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SIMULATION RESULTS FOR THE VITERBI
DECODING ALGORITHM

By Bartus H. Batson, Robert W. Moorehead,
and S. Zafar H. Taqvi*
Manned Spacecraft Center

SUMMARY

Performance predictions for convolutional decoders using the Viterbi decoding
algorithm are presented in this report. Bit error probability is chosen as the measure
of performance and, by using digital computer simulations, is calculated as a function
of energy per bit per noise spectral density for various encoder and decoder param-
eters. Coding gains based on comparisons with uncoded, coherent phase-shift-keyed
system performance are determined for code rates of one-half and one-third and for
constraint lengths of 4 to 8. Both hard-decision and soft-decision decoders are consid-
ered, and bit error probability is calculated for both systematic and nonsystematic
codes. The effect of decoder block length on decoding performance also is included to
provide a more complete estimate of the relationship between performance and decoder
complexity.

INTRODUCTION

One characteristic that has made all-digital communications links appear increas-
ingly attractive for many applications in recent years is that error control encoding and
decoding can be applied to achieve significant improvements in overall link performance.
The introduction of coding into a digital link allows, for a fixed transmit (or receive)
power level and for an allowable bit error probability, transfer of more information per
unit time. Alternately, for a fixed information rate, the introduction of coding can pro-
vide a reduction in the transmit or receive power level required to maintain a specified
error probability. The exact increase in information rate that can be achieved, or the
amount of coding gain (allowable reduction in power level) that is realizable, depends
on the particular class of encoding and decoding technique employed and on various en-
coder and decoder parameters that must be selected by the communications system de-
sign engineer,

*Lockheed Electronics Company, Inc.



Convolutional codes generally are conceded to be better than block codes for many
channels (ref. 1), particularly with respect to ease of implementation, equipment com-
plexity, power consumption, weight, and flexibility. Various algorithms, including
several sequential decoding algorithms (refs. 2 and 3), are available for decoding con-
volutional codes. Sequential decoders incorporate searchback operations in the hypoth-
esis and testing of various paths through the convolutional code tree. Thus, if a path is
hypothesized and subsequently is determined to be in error, the decoder has the capa-
bility to discard that path, back up, and test other possible paths. The advantage of
such a capability is that the probability of an undetected error appearing at the decoder
output is extremely small. However, a memory unit is required to store past data for
possible recall. In addition, a buffer is required to store incoming bits while the de-
coding operations (including searchbacks) are being performed. Because there is al-
ways some finite probability that the number of operations required to decode a
particular bit can be quite large, it is possible for the input buffer to overflow. During
such an overflow condition, the decoder output consists either of uncorrected channel
bits or of erasures. '

Parameters that affect the achievable error probability when using sequential de-
coding include information rate, code rate, code constraint length, input buffer size,
and memory size (which determines the allowable number of searchbacks). In general,
for fixed power levels, a smaller error probability can be obtained by decreasing infor-
mation rate, by decreasing code rate (adding more redundancy to the transmitted se-
quence), or by increasing any of the other parameters noted previously. The code
constraint length used for systems employing sequential decoding is typically rather
large (greater than 20).

A primary advantage of sequential decoding is that a rather large performance
gain is achievable. However, the variable decoding time per bit that results because of
searchbacks is a distinct disadvantage for some applications. Other disadvantages in-
clude the requirements for a memory unit and an input buffer. Fortunately, two of
these disadvantages (the variable decoder output rate and the requirement for an input
buffer) become inconsequential when the data rate is low enough to allow a large speed
advantage (computation rate per data rate) of the logic unit. Sequential decoding, there-
fore, is a very attractive technique for use in systems having moderate data rates (be-
low perhaps a few megabits per second).

The Viterbi algorithm (ref. 4) for decoding convolutional codes recently has re-
ceived considerable attention, largely because of certain inherent advantages over the
various sequential decoding algorithms. This algorithm has been shown (ref. 5) to be
maximum-likelihood and, therefore, optimum for the decoding of convolutional codes.
The primary advantage of a Viterbi algorithm decoder is speed. Whereas the perform-
ance gain (over no coding) achievable by using sequential decoding is limited primarily
by the information rate, the gain achievable by using Viterbi decoding is limited pri- -
marily by the constraint length of the code and is relatively independent of the informa-
tion rate. This independence is possible because no searchbacks are required by the
Viterbi algorithm, and only a very small logic speed advantage is required. Viterbi
decoders have the additional advantage of operating at a fixed rate; thus, no input buffer
is required.

The primary disadvantage of Viterbi decoders is that the decoder hardware com-
plexity increases exponentially with increasing code constraint length. Because



performance gain also increases with constraint length, hardware constraints impose
a limit on the performance gain achievable by using Viterbi decoders. In practice,
these hardware constraints dictate that the constraint length be limited to approxi-
mately 8. Fortunately, the decoder hardware requirements do not increase substan-
tially for lower rate codes or when soft decisions are provided by the receiver.

SYMBOLS
CD coding gain
Eb energy per information bit
Ec energy per channel bit
K constraint length of convolutional code

search length or block length of Viterbi decoder

N0 single-sided noise spectral density
Pe bit error probability
Q number of receiver quantization levels

rate of convolutional code (R = 1/V)

So(t), Sl(t) transmitted waveforms corresponding to binary 0 and 1
Sg(t), S"l‘(t) received (noisy) waveforms corresponding to binary 0 and 1

A% number of encoded (channel) bits per information bit

FUNDAMENTALS OF DIGITAL COMMUNICATIONS SYSTEMS
EMPLOYING CONVOLUTIONAL ENCODING
'AND DECODING

In the following sections, the concepts involved in determining the performance
of the general coded digital communications system are introduced, and the basic con-
cepts of convolutional encoding and decoding are discussed. This material is intended
merely to provide background information that may aid some readers in developing a
more complete understanding of the convolutional decoding problem.



The General Coded Digital Communications System

A simple coded digital communications system is illustrated in block diagram
form in figure 1. The system consists of a source, which generates data in the form
of binary digits (information bits); an encoder, which converts each information bit into
V channel bits (V = 2 for this example) according to a certain scheme governed by the

code; and a transmitter, which generates
analog waveforms So(t) and Sl(t) corre-

Transmitted channel Seceived sponding to 0 and 1 for transmission through
‘e”f;"’egl’bigs s @ 5w\ olL00. the channel. The signal is corrupted by
' S “, 3 o s e”for noise (generally assumed to be additive,
0 white, and Gaussian) in the channel, and the
input to the receiver consists of a sequence
Encoder L;'fgs";'";; channel 1 receiver Y pecoter | OF DOiSYy waveforms S¥ 5t and S*(t) A de-
cision device, which processes the noise
Information bits I nformation bits waveforms and provides estimates of the
19,0, el 00 ] corresponding transmitted channel bits, is
---SH0 ST, S incorporated in the receiver. Because the
Sy, st se... input to the decision device is noisy, there

is always some finite probability that a bit
decision is erroneous. It has been shown

Sl Spio (ref. 6) that, for binary signaling over an
\ additive, white, Gaussian noise channel and

t
for optimum (correlation or matched filter)
S S detection, the probability of bit error at the
t \ receiver output is

Figure 1. - Block diagram of coded P
digital communications system. e

Source User

_1
—Eerfc — (n

where Ec is the signal energy of a channel bit at the input to the decision device, N0

is the single-sided noise spectral density of the receiver, and erfc () is the comple-
mentary error function defined by

0 2
erfc X = —2-J et d¢ (2)
VT/X

If coding is not employed by the system of figure 1, however, the receiver bit detector
makes decisions on information bits directly. With constant transmit and receive power
levels for the coded and uncoded systems, more signal energy is available for a direct
decision on an information bit than for a decision on a channel bit. The redundancy
added to the transmitted signal when coding is incorporated into the system results in
less energy per channel bit and, therefore, in a higher bit error probability at the re-
ceiver output. The task of the decoder, which operates on the reconstructed sequence



of channel bits at the receiver output, is to correct as many bit errors as possible.
For the achievement of a net coding gain, the information bit error probability after de-
coding must be less than it was for the uncoded system. « An uncoded information bit

error probability curve can be constructed by substituting E

b (energy per information

bit) for Ec in equation (1). This uncoded bit error probability curve is shown in

figure 2.
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Figure 2. - Bit error probability as a
function of Eb/N0 for an uncoded

digital communications system.

12

Several encoding techniques are avail-
able for incorporation into digital transmis-
sion systems. These techniques generally
are categorized as either block or convolu-
tional. For block codes (frequently referred
to as algebraic codes), a certain structured
block of channel bits is assigned to each pos-
sible group of information bits. Block codes
are highly structured, in a mathematical
sense, and the various decoding algorithms
for block codes generally either exploit code
properties that result from this mathemat-
ical structure or apply probabilistic infor-
mation obtained from the received signal.
For the reasons pointed out in the introduc-
tion to this paper, convolutional codes were
chosen for the current investigation.

Convolutional Encoding Fundamentals

For convolutional encoding, each in-
formation bit (rather than each block of in-
formation bits) is encoded into V channel
bits. A simple convolutional encoder, which
consists of a shift register with K stages
connected in some prescribed manner to V
modulo 2 adders, is shown in figure 3. For
each input bit shifted into the register, there
are V encoded output bits, corresponding
to one revolution of the commutator. There-
fore, the length of the output (channel) se-
quence will be V times the length of the
input message. The rate of the code is de-
fined as

<=

(3)

and is a-measure of the number of message (information) bits per transmitted symbol.
The length of the shift register K is referred to as the constraint length of the code and



! 2 K is, roughly, a measure of the duration in
which the encoded output bits are affected

by any particular input bit. That is, each
group of V channel bits depends on the cur-
rent information bit and on the K - 1 pre-
vious information bits.

Information bits I

A particular convolutional encoder
may be described in terms of a set of gener-
ator coefficients that specify which stages of
the shift register are connected to each
modulo 2 adder. For example, two typical
encoder configurations are shown in figure 4.

Commutator

Channel (encoded) bits The binary digits represent actual connec-
tions to each adder (e.g., binary 11101 11011
Figure 3. - Binary (K, V) convolutional indicates that the first adder is connected to
encoder, the first, second, third, and fifth stages of

the five-stage register, and that the second
adder is connected to the first, second,
fourth, and fifth stages). The binary generator coefficients sometimes are converted
to octal form for notational convenience. Thus, binary 11101 11011 becomes octal 35 33,
and binary 110101 101111 becomes octal 65 57.

