-2), FA(N—Z N-1), FA(N-Z N)
: FA(N-1,N-1),FA(N-1,N)
~ RA(N,N)-
ATQ(IC) r1,12,T73,..,TN : . e
 where FA(1,2) is defxned as A(l)*F(l 2) After the subroutine is performed
- the ATQ array is ATQ(IC),Q1,Q2,Q3,..,4N .
Since FA1(1,2)=FAg (2,1) on]y the upper half traang]e of the full FA matrix
is required. IRRADI inverts this half matrix in its own area, hence
approximately 300 surfaces may be considered using MBTAR on a 65K core
mach1ne

*'Radiation Analysis by the Network Method,"'A. K. Oppénheim, Transaction
of the ASME, May 1956, pp. 725-735.



SUBROUTINE NAME: ~ RADSOL

~ PURPOSE:

“ RADSOL calculates a pseudo script-F for radiation from an external
source entering an enclosure and uses these values to calculate the net
heat transfer to each node due to the entering source. A number of
temperature nodes may be combined on a single surface for radiation
purposes. Also, problems with specular, diffuse, or combinations of
specular and dwffuse radiation may be analyzed. Section 3.1.3.5 should
be consulted for definitions and descriptions of methods.

RADSOL calculates the pseudo script-F values on the initial call. This
"~ is performed by equations 38, 40, and 44 of section 3.1.3.5. The values
‘are stored in the A7 array supplied by the user. The heat flux values
are then calculated on each iteration by equations 45 and 46.

The user may. analyze as many enclosures as desired by supplying a call
statement for each enclosure. Also, a user may analyze several wave
Tength bands of radiation for any enclosure by supplying a call state-
ment (and appropr1ate data) for each wave length bands

RESTRICTIONS:

Must be called from the $PRETEMP operations.

CALLING SEQUENCE'

RADSOL (A](IC ) ,A2(1C),A3(IC), A4(IC) A5(IC) A6(IC) A7(IC)

Where the arrays are formated

A1(IC), n,SNT,SA1,NNT,SN2,SA2,NN2, - - - - - = 5nn,SAn,NNn
A2(1C),SE1,SE2, - - - - = -SEn . : o
. A3(IC),SR1,SR2, - -.- - - -SRn
A4(1IC), SHT1 SHT2 ----- SHTn L
A5(1C),SNF1,SNT1,EFT1,SNF2,SNT2,EFT2, - - -SNFm,SNTm,EFTm
A6(IC), NNO(T 1) AN(] ]) NNO(] 2) AN(] ,2) - - =NNO(1,NN1),AN(1,NN1),
_.NNO(Z,]),AN(Z.T),NﬂO(Z,Z),AN(Z,Z) - - -NNO(2,NN2) ,AN(2,NN2),

-~ NNO(n,1),AN(n;1) ,NNO(n,2) ,AN(n,2) = - -NNO(n,NNn) ,AN(n,NNn)
A7(IC), S, NSPACE - S L

The fo]]@ang_def1nitiohs apply -in fhéfabove ca]]ing‘sequence



ATLA2,.. ... A6 - Location for arrays supplied in the

o . $CURVE block. The user must use the
LUTAE function to find the location
(See Section 5.2.5) -

= the number of surfaces

SN1,SN2,...SNn " Node number for surfaces must be bound-
o ary nodes )
SA1,5A2,...SAn - . Total area for each surface
NNT,NN2,...NNn Number of temperature nodes on each
' V : surface :
SE],SEZ,;..SEn  o Emissivity values for each surface
SR1,SR2,...SRn - Diffuse reflectivity values for each sur-
. o face _ :
SHT1,SHT2,...SHTn o Incident heat flow on surfaces may be curve
' : ‘ 1,2, ==-n - - or constant
SNF1,SNTT,EFTT. _ ~ Connections data: Surface-number from
' . ‘ surface number to, E value from SNF1 to
SNT1, etc.
NNO(X,Y) o : Temperature node numbers on surfaces:

Node number Y on surface X

NSPACE . - ' Number of spaces needed to store script-
o - FA values - NSPACE must be an integer
values of n/2(n+1)



THERMAL_RADIATION EXCHANGE

 SUBROUTINE NAMES: o SLRADI or SLRADE
PURPOSE : | -

These subroutines are very similar to IRRADI and IRRADE but are designed to
solve for the solar heating rates within a enclosure.  SLRADI inverts a half
symmetric matrix in order to obtain implicit solutions, while SLRADE obtains
solutions explicity by relaxation. SLRADE should be used when temperature
varying solar absorptivities are to be considered. The second data value of
the 4FA array must be the solar constant in the proper units. The AT array
allows the user to input the angle (degrees) between the surface normal and
the surface-sun line. The AI array allows the user to input an illumination
factor for each surface which is the ratio from zero to one of the unshaded
portion of the surface. The solar constant (S), AT and AT values may vary
during the transient for both routines. No input surface +emperatures are
required. The absorbed heating rates are returned sequentially in the 4@
_array, the user may utilize SCALE, BRKARY or BKARAD to d1str1bute the

" heating rates to the proper source locations.

RESTRICTIONS

These routines are independent of the temperature system being used. All

of the array arguments must reference the integer count set by the SINDA
preprocessor and be of the exact requ1red length. As many-calls as desired
may be made but each call must have unique array arguments.

CALLING SEQUENCE: SLRADI (44 (IC),Ac (IC), AFACIC) , AT(IC) ,AI(IC),AQIIC))
. or' . SLRADE{AA(IC),Ac(IC),AFA(IC),AT(IC), AT(IC), AQ(*C)\

SUBROUTINE NAME: P EFFEMS

'PURPOSE:

This subroutine ca]cu]ates the effect1ve em1ssivity E between para11e1
f]at p]ates by the fo]]ow1ng equation: 3

, 4 =1.0/(1.0/E1 + 1. O/El - 1 0)
where El_andsz are'the emissivities of the two surfaces under consideration.

RESTRICTIONS:

Arguments must be.Fiqatihg'pOint numberé.

CALLING SEQUENCE:  EFFEMS(E1,E2,E)

A-20



THERMAL RADIATICN EXCHANGE

SUBROUTINE NAME: SCRPFA

PURPOSE :

To obtain the script FA value for radiant transfer within an enclosure.
~The input arrays are formatted as shown for subroutines IRRADI and IRRADE.
The second data value in the AF4 array is used as a final multiplier, if
1.0 the script FA values are returned; if o then script ¢ FA values are’

returned. The script FA values are returned in the ASFA array which is
formatted identical to the AFA array and may overlay it.

RESTRICTIONS

- A11 array arguments must reference the integer count set by the MOTAR
preprocessor and all arrays must be exactly the required length.

CALLING SEQUENCE: . SCRPFA(AA(IC),Ae(IC),AFA(IC),ASFA(IC))

NOTE: Subroutine SYMUST(ASFA(IC)+3,ASFA(IC)+1) may be called to list the
matrix values and identify them by row and column number. This routine
and the implicit radiosity routine finalize the half symmetric coefficient
matrix and call on SYMINV(AFA(IC)+3,AFA(IC)+1) to obtain the symmetric
inverse.

A=21



- SUBROUTINE NAME: HXEFF

PURPOSE :

This subroutine obtains the heat exchanger effectiveness either from
a user constant or from a biariant curve of effectiveness versus the
flow rates on the two sides. The effectivenss thus obtained is used

~with the supplied flow rates, inlet temperatures and fluid propert1es
to calculate the outlet temperatures using the methods described in
Section 3.1.3.2. The user may specify a constant effectiveness by
supplying a real number and may use the LUTAB*function to specify the
effectiveness as a bivariant function of the two flow rates. The user
also supplies flow rates, specific heat values, inlet temperatures and
a location for the outlet temperatures for each of the two sides. The
flow rate array may be referenced to obtain flow rates and the temperature
array may be used for temperatures. The LUTAB function may be used to
obtain the specific heat values from a temperature dependent curve or
a.constant value may be supplied.

RESTRICTIONS:

HXEFF should be called in the $PRETEMP operat1ons block. The value for
EFF, the first argument must never be zero.

CALLING'SEQUENCE

HXEFF(EFF W1 wz CP] CP2 T]N] T1N2 TOOT] TO0T2)

Where EFF s (l) the effectiveness . 1f real, (2) LUTAB (IEFF)
where IEFF is a curve number of a bivariant curve of
effectiveness versus W1 and W2. (See page A-60A)

are the.flow rates for side 1 Ahd*z respectively.
May reference the flow rate array, W(I) where
I is the tube number

WI;W2.

| are the specific heat value for side 1 and side 2
fluid respectively. Constant values may be input
~or LUTAB may be used to reference curves in $CURVES

~ cP1,cP2

~are inlet Tump temperatures - Usually T(LI1) and
T(LI2) where LI1 and.LI2 are the inlet 1umps on
side 1. and side 2

TINT,TIN2

are the outlet Tump temperature 1ocat1ons where the
ca]cu]ated va]ues will be stored ’

“TOUTT,TOUT2

~* See page 114

- A-22



'SUBROUTINE NAME: HXCNT

PURPOSE :

This subroutine calculates the heat exchanger using the relation described
in Section 3.1.3.2 for a counter flow type exchanger.. The value of UA
used in the calculations may be specified as a constant by supplying
a real number or it may be specified as a bivariant function of the two
flow rates by using the LUTAB*function. The user also supplies flow

- rates, specific heat values, inlet temperatures and a location for the
outlet temperatures for each of the two sides. The flow rate array
may be referenced to obtain flow rates and the temperature array
may be used for temperatures. The LUTAB function may be used to
obtain the specific heat values from a temperature dependent curve or a
constant value may be supp11ed

RESTRICTIONS:

HXCNT should be called in the $PRETEMP operations block. The value for
UA, the f1rst argument must never be zero. '

CALLING SEQUENCE{

HXCNT (UA,W1,W2,CP1,CP2,TINT, TIN2,TOUT1,TOUT2)

Where UA - is (1) the heat exchanger conductance if real,
: (2) LUTAB (IUA) where IUA is a. curve mumber:
of a bivariant curve of conductance versus
W1 and W2 (See page A- 60A)

Wl W2 = are the flow rates for sideland side 2
' respectively. ~May reference the flow rate
array, W(I) where I is the tube number

CP1,CP2. -+ are the.specific heat values for side 1 and
a 2 fluid respectively. Constant values may be
input or LUTAB may be used to reference. curves
in $CURVES

TOUT1-TOUT2 - are the outlet lump temperature locations
- _ ’ where the ca]eu1ated,va1ues will be stored”A

* See page 114

A-23

. \?.yt‘



SUBROUTINE NAME: = HXCROS

PURPOSE :

This subroutine calculates the heat exchanger using the relations de-
scribed in Section 3.1.3.2 for a counter flow type exchanger. The value
of UA used in the calculations may be specified as a constant by supply-
ing a real number or it may be specified as a bivariant function of the
two flow rates by using the LUTAB*function. Any one of the following
four types of cross flow exchangers may be analyzed (see Section 3.1. 3.2
for the re]at1ons)

Both steams unm1xed
Both streams mixed
Stream with smallest MCp product unmixed
Stream with largest MCp product unmixed

HWwN —
e e et e

The type is spec1f1ed by the last argument in the call statement. Also
supplies flow rates, specific heat values, inlet temperatures and a location
for the outlet temperatures for both sides. The flow rate array may be
referenced to obtain flow rates and the temperature array may be used

for temperatures. The LUTAB function .may be used to obtain the specific
heat values from a temperature dependent curve or a constant value may
- be supp11ed

RESTRICTIONS :

'HXCROS should be called in the $PRETEMP operations b]ock The value
for UA, the f1rst argument must never. be zero.

cALLING SEQUENCE:

HXCROS (UA,W1,W2,CP1,CP2,TINT, TIN2,TOUT1,TOUTZ K)

Where - UA - is (1) the heat exchanger conductance
o : if real, (2) LUTAB (IUA) where IUA is
a curve nhumber-of a .bivariant curve of
conductance versus W1 and W2.

Wl,W2 - are the flow rates for side 1 and side 2
L : respectively. May reference the flow
rate array, W(I) where I is the tube
number '

- cp1,P2 - - are the specific heat values for side 1
- : S and side 2 fluid respectively. Con-
stant values may be input or LUTAB may
be used to reference curves in $CURVES

* See page 114 _ L
- A-24



TIN1,TIN2 - are inlet lump temperatures - Usually
" : T(LI1) and T(LI2) where LI1 and LI2
are the inlet lumps on side 1 and

side 2
TOUT],TOUTZ - are the-outlet 1umb temperature locations
) where the calculated values will be
~stored

K s the code specifying type of éross flow exchanger:

Both steams unmixed : K=1

Both streams mixed : K=2 '

Stream with small WCp Unmixed : K=
K=

3
Stream with large WCp unmixed : K=4



© SUBROUTINE NAME: HXPAR

. PURPOSE : ' - ’ -

This subroutine calculates the heat exchanger using the relation described
in Section 3.1.3.2 for a parallel flow type exchanger. The value of UA
-used in the calculations may be specified as a constant by supplying a
~real number or it may be specified as a bivariant function of the two
flow rates by using the LUTAB*function. The user also supplies flow
rates, specific heat values, inlet temperatures and a location for the
- outlet temperatures for each of the two sides. The flow rate array
may be referenced to obtain flow rates and the temperature array may be
used for temperatures. The LUTAB function.may be used to obtain the
specific heat values from a temperature dependent curve or a constant
value may be supp11ed

RESTRICTIONS'

HXPAR should be ca]]ed in the $PRETEMP operations block. The value for
UA ‘the first argument must never be zero.

CALLING SEQUENCE

HXPAR(UA W1 N2 cP1 CP2 TIN1 T1N2 TOUT1 TOUT2)

‘Where . UA - - is (1) the ﬁeet'éxchanger cohductance if real,
- : (2) LUTAB (IUA) where IUA is a curve number of
a bivariant curve of cdonductance versus W1 '
and W2. (See page A-60A)

w1,w2_E - are the flow rates for side 1 and 2 respectively.
May reference the flow rate array, W(I) where
I is the tube number

- ¢cp1,cP2 - are the specific heat values for side 1 and
o S ‘side 2 fluid respectively. Constant values
‘may be 1nput or LUTAB may be used to reference
curves in $CURVES

TINT,TIN2 o are inlet -lump temperatures —'Usua]ly T(LIT)
L and T(LI2) where LIT and LI2 are the 1n1et
1umps on side 1 and side 2

TOUT1,TOUT2 | - -are the outlet lump. temperature locations
: where the calculated values will be stOred

* See_pagev114

A-26



SUBROUTINE NAME: © HEATER

PURPOSE :

“This subroutine simulates an electrical heater with a control system

which turns the heater on when the sensor lump temperature falls below

. the "heater on" temperature TON. and turns the heater off when the sensor

lump rises above the heater off temperature, TOFF. When the heater is
on, the input Q value is added.to the Q location specified by the user.
When the heater is off, the no heat is added.

RESTRICTIONS :

HEATER fmust be called in the $PRETEMP operations block.

CALLING SEQUENCE:

HEATER (TSEN,TON,TOFF,HT,Q)

Where TSEN 1is the sensed temperature
- TON.- is the heater on temperature
TOFF is the heater off temperature
HT is the heater heat rate ,
Q is the location for storing the heat

A-27



SUBROUTINE NAME : ~ CABIN

PURPOSE :

This subroutine performs a thermal and mass balance on a cabin air
system. The cabin air is assumed to be a two component gas mixture
with one condensible component and one noncondensible component. The
cabin air is assumed to be well mixed so that the temperature and
specific humidity are constant throughout. The cabin may contain
any number of entering streams each with different temperature and
humidity conditions. The cabin air may transfer heat to its surround-
ings any number of nodes with the heat transfer coeff1c1ent obtained
by one of the three options:

1. User input coeff1c1ent :
2. Relations for flow over a flat plot:
. 3. Relations for flow over a tube bundle

The relations describing the second and third options are given in

~ Section 3.1.3.4. The mass transfer coefficient for determing the rate

of condensation or evaporation is determined by the Lewis relation which
related the mass transfer coefficient directly to the connection heat
transfer coefficient. By the Lewis Relation, if the diffusion coefficient
is approximately wqual to the thermal diffusivity, the Sherwood number

is approximately equal to the Nusselt number, thus giving a direct re-
lation. (See Section 3.1.3.4 for details) Mass and heat transfer rates
are determined at each node that interfaces the cabin gas as well at
_enter1ng and exiting streams and a new cabin gas temperature and humidity
is determined each iteration based upon the heat and mass balance.

