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SIMULATION RESULTS FOR THE VITERBI

DECODING ALGORITHM

ByBar tusH. Batson, RobertW. Moorehead,
and S. Zafar H. Taqvi*

Manned Spacecraft Center

SUMMARY

Performance predictions for convolutional decoders using the Viterbi decoding
algorithm are presented in this report. Bit error probability is chosen as the measure
of performance and, by using digital computer simulations, is calculated as a function
of energy per bit per noise spectral density for various encoder and decoder param-
eters. Coding gains based on comparisons with uncoded, coherent phase-shift-keyed
system performance are determined for code rates of one-half and one-third and for
constraint lengths of 4 to 8. Both hard-decision and soft-decision decoders are consid-
ered, and bit error probability is calculated for both systematic and nonsystematic
codes. The effect of decoder block length on decoding performance also is included to
provide a more complete estimate of the relationship between performance and decoder
complexity.

INTRODUCTION

One characteristic that has made all-digital communications links appear increas-
ingly attractive for many applications in recent years is that error control encoding and
decoding can be applied to achieve significant improvements in overall link performance.
The introduction of coding into a digital link allows, for a fixed transmit (or receive)
power level and for an allowable bit error probability, transfer of more information per
unit time. Alternately, for a fixed information rate, the introduction of coding can pro-
vide a reduction in the transmit or receive power level required to maintain a specified
error probability. The exact increase in information rate that can be achieved, or the
amount of coding gain (allowable reduction in power level) that is realizable, depends
on the particular class of encoding and decoding technique employed and on various en-
coder and decoder parameters that must be selected by the communications system de-
sign engineer.

*Lockheed Electronics Company, Inc.



Convolutional codes generally are conceded to be better than block codes for many
channels (ref. 1), particularly with respect to ease of implementation, equipment com-
plexity, power consumption, weight, and flexibility. Various algorithms, including
several sequential decoding algorithms (refs. 2 and 3), are available for decoding con-
volutional codes. Sequential decoders incorporate searchback operations in the hypoth-
esis and testing of various paths through the convolutional code tree. Thus, if a path is
hypothesized and subsequently is determined to be in error, the decoder has the capa-
bility to discard that path, back up, and test other possible paths. The advantage of
such a capability is that the probability of an undetected error appearing at the decoder
output is extremely small. However, a memory unit is required to store past data for
possible recall. In addition, a buffer is required to store incoming bits while the de-
coding operations (including searchbacks) are being performed. Because there is al-
ways some finite probability that the number of operations required to decode a
particular bit can be quite large, it is possible for the input buffer to overflow. During
such an overflow condition, the decoder output consists either of uncorrected channel
bits or of erasures.

Parameters that affect the achievable error probability when using sequential de-
coding include information rate, code rate, code constraint length, input buffer size,
and memory size (which determines the allowable number of searchbacks). In general,
for fixed power levels, a smaller error probability can be obtained by decreasing infor-
mation rate, by decreasing code rate (adding more redundancy to the transmitted se-
quence), or by increasing any of the other parameters noted previously. The code
constraint length used for systems employing sequential decoding is typically rather
large (greater than 20).

A primary advantage of sequential decoding is that a rather large performance
gain is achievable. However, the variable decoding time per bit that results because of
searchbacks is a distinct disadvantage for some applications. Other disadvantages in-
clude the requirements for a memory unit and an input buffer. Fortunately, two of
these disadvantages (the variable decoder output rate and the requirement for an input
buffer) become inconsequential when the data rate is low enough to allow a large speed
advantage (computation rate per data rate) of the logic unit. Sequential decoding, there-
fore, is a very attractive technique for use in systems having moderate data rates (be-
low perhaps a few megabits per second).