Generator coefficients Generator coefficients
K=5 Binary Octal
11101 1011 3533

Binary Octal
110101 101111 6557

(a) First example. (b) Second example.

Figure 4. - Typical convolutional encoder connections.

An alternate means of describing a particular encoder configuration is the gener-
ator sequence. For a (K, V) convolutional encoder, the generator sequence is equivalent
to the output sequence that results from transmitting a K-bit input message consisting
of a leading 1 followed by all zeros. One method by which the generator sequence can
be determined is shown in figure 5. However, there is another way of determining the
generator sequence without construction of a table.

Note that if a single 1 is located in some stage (e.g., stage x) of the shift register,
the output digit from any given adder will be a 1 if that adder is connected to stage x, or
a 0 otherwise. Thus, the first V digits of the generator sequence represent the mod-
ulo 2 adders that are connected to the first stage of the K-stage register, the second V
digits represent the adders that are connected to the second stage of the register, and



so forth. For the example shown in figure 5,

Message K=3 S T Trpat TRegister T Encoded]. all three adders are connected to the first
digits no. | digits |contents| output stage; therefore, the first three digits of the
V-3 's‘t‘;:‘:' S P generator sequence are 111. Because only
100 | 11 the first and third adders are connected to
g(l)‘l) }g(‘) the second stage of the register, the second

three digits of the generator sequence are

e0 e oW~
se e OO OO~

% | o | 101. Likewise, the last three digits of the
. . generator sequence are 100. The length of
. . the generator sequence (111 101 100) is

Encoded output digits KV = (3)(3) = 9 bits.

111 101 100. ..

Generator sequence Because the generator coefficients

specify which stages of the shift register are
connected to each modulo 2 adder and the
generator sequence specifies which modulo 2
adders are connected to each stage of the
shift register, there should be (and indeed
is) a direct relationship between the gener-
ator sequence and the generator coefficients.
Given the generator coefficients, the generator sequence can be determined by inspec-
tion. Thus, for the example shown in figure 4(a), in which the generator coefficients
are 11101 11011, the generator sequence is 11 11 10 01 11 and is obtained by pairing
like digits (first with first, second with second, etc.) of the two generator coefficients.
A reverse procedure, in which the generator sequence is first separated into groups of
V digits, can be followed to obtain the generator coefficients from the generator
sequence.

Figure 5. - Determination of the gener-
ator sequence for a (3, 3) convolu-
tional code.

For those particular encoder configurations in which the first modulo 2 adder is
connected to only the first stage of the shift register, the resulting codes are said to be
systematic. For systematic codes, then, the first bit of each V-bit channel sequence is
the same as the current information bit. All codes that are not systematic are said to
be nonsystematic.

As will be shown later, the Viterbi decoding algorithm yields better performance
with nonsystematic convolutional codes. From a set of convolutional codes, only cer-
tain ""good' codes are used for implementation. These good codes lead to minimum de-
coding error probability. A computer search technique usually is applied to select a
good convolutional code, based on preselected criteria (such as maximized minimum
distance, maximized free distance, and noncatastrophic error propagation properties).

Convolutional Decoding Fundamentals

Each bit shifted into the K-bit register. results in one of two possible V-bit output
sequences. One possible output sequence corresponds to shifting in a 0, whereas the
other corresponds to shifting in a 1. The specific V-bit sequence that results when a
bit is shifted into the register, however, depends on the previous K - 1 bits that are
retained in the register. Thus, a given input message bit affects the current V-bit out--
put sequence and the next K - 1 V-bit output sequences as well.



The behavior of any convolutional encoder may be illustrated diagrammatically
by a tree structure, as shown in figure 6 for the encoder of figure 5. The labels on the
branches indicate encoder outputs. By convention, the code tree is arranged so that the
upper branch from any node corresponds to shifting a 0 into the K-stage register and the
lower branch to shifting in a 1. The encoded output sequence corresponding to a given
input message sequence may be found by following the appropriate path through the code
tree. For example, an input message sequence of 1011... results in an output sequence
of 111 101 011010 ....

Decoding of convolutional codes in-

0 variably is based on the code tree structure.

% Sequential decoding algorithms assume a
Encode¢ 000 ! tentative transmitted message, encode this
! % message with a replica of the encoder, and
000 j o compare the resultant coded output sequence
L‘i—ﬁm: with the actual received sequence. If these
0 111 i al two coded sequences agree to within some
op | 01 specified amount, decoding is assumed to
Input T | ;——E—E have been accomplished. If agreement be-
digits l ' 0o ! L tween the two sequences does not meet the
101 —T—+E_l“—: desired criteria, another tentative message
! | 10 is assumed, and the process is repeated.
111 . | L_olo
o | 100 The optimum convolutional decoder
010 | ¢ al chooses the path through the code tree that
m ! ull has maximum likelihood, given the received
T 1o sequence. That is, the decoded message

sequence will provide a coded output se-
quence that is closer (differs in fewer bit
positions) to the actual received sequence
than the coded output sequence correspond-
ing to any other possible message sequence.
Because the code tree apparently is infinite
(i.e., the number of branches doubles each time a bit is shifted into the encoder),
choosing a maximum-likelihood path through a code tree such as that shown in figure 6
would appear to be a hopeless problem. This is not the case, however, as will be
pointed out in subsequent discussion.

Figure 6. - Code tree for a (3, 3) con-
volutional encoder with generator
sequence 111 101 100.

Inspection of figure 6 reveals that, although the code tree does grow without bound
as more and more message digits are shifted into the encoder, the growth is completely
repetitive after a point. Note that as the Kth (third) message bit is shifted into the en-
coder, eight possible output branches (000 to 111) exist. As the (K + 1)th message bit
is shifted in, there are 16 possible branches, but only eight of these are distinct. Be-
cause the upper eight branches are identical to the lower eight branches, it is not neces-
sary to show all 16 branches on the diagram. The tree structure could be simplified
greatly by connecting nodes A and E, Band F, C and G, and D and H. If this is done
for the (K + 1)th input bit, it becomes evident that the same procedure could be re-
peated for the (K + 2)th input bit, again for the (K + 3)th input bit, and so forth. Thus,

at no location in the tree is it necessary to draw more than ZK total branches or ZK_l

total nodes.



Additional insight into the basic simplicity of the convolutional tree structure can
be gained by examining the state diagram of the encoder. An encoder state is defined
as the contents of the first (most recent) K - 1 stages of the K-stage shift register.

There are ZK_l possible states, corresponding to the ?,K_1 possible combinations of

K - 1 binary digits. Given an encoder state, only two possible encoder states can be
entered as a message digit is shifted into the register. The first possible state corre-
sponds to shifting in a 0, whereas the other possibility corresponds to shifting in a 1.
Because the most ancient (Kth) bit in the encoder register is dumped as a message bit
is shifted in and, therefore, cannot affect any subsequent state, that Kth bit is not con-
sidered when defining the register state.

The state diagram for the (3, 3) convolutional encoder that was considered in pre-
vious examples in this report is shown in figure 7. The circled numbers represent en-
coder states, the single digits (in parentheses) represent input message digits, and the
triple digits represent the encoded output digits that occur as the encoder state is
changed. For example, if the current encoder state is 10, two possible states can be
reached as a message digit is shifted in. These possible states are 01 and 11 and cor-
respond, respectively, to 0 and 1 inputs. Assuming a 0 input, the total shift register
contents will be 010, resulting in the encoded output digits 101. Alternately, if a 1 is
shifted in, the register contents will be 110, resulting in the encoded output digits 010.
This procedure was followed to obtain the complete encoder state diagram shown in
figure 7.

- Encoded
Message ) /- output
digits digits Message Encoder

000 /d' ; state
(0 igit \
100 (0}
00/ 0l

111 Wl

/ 0)
1

(1I\_110

10
C/ m 010

(a) Encoder. (b) State diagram.

Enclosed output digits

Figure 7. - State diagram for a (3, 3) convolutional encoder with generator
sequence 111 101 100.



The state diagram allows a convenient and straightforward determination of the
output message corresponding to a particular sequence of input digits. For example,
if the input sequence is 10110..., and the encoder is initially at state 00 in figure 7,
the first digit (a 1) results in an output of 111 and a new encoder state of 10. The sec-
ond digit (a 0) changes the state to 01 and provides an output of 101. The third digit
(another 1) changes the state back to 10 and provides an output of 011, and so forth.
This procedure could be repeated for an indefinite sequence of input message bits and
is more convenient than tracing through the tree diagram.

The state diagram can be redrawn in a form that is even more convenient for dis-
cussing the operation of the Viterbi decoding algorithm. The redrawn state diagram is

shown in figure 8, in which the ZK_1 states are represented as nodes on a trellis
structure. The branches of the trellis represent possible moves from state to state.

It should be emphasized again that only two possible states can be entered from a given
state. Likewise, a given state can be entered from one of only two possible previous
states.

The possible moves (from state to
state) are independent of the particular gen-
erator sequence being used. For example,
state 00 can be entered only from state 00
or state 01, regardless of the modulo 2
adder connections of the encoder. However,
the encoded output digits that correspond to
each move (and are labeled beside each pos-
sible move) are code-dependent. For in-
stance, a different generator sequence
results, in general, in encoded output digits
other than 101 and 001 corresponding to the
two paths terminating in state 01.

_ In the trellis structure of figure 8, the
;’;‘;m”s Newstte  yppermost of the two paths leaving any one
node corresponds to shifting a 0 into the
register, while the lower path corresponds
to shifting in a 1. This statement can be
verified by comparing figure 8 with the orig-
inal state diagram shown in figure 7. All
four paths terminating in the upper two
states (00 and 01) are paths that resulted when a 0 was shifted into the register, and all
four paths terminating in the lower two states (10 and 11) are paths that resulted when
a 1 was shifted in because the first digit of a new register state has to be the same as
the message digit that was just shifted in. Thus, states 00 and 01 can be entered only
if a 0 is shifted in,

Figure 8. - Redrawn state diagram for
a (3, 3) convolutional encoder with
generator sequence 111 101 100.

The encoded output sequence corresponding to a given input message sequence can
be determined entirely from the trellis structure of figure 8. However, for convenience,
this structure is sometimes expanded to the form shown in figure 9. The expanded trel-
lis in figure 9 actually is an alternate way of viewing the code tree shown earlier in fig-
ure 6. Although only the first set of nodes is labeled on the expanded trellis structure,
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successive nodes at the same level corre-
spond to the same state (i.e., the uppermost
node always corresponds to state 00, etc.).
The manner in which a path through the ex-
panded trellis is determined for a typical
input message sequence (10110...) is illus-
trated in figure 10. The resulting output
sequence is 111 101 011 010 001....