An account is kept of the condensate on the walls when condensat1on
occurs but the condensate is assumed to remain stat1onary and not flow

to other wall nodes. _

Limits are applied when necessary to prevent more condensation
than the vapor existing under severe transitent condition and to prevent
evaporation of more liquid than exists at each wall lump.

As many cabins as: des1red may be ana]yzed in a g1ven prob]em,
but each must conta1n separate input 1nformat1on

RESTRICTIONS:
CABIN must be.called in $PRETEMP

CALLING SEQUENCE:. |
CABIN (A1, A2, A3, TC, A5, A6, A7, A8)

A-28



Where Al

A2

A3

A5

A6

A7

A8

* See page 114

is an array location * in $CURVES of an array contain-
ing the enter1ng flow rate information. The format
of the array is:

PSI,TE.,FR,,PSI. TE, ---- FRp sPSI, ( TE

NS FR]’ 1°FR»PSI5. T, PST g TEps

is an array location * in $CURVES of an array con-
taining curve numbers in $CURVES for property
values. The format of the array is: .

NFLC,NMUO,NMUV,NCPO,NCPV,NKO,NKV,NLAT

is an array location in $CURVES of an array con-
taining pertinent constants. The format of the

array is:

RA,RV,VC,PC,XC,WV,PSIC, PO, TO, CONV

is the cab1n gas temperature which must be a boundary
node. , _

is the location in $CURVES of an array containing
node numbers-and connection heat transfer coefficient
values for nodes surround1nq the cabin gas. The
format of the array 15

LN,1HA,.|LN2,HA2 ----- - LN, p HA,

is the location in $CURVES of an array containing
node numbers and information to permit calculation

. of .convection coefficients for flat n]ates

"The format is:

LN],XX],XI],AI],VIWQ1,LN XX2,X12,A12,

'VINgz, ------- LN o XKoo XI AL VTN,

n2’""n2’ n2°>"tn2:

~is the $CURVES location of an array containing
node numbers and information to permit cal-
culation of convection coefficients for tube .
bundles. The format is:

:.LN DI AI VIwﬂi,LNZ,DI

‘I’ 'I!
DI

2 oAl VNG, - === LN

Al ,,VIWO n3

n3’ "n3?
is, a work1ng space array wh1ch must
contain a number of spaces equjvalent

to three times the sum of the number

of nodes with input heat transfer co-
efficients plus the number using flat
plot relations p]us the number us1nq tube
bund]es . v




_ The' following symbol definitions apply in' the above:

NS’ o Number Qf'incbming streams
ER, - Entering Flow_rate for_stream_j
PSIi Z - Specific humidity for entering stream i
TE, : Temperature of entering stream i
NFLC . Curve number for circulation flow rate vs time
NMUO ) Curve number for noncondensible viscosity vs
_ temperature -
NMUV | Curve number for condensible visocity vs temperature
NCPO N Curve number for noncondensible specific heat vs
' temperature ' .
NCPV o _ Curve number for condensible specific heat vs
- o temperature ; :
NKO ~ Curve number for noncondensible thermal conduction
: vs temperature o
NKV - " Curve number for condensible thermal conduction vs
: temperature
NLAT Curve number for latent heat of condensible vs
temperature
RA . Gas constant for non-condensible component
RV Gas constant for condensible component
Ve » ‘ Cabin volume | o
PC . - Cabin Pressure
XC |
Wy ~ Initial vapor weight in cabin-
PSIC ‘ Initial specific humidity for cabin
LN, - ' . Cabin wall Tump o
HA Heat transfer coefficient times area
nl Number of wall lumps which have input HA values
n2 : ~ Number of wall 1umps which have HA ca]cu]ated by
flat plate relations v
n3 . Number of wall Tumps which have HA ca]cu]ated by
: tube bundle re]at1ons RS
XXi Distance from 1ead1ng edge for flat plate heating
‘ . for ith flat plate node _
XIi. S ‘Length of flat plate in f]ow d1rect1on for ith f]at
. - p]ate node

A-30



AI1 - - Heat transfer area for flat plate or tube node

| DIi.' - Tube outside diameter for ‘tubes in the bundle
L for ith tube node ‘
VIWO - Ratio of ve]bcity at the lump to the circulation
- : flow rate '
To - The reference temperature to be used for estimatiné

the saturation pressure of the condensible
component. Should be near the range of saturation
temperature expected

Po The saturation pressure at To for the condensible

component
CONV Conversion factor to make the quantity XLAM/Rv/

To dimensions less where XLAM is the latent
heat of vaporization and Rv is the gas constant
for the vapor. If XLAM is BTU/1b, Rv is
FT-LB/°R and To is °R, CONV=778.




PHASE_CHANGE

' SUBROUTINE NAME: - ABLATS
PURPOSE. : -

~ To provide a simple ablation (sublimation) capability for the SINDA user.

" The user constructs the 3-D network without considering the ablative.
Then in § POSTTEMP he simulates 1-D ablative attachments by calling ABLATS.
ABLATS constructs the 1-D network and solves it by implicit forward-back-
ward differencing (Crank-Nicholson method) using the time step set by the
execution subroutine. Separate ablation arrays (AA) must be used for each
ABLATS call. Required working space is obtained from unused program common.
Several ABLATS calls thereby share unused common. The user must call
subroutine PNTABL (AA) in the OUTPUT CALLS to obtain ablation totals and
temperature distribution. -

RESTRICTIONS:

ABLATS must be called in POSTTEMP and may be used with any execution
subroutine. Subroutines DIDEGI and NEWTR4 are called. A1l units

must be consistent. The Fahrenheit system is required. Temperature
varying material property arrays must not exceed 60 doublets. Bivariate
material properties may be simulated by calling BVSPSA prior to ABLATS.
Cross-sectional area is always considered unity. Thermal conductivity,
Stefan~Boltzmann constant and density units must agree in area and
length units. ' ' C C

CALLING SEQUENCE: =~ ABLATS(AA(IC),R,CP,G,T,C)

where ¢ is the capacitance location of the 3-D node attached to.
' T 1ig the temperature location of the 3-D node attached to.
G ie the location of the material thermal conductivity or the
starting location (integer count) of a doublet G vs T array.
" CP 1is the location of the material specific heat or the starting
 location (integer count) of a doublet Cp ve T array.
'R is the location of the material dengity or the starting location
(integer count) of a doublet R ve T array.
_AA(IC) 1is the starting location of the ablation array which must be
‘  formatted as follows: : . .

A-32



AA(IC)+1-

o
4

3

LN

the ablative Zyne number, a user specified identifioation
integer.

integer number of aubZayera (VSL) desired, ABLATS subtraﬂts
from this the number of sublayers ablated.

“the initial temperature of the material, ABLATS replaces thzs

with the outer surface temperature, alwaye in degrees F,
the impressed outer surface heating rate per unit area,

radiation rates not included.
material thicknese; this i8 replaced by the sublayer thickness.

surface area of the 3-D nede attached to, need not be unity.
ablation temperature, degrees F.
heat of ablation.

Stefan-Boltzmann constant in consistent units.

surface emizgivity
space "sink! temperature, degrees F.
SPACE,N = where N equals NSL + 4.

NOTE:  The outer surface radiation loss is integrated over the time step.

DYNAMIC “STORAGE REQUIREMENTS:

}This subroutine regquires 3* (NSL+1) dynamic storage core locations.

A-33



PHASE CHANGE

SUBROUTINE_NAME:  LSLTR

PURPOSE:

This subroutine accounts for the phase change energy of a melting or
solidifying material. The temperature 1imits for the reaction must be
specified ?over at least a 1 degree range) and the phase change energy
supplied as a constant rate over the range (Btu/°F). The network is
constructed to include the capacitance effects of the phase change
material. The network solution subroutines are allowed 1o calculate
incorrect answers based on capacitance effects only; a call to LQSLTR in
POSTTEMP then performs a corrector operation to account for any phase
change occurring (reversability a11owed§ and returns corrected temper-
atures. The user is required to store the old temperature of the material
(in“POSTTEMP ) and supply it as an argument to LQSLTR. - This subroutine
has a "D@" loop built in and can be applied to several sequential nodes
at once. :

RESTRICTIONS:

The number of sequentia] nodes that this subroutine is to be applied to
must be supplied as the integer N. All other arguments must be or
address data values. , : '

CALLING SEQUENCE: LQSLTR(N, TL, TH, S(DV) , C(DV) , T#(DV) ,TN(DV) )

~ where W is the integer number of nodes to be opérated on
TL ig the low temperature of the range '
TH is the high temperature of the range K

. S(DV)  is the first value of the phase change energy rate
C(DV) . is the first value of the nodal capacitances
TP(DV) 1is the firet value of the old temperatures
TN(DV) = ig the first value of the new temperatures

- A-34



PHASE CHANGE

© SUBROUTINE NAME: | 'LQDVAP

PURPOSE :

This subroutine allows the user to simulate the addition of liquid to a
node. The network data is prepared as though no liquid exists at the
node and is solved that way by the network execution subroutine. -Then
LQDVAP, which must be called in POSTTEMP -, corrects the nodal solution
in order to account for the liquid. If the nodal temperature exceeds the
boiling point of the liquid, it is set to the boiling point.

The excess energy above that required to reach the boiling point is cal-
culated and considered as absorbed through vaporization. If the liquid

is completely vaporized the subroutine deletes its operations. The method

of solution holds very well for explicit solutions, but may introduce
'some error when large time steps are used with implicit solutions.

RESTRICTIONS:

This subroutine must be called in ~POSTTEMP .
CALLING SEQUENCE: © LQDVAP (7,c,4(IC))

where 7T <ic the temperature location of the node.

C 1is the capdeitance location of the node.

A + 1 contains the initial liquid weight.

' contains the liquid specific heat.
contains - the. liquid vaporization temperature.
containg the liquid heat of varporization.
receives the liquid vaporization rate (weight/time)
receives the liquid vaporization total (total weight)
containg the liquid initial temperature.

N B

g




2.3 MATRIX SUBROUTINES

Input Format

Unless otherwise noted, the matrices require 1nput as positive numbered
arrays with integer number of rows and columns as the first two data
values followed by floating point element values in row order.

 Special Matrix Generation

ZERD Generates a matrix such that every element is zero. . .'} A-40
PNES Generates a matrix such that every elememt isone .. .. A-40
CUNITY Generates a’ square matrix such that the pr1nc1pa1
: diagonal elements are un1ty and the rema1n1ng
elements are zero . , . ... . .. . L. . . v .. A-40
SIGMA Generates a square matrxx such that all elements on
- and below the principal diagonal are un1ty and the
remaining elements are zero . . . . . . . . . . . .. . A-40
GENALP .- Generates a matrix such that every e]ement is equal :
' toaconstant . . . . ... LN L R . A-40
GENCAL - Generates,a column matrix'such that the first element
is equa] to X1 and the last element is equa] to X2 ~i. A-40
FULSYM Forms a half symmetric matrix from a full square : :
. : - matrix. . . e e e e e e e e e . A-4}
SYMFUL “Forms a fu]] square matrix from a ha]f symmetr1c . |
: matr1x.f ........... s v e i e e e . ... A4
SYMFRC Forces symmetry upon a square matr1x, .. } . .'; ; . . A-41
DIAG Forms a .full square matr1x given a co]umn or -row
0 matrix L L ., et e e e e e e e e oW A-AY
UNDIAG_' Forms a row matrix from the d1agona1 e]ements of a -
: square matrix . . . ... L. L O - 03

'DIAGAD Adds the elements of a row matrix to the d1agona]
elements of a square matrix, . .. .. .. ... ... A-4]

E]ementa] Operations

ELEADD Adds corresponding elements of two matr1ces [A] -
~ and [B] to form a third [Z] (Matrix addition). . . . . A-42

ELESUB Subtracts the corresponding elements of two matr1ces -
‘to form a th1rd [Z] (Matrix subtraction) . .. . . A-42

A-36



ELEMUL

ELEDIV

ELEINV

EFSIN
EFASK
EFCPS
EFACS
EFTAN
 EFATN

“EFABS

EFLPG
EFSQR

EFEXP
EFPDW

ADDALP

ALPHAA

MATRIX

Mu]tig]ies the corresponding elements of twio matrices

[A] and [B] to form a third [Z] (this is NOT
matrix multiplication). . . . . . . . . . . . ... .. A-42

D1v1des the corresponding elements of two [A] and : {
[B) matrices to form a third [Z] (this is. NOT -
matrix division). . . . .. ... .. ... A-42

0bta1ns the reciprocal of each e]ement of matrix [A] |
and place it in the corresponding location of :
another matr1x (z3. ......... .. e e e e e e e A-42

Generates the sine of each element of matrix [A] and
places it in the corresponding location of
another matrix [Z]. . . . . . . . . . . .. e v e v .. A-43

Generates the arcsine of each element of matrix [A] and
places it in the corresponding location of another
matrix [Z), . . ... ..., e e e e e e e e e e A-43

Generates the cosine of each element of matr1x'[A] and
places it in the corresponding location of another
matrix [Z]. . .« ¢« ¢ o . Lo e e e e e e e A-43

Generates the arcosine of each element of matrix [A]

and places it in the corresponding location of

another matrix [Z]. . ... ... . . .. .. e e e e e e e A-43
Generates the tangent of each e]ement of matrix [A]
and places it in the corresponding location of ‘
- another matrix (z3. . .. .. .. ... e e e . . . A-43
Generates the arctangent of each e]ement of matrix [A]
and places it in the correspond1ng 1ocat1on of ,
another matr1x [l]. e e e e e e e e v e o o« o . A-43
Generates the abso]ute value of each matr1x [A]
element . . . . .. ... oL R | V]
Generates the natura]ﬁlog'of each . [A] element . . .. . .. A-44
~ Generates the Square root of each matrix [A] element. . . . A-44

Generates‘the/exponential of each matrix [A] element. . . . A-44

Generates the power of each matrix [A] element... . . . .. A-44
Adds a'constant to every element in a matrix. . . . . . .. A-45
' MuTtip1ies every element in a matrix by a8 constant. . . . . ~ A-45

Allows a constant to replace a specific matrix element. . . A-45

- A-37



Allcws a specific matrix element to be placed into a

SCALAR .
o . constant Jocation. « . v 0o o oL e e e e e e e A-45
MATADD - - Adds a constant to a specific matrix element . . . . . . . A-45

Matrix Operations/SOlutions

INVRSE
MULT
TRANS
ARG
BTAB

BABT .
- DISAS

ASSMBL

COLMLT }
ROWMLT

- SHIFT
- REFLCT

SHUFL

COLMAX }
CALMIN

SYMREM }
SYMREP |
~ SYMDAD

~ SYMINV

InVerts‘a square matrix . . . . . .. . .. e e e e e e A-46
Multiplies two conformable matrices . . . . e e o e o« . . A-46
Forms the transpose [Z] from matrix [A] e e e e e . A-47
SUmsbwa scaled matrices. . . . . . . .. . .. e A-47
Pefformé the matrix operation [B]t [A][B] e e e e e e e A-48
Performs the matr%x operation [B][A][B]t;:;.; ..... . . A-48

Allows a user to operate on matrices in a partitioned
manner by disassembling a submatrix [Z] from a
‘parent matrix [A}. - -« « . . .. e e e e e e e e e A-48

Allows a user to operate on matriceé in a bartitioned
manner by assembling a submatrix 2] into a parent
matrix [A) . . . .. ... L e e e e .. . A-48

Multiplies each element in a column or row of matrix
.[AS by its corresponding element from the diagonal
. matrix [V] which is stored as a vector . . . . . . . . . A-49

Moves -an entire matrix as is from‘one 10Cat10n'to
another' -. . o_- LN L LI } .---.. --” ¢ o ». .« . .A-,. . . A"49
Moves an entire matrix with the order of the column v
elements reversed from one location to enother . . ... . A-49

Allows the user to reorder the size of a matrix as
long as the total number of elements remains

unchanged. . . . . v e e e e e e e e e e e A-50

Searches an input matrix to obtain the maximum or ‘
minimum values within each column, . . . . . .. .. .. A-50

' Al]bws'the SINDA user to operate on a simple row/

~column -of a half symmetric matrix. . .. . ... ... ~.A-51
Adds the elements of a vector array,tb'thé cbrréspond- |
ing elements of the main diagonal of a half _
symmetric matrix . . . PO ST

Obtaihé the fnverse of a half symmetric matrix. .-. . . . A-51

A-38



. PRLMLT . vMu]tip]ies a given number of nth order po]ynomial

coefficients by a similar number of mth order

po]ynomial coefficients. . . . . . e e e e e e e e

PALVAL Evaluates the po]ynom1a1 for the input complex’

number X + iV, given a set of polynomial coefficients.