The Viterbi algorithm (ref. 4) for decoding convolutional codes recently has re-
ceived considerable attention, largely because of certain inherent advantages over the
various sequential decoding algorithms. This algorithm has been shown (ref. 5) to be
maximum-likelihood and, therefore, optimum for the decoding of convolutional codes.
The primary advantage of a Viterbi algorithm decoder is speed. Whereas the perform-
ance gain (over no coding) achievable by using sequential decoding is.limited primarily
by the information rate, the gain achievable by using Viterbi decoding is limited pri-
marily by the constraint length of the code and is relatively independent of the informa-
tion rate. This independence is possible because no searchbacks are required by the
Viterbi algorithm, and only a very small logic speed advantage is required. Viterbi
decoders have the additional advantage of operating at a fixed rate; thus, no input buffer
is required.

The primary disadvantage of Viterbi decoders is that the decoder hardware com-
plexity increases exponentially with increasing code constraint length. Because



performance gain also increases with constraint length, hardware constraints impose
a limit on the performance gain achievable by using Viterbi decoders. In practice,
these hardware constraints dictate that the constraint length be limited to approxi-
mately 8. Fortunately, the decoder hardware requirements do not increase substan-
tially for lower rate codes or when soft decisions are provided by the receiver.

SYMBOLS

CD coding gain

E, energy per information bit

E energy per channel bit

K constraint length of convolutional code

L search length or block length of Viterbi decoder

NO single-sided noise spectral density

P bit error probability

Q number of receiver quantization levels

R rate of convolutional code (R = 1/V)

S0(t), S..(t) transmitted waveforms corresponding to binary 0 and 1

St(t),S*(t) received (noisy) waveforms corresponding to binary 0 and 1

V number of encoded (channel) bits per information bit

FUNDAMENTALS OF DIGITAL COMMUNICATIONS SYSTEMS
EMPLOYING CONVOLUTIONAL ENCODING

AND DECODING

In the following sections, the concepts involved in determining the performance
of the general coded digital communications system are introduced, and the basic con-
cepts of convolutional encoding and decoding are discussed. This material is intended
merely to provide background information that may aid some readers in developing a
more complete understanding of the convolutional decoding problem.



The General Coded Digital Communications System

A simple coded digital communications system is illustrated in block diagram
form in figure 1. The system consists of a source, which generates data in the form
of binary digits (information bits); an encoder, which converts each information bit into
V channel bits (V = 2 for this example) according to a certain scheme governed by the

code; and a transmitter, which generates

Transmitted channel
(encoded) bits
...11, 01. 10...—7 -...S (t) S (t), S It)

S,(U- Y" so(t)-

- Received
channel bits
...11.00, 10..

t
error

analog waveforms s0(t) and corre-

Encoder
/ TransmitterL s0.ti. sl(t. 1 Channel

./ Information bits /
* ...1,0,0... /

Source

...S'lt) Sjlt), S

S'ttl, S-U) Sjlt
W_J

1 Receiver \ Decoder

1
Information bits

User

spending to 0 and 1 for transmission through
the channel. The signal is corrupted by
noise (generally assumed to be additive,
white, and Gaussian) in the channel, and the
input to the receiver consists of a sequence
of noisy waveforms and S*(t). A de-

cision device, which processes the noise
waveforms and provides estimates of the
corresponding transmitted channel bits, is
incorporated in the receiver. Because the
input to the decision device is noisy, there
is always some finite probability that a bit
decision is erroneous. It has been shown
(ref. 6) that, for binary signaling over an
additive, white, Gaussian noise channel and
for optimum (correlation or matched filter)
detection, the probability of bit error at the
receiver output is

Figure 1. - Block diagram of coded
digital communications system. (1)

where E is the signal energy of a channel bit at the input to the decision device, Nn
t/ VJ

is the single-sided noise spectral density of the receiver, and erfc () is the comple-
mentary error function defined by

erfc X - — (2)

