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ABSTRACT 

This report contains the development and utilization of a computer 

simulation of a planar phased array of circular waveguide elements . 

The simulation allows experimental work to be done on the computer and 

is directed toward the investigation of mutual coupling and wide angle 

impedance matching in phased arrays. Special emphasis is given to 

circular polarization. The aforementioned computer program has as 

variable inputs: frequency, polarization, grid geometry, element size , 

dielectric waveguide fill , dielectric plugs in the waveguide for 

impedance matching, and dielectric sheets covering the array surface 

for the purpose of wide angle impedance matching. Parameter combinations 

were found which produced refleetion peaks interior to grating lobes, 

while dielectric cover sheets were successfully employed to extend the 

usable scan range of a phased array . The most exciting results came 

from the application of computer-aided optimization techniques to the 

design of this type of array . 'Dif'ferent combinations of parameters 

were allowed to vary- anu- se·vera·l optimizations were found. As a conse­

quence of the many separate ,investigations made possible by this program, 

some fairly gene:ral conclusions re·garding polarization and WAIM effects 

could be made , .and _ these-. are summarized. 

Also included' i.n . this report are' a comparison of the major methods 

for wide angle ' impedance matching'; .. a discussion of multimode elements, 

and a coverage of bandwidth limits set by not having true time delay 

phase shifters ', in an array. 

i 



TABLE OF CONTENTS 

ABSTRACT . • . • 

LIST OF FIGURES 

I. INTRODUCT ION •• 

II . SUPPLEMENTARY PHASED ARRAY .DESIGN CONSIDERATIONS. 

A. Methods fo r Wide Angle Impedance Matching - A 
Comparison . . . • • . . 
1 . Magill and Wheeler • • . . . . 
2. Edelberg and Oliner Fences . 
3 . Interconnecting eircuit Method . 
4 . Mul timode .Elements 0 • • • • • 

5 . . Use of Many elosel y Spaced Elements 
6 . Electronically Tunable Networks 

B. Multimode Array Elemen ts -for Wide Angle Scans 

C. Bandwidth Considerations i n ' Phased Arrays 

III. CIRCULAR WAVEGUIDE ARRAYS 

A. 

B. 

C. 

D. 

E. 

Compute r Simulat ion of an Infinite Array of 
Circular Waveguides • . . • . 
1 . Wavegui de Interi or Fields 
2 . Exterior Fiel ds . . • . • 
3 . Coupling Coefficients • • • . . . • • 

Dielectric Cover Sheets and Matching Plugs 
1. Single Cover Layers . . 
2 . Two Cover Layers • . 

Wavegui de Vector Modes • 

Free Space Wave Functions (Block functions) 

Conclusions . . . • • • • • • • . 
1 . Array Performance Observation . .• . 
2 . Computer -Aided Optimizatimn . Results 

IV . EXPERIMENTAL RESULTS 0 

A. Waveguide Si mulator . • 

B. Di electri c .Cover Sheet .Over a Small .Array 

C. Cavity-Backed Spirals 

D. Ku-Band Spiral Arr ay . 

APPENDIX 

REFERENCES 

if 

Page 

i 

iii 

1 

8 

8 
9 
9 
9 

10 
10 
11 

11 

13 

18 

21 
24 
25 
30 

33 
37 
37 

38 

39 

41 
45 
47 

50 

50 

56 

58 

58 

59 

72 



Figure 

2-1. 

2- 2. 

3- 1. 

3-2. 

3-3 . 

3-4. 

3-5. 

4-1. 

4-2. 

4-3 . 

4-4 . 

A-1. 

A-2 . 

A-3. 

A- 4. 

A-5. 

A-6 . 

A- 7. 

A- 8. 

A-9. 

LIST OF FIGURES 

Multimode Waveguide Element s Realization . 

Array Feeds 

Circular Radiator 

Dielectric Covered Array of Circular Waveguides 

Planar Array Grid Geometry • • 0 0 • • • 

Array Covered with Two Dielectric Shee t s 

Direction Cosine Space Showing Grating Lobe Regi ons 
(60 0 grid angle) • • . . . . • 

Rectangular Guide with Componen t Waves 

Geomet ry of Simulated Phased Array • 

Waveguide Simulator Test Setup • . 

Circularly Polarized Array of Crossed Slots 
(f = 1 . 8 GHz, d = 7 cm) 

Array with Air-Filled Guides 

Circul arly Polarized Array of Circular Wavegui de 
Elements • • • • . . • • • . 0 0 0 

Array with Dielectric Filled Guides 

Array of Circular Waveguid,e s with Di ele ct ric Cover . 

E-Plane Scan for Array of Circular Waveguides with 
Dielectric Cover Sheet . . 0 • • • • 

Array of Circular Waveguides wi t h Di electric Cover Sheet 
and Dielectric Discs • . . . • . 

Op timized Array with Cover Shee t and Di el ectric Plugs 
for Matching . • • 

Reflection Coefficient -vs . Scan Angle 

Array with Dielectrie- Filled Waveguides: opt i mized 
(Rosenbreek) radius and die lect ric constant 

iii 

Page 

12 

14 

20 

22 

23 

35 

43 

51 

53 

54 

57 

60 

61 

62 

63 

64 

65 

66 

67 

68 



iv 

LIST OF FIGURES (Continued) 

Figure Page 

A-IO. Frequency Scanned Array of Air-Filled Guides 69 

A-H. Rosenbrock Selecti on -of Dielectric Plugs 70 

A- 12. 60° Sean Plane: Rosenb r'O ck Selection of Dielectric 
Plugs . ..- . 71 



I. INTRODUCTION 

As is well known, the variations of antenna element impedance 

with scan angle in electronically steered phased arrays can seriously 

affect radiati on power efficiency with the problem being especially 

troublesome for wide angle scans. If an array antenna element is 

impedance matched to its source for broadside pointing, then any 

variations in its imepdance due to ever present mutual coupling 

effects as the beam is scanned will result in available power not 

being radiated, but reflected back toward the array generators. As 

a consequence , whenever there is a premi um on power or where there 

is a need for wider efficient scan ranges, it is important that the 

array be optimally impedance matched for all scan positions. It 

was the objective of this work to investigate and expand upon methods 

for improving the efficiency of phased array antennas. Mos t of the 

compensation measures considered work by providing a type of feedback 

which continuously adjusts so as to offset element impedance and conse­

quent efficiency changes with scan angle. At the time of this study 

most of the existing work was concerned with linearly polarized sources , 

and so prime effort was given to extending the compensation procedures 

to matching of circularly polarized elements. The results of this 

endeavor are contained in three techni cal reports and this final 

report. 

1 
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Technical Report No o 1 , "Antenna Ar rays: Efficiency and Effi­

ciency Improvement Through Compensation," [1] is a presentation and 

analysis of the major compensation techni ques for wide angle impedan ce 

matching (WArM) o The procedures des cribed are generally separated into 

one o f two categories o The first considers meth ds which rely on 

struc tures which modify the array surfac.e environUlent . Examples of 

such are baff l es and dielectric cover sheets [2 ] . The other category 

contains t hose me t hods which utilize matching schemes located behi nd 

the arr ay s ur f ace, examples of which a r e Hannan's interconnecting 

cir uit method [3 ] and the multimode element approa h [4] . The multi­

mode element procedur e uses i nternal irises and discontinuities to 

generate higher order elemen t modes which can hopeful ly be adjusted t o 

offset mutua l coupl i ng s can variations . Since this method was omitted 

f r om Technical Repor t No o I , it is included in Chapter II of this 

report o Also i n Technical Report No o I is a good s rvey of design 

results f or linear and planar phased arr ays which should be useful t o 

anyone needing a single- source comp i lation of phas i ng , grating l obe, 

and grid geome t ry considerations i n phased arrays . A thorough coverage 

of array efficiency is given with two levels of approach o One treats 

all elements as ideal and determines maximum possible array efficiency 

as a function of grid geometry and spacing, and the other considers 

mutual coupling effects and illustrates the steps involved and the 

problems as sociated with the analys is of arrays of physical elements . 

Technical Report No . 2~ "Mi crostri p Technology and its Application 

to Phased Array Compensation," [5] started out as a specific investi­

gat ion of the practi cality of Hannan's i n terconnecting c ircui t method 
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fo r wi de angle i mpedan ce match i ng and led to t he need or a f airly 

thorough r eview of mi cr os t r ip fab rication and desi gn ~echnol gy . A 

summary of t hes e find i ngs oc upies the firs t portion of that report . 

Mate r ials, e l ement realizations using " l umped" versus "distributed" 

methods, proces s i ng . expected freq uency and cost limits, los s es, and a 

determination of mi cr os t rip character isti c impedance which bet t e r 

matches exper imental measur emen t s fo r l i nes wi th sma l l wI d r atios are 

all i n c l uded i n ear l y s e c t ons • . Wi th the preceeding as a basis , cal-

cula t i ons a r e made f or wi de angle i mpedance matching an a r ray of 

S-band . half- Wave dipoles using Hannan's method . The des i gn is carried 

all the way t o the point of s pecifying s i ze and component construction 

f or t he inte r-c nnec t ing networks using MIe techniques . It was found 

that the r equired cmpens a:t i ng networks were reali zable for the 

S-band case using lumped MIC deposited elemen~s ~ In order to obtain 

some of t he relati vely sma 1 eff~e tive indu tances and capacitances 

required for matchi ng . ff- r esonance, paral lel .LC tank c i rcui ts were 

used s o t ha t larger . value ~ .better . quali t y inductors and capacitors 

could be cons t r ucted . 

Based on our .. study the . following observations a r e made rela tive 

to the usefulness of t he inte rconnecting circuit method of compen-

sation . 