PLYEVL Evaluates each polynomial for each X value, g1ven a
matrix with nth order polynomial coefficients and

a column matrix of X values.. . . . . . e e e e e

PALSPV - Calculates the complex roots, given a set of polynomial
' coefficients as the first row.in a matrix. . . . . . .

- JAC@BI Determines the eigenvalues and e1genvector-associated

with an 1nput matrix [A] ... . . .. ...

Store and Recall

 App1ications

. CALL Retr1eves matrices on magnetic tape . . . . . . . . ..

FILE . Stores matrices on magnetic tape. . . . . .
ENDMPP Used in conjunction with subroutines CALL and FILE.
Causes all matrices from the logical 19 tape to be
updated onto the 1og1ca1 I8 tape v . .. L oL L
LSTAPE Will output the name, problem number and size of

every matrix stored on tape on logical 18.

MPDES Solyes a particular matrix dynamic vibration equation . . .
'MASS Generates an inertia matrix of a dynamic vibration
system described in terms of deflections and
“rotationse ¢« ¢ ¢ ¢ ¢« . . B
- STIFF Generates a stiffness matrix for a dynamic vibration

system described in terms of deflections and

rotat1ons ..... e e s e e e e e e e e e e e e o

A-39

A-52

A-53

A-53

A-54

A-54

A-55

A-55
A-56

A-57

.. A-58



SPECIAL MATRIX GENERATION e T e
| SUBROUTINE NAMES:  °  ZER or QNES |
PURPOSE:

These subroutines1géherate a matrix [2] such that every element is zero
or one respectively. ' o

RESTRICTIONS:

The matrix to be generated must contain exactly enough space in addition
to having the integer number of rows and columns as the first two data
‘values. The NR and NC arguments are the integer number of rows and
columns respectively. e

CALLING SEQUENCE: ZERP(NR,NC,2(IC))

or  PNES(NR,NC,Z(IC)) .

'SUBROUTINE NAMES: UNITY or SIGMA

PURPOSE : |

These are square matrix generation subroutihes. UNITY generates a square
matrix such that the main diagonal elements are one and all other elements
are zero. SIGMA generates a square matrix such that all elements on and
below the main diagnoal are one and the remaining elements are zero.

RESTRICTIONS:

The matrix [Z] to be generated must contain exactly enough space in
addition to having the integer number of rows and columns as the first
two data values. The integer number of rows and columns are equal and
must be input as the argument N. ' -

CALLING SEQUENCE: UNITY(N,Z(IC))

or  SIGMA(W,2(IC))

SUBROUTINE NAMES: GENALP or GENCPL
PURPOSE : .

These are special matrix generation subroutines. GENALP. will generate 2
matrix such that every element is equal to a constant C. GENCAL will
generate a column matrix such that the first element is equal to xz1 and

the last element is equal to x2. The intermediate elements receive equally
incremented values such that a linear relationship is established between .
row number and element value. o :

RESTRICTIONS:

The ¥R and NC arguments refer to the integer number of rows and columns

~ respectively. X1, X2,and C must be floating point values. The generated
matrices must contain exactly enough space in adgition tg having the
integer number of rows and colunns as the first twe data values.

CALLING SEQUENCE: GENALP (¥R, NC, C,2(IC))
or  GENCPL(x1,x2,NR,Z(IC))
o |



" SPECIAL MATRIX FORMULATION -

- SUBROUTINE NAMES: FULSYM or SYMFUL

These subroutines allow the SINDA user to form a half symmetr1c matrix from
a full square matrix or form a full square matrix from a half symmetric
matrix, respectively. - The arguments must address the matrix array integer
count set by the preprocessor the array lengths must be exact.

RESTRICTIONS:

The half symmetric matrix.must be formatted as shown for subroutine IRRADI
(Section 6.8) and the full square matrix must conform to the standard
format. o : : : :
CALLING SEQUENCE:  FULSYM(FM(IC), SM(IC))

Cor  SYMFUL(SM(IC),FM(IC))

Where FM is the full matrix and S¥ is the symmetric matrix.-

© SUBROUTINE NAME:  SYMFRC
PURPOSE : . "

“

This subroutine may be used to force symmetry upon a square matrix. The
main diagonal elements are untouched and all others are treated as follows:

x = (aij + aji)/Z.O; ajj = X ay5 = X

RESTRICTIONS:

The addressed matrix must be square and formatted as described in Section 4;2.2{3

CALLING SEQUENCE: . . SYMFRC(A(IC))
SUBROQUTINE NAMES - DIAG or UNDIAG or DIAGAD
PURPOSE

”G1ven a ]*N or N*1 matrix [v], subroutine DIAG.forms a full. square N*N

“matrix [2]. The [v] values are placed sequentially on the main diagonal
of [2] and all off diagonal elements are set to zero. Subroutine UNDIAG
‘forms a 1*N matrix [¥] from the diagonal elements of an N*N matrix [z].
Subroutine DIAGAD adds the elements of .a 1*N matr1x [V] to the d1agona)
elements of an N*N matrix [Z].

RESTRICTIONS:

Both matr1ces must have exactly enough space and contain the1r integer:
number of rows and co]umns as the first two data values. '

CALLING SEQUENCE: o DIAG(V(IC),2(IC))
- or UNDIAG(z(IC),V(IC)).
- or  DIAGRD(V(IC),Z(IC)) A-4



ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ~  ELEADD or ELESUB
 PURPOSE: o -

These subroutines add or subtract the corresponding elements of two matrices
respectively- — .

mn m*n - : -
[z = [4) : [8] » oL iy T Ayt by
RESTRICTIONS:

A1l matrices must be of identical size and have the integer number of rows
and columns as the first two data values. The [2] matrix may be overlayed-
into the 4] or [B] matrix.

" CALLING SEQUENCE: 'ELEADD(A(IC),B(IC),2(IC))
| or  ELESUB(A(IC),B(IC),Z(IC))
SUBROUTINE NAMES: _ ELEMUL or ELEDIV

PURPOSE :

These subroutines multiply or divide the corresponding elements of two
matrices respectively.

m*n m*n " m*n : |
- . = * + »
(2] = [ * B . ey S5 by
RESTRICTIONS: |

A)} matrices must be of identical size and have the fntgger number or rows
and columns as the first two data values. The [2] matrix may be overlayed
inte the [4] or [B] matrix. :

CALLING SEQUENCE: ELEMUL(A(IC),B(IC),2(IC))
| ‘or  ELEDIV(4(IC),B(IC),2(IC))
SUBROUTINE NAME: ELEINV

PURPOSE:

This subroutine.Obtains the reciprocal of each element of the [4] matrix
and places it in the corresponding element location of the [z] matrix.

235 = 1-0/344

RESTRICTIONS:

The matrices must be of identical size and have the integer number or rows
and coluins -as the first two data values. The (2] matrix may be overlayed
~into the [A] matrix.

© CALLING SEQUENCE: OELEINV(ACIC),Z(IC)  pap



. ELEMENTAL OPERATIONS

SUBROUTINE NAMES: EFSIN or EFASN
PURPOSE :

Thesé subroutines perform e]ementary functions on all of the [A] matrix
elements as follows:

) 24 = sin(aij)_ or 25 = arcsine(a )

RESTRICTIONS:

The matrices must be ‘identical in size and have the integer number of rows
and coluans as the first two data values. The [2] matrix may be overlayed
into the [4] matrix.. -

- CALLING SEQUENCE: EFSIN(A(IC),2(1C))

or EFASN(A(IC),2(1C))

SUBROUTINE NAMES: . EFCPS or EFACS
PURPOSE: -

~ These subroutineS“perform elementary functions on all of the [4] matrix
elements as follows:.

245 ° cos1ne(a1j) or 45 = arccosine(aij)

RESTRICTIONS:

The matrices must be identical in size and have the integer number of rows
and columns as the first two data values. The [2] matrix may be overlayed
into the [4] matrix. :

CALLING SEQUENCE: EFCAS(4(IC),2(1C))
or  EFACS(A(IC),z(IC))
SUBROUT INE NAMES: o EFTAN or EFATN

PURPOSE :

These subroutines perform e]ementary funct1ons on all of the [4] matr1x
elements as follows: i

= tangent(a,:) or z.. = arctangent(a,:)

'IJ 1) 1) 1)

RESTRICTIONS

The matrices,must'be of identical size and have the integer number Qf rows
and- colunns-as the first two data values. The [2] matrix may be overlayed
into the [Z] matrix. :

CALLING SEOUENCE: . -.EFTAN(A(ICU,Z(IC))‘

or-  EFATN(A(IC),Z(IC)) p-43



ELEMENTAL QPERATIONS

SUBROUTINE NAMES ____EFABS or EFLPG or EFSQR
PURPOSE : |

These subroutines perform elementary functions on all of the [A] matrix
elements as follows respectively:

RESTRICTIONS:

The matrices must be identical in size and have the integer number of
rows and columns as the first two data values. AI1 in the [4] matrix
must be positive for EFL@G or EFSQR.

CALLING SEQUENCE: - EFABS(A(IC),2(IC))
| EFLD (A(I0),2(I0) )
EFSQR(A(IC), Z(IC))

SUBROUTINE MAMES: EFEXP or EFPPW
PURPOSE : |

These subroutines perform elementary funct1ons on all of the [A] matrix
elements as fol]ows :

a-' a
L. = 1] L. = 3.
ZU e or Zm a,lJ

RESTRICTIONS:

The matrices must be identical in size and have the integer number of

rows and columns as the first two data values. The [Z] matrix may be
’overlayed into the [A] matrix. The exponent o may be an integer or float-
ing point number. However, if any e?ements in.[4] are negative then a
must be an integer.

CALLING SEQUENCE: v EFEXP(A(IC),Z(IC))">
" or  EFPBM{A(IC),a,Z(IC))

A-44



ELEMENTAL OPERATIONS

SUBROUTINE NAMES: ~  ADDALP or ALPHAA
PURPOSE : |

To add a constant to or mu1t1p1y a constant times every e]ement in a
matrix. _

.= C+ a,. . =C*a,.
25 C A a5 o 2y | c a5

RESTRICTIONS:

The matrices. must have exact]y enough space and conta1n the 1nteger

number of rows and columns as the first two data values. ¢ and all elements
must be floating po1nt numbers The [2) matrix may be overlayed into the
[4] matrix.

_ CALLING SEQUENCE: . ADDALP(C,A(IC),2(IC))

“or'  ALPHAA(C,A(IC),Z(IC))
SUBROUTINE NAMES: MATRIX or SCALAR or MATADD

PURPOSE :

" The subroutine MATRIX allows a constant to replace a specific matrix element,

subroutine SCALAR allows a specific matrix element to be placed into a
constant location, and subroutine MATAAD adds a constant to a specific
matrix element. The integers I and J des1gnate the row and column position
of the spec1f1c e]ement

RESTRICTIONS:

The matrix must have the integer number of rows and columns as the first two

data values. Checks are made to insure that the 1dent1f1eo element is
within the matrix boundaries.

CALLING SEQUENCE:  WMATRIX(C,I,J,2(IC))

or  SCALAR(z(IC),I,J,C)
Cor MATADD(C,I,J,2(IC))-

A-45



* MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME:  INVRSE
PURPOSE : |

To invert a square matrix.

n*n n*n n*n_]
given [A] , [2] [4]

RESTRICTIONS

A

The matrices must be square, identical in size and contaln the integer
number of rows and.columns as the first two data va]ues The output matrix
[4] may be overlayed into the [4] matrix. . '

CALLING SEQUENCE' INVRSE(A(IC? Z(IC?)

DYNAMIC STORAGE REQUIREMENTS

' This subroutine requires n dynamic storage allocations.

SUBROUTINE NAME: O MULT

PURPOSE: To multiply two conformable matrices together.

. m*n ;v m*p p*n _ ‘ :
= R *N

RESTRICTIONS:

The matrices must have exact]y enough space and contain their integer
number of rcws and columns ‘as the first two data values. If [A] and [B]
are square, [z] may be overlayed into either of them. :

CALLING SEQUENCE: MULT(A(1C),B(IC),2(1C))
DYNAMIC STCRAGE REQUIREMENTS:

Th1s subrout1ne requ1res n*m dynamic storage 1ocat1ons

A-46



'MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: =  TRANS
PURPOSE : S
‘m*n o ' : o n*m
leen a matrix [4] form its. transpose as [z]
’RESTRICIIONS.

Both matrices must have exactly enough space and contain their integer
" number of rows and columns as the first two data values. The output matr1x
(2] may be overlayed into the (4] matrix.

CALLING SEQUENCE: TRANS(A(IC? 2010))

DYNAMIC STORAGE REQUIREMENTS

This subrout1nevrequ1res‘n?m dynamic storage 1opations.

SUBROUTINE NAME: ' AABB

PURPOSE :
To sum two'éca]éd matrices:
'_m*n | .m*n 'm*n
(2 = cla) + calB]l . oz = Chrayy + G2y,
lRESTRICTLON%

All matrices must be of 1dent1cal size, contain exactly enough space and
‘contain the integer number of rows and celumns as the first two data

values. The output matr1x [z] may be overlayed into either of the 1nput
matrices.

CALLING'SEQUENCE: .+ AABB(C1,A(IC),C2,B(IC),Z(IC))

A-47.




MATRIX OPERATIONS AND SCLUTIONS

SUBROUTINE NAMES: - ~ BTAB or BABT
PURPOSE : - -

TOFperfofm—the‘fn1wa1ng matrix operations, respectively:

n*m 'n*mt m*m  m*m

(2] = (8] {4] (8]

_ m*m - om*n n*n n*m,

or [zl = (81  [4]  [&]
RESTRICTIONS:

The matrices must be conformable, contain exactly enough space and contain
the integer number of rows and columns as the first two data values. Sub-
routines. MULT and TRANS are called on. '

CALLING SEQUENCE: - BTAB(A(IC),B(IC),2(IC))
- ~ or  BMBT(A(IC),B(IC),2(IC))
DYNAMIC. STORAGE REQUIREMENTS: |

‘Due to subroutines MULT and TRANS this subroutine temporarily requires
2*m*n+6 dynamic- locations. . o

SUBROUT INE NAMES: : DISAS or ASSMBL

PURPOSE:

These subroutines allow a user to operate on matrices in a partitioned
manner by disassembling a submatrix [z] from a parent matrix [4] or.
assembling a submatrix [2] into a parent matrix [4].

RESTRICTIONS:

The I and 7 arguments are integers which identify (by row and column number
respectively) the upper left hand corner position of the submatrix within

the parent matrix. All matrices must have exactly encugh space and con-

tain the integer number of rows and columns as the first two data values.

The #R and NC arguments are the integer number of rows and columns respectively
of the disassembied submatrix. If the submatrix exceeds the bounds of the
parent matrix an appropriate error message is written and the program
terminated. . - -

CALLING SEQUENCE: DISAS(A(IC),I,J,NR,NC,2(IC))
- | or  ASSMBL(Z(IC),I,J,A(IC)) |
' . A-48



MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINES NAMES: CALMLT or RPWMLT
PURPOSE : |

To multiply each element in a column or row of matrix [4] by its correspond-
- ing element from the matrix [V] which is conceptually a diagonal matrix but
stored as a vector; i.e., 1*N or N*] matrix. The matrix [Z] is the product.

RESTRICTIONS:

The matrices must have exactly enough space and contain the integer number
of rgws.and columns as the first two data values. The matrices being
multiplied must be conformable.

CALLING SEQUENCE: 1 CDLMLT(A(IC?,V(IC),Z(IC))
or  ROWMLT(V(IC),A(IC),2(IC))
SUBROUTINE NAMES: : SHIFTAor REFLCT

PURPOSE :

These subroutines may be used to move an entire matrix from one location

to another. SHIFT moves the matrix exactly as is-and REFLCT meves it

and reverses the order of the elements within each column. The last

element in each column becomes the first and the first becomes the last, etc.