The Viterbi decoding algorithm, which
will be discussed in the next section of this
report, is visualized best in terms of the ex-
panded trellis structure. This algorithm
basically attempts to find a path through the
trellis that is as close as possible (differs
in the fewest bit positions) to the received
encoded sequence. The information se-
quence (input message sequence) correspond-
ing to this path then is assumed to be the
same as the original input message at the
encoder. Given the received channel se-
guence, the algorithm is optimum in the
sense that the most probable transmitted
message is selected.

Figure 9. - Expanded version of the
state diagram (trellis structure)
for a (3, 3) convolutional encoder
with- generator sequence ‘
111 101 100.

DESCRIPTION OF THE VITERBI
DECODING ALGORITHM

From the state diagrams (including
the trellis structures) shown previously in
this report, it can be observed that once
two paths are in the same state (by merging
at a common node), both paths have identical
extensions out of that state. Because this is
the case, it can be observed that both paths
subsequently will correlate equally well with
the received sequence. Therefore, because
. the objective is to find the path that corre-
lates best with the received sequence, it should be possible to eliminate one of the two
paths that enter any state. By eliminating the smaller correlated path entering each
state, only those paths that never can be candidates for the highest correlated path
through the trellis structure are discarded. This is the general idea on which the
Viterbi decoding algorithm is based.

Input message sequence = 10110. ..

Figure 10. - A typical path through the
expanded trellis structure for a
(3, 3) convolutional encoder with
generator sequence 111 101 100.

The Viterbi algorithm was discussed first by A. J. Viterbi (ref. 4) and was shown
to be asymptotically optimum. In a later paper (ref. 5), G. D. Forney observed that
Viterbi's algorithm is optimum in the maximum-likelihood sense.
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When implementing a Viterbi algorithm decoder, several hardware variations are
possible. The particular implementation to be considered here maintains a running
score, or branch metric, on each of the ZK-I most likely paths through the trellis
structure. The information sequences corresponding to these ZK-l paths are called
survivor sequences. At each step in the algorithm, the survivor sequences terminating

in each of the ZK_l nodes are determined. The scoring system is such that the most
likely path through the trellis is the path having the lowest score.

The implementation of the Viterbi algorithm consists of the following steps.
1. All scores and survivor sequences initially are set to 0.

2. A received branch (V-bit segment) is correlated with each of the two possible

branches out of each of the ZK_1 states, and delta scores (AS'S) are generated. A AS
is the number of bit positions in which the received branch differs from the branch with

which it is being correlated. There are 2K such correlations to be performed. For
example, for the K =3, V =3 case that was considered previously in this report, it is

necessary to correlate each received 3-bit branch with each of the 23 = 8 possible 3-bit
branches (000 to 111).

3. The AS's for the two paths leaving each state are added to the previous scores
(initially 0) for that state (actually, for the path which previously terminated in that
state).

4, Scores for the two paths terminating in each of the next ZK_I states are com-
pared. The path having the lowest score is retained, and the path having the highest
score is dropped. (In case the two scores are equal, one of the paths is dropped arbi-

trarily.) Thus, 2K-1 running scores are retained.

5. The survivor sequences for the paths terminating in each of the 2K-1 states
then are stored, along with their running scores, and steps 2 to 5 are repeated. A set

of 2K— 1

of 2K—1 registers is required to store the running scores for each of these survivor
sequences. A straightforward scheme for storing the survivor sequences and scores is
to provide a survivor sequence (SS) register and a score (SC) register for each state.

That is, the SSOO and SC00 registers always will be used for storage of the survivor se-

quence (and its score) that terminates in state 00. Similarly, the SS01 and SCOI regis-

ters will be used for the sequence terminating in state 01 and so forth. This scheme

requires that the capability exists for transfer of the entire contents of one register to
another register. For example, if the survivor path that terminates in state 00 is the
one from state 01, the new contents of register SS00 should be the contents previously

1’ plus the newest bit (a 0 in this case) that resulted in state 00

registers is required to store the 2K'1 survivor sequences, and another set

stored in register SS0

being entered. Similarly, the new contents of register SC_ . should be the contents pre-

00
viously stored in register SCOI’ plus the AS for the branch between states 01 and 00.

12



.Operation of the Viterbi algorithm can be visualized by means of an example. The oper-
ation for a noise-free received sequence (no bit errors), showing the encoder and its
state diagram and illustrating the manner in which the survivor paths are traced through
the trellis structure, is presented in figure 11. A step-by-step summary of the SS and
SC register contents is contained in table I. Step 1 is merely an initialization step,
during which.all the SS and SC registers are set to 0.

At step 2, the first received branch (111) is correlated with the 23 = 8 possible
branches (000 to 111) shown in figure 11(b). The AS's that are generated are equal to
the number of bit positions in which the received branch differs from the branch under
consideration. Thus, the AS between the first received branch and the 000 branch is 3,
the AS between the first received branch and the 111 branch is 0, and so forth. The two
paths terminating in each of the four states then are compared; the path with the lowest
score is retained, and the path with the highest score is dropped. For state 00, the
000 branch (which has a score of 3) is
dropped in favor of the 100 branch (which
has a score of 2). Likewise, the 101 branch

Message
digits
1011000. ..

Encoded oulput digifs
111 101 011 010 001 100 000. ..

(a) Encoder. (b) Encoder state diagram.

Figure 11. -~ An example of Viterbi algorithm operation (noise free).
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Transmitted sequence

Error sequence -

Received sequence

Step Step Step Step Step Step Step Step
1 2 3 4 5 [ 7 8

Correct path

01

11

® @ C, @ ® ©) ® @

(¢) Tracing survivor paths through the trellis structure.

Figure 11. - Concluded.

is retained for state 01, the 111 branch for state 10, and the 110 branch for state 11.
Scores for each of the surviving paths (only one branch in length at this stage) are shown
encircled under the states in which the paths terminate. As shown in table I, these
scores, plus the survivor sequences, are stored in the appropriate SC and SS registers.
(Although the scores are indicated in decimal form for convenience, they actually would
be stored in binary form.)

At step 3, the second received branch (101) is correlated with the eight possible
branches to yield new AS's. The AS for each branch is added to the score for the state
which that branch leaves, giving eight new scores. The two paths terminating in each
state are compared, and the path with the lowest score is retained. For purposes of
illustration, in case the two paths being compared have equal scores, the uppermost
path is retained arbitrarily, and the lower one is rejected. Hence, of the two possible
paths terminating in state 10, each having a score of 3, the path coming out of state 00
is selected. Similarly, the path coming out of state 10 is selected as the path termi-
nating in state 11. Again, the storage of survivor sequences and scores at the end of
step 3 is shown in table I. The most ancient bits in the SS registers are those on the
left-hand sides. The contents of the SSOO register are obtained by shifting in the pre-

vious contents of the SS01 register, followed by a 0. Similarly, the SS01 register

14



TABLE L - REGISTER CONTENTS (S§ AND SC) FOR VITERBI ALGORITHM

EXAMPLE (NOISE FREE)

Step no. Register contents

SSp0 | SCo 501 | Cor | S0 | 10 55 | i
1 - - - - - - - -
2 0 2 0 1 1 0 1 1
3 00 2 10 ] 01 3 11 3
4 100 3 110 4 101 0 01t 4
5 100 0 4 101 0 3 100 1 5 1011 0
6 100 00 5 101 10 0 101 01 4 101 11 3
7 | 101100 0 101 010 5 101 10t 3 101111 4
8 101 100 O 0 101 1016 5 101 100 1 3 101 101 1 4

contents are obtained by shifting in the previous contents of the SS10 register, followed
by a 0; the SS10

by a 1; and the SS
lowed by a 1.

register contains the previous contents of the SSOO register, followed

11 register contains the previous contents of the SS10 register, fol-

Operation of the algorithm for steps 4 to 8 of the current example is contained in
figure 11 and in table I. The reader is encouraged to trace the various steps through
in detail and to verify the tabulated results. The register interchange operations, in
particular, should become much more obvious as this is done.

Another example of the Viterbi algorithm is provided in figure 12 and in table II.
In this case, however, it is assumed that some of the received bits are in error. Again,
the reader is encouraged to follow the procedure that was followed in the previous ex-
ample and to verify the tabulated results of figure 12 and table II.

The basic operation of the Viterbi algorithm should be clear at this point. How-
ever, one very important question has not yet been answered: When is a bit decision
made ? In tables I and II, it is shown that as each successive branch is received, the-

lengths of the 2K_1 survivor sequences increase by 1 bit. It is necessary to make a

decision on a bit after some finite length of time. Up to this point, all ZK_I survivor
sequences simply have been stored along with their associated scores. If the SS regis-

ters are made L bits long and if L is large enough, all ZK-1 SS registers eventually
will agree on the initial bit in the survivor sequences. For the noise-free example
(table I), all registers agreed on the first two bit positions after only five steps. For
the example with errors summarized in table II, however, five steps were required for
a unanimous decision on only the first bit. As will be indicated in the subsequent simu-
lation results, if the SS register lengths are made equal to approximately five or six
constraint lengths (L = 5K), all registers will, with high probability, agree on the initial
few bits of the survivor sequences, even when the data are very noisy (i.e., there are
many received errors).

15
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Message
digits

1011000, ..

Encaded autput digits

111 101 011 010 001 100 000...

(a) Encoder.

Transmitted sequence

11 101 o1l 010 001 100 000 000 00 .-
Error sequence
001 001 000 100 000 000 000 00 00 -
Received sequence
110 100 o1 110 001 100 000 000, 00 -
Step Step Step Step Step Step Step Step Step Step
1 2 3 4 5 6 7 8 9 10
[¢)] ~—
© ® @ ® ® ®© ® ©)
01 [ ]
® ® @ ® @ ®
10
O] ® ® @ ® ® ® ®
n e o L4 ®
® ® ® ® ® @ @ @ o

(c) Tracing survivor paths through the trellis structure.

Figure 12. - An example of Viterbi algorithm operation (with errors).



TABLE II. - REGISTER CONTENTS (SS AND SC) FOR VITERBI ALGORITEM

EXAMPLE (WITH ERRORS)

Register contents
Step no.