Disadvantages: 

1. This method requires . ".a _priori" knowledge .o f array impedance 

variations with s can angle usually necessitating array simulation 

or experimental measurements . The 1a er can be rather expensive 

if an array is bui l t and then .it is found that it cannot be 

matched . sat isfac tori ly o 
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2 . Presen ly this t echnique is not cost competitive with s me of 

the o ther match i ng methods .. especially . in terms of the cost of 

design time . 0 ten a f ew crude cal ulations and some simple 

measur~ments can a hieve a reasonable wide angle scan improvement 

using the dielectric c veT sheet method .. . whereas great care and 

much time must be devoted t o obtain a possibly temperamental 

micros trip . realization . The real hope for application of Hannan's 

pro edure would be i n the . future for phased a rrays of the modul ar 

type which have. a-tive sources beh ind .e.ach antenna element . If 

sub arrays of many s uch elements could be batch processed, then 

the pr ducti n cos t with . i nterconne Ling _circuits would be 

essentially the same as with ut them . It would stJll be necessary 

t o know m t a1 coup i ng and i mpedan ce effects prior to t he sub arr ay 

synthesis so that c rrect compensating circuitry could be specified . 

Although i is possible t individually trim values of Land C 

a fter the elements are fabricated ~ i t wou d be fo lish t o rely on 

such adj us tments for arrays with hundr eds of elements Ins tead 

it is des~rable to take adequate steps to make a ccurate predictions 

of needs & Note t he . advantage of having computer- aided simulations 

descr i b i ng array performance . 

3 . Matching networks might limit the frequency r esponse of arrays 

intended for .wideband operation . Five percen t bandwi dths , however, 

should not ·show significant degradation . 

Advantages : 

I . Extremely good matches ar e theoretically poss i ble [6] , in fact 

much .better .matches could probab ly be obtained than with any of 

the other WAIM schemes . 
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2 . With .i ndividually _adj us t ab le . ompensating eirc i ts, it woul d be 

pos sib l e to make pos t - fab ric,ation system alterations . A so t he 

c apabili t y o f changi ng ne twork va lues in the neighb r hood of t he 

arr ay e dge mi ght a levi ate some poten tial edge- effect prob l ems . 

Final l y, Technical Report No . 2 contains man of t he f abrication 

r elat ed problems and experiences r elating t o o t her facets o f t he 

contr act pr ogr am. F r instance, a ircularly polari zed , Ku-band 

array o f planar spir a s was photolithographica l l y p roduced wi t h 5 mi l 

wi de gold condu t r e on an a umina s ub s t rate o Broadband b a uns f or 

feedi ng wi deb and elements wer e inves tiga t ed, b ui 1 ' , and tes t ed o In 

addition ~ power limits set by us ing mi cr os tri p technique s and mat erials 

to r eali ze physical l y small ~ Ku-band sp r al an t enn as were e s tima t ed o 

The spira l ant enna elemen t is ana l zed in Technical Report No . 3, 

"S imulation of Pl anar Spira l Antenna El ement s f or Phas ed Arrays o" With 

r e l i ab l e compute r - aided s i mula ions and des i gns valid for lar ge ar rays 

of spiral ' antenna e erne ts, f uture ar r ay systems using spiral elements 

could be made mor e e nomic a.l and r ea lizab le . The i mportance of thi s 

will be especiall y gr ea t fo r operation at X-band and ab ove wher e elements 

a r e physically very s ma ll (for hal f - wave lengt h s pac i ngs between elements 

at 15 GH z t he spiral di ame ter has t o be less t h an 1 . 0 cm), and as a 

consequence ~. exacting ~ tolerances a r e required in cons t r uc tion o To 

meet t hese standar ds al l t he e lements i n a h i gh f r equency arr ay could 

be f ormed in one operat i on us i n g solid-state and mi cros t r ip deposition 

te chni ques 0 It s eems reasonable t o think t hat an enti re " integrated" 

system i nc l udl ng RF elec r onics , antenna e l emen ts , i n t e r e nnecting 

circuits f o wide angl e compensation . phase shifter s, and c ntrol cir­

cuitr y could be buil t as a s i ngle uni usi ng th i s t echno l ogy o In any 
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event, systems re ulTing the above processes to produce t he antenna 

elements ' are n t r e e mmended for experi men t a optimiza tion s i nce the 

resultan ' ar rays are haphazard , expensive, and inflexible o Thus, i f 

a sufficient ly genera . omputer program f r s imulating ar ays of spiral 

ant ennas was part f the p bIle domain , all .ne essary experimentat on 

and optimizBti n - u d be c mputerized and he aval ability of active 

arrays fo r X-band and Ku-band mi gh t be considerab y advanced 0 

In Technical Report No o 3 ~ a computer-aided solut on for mutual 

coupling and impedanc e effects i n a s piral antenna i s ob tained, and 

groundwork is la d f or an anal tic solution f or arr ays of Archimedian 

spiral radi a t r s o Solu ions .use .Harrington ' s .method of moments [7 J 

and a omp uter .ma ·rix i nversion o I t ~as und that e nduc~o dimensions 

in the spirals are m r e . crit cal: in . determining impedan ce than 

or i ginally anticipated o Further, it ~as noted t ha t the reac~ive portion 

is no~ always negligib e even when .dimensi ns are nearly t h se to give 

complementary . symmetry o· Some reasonably .g d designs are obtai ned o 

Topics no t covered .in other r eports are o,rered in this fina l 

report 0 In Chapter I I a re . two important . phased .array design consid­

erations which - relate t o . t he .prob lems .of wide angle impedance matching. 

One i s the use of multi mode elemen ts t o achieve wide angle scan compen­

sation o . The other deals with bandwidth limits posed by not having 

true time delay phase shifters i n a phased a r ray o It is found for 

scans out to + '_60° -on allowing . a 0 01 db gain loss that the array beam­

wid th in degrees is appr oximately equal t t h e array bandwi dth (%) for 

cw operation o 
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Chapter _. IIL con tains .t he development and udliz;ation of a 

computer s imula ion_ of . a .. planar. phas d -array of · ircuiar waveguide 

element s 0 The simuia ion all ws experimen~al work t be d ne on 

the c mputer and i s directed t oward the _ nves ga ion of mutual 

coupling _-and _w:idILaagle . impedance match i ng .. in -phased .arrays . Special 

emphasis is given to ircular .polar-lzation <>_ The _aforementioned com­

puter program has as variable .i nputs : _ frequency, p arization, grid 

geometry, element .size. di electri waveguide fil , di e l ectric plugs 

in the wa~egu1de £ur i mpedance _match i ng, and di electric sheets covering 

the .array .surfaee _f r the pur pos e of wi de angle i mpedance match i ng . 

Parameter e mbinations were found .which _produced reflection peaks 

interior t grat-lng lobes ~ while diele tric over sheets were sue ess­

fully employed to extend the usab l e scan range of a phased arr ay . 

The mos t ex i i ng resul ts ame from the application of computer-ai ded 

op ' i mi zation techniques t o the design - f t h is . ype f array . Different 

combinations of parameters we e allowed to vary and several opti mi-

zations were f und o As a conseq enee t he .many separate investigations 

made possible by this program. some fair ly .general conclusions regarding 

polarization and WAIM effects could be made , and these are summarized 

in Chapter III . 

The last chapter .gives -a brief description of some of the experi­

mental work done during t he course of this study . Of i mp ortance tG 

the above was the .design and construction of a waveguide simulator [8J 

which was used to . test the accur a cy of the computer simulation for 

the array of .circular waveguides . 



CHAPTER II 

SUPPLEMENTARY PHASED" ARRAY DESIGN- CONSIDERATIONS 

In this chapter some topics ar e covered which are not included in 

other repo-rts, ye t are pertinent to wide angle impedan ce matching (WAIM) 

cons iderations in phased arrays. A brief survey and comparison of some 

of the majorWAIM methods is presented below and later sections in 

this chapter are devo!:ed to discussion-s of multimode e l ements for 

scan matching and bandwidth limitations in phased arrays. 

A. Methods for Wide" Angle Impedance Matching - Comparison 

Two of the main objectives of this project were to determine design 

procedures- for the various WAIM metho-dsand to extend WAIM techniques to 

the matching- problems - assDci-at-ed with circu"larly- polarized an t enna elements. 

A thorough- coverage- oT the theory aml-design- -PT'actices for most of the 

WAIM methods is found" in- Technical Report No. l [ 1 ] while Chapter III of 

this report contains an exhaustive study of wide angle scan improvement methods 

with circularlTPolaTized elements , The analysis i n Chapter III is for 

array elements described by circular apertures, cylindrical cavities, 

or circular waveguides . A treatment of the simpler analytic case of 

rectangular waveguides used for circular polarization is given in a 

recent article by Lee [9]. Technical Report No.3 contains an investi-

gation of Archimedian spirals. Th e above three works well represent the 

t ypes of flush mounted elements commonly used for circularly polarized 

array elements . 

8 
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Briefly the principal methods for wide angle impedance matching 

are: 

1 . Magill and Wheele r dielectric cover sheet [2]: Here a 

dielectric slab with a high permittivity is placed over an array surface, 

and a height, thickness, and dielectric constant combination is sought 

which will provide WAIM. This method is inexpensive, lends itself 

nicely to all forms of i nvestigation (waveguide simulators, computer 

simulation, and experimental coupling or impedance measurements), and as 

is shown in Chapter III is useful for matching arrays wi th either linearly 

or circularly polarized elements. Its only drawbacks are that matches 

usual ly are no t ideal and bad parameter choices can worsen match rather 

than improve it. 