K coding is not employed by the system of figure 1, however, the receiver bit detector
makes decisions on information bits directly. With constant transmit and receive power
levels for the coded and uncoded systems, more signal energy is available for a direct
decision on an information bit than for a decision on a channel bit. The redundancy
added to the transmitted signal when coding is incorporated into the system results in
less energy per channel bit and, therefore, in a higher bit error probability at the re-
ceiver output. The task of the decoder, which operates on the reconstructed sequence



of channel bits at the receiver output, is to correct as many bit errors as possible.
For the achievement of a net coding gain, the information bit error probability after de-
coding must be less than it was for the uncoded system. ,An uncoded information bit
error probability curve can be constructed by substituting E, (energy per information

bit) for E in equation (1). This uncoded bit error probability curve is shown in

figure 2.

Several encoding techniques are avail-
able for incorporation into digital transmis-
sion systems. These techniques generally
are categorized as either block or convolu-
tional. For block codes (frequently referred
to as algebraic codes), a certain structured
block of channel bits is assigned to each pos-
sible group of information bits. Block codes
are highly structured, in a mathematical
sense, and the various decoding algorithms
for block codes generally either exploit code
properties that result from this mathemat-
ical structure or apply probabilistic infor-
mation obtained from the received signal.
For the reasons pointed out in the introduc-
tion to this paper, convolutional codes were
chosen for the current investigation.

10,-5

ID''
6

ED/NO.
10

Figure 2. - Bit error probability as a
function of E, /N_ for an uncoded

digital communications system.

Convolutional Encoding Fundamentals

For convolutional encoding, each in-
formation bit (rather than each block of in-
formation bits) is encoded into V channel
bits. A simple convolutional encoder, which
consists of a shift register with K stages
connected in some prescribed manner to V
modulo 2 adders, is shown in figure 3. For
each input bit shifted into the register, there
are V encoded output bits, corresponding
to one revolution of the commutator. There-
fore, the length of the output (channel) se-
quence will be V times the length of the
input message. The rate of the code is de-
fined as

(3)

and is a-measure of the number of message (information) bits per transmitted symbol.
The length of the shift register K is referred to as the constraint length of the code and



Information bits
is, roughly, a measure of the duration in
which the encoded output bits are affected
by any particular input bit. That is, each
group of V channel bits depends on the cur-
rent information bit and on the K - 1 pre-
vious information bits.

A particular convolutional encoder
may be described in terms of a set of gener-
ator coefficients that specify which stages of
the shift register are connected to each
modulo 2 adder. For example, two typical
encoder configurations are shown in figure 4.
The binary digits represent actual connec-
tions to each adder (e. g., binary 11101 11011
indicates that the first adder is connected to
the first, second, third, and fifth stages of
the five-stage register, and that the second
adder is connected to the first, second,

fourth, and fifth stages). The binary generator coefficients sometimes are converted
to octal form for notational convenience. Thus, binary 11101 11011 becomes octal 35 33,
and binary 110101 101111 becomes octal 65 57.

Commutator

Channel (encoded) bits

Figure 3. - Binary (K, V) convolutional
encoder.

K -5

Generator coefficients

Binary

11101 11011

Octal

3533

K • 6

Generator coefficients

Binary

110101 101111
Octal

6557

(a) First example. (b) Second example.

Figure 4. - Typical convolutional encoder connections.

An alternate means of describing a particular encoder configuration is the gener-
ator sequence. For a (K, V) convolutional encoder, the generator sequence is equivalent
to the output sequence that results from transmitting a K-bit input message consisting
of a leading 1 followed by all zeros. One method by which the generator sequence can
be determined is shown in figure 5. However, there is another way of determining the
generator sequence without construction of a table.

Note that if a single 1 is located in some stage (e.g., stage x) of the shift register,
the output digit from any given adder will be a 1 if that adder is connected to stage x, or
a 0 otherwise. Thus, the first V digits of the generator sequence represent the mod-
ulo 2 adders that are connected to the first stage of the K-stage register, the second V
digits represent the adders that are connected to the second stage of the register, and



Message
digits

Encoded output digits
111 101100...