SS00 | SCoo| SSo1 | SCo1| SSi0 | SCw| S5 | 5Cn
1 - - - -- -- - -- --
2 0 1 |0 2 |1 1 1 0
3 00 2 110 2 |01 3 |11 1
4 000 4 |110 2 101 2 j111 3
5 1100 3 f1010 4 11101 4 J1011 3
6 110 00 4 {101 10 3 (11001 5 110 11 6
7 101 100 3 (110 010 6 1110 001 6 [110 011 7
8 101 100 0 3 (1100010 8 (1011001 6 (1100011 7
9 101 100 00 3 1101100 10 8 101 100 01 6 |101 100 11 7
10 101 100 000 3 |101 100010 8 |101 100 001 6 |101 100011 7

Thus, a bit decision can be made after an L-bit delay in which L is of the order
of five or six constraint lengths. To allow for the unlikely event in which all SS regis-
ters do not agree on the oldest bit in storage, the decoding decision rule will be to
choose the oldest bit of the survivor sequence having the lowest score. A decoded bit
can be shifted out of one end of the L-bit register as a new bit is shifted into the decoder.
Thus, except for an L-bit delay, decoding is performed in real time, on a bit-by-bit
basis. '
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The oldest bits contained in the SS registers of tables I and II (after several steps)
do indeed correspond to the original message input bits at the encoder. The second ex-
ample (fig. 12 and table II) not only illustrates operation of the Viterbi algorithm, but
demonstrates the error correction capability of a convolutional code that is decoded by
that algorithm.

An important decoder design parameter is the required survivor sequence register
length L, sometimes referred to as the decoder search length or block length. As dis-
cussed in the introduction, the performance gain over no coding that is achievable by
using Viterbi algorithm decoding is dependent heavily on code constraint length K.
Other parameters that affect the achievable performance gain, but do not impact the re-
quired decoder hardware as severely as constraint length, are code rate R and number
of receiver quantization levels Q. The quantization process involves representing the
integrated signal level (from the receiver demodulator) as one of a finite number (Q) of
possible levels. In general, two quantization schemes, known as "hard' and "soft" de-
cisions, are used. The term "hard decisions" (Q = 2) implies that a threshold (usually
0 volt) is set and that the input bit to the decoder is recognized as 0 or 1, depending on
whether the integrated signal level is above or below the threshold. A disadvantage of
hard-decision schemes is that all bit decisions are weighted equally, regardless of the
relative proximity to threshold of the various integrated signal levels. This disadvan-
tage is overcome by soft-decision schemes, which incorporate multiple thresholds.

One common soft-decision scheme uses eight threshold levels (Q = 8). In general,
long bits are required to indicate to the decoder the relative magnitude of each chan-

nel bit.

In addition, Viterbi decoder operation is code-dependent. For example, it has
been shown (ref. 7) that better performance is obtainable if nonsystematic codes are
used rather than systematic codes. The effects of these various parameters and of
various code types on the Viterbi decoder performance are reported in the following
sections of this paper.

SIMULATION DATA AND PERFORMANCE PREDICTIONS

Parametric studies of the Viterbi decoding algorithm were performed by using
digital computer (Univac 1108) simulations. Details of the FORTRAN IV computer pro-
gram are outlined in appendix A, and a complete program is listed in appendix B. The
program originally used an all-zero information bit sequence (without loss of generality)
and selected the upper of the two paths leading to any node in the trellis diagram when
the two scores are equal. By consistently making decisions favoring the upper paths
(which correspond to 0 information bits), the results were somewhat biased on the opti-
mistic side. The magnitude of this bias was determined later to be almost insignificant
(0. 15 decibel) when the program was modified (1) to make a random path selection when"
the scores for the two paths leading into a node are equal and (2) to accept a random se-
quence of data bits and to make random path selections.
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Details on the various codes that were simulated are tabulated in appendix C. The
codes used are the '"good' nonsystematic codes reported in references 8 and 9 and the .
good systematic codes reported in reference 10. The data presented in appendix C in-
clude the rate, the constraint length, the generator sequence, the generator coefficients,
and the shift register representation of each code used in the computer simulations.

Appendix D contains the '"raw'' data obtained from the Univac 1108 computer simu-
lations. The data tabulated in appendix D for each code include the number of informa-
tion bits used for each computer run, the value of Eb/NO (energy per information bit

per noise spectral density) and the resulting channel error rate at the decoder input,
the number of output (information bit) errors, and the output information bit error rate.
All data shown on the error probability plots presented later in this section were de-
rived from appendix D.

Effects of Noise on Predicted Performance

Some early simulation runs produced results that were found to be approximately

2 decibels on the pessimistic side (at 1 x 10-4 bit error probability), when compared to
theoretical bounds predicted by Viterbi (ref. 11). These results were obtained by using
a random generator (RAND 4) that is based on Lehmer's method. The program is listed
in appendix B. As indicated in the program listing, the noise is generated in two phases.
Phase I involves the generation of uniformly distributed random numbers. In phase II,
these random numbers are translated into Gaussian noise in the dimensioned array
QUANT. A subsequent study of various noise generation techniques disclosed that, of
all the tests performed on the uniformity of the random numbers, the dimensionality V
(where 1/V is the code rate) of the serial and run correlation was very important for
this application. Because simulation runs using the Ran-10 program, which was tested
in particular for the correlation criterion, agreed much more closely with the theoret-
ical bounds, the Ran-10 generator was used for the simulation data presented in this
report. The Ran-10 noise is generated by the power residue method (ref. 12) and has
an initial value of 373620336005 octal and a multiplier value of 1045 octal.

Effects of Code Rate on Decoder Performance
The bit error probability curves shown in figure 13, which were derived directly

from the simulation data presented in appendix D, indicate that for a constant constraint
length, the performance improvement as a result of coding is greater for rate one-third
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Figure 13. - Effects of code rate on
Viterbi decoder performance.

than for rate one-half.
crease is approximately 1.1 decibels,
whereas for K = 8, the increase is only
approximately 0. 4 decibel (for hard deci-

sion) at 1 X 10”4 bit error probability.
Note that for a given rate and constraint
length, the absolute performance gain
(over no coding) decreases with increasing
error probability and that as the error

probability approaches 1 X 10-1, the coding
gain approaches 0 or even becomes
negative.
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For K =5, this in-

Effects of Receiver Quantization on
Decoder Performance

Figure 14 was obtained by replotting
two of the hard-decision (Q = 2) curves of
figure 13 and by adding a corresponding set
of curves for soft decisions (Q = 8). The
soft-decision curves were obtained for the
same set of codes as the hard-decision
curves. Figure 14 is indicative that an ad-
ditional performance improvement of ap-
proximately 1.6 to 1.9 decibels at a bit

error probability of 1 X 10"% can be realized
by using soft rather than hard decisions at
the decoder input.
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Figure 14. - Effects of receiver quanti-
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Effects of Code Constraint Length on Decoder Performance

Although it can be seen from figures 13 and 14 that the performance improvement
Obtainable by using Viterbi algorithm decoding is greater for K = 8 than for K = 5, it
is of interest to explore this variation in somewhat greater detail. Performance curves
for Q=8, V=2, and K=4 to K=8 are shown in figure 15(a), and the correspond-
ing curves for V = 3 are shown in figure 15(b). These figures are indicative that the
performance gain increases with each increase in K. As mentioned previously, how-
ever, the hardware complexity of the decoder is highly dependent on K; consequently,

a practical upper limit on K is approximately 8. Figures 15(a) and 15(b) are indicative
that the increase in performance gain between K = 4 and K = 8 is approximately

‘1. 0 decibel for either V=2 or V = 3 (for soft decision) at 1 X 10-4 bit error

probability.
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Figure 15. - Effects of code constraint length on Viterbi decoder performance.
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CONCLUDING REMARKS

The coding gains possible (at a bit error probability of 1 X 10_4) by using Viterbi
algorithm decoding are summarized in table III.
directly from figures 13 and 15 and represent gains achievable by using the nonsyste-

matic codes.
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TABLE Ill. - PERFORMANCE GAINS ACHIEVABLE BY USING VITERBI

ALGORITHM DECODING (BEST CODES)

K v Q Approximate gain achieved at Pe =al X 10-4 Reference
as compared to uncoded PSK, © dB
5 2 2 1.90
8 2 2 2.90
Figure 13
5 3 2 3.40
8 3 2 3.70
4 2 8 3.90
5 2 8 4.10
6 2 8 ’ 4.35 Figure 15(a)
7 2 8 4.65
8 2 8 4.95
4 3 8 4.35
5 3 8 4.80
6 3 | 8 5.00 ' Figure 15(b)
7 3 8 5.20
8 3 8 5.35

3 phase-shift keying.

The simulation results and performance predictions presented in this report can
be used to establish certain design goals for Viterbi algorithm decoders and for com-
munications systems employing convolutional encoding and Viterbi decoding. It was
determined that higher performance gains (over no coding) are obtainable by using non-
systematic codes, lower code rates, and longer code constraint lengths, and by incor-
porating a soft-decision capability at the receiver. Furthermore, it was found that a
decoder search length of four times the constraint length is sufficient for nonsystematic

codes, whereas a search length of two times the constraint length was sufficient for the
systematic code considered.

The relatively large coding gains realizable, together with the hardware advan-
tages discussed in this report, make the Viterbi decoding algorithm especially attrac-
tive for incorporation into many practical communications systems. Viterbi decoding

appears to be particularly well suited for the relatively high data rate systems charac-
teristic of manned space flight.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, July 26, 1972
914-50-50-17-"72
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APPENDIX A
PROGRAM DEFINITION FOR COMPUTER SIMULATION OF THE
VITERBI DECODING ALGORITHM

In this appendix, the digital computer program developed to simulate a communi-
cations channel employing convolutional encoding and Viterbi algorithm decoding is
described. The program is based on the requirements of the Univac 1108 computer and
has been made sufficiently flexible to accept variations in the encoder and decoder pa-
rameters. With the existing program capability, the bit error probability at the decoder
output can be determined for any input signal-to-noise ratio and for any set of encoder
and decoder parameters.

PROGRAM INPUT REQUIREMENTS

I nput Data
The program has provisions for the following inputs.
Number of passes. - The number of passes (PASS) must be supplied as data. Each

PASS processes 324 information bits. This number is nine times the word length
(36 bits) for the machine and is selected for output considerations.

Number of adders. - The number of encoder modulo 2 adders (1 <=V < 3) must be
supplied as data (RATE).