RESTRICTIONS:

The matrices must be of identical size and the integer number of rows and
columns must be the first two data values. The [Z] matrix may be over-
layed into the [4] matrix.’ ' ' '

CALLING SEQUENCE: - SHIFT(A(IC),2(1C))
or - REFLCT{4c(IC),2(IC))
DYNAMIC.- STORAGE REQUIREMENTS:

REFLCT uses three dynamic storage locations plus an additional one for each
row. o _ , A

A-49



. MATRIX OPERATIONS AND SOLUT 1ONS

SUBROUTINE NAME: :' o swA

PURPOSE :

This subroutine allows the user to reorder the size of a matrix as long as
the total number of elements remains unchanged. The row order input matrix
[4] is transposed to achieve column order and then reformed as a vector by
sequencing the columns in ascending order. This vector is then reformed
into a column order matrix by taking a column at a time sequentially from
the vector. The newly formed column matrix is then transposed and output
- as the row order matrix [2].

RESTRICTIONS:

The matrices must be identical in size and have their respective integer
number of rows and columns as the first two data values. The number of
rows times columns for [4] must equal the number of rows times columns of. Lz].

| CALLING SEQUENCE: SHUFL (A(1C),2(1C))
SUBROUTINE NAMES: ~ CPLMAX or CALMIN
PURPOSE : | |

These subroutines search an input matrix td'obtainitheAmaximUm or'minimgm
values within each column respectively. These values are output as a single
row matrix [A] hav1ng as many columns as the input matr1x [A] .

RESTRICTIONS.

Each matrix must have its integer number of rows and co]umns as the first
two data va1ues

CALLING ssquguca: - CPLMAX(a(IC),z(1C))
or ' CPLMIN(a(IC),Z(IC))

A-50



MATRIX OPERATIONS AND SUBROUTINES

SUBROUTINE NAMES: - SYMREM or SYMREP
PURPOSE: -

These subroutines allow the SINDA user to operate on a 51ngle row/column of
a half symmetric matrix. -SYMREM will remove a particular row/column from
the half symmetric matrix and place it into an array of the exact length

to hold it. SYMREP will take an array and replace 1t 1nto a specific row/
.column of the half symmetric matrix. L

RESTRICTIONS:

The half symmetric matrix must be formatted as shown for subroutine IRRADI
in Sect1on 4.2.2.3. The integer K must designate the row/column to be operated
on. If 'k is an 1nteger zero, the main diagonal will be removed or replaced.

CALLING SEQUENCE: - . SYMREM(K,SM(IC),A(IC))
‘ or SYMREP(X,A(IC),SM(IC))
SUBROUTIRE NAME : - SYMDAD

PURPOSE :

This subroutine will add the elements of a vector array to the correspond-
'ing elements of the main diagonal of a half symmetric matrix. If any of the
elements is less than zero, they are set to zero.

RESTRICTIONS:

The half symetric matrix must be formatted as shown for subroutine IRRADI
in Section 6.8. The vector array must be input as a positive array and be
‘the same 1Pngth as the matrix order.

CALLING SELUENCE: : SYMDAD(VA(IC),SM(IC))
SUBRCUTINE NAME: SYMINV
PURPOSE:

This. subroutine obtains the inverse of a half symmetric matric matrix which
is also symmetr1c and returns it in the same area as the input matrix. This
subroutine is called internally by subroutines SCRPFA, IRRADI and SLRADI.

RESTRICTIO” :

This subrout1ne c0nta1ns no error checks. exercise extreme caut1on when
using it.

CALLING SEQUENCE: SYMINV(A(DV),N) |

Where A(77) addresses the‘l,T element and ¥ is the matrix order.

A-51



MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME: :  PPLMLT

 -PURPOSE

th

This subroutine performs the multiplication of a given number of n"" order

. . . : t
polynomial—coefficients by a similar number of m th order polynomial co-
efficients. The polynomials must be input as matrices with the number of
rows equal and each row rece1ves the follow1ng operation:.

(c],cz,c3,...,ck) —_(a],az,...,an) (b]; 2, . b ) k=m+n-1

RESTRICTIONS:

The matrices must have exactly enough space end contain their integer
number of rows and co]umns as the first two data va]ues

" CALLING SEQUENCE . PRLMLT(A(IC),B(IC),C(IC))
SUBROUTINE NAME: PPLVAL
PURPOSE : |

Given a set of polynomial coefficients as the first row of matrix [4], this
subroutine evaluates the polynomial for the input comp]ex number X+1V The
answer 1s returned as U+iv.

RESTRICTIONS.

[A] may be m*n but only the first row is evaluated.

CALLING SEQUENCE: POLVAL(A(IC),X,Y,U,V)
SUBROUTINE NAME : | PLYEVL
'PURPOSE :

Given a matrix [4] containing an arbitrary number, NRA, of the nth order
polynomial coefficients and a column matrix [X] containing an arbitrary
number, NRX, of X values, this subroutine evaluates each polynomial for each

. X value. The answers are output as a matrix (z] of size NRX*NRA. Each set
of polynomial coefficients in [4] is a row in ascending order. An X value
evaluated for the polynomial creates a row in [Z] where the co]umn number
agrees with the polynomial row number.

RESTRICTIONS:

The matrices must have exactly enough space and contain their integer
 number of rows and columns as the flrst two data values.

CALLING SEQUENCE: : PLYEVL(A(IC),X(IC),Z(IC?)

A=52



- MATRIX OPERATIONS AND SOLUTIONS

SUBROUTINE NAME o PPLS@V

PURPQSE :

Given a set of polynomial coefficients as the first row.in matrix [4], size
(m,n+1), this subroutine calculates the complex roots which are returned as
matrix [2], size (n,2). Column 1 contains the real part and column 2 the

: 1mag1nary part of the roots.

RESTRICTIONS

This subroutine presently is. limited to n = 20. It internally calls on RTPQLY
and utilizes some double precision. : S

CALLING SEQUENCE: . POLSOV(a(IC),2(IC))
SUBROUTINE NAME: -~ . JACPBI
PURPOSE :

This subroutine will find the eigenvalues [£] and e1genvector matrix [Z]
assoc1ated with an 1nput matrix [4]. .

-n*n n*n - n*n n*n -
(4] [z] = [2] [£]
RESTRICTIONS |

The natr1ces must have.exactly enough space and contain their 1nteger
number of rows and columns as the first two data values. Note. that
matrix [ﬁ] is a d1agona1 matrix but is stated as a vector.

CALLING SEQyENCE. | JACPBI (A(IC),E(IC),Z(IC))

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 2*n*n+6 dynamic storage locations.

A-53



 STORE AND RECALL .~
MATRIX DATA STORAGE AND RETRIEVAL -

The ability to store and retrieve matrices from tape is easily achieved
through the use of the FILE and CALL subroutines. Matrices are identitied
by an—alphanumeric name;integer-problem-number—and—the—core-address—of-or

~for the matrix. The CALL subroutine searches the Matrix Input Tape and
brings the desired matrix into core. The FILE subroutine writes a matrix
onto the Matrix OQutput Tape. Subroutine ENDM@P causes all matrices from
the Matrix Output Tape to be updated onto the Matrix Input Tape. In case
of duplicate matrices, the one from the Qutput Tape replaces the one on
Input Tape. A matrix which has been filed cannot be called until an ENDM@P
operation has been performed. To create a new tape the user merely sets
control constant NPCPPY nonzero and has a scratch tape mounted for the
Input Tape. The user should check the section on control cards and deck
setup to determine control card requirements.

SUBROUTINE NAMES: CALL or FILE

PURPOSE :

To allow. the user td retrieve or store matrices on magnetic tape as de-
scribed above. The H argument must be a six-character alphanumeric word
and ¥ must be an 1nteger number, both of which are used to 1dent1fy the .
matrix. :

RESTRICTIONS:

See above. The matrix must have exactly enough space'éhd contain the
integer number of rows and columns as the f1rst two data values.

CALLING SEQUENCE. " CALL(H,N A(IC))

or FILE(A(IC),H,WN) .

DYNAMIC STORAGEEREQUIREMENTS:

" Each of these routines requires 256 words of dynamic'storage.

A-54



STORE AND_RECALL

SUBROUTINE NAMES: -~ ENDMPP or LSTAPE
PURPOSE: .

Subroutine ENDMPP should be used in conjunction with subroutines CALL and
FILE; see above. It causes matrices which have been filed by FILE on the
Matrix Output Tape to be updated onto the Matrix Input Tape. A call to
subroutine LSTAPE will cause the output of the name, problem number and
size of every matrix stored on the Matrix Input Tape.

RESTRICTIONS:

" See above.

CALLING SEQUENCE: . ENDM@P

or LSTAPE

DYNAMIC STORAGE REQUIREMENTS:

Each of these routines requires 256 words of dynamic storage.

A-55



APPLICATION - DYNAMIC VIBRATION S
. SUBROUTINE. NAME . MOPES
PURPOSE : |

: This. subroutine solves the following dynamic vibration equation

mn  mn n*n n*n n*n
[al - [z] = [8] [z] _lz_
- | | y

where [A] is the input inertia matrix associated with the kinetic energy-
-~ and [B] is the input stiffness matrix associated with the strain energy.

[z] is the output eigenvector matrix associated with the frequencies of

vibration w which are output in radians/sec as [R] and in cycles/sec as

[cl, both [R] and [c] are n*n d1agona1 matrices but stored as vectors.

'RESTRICTIONS

'The matr1ces must have exactly enough space and contain the1r integer
number of rows.-and columns as the first two data values.. Subroutine
JACPBI is called on

CALLING SEQUENCE" MﬂDES(A(IC) B(IC),Z(IC),R(IC), C(IC?)

DYN AMIC STORAGE REQUI REMEN TS

This subroutine requ1res 3*n*n+9 dynamlc storage locations. An amount
equal to 2*n*n+6 of these locatlons is requ1red by subroutine JACEBI.

A-56



APPLICATION -- DYNAMIC VIBRATION

SUBROUTINE NAME: MASS

If a dynam1c vibration .problem is referred to a set of coordinates con-
sisting of the deflections, ¢, and the rotations, o., at N collocation
points along the beam under c$n51derat10n, then th1s1subrdut1ne generates
the 2N by 2N inertia matrix [4] which appears in the fo]]owing expression
for kinetic energy .

.0

- 1 . . 1 .
T=5 {;1...;nel...en}[/1] .

o Doy o .
-3

Do

RESTRICTIONS:

The mass and inertia data input to this subrout1ne are to be supplied as
piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determines the ultimate size, 2N. by 2N, of the output
inertia matrix, is also chosen arbitrarily.

CALLING SEQUENCE: MASS(X(IC),HMPL(IC),RIPL(IC),CM(IC),A(IC))

where X is the matrix (N X 1) of collocaticon points referred to an
arbitrary origin.
DMPL  is the matrix (NDM X 4) of distributed mass per unit length
- slices, where ‘
Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the mass value at the rear of the slice.
Col 4 is the mass value at the front of the slice.
RIPL - is the matrix (NRI X 4) of distributed rotary inertia per unit
-+ length slices. The columns here are similar to DMPL.
M is the matrix (NCM X 4) of concentrated mass items, where
Col 1 is the attach point location for each 1tem
- Col 2 is the mass at this location.
Col-3 is the location. of its center of. grav1ty
Col 4 is the moment of inertia about the C. or G.
A is the output (2N X 2N) inertia matrix.

NOTE: Hav1ng app11cat1on to DMPL, AIPL and CM, it is noted that the location
of the values may not go beyond the limits of the collocation points in
elther direct ion.

A-57




: APPLICATION -= DYNAMIC VIBRATION

SUBROUTINE NAME _— - STIFF

-If a dynamic vibration problem is referred to a set of coordinates con-
sisting of the deflections, ., and the rotations, o., at N collocation
points—along the beamunder— c&nsiderat1on—*then—th1s’subroutlne —generates

~ the 2N by 2N stiffness matrix [x] which appears in the, fo]]owing expression
for the stra1n energy-

2 {cl...gnel...en } [x] g,
s
n
%
X .
RESTRICTIONS:

The stiffness and shear data input to th1s subrout1ne are to be supplied
as piecewise continuous slices; however, these arrays may be of arbitrary
size and different in length from each other. The number of collocation
points, N, which determine the ultimate size, 2N by 2N of the output

: st1ffness matr1x, is also chosen arb1trar11y

CALLING SEQUENCE: ‘ STIFF(X(IC) EI(IC),GA(IC), K(iC))
where X is the matrix (N X 1) of collocation points referred to an
arb1trary origin.
BI is the matrix (NEI X 4) of bending stiffness slices, where

Col 1 is the location of the rear of a slice.
Col 2 is the location of the front of a slice.
Col 3 is the stiffness value at the rear of a slice.

Col 4 is the stiffness value at the front of a slice.

GA is the matrix (NGA X 4) of shear stiffness slices, where
the columns here are similar to those for the EI distribution.
K - is the output st1ffness matr1x size 2N by 2N.

NOTE: Having aWp11catlon to EI and G4, it is noted that the ]ocat1on of the
values may not go beyond the limits of the co‘]ocat1on points in either
d1rect1on : ,

A-58



2.4 INTERPOLATION/EXTRAPOLATION SUBROUTINES

| Lagrangian Interpolation

LAGRAN Uses one doublet array. . . . . . . . . v . o v oo .. A-6]
LGRNDA Uses two singlet arrays . . . . . . . . . e e e e e e e A-61
Linear Interpolation - Single Variable
DIDEGT  .Uses one doublet array. . « -« « « « v v v v o v v 0 v . A-62
POL Uses one array with independent var1ab1es followed by
, dependent variables . .. . . . 0 L 0000 d el e A-63
DID1DA Uses two singlet arrays . . . . . v . v v v v v v v o . A-62
D1DIWM Uses DIDEG] and multiplies the interpolation by the
Zvalue. « v v v v e e e e e e e e e e e e e e e e e . A-64
D11MDA Uses. DIDIDA and mu]tvp]ies the 1nterpo1atwon by the
_ Zvalue. o v v i et e i e e e e e e e e e e e e e e e A-64
DIMDG1 - Uses the arithmetic mean of two input values as the
independent variable; uses a doublet array . . . . . . .. A-64
-DIMIDA  Same as DIMDG1 except two singlet arrays are used
- DIMIWM Uses DIMDG1 and multiplies the interpolation by the .
. R T S . A-65
DIMIMD Uses DIMIDA and multiplies the interpolation by the :
v CZvalue . e e e s e e e e e e e e e e e e e e e A-65
DIDG1I Performs 1nterpolat1on on an array of X's to obtain
DIDTIM anarray of Y's., . . . . ... .". e e e e e e e e e e A-65
DIDIMI :
D11DAI Identical to DIDG1I,DIDIIM and DIDIMI, except for
D]1DIM} the use of s1ng]et arrays and call on DIDIDA , . ., . . A-65
D11MDI '
- D1IMD] These are indexed subroutines which use the arithmetic
D]IMNM} mean of two input values as the independent variable ., . A-66
D1IMIM ‘
Linear Interpolation - Two Single Variables
CVQIHT } Performs two single variable linear interpolations A-66
CVQIWM § '
Parabolic Interpolation - Single Variable
- DIDEGZ  Uses LAGRAN and a doublet array ... . . ... . v v . ... . A-67
DID2DA  Uses LGRNDA and two singlet arrays. . . . . . e e e e . . A-67
DID2WM  Uses LAGRAN and mu]t1p11es the interpolation by the
L _ ZVATUB . o e i i e e e e e e e e e e e e e e A-67
D12MDA Uses LGRNDA and mu]tip]ies the 1nterpo]ation by ‘the :
- cZovalue. L s s e e e e e e e e e e e v+« « . A-67
DIMDG2 Uses the arithmetic mean of two input values as ~
_ independent variable; uses doublet array . . . . . . .. A-68
DIM2DA Same as DIMDG2 except two single arrays are used, . . . . . A-68
DIMZWM - Uses DIMDG2 and multiplies the 1nterpo]at10n by the ‘
- A 7 3 T 1 - A-68
D1M2MD Uses DIM2DA and mu]t1p11es ‘the 1nterpo]at1on by the
' T VATUE . o e e e e e e e e e e e e e e e A-68