2. Edelberg and Oliner fences and baffles [11]: 

Metal fences or baffles or posts are placed on an array surface 

in order to reduce deleterious mutual coupling effects. In practice 

metal fences were used to reduce E plane scan variations in an array 

of A/2 dipoles . An array wi th a VSWR of < 2 .9 out to a 60° scan 

angle had, after addi ng such fences, a VSWR < 1.6 [10]. In general 

this method relies on experimental trial and error. Also the surface 

modifications are not flush mounted and can contribute to shadowing 

which limits the potential scan range for the a rray. 

3 . I nterconnecting circuit method of Hannan, Lerner, and Knittel 

[3 ]: 

This method places reactive networks between adj acent eleme~t feed 

lines in an array. The interconnecting reactances produce an equivalent 
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reactance to ground which varies with scan angle and can be used to 

counteract variations in element impedance with scan caused by mutual 

coupling. Technical Report No . 2 [5] contains an extensive discussion 

of this method . Its main problem is t hat it i s very difficult to 

implement . 

4 . Mult imode elements: 

These are discussed later in this chapter . If the weight of 

waveguide elements can be tolerated, this type of element is a 

good approach for scans out- to 60°. They can be adjusted to impedance 

match the- fee d lines, are fairly broadband, -and incorporate the means 

for WArM i n to the element itself . They operate by generating higher 

order propagation' w-aveguide modes which- can be- adj usted to cancel out 

reflections - from -the -aperture-. The- mut:1ral- 'coupling- between elements 

for the' various' hi-gher order mo-des'- ·tenus to avera-ge out to give a 

wide matcheu scan.- The- -concept might be useful-ly applied to other 

element types . 

5 . Us-e- 'O'f manY' cl'osely spaced elements: 

This - type o-f 'system ·can result- in wi-d-e- an-gle- impedance match, 

however, i't suffers- from two' disadvantages-. - - First' the additional 

number of elements- needed to fill the array add unnecessary cost 

compared ,to other matching schemes that can achieve the same match 

using the minimal number -of elements . Fina-lly very small cavi ty or 

waveguide-like elements a re difficult to match to free space. 
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6 . Electronically tunable matching networks: This is a futuristic 

approach which is presently expensive and subject to failure when components 

fail. 

B. Multimode Array Elements for Wide Angle Scans 

Wong et al. [4 ] have by generating higher order modes in elements 

for phased arrays achieved a novel method for controlling mutual 

coupling so as to maintain a nearly uniform driving point impedance 

over a specified scan range. Using rectangular waveguide elements 

enough propagating modes are generated (usually TE lO ' TELO ' and TE30 ) 

and then adjusted to produce a cancellation in the net reflected 

field from the radiating aperture. The higher order moses are 

generated in wa~eguide inserts using discontinuities. These higher 

order modes accomplish twa purposes. First the inserts can be adjusted 

to match the waveguide to the aperture radiating into free space (a 

broadside match is normally sought). The second is a consequent 

side-effect which often improves wide angle scan performance. 

Qualitatively this results from the fact that the net mutual coupling 

impedance between a reference element and all the other elements in 
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the array now depends on several different modes whose changes wi t h scan 

angle tend to offset one another, thereby maintaining a constant Z. 
In 

over wider scans. 

Several methods for generating the higher order waveguide mode s 

are illustrated in Fig. 2-1. The two principal generating schemes 

suggested are discussed below. 

1. Guides are filled with a dielectric slab and a discontinuity 

is positioned to produce TE20 and TE30 modes in addition to the TE10 

mode already present . A cylindrical hole is useful for such mode 

excitation. The length of the slab and the location of the hole s ar e 

varied to obtain the relative magnitudes and phases of e ach mode 

necessar y for matching. Waveguide simulatiors and computer simulations 

were used for initial designs, and at Hughes Aircraft [ 4] a 256 element, 

linearly polarized array of rectangular waveguide elements was buil t. 

The Hughes array had an input VSWR 2.. 1. 5 for scan out to ±47° in E, 

H, and D planes ~ The VSWR was less than 2.5 for 60° scans. The 

A-: e rture 

Hole in oie _ect r ic excites TE 20 
and :d ghe r cr' c :- r.lOdes 

Ir.is 

g rttj-t..at i n g Aperture 

Fig. 2-1 . Multimode Waveguide Elements Realization . 
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major problem with the hole-in-dielectric type of element i s . one of 

.'lndwidth. Since the relative hole position changes with frequency, 

the mode balance is upset and the element is frequency sensitive. 

Inductive rises at the interface between waveguides and free 

space are capable of producing a wideband, multimode element. The size 

of an iris is found to be fairly effective in controlling the relative 

proportions of the higher order modes for match . In addition, no 

critical distances are invloved and thus the element has good frequency 

response characteristics . Arrays of such elements with a 20% bandwidth 

out to ±53° with a VSWR < 1. 7 have been built and tested [4]' 

C. Bandwidth Considerations in Phased Arrays 

Whether or not bandwidth is part of the design problem in'lphased 

arrays depends on the system objectives and on the frequency ranges 

used. For instance a 1% bandwidth about a 18 GHz carrier gives a 

180 MHz channel while at 3 GHz the cahnnel would be limited to 30 MHz 

(which is still adequate for many applications). The fac tors in­

fluencing bandwidth are array aperture effects , the array feed system, 

the type of phase shifters, and component or receiver bandwidths. 

From a noise point of view it is often advantageous to let the 

antenna do the prefiltering for a receiver iw which case narrow 

array bandwidths could be a desired asset. Emphasis in th i s section 

is on bandwidth limitations related to array apertures and feeds for arrays 

which are characterized by equal feed line lengths and fixed phase 

shifters. As a consequence of the fixed phase shifters, the array 

beam scans with frequency causing a loss in gain relative to the gain 
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expected for a -given scan direction. Note that an array using true 

time delay phase shifters would not Bcan with frequency and would have 

an infinite array bandwidth . The bandwidth of true time delay system 

would be set by the receiver or individual components. 

For the fixed phase shifter array Frank and Cheston [29 ] arrive 

at the following easily remembered ?pproximation for array bandwidth: 

1. For CH operation, a 60° maximum scan, and a O. 7 db allowed gain 

degradation 

'V 
Bandwjdth (%) Broadside beamwidth (degrees) 

2. For pulse applications 

Bandwidth 
'V 

(%) 2x Broadside beamwidth (degrees) 

Two examples of this type of feed and phase shifter arrangement, the 

parallel feed and a modified corporate feed are i llustrated in Fig. 2~ 2. 

The phase shifter in the corporate feed have been placed so that 0-360° 

phase shifters can be used without needing to drop multiples of 360° bv// 
, 

from element phasing . 

~Phase shifters 

(parallel f eed) 

(corpora,te 

Fig. 2-2. Array Feeds 
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For linear arrays such as shown in Fig. 2-2 the incremental phas e 

shift between adj a cent elements needed to steer the beam in the 80 directiou is 

kd sin8
0 (2 - 1) 

where 

w = kd sin8 - 0 and f1 is the center frequency . 

Providing the phase shi fter settings remain constant, then at a new frequency 

f2 the beam is steered to the direction 80 + ~8 giving 

2'Tff I d 

c 
sin( 8

0 
+ 68 ) (2-2) 

For ~e small, s in ( ee + ~e ) 'V sineO + ~8 cos 80 . Substituting in the above 

c 

and solv ing f or ~8 yields 

2ndf 2 (sin8
0 

+ ~8 cos 8
0

) 
c 

(2-3) 

(2 -4) 

From the above i t is seen that for f2 greater than fl the beam is scanned 

toward broadside, while f or f 2 less than f1 the beam swings away from 

broadside. Further, when the beam is pointed toward broadside t an e
O 

= 0, 

and hence the beam does not scan with frequency (bandwidth infinite). 

Additional simplifications result by assuming .a small percentage 

bandwidth. Writing 

(2-5) 

-- -----------



it follows t hat 

or 

where 

+ M 
f l-( f l+ M ) 

fl + M 

M (radians) '" BW(%) 
200 

BW = 2~f = bandwidth 

+ 
!!.f tan8 

o 
---~ 

~e = scan deviation from band center. 

In degrees Eq . 2-7 becomes 

!!.8(degrees) = . 287 BW(%) tan 8
0 

Frank and Cheston define a bandwidth factor 

bandwidth (%) 
K = bandwidth factor 

broadside beamwidth (degrees) 

and normalize ( 2-8) to 

M 'V 
-::--~=...:.----::-=- - ·0 . 2~ 7 K sin8

0 8
B 

(scanned) 

by introducing the large array approximat i on 

0B(scanned) = beamwidth at eO 
6'J3(broadside) 

cos 80 
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(2-6) 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

(2-11) 

For a maximum gain loss of 0.7 db the bandwidth must be such that the 

beam never scans more then + 1/4 the local beamwidth and hence 

I M I < 1/4 0"8 (scanned) -
(2-12) 

---~--



Applying this conditi on to Eq. 2-10 gives 

K 
max 

0 . 87 
sin8

0 

For an array designed of a maximum scan of 60° 

K max 
_._8_7---:-._~-=-0 'V 1 
sin 60 

Thus the worst case for a 60° from broadside scan is 

BW(%) = 8
E

(broadside) b~oadside beamwidth (degrees) 

17 

(2-13) 

, 

(2-14) 

A similar procedure working in terms of I'EIquiva1ent pulse lengtH" 

results in 

~ pulse length 7 2x aperture size 

and 

bandwidth (%) 
'V 

2x broadside beamwidth (degrees) 



CHAPTER III 

CIRCULAR WAVEGUIDE ARRAYS 

The main concern of this reporc is wlth ancenna elements capable of 

producing circular polarizat ion in a phased array environmene and 

specifically wi h che mucua! coupling and driving point impedance varia-

tl0ns with scan angle WhlCh can lead to severe power and array efficiency 

losses as Lhe a r ray is scanned away from broadside . Methods exist for 

wide angle impedance macc.hing, bur. most of them r equire quantitacive 

knowledge of the behav~or of array coupling wlch scan in order to be 

app led . In r.his chapLer analyeical results and an ef f ective digital 

comput:e-r s -lmular.ion are developed which are va l..d for an infinite planar 

array of clrcular waveguide ancennas, an i mp ortanc class of r ad i ating 

elemencs useful for c.ircular polarizacion . Using this simulacion WAI M 

(wide angle impedance maCChl..ng) meehods a r e employed and compucer-aided 

opt imum array designs a e determined using Ros enbrock's pattern search 

method [17J . In addition, chese compucer phased-arr ay simulacions will 

be used to hopefully r esolve the ontrove rsy over two seemingly contra-

dcitory ways co bese achieve WAIM, namely, by using closely spaced large 

elements with a high degree of mucual coupling or by using small loos e ly 

coupled elements . 