Constraint length. - The constraint length K must be supplied as data (CL}.

Encoder hookup connections. - Encoder hookup connections, known as generator
coefficients (HOOKUP(1) to HOOKUP (RATE)), must be supplied as data.

Quantization threshold levels. - The quantization threshold levels for the soft-
decision logic at the decoder (QUANT(1) to QUANT(8)) must be supplied as data.

‘Crossover probability. - The binary symmetric channel crossover probability (P)
must be supplied for hard decisions.
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Data Card Formats
The data card formats are as follows.
Data card 1. - Data card 1 contains the following information,

PASS: PASS is contained in columns 1 to 5. For example: PASS = 20;
column 4 = 2, column 5 = 0.

RATE: RATE is contained in columns 6 to 10. For example: RATE = 2;
column 10 = 2.

CL: CL is contéined in columns 11 to 15. For example: CL = 8; column 15 = 8,
Data card 2. - Data card 2 contains the following information.

HOOKUP(1): HOOKUP(1) is contained in columns 1 to 5 in octal. For example:
HOOKUP(1) = 1110110|2 binary = 166[8 octal; column 3 = 1, column 4 = 6, column 5 = 6.

HOOKUP(2): HOOKUP(2) is contained in columns 6 to 10 in octal.

HOOKUP(3): HOOKUP(3) is contained in columns 11 to 16 in octal.

Data card 3. - Data card 3 contains the following information.

QUANT(1) to QUANT(8): QUANT(1) to QUANT(8) are contained in columns 1 to 5,
6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, 31 to 35, and 36 to 40 in decimal. For
example: QUANT(4) = 741; column 18 =7, column 19 = 4, column 20 = 1.

, P: P is contained in columns 41 to 45. For example: P = 1,0 percent = 0.01;
column 43 = ., column 44 = 0, column 45 = 1.

In addition to data cards 1to 3, the program requires: external noise subroutines

RAN and ZOR, which generate sets of uniformly distributed random numbers be-
tween 0 and 1.0.

PROGRAM OUTPUT DETAILS

Output Data

For the suppiied data input discussed previously, the program provides the follow-
ing outputs. :

. 1. The encoder hookup connections (generator coefficients) used in generating the
convolutional code (in octal)

2. The guantization threshold levels corresponding to a given information bit
signal-to-noise ratio or bit error rate
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3. A complete printout of the quantized channel bits (three channel bits corre-
spond to one information bit) for each PASS (Each PASS processes 324 information
bits.)

4. A complete printout of the decoder output (information bits) for the all-zero
input and for each PASS (This output is in octal; that is, if, for example, the decoded
message is 010001000. .., the printout will be 210.)

5. The number of output decoding errors in each PASS and the accumulated error
rate

After all required bits are processed, the following information is printed out.
1. The message length (number of information bits processed)
2. The encoded message length
3. The total number of decoding errors
4, The probability of decoding errors (information bits) in percent.
The input error rate that corresponds to the quantization threshold levels supplied also

is printed out.

A Sample Qutput

Fora K =5, V=2 convolutional code for which the necessary parameters are .
supplied to the program as data, the sample output will be as follows.

SOFT DECISION 3.0 PERCENT FOR (5, 2)
HOOKUP = 00035 00023 00000
QUANT = 432 630 797 908 966 990 998 1000

ERROR RATE XX
ERRORS THIS PASS XX The total number of outputs of this
INPUT CHANNEL BITS XX type is equal to PASS.

DECODED INFORMATION BITS XX

SUMMARY OF RESULTS
Noise quantization level corresponding to 3. 0 percent (information)

MESSAGE LENGTH 133488

ENCODED MESSAGE LENGTH 266976

TOTAL NUMBER OF DECODING ERRORS 672

PROBABILITY OF DECODING ERRORS IN .503
PERCENT
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FUNCTIONAL DETAILS

Definitions and Variables

The complete computer program, written in FORTRAN IV for the Univac 1108
machine, is listed in appendix B. Comment cards are inserted at appropriate places
to make the program self-explanatory. However, the following functional definitions
and notations are provided for the convenience of the reader.

PASS. - PASS is the integer value of multiples of 324 information bits to be
processed.

RATE .- RATE is the number of modulo 2 adders of the convolutional encoder.

CL. - CL is the constraint length of the code.

HOOKUP. - HOOKUP represents connections (octal representation) of modulo 2
adders to the stages of the convolutional encoder shift register (fig. A-1).

QUANT. - QUANT represents the
quantization threshold levels corresponding

Generator sequence = 111 101 110 to a given bit error rate.
] K=3
I nformation bits REG, SREG. - REG and SREG are

equivalent variable names that represent a
. 8 .. . .
maximum of 1 X2 dimensions or a maxi-

mum of 1 X 24 storage dimensions used at a
time of processing a single information bit.

O 8
The dimension 1 X2 corresponds to a value
—O -
o/ Channelbits — of  CI, = 8 and can be changed accordingly.

The two 1 X 24 dimensions are used alterna-

:88:3:33? Generator coefficients = 110 101 111 tively for two consecutive information bits.
HOOKUP(3) = 111 REG is a 36-bit sequence of 0 and 1 storing
the decoded information bits for a block
Figure A-1. - Convolutional encoder length of 36 bits. For a given CL (= K), the
example. dimension corresponds to twice the number

of nodes in the trellis diagram.

SCORE. - SCORE has a maximum of 1 X 28 dimensions. As in the case of REG,
a maximum of half its dimension is used alternately for two consecutive information
bits in calculating the score in the transition from one state to another (moving to a

node in the trellis diagram). A maximum of 1 X 24 dimensions (corresponding to the
total number of nodes) is used to store the updated score for the corresponding paths
for deciding on the best estimate of the input bit.
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ENCODE. - ENCODE is the channel bit input to the decoder. This input simulates
the noise added to the channel bits corresponding to all-zero information bits. ENCODE
has a dimension of 6 by 324, half of which is used for each alternate PASS.

TABLE. - For a given hookup connection, TABLE represents the output of the en-
coder for a state transition. The TABLE values for the example are: TABLE(1) to
TABLE(8) = 000, 011, 101, 110, 111, 100, 010, and 001, respectively. The first

2K—1 dimension of the TABLE refers to the outputs corresponding to a 0 information

bit input, whereas from 2K_1 +1 to ZK correspond to a 1 information bit input. To

the previously stored scores, the difference of the received segment and the TABLE
values leading to a node are added, and the lower of the two scores and the correspond-

ing path are stored.

AMASK(1) to AMASK(36). - AMASK is a 36-bit integer value such that

AMASK(1) = 100000000000000000000000000000000000

AMASK(12) = 000000000001000000000000000000000000

The dimension refers to the position of 1 in the all-zero sequence.

OMASK(1) to OMASK(36). - OMASK is a 36-bit integer value such that

OMASK(1) = 011111111111111111111111111111111111

OMASK(12) = 111111111110111111111111111111111111

The dimension refers to the position of 0 in the all-one sequence.
BUFFER. - BUFFER is a 36-bit decoded message in octal representation.

OUTPUT. - OUTPUT is the decoded information bit corresponding to the path with
the smallest score.

FIRST, SEC.- The FIRST and SEC pointers are set alternately to 0 and 128 (cor-

responding to the maximum 2K—1). While processing odd-numbered information bits,
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FIRST is set to 0 and SEC is set to 128; whereas for even information bits, the settings
are reversed. This interchange of FIRST and SEC values helps in keeping the SREG
and SCORE values.

TOP, BOT. - The TOP and BOT pointers are set alternately to 0 and 324. While
processing odd-numbered blocks of 324 bits (1, 3, 5..., corresponding to running PASS
values of 36, 34, 32...), TOP is set to 0 and BOT is set to 324; whereas for the even-
numbered blocks, the settings are reversed.

TOPP, BOTP. - The TOPP and BOTP pointers are set alternately to 0 and 324
after every output printout corresponding to a PASS (324 information bits).

INDEX. - INDEX is the counter for the output. Its value is incremented by 1 for
each information bit processed after the first 36 bits. The output is printed out when
INDEX = 324, then INDEX is reset to 0. This means that there is no output until
324 bits (one PASS) plus 36 bits are processed, after which the first 324 bits are printed
out. Subsequently, INDEX gives 324 bits output for every 324 bits processed.

ERROR, ACCUM. - The ERROR counter counts the number of errors in each
PASS, and ACCUM is the accumulated updated number of errors.

A.- The A is the decoded information bit error rate in percent.

SR, LB. - The SR and LB pointers are used to set the information bits in the
SREG and also to calculate the error corresponding to the path with minimum score.

H. - The H is the node pointer for the path with the smallest score.

Block Definitions

Although the program is not grouped into definite, discrete sections, it may be
broken into the following blocks for the purpose of functional details.

Block A. - Block A defines the dimensional statement and reads and writes the
data input.

Block B. - Block B defines the constants and calculates the OMASK and the
AMASK.
CL

Block C. - Block C calculates the ZK (= 277) TABLE values, which are the en-
coder output for all possible state transitions.

Block D. - Block D generates random numbers uniformly distributed between
0 and 1. 0 by calling an external subroutine RAND. If soft decisions are used, block D
generates values of ENCODE, the soft-decision channel bits corresponding to a required
bit error rate. :
Block E. - Block E processes 324 bits for each PASS. The processing involves

comparing the ZK—1 pairs of TABLE values with the corresponding ENCODE values,

32



updating the REG and SCORE values for the survival paths, calculating the decoding
error, and packing the decoded output in BUFFER. The functions of five subblocks in:
block E can be explained as follows.

Block El: Block E1 compares the two paths leading to a node (e.g., TABLE(1)

and TABLE(2) leading to node 00) with the ENCODE and updates the SCORE values.

Block Ez: Block E2 updates the INDEX values for printout.

Block E,.: Block E_, packs the de-

3 3
coded output into BUFFER and calculates _
and prints out the updated error rate, the ' o SORR
number of errors, the ENCODE values, writes inpul data
and the BUFFER for every 324 bits |
processed. Delines cansrants
calculates AMASK , OMASK
Block E,: Block E, sets the SR and |

LB pointers.

paTHS = 204 - 1 ]

!