'chlical Interpo]at1on Arrays

Reduces core storage requirements and uses linear

3 Zero error. “ e i e e e

A-60

DICYL
DATICY- —interpolation~————— — e —————hA=69
D12CYL Identical to D11CYL and DALICY except that parabolic ‘
DA12CY interpolation isused. . . . . . . . .. oo 0L, . A-69
D1IMCY Identical to D12CYL and DA12CY except that the 1nter-
DAT1IMC polation is multiplied by the value in address Z. A-70
',} Identical to D1IMCY and DATIMC except that parabo]ic
DA12MC interpolation s used . . . . ¢« . . 0. o000 i, A-70
Point Slope Interpolations
GSL@ZPE Generates a slope array so that point slope interpola-
" tion can be used . . . .. . . e e e e e e e e e . A-71
PSINTR} Po1nt_slope_1nterp01at1on e e e e e e e e e e e . A-T71
PSNTHHM ‘
Bivariate Interpolations
BVSPSA} Uses an input Y argument to address a bivariate _
BVSPDA APTAYe o ¢ oo o 4 e e e e e e e e e e e e e e e . A-72
BVTRN]} .Constructs a, bivariate array of Y s versus X and Z 1
BVTRNZ - from an input arvay of Z's versus Xand Y [ . . ., .. A-72
D2DEGT Performs bivariate linear interpclation. . . .« . . . . . . A-73
D2DEG2 Performs bivariate parabolic interpolation . . . . . . . . A-73
D2D1kM Uses 02DEGY and multiplies the 1nterpo1af1on by the :
Wovalue, v v v v v i e e e e e e e e e e e e e e e e A-73
D2D2WN Uses D2DEG2 and mu1t1p11es the interpolation by the C
Wovaluey v v v v 0 v e o o e e e e e e e e e e e e e e A-73
DZMXD]} Identical to D2DEG1 and D2DEGZ ﬁxcept that the arith-
D2MXD2 | metic mean of two X values is used as the X _
_ independent varigble . . . . . . . ... ... ... .. A-74
_DZMXH%}_ Identical to D2DIW4 and D2D2%+4 except that the arith-
D2MX2M metic mean of two X values is used as the X L
~ independent variable. . . . . . . .. ... ... . . . A-74
Trivariate Interpolations
_ D3UEG1}.. Performs trivariate linear interpolation ., ., . . . ., .. A-75
D3D1vM ’ : ' .
Linear Extrapolat1un
1TRATE  Linearly extrapolates a'new guess on the bas1s of
................. A-75




The following are the formats for bivariant and trivarant
arrays. ‘ '

‘Bivariate

. This type of array s used to represent a function of two 1ndepen—
dent variables: Z = (X,Y). Data values for a bivariate array are input in
the following order: ’ ’

n, X1, X2, . . ., ¥Xn

¥1,711,z212,. . ., Zln

Y2,221,722,. . ., Z2n

Ym,Zml,Zm2,. . ., Zmn

Number of X values (integer)

where: n

=]
"

Number of Y values (this value is not input explicitly)

zZji = £.(Xi, Y3); X, Y, & Z = floating point values
X (i
Yy (5

1,2,...,n) is strictly increasing in i.
l 2 c..,m) is strlctly increasing in J.

The value of m is not 1nput explicitly because the value of n- (1nput as the
first data value) and the number of points (generated by the preprocessor)
are sufficient to define the location of any element in the array.

Trivariate Array

This type of array may be thought of as two or more bivariate arrays,
where each bivariate array is associated with a third independent variable.
Trivariate arrays are used to represent functions of the form F = f(X,Y,Z) for
the purpose of evaluating such functions by interpolation. The data values in
a tr1var1ate array are input in the fo]1OW1ng order:

NX1,NY1,%1,X1, X2,;..,Xn '
Y1,F11,F12,..,Fln

¥2’F21’F22?"’F?n bivariate "sheet" for z1

Ym,Fml ,Fm2,.. ,Fmn
NX2,NY2,72,X1, X2,...,X]
Y1,F11,F12,..,FLj

| Y2,F2] F22,..,F2J.

Yk,Fkl Fk2,..,FKJ
NX3,NY3 b

A trivariate array may contain as many b1var1ate "sheets" as' desired. - The

number of X ‘and Y values in.each sheet must be specified as integers NX and
NY, respect1ve]y ‘NX and NY need not be the same for all sheets.

A- 60A




LAGRANGIAN INTERPOLATION
SUBROUTINE NAMES: LAGRAN or LGRNDA

PURPOSE :

These subroutines perform Lagrangian interpolation of up to order 50. The
first requires one doublet array of X, Y pairs while the second requires
two singlet arrays, one of X's and the other of ¥'s. They contain an
extrapolation feature such that if the X value falls outside the range of
the 1ndependent variable the nearest dependent Y var1ab1e value is returned’
and no error is noted. :

X -Xxi

= PnlX) = E h 0 Xk - xi
i#k

, n=1,2,3,...,50max.

‘0‘.":!3

RESTRICTIONS:

A1l values must be floating point except N which is the order of interpola-
tion plus one and must be an integer. The independent variable valuas
must be in ascending order.

CALLING SEQUENCE: LAGRAN(X, Y,A(IC) ,N)

or  LGRNDA(X,Y,AX(IC),AY(IC),Y)
NOTE:
A doublet array is formed as follows:
 X1,Y1,X2,Y2,X3,Y3,...,KN,YN
and singlet arrays are formed as follows:

X1,X2,X3, ... ;XN
Y1,78,Y3,. 0., YN

- A-61



LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAME: DIDEG]

PURPOQSE :

This subroutine performs single variable linear 1nterpo1at1on on a doublet
array of X,y pa1rs _

RESTRICTIONS:

A1l values must be floating point numbers. The X independent variable
values in the doublet array must be in ascending order.

CALLING SEQUENCE: - DIDEGI(X,A(IC),Y)
| where: X = Input value of independent variable
A = Doublet array of X,Y pairs
' . ' Y = Output value of dependent variable
SUBROUTINE NAME: DIDIDA
PURPOSE :

This subroutine perfonns single variable linear interpolation on a pair
of singlet arrays containing corresponding values of X and Y.

RESTRICTIONS:

A1l values must be floating point numbers. The X independent variable
values in the AY array must be in ascending order. The number of values
in the Ax and AY arrays must be the same.

CALLING SEQUENCE:  DIDIDA(X,AX(IC),AY(IC),Y)

" where: X = Input value of the indeperdent variable
AX = Singlet array of X values
AY = Singlet array of Y values corresponding
to the X values in AX
Y = Output value of the dependent variable

A-62




FUNCTION NAME: - POL

PURPOSE :

This function subroutine performs single variable linear interpolation on a
single array consisting of all the independent variables followed by all the
dependent variables. The first location of the array contains the number

of independent variables, the second contains an integer 1' (at the start)
“followed by all the independent variables and all the dependent variables.
POL is useful for performing single variable interpolation on curves that
are not type zero curves that are set up during the preprocessing phase.

RESTRICTIONS:

The first Tocation mast contain the number of independent variables and
the second curve location contains the integer 1. The independent variables
are next fo]]owed by the dependent variables. Note thatxPOL'is a function.

CALLING SEQUENCE POL (A,X)

Where A 1is the array location
X is the value of the independent variabTe

Since POL is a funct1on it must appear on the r1ght of the equal of a
Fortran statement. : , .

A-63



LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: DIDIWM or D1IMDA

PURPQSE :

These subroutines perform single variable linear interpolation by calling
on DIDEG] or DIDIDA respectively. However, the interpolated answer is
multiplied by the values addressed as Z prior to being returned as Y.

RESTRICTIONS:

Same as DIDEG] or DIDIDA and Z must be a floating point number.
CALLING SEQUENCE: © DIDWWM(x,4(IC),2,Y)

or  DVIMDA(X,AX(IC),AY(IC),Z,Y)
 SUBROUTINE NAMES: | DIMDGT or DIMIDA

PURPOSE :-

These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for linear interpolation. They require a doublet or two
singlet arrays respectively. . .

RESTRICTIONS:

See DIDEGY or DIDIDA as they are called on respectively. -
CALLING SEQUENCE: . DIMDG1(Xx1,Xx2,A(IC),Y)

or DIMIDA(x2,x2,4X(IC),AY(IC),Y)

A-64



LINEAR INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: -,  DIMIWM or DIMIMD

_ PURPOSE

These subroutines use the arithmetic mean of two input va]ues as. the 1nde-
pendent variable for linear interpolation. The interpolated answer is
multiplied by the Z value prior to being returned as Y. -

RESTRICTIONS:

Same as DIMDG1 or DIMIDA and Z must be a floating point-number{

CALL_ING .SEQUENCE: DIMIWM(Xx1,x2,4(IC),2,Y) or DlM"lMD(Xl,XZ,AX(IC),AY(IC)_,Z,Y)

SUBROUTINE NAMES: | ‘ DIDG1I or DIDYIM or DIDIMI

PURPOSE :

These ‘subroutines perform s1ng1e variable linear 1nterpolat1on on an array
of X's to obtain an array of Y's., DIDIIM multiplies all interpolated
~values by a constant Z value while DIDIMI allows a unique Z value for each
X va]ue They a]l call on DIDEGI.

RESTRICTIONS

The number of input X's must be supp11ed as the 1nteqer ¥ and agree with
the number of Y and z locations where applicable. Z values must be float-
ing.point numbers.

'CALLING SEQUENCE: DIDGTI(N,X(DV),A(IC),X(DV))
Tor  DIDIIM(W,X(DVJ,A(IC),Z, ¥(DV))

or DlD1MI(N;X(DV)',A(IC).,'Z(DV),Y(DV))

SUBROUTINE NAMES: DI1DAI or D1IDIM or D1IMDI
PURPOSE: |

\

These subroutines are v1rtua11y identical to D10GI1I, DTDIIM and D1DIMI
respectively. The difference is that they require s1ng]et arrays for
1nterpo]at1on and ca]l on D]D]DA

RESTRICTIONS:

Same as DIDG1I, DIDTIM and DIDIMI.
CALLING SEQUENCE: DVIDAI(N, X(DV) , AX(IC) ,AY(IC),¥(DV))

or _DT1DIM(N,'X(DV),AVX(IC),AI_(IC‘),_Z,Y(DV))

or  DVIMDI(N,X(DV),AX(IC),A¥(IC),Z(DV) Y (DV))

A-65



LIN EAR INTERPOLATION - SINGLE VARIABLE/TNO SINGLE VARIABLES -

SUBROUTINE NAMES: D1IMD1 or D]IMNM or DIIMIM

PURPOSE :

These are indexed subroutines which use the arithmetic mean of two input
values as the independent variable for linear interpolation. The array of -
answers (Y) produced are left as is (DlIMD]), are all multiplied by a
single factor (D1IMWM), or each answer is multiplied by a separate factor.

RESTRICTIONS:

The interpolation array addressed must have an even number of input values
and the independent variables must be in ascending order. These routines
call up DIDIWM. & is the number of times the operation is to be performed.

CALLING SEQUENCE: DYIMD(¥,X2(DV),X2(DV) ,A,¥(DV))

or  DIVIMWM(N,XI(DV),X2(DV),A,2,Y(DV))

or DYIMIM(N,X1(DV),X2(DV),A,Z(DV),Y(DV))

LINEAR INTERPOLATION — TWO ‘SINGLE VARIABLES
SUBROUTINE NAMES:  CVQIHT or CVQIWM

PURPOSE :

These subroutines perform two single variable linear interpolations. The
interpolation array: must have the same independent variable X and dependent
variables of, let's say, R(X) and S(X). Additional arguments of 7, Z and

T complete the ddta values. The post interpolation ca]cu]atlons are
respectively:

Y = S(X)*(R(X)-T)

or Y = z¢5(X)*(R(X)-T)

RESTRICTIONS:

Interpolation arrays must be of the doublet type and have a common indepen-
dent variable. A1l values must be floating point numbers.

CALLING . SEQUENCE: CVQ]HT(X,AR(IC)?AS(IC),T,Y)

Cor  CVQIWM(X,AR(IC),AS(IC),T,2,¥)

A-66



'PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: : DIDEG2 or DID2DA

PURPOQSE :

These subroutines perform single variable parabolic interpolation. The

first requires a double array of X, Y pairs while the second requires

singlet arrays of ¥ and Y values. They call on subroutines LAGRAN and
"~ LGRNDA respectively.

RESTRICTIONS:

See LAGRAN or LGRNDA respectively.
CALLING SEQUENCE: DIDEG2(X,A(IC),Y)

“or  DID2DA(X,AX(IC),AY(IC),Y)

| SUBROUTINE NAMES: - DID2WM or DI2MDA
PURPOSE : '
These subroutines perform single variable parabolic interpolation by
calling on LAGRAN or LGRNDA respectively.- However, the interpolated ‘
answer is multiplied by the value addressed as Z prior to being returned
as Y. ' - . . S o

RESTRICTIONS:

Same as LAGRAN or LGRNDA and z must be a floating point number.
CALLING SEQUENCE:  DID2WM(X,A(IC),2,¥)

or . DI2MDA(X,Ax(IC),AY(IC),2,Y)

A-67



PARABOLIC INTERPOLATION - SINGLE VARIABLE

SUBROUTINE NAMES: ) DIMDG2 or DIM2DA

PURPOSE :

.These subroutines use the arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. They require a doublet or
two singlet arrays respectively. '

RESTRICTIONS:

See LAGRAN or LGRNDA as they are called on respectively.

CALLING SEQUENCE: DIMDG2(X1,X2,A(IC),¥)
- or  DIM2DA(X1,Xx2,AX(IC),AY(IC),Y)
'SUBROUTINE NAMES: - DIM2WM or DIM2MD

PURPOSE :

‘These subroutines use thé arithmetic mean of two input values as the inde-
pendent variable for parabolic interpolation. The interpolated answer

is multiplied by the Z value prior to being returned as Y.

RESTRICTIONS:

Same as DMMDG2 ér DIM2DA and 2 must be a floating point‘number.

CALLING -SEQUENCE:" - DIM2WM(X1,X2,A(IC),2,Y)

or  DIM2MD(X1,X2,AX(IC),AY(IC),2,Y)

A-68



' CYCLICAL INTERPOLATION ARRAYS

SUBROUTINE NAMES: 'DIICYL or DATICY

PURPOSE :

These subroutines reduce core storage requirements for cyclical interpolation
arrays. The arrays need cover one period only, and the period (PR) must be
specified as the first argument. Linear interpolation is performed, and

the independent var1ab]e must be in ascending order.

RESTRICTIONS:

A1l values must be floating point. Subroutine INTRFC is called on by both -
D11CYL and DA11CY, then DIDEGY or DIDIDA respectively.

CALLING SEQUENCE:' ~ DICYL(PR,X,A(IC),Y)
~ or - DAVICY(PR,X,AX(IC),AY(IC),Y)

SUBROUTINE NAMES: ' _DI2CYL or DAI2CY

PURPOSE :

These subroutines are v1rtua11y jdentical to D]]CYL and DA]]CY except that
parabolic interpolation is performed

RESTRICTIONS:

See D11CYL and DA1ICY. Subroutines LAGRAN and LGRNDA respectively are
called on. o '

CALLING SEQUENCE: = DI2CYL(PR,X,A(IC),Y¥)

or  DAY12CY(PR,X,AX(IC),AY(IC),Y)

A-69




CYCLICAL INTERPOLATION ARRAYS
SUBROUTINE NAMES: DYIMCY or DA1IMC

PURPQSE :

These subroutines are virtually identical to D11CYL and DA11CY except that
the interpolation is multiplied by the floating po1nt 3 value pr1or to
being returned as Y. _

RESTRICTIONS:

 Call on subroutines DIDEG] and DIDIDA respectively.
CALLING SEQUENCE:  DIIMCY(PR,X,A(IC),Z,Y)

or  DAVIMC(PR,X,AX(IC),AY(IC),Z,Y)
SUBROUTINE NAMES: ~ DI2MCY or DAI2MC

PURPOSE :

These'subroutines are virtually identical to D1IMCY and DA1IMC except that
parabolic interpolation is performed.