Generator sequence

Shift
no.
Initial
state

1
2
3
4
5
•
•
•

Input
digits

--
1
0
0
0
0

•
•
•

Register
contents

000

100
010
001
000
000
•
•
•

Encoded
output

"
111
101
100
000
000

•

•
•

so forth. For the example shown in figure 5,
all three adders are connected to the first
stage; therefore, the first three digits of the
generator sequence are 111. Because only
the first and third adders are connected to
the second stage of the register, the second
three digits of the generator sequence are
101. Likewise, the last three digits of the
generator sequence are 100. The length of
the generator sequence (111 101 100) is
KV = (3)(3) - 9 bits.

Figure 5. - Determination of the gener-
ator sequence for a (3, 3) convolu-
tional code.

Because the generator coefficients
specify which stages of the shift register are
connected to each modulo 2 adder and the
generator sequence specifies which modulo 2
adders are connected to each stage of the
shift register, there should be (and indeed
is) a direct relationship between the gener-
ator sequence and the generator coefficients.

Given the generator coefficients, the generator sequence can be determined by inspec-
tion. Thus, for the example shown in figure 4(a), in which the generator coefficients
are 11101 11011, the generator sequence is 11 11 10 01 11 and is obtained by pairing
like digits (first with first, second with second, etc.) of the two generator coefficients.
A reverse procedure, in which the generator sequence is first separated into groups of
V digits, can be followed to obtain the generator coefficients from the generator
sequence.

For those particular encoder configurations in which the first modulo 2 adder is
connected to only the first stage of the shift register, the resulting codes are said to be
systematic. For systematic codes, then, the first bit of each V-bit channel sequence is
the same as the current information bit. All codes that are not systematic are said to
be nonsystematic.

As will be shown later, the Viterbi decoding algorithm yields better performance
with nonsystematic convolutional codes. From a set of convolutional codes, only cer-
tain "good" codes are used for implementation. These good codes lead to minimum de-
coding error probability. A computer search technique usually is applied to select a
good convolutional code, based on preselected criteria (such as maximized minimum
distance, maximized free distance, and noncatastrophic error propagation properties).

Convolutional Decoding Fundamentals

Each bit shifted into the K-bit register results in one of two possible V-bit output
sequences. One possible output sequence corresponds to shifting in a 0, whereas the
other corresponds to shifting in a 1. The specific V-bit sequence that results when a
bit is shifted into the register, however, depends on the previous K - 1 bits that are
retained in the register. Thus, a given input message bit affects the current V-bit out--
put sequence and the next K - 1 V-bit output sequences as well.



The behavior of any convolutional encoder may be illustrated diagrammatically
by a tree structure, as shown in figure 6 for the encoder of figure 5. The labels on the
branches indicate encoder outputs. By convention, the code tree is arranged so that the
upper branch from any node corresponds to shifting a 0 into the K-stage register and the
lower branch to shifting in a 1. The encoded output sequence corresponding to a given
input message sequence may be found by following the appropriate path through the code
tree. For example, an input message sequence of 1011... results in an output sequence
of 111 101 Oil 010

Decoding of convolutional codes in-
_ variably is based on the code tree structure.

Sequential decoding algorithms assume a
tentative transmitted message, encode this
message with a replica of the encoder, and
compare the resultant coded output sequence
with the actual received sequence. K these
two coded sequences agree to within some
specified amount, decoding is assumed to
have been accomplished. If agreement be-
tween the two sequences does not meet the
desired criteria, another tentative message
is assumed, and the process is repeated.

The optimum convolutional decoder
chooses the path through the code tree that
has maximum likelihood, given the received
sequence. That is, the decoded message
sequence will provide a coded output se-
quence that is closer (differs in fewer bit
positions) to the actual received sequence
than the coded output sequence correspond-
ing to any other possible message sequence.
Because the code tree apparently is infinite

(i. e., the number of branches doubles each time a bit is shifted into the encoder),
choosing a maximum-likelihood path through a code tree such as that shown in figure 6
would appear to be a hopeless problem. This is not the case, however, as will be
pointed out in subsequent discussion.