The following antenna realizacions are fairly representative of thos e 

used to ob tain circular polarization in arrays: 

1. Circular waveguides or cavities wit:h or without dielectric 
covers . 

2. Square guides o 

18 
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3 . Crossed dipoles 'wire , ~hick, oided , ben~ • 

4. Crossed sloes backed wlth rectangular or circular cavities. 

5 . Spirals . 

6. Wheeler elements [18] each cDns~sting 0 a circular cavity below 
cutofr, fed with an internal ~rossed thick dipole, and having 
dielectric layers for transmission matching . 

Much theoret~cal and exper~mental work has a , eady been done on rectangu-

l ar guide and cavity elements l36- oj and on external dIpole arrays [11-16] . 

However, square and rectangular elements do not pack well i n 60 " 'tri-

angular grid arrays whi ch are ~n stan ard use because :)f the savings i n 

number of elemen s [21], and furt:her the element shapes are such that 

mutual oupl1ng 1s apt ~o be greater ~n cercain regions of an array cell 

than tha t found for circular e lements. Volumes of data on di po l es are 

availab e, yet because di poles are subject t shadowing with s can and 

because t hey r equire support structur es which can interact with the dipole 

fields, dipDle arrays ~an be more dif icul~ ~c analy ically pred~c t and to 

achieve wide angle scans , On the other hand , flush mounted c1rcular ele-

ments have the foI l wing advan tages for use i n ph ased a rrays [18] : 

1. Circular apercures fit into equilate ral ~riangular grids thus 
requiring the fewest number of elements for wide-angle s cans 
free of grating lobes. 

2. Circ ar apertures a r e sui ted for resonan~ wi ndows having 
maximum bandw1dt h fo r radiat ion loading . 

3 . A circular aperture i s resonant in the TEll mode . 

4. Circular symmetry is suited f r i near , crossed-linear , 
or ircular polarizations. 

5 . Circular symmetry i s amenable to realization with waveguide 
s imulato s for infinit e planar arrays. 

6 . Circular apertures cend to reduce coupli ng wave effects . 

7. Mechanical strength and s implici~y are characte ris tic. 

8. Many circular element s lend themselves co analysis. 
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9 . Flush elements are aerodynamically smooth. 

In view of the above, it was decided that practical mutual coupling and 

efficiency effects in scanned arrays could be studied fruitfully by i n­

vestigating infinite pl-anar arr ays of circular waveguide elements an d 

infinite arrays· of planar spirals. Arrays of circular waveguides a r e 

treated i n this report, whi le arrays of spirals are examined in Tech­

ni cal Report No o 3 [ 19] . A diagram of a possible realization f or a 

typical radiator with circular geomet ry is shown in Fig . 3-1 . 

Dielectric cover sheet for WArM 

r----- - ---- .. - Ground plane 
conduc t or 

Aperture res onator 

g2:::2~~2~t-t-- Secon d re sonator 
(impedance mat ch i ng) 

~~~~~~~~t-r- Polarizers 

~~~--Phase shifte r 

-t-t---- Fee d 

Fig . 3-1 Circular Radiato r 
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As can be seen , the element in Fi g.3-l consists 0 a circular waveguide 

with provisions for a feed and dielectric di s s (some non ircular) for 

mode generation and impedance control . The noncircular discs can be used 

to generate and phase the modes needed to prod e an arbitrary polarization, 

and the circular dielectric discs or "plugs" can be used as resonators t o 

obtain a wideband element or as quarter-wave plates f or impedance matching. 

In any event, circular waveguide systems can be used to investigate a wi de 

class of flush-mounted, circular aperture type sources (the circul ar cavity 

and the Wheeler element bo t h easily fit this category). The s piral i s a 

class by itself, and the analysis of both types should further the state 

of the art and give i ns ight into the op timum design of phased arrays . 

A. Computer Simulat ion of an Infinite Array of Circular Waveg uides 

An infinite p lanar array of circular waveguides such as shown i n 

Fig.3-2 h as been analy zed and simulated on a digital computer with the 

following design flexibility : 

1. Arbitrary parellelogram g i ds (a,b,d). 

2. Arbitrary dielectric constant in ~he waveguides (EPS). 

3 . Dielect ric plugs or discs (EPS2, T2 in the waveguides for 
impedan ce mat ching. 

4 . A dielectric cover sheet (EPS3, T3) ove r the array face f or 
wide angle impedance matching (WAIM) . 

5. Scan in any direction(THETA, PHI) or across any scan plane . 

6. Arbitrary po larization us i ng crossed TEil waveguide modes . 
To s olve this comp l ex problem, Harrington's method of momen t s [7] 

or, specifically, the Ritz-Galerkin method is applied to a boundar y value 

f ormulation of the fields at the interface between the waveguides and free 

space, and this yields an integral equation that has a well- behaved matrix 

solution. A time variati on of e i wt i s assumed, and all field quanti t ies 

are in phasor form. The element locations fo r an x- y plane grid are 



T3 DIELECTRIC COVER SHEET 

Fig . 3-2 Dielectri c Covered Array of Circular Waveguides 

MATCH ING 
PLUGS 

y 

N 
N 



Element Location: 
-+ -+ --t-

Pmn = mba, + n d a2 
a = grid angle(ANGLE ) 
(9 9 ~ ) = beam scan an gl e 
(THETA,PHI ) i n degress 
a= gui de radi us (AX) 

z 

00 
0 ' 