RESTRICTIONS

Calls on subrout1nes LAGRAN and LGRNDA respectively.
CALLING SEQUENCE: DI2MCY (PR, X, A(IC),Z,Y)

or  DAI2MC(PR, X, AX(IC),AY(IC),2,¥)

A-70



POINT SLOPE INTERPOLATION

SUBROUTINE_NAMES: GSLPPE

~ PURPOSE :

This-subroutine will generate a slope array so that point slope interpola-
tion subroutines can be used instead of standard linear interpolation sub-
routines. The user must address two singlet type arrays and a singlet
slope array will be produced. ' '

RESTRICTIONS:

The X independent variab]e array must be in.aécending order. A1l arrays
must be of equal ]ength and contain f]oating point numbers. '

CALLING SEQUENCE:

GSLPPE (AX(IC) ,AY(IC),AS(IC))

SUBROUTINE NAMES: o PSINTR or PSNTWM

PURPOSE :

These subroutines perform linear interpolation and require arrays of the Y
points and slopes which correspond to the independent variable X array,
A11 values must be floating point numbers.. PSNTWM multiplies the inter-
polated answer by Z prior to returning it as Y.

RESTRICTIONS:

The ihdependent X and dependent Y and slope arrays must be. of equal length.

CALLING SEQUENCE:
' | PSINTR(X,AX(IC),AY(IC),AS(IC),Y)

or  PSNTWM(X,AX(IC),AY(IC),AS(IC),2,¥)

A-71



BIVARIATE INTERPOLATION

SUBROUTINE NAMES: BVSPSA or BVSPDA
PURPOSE :

These subroutines use an input Y arqument to address a ijariate_arrajfand
pull off a singlet array of z's corresponding to the X's or pull off a
doublet array of X, Z values, respectively. The integer count for the
constructed arrays must be exactly N or 2*N respectively. To use the
singlet array for an interpolation call the X array can be reached by
addressing the ¥ in the bivariate array.

RESTRICTIONS:

As stated above, and all values must be floating point.

CALLING SEQUENCE: ~ BVSPSA(Y,BA(IC),AZ(IC))
| : ~or  BVSPDA(Y,BA(IC),AXZ(IC))
SUBROUTINE NAVES: _ BVTRN1 or BVTRNZ

PURPOSE :

These subroutines construct a bivariate array of Y's versus X and Z.from

an input bivariate array of z's versus: Xand Y. BVTRN1 should be used when
the 2 values inc¢rease with increasing Y values and BVTRN2 when the Z values
decrease with increasing Y values.. '

RESTRICTICNS:

The user must appropriately place the ¥ and Z values and spaces for Y's in
the array to be constructed. .These subroutines will fill the Y spaces.

The new array can differ in size from the old. Subroutine DIDEGT is called
and its linear extrapolation feature applies. ‘

CALLING SEQUENCE: =~  BVTRN1(BA@(IC),BAN(IC))
| ~or  BVIRN2(BAP(IC),BAN(IC))

* See page A-60A



BIVARIATE INTERPOLATION

SUBROUTINE_NAMES: _D2DEG1 or D2DEG2_
PURPOSE : |

These subroutines perform bivariate linear and parabolic 1nterpo]at16n,re-

:pectiv%}y. The arrays must be formatted as shown for Bivariate Array
ormat. : - _ .

RESTRICTIONS: For D2DEGI , N»2,Ms2  See Bivariate

‘For D2DEG2 , N>3,M>3  Array Format
CALLING SEQUENCE: ~  D20EGY(x,y,B4(IC),z)

or  D2DEG2(x,¥,BA(IC),Z)
SUBROUTINE NAMES: D2D1WM or D2D2KM
CPURPOSE: .

These subroutines perform bivariate “linear or'parabolic'interpolation by call-
ing on D2DEG1 or D2DEG2 respectively. The interpolated answer is multiplied
by the W value prior to being returned as 2Z.

RESTRICTIONS: -
Same as D2DEG1 or D2DEG2 and ¥ must be a floating point value.
CALLING'SEQUENCEﬁ,- DZDTNM(X,Y,BA(IC),hgz) |

~or  D2D2wM(x,Y,BA(IC),W,Z)

~* See page A-60A

A-73



BIVARIATE mTERPOLAT_Im

'SUBROUTINE NAMES: DZMXD1 or D2MXD2

PURPOSE |

1hese subroutines are v1rtua1]y identical to D2DEG] and DZDEGZ except that
the arithmetic mean of two X values is used as the X 1ndependent variable
for interpo]at1on _ v _

RESTRICTIONS:

Same as D2DEG1 or D2DEG2.
CALLING SEQUENCE: D2MXD1 (X2, X2, Y, BA(IC) ,2)

or  D2MXD2(x1,xX2,Y,BA(IC),Z)
© SUBROUTINE NAMES: DZMXIM or D2MX2M

PURPOSE : -

These subrout1nes are virtually identical to DZD]NM and DZDZNM except that
the arithmetic mean of two X values is used as the X 1ndependent var1ab1e
for interpolation. _

RESTRICTIONS:

Same as D2DTWM and D2DZWM.
CALLING SEGUENCE: D2MXIM(xZ,Xe,¥,BA(IC),H,Z)

or  D2MXeM(x1,x2,Y,BA(IC),¥,2)

A-74




TRIVARIATE INTERPOLATION

SUBROUTINE NAMES: . D3DEG] or D3DIWM

PURPOSE :

These subroutines perform trivariate linear interpolation. The 1ntgrpola-,
tion array must be constructed as shown for Trivariate Array Format.* Sub-
routine D2DEG1 is called on which calls on DIDEG1. Hence, the linear
extrapolation feature of these routines app11es Subrout1ne D3D WM
mu1t1p11es the interpolated answer by F prior to returning it as T.

RESTRICTIONS:

See Trivariate Array Format.* F must be a f]oating'point value.

CALLING SEQUENCE: D3DEGI(X,Y,2,TA(IC),T) -

or  D3DWM(X,Y,Z,TA(IC),F,T)

LINEAR EXTRAPOLATION

'SUBROUTINE NAME: ITRATE -

PURPOSE :

Given two old guesses and their corresponding errors, this routine linearly
extrapolates a new guess on the basis of zero error.

The new guess and error are positioned in the old locations and the extrapo-
lated new guess is returmed in the new guess location.-

RESTRICTIONS:

If the error. function being plotted has changes of slope, the user must
insure that his guesses are quite accurate or divergence w111 be assured.

CALLING SEQUENCE _ ITRATE(ED,GA,EN,GH )

* Séé pége A-60A

A-75



2.5

CPRNT Prints thermal capacitances, . . . . . . . . . . .. ..
QPRNT Prints the nodal heat flow values. . . . . . . . . . ..
UPRNT Prints thermal conductances. . . . . . . . . . . . . ..
DPRNT Prints the time increments . , . . . . . . . .

COPRNT Prints the thermal network capacitances, heat flow valués), °
time increment and the conductances. . . . . . . . . ..
WPRNT Prints flow rates. . . . .« « v o v . Lo Lo .00
PPRNT Prints pressures . . ., . . ., ... .. ... 0.,
VPRNT Pr1nts valve positions ., ., . ., .. ., ... . ...,

PRINTL

OUTPUT SUBROUTINES

Network Printout

TPRNT Prints thermal node temperature

Float1ng Point .

PRINT } ‘Allows individual floating point numbers to be
printed for reference temperature, capacitance,.
cetc.. ... .

;Arrqy Printout

" PRINTA Allows the user to pr1ntout an array of va]ues f1ve
o tothe Yine . . . . . . .. . ...
PRNTMA Allows the user to print up to 10 arrays in a-
" PRNTMI weolumn format . . . .. L. .00,
PUNCHA  Enables a user to punch out an array of data values
; in any desired format , | . ., . . ..., .....
GENOUT - Prints out any general array containing both 1ntegers
v and real numbers « « «.¢ ¢ ¢« ¢ o 4 4 e 4 . . e e e e
GENI Prints out an array of 1nteger .............

PRNPLT  Prints out a plot on the line printer. . . . . .. .. ..
PLETX] ' :
PLPTX2 '

PLATLI Call upon a large package of LHdOCLW“ﬂLed _ ;
PLATLZ2 suoroutlnas specifically for the 5C-4060 ., , . , . ., .
PLATX3 . ,

PLOATX4

SC-4060  Plot Symbol Dictiomary . . . . . .. .. .. e
SC-4020  Plot Symbol Dictiomary . , ., . . . e o
Tape Input/Output ' o o

READ } Enables the user to read and write arrays of data :
WRITE as’ binary information on magnetic tape . . . . . . .-,

GENR : Prints out an array of rea] numbers ...........
Plot Package ' ST o

A-76

oooooooooooooooooooo



‘Matr1x 0utput

IIST

PUNCH '

SYMLST

Special
-PNTABL

Prints. the_elements_of_a matrix _and 1dent1f1es each by

fts row and column number. « « v v v v v v 4 e e W . .

Punches out a matrix, size n*n, one co]umn at a time
in any desired format,

Prints out and identifies the element values of a
half symmetric matrix. « « « .+ « & e e s 4 e e e e e e

Provides outﬁut information for users of subroutine
ML'ATS‘ L] t -. ..> . .'.‘ * - . . . L * . ' . - - . . o o o s

A-77



" Network Printout Subroutines

SUBROUTINE NAMES: ~ TPRNT, CPRNT, QPRNT, UPRNT, DPRNT, or COPRNT

PURPOSE:

These subroutines provide the user with the ability to printout the elements

of the thermal networki The purpose of each is listed below.

TPRNT . Prints all the thermal network temperatures in the T array
.CPRNT_' Prints all the thermal network capacitance in the
C array | o
.QPRNT | Prints all the values in the Q array |
UPRNT ~ Prints all the conductaﬁée values in the U array
DPRNT . Prints all the Va]ues in the DTAU (tfme increment)
. array

COPRNT  Calls CPRNT, QPRNT, UPRNT and DPRNT
These subroutines are normally called in the OUTPUT block but may be called
from other operations blocks. However, an excessive amount of output may
occur if they are called from PRETMP or POSTMP.

RESTRICTIONS:.

NONE
CALLING SEQUENCE: TPRNT, CPRNT, QPRNT, UPRNT, DPRNT or COPRNT

A-78



SUBROUTINE NAMES:  WPRNT, PPRNT, or_VPRNT

PURPOSE::

These subroutines provide the user with the ability to printout the fluid
flow rate, the pressure of the pressure nodes, and valve positions. WPRNT
prints flow rates; PPRNT prints pressures, and VPRNT prints valve positions.
These subroutines are normally called from the OUTPUT block but may be
called from other operations blocks 1f des1red

RESTRICTIONS: NONE

CALLING SEQUENCE:. WPRNT, PPRNT, or VPRNT

A-79



FLOATING POINT PRINTOUT

SUBROUTINE NAMES: : PRINT or PRINTL

PURPOSE

These subroutines allow individual floating point numbers to be printed.

The arguments may reference temperature, capacitance, source locations,
conductors, or unique array locations. In addition, subroutine PRINTL
allows each value to be preceded or labeled by a six-character alphanumeric
word. The number of arguments is variable but the "label" array (LA) used
for PRINTL should contain a Hollerith label for each argument.

RESTRICTIONS:

Integers must first be floated.

CALLING SEQUENCE: PRINT(T,C,G,5, K, ..., At)

Cor. PRINTL(LA(DV) 7,0, ,G Kyouo A4)

ARRAY PRINTOUT

SUBROUTINE NAME: = PRINTA
PURPOSE :

This subroutine allows -the user to print out an array of values, five to
the line. The integer array length # and the first data value location
must be specified. Each value receives an- indexed label. The user must

. supply a six-character alphanumeric word L to be used as a common label
and an integer value ¥ to begin the index count.

RESTRICTIONS:

The array values to be printed must be floating point numbers. 1If L is

- supplied as a literal Hollerith data value (instead of a reference to a
user constant containing same), it must be entered in FORTRAN conpat1b1e
H-type notation (e.g., 4HTEMP),

CALLING SEQUENCE : PRINTA(L,A(DV) ,N, M)

If the label was the word 'TEMP', ¥ was 3 and ¥ was 6, the line of output
would look ‘as follaws:

TEMP ( 6)value TEMP  (  7)value TEMP (  8)value



SUBROUT INE NAME : PRNTMA or PRNTMI
PURPOSE

*This subroutine allows the user to print out up to 10 arrays in a column

. format. The individual elements are not labeled but each column receives

- a two-line heading of 12 alphanumeric characters/line.  The two-line head-
ing must be supplied as a single array of four words, six characters each.
The user must supply the start1ng location of each label array and value
array. The number of values in each value array must agree and be supplied .

-as. the integer ¥. The value arrays must contain floating point numbers.*

RESTRICTIONS:

Labels must be alphanumeric while values must be floating point.* ATl
floating point value arrays must contain the same number .of values.

CALLING SEQUENCE:  PRNTMA(i,LAI(DV),VAI(DV),LA2(DYV) ,VAS(DV),...)
PRNTMI (N, L4Z(DV),VA1(DV) ,LA2(DV),VA2(DV),...)
*V47 only mustmaddkess an array of integers for subrputine PRNTMI.

ARRAY PRINTOUT

SUBROUTINE NAVME : . PUNCHA
PURPOSE : -

This subroutine enables a user to punch out an array of data values in
any desired format. The F argument must reference a FPRTRAN F@RMAT which
has been input as an array, including the outer parenthesis but deleting .
the word FPRMAT.* The second argument must address the first data value
of the array of.sequential values. The third argument N, must be the
-integer number: of data values in the array.

CALLING SEQUENCE: : PUNCHA(F(DV),A(DV) ,N)

A-81



SUBROUTINE NAMES: GENOUT, GENI or GENR

PURPOSE :

These subroutines print out arrays of numbers 10 to a Tine. GENOUT prints
either real numbers, integer or both. GENI and GENR print integers and
real number=arrays respectively. The integer are written in a I9 format
and the real numbers in a E12.4 format.

- RESTRICTIONS:

GENI writes arrays of integers only. GENR writes arrays of real numbers
only. ' ’ :

‘CALLING- SEQUENCE: GENOUT 2A, ISTRT, ISTP,'NAME')
. GENI A, ISTRT, ISTP,'NAME')
GENR (A, ISTRT, ISTP, 'NAME')

Where A is the array location :
ISTRT s the first value in A being written
ISTP  is the last value in A being written
'NAME' is a title of 22 Hallerith words for identification



~ PLOT PACKAGE

SUBROUTINE NAME: - ~ PRNPLT

PURPOSE :

This subroutine will print out a plot of data on the line printer. It is
intended primarily for plotting temperature histories which were accumu-
lated in the OUTPUT CALLS block. One or two curves of up to 100 points
each may be plotted on each frame(page). Y-axis scaling is automatic. No
units are associated with the X-axis, and no X.values are used; one point
is plotted for each print wheel position along the X-axis. Points on the
first curve will be printed as 'X's, and points on the second curve will
be printed as 'O's. Where points overlap, an asterisk, '*', is printed.

RESTRICTIONS:

'If WA and/or NB is greater than 100, only the first 100 points in the
corresponding array of Y-values (Y4 and/or ¥B) will be plotted. The argu-
ment LP normally has a value of 50 when standard 11 x 14 computer paper

is used. The smallest Y increment represented by a line is one unit, so
the narrowest range covered by the Y axis will be LP units. One graph only
may be plotted on a single page. When a point to be plotted has a value
which lies exactly betwzen the values associated with two adjacent lines,
then the point will be printed on both lines.

CALLING SECUENCE:  PRNPLT(TT(DV),NA,YA(DV),TA(DV) ,NB,YB(DV) ,TB(DV) L)

where: TT = Main title (4 Hollerith words) .
' " NA = Number of points for the first curve
. (integer; must be greater than zero)
YA = Y values for the first curve o ,
TA = Title for the first curve (4 Hollerith words)
NB = Nunber of points for the second curve
(may be zero) '

YB = Y values for the second curve : ,
TB = Title for the second curve (4 Hollerith words)
LP = Number of printer lines which may be used to plot values

(at least two less than the nwmber of lines on a page)

A-82



" PLOT PACKAGE

SUBROUTINE NAMES:  PL@TX1 or PL@TX2 or PLATL] or PLATL2 -

PURPOSE :

These FPRTRAN V coded quick plot subroutines call upon a large package of
undocumented subroutines specifically for the SC-4060. They will produce
up to four graphs per frame and several variables may be plotted per graph.
A suitable grid will be drawn with certain lines emphasized. The grid
lines will have reasonable numerical indicia and centered t1t1e will be
printed for both axes and at the top of the graph.