Inspection of figure 6 reveals that, although the code tree does grow without bound
as more and more message digits are shifted into the encoder, the growth is completely
repetitive after a point. Note that as the Kth (third) message bit is shifted into the en-
coder, eight possible output branches (000 to 111) exist. As the (K + l)th message bit
is shifted in, there are 16 possible branches, but only eight of these are distinct. Be-
cause the upper eight branches are identical to the lower eight branches, it is not neces-
sary to show all 16 branches on the diagram. The tree structure could be simplified
greatly by connecting nodes A and E, B and F, C and G, and D and H. If this is done
for the (K + l)th input bit, it becomes evident that the same procedure could be re-
peated for the ( K + 2 ) t h input bit, again for the (K + 3)th input bit, and so forth. Thus,

K K-1at no location in the tree is it necessary to draw more than 2 total branches or 2
total nodes.

Encoded
output

000

111

000

111

101

010

UOO

111

100

on

001

no

1 ,
12.

IP
ti

ir
IL

t n0

17
Tl

rrtL

£7TL

fni Til

in
101

010

100

on
001

no
000

in
101

010

100

on
001

no

Figure 6. - Code tree for a (3, 3) con-
volutional encoder with generator
sequence 111 101 100.



Additional insight into the basic simplicity of the convolutional tree structure can
be gained by examining the state diagram of the encoder. An encoder state is defined
as the contents of the first (most recent) K - 1 stages of the K-stage shift register.

K-1 TC-1There are 2 possible states, corresponding to the 2 possible combinations of
K - 1 binary digits. Given an encoder state, only two possible encoder states can be
entered as a message digit is shifted into the register. The first possible state corre-
sponds to shifting in a 0, whereas the other possibility corresponds to shifting in a 1.
Because the most ancient (Kth) bit in the encoder register is dumped as a message bit
is shifted in and, therefore, cannot affect any subsequent state, that Kth bit is not con-
sidered when defining the register state.

The state diagram for the (3, 3) convolutional encoder that was considered in pre-
vious examples in this report is shown in figure 7. The circled numbers represent en-
coder states, the single digits (in parentheses) represent input message digits, and the
triple digits represent the encoded output digits that occur as the encoder state is
changed. For example, if the current encoder state is 10, two possible states can be
reached as a message digit is shifted in. These possible states are 01 and 11 and cor-
respond, respectively, to 0 and 1 inputs. Assuming a 0 input, the total shift register
contents will be 010, resulting in the encoded output digits 101. Alternately, if a 1 is
shifted in, the register contents will be 110, resulting in the encoded output digits 010.
This procedure was followed to obtain the complete encoder state diagram shown in
figure 7.

Message
digits

- Encoded
output
digits Encoder

Enclosed output digits

(a) Encoder. (b) State diagram.

Figure 7. - State diagram for a (3, 3) convolutional encoder with generator
sequence 111 101 100.



The state diagram allows a convenient and straightforward determination of the
output message corresponding to a particular sequence of input digits. For example,
if the input sequence is 10110..., and the encoder is initially at state 00 in figure 7,
the first digit (a 1) results in an output of 111 and a new encoder state of 10. The sec-
ond digit (a 0) changes the state to 01 and provides an output of 101. The third digit
(another 1) changes the state back to 10 and provides an output of Oil, and so forth.
This procedure could be repeated for an indefinite sequence of input message bits and
is more convenient than tracing through the tree diagram.

The state diagram can be redrawn in a form that is even more convenient for dis-
cussing the operation of the Viterbi decoding algorithm. The redrawn state diagram is

K-1shown in figure 8, in which the 2 states are represented as nodes on a trellis
structure. The branches of the trellis represent possible moves from state to state.
It should be emphasized again that only two possible states can be entered from a given
state. Likewise, a given state can be entered from one of only two possible previous
states.