o 

Fi 9< 3-3 Pl anar Arr ay Gri d Geometry 

~~~-<C~~~-

y 

"_.-

N 
W 



24 

given by 

Pmn (3- 1) 

as shown in Fig. 3- 3 where 

b interelement spacing along the x-direction (BX) 

d = element spacing along a
2 

CD) 

a = angle between a
l 

and a
2 

= grid angle (ANGLE) 

Initially an infinite array of dielectric filled circular wave-

guide interfaced directly with free space will be analyzed. Once these 

results are obtained the extensions to allow for dielectric discs i n 

the guides and dielectri c cover sheets are straight forward. 

I. Waveguide fields (interior region z ~ 0) 

In this region the solutions can be expressed as the sum of a 
+y .z 

complete orthonor mal sequence of vector modes {l. e- J } . Only the 
J 

transverse field components are considered since when boundary conditions 

are later applied only the tangential fields are retained. Within the 

guide the transverse electric field can be expanded 

J 

j=l 

over the aperture 

- t . z 
(I.e J 

J 

+ r. z 
+ R. e J ) -;. + 

J J 

o over the rest of the cell 

00 

L 
J+l 

y. z 
J -+ 

R. e CPo r (3-2) 
J J 

-+ 
where {~. } account fo r all TE and TM modes (vertical and horizontal) . 

J mn mn 

If the propagation const ant of the jth mode, y . = a . + is . , is purely 
J J J 
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imaginary (y is. ), the mode propagates and the guide admittances are 
J 

given by 

S , 
Y

TE 
= ~ Y 

kd 0 
Y 

o 

k 2 
c - (-) 

kd 

Y 
o iw£ 

y 

The transverse H-field can be shown to be [20] 

- ik z 
~ x ~ (Y I e m 

z L mm 

+ik z 
YRe m) ""t 

m m m 
m 

2. Exterior Fields (z ~ 0) 

(3-3) 

(3-4) 

(3-5) 

For the region above the waveguides Floquet type modes [20,28] can 

be used to des cribe the fields , and for a doubly periodic planar grid 

the resultant sequence of expansion vectors are called Block functions 

-+ 
+iB z 

{'I' e 
mnp 

mn}. Expanding the electric field over a grid cell in terms 

of these vectors yields 

2 
-+ L L L 

-+ 
E(ext. ) D 'I' (3-6) mnp mnp 

p=l m n 

where p 1 denotes the TE modes 

p 2 denotes the TM modes. 
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The H-field is accordingly 

2 

H(ext.) 
-r 

[ L L y' a x D '1' (377) z rnnp mnp mnp 

p=l m n 

For the above expansion vectors the mode admittances are given by 

B B Y 
y ' y' (TE) mn rnn Gl 

(3':'8,) mnl rnn Wl1 kd 

y' y (TM) WE kd 
(3-9/) --= --y 

rnn2 rnn B B 0 
rnn rnn 

where 

and 

More details on the waveguide and free space expansion functions are 

contained in subsequent sections of this chapter. 

At the aperture interface between the guide region and free space 

- -
(z = 0), boundary conditions require that tangential E and H be con-

tinuous across the boundary. Hence 

-
E . 1 tangentla 

\ H 
tangential 

ET(ext.) over the grid cell 

HT(ext . ) over the aperture only 

-

(3-10) 

(3-11) 

The coefficients in the series expansion for ET can be obtained 

using the orthogonal properties of the mode functions 
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-+ ~ ... 
I , + R

j 
<E(int.), 4» = Jf ET < 

<l>j dA 
J J 

3-12 

ape:tture 

-+ -+ 
= jf ET 

... 
D <E(ext .) , 'l'* > 0 '1'* dA 

mnp mnp mnp 
3-13) 

ce 1 

where * denotes complex on j uga e. The b oundar condi t ion e uat~on 

for tangential H is then manipulated to get an ~i~n~~~~~~~~~o~r 

tangential E fie d . From Eqs o (3-5) and (J- 7) 

From (3-15) 

-+ 
a x 

z 

-+ = a x 
z 

-+ 
a x 

z 

\" (1 . - R , )Y , <P . L J J J J 
j 

L 
j 

(I , 
J 

p m n 

p m n 

LL~ 
p m n 

I -+ "' - T -* Adding <l> j y . J J E ¢j da . 
J 

j A 
v 

I . + R
j J 

D Y 
mnp mnp 

y' 
mnp 

mn p 

da 

y ' r If E • ~* 
mnp mnp T mnp 

da 

L O b o~h sides of (3-16) 

(3- 4) 

( -15) 

(3-16) 

ields 



I 

2 [ 
j 

+ I ,Y. 4>, 
J J J 

co 

L 
j=l 

+ ILL 
p m n 

+ 
Y . 4>. 

J J 
fJET . 

+ 
4>. da 

J 

y' ~ jn..~ * da mnp mnp J~T mn 

28 

(3- 17) 

where Eq. (3-17) is an integral equation whose solution or unknowrt is nhe 

+ 
tangential E-field, ET~ 

Substituting (3-1) for ET in (3-17) gives 

co 

2 
+ 

(I . + R. )Y . 4>j 
J J J 

j j=l 

+ 
Taking moments with respect to the set {~ . } [19] 

J 

2 Y. I. 
J J 

Y. (I . + R. ) 
J J J 

+ ') ') '\ y' f f ~ .l. da J J L (Ik+R) t . ~ * da L L L mnp mnp J k -1< k mnp 

p m n Ap. (3-19) 

The above expressed in matrix f orm is 

2 Y. I . = A I
J R

J 
(3-20) 

J J + 
0 RJ + 1 

0 ~ 
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A = (a " ) matrix with elements a . . 
]J.. ]J.. 

a . . Y . 8 . . + L L L y' C C * ]J.. ] ] J.. 
P m n 

mnp mnpj mnpi 

c . 
mnpJ 

f f -; .. q; da 
J mnp 

Ap . 

mode coupling coefficient 

(interior to exterior) (3~'22) 

-+ 
I. input = complex component of ~ . guide mode 

] ] 

incident at the aperture 

-+ 
R. ref lected component of ~ . mode 

J J 

y . characteristic admittance of jth waveguide mode 
J 

Y characteristic admittance of radiation modes . 
mnp 

Inverting the above mat r ix equation gives 

where 

I . + R . 
J J 

-1 
A 

2y . I . 
J J 

o 

-1 
A inverse of A 

a mn 
I 

element of the inverted A matrix. 

( 3-23) 

The inverse can be determined on a digital computer provided the elements, 

a ,of the A matrix can be found and the matrix is nonsingular. A 
mn 

discussion of convergence and truncation effects in mode coupling solutions 
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of this nature can be found in Lee et ale [24] and Mittra [25J. In this 

solution K and L which determine the number of free space modes 
max max 

were allowed to vary together and independently from 7 to 29. No solution 

oscillation or divergence problems were observed, and since the numerical 

results also agreed with the waveguide simulator measurements of Amitay 

and Galindo [22], accuracy was judged to be good. For many problems 

K 
max 

L = 13 was used. 
max 

3. Coupling Coefficients 

The key to practical realizations of this problem on a computer is 

that the coupling coefficients, C . , can be evaluated analytically. 
mnpJ 

As a consequence, it is unnecessary to rely on time consuming (integration 

time even on a high speed machine such as a Univac 1108 would have been 

considerable), expensive, and accuracy limiting numerical integration 

techniques. In addition, having analytic formulations of these waveguide 

to free space mode coupling coefficients, it is possible to better consider 

the number of free space modes needed to achieve reasonable convergence of 

the series for each of the A mat rix elements. 

where 

For circular waveguide apertures 

c . rSPJ J J -+ 
cp . 

J 
aperture 

-+ 
IjI da 
rsp 

p 1 denotes TE waves 

p 2 denotes TM waves . 

a 2n 
f J~ .. ~ rd¢dr 
o 0 J rsp 

(3-24) 

-+ 
The waveguide modes {cp . }are actually more complex in that (j) depends on 

J 

the mode being TM or TE, vertical or horizontal, and marked by a two-

dimensional wavenumber. Hence, in evaluating the coupling coefficients, 
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it i s helpful to utilize a subscrip t and superscript notation 

cP 
0 rs ,J 

cP q 
rS,mn 
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-+ -+ 
Substituting f or ~. and ~ 

J rsp 
in (3 - 24) and performing the weighty task 

of integration, it can be shown 

v m-l cos 

/ ¢ (TE) , ~ (TE0 
~ mn rs '/ 
H 

2nA i 
mn 

2 k (r,s) A 2 a J (A a)J '(k a)~ m mn m r 

v 

~ (TM)" rs 1/ 

~ (T~ 
rs 0/ 

r 

2n A 

k 2 
r 

2nm 
k 

mn sin 

m-l sin 
i , 

( mn (-k )J ( A a)J (k a) 
- A 

2 r m mn m r 
mn cos 

sin m lJi 
I 

( i mTl J ( A a)J (k a) m mn m r < ¢mn (TE) , 

H 
r -cos m lJi 

v 

( "4> (TM) , 
mn 

H 

where 

I¥ (TE» rs o 

-1 k 
~ = PSI = tan -Y 

k 
x 

V denotes vertical 

H denotes horizontal. 

Converting the above to \ the subscript and superscript notat i on 

cl 2 o rS,mn 

cl 1 
rs ,mn 

2'TT A 2 .m-l 
1 

mn a 
= 

2 2 k (r,s) - A r mn 

, 
J ( A a)J (k a) 

m mn m r 
[

COS m lJijV 

sin m 1/J H 

m 1/J 

(3-25) 

m 1/J 

m 1/J 

(3-26) 

m lJi 

(3-27) 

(3 - 28) 

(3 -29) 

(3 - 30) 

(3-31) 



c2 1 
r s ,ron 

c2 2 
rs ,ron 

2 
,m-l 

TIm 1 

k 
r 

J ( A a) J (k a) 
m ron m r 

- 27T A' im-~ , , 

sin m 1jJ V 

-cos m 1jJ H 

sin m 1jJ 

ron r 
J ( A a)J (k a) 

m mn m r cos m 1jJ 
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(3-32) 

V 

( 3-33) 

H 

Again, the ability to evaluat e these coupling coefficients without 

numerically integrating makes this an extremely effective method. In 

our computer simulation twenty- two waveguide modes were used, and the 

resultant mode index (j) and eigenvalue for each type of mode are listed 

in Table I below . Note that the index (j) lumps information as to whether 

the mode is TE or TM and vertical or horizontal i nto a single index. 
mn ron 

Table I Wavegui de Mode Ordering 

j <P o mode eigenva lues 
J 

1 TEll (V) 1. 87 

2 TEll (H) 

3 TMll (V) 3.83 

4 TMll (H) 

5. TE2l (V) 3.05 

6 TE21 (H) 

7 TM2l (V) 5. 13 

8 TM21 (H) 

9 TE3l (V) 4.2 

10 TE
31

(H) 

11 TM3l (V) 6.38 

12 TM
31

(H) 

13 TE12 (V) 5.33 
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Tab Ie I ( Continued) 

j <p. mode eigenvalues 
J 

14 TE12 (H) 

15 TM12 (V) 7.015 

16 TM12 (H) 

-------------------------------------------, 
17 TEOI (V) 3 . 83 

18 TE4l (H) 5 . 31 

19 THa I (H) 2 . 4 

20 TM
02

(H) 5 . 52 

21 TE 41 (V) 5.31 

22 TE02 (V) 7.015 

For most of the array configurations analyzed using this program simula-

-+ 
tion, the waveguide dimensions were chosen so that only the modes <P I 

-+ 
and 4>2 propagate, and hence twenty- two modes should be adequate since 