Block E.: Block E5 updates the Block C

5 Computes TABLE values

SREG and SCORE values for each bit 1o PATHS
processed. ‘

Resets all SCORE and REG
values to 0

Block E6: Block E6 resets FIRST
Block D

and SEC values after each bit is processed Calculates ENCODE values
. . “ . 4 for
and sets pointer H for the path with mini- o o ol Srstons

mum score to be used in block E2'

—— i —————— — > —— v - . - ——— ———n_ —

Block E
Processes 324 bits
for each PASS

Blgck _____.1 NNN =1, 324 J

Biock £

Block { ] For each bit, compares
b the scores of two paths
leading to each riode

P

|
Block F. - Block F resets the TOP |

and BOT pointers after each PASS, checks |
that the bits corresponding to every PASS |
have been processed, computes the final |
error rate, and prints out the summary of !
the simulation results. : |
:

|

I

I

|

|

|

|

|

I

|

!

C

Figure A-2 is a flow chart for com-
puter simulation of the Viterbi decoding
algorithm.

First
path comparison
of each

. bit

Block
3]

(a) Start.

Figure A-2. - Flow chart for computer
simulation of the Viterbi decoding
algorithm.



Block
A

No

4— ————— J End of a PASS of 324 bits

Block F
Interchanges TOP and BOT;
calculates total errors,
checks the number of
PASSES to be processed

)
|
First PASS No : w
l .
I
Yes :
] Block E5
Is ! Compares the two scores
Yes the bit being : for each node; updates
processed 36th or earlier i the SREG (information
of the ] bits) corresponding to
pass? : the lower score
No |
: Blgck ————— e End of each bit processed
Block E {
Increments INBEX by 1; | Block Eg
compute, output : Interchanges FIRST and
) SEC values;
I calculates node value H
| for smallest score
I
|
|
1
|
[

Yes

Block E3
Packs in BUFFER; calculates
errors, error rate, total
updated error;
prints ERROR, ENCODE,
BUFFER

Interchanges TOPP and

Go to btock D

No

All PASSES
processed?

BOTP
|
] Prints out the summary
Block Eg of result
Sets SR and LB
Block
B *
Block
C (¢) End.

(b) Continuation,

Figure A-2.- Concluded.



1o
2
3.
Ye
Se
be
Te
8e
9
1Qe
lje
l12e
13
1ye
15e
lae
17e
18e
iye
2Q¢
21
42
23
4
25
26
27e
28
96
30
Jje
32
33
Ine
3ge
Jpe
37e
dge
39e
NQOe
Y4le
42
430
Yye
45
Yoo
47
48¢
4Ge
S5Qe
Sle
S2s
S3e
bys
55
See
§7e
5ge
S9e
60e
b1e
b2
&30

APPENDIX B
LISTING OF VITERBI DECODER SIMULATION PROGRAM

VITERB)] DLCODER ALGORJITHM COMPUTER PRUGLRAM LISTING ON UNIVAC 1108

BEGINNING OF glLOCK A, DEFINES DIMENSIUNAL STATEMENTS

READS AND WRITES THE DATA INPUT

TMPLICIT INTEGER(A-Z)

REAL SPREDFACC,FINITFPASS A1 AKsRANDA

REAL PDCE,P

REAL RNUM,RANDOM,ZQR

ABNORMAL RANDOM,ZUR

DIMENSION MSG(18)sQUTERRIY)

DIMENSION AMASK(36} ,0MASK (361 ,wlVaNT{8! ,REG(256,21

1y QUTPUT(648) ,SCOREI256) +BUFFER(9)+TABLE(256) ,HOOKUPLL10)
2 ENCODE(5843),S5REG(25642)

EQUIVALENCE (REGISREG)

OATA OMASK(})/s/0400000000000/ AMASK(})703772772272777/

DATA MSTART/010405/7,55TAKRT/037362033600s7
CTHiq PROGRAM 15 MACHINE INDEPENDENT EACEPT FOR w~ORD LENGTH CHANGES
CWHICH DU AFFECT THE SIMULATED SHIFT REGISTER LENGTHS AND FORMAYION
CDATA INPUTY

C ® ® 9 4 4 & @ % * 0 5 P P S P s s e T S S 4 3 % B B L T S S s
*

[alal al o

4 ® ¢ % & O 5 5 * % 3 s B s 5 5 2 5 ® S 4 8 b s 8
READ(5,630) INITIKATECL
READ(S:¢631) (HOOKVP (1), 1=} ,RATE)
WRITEL6,6490) (HOOKUPIT) 12 yRATE)
READ(S,630)n),42 .
| READ (54 630,END=750) (QUANT (1), Im},8),P
WRITELO»641) IQUANT (1) 11,8}
PASS = [INIT
Wiswlen2
PRINT 6S0,W3,wl, 02 .
650 FORMAT(IHO7X,15HPATHS OF LENGTH,13425H BITS5 ARE BE|NG USED WlTH,
1 13,1810 BITS N wURD] AND,13,15H BJTS IN WORDZs)
C ® ® o 9 & & 3 & & o B 6 4 B e " 9 0 T O " g 9 P s " s e 0 0 ¢ @
CCONSTANT DEFINIT[ON
C  ® 5 & 8 & & 0 & g 4 B S O 6 P " 4 0 & O 3 & 5 4 & & " s 0 ¢ 8
4 BEOINNING OF B8LOCK B, CALCULATES THE
4 CONSTANTS, OMASK AND AMASK
ACCUM=D
FIRSTaU
StC=) 28
TOP=Q
BOT=324
T0PP=(
80TP=32y
ERRTOT=g
INDE XD
OMASK (36}l
DO 10 JU=),34

Kelg=y
iqQ QMASK (K I=2eQ0MASK(Ke])
DU 30 Jm2,3é
30 AMASK(J)aOR((AMASK (Jeo L1 =0MASK(J]) OMASK(J=11)
GMASK=7
< ® & &8 4 5 & 8 % % 4§ 4 & A & 4 s T G " 4 ¢ S s A e g s
CCALCULATION OF CONTROL CONSTANTS
C ® & & 9 o ® o T vV s 8 b & * 3 3 & LI s ¢ ¥ 8 ° & & & & & e @

PATHS=2e0 ( (=)
[4 ® S & @ 0 & 6 6 & o ¢ & ¢ 4 ¥ 88 o & 8V ¢ ¢ ° B s s 5 & ¥ 8o »
4 ENO OF BLUCK 8
(4 .C.Qoooo....oo!c.’u.‘o-oqoo.loco.o.o!'o.to.oooool.og..oo..o.....-.
CBUL L DING QF NODE PaATH TABLE
C BEGINNING OF BLOCK C, CALCULATES THE
4 TABLE VWALUES FUR STATE TRANSIT[ONS



b4 C € ® 4 & & 8 B % % & 8 8 & s 5 s 0 8 v e b o s & o o & & & o & O
65e KK®2ePATHS

66 DO 90 J®i KK

67e M=0

b8 JJ = ABS(J=})

69 DO 80 N=1 RATE

70 K=AND{JJ,HOOKUP (NI}

70 KOUNT=0

T2e DO 50 L=sl,36

73 KADD=AND{K,0MASK L))

T4e IF (KADD) 50,50,40

758 40 KOUNT=XOR(KOQUNT 1)

76 50 CONT INVE

77e KsKQUNT

78¢ LL=3s

790 MsMeg

80 DO 70 MM=],3

8ie IF (K) 70:70,60

82e 60 M = OR(M,OMASKILL))

Ble 70 LLaLL=1l

84e 80 CONT INVE

85e 90 TABLE(J)sM

8se C

87e C ENU OF BLOCK €

88 C

89e C ® 6 o & 6 8 6 & & & 8 & 0 8 % 2 8 e O 0% 2 s S s s s s s
Jue C RANDUM BT GENERATION AND QUANTIZAT]ON
G1le C @ 8 8 6 ¢ 6 & B 6 & 5 @ % & 5 0 % e O 8 P s S % s s s B s 2 e
92 C BEGINNING OF BLOCK D, THIS BLOCK IS5 TU
93e C BE CHANGED WHEN CRANGING THE

940 4 SIMULATJON FROM HARD DECISION TO SOFT
950 C DEC]SION OR VICE=VERSA, BLOCK GENERATES THE INPUY
Foe C SEQUENCE TO THE OECUDER WHICH 1S THE ENCUDED MESSAGE
97e C CORRESPONDING TO RANDOM INPUT PLUS NOISE
98¢ DO 100 J=isPATHS

990 REG(J+1)=0
100e REG{U,2) =0

10 REG(J*12841)%0

102 REG(U+12892)80

103e SCORE{J) =0

104 oo SCORE(J+128)=0

1059 SRaw]e+|

106° SWal

107e SKm

1p8¢° La=1

109°¢ [S®SSTART

110 MlaMSTART

111° sHIFy = @

tize RANOX = RANQUM(30998125)

1i3e 1S3 = 262139

114 IMs = 282729

115 110 CONTINUVE

1160 INm}

117e IMe]

1180 1J=0

1190 T1P=p

1200 IF{TOP«NEQ)TP=9

12]e DO 131 1e],32%

j22e RNUM = ZOR(D)

123 IF{RNUM=~+5)1351136,1236

L2y4e 135 MSG{IMeTP)maANDIMSG(IM*TP) ,AMASK(IN))
125 RMSG = Q

126 0 TO 1237

127e 136 MSG{[M*TP} = OR(MOGLIM+TP) ,OMASK(IN))
1289 RMSG = |

1299 137 IN = [N ¢ |

130 IFCINGLTO37)6G0 TU 38

131 IN & |

1320 IM = M+ |

133 138 SHIFT = SHIFT/2 ¢ RMSGe2%e((CL~])

134e 00 130 Js=},RATE

1350 KSAND(SHIFT,HOOKUP ()}

1360 KQUNT = ¢



137 00 B850 L=lydé

138e¢ KADD & AND(K,OMASK(L)])

139e IF{(KADD)850,850,84%0

14Qe 840 KOUNT = XOR(KOUNT»})

14 850 CONTINVE

1420 RMSG & KQUNT o 7

143 19 » 10 + )

1440 CALL RAN(IS M1 ,AK)

1458 K = aAK e 1000,

L4640 0O 120 Le=1,8

147 M & KaQUANTI(L)

1480 IF(mM)130,120,120

149 120 CONTINUVE

150e Ib(LsGT.8)L=8

1S1e 130 ENCODE(RATE®TQPelJ) s XOR(ABS(L=1),RMSq)
152 131 CONTINVE

153 <

154 C END OF B8LOCK D

155¢ C

158¢ 4 ® & 5 3 & 6 0 P S 4 6 5 S 5 0 * P o ® o P s 8 v 8 6 " v s 0 e
1570 CINPUT TO VITERBI ALGORITHM

158 C ® & 5 & o 85 0 2 s s B S S B O 4 B o 4 T ® S s e s s o
159 C BEGINNING OF BLOCK E, THIS BLOCK PROCESSES
160e C 324 INFORMATION BITS CORRESPONDING TO EACH PASS
16} SPRED=O