The possible moves (from state to
state) are independent of the particular gen-
erator sequence being used. For example,
state 00 can be entered only from state 00
or state 01, regardless of the modulo 2
adder connections of the encoder. However,
the encoded output digits that correspond to
each move (and are labeled beside each pos-
sible move) are code-dependent. For in-
stance, a different generator sequence
results, in general, in encoded output digits
other than 101 and 001 corresponding to the
two paths terminating in state 01.

ooo 000
O 00

New state

Figure 8. - Redrawn state diagram for
a (3, 3) convolutional encoder with
generator sequence 111 101 100.

In the trellis structure of figure 8, the
uppermost of the two paths leaving any one
node corresponds to shifting a 0 into the
register, while the lower path corresponds
to shifting in a 1. This statement can be
verified by comparing figure 8 with the orig-
inal state diagram shown in figure 7. All
four paths terminating in the upper two

states (00 and 01) are paths that resulted when a 0 was shifted into the register, and all
four paths terminating in the lower two states (10 and 11) are paths that resulted when
a 1 was shifted in because the first digit of a new register state has to be the same as
the message digit that was just shifted in. Thus, states 00 and 01 can be entered only
if a 0 is shifted in.

The encoded output sequence corresponding to a given input message sequence can
be determined entirely from the trellis structure of figure 8. However, for convenience,
this structure is sometimes expanded to the form shown in figure 9. The expanded trel-
lis in figure 9 actually is an alternate way of viewing the code tree shown earlier in fig-
ure 6. Although only the first set of nodes is labeled on the expanded trellis structure,

10



000 000 000 000 000 000

Figure 9. - Expanded version of the
state diagram (trellis structure)
for a (3, 3) convolutional encoder
with-generator sequence
111 101 100.

01 o

10 O o • • •

successive nodes at the same level corre-
spond to the same state (i. e., the uppermost
node always corresponds to state 00, etc.).
The manner in which a path through the ex-
panded trellis is determined for a typical
input message sequence (10110.. .) is illus-
trated in figure 10. The resulting output
sequence is 111 101 Oil 010 001

The Viterbi decoding algorithm, which
will be discussed in the next section of this
report, is visualized best in terms of the ex-
panded trellis structure. This algorithm
basically attempts to find a path through the
trellis that is as close as possible (differs
in the fewest bit positions) to the received
encoded sequence. The information se-
quence (input message sequence) correspond-
ing to this path then is assumed to be the
same as the original input message at the
encoder. Given the received channel se-
quence, the algorithm is optimum in the
sense that the most probable transmitted
message is selected.

DESCRIPTION OF THE VITERBI
DECODING ALGORITHM

no o

Input message sequence = 10110...

Figure 10. - A typical path through the
expanded trellis structure for a
(3, 3) convolutional encoder with
generator sequence 111 101 100.

From the state diagrams (including
the trellis structures) shown previously in
this report, it can be observed that once
two paths are in the same state (by merging
at a common node), both paths have identical
extensions out of that state. Because this is
the case, it can be observed that both paths
subsequently will correlate equally well with
the received sequence. Therefore, because
the objective is to find the path that corre-

lates best with the received sequence, it should be possible to eliminate one of the two
paths that enter any state. By eliminating the smaller correlated path entering each
state, only those paths that never can be candidates for the highest correlated path
through the trellis structure are discarded. This is the general idea on which the
Viterbi decoding algorithm is based.

The Viterbi algorithm was discussed first by A. J. Viterbi (ref. 4) and was shown
to be asymptotically optimum. In a later paper (ref. 5), G. D. Forney observed that
Viterbi's algorithm is optimum in the maximum-likelihood sense.