PLATX1 and PLATLY will compute the minimum and maximum values of the stored
X and Y arrays to be plotted and call upon PL@TX2 or PLPTL2 which use the
values as grid 1imits for the graph. The user may set the grid limits by
calling PLOTX2 and PLOTL2 directly. The X, Y and top titles (xT, YT and TT
respectively) must consist of nine alphanumeric words of six characters each.

RESTRICTIONS

The user should consu]t Append1x D to check tape des1gnat1on requirements.
The X and Y values must be floating pownt numbers. The user must call sub-
routine PLTND after a1] his plotting is done. No limit may be zero for log
plots. ' _

CALLING SEQUENCE:

PLOTXV (N, IS,TX(DV),TY(DV) ,TT(DV) ,NP,AX(DV) ,AY(DV))
or : :

PLPTX2(N,XL,XR,YB,YT,IX,TX(DV),TY(DV),TT(DV) ,NP,AX(DV),AY(DV))
or . Co
'PLQTL](N IS, TX(DV),‘TY(DV),TT(DV) NP,AX(DV),AY(DV) ,LM)

PLﬂTLZ(N XL XR, YB Y” IS TX(DV) TY(DV),TT(DV),NP, AX(DV) AY(DV) L) -

‘ where N 18 the 1nteger number of graphs per frame (1,2,3 or 4);
. $f zero, the grzd from the previous plot caZZ 18 used.
IS . is the integer identifying the plotting sdeoZ (1-144)
TX = is the address of the X title
TY 18 the address of the Y title
TT is the address of the top title '
NP  is the integer nwumber of XY values or poznts to be plotted;
tf negative the points will be connected by straight lines.
AX  is the address of the X array
AY s the address of the Y array '
XL .- is the fleating point X axis left limit
XR  1is the floating point X axis right limit
YB  is the floating point Y axis bottom limit
. ¥Yr is the flocating point Y asis top limit ,
" IM  is an integer identifying tie log plotting mode;
if less than zero plot log X versus ilinear Y,
- 1f equal to zero plot log X versus log Y,
-’zf graater than zero plot linear X versus log Y

A-83



© PLOT PACKAGE - |
" SUBROUTINE NAMES: PLPTX3 or PLPTX4
PURPOSE : o |

These subroutines are similar to PLATX1 and PLGTXZ but’ have six additional
arguments which allow the user to modify the grid as desired.

RESTRICTIONS:

‘See PLTX1 and PLATX2.
CALLING SEQUENCE:

~ PLATX3(w,IS,TX(DV),TY(DV),TT(DV},NP,AS(DV),AY(DV),DX,DY,L,M,I,J)
or v - ' _ ‘
PLOTX4(N,XL,XR,YB,YT,IS,TX(DV),TY(DV),TT(DV),NO,AX(DV),AY(DV),DX,
DY,IM,I,J) : - ' :

where the arguments are identical to PLATX] and PLATX2 except for

Dx,pyY these floating point values are used in spacing the grid
lines which are centered on the zero values. If zero, no
- grid lines will be drawn. th . .
. LM these integers cause every L~ vertical and ¥~ horizontal
grid line to be redrawn for emphasis. If zero, no grid
lines viill be emphasized. If negative, a square grid will
be produced. th th
I,d these integers cause every I vertical and J~ horizontal
- grid line to be labeled with its value. If zero, no grid
"lines will be labeled. If negative, the labels will be
placed outside the grid, otherwise they will appear on the
zero axis.

A-84



PLOT PACKAGE

Symbol

SC-4060 PLOT SYMBOL DICTIONARY

(for use with quick plot subroutines only)

Integer Infeger ~ Symbol - Integer Symbol  Integer  Symbol
R A 31 4 61 m 105 s
2 B 32 5 62 n 1106 3
3 c 33 6 63 0 07 0
4 D 34 7 64 p 108 <
5 E 3. 8 65 q 109 #
6 F 3 9 66 r 10 (logical inverse)
7 6 37 (blank) 67 s 11 |
8 H o 38 : 68 t 112 m
9 I 39 ., 69 u M3 _
10 J 40 '(close quote) 70 v 114 [
" K 41 $ 71 W 115 L
12 L 42 ( 72 X 116 (tilde)
13 M 43 ) 73 y 117 (1ozenge)
14 N 44 / 74 z 118 A
15 ) 45 -(minus) 88 " 121 «
16 P 46 + 89 ¢ 122 >
17 Q 47 . * 90 [ 123 o{circle)
18 R 48 = 91 ] 124
19 S 49 a < 92 ? 125
20 T 50 b 93  -(hyphen) 126 .
21 U 51 c 94 1 127 ©
22 v 52 d 95 ; 136 '(open quote)
23 W 53. . e 96 : 138 {
24 X 54 f 97 a 139 )
25 Y 55 g 98 8 140 N\
26 z 56 h 99  ~(caret) 141 -(bar)
27 0 57 i 100 5 142 *
28 1 58 - j 102 - % 143 @
29 2 59 k 103 Y 144 &
30 3 60 1 104 >

A-85



| PLOT._PACKAGE :

SC-4020 PLOT SYMBOL DICTIONARY .

(to be used at insta11at1oné, such as
NASA/MSC, where an SC-4060 is used -
to s1mu1ate an SC-4020)

Decimal Plot  Decimal Plot  Decimal Plot = Decimal Plot

Integer  Char. Integer  Char. Integer  Char. Integer  Char.
0 0 16 + 32 - 48

1 B 17 A 33 0 49 /

o2 2 18 B 34 K 50 S
3 3 19 c 35 L 51 T
4 4 20 D 36 M 52 U
5 5 2 E 37 N 53 v
6 6 22 F 138 p 54 W
7 7 23 G 39 P 55 X
8 8 24 H 40 Q - 56 Y
9 9 25 I 41 R 57 z
10 2 26 " 42 . 58 °
A = 27 : 43 % 59 ,
12 " 28 ) 44 * 60 (
13 ' 29 8 45 Y 61 s
14 s 30 I 6 - - 62 z
15 a 31 ? O

47 d 63

A-86



TAPE INPUT/QUTPUT
SUBROUTINE NAMES: . READ or WRITE

PURPOSE :

These subroutines enable the user to read and write arrays of data as binary
information on magnetic tape. The first argument L must be the integer
number of the logical tape being addressed. The second argument X must
address the first data value of the array to be written out or starting
location for data to be read into. The third argument ¥ must be an integer
For WRITE, it is the number of data values to be written on tape as a record.
For READ, it is the number of data values to be read in from tape from the
next record, not necessarily the entire record.

RESTRICTIONS:

The user should check Appendix D to determine which 1og1ca1 tapes are ava11-
able and control card requ1rements A1l processed 1nformat1on must be in
binary.

CALLING SEQUENCE:. READ(L, X(DV),N)
o Cor  WRITE(Z,X(DV),N)

MATRfX}PRINTOUT

SUBROUTINE NAME: LIST

PURPOSE : '

This subroutine prints the elements of a matrix [4] and identifies each by
its row and column number. The user must supp]y an a]phanumer1c name ALP
and integer number NUM to identify the matr1x This is to maintain con-
sistency w1th subroutines FILE and CALL. T

RESTRICTIONS

The matrix must have its 1nteger number of rows and. columns as the first two
data values.

CALLING SEQUENCE: LIST(A(Ic),ALp,NUM)

A-87



SUBROUTINE NAME . PUNCH

PURPOSE

This subroutine punches out a matrix.[4],.size n*m, one column at a time

in any desired format. The argument FPR must reference a FARTRAN format
~statement that has been input as a positive array. It must include the -

outer parenthesis but not the word FORMAT. The argument HEAD must be a

single BCD word used to identify the matrix. Each column is designated
. and restarts use of the FPRMAT statement. ' '

RESTRICTIONS:

-The matrix [4] must have exactly enodgh space and contain the integer
number of rows and ‘columns as the first two data values.

CALLING SEQUENCE: - PUNCH(A(IC),HEAD,FPR(IC))

DYNAMIC STORAGE REQUIREMENTS:

This subroutine required n+3 dynamic storage locations.

- SUBROUT INE NAME : o SYMLST
PURPOSE : |

“To print out and 1dent1fy the element va]ues of ‘a half symmetric matrix.
- This output subroutine is most generally used w1th subroutine SCRPFA.

- CALLING SEQUENCE: . SYMLST(A(DV),N)

where A(DV) adréssés thg 1,1 element and N is_the matrix qr@eff
SPECIAL
SUBROUTINE: | - PNTABL
PURPOSE : |

To provide output information for users of subroutine ABLATS. The ABLATS
routine performs ablative simulation calculations but since it is called
in § POSTTEMP, it performs no output. The user must call PNTABL in the -

$ OUTPUT block and reference the ablative array of the ABLATS call.

When the ablative material is expended, ABLATS will call PNTABL directly
and will also cause current prob]em time ‘to be pr1nted

RESTRICTIONS:

This routine is. ca]led in conJunct1on w1th subrout1ne ABLATS only, see
Section 2.2 _

CALLING SEQUENCE: | PNTABL(AA(ICU)

A-88



' 2.6'”MATHEMATICAL SOLUTION SUBROUTINES

Area Integration :
SMPINT} Performs area integration by Simpson's rule and

TRPZD trapezoidal rule using equal increments. . .". . . . . .. - A-9(
TRPZBA  Performs area 1ntegration by the trapezoidal rule .

: ‘ with non un1form increments. . . . . ..o oo o .o o A
NEWTRT }- Ut1]1zes Newton's method to obtain one root of a '
NEWRT4 cubic or quartic equation. . . .+« ¢ oo . A-9]

'Polynomia1/5imu1taneous Linear Equations

PLYNML " Calculates the value of the dependent variable for ‘

PLYARY an Nth order polynomiale ¢ « o ¢« o « ¢ o o o o 0 0 o . e . A-9

CPLYAWN

SIMEQN  Solves a set of linear equations (10 or less) by the . ‘
factor1zed inverse method. « « « « « « o o . e e - A-9

Curve F1t/Te4perature Der1vat1ve

.LSTSQU Performs a least squares curve fit to an arbitrary
number of X,Y pairs to yield a po1ynom1a1 _ |
equation of uptoorder 10 . . . . . . . o o o .. v v .« A9

Complex Variable Analysis

CMPXSR Obtains the complex square root of a comp]ex number x
CSQRI or array of comp]ex numbers., . .. . L 0 e e e e e e e e A-9
CMPXMP " Multiplies two complex numbers or the correéponding )

- CMPYI elements of arrays of complex numbers. . . ., . .. ... .. - A9
CMPXDYV Divides two complex numbers or the correspondihg
CDIVI ~elements of complex numbers. . . . . . . « oo oo . A-9

A-89 o |



. AREA INTEGRATION
SUBROUTINE NAMES: SMPINT or TRPZD

PURPOSE:

. These subroutines perform area integrations by Simpson's rule and the
trapezoidal rule respectively. Simpson's rule requires that an odd
number of points be supplied. If an even number of points is supplied,
SMPINT will apply the trapezoidal rule to the last incremental area but
Simpson's rule elsewhere. The respective operations are: '

fn

A = DX*(Y1+4Y242Y3+4Y4+...+YN) /3

or A

RESTRICTIONS:

DX*(Y1+2Y2+2¥3+2Y4+. . .+¥N) [2

The DX increment must be uniform between all the ¥ points. VA]] values
must be floating point except ¥ which must be an integer.

CALLING SEQUENCE: SMPINT (W, DX, Y(DV),4)

or TRPZD(N,DX,Y(DV) ,A)

SUBROUTINE NAME: - JRPZDA
 PURPOSE :

This subrout1ne performs area 1ntegrat1on by the trapezoidal rule. It
should be used where the px increment is not uniform between the y values
but the corresponding X value for each ¥ value is known. The operation
performed is as follows:

2
All va]ues must be f10at1ng point numbers except the array length ¥ which
must be an- 1nteger

A T (xi-xi-1)*(yri+yi-1) , i =2N

CALLING SEQUENCE: TRPZDA(N,X(DV) ,Y(DV) ,A)

A-go



ROQTS

SUBROUTINE NAMES: NEWTRT or NEWRT4
PURPOSE : |

These subroutines utilize Newton's method to obtain one root of a cubic

or quartic .equation respectively. The root must be in the neighborhood

of the supplied initial guess and up to 100 iterations are performed in
order to:obtain an answer within the specified tolerance. If the tolerance
is not met, an answer of 1038 is returned. The respective equations are:

f(X) = AI+A24X+43*X2+44*X3 = 0.0:T

or ° g{X) = AI+A2AX+AZ*X2+44%*X3+45%X" + 0.0:T

where X starts as the initial guess RI and finishes as the final answer RF.
T is the tolerance. '

 RESTRICTIONS:

A11 data values must be f]oating point numbers .

CALLING SEQUENCE: NEWTRT(A(DV),T,RI,RF)
| " OR  NEWRT4(A(DV),T,RI,EF)

A-91



- POLYNOMIAL /SIMULTANEOUS LINEAR EQUATIONS

SUBROUTINE NAMES:  PLYNML or PLYARY or PLYAWM

PURPOSE: A
Thesé-subrﬁutineﬁ calculate Y from the-foilowing po]ynomiaj equatioh:
| Y= A1+A23X+AS*X2¥A4*X3+;L.+AN+1*XN
Z =YW |

The number of terms is variable but all the A coefficients must be input
no matter what their value. .

RESTRICTIONS:

A1l values must be floating point numbers except‘for the degree of poly-
nomial ¥ which must be integer.

CALLING SEQUENCE: ~  PLYNML(X,AI,AZ2,43,...,AN,¥)
or  PLYARY(N,X,A(DV),¥)

Cor PLYAWM(N,X,A(DV) ,W,2)
SUBROUTINE NAME: " SIMEQN

PURPOSE :

This subroutine solves a set of up to 10 linear simultaneous equations by
the factorized inverse method. The problem size and all input and output
values are communicated as a single specially formatted positive input
array. The array argument must address the matrix order (N) which is input
by the user. The first data value must be the integer order of the set {or
size of the square matrix) followed by the coefficient matrix [4] in column
order, the boundary vector {8} and space for the solution of vector {s}.

W st - {8
RESTRICTIONS:

The integer count and matrix size must be integers, all other values must
‘be floating point. The coefficient matrix is not modified by SIMEQN.
Hence, changes to {B} only allow additional solutions to be easily obtained.

CALLING SEQUENCE: SIMEQN(4(DV))

where the array is formatted exactly as follows:

N,A01,1),4(1,2), .. A(NN),BI,...,BN,51,...,5%

A-92



CURVE FIT/TEMPERATURE DERIVATIVE

SUBROUTINE NAME : © LSTSQU

PURPOSE : |

This subroutine performs a leaét squares curve to fit to an arbitrary
number of X, Y pairs to yield a polynomial equation of up to order 10.
Rather than using a double precision matrix inverse, this subroutine calls
on the subroutine SIMEQN to obtain a simultaneous solution.

RESTRICTIONS: -

A1l values must be floating point numbers except ¥ and M which must be
integers. N is the order of the polynomial desired and is one less than
the number of coefficients desired. M is the array length of the inde-
pendent X or dependent Y values.

 CALLING SEQUENCE: LSTSQU(N, M,X(DV),¥(DV),A(DV) )

DYNAMIC STORAGE REQUIREMENTS:

This subroutine requires 2*M dynamic storage core Jocations.

SUBROUTINE NAMES: -A' CMPXSR or CSQRI
PURPOSE ;

These subroutines obtain the complex square root of a complex number or an
array of complex numbers respectively. Their respective operations are:

Jc +ip ,oodi= S
JCiv iy, |

A + iB

Cor - A4j + iBj 1,8

RESTRICTIONS:

A1l numbers must be floating point except N which must be an integer.

CALLING SEQUENCE: CMPXSR(c,D,4,B)

or  CSQRI(w,cC(DV),D(DV),A(DV),B(DV))

A-93



© SUBROUTINE NAMES: CMPXMP or CMPYI
PURPOSE : | |

These subroutines will multiply two complex numbers or theicorrespbnding
elements of arrays of complex numbers. Their respective operations are:

J1

1.0

n

4 + iB = (C + iD)*(E + iF) , i

n

or A3 + iBj = (cj + iD3)*(EfiF3) i

RESTRICTIONS:

A1l numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXMP(C, D, E, F, A, B)

or CMPYI(N,C(DV),D(DV),E(DV),F(DV),A(DV),B(DV))

DIVISION OPERATION

SUBROUTINE NAMES: CMPXDV or CDIVI
© PURPOSE:

These subroutines will divide two complex numbers or the |
» correspondin
_e]ements of arrays of complex numbers. Their respective operations aae:

A+ 1B = (c+ iD)/(E + iF) N VA
or A +iB) = (ci+ iDi)MES +AF) .- 3= L
RESTRICTIONS : | '

All numbers must be floating point except for N which must be an integer.