1620 ERRORwy

163e DO 440 NNN=|,324

164 MMMsRATES® {NNN=1])

165 C ® S 5 9% 8 S 6 T 3 g s T S 2B T s
Y1 CYITERBI ALGOR[THM

167 CNNN= NODE COUNTER

168 CJ = PATH COUNTER (1=PATHS)

le9e CK = GENERAL VARJABLE

170 CL = ORIGINAL STATE CQUNTER

171 CM = DOUBLE ORIGINAL COUNTER

172 CN = FINAL STATE CQUNTER

173 CJJI=WOLDER OF PUSSIBLE ENCODER

174 CKK = WORKING VALUVE

175e CLL = SCORE HOLDER = FIKST

1760 CC MM - SCORE HOLDER = SECOND

177 [4 ® & ¢ 6 8 6 & % S 0 s * 0 & % s s P s et o 2 " s 00 e 0 4 s e
178 VO 400 J=1,PATHS

1790 L=Jd=1|

180 M=2e

18] M=Me |

182 NT=M

183 NN=N=PATHS

184e IF (NN} 150,140,140

185¢ 140 NaN=PATHS

1860 150 JJuTABLE (M)

187 C BEGINNING OF SUBBLOCK Ele CQMPARES THE T#O
188¢ ( PATHS LEADING TO A NODE W]TH THE [NPUT
189 FROM BLOCK D AND UPDATES THE SCOKE

190e CFIRST COMPAR]SUN

19]e LL=0

1920 NDX = RATESTOP*MMMeRATES]

193¢ DO |80 NN=],RATE

1940 KKZAND L JJrGMASK) .

1958 KK = KK<ENCODE{NDX=NN)

196 IF (KK} 160,170,170

197 160 KK==KK

198 170 LL=L KK

199e 180 JJIiJure

2UQe JU=TABLE (M ] )

20} CSECaND COMPARISON

202 MM=0

203 DO 210 NN®],RATE

‘204 KK=AND( JJisGMASK)

205 KK = KK=~ENCODE(NDXoNN)}

20¢° IF (kX) 190,200,200

207 190 KK==KK

208e 200 MM=MMeKK

209 210 Jumyyrs8



38

2100
211e
2420
2130
214¢e
2150
2160
2170
2180
21909
2400
220
2220
223°
2249
225,
226¢
2270
2289
2290
2300
2310
2320
2330
234¢
2350
2360
2370
2380
2390
2400
2410
2420
2430
2440
2450
2460
24790
2480
249¢
2500
2%lo
2520
2530
2540
2550
2569
2570
2580
2590
2600
261°
2620
2630
2640
2650
2660
2670
2689
2690
2700
2719
2720
273¢
2740
2750
2760

LLeLLoSCORE(NSFIROT)

MMaMMeSCORE(Nel¢FIRST)
CSTORAGE OF OUTPUT 81T

IF (L) 220,2201340
220 NN® Nl TePASS

IfF (NN} 230,230,240
230 NNSNNN=-®]

C BEGINNING OF SUBBLOCK E£2¢ UPDATES THE
C INDEX VALUE FOR THE PRINTOUT. STAKTS
[4 COUNTING ONLY AFTER wl B1TS ARE PHOCESSED

1F (NN} 30013006.2%0
240 KSAND(REG(H Lw) ,OMaSKtLEB))
INDEXaINDEXS !
QUTPUT (INDEXeTOPP)aK
NNTINDERTI2Y
IF (NN) 300,250,250
Sg lNDtxno

END OF SyBBLOCK &2
FOXMATTING FOR PRINTOUT

O 0 © @ % © © ¢ & 9 ¢ w ® & & 8 & 0 O & & 4 v ¢ b o
ClJ = FIRST OUTPUT TO PROCESS

Cl1K = LAST QUYPUT BT 10 PROCESS

CIN o INCREMENT PQOSITION INDEX

C ©C © & 6 ® o e ® & , ¢ & ¢ & & 3 9 ¢ O o s s * % o

[aXaNaKaKalal "

C BEGINNING OF sUBBLOCK E3: PACKS THE PECOOED
< DATA INTO BUFFER: CALCULATES AND PRINTS
< GUT YPUATED ERROR RATE, NOs» OF ERRORS
C C0000PCDNE00E0e0P8E0 00000 IIDIIIBIGRINNRI PR I PR EBRIRERtTOLRIROISIte S
C ENCODE aND BUFFER
[ SVER
IK=3¢
TP = 0

IF(BOToNED)TPEY
00 290 IM=],9
INB ]
00 280 1=2lJ,yIK
IF(QUTPUT(1eTOPP)2601270,260
260 BUFFER{IM)GOR(BUFFER(IM) yOMASK(IN))
IF(FLDUCIN=1),1 ,MSG(IM+TP)) eNE+1 IERRORSERRUR ]
G0 10 280
270 BUFFER(IMIaANDIBUFFER(IM) JAMASKIINI)
IF(FLDUGIN=]) 1 MOGUIM+TP) ) eNELOIERRORRERROR !
280 IN=INe}
TuslJeds
QUTERR( M) o XOR(BUFFER(IM) MSGIIM+TPI)
290 IK=1Ke¢3e
CPRINTOUTP
600 ACCUMOACCUMGERRON
FACC=ACCUM
FINJT=INIT
FPASS=PASS
AZFACC/{IFINIT=FPASS) © 324+0)
561 FORMAT(20H TRANSMITTED MESSAGE)
551 FORMAT(16H DECODED MESSAGE)
571 FORMAT(25M ERROR IN DECODED MESSAGE)
4
C END OF SUBBLOCK 3
4
CSHIFT OF OUTPUT REGISTER
IF(TOPP)2914291,292
291 TOPPo32y
80TPaD
GO TO 293
292 TOPPoD



277
2784
279
280¢
28]+
282+
283
284+
285
2860
287
288¢
289
290°
29)e
292
293
294¢
295¢
296
297¢
298°
299
30Qe
30}
Juze
303
304
305
306
Juze
308
309
Jl0oe
3l
312e
313e
3l4e
Jise
Jlée
L7
lee
Ji9e
320
32y
.dd2e
323
2y
Ji5e
326
327
lzge
329
330
331
332e
333
334e
335
336
337
338°
339
34pe
34 e
342°
43
J44e
345°
346
I4e
34ge
J49e

311

331

“-N"NN ~Oo

40

351

BOTPe324

CUNT JNUE

BEGINNING OF sugBLOCK E&%y SETS TwHt
SR AND LB POINTERS ,Lp FOLLUWS SR
SRsSR=|

IF (sR) 310,310,340

IF(SaeNES1)GO TO 31 w Ust pgNLY ONE WORp
SKawn )

Sx=2

Snm |

60 TO 320

SR=ng

Sk=|

Sw=2

LB=SKe|]

IF (L8) 330,330,340

IF(LaeNECL)IGO TO 331 w USE ONLY ONE WORp
Los|

LB=a)

GO TO 340

Lna2

LB=w2

END QF SuUBBLOCK L4

SCORE COMPARISON

BEGINNING OF SUBDbLGCK Ebs FOR EVERY
BIT PRUCESSED, UPDATES 2%eK vaALUES
OF SREG AND SCORE

NNsLL=MM

1F(NN) 350,351,360

CALL RAN3(1S)3,IiM3,aK)

IFLAK oLTe ¢5)060 TO 360

CFIhRQT CHOICE [5 SMaLLER

3s0

CLASTY
360

370

380

390

400

(ol oW ool ol

420

430
CFIND

450

460

[alNaWall al

SREG(J*SEC ,SH)SANU(SKREGINSFIRST 50) ;AMASKR(SR))
SREG(J*SEC,SK)aSREG{N*F|RST,5x)
SCORE(J+SEC) =L

G0 To 370

CHUICE 1S SMALLEK

SREG(J*SEC )SH)sANU(SREGIN+I*+F IRST ,SW)  AMASK{SR))
SREG{J+SEC,SX)®SREGINS[¢F [RST,5x)
SCORE(J+SEC)=MM

NNsMeay

IF (NN} 3804+390,360
SREG(JU+SEC,Sw)SORISREGIJ*SECISW) ,UMASK (4R}
CONTINUVE

END OF SuBBLOCK tb

ENV OF LOOP OUF STATES

COUNTINUE

INTERCHANGE OF KEG]STERS

BEGINNING OF SUbBLOCK E6s RESELTS THE
‘FIRST® AND *SEC' VALUES AFTER EVERY byt 15
PROCESSED, SETS THE POINTER n

CORRESPONUING TO THE MINIMUM SCORE

PATH

IF (FIKST) 420,410,420

FIRST= ]2y

SEC=Q

GO 10 430

FIRST=O

SEC=]28

CONT [NVE

MINIMUM

F2999999

DO 460 G=]sPATHg

NN®fF=SCORE lg*FIRST)

1F (NN) 460,460,450

FaSCORE{GeFIRST)

HesGeF IRST

CONTNUE

ENO OF SUbBBLOCK EBée AND BLOCK E
......Q......Q...C“.OQ.D.C.'."...........‘......l..l...!‘ll...l‘
NUMER{CAL SPREAD UF SCORES

0000000000900 8008004000008 3008000008090 9 0000008000000 0803080s00000s0

ENU OF LUUP OF 324 BITS PRUCESSED
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40

350
35
352
353e
354e
35%e
3S6e
357
dsge
359
360
Jble
362e
363e
JbNe
365
Jebe
J6Te
Jbge
69
370
3710
372.
373
374
375e
376
377
378e
379
38Qs
3B e
382e
3813
3Bye
385
EY: YY)
387
Jege
389
390
39] e
392e
393
394
395
394
397
3gge
399
4UCe
40)e
402e
4U3e
404
405
4060
4U7e

]eo
rad
Je
ye
Se
be
7
Be

490

510
C

CONTINVE

BEGINNING OF BLOCK F, RESETS TOP

AND BOT POINTEKRS FQR EVERY PaSs, PRInFS OUT
THE FINAL SUMMARY

END OF BLOCK F

IF (TOP) 470,4704+480
COUNT INVE

TOP= 324

80T=Q

GO TO 490

CONTINVE

TUP=Q

BOT=324

CONTINVE

D0 00 I=),PATHS
SCORE(I¢FIRST )aSCORE{1+FIRST)~F ,

® ® 5 & ¢ 9 6 5 T 2 O & 6 & O o+ s s 8 & o 8 * s e s b

CRET, (RN FOR ANOTHER PASS

C

510
700

701

702

7013

706

707

750

630
631
640

641}

® 8 ¢ % 0 5 & & % ¢ 8 6 B 8 & 4 0 & * g 0 ¢ o " v 3 0
ERKTOT=ERRTOT+ERROR

PASSaPASS=|

IF (PASS) 510,510t }0

ARITELG,700)

FORMATC LML ///7016X%,18HSUMMARY OF RESULTS)

WRITE(O6,ILL) P

FORMAT(1HO+20Xx)42HWNOISE WUANTIZATION LEytL CORRESPONDING TO ,Fyel,
19H PERCENT.)