11



When implementing a Viterbi algorithm decoder, several hardware variations are
possible. The particular implementation to be considered here maintains a running

K-1score, or branch metric, on each of the 2 most likely paths through the trellis
TC— 1structure. The information sequences corresponding to these 2 paths are called

survivor sequences. At each step in the algorithm, the survivor sequences terminating
TC — 1in each of the 2 nodes are determined. The scoring system is such that the most

likely path through the trellis is the path having the lowest score.

The implementation of the Viterbi algorithm consists of the following steps.

1. All scores and survivor sequences initially are set to 0.

2. A received branch (V-bit segment) is correlated with each of the two possible
K-1branches out of each of the 2 states, and delta scores (AS's) are generated. A AS

is the number of bit positions in which the received branch differs from the branch with
r£

which it is being correlated. There are 2 such correlations to be performed. For
example, for the K - 3, V = 3 case that was considered previously in this report, it is

3
necessary to correlate each received 3-bit branch with each of the 2=8 possible 3-bit
branches (000 to 111).

3. The AS's for the two paths leaving each state are added to the previous scores
(initially 0) for that state (actually, for the path which previously terminated in that
state).

K-14. Scores for the two paths terminating in each of the next 2 states are com-
pared. The path having the lowest score is retained, and the path having the highest
score is dropped. (In case the two scores are equal, one of the paths is dropped arbi-

TC— 1trarily.) Thus, 2 running scores are retained.
TC— 15. The survivor sequences for the paths terminating in each of the 2 states

then are stored, along with their running scores, and steps 2 to 5 are repeated. A set
K-1 K-lof 2 registers is required to store the 2 " survivor sequences, and another set
K-1of 2 registers is required to store the running scores for each of these survivor

sequences. A straightforward scheme for storing the survivor sequences and scores is
to provide a survivor sequence (SS) register and a score (SC) register for each state.
That is, the SSnn and SCnf) registers always will be used for storage of the survivor se-

quence (and its score) that terminates in state 00. Similarly, the SS-.. and SC01 regis-
ters will be used for the sequence terminating in state 01 and so forth. This scheme
requires that the capability exists for transfer of the entire contents of one register to
another register. For example, if the survivor path that terminates in state 00 is the
one from state 01, the new contents of register SSnf. should be the contents previously
stored in register SS0 , plus the newest bit (a 0 in this case) that resulted in state 00
being entered. Similarly, the new contents of register SCnf) should be the contents pre-
viously stored in register SCni, plus the AS for the branch between states 01 and 00.

12



Operation of the Viterbi algorithm can be visualized by means of an example. The oper-
ation for a noise-free received sequence (no bit errors), showing the encoder and its
state diagram and illustrating the manner in which the survivor paths are traced through
the trellis structure, is presented in figure 11. A step-by-step summary of the SS and
SC register contents is contained in table I. Step 1 is merely an initialization step,
during which.all the SS and SC registers are set to 0.

3
At step 2, the first received branch (111) is correlated with the 2=8 possible

branches (000 to 111) shown in figure ll(b). The AS's that are generated are equal to
the number of bit positions in which the received branch differs from the branch under
consideration. Thus, the AS between the first received branch and the 000 branch is 3,
the AS between the first received branch and the 111 branch is 0, and so forth. The two
paths terminating in each of the four states then are compared; the path with the lowest
score is retained, and the path with the highest score is dropped. For state 00, the

000 branch (which has a score of 3) is
dropped in favor of the 100 branch (which
has a score of 2). Likewise, the 101 branch

Message
digits
1011000...

Encoded output digits
111101011010001 100000...

(a) Encoder. (b) Encoder state diagram.

Figure 11. - An example of Viterbi algorithm operation (noise free).

13



Transmitted sequence

111
Error sequence

000
Received sequence

111

Step

1

Step

2

Oil

000

on

010

000

010

001

000

001

00

Step

4

Step

5

Step

6

A
/(3)\ © ©

Correct path

© (D ©

(c) Tracing survivor paths through the trellis structure.