CALLING SEQUENCE: CMPXOV(c,D,E,F,A,B)

or  CDIV(N,C(DV),D(DV),E(DV),F(DV),A(DV) ,B(DV))

- A-94



2.7

ARRAY OPERATIONS AND MANIPULATIONS

‘Addition Operation
ADDARY Adds ‘the correspond1ng e]ements of two specified 1ength _
' arrays to form a th1rd AYTAY . v v v e e e e e e e e . . A-97
ARYADD  Adds-a constant value to every -element in an array to :
' FOrM NEW ArTaY . « v v o o v o v o o s o o o o o s o a o o A-97
SUMARY Sums:an array of floating point values . . . . . . . . .. | A-97

Subtraction Operation

SUBARY

ARYSUB

~ Subtracts the corresponding elements of one array

“from another to form a third ArraY. o 0 0 0.0 e e 0. e .A-98

Subtracts a constant value from every e]ement in an _
array to form a new array . « «.. ¢ 0 000000 e . “A-98

Mu]tip]ié&tion’operation

MPYARY
ARYHPY

SCLDEP
SCLIND

Multiplies the corresponding elements of two arrays to
~forma third, . ¢ . . . . .. e e e e e e e e e A-98

Mltll‘lu]'lP\ each element of an ar‘r%v hv a. canstant \Iale
to form a new AYPAY & ¢ e e 0 0 e e e s e e e e e e e A-98

‘Multiplies the dependent or independent variables of a

“doublet type 1nterpo]at1on ArraY. « =« o o o o o o o o.0. A-99

Oporat1on

Division

-DIVARY

ARYDIV

ARYINY
ARINDY

ADARIN

Divides the e]ements of one array into the corresponding
elements of another array to produce a third array . . . A-99

Divides each element of an array by a constant value

~to produce @ new array. .« .o v v w e e 0 e e e e e e A-99

Ihverts each element of an array in its»own'1ocation.'. . . A-100

Divides each element of an array into a constant value

to form a new array Ct e e e e e e e e e e e e ,'4A-100

Calculatés one over the sum of inverses of an array of values - A-

Distribution of Array Data

SHFTV

Shifts a sequence of data from onekarray’tb énother. . . . A-101

A-95



- SHFTVR

FLIP

GENARY
BLDARY
BRKARY

BKARAD

-~ STOARY
ARYSTO

STFSEQ
STFSQS

SLDARY
SLDARD

STORMA

Shifts a sequence of data from one array and places

SPLIT
JOIN
SPREAD

Comparison Operation

MAXDAR
MXDRAL

‘data in reverse order in another array. . . . . . .. .. A-101
Revenses-an—annay_in_iis—own_annay_location A-10]
Generates an array of equally 1ncremented ascending

values. « « v v v v v w e e e e e e e e e e e e A-10%
Bu11ds an array from a variable number of’ arguments

in the order Tisted . . . . . . . . . . oL A-102
Distributes va]ues from within an array to a variable

number of arguments in the order listed . . . . . . . . . A-102
Places a value into or takes a value out of a:

specific array location . . . . . . . . .. .. .00 . A-102
Stuffs a constant value into.a specified length .

array or group of_sequentia1 locations. .. . . . . . .. A-103
Moves anray data values back one or two positions and v

updates the last one or two values. . .. . . . . . ... A-104
Constructs h1stor1ca1 data arrays during a trans1ent

ANATYSTS. & v v e e e et e e e e e e e e e e e e e e A-104

Sing]et/Doub]et Array Generation

'Separates a doublet array into two singlet arrays . . . . . A-105
Combines two singlet arrays into a doublet array. . . . . . A-105
Applies interpolation subroutine DIDIDA to two singlet
'~ arrays to obtain an array of dependent variables ,

versus an array of independent variables. . . . . . . .. A-105
Obtains the absolute maximum difference between

corresponding e]ements of two arrays of equal .

Tength N, o o o0 v o v v v e e s e e A-106

A-96



ADDITION OPERATION

SUBROUT INE_NAMES :  ADDARY or ARYADD
PURPOSE : |

Subroutine ADDARY will .add the correspond1ng elements of two specified

" length arrays to form a third array. . Subroutine ARYADD will add a con-

‘stant value to every element in an array to form a new array. Their
respective operations are: o

CAi = Bi‘+Ci

wto
L]

1
10

or Ai=Bi+c , i

RESTRICTIONS:

~ A1l data values to be operated on must be floating point numbers. The ‘

array length ¥ must be an integer.

CALLING SEQUENCE: ADDARY (N, B(DV) ,C(DV), A(DV) )
| | or ARYADD(N, B(DV), €, A(DV))

The answer array nay be over]ayed 1nto one of the 1nput array areas.

SUBROUTINE NAME:  SUMARY.

; EQBEQ§§.

: To sum an array of floating point values:
s =zai , i=1a -

RESTRICTIONS

. The values to be summed must be f]oatzng p01nt numbers and the array
length v must be an 1nteger _

CALLING SEQUENCE: : ' SUMARY (N A(DV),S)

A=97



| SUBROUTINES NAMES: SUBARY or ARYSUB

~ SUBTRACTION OPERATION

 PURPOSE :

Subroutine SUBARY will subtract the corresponding elements of one array
from another to form a third array. Subroutine ARYSUB will subtract a
constant value from every element in. an array to form a new array. Their’
respective operations are: : : - ,

1,8
1.8

Bi - Ci i
Bi - ¢C y i

Ai
or Ai

RESTRICTIONS: -

A1l data values to be operated on must be floating point numbers. The

array length ¥ must be an integer.

CALLING SEQUENCE: SUBARY (7, B(DV), C(DV) , A(DV))
- or ARYSUB(#%,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas.

MULTIPLICATION OPERATION

SUBROUTINE NAMES: MPYARY or ARYMPY

PURPOSE :

Subroutine MPYARY will multiply the Corresponding'elements of two arrays
to form a third. Subroutine ARYMPY will multiply a constant value times
each element of an- array to form. a new array. Their respective operations

| are:

 RESTRICTIONS:

ai=Bi*ci , Q=10

or A1 =Bi *C s 1

1,N

"~ Al data values to be operated on must be f]oat1ng point numbers. The

array length N must-be an integer.

CALLING SEQUENCE: MPYARY (4, B(DV), C(DV), A(DV))

or  ARYMPY(w,B(DV),C,A(DV))

The answer array may be overlayed into one of the input array areas,

A-98




MULTIPLICATION OPERATION

SUBROUT INE NAMES;' ~ SCLDEP or SCLIND
PURPOQSE :

These subroutines wi]] multiply the dependent or 1ndependent varjables of

a doublet type interpolation array respectively. Their' respective
- operations are: '

A = X*4j y

2,4,6,8,...,n

or A =Xqi , i=1,3,57,...,0°

RESTRICTIONS:

' 411 values must be floating point. The arrays must be referenced with the,
integer count form. ’

CALLING SEQUENCE: - SCLDEP(A(IC),X)
' or  SCLIND(A(IC),X)

DIVISION OPERATION | |
SUBROUTINE. NAMES: DIVARY or ARYDIV

PURPOSE :

Subroutine DIVARY will divide the elements of one array into the correspond-
ing elements of another array to produce a third array.. Subroutine ARYDIV
will divide each element of an array by a constant va]ue to produce a new
array. The1r reSpect1ve operations are:

B\/C1 s 1= 1,N

"

Ai

or Ai 1,N

o0

Bi/c , i

"RESTRICTIONS

A1l data values to be operated on must be floating po1nt numbers. The
array length N must be an integer.

CALLING SEQUENCE : . DIVARY (W, B(DV), C(DV) LA(DY))

or ARYDIV(_N,B(DV),C,A(DV))

. The answer array may be overlayed into one of the input array areas.



© DIVISION OPERATION
SUBROUTINE NAMES: ARYINV or ARINDV

PURPQSE :

Subroutine ARYINV will invert each element of an array 1n its own 1ocat10n.
Subroutine ARINDV will divide each element of an array into a constant
value to form.a new array. Their respective operations are:

A1 = 1.0/47 , 1= 1,N

or. Ai = B/Ci , 1.=1,8

AN

RESTRICTIONS:

A1l data va]ues'must be fioating point numbers. The array length N must
be an 1nteger .

<LCALLING SEQUENCE ARYINV(N,A(DV))

or  ARINDV(N,C(DV),B,A(DV])

(The”ARINDV answer array may be overlayed into the input array area.)

'SUBROUTINE NAME: | ADARIN
© PURPOSE :
Subroutine ADARIN will calculate one over the sum of inverses of an

array of values. This subroutine is useful for calculating the
effective conductance of series conductors. The operations are:

v = 1.0/8(1./xi) , i=1,2,. .., N

RESTRICTIONS:_

A11 data values must be floating point numbers . The array length N
must be an 1nteger '

CALLING SEQUENCE.

ADARIN (N, X(DV), V) |

A-100



DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: . SHFTV or SHFTVR or FLIP
PURPOSE : |
Subroutine SHFTV will shift a sequence of data from one array to another.
Subroutine SHFTVR will shift a sequence of data from one array and place
it in another array in reverse order. Subroutine FLIP will reverse an-
array in its own array location. Their respective operations are:

" A(3) = B(4) , A=

or  A(N-i+1) = B(i) , i=1,n

2.n+1

or  A(i)new = A(n-i+2)old ., i

© RESTRICTIONS:

The data values to be sh1fted or reversed in order may be anything. The
¥ must be an 1nteger _

CALLING SEQUENCE: . - SHFTV(N,B(DV) ,A(DV))

_or  SHFTVR(N,B(DVJ),A(DV))
Cor  RLIP(ACIC)) |
-,‘The answer array may not be over]ayed into the input array

SUBROUTINE NAME: ' GENARY

PURPOSE :

This subroutine will generéte an array of equally incremented ascending
values. The user must supply the minimum value, maximum value, number of
values in the array to be generated and the space for the generated array.

RESTRICTIONS

A]lAnumbers must be'floéting point.

" CALLING SEQUENCE:  GENARY(B(DV),A(DV)) .

where ~  B(1) minimum value

B(2)

maximum value

B(3) lehgth of array to be-generated (f]oatihg point)

- A-101



- DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAME: o BLDARY
PURPOSE : |

‘This subroutine will build an- array from a variable number of arguments
in_the order listed. The operation performed is:

. =xi 1=1,m
RESTRICTIONS :

Data may be of any form. The subroutine obtains the 1nteger array ]ength
n by counting the arguments.

CALLING SEQUENCE: BLDARY(A(QV),XI,XZ,XS,...,Xn)
SUBROUTINE NAME: - . BRKARY or BKARAD
PURPOSE :

These subroutines will distribute values from within an array to a variable
number of arguments in the order listed. The first places the value into
the location while the second adds it to what 1s in the location.
ReSpectlve operat1ons are

Xi = 4i , 1= 1pm

RESTRICTIONS

F]oatinq p01nt numbers must be used for BKARAD. The intéger array length
n is obtained by the routines by counting the number of arguments.

CALLING SEQUENCE: BRKARY(A(DV) ,X1,X2,X3,. .., Xn)

or  BKARAD(A(DV),X1,X2,X3,...,Xn)

SUBROUTINE NAMES: STPARY or ARYSTP
'PURPOSE : | |

These ‘subroutines will place a value into or take a value out of a specific
array location respectively. Their respective operations are:

Ai=x , i=N ,N>0

N ,N>0

u
p S
porss
-

]

or X

RESTRICTIONS:

The value may be anything but ¥ must be an integer.

CALLING SEGUENCE: ST@ARY (1, %, A(DV) )

or - ARYSTR(N,X,A(DV))
' A-102 -

3



SUBRQUTINE NAMES: STFSEQ or STFSQS
PURPOSE :

Both subroutines will stuff a constant data value into a specified length

- array or group of sequential locations. STFSEQ expects the constant data

value to be in the first array location while STFSQS requires it to be .

supplied as an add1t1ona1 argument. The respective operations performed
are: . : .

Ai = 2,N

]
(S
—
-

[

or Ai 1,V

n
o]
-

n

RESTRICTIONS'

"N must be an 1nteger but the constant data value may be integer, floating
point or alpha-numeric.

CALLING SEQUENCE: STFSEQ(A(DV),N)

or STFSQS(B,N,;A(DV))

A-103



. DISTRIBUTION OF ARRAY DATA

SUBROUTINE NAMES: =~ SLDARY or SLDARD . °
——PUYRPOSE:: -

Thesé subroutines are useful for updating fixed length interpolation arrays
during a transient analysis. The array data values are moved back one or
two positions, the first one or two values discarded and the last one or
two values updated respectively. The "sliding array" thus maintained can
then be used with standard interpolation subroutines to simulate transport ,
delay phenomena. Their respective operations are:

Ai = A]+l . , i = 2,N
and  Ai = x , iEN+)
or- A = Ai¥2 = 2,N-1
and  Ai

Xand4itl =Yy, i =N
RESTRICTICNS-

" The addressed arrays must have the array 1nteger count N as the first value.
- For SLDARD, N must be even.

CALLING SEQUENCE: - SLDARY(x,4(1C))
o L SLDARD(x,7,4(IC))
SUBROUTINE NAME: - STPRMA
PURPOSE

"This subroutine is useful for constructing historical data arrays during a
transient analysis. It can take the place of several STPARY calls. The
‘operatjons are as follows:

Al(N) = X1
A2(N) = X2
A3(N) = X3

~ RESTRICTIONS:

N must be or reference an integer, the X's may be any value.

CALLING - SEQUENCE.: ' STQRMA(N,XI,A:Z (DV),X2,A2(DV) ,X3,43(DV), ... ')

A-104



SINGLET/DOUBLET ARRAY:GENERATION
SUBROUTINE NAMES: - SPLIT or JPIN

PURPOSE :

These subroutines separate a doublet array into two singlet arrays or com-
bine two singlet arrays into a doublet array respectively. Their
respective operations are:

B"=A21"1 [ i=],N
B ci = A2d s - 1=1w
-or  A2i-1 = Bi , i=1n
i = , i=14

RESTRICTIONS: | ’ o

- The arrays may conta1n any values but » must be an 1nteger ¥ is- the length
,of the B and ¢ arrays and the 4 array must be the length of 2v.

CALLING SEQUENCE: ‘ SPLIT(N,A(DV),B(DV),C(DV))

or JRIN(N,B(DV),C(DV),A(DV))

SUBROUTINE NAME: SPREAD
PURPOSE : |

~ This subroutine applies interpolation subroutine DIDIDA to singlet arrays
to obtain an array of dependent variables versus an array of independent
variables. It is extremely useful for obtaining singlet arrays of various
dependent variables with a corresponding relationship to one singlet
independent variable array. The dependent variable arrays thus con-
structed can then be operated on by array manipulation subroutines in
order to form composite or complex functions. ODoublet arrays can first
be separated with subrout1ne SPLIT and later reformed w1th subrout1ne JOIN.

RESTRICTIONS,

Al1 data values must be floating point except ¥ which must be the integer
length of the array to be constructed. The arrays fed into DIDIDA for
1nterpo]at1on must start with the integer count. X is for independent and
Y is for dependent. I is for input and @ is for output.

CALLING SEQUENCE:  SPREAD(N,X(IC),¥(IC),XI(DV),¥@(DV))

A-105



- COMPARISON OPERATION

_SUBROUTINE NAMES: MAXDAR or MXDRAL

\

T

PURPOSE: | S

These subroutines will obtain the absolute maximum diffekence between
corresponding elements of two arrays of equal length N, The array values
must be floating point numbers. The operation performed is
'D='.'|Ai-31| , i= 1,
- Imax :

Subroutine MXDRAL‘é]so locates the position P between 1 and N where the
maximum occurs. ”

RESTRICTIONS:

The N érgument must be an integer., The D and P arguments are returned as
- floating point numbers.

CALLING SEQUENCE: MAXDAR(N, A(DV),B(DV),D)

or MXDRAL (N, A(DV),B(DV) ,D,P)

A-106