NMESDG e{INIT=1)®324

NCHNDG = RATESNMESDG

WRITE(6,702)NMESVO

FORMAT(|HO 20X sl 6HMESSAGE LENGTH ®,139)
WRITE(6,703)NCHNDG

FORMAT(IHO,20Xs24HENCODED MESSAGE LENGTH =,131)
MRITE(6,706)ERRTOT

FORMAT(|HD 120X ¢33NTOTAL NyMBerR OF OECOD{ING ERRORS =, 6]122)
PDCE = FLOAT(]O00®ERRTOTI/FLOAT(NMESDG)

WRITE(6,707)1PDCE

FURMAT (1 HO+20X143HPROBABILITY OF DECOLING ERROR, [N PERCENT =,
1F1243)

G0 YO |

CONTINVE

PRINT 682,15

FORMAT( MO 5X,34HREINITIALIZATION VALVE FOR RANID =,012)
5TOP

FORMAT (|5H ERROR RATEL = ,E15.8)
FORMAT (2iH ERRURS THIS PASS = ,15)
FORMAT (2X,5(4X,2071))

FORMAT (2X,514X,040))

FORMAT(BR PASS & 414,5X,6n CL = ,13,5k,gH KATE & 13}
FORMAT(25H TOTAL DgCODING ERRORS & 418
FORMAT(BISIFS.3)

FORMAT (805)

FORMAT(|HO,7X,9HHOOKUP = ,8105,2x))
FORMAT(IHO ) 7X ,8BHWUANT ® ,8(15))

END

SUBKOUTINE RANCIS)IM, A}
1Saimeis
11215/34359738367
1S»]s=11]1234359738367)
ASABS(1S)
A=A/34359738347

RETURN

END



aanan

110

133
130

BEGINNING OF ALTERNATE VERSION OF BLOCK D.

THIS VERSION, WHICH IS TO BE USED FOR
HARD-DECISION SIMULATIONS, SHOULD
REPLACE STATEMENTS 115 TO 154.

CONTINUE

NN=RATE*324

DO 130 J=1,NN

CALL RAN(IS, MI, AK)
IF(AK. LT.P)GO TO 133
ENCODE(RATE*TOP+J)=0
GO TO 130
ENCODE(RATE*TOP+J)=1
CONTINUE

END OF ALTERNATE BLOCK D
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APPENDIX C
DETAILS OF CONVOLUTIONAL CODES USED IN VITERBI
DECODER SIMULATIONS

This appendix contains configuration details of ''good’' convolutional codes that
have been suggested by several investigators (refs. 8 to 10). The parameters (K, V,
generator sequence, and generator coefficients) of each of the various codes are sum-
marized in tables C-Ito C-III, and the same information is presented in pictorial form
(shift register representation) in figures C-1 to C-3, respectively. Althoughsimulations
were not performed using all the codes described in this appendix, details on the unused
codes are included for reference and potential use by some readers.

REFERENCE

C-1. Heller, J. A.: Sequential Decoding, Short Constraint Length Convolutional
Codes. Jet Propulsion Laboratory Space Program Summary 37-54, vol. III,
Dec. 1968, pp. 171-177.
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(c) Code 3 (V =2, K = 5).

+ +

() Code5 (V=2, K="17.

(i) Code 9 (V =3, K =5).

in reference 8.

(b) Code 2(V=2 K=4).

+ +

(d) Code 4(V =2, K=6).

+ +

(f) Code 6 (V =2, K = 8).

+)(+)(+

(h) Code 8 (V=3 K=4).

+ + +

(j) Code 10 (V = 3, K = 6).

Figure C-1. - Shift register representation of the encoders using codes suggested




+ + + + + +
(k) Code 11 (V =3, K="1). () Code 12 (V = 3, K = 8).

Figure C-1. - Concluded.

+ + + +

(a) Code 13(V =2, K =5). (b) Code 14 (V =2, K = 6).

(c) Code 15(V =2, K=17). (d) Code 16 (V =2, K = 8).
+)(+)(+ + + +
(e) Code 17(V =3, K = 4. (f) Code 18 (V =3, K = 5).
+ + + + + +
(g) Code 19 (V =3, K =6). (h) Code 20 (V =3, K=T).
+ : + +

(i) Code 21 (V=3 K=8).

Figure C-2. - Shift register representation of the encoders using codes suggested
in reference 9.
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+

+
(a) Code 22 (V =2, K = 5). (b) Code 23 (V = 2, K = 7).
(c) Code 24 (V =2, K=28). (d) Code 25 (V =3, K =5).
+ + + + + +
(e) Code 26 (V =3, K=1). (f) Code 27 (V =3, K = 8).

Figure C-3. - Shift register representation of the encoders using codes suggested
in reference 10.



APPENDIX D

SIMULATION DATA FOR VITERBI DECODER SIMULATIONS

The input and output data for the Univac 1108 computer simulations of the Viterbi
decoding algorithm are summarized in this appendix. For each code investigated,
tables D-I to D-III contain the following information.

Code

Q

K
A

Information bits

Output errors
Input error

probability

Output error
probability

Ey/Ng

Identification (the particular code)

Receive quantization levels (Q = 2 is 2-level or hard-decision;
Q = 8 is 8-level or 3-bit soft decision.)

Constraint length of the code
Number of modulo 2 adders in the encoder (Code rate = 1/V.)

Number of information bits processed (The number of channel
bits is V times this number.)

Number of information bits in error after decoding

Channel bit error probability at decoder input or information bit
error probability before coding

Information bit error probability at decoder output

( number of output errors )
number of information bits

Ratio of energy per information bit to single-sided noise spectral
density at decoder input

49



(NONSYSTEMATIC CODES)?

TABLE D-I1. - VITERBI HARD-DECISION (Q = 2) SIMULATION DATA

Input error

Code Information | Output s Output error | E,/N_,
. probability . b0

number bits errors (b) probability dB
3 66744 22 3.038x10°2 [ 3.3x10° %[ 5.99
92 4.523x10°2 | 1.38x1073| 4.58

128 4.981x10°2 | 1.92x1073| 4. 32

915 6.975x10°2 | 1.371x10°2]| 3.38

9 66744 0 5.00 x 10™2 - 6.09
11 6.993x10°2 | 1.65x10"%| 5.14

52 9.00x10°2 | 7.8x107%| 431

127 | 10.008x10° 2| 1.9x10°%| 3.02

16 66744 22 4.523x1072 | 3.3x10"%| 458
46 4.881 % 1072 6.9 X 10'3 4, 32

628 6.975x10°2 | 9.41x10°3| 3.38

2839 8.99x10°2 | 4.254x10"%| 2.55

21 66744 3 8.013x10°3 | 4.5x107°| 472
22 9.0x10°2 | 3.3x107%| 431

63 | 10.008x1072 | 9.4x107%| 3.92

129 | 10.996x1072 | -1.93x1073| 3.52

4Refer to figure 11 and table 1.

bChannel bit error probability (after coding).
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TABLE D-1II. - VITERBI SOFT-DECISION (Q = 8) SIMULATION DATA (NONSYSTEMATIC CODES)a

Code

Information

Output

Input error

Output error

number bits errors probability probability E“b/ N0’ a8

2 66744 4 b ox1072 5.99x107° 4.325
128 by 0 1.91x10°3 3.24

446 b3 o 6.68 x 10”° 2.48

3 66744 1 b0 1.49x107° 4.325
100 by 0 1.5x10°3 3.24

. 306 by.5 4.58%10°° 2.84

319 P30 4.78%x1073 2.48

4 66744 56 Dy, 8.39x10 % 3.24
154 by 5 2.307x10"° 2.84

305 b3 0 4.57%1073 2. 48

5 66744 16 by 0 2.397x 10”4 3.24
67 by, 1.004x 1073 2.84

190 b3 9 2.847x 1073 2. 48

16 66744 8 b0 1.2x107* 3.24
56 Py 5 8.39x1072 2.84

167 b3 2.5x107° 2.48
8 66744 4 b, 5.99 X 107° 4.325
67 o, 1.004x 1073 3.24

224 by 3.356 % 10”5 2.48

9 66744 4 11 5.99x 1070 3.54
18 0 2.7x10°4 3.24

7 by, 1.06x10°3 2. 84

189 P39 2.83%x10°° 2. 48

19 66744 22 by.0 3.296 x 10" % 3.24
55 by, 8.24x107% 2.84

148 b3 0 2.217x10°3 2.48

20 66744 15 by 0 2.247x10"4 3,24
23 by 3.446x 10”4 2.84

65 by 9.7ax1074 2. 48

21 66744 15 by, 2.2x107% 2.72
64 by, 9.6x10* 2.48

2Refer to figures 12 to 14 and tables I and II.

bInformation bit error probability (before coding).

€Channel bit error probability (after coding).




TABLE D-III. - VITERBI SOFT-DECISION (Q = 8) SIMULATION DATA

(SYSTEMATIC CODES)?

Code

Information

Output

Input error

Output error

number bits errors prob(a\:)k;ility probability Eb/ Ny, dB
22 66744 2 3.0x1072 3x107°] 5. 49
13 4.8 1.9 x10~ 4.86
43 5.0 6.4x10°%| 4.33
1717 7.0 2.65x10"° 3.38
437 9.0 7.09x10°% | 2.55
25 66744 6 7. 9x107° | 5.14
21 9. 3.1x1074|  4.31
2 | 1L 1.08x107% |  3.54

ARefer to figures 13 and 14.

bChannel bit error probability.
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