Figure 11. - Concluded.

©

is retained for state 01, the 111 branch for state 10, and the 110 branch for state 11.
Scores for each of the surviving paths (only one branch in length at this stage) are shown
encircled under the states in which the paths terminate. As shown in table I, these
scores, plus the survivor sequences, are stored in the appropriate SC and SS registers.
(Although the scores are indicated in decimal form for convenience, they actually would
be stored in binary form.)

At step 3, the second received branch (101) is correlated with the eight possible
branches to yield new AS's. The AS for each branch is added to the score for the state
which that branch leaves, giving eight new scores. The two paths terminating in each
state are compared, and the path with the lowest score is retained. For purposes of
illustration, in case the two paths being compared have equal scores, the uppermost
path is retained arbitrarily, and the lower one is rejected. Hence, of the two possible
paths terminating in state 10, each having a score of 3, the path coming out of state 00
is selected. Similarly, the path coming out of state 10 is selected as the path termi-
nating in state 11. Again, the storage of survivor sequences and scores at the end of
step 3 is shown in table I. The most ancient bits in the SS registers are those on the
left-hand sides. The contents of the SS~0 register are obtained by shifting in the pre-

vious contents of the SSQ1 register, followed by a 0. Similarly, the SSQ1 register

14



TABLE I. - REGISTER CONTENTS (SS AND SC) FOR VITERB1 ALGORITHM

EXAMPLE (NOISE FREE)

Step no.

1

2

3

4

5

6

7

8

Register contents

SS00

-

0

00

100

1000

10000

101 100

101 100 0

scoo

-
2

2

3

4

5

0

0

SS01

--
0

10

110

101 0

101 10

101 010

101 101 0

scoi

• --
1

0

4

3

0

5

5

SSlO

--

1

01

101

100 1

101 01

101 101

101 100 1

SC10

--
0

3

0

5

4

3

3

^ll

--

1

11

O i l

101 1

101 11

101 111

101 101 1

scll
--
1

3

4

0

3

4

4

contents are obtained by shifting in the previous contents of the SS1Q register, followed

by a 0; the SS „ register contains the previous contents of the SSQO register, followed

by a 1; and the SS^ register contains the previous contents of the SS1Q register, fol-
lowed by a 1.

Operation of the algorithm for steps 4 to 8 of the current example is contained in
figure 11 and in table I. The reader is encouraged to trace the various steps through
in detail and to verify the tabulated results. The register interchange operations, in
particular, should become much more obvious as this is done.

Another example of the Viterbi algorithm is provided in figure 12 and in table II.
In this case, however, it is assumed that some of the received bits are in error. Again,
the reader is encouraged to follow the procedure that was followed in the previous ex-
ample and to verify the tabulated results of figure 12 and table II.

The basic operation of the Viterbi algorithm should be clear at this point. How-
ever, one very important question has not yet been answered: When is a bit decision
made ? In tables I and n, it is shown that as each successive branch is received, the

K-1lengths of the 2 ~ survivor sequences increase by 1 bit. It is necessary to make a
TC- 1

decision on a bit after some finite length of time. Up to this point, all 2 survivor
sequences simply have been stored along with their associated scores. If the SS regis-

TC— 1
ters are made L bits long and if L is large enough, all 2 " SS registers eventually
will agree on the initial bit in the survivor sequences. For the noise-free example
(table I), all registers agreed on the first two bit positions after only five steps. For
the example with errors summarized in table II, however, five steps were required for
a unanimous decision on only the first bit. As will be indicated in the subsequent simu-
lation results, if the SS register lengths are made equal to approximately five or six
constraint lengths (L « 5K), all registers will, with high probability, agree on the initial
few bits of the survivor sequences, even when the data are very noisy (i. e., there are
many received errors).
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Encoded output digits
111 101 Oil 010001 100 000..

(a) Encoder. (b) Encoder state diagram.

Iransmitted