twenty of them are below cutoff. 

B. Dielectric Cover Sheets and Matching Plugs 

As has already been stated, dielectric discs within the waveguide 

can be used to generate modes or to impedance match between the guide 

fields and free space. Fo r t his purpose . dielectric plugs in the ends 

of the waveguides wi l l be considered . The program modification is 

simple in that it i s only necessary to replace Y. in (14) by Y., the 
J J 

effective waveguide admittance a t the z = 0 plane looking in the -z 

direction. Using waveguide and transmis s ion line concepts Y. is seen 
J 

to be 



where 

tan[k 1 (J) * T2] P ug 
* tan[k 1 (J)*T2] p ug 

34 

(3-34) 

Y 1 (J) = characteristic admittance of the ~J mode in the plugs 
p ug 

Y (J' ) - char acteristic admittance of the Jth mode in the guide -

guide (a:llows for dielectric fill, EPS) 

k 1 (J) = phase cons tant of the Jth mode i n the plugs -iy 
p ug 

T2 = plug thickness. 

Two dielectric cover sheets are i ncluded- i n the program and should 

provide a fairly flexible basis for extending the impedance matched 

scan range of an array. The behavior of the fields i n di electric layers 

in the region z > 0 is at first not as obvious as that for the waveguide 

region . However, the fields i n each- of the layers and free space can be 

decomposed into TE and TM waves with respect to z [26], and then normal 

traveling wave techniques can be used to obtain the modifications of (3-19) 

needed to solve the problem. 

First, recall for s ystems with bo th electric and magnetic sources 

that the total fields are given by 

E = E + E = -jwA - ~ 9 (V 0 A) - 1 VxF 
A F k2 E 

(3-35) 

-+ -+ -+ 
H = HA + HF (3-36) 

Waves propagating TM and TE to z can be determined from 

-+ -+ 'fI a A = a z 
(3-37) 

-+ -+ 'fI f F a z 
(3-38) 
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where 

~a magnetic potent ial 

~f = electric potential . 

For this case Eqs. (3-35)and (3-36 )simplify to [26,27] 

-r 
E ( 3-39) 

-r 
H -r a I [ -r fJ 'il x(a ~ ) + -i - 'il x 'il X (a ~ ) z w~ z 

( 3-40) 

The potential fun ctions are solutions of the homogeneous phasor wave 

equaticn (Helmholtz equation) subject to boundary conditions. Above each 

cell in an infinite arr ay of the type being considered the application 

of boundary conditions gives separation constants k and k which are x y 

determined by the cell geometry (size and shape) and are not affected by 

the presence of the dielectric layers. 

constant of a layer, z 

\ 

EPS 

2a 

Only k depends on the dielectric 
z 

Fig . 3- 4 . Array Covered with Two Dielectric Sheets. 
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The solution to the Helmholtz equation for the free space region 

(z > T3 + T4) is 

1jJf 

where 

l l 
p q 

D' 
pq 

D 
~ 
Z 

o 

-i[k (p)x + k ~,q)y + k (p,q)z] 
e x y z 

k (p) = k sin e cos ~ + ~ x 0 0 0 b 

2 
kz(p,q) 

k sin e sin ~ + 2~ g 
o 0 ~o d sin a 

k 2 
o 

k 2 
x 

k 2 
Y 

2~p 

b tan a 

( 3-41) 

The separation phase constants k and k are unchanged in a dielectric 
x y 

layer, however, k becomes 
z 

• m k
z 

(p,q) E: 
m 

k 2 
x 

k 2 
Y 

th 
E: relative dielectric constant of the m layer. 

m 

( 3-42) 

Thus it is seen that the system for z > a can be treated as a cas -

caded waveguide-like system each section of which is characterized by a 

wave number, k . 
z 
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1. Single Cover Layer (EPS3, T3) 
z 

EPS 

Fig o 3 50 Array Covered with a Single Dielectri.c Sheet o 

For a single layer of dielectric covering the array surface, the 

admittance at the z = 0 plane is 

Y+z(p,q) 

where 

yo(p,q) + i Y3(P,q) tan[kz3 (p,q) * T3] 

= Y3(P,q) Y3(P,q) + i yo(p,q) tan[k
z3

(p,q) * T3] 

-+ r 
characteristic admittance of the ~ mode in the pq 

dielectri c layer (0 ~ z 2 T3) 

yo(p,q) = free space admittance of the pq r mode (z>T3) 

th kz3 (p,q) = wave number of the pq mode in the dielectric 

T3 = dielectri c thickness 

EPS3 = relative dielectric constant of the cover sheet. 

) 
2. Two Cover Layers (EPS3, T 3, EPS 4, T4) 

In this instance, the admittance looking in the +z direction at the 

level z = T3 is 

Yo(p,q,r) + i Y4(p,q,r) tan[k~4 * T4] 

= Y4(p,q,r) Y4(p,Q,r) + i Yo(p,q,r) tan[k
z4 

* T4] 
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Using the above as the load for the first layer the required 

admittance at z = 0 i s 

In the above equations 

TE 
Yo (p, q, 1) :: Yo(p,q) 

TM 
Yo(p,q,2) yo(p,q) 

2 
kzo (p,q) k 2 

0 
[1 

= 

YT3 + i Y3(p,q,r) tan[kz3 * T3] 

Y3(p,q,r) + i YT3 tan[kz3 * T3] 

kzo(p,q) kzo(p,q) Y 
0 

W \1
0 

k 
0 

WE: Yo k 
0 0 

kzo(p,q) kzo(p,q) 

k 2 

- (~) -(k x) 
0 0 

2 
21T g 

(3-46) 

(3-47) 

(3-48) 

2 
k 2 [1 -(T - ~) - (T -

0 x k b Y kd sin a + 21T P )] 
kb tan a 

0-49) 

with k being replaced by k 
o 

W~ = ko l\1 d€d to convert to the forms 

valid for the dielectrics . 

C. Waveguide Vector Modes (a = waveguide radius) 

For reference purposes this and the next section contain the 

equations defining the modes used in expanding the waveguide and free-

space fields. In a circular waveguide of radius "a" the TE and TM 

(to z) vector modes are given by 

V 
-+ 
</> (TE) mn 

H 
( ,

' sin m</>,' ) + 
~ ~ J (b r) 

r r m mn 
-cos m</> 

A , 

a,f, b J (b r) 
't' mn m mn (

COS m</>\ 

sin m</» 

(3-50) 



39 

v sin m<j> -cos m<j> 
-+ 
<j> (TM) mn 

A , 

a (- a ) J ( a r) 
r mn m mn ( ) A m + a - J ( a r) 

r m mn ( ) (3-51) 

H cos m<j> sin m<j> 

where V denotes the vertical modes (parallel to the y-axis in Fig . 3- 3) 

and H designates the horizontal modes (parallel to the x-axis) . Recall 

h d d b ' f t at TE mo es correspon to roots, mn' 0 

, 

I 

d J (b a) 
m mn 

dr 

where A = b a. mn mn 

I I o -+ roots of J ( A ) 
m mn 

For TM modes: J (a a) = 0 -+ roots A = a a m mn mn mn 

*Note TE (H) 0 
on 

T}1 (V) 0 
on 

D. Free Space Wave Functions (Block Functions) 

o 

Working wi th the component of the wave propagating normal to the 

boundary (z-di rect i on) 

k 
-+ --L -+ 
IjJ (TE) k ax 

r 

k 
-+ x -+ 

l/J (TM) =k a 
x 

k 2 
r 

r 

k +ik x + ik Y 
X -+ X y 

k a e 
r y 

k ik x + ik Y 
+--L;t x y e 

k y 
r 

th For the mn mode and a beam pointing direction ( 8 , <j> ) the 
o 0 

direction cosines are 

(3- 52) 

(3- 53) 

(3- 54) 
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T = sin e cos ¢o x 0 
(3-55) 

T sin 8 sin ¢o y 0 
(3-56) 

k (m,n) k (m) k T 2nm 
= 

x x 0 x b 
(3-57) 

k (m, n) = k T [ 2nn 2nm 
] -y 0 Y d sin a b tan a 

(3-58) 

a = grid angle 

b spacing along 
~ 

a
1 

- direction 

d spacing along 
.. 
a2 direction 

-+ -+ -+ 
grid po i nts Prs r b a1 + s d a2 

To point the beam in the ( 8 , ¢ ) direction, the differential phase 
o 0 

shifts between elements are 

0 = ~b T =~b sin e cos <P o x A x A 0 
(3-59) 

0 = ~ d sin a T ~d sin e sin a sin <P y A Y A 0 0 
(3-60) 

For z > 0 only the forward propagating modes are present (assumes 

system infinite in which case no reflections occur) and the F10quet 
-i S z 

mn } { It modes are r e mnp 

where 

= I 

2 2 k 2 k 2 
Smn k [1 - (2.) - (...::1..) 

o k k 

2 
2nm) _ (T 
bk Y 

2 2nm 2 
nn + ) ] 

d sin(a )k bk tan a 

(3-61) 
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E. Conclusions 

Grating lobe predictions are the most commonly used measure for 

estimating array scan limits, and as such the WAIM attempts in this 

study are compared with their angular predictions . ° As expected, it 

was observed that mutual coupling in physical arrays is such that 

reflection coefficient peaks can occur interior to the grating lobe 

angles -- a condition first noted by Farrell and Kuhn[39] and a serious 

problem in any superficia l design. Upon applying WAIM techniques, the 

reflection coefficient peaks have been moved outside the grating lobe 

angles ' otherebY-°exteonding the usable scan range for a given array 

geometry. The fact that the grating lobe angle depends on the scan 

plane chosen i s omitted in many discussions of grating lobes, however 

generalized grating lobe conditions will be developed here because of 

their need for some of the scan planes i nvesti gated. The grating 

lobe condi t ion for a rectangular grid is [27] 

d 
A 

which can be ° rearranged to give 

sin 8 
m d 

I 

1. 
m 

(3-62) 

(3-63) 

For equilateral triangular grids the above equation is modified to 

d 
m 

A 
1.155 

(3-64) 

Basically gra ting lobes appear when the gri d points are phased to 

produce secondary major lobes i n visible space. An alternate way of 

viewing this phenomenon is i n terms of the invisible-visible mode 
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propagation approach . Fr om this point of view, it is seen that 

grating lobes occur when a secondary free space mode makes the transi-

tion from the invisible (nonpropagating or evanescent) to visible 

region (propagating) . The direction cosines of the pointing angle 

( 8 , cp ) are 

T 
x 

sin 8 cos cp 

T = sin 8 sin ¢ 
y 

For the free space region exterior to the guides 

k 
x 

k 
Y 

k T 
o x 

k T 
o Y 

2nm 
- -b-

2nn 
d sin a + 2'lTffi 

b tan a 

(3-65) 

(3-66) 

From the separation equation, the wave numbers for the various free 

space modes are 

where 

k (m,n) = / k
2 

z 
2 

k (m,n) 
x 

2 
k (m,n) 

y 

k (0,0) is the desired radiating mode 
z 

k2 > k 2 + k 2 -+ propagating modes 
x y 

k
2 < k 2 + k 2 -+ evanescent modes. 

x y 

Since grating lobes occur when modes other than the oath start to 

propagate, the critical conditions for propagation define the invis-

ible-visible region boundaries . In direction cosine space the 

boundaries are circles such as shown in Fig. 3-5 and defined by 

222 
k = k (m,n)+k (m,n) 

x y 
(k T 

o x 

2 
2'lTffi) 
b 

(3-67) 



Normalized to k (3-67) becomes 
o 

2 2 
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E: ~ = (T _ rn A. ) + (T _ n A. + m A. ) 
r r x b y d sin a . b tan a (3-68) 

Grating lobe regions fo r t he grid in Fig . 3-5 are the areas of mutual 

intersection which are shown shaded . 

Fig. 3-5 Direction Cosine Space Showing Grating Lobe Regions 
(60° grid angle) 

The following calculations show the determination of grating 

lobes angles for various s can planes for an equilateral triangular 

grid array with b = d = 1 . 0 and A. = 1 . 4 . The i ncident wave was 

polarized parallel to the y-axis in the gr i d plane . The spacings 

were purposefully chosen to produce a grating lobe in visible space 

(8 = 38°) so that matching effects could be evaluated, and many of 

the test programs were run using the 60 ° scan plane where 
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cross-polarization e ffects we r e found to be significant. The choice of 

grating lobe angle at S = 38° was made in an attempt to somewhat reduce 

computer time since a scan just beyond the grating lobe angle in a 

particular plane is all that is usually of interest , Thus by elimi-

nating the necessity of scans to 90° fewer program iterations are used 

with the resultant savi ngs of computer time . The results of all these 

simulations are contained in the Appendi x . 

E-Plane o Scan (S = 90 ° ) 

k = k d = b = 1. 0, A = 1.4, Angle = 60° 
0' 

For m o and n 1, Eq. (3-68) becomes 

Here 

sin 

H-Plane Scan 

the choice n 

sin 

A 
(sin S - -d-s"';'in--

A 

= 1 

1.4 
S + 1 -1 + gl d sin a - .8666 

S sin 
-1 (.615) 38° '" gl 

(S ' = 0°) 

= 1 and n = 0 is made giving 

A 2 A 2 
(sin - -) + ( b a ) 1 

b tan 

S - 1.4 = + 1 - ( 1. 4 2 
1. 732) + 

S gl 
54° 

.615 

.5893 

60° Scan Plane ( S = 60° ) m 1, n = 0 

(1/2 sin 
2 /3 1.4 2 

S - 1.4) + (:2 sin S + 1.732) = 1.0 
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Solving gives 6gl = 54 0 as one would expect since for the hexagonal 

grid the grid axes could be rotated 60 0 without changing its structure. 

From a symmetry consideration similar to the 6 60° example 

1. Array Performance Observations 

In the fo1 1owing Ik is the applied or incident value of the 

excitation of the kth waveguide mode, and ~ is the reflected component 

of the kth mode. The complex r eflecti on coefficient for the kth mode 

is fk = ~/Ik' Linear and circular polari zat i ons were obtained by 

-+ -+ 
using crossed TEll modes which correspond to modes ~ l and ¢2' For 

-+- -+ 
most of these examples ~l and ~ 2 are th e only propagating modes in 

the waveguides, and hence are of prime interest and will be accordingly 

emphasized in plots of scan results . Based on many computer experi-

mental simulations [see the Appendix for graphical r esults], it was 

observed that 

(1) E-plane scans were characterized by the early onset of 

grating lobe conditions (8
gl 

= 38°) and probably showed the most 

intramode reflection coupling II to Rl , 

(2) H-p l ane scans yielded a grating lobe at 8 = 54° (farthest 

from broadside for this geometry) . Match was fairly good for most 

configurations out to the grat-ing lobe angle . Generally this was an 

uninteresting choice of scan plane, Th i s observation should be 

carefully weighed when considering the use of waveguide simulators 



since most simulators are compatible with H-plane scans and thus 

contribute very little scan i n formation . 
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(3) The 60° scan plane was characte rized by a significant 

reflected value of the cross-po larized dominant waveguide mode (; 2)' 

The gratlng lobe was at 54° and the depolarization was found to be 

greates t near and usually j ust prior to the grating lobe angle . This 

scan plane' was judged to be the severest"t est of wlde angle matching 

as a consequence of the cros s-polarizati on effects. 

(4) The 30,0 scan plane h'ad a grating" lobe at 38°, but it was 

subject to le'ss depolarization than the ' 60° cut. This is still a 

potentially good scan plane for ini tial testi ng. 

(5) It was diffiCUlt to get ref lection peaks interior to the 

gra t i ng lobe angle with an unmo'dified array of circular waveguide 

element s in an equilateral triangular grid . The triangular grid and 

circular e lements seem to keep mutual cO'upling effects to a minimum [34] 

indicating that this ' is a seemingly desirable type ' of element shape 

and array geometr y . 

(6) A high degree of coupling of power to higher order evanescent 

waveguide modes possible. In fact neglect of these modes could lead 

to some wrong conclusions. A previous study of circular aperture 

arrays ' [23] wrongly' ignored these effects and also chose to ignore the 

problem of broads'ide matching ' which when the array is actually scanned 

lead to major design' difficulties . 

(7) In choosing initial values of dielectric constants and 

thicknesses the author has proposed some approximate design methods 

which help in the optimization process [27]. 
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(8) Even' though mutual coupling" was low for small di ameter 

elements, they were very difficult to mat ch . As a consequence of 

thi s difficulty and because of cost and production tolerance con­

s i der ations at microwave frequenci es, larger elements are recommended. 

The Rosenbrock optimization program was appli ed with waveguide 

diameter and dielectric constant as free variables, and the program 

choice for a 60 ° triangular grid with elements spaced d = 1.0 cm 

apart was a waveguide di ameter of 0 . 91 cm. 

(9) Dielectric cover sheets can move reflection coefficient 

peaks interi or to the gr ating lobe positi on unless properly chosen. 

2. Computer-aiu~d Optimizati on Results 

The previous observations were based on the results of many 

computer simulations selected to get physical i nsight into mutual 

coupling and impedance ma t chi ng problems assoc i ated with an array of 

circular waveguide elements . The graphical results of these tests 

are contained Fi gs . A- 1 to A- 6 i n the Appendix . From these runs it 

became apparent that the process of matching at broadside was diffi­

cult enough, but to 'choose a rray parameters to increase usable scan 

range while' maintaining" impedance" match was next to impossible by 

human trial-and-error· methods . Fortunately remedies exist in the 

form of computer optimization methods, a good survey of which is 

given by Bandler [32] . The me thods are gener ally separated into two 

groups : (1) gradient methods and (2) pattern search methods. Since 

thi s problem is too complex to hope gr adi ent i nformation could be 

determined, a pattern search t echnique originated by Rosenbrock[32,28] 

was chosen. 
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In brief RosenbTOck's method " is" a coordinate rotation system whi ch 

for N variable parameters proceeds af-ter each set of N coordinate 

searches to rotate the coordinates so that the initial incremen ts i n 

the next set" of" searches are aiong the vectnr direction determined by 

the previous N searches . After- each successful move the step size is 

increased by a fa·ctor of three" (qua1:itative- c-hoic"e of Rosenbrock) , 

and a quadratic fit is applied after the first unsuccessful move . The 

result is an extremely efficient pattern search in that the number of 

P u 
function evaluations from an initial set of user-chosen parameter 

values is kept fairly low . As with all computer optimization tech-

niques this one suffers from the fact that it cannot distinguish a 

local minimum from an absolute one . 

In this application optimizations were made first varying two 

array parameters and then varying four array parameters . A 60° s can 

plane for a hexagonal array of elements spaced 1 0 0 cm apart was us ed 

for investigation . For the unaltered system with guides filled wi t h 

air and having a radius of 0 . 44 cm. the reflection coefficient varied 

from about" ~.43 at broadside to a peak of 0061 at the grating l obe 

angle (8 = 54°). The cross-polarized reflected mode showed a signi fi-

can t peak of about 0 . 3 at 8 = 48° . The main results of s ome o f t he 

optimizations a r e summarized" as follows: 

(1) Varying the dielectric plug (T2 and EPS2) subject to a test 

2 2 
function of IRII + IR21 at e = 10° and 45° the Ros enbrock se l e c t i ons 

reduced the reflection coefficient "peak CR
l

) to 0 037 and kept the 

reflected power in this mode" under 4% over the rest of the scan r ange 

up to the" vici nity of the 54° grating lobe where the peak was located. 
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(2) Not using- ma tching" plugs or dielectric cover sheets but 

varying- gui -de ra"dius- (AX] " and di:electrl"c " fi-11 (EPS] with the above 

test function, the Rosenbrock subroutine chose AX ~ 0 .4555 and 

EPS = 1 . 495 . With these parameters the reflection coefficient peak 

was reduced to 0 . 34 andrerlected power was beloW"" 5 . 3% elsewhere . 

(3) A really si gnificant imp rovement .. i n match over the major 

portion or th-e s -c~n range- was ob t:'ained" whe"n"" "four " parame ters were 

optimized by the Rosenbrock subroutine. In this case the dielectric 

cover sheet and the guide discs were both used with the resulting 

choices being T2 = 0 .742 cm , EPS2 = 1 . 19, T3 0.127 cm, and EPS3 

The test funct i on was IR
1

(10 0)I + IR1 (54° ) I. The scan for this 

design showed a slight resonant peak of 11% reflected power at 

8 = 43°, but reflections were lowered t o an almost negligi ble level 

of under 0 . 3% over the scan range away from the peak and were under 

0.3% at the grating lobe angle of 54 °. 

1. 57. 



CHAPTER IV 

EXPERIMENTAL RESULTS 

This chap t er summarizes s ome of the Experimental work done which 

has bearing on phased a.rray matching . 

Ao Waveguide Si mu at r 

There are many possible approaches to determining the performance 

of elements n a lar ge phased array 0 ince a large n~~ber of elements 

is i nvolved , it i desf able t know t he per f ormance of various pro t o-

t ype antennas be e constru ting a whole array of themo If a small 

array were be ng aesigfted , measurements cou d be made n t he array 

after construction and m if cations on the i ndividual elements migh t 

be a chieved w th li t tle dIf cul t y o Bu t he number of elements in a 

large array s oon ma 'es t i s s i mp e appr a h i mprac t ica 0 There are 

two basic t e chniques . f or modeling a arge phas ed a r ray : a computer 

analys i s, and simulat on i n a waveg ide [18] , dis cussed here o 

Recall from the geometry of planar phased arrays t hat the s can 

angle is defi ned as he angle of the beam maximum from broads i de and 

that there are bo t h E and H plane scans o T e weI known concep t of 

component waves i n a re t an gular wavegu de leads to a method of simu­

lating an infinite pl anar phased array o Cons i der the rec tangular 

waveguide shown on the fo owing page , and fo r simplicity, consider 

only the dominant TE
l O 

mode whose field e ua tions ar e 

50 
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A 7T -j Sz 
H = cos (- x) e 

z a 

H j S 7TX - jl3 z = - A s i n(-) e x K a (4-1) 
c 

K 
- jSz - -jA ~ Z 7TX 

E sin(-) e y K a a c 

x 

a 

b 

y z 
x 

a 

Fig . 4-1 . Rectangular Guide with Component Waves . 

The express ion for H may be written as 
z 

j(~ - Sz) • ( 7T X + Sz) 
H 

A {e a + 
-] --; 

} (4- 2) = - e 
z 2 

indicating the two t r aveling waves shown i n Fig . 4-1. Recall the 

separation equation 

k 2 = k 2 + k 2 
c x y 

(4-3) 

For the cas e of the TE
IO 

mode 

k 2 k 2 
2 

]!.) 
c x a 

(4-4) 

k o . 
Y 



The propagation constant, 8, is given by 

where k = w/~ £ 
000 

Referr i ng to Fig . 4-1, 

From Eq . (4- 7), 

Thus 

82 = k 2 _ k 2 

k 2 
o 

o c 

k k sin e 
c 0 

8 k cos e 
o 
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(4-5) 

(4-6) 

( 4- 7) 

k 
c 

sin e = ~ (4-8) 
o 

The general exp ression for k is 2n/ A , where A i s the cutoff wave-
c c c 

length. Eq . 4-8) now becomes 

sin A e =­
A 

c 
(4-9) 

This phenomenon in the rectangular wa.veguide is similar to the 

operation of a phased array e lement . The angJe e in Fig . 4-1 may be 

considered as the " scan angle" fr om b r oadside, and various E or H 

plane s cans may be s i mulated by exciting proper modes in specially 

built guides . For TE modest H pl ane scans are simulated, while E 

plane scans a r e achieved by exciting TM modes . By varying the frequency 

and guide dimensions a ccordi ng to Eq . (4-9), a number of possible sean 

conditi ons may be modeled . 

The phased array simulation documented i n this report was for 

a squar e grid of ci rcular waveguides opening onto a conducti ng ground 
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plane . The geometry o f the simulated arr ay is s hown i n Fig . 4-2 . 

(r= o 95 cm. ) 

1< a=4 . 8 cm. -----+I 

dA 

(d=4 . 8 cm . ) 

Fi g . 4- 2. Geometry of Si mulat ed Phased Ar ray . 

Noti ce the wavegui de cros s seet i on dr awn a r 0und the central element . 

By cons trueting a circular guide to be flush mounted against the 

rectangular guide and varying the f r equency of the f i eld incident on 

the circular guide , the perf rmance of sever al di fferent scan 
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conditions may be studied . Note, however, t hat varying the frequency 

changes the relative dimensions of the s imulated array . The experi-

mental setup, illustrated i n Fig . 4-3, was used t determine the 

reflection coefficient, r, fo r several diffe ren t frequencies . 

Circular Guide 

Element Simulator 

VSWR 
Meter 

Rectangular Gui de 

H.P . Sweep 
Os ci llator 

9-12 . 5 GHz 

Fig . 4-3 . Waveguide Si mulator Test Set up . 

The range of frequencies used in the experiment were chosen to 

be above the rectangular guide cutoff but below cutoff for the circular 

gui de . This was done so that a matching scheme at ~he end of the 

circular guide was unnecessary . 

A sample calculation for a scan condition is shown below . 

SAMPLE CALCULATION 

For a frequency of 9 GHz 

A = f = 3. 33 cm. 

For TEID mode (H-plane scan): 

s i n 8 = 

A = 2a = 9 . 6 em 
c 

X 
A 

c 
. 345 
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Therefore , 

e - 20 . 3° (Cardinal Plane Scan) 

Results obtained from the waveguide simul ator were used to check 

the computer analysis in Chapter I II, and agreement was very good . 

Table I c mpares the results . 

TABLE I 

Compa:t:isefl of Computer and Waveguide Simulator Results 

Array of Circular Waveguides 

Reflection Coe fici ent 

Frequency Scan Angle Waveguide Computer 
(GHz) (H plane) Simul a tor Simulation 

9 . 0 20 . 3° . 980 . 962 

9 . 5 19 . 2° . 930 . 936 

10 . 0 18 . 20 0890 0900 

10 . 5 17 . 3° 0865 0880 

11.0 16 . 5° . 900 0870 

1105 15 07° 0861 0858 

12 00 15 010 . 855 .850 

Despite the good results obtained with the simulator, it has 

several disadvaRtages o Since TE modes are most easily generated in 

rectangular guides, E pl ane scans are more difficult to achieve than 

H plane o It is a ls o di f f i ult t o get scan plane s where grating lobes 

first appear. 
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Another prebl em, mentioned pr eviously , i s associ a t ed with the 

trans it~on from the rec t angul ar gui de t eircu ar g i de . The diffi­

culty arises since the cutoff f r equency of the ci rcular guide is 

usually hi gher than that a f the reetangular -guide . If the frequency 

is hi gh enough ab ove cu t off of the circula r gui de, unwanted modes 

in the rectangular gui de might be excited . Operating the circular 

gui de above cut ff a l so r equi res the design a f a matched load 

section f or termin ati ng t he rcular gui de . Exci ting the simulator 

below cir cular guide cut o f f presents s t ill another problem: the 

reflection coeffi cien t s a r e quite Lar ge . In order to obtain meaning­

ful results, the me asur ements devices mus t be of s uffi ciently wide 

dynamic r ange . 

Perhaps t he gr eatest di sadvantage of t he waveguide simulator is 

that a p·a r ticu ar ar:ray an be modeled a t on l y (me scan angle . A 

thorough i nvesti gation of an ar r ay woul d require many simulators and 

mos t could ne t be c c:ms true t ed wi-th standar d waveguides . The cos t of 

such an analysis weuld .be proh i bi tive . 

Simulati on of a phased a r ray itl waveguide can be of significant 

use, howev.er, e-speci ally t he way it was employed in this report . Our 

simulator was eas~ly - fabricated, the measur ements were simple, and 

the results were i n excelletlt agreement wi th our computer analysis . 

In essenee, our wavegttlde s i mula t or was very use ful , be ause it 

strongly supported t he val idity of our omput e r simulation . 

B. Dielectric _Cover Sheet Over .8 Smal l Arr ay 

The impedance of a central element of a 36 element array of crossed 

slots in a ground plane was measured as a funct i on of scan angle with 
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and without a dielectric s heet cover i n g t he array s urface . The array 

operated at 1.8 GH z with cros sed 81 t s for ircular polarization 

positioned as shown in Fig. 4- n The over shee t had a dielectric 

x X X Xi X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 
X X X X X X 

Fig . 4-4 . Circularly Polar i zed Array of Crossed Slots 

( f = 1. 8 GHz, d = 7 m) 

constant of 9 . 0 and a thickness of 0 . 635 em. The t hickness was an ' 

arbitrarily chosen , commercially avai l ab e va l ue and was not opti mally 

selected for wide angle · i~pedance - matching since such a calculation 

requires "a priori" knowledge of array impedance var iations with s can 

angle . Our experimental r esul ts showed that even t hough i ntroducing 

the dielectric shee t .gave a s lightly wo r se mat h at b r oadside than 

was obtained fo r the un over ed array, the wide angle scan matches 

were better for . the dielectric covered array . 
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C. Cavity- Backed Spiral s 

S-band , cavity-ba ked s pi r a l s were construc t ed and tes t ed . Im-

ped ance versus f reque cy meas urements showed tha t t hey had VSWR's 

under 2 from 2 . 0 t 3. 0 GHz . Sever a l dif erent baluns wer e bui lt and 

tested for us e wi th wi deband spi r als . A detai l ed dis cussion of these 

baluns i s f ound i n Techni cal Repo t No . 2 [5 ] . 

D. Ku-Band Sp i r al Ar r ay 

A f our-el ement array of spi r al rad a or s desi gned for operation 

with a center frequen cy of 18 . 0 GHz was photo i thographical ly produced 

us i ng gold on an alum na (e = 9) s ubstr ate . 
r 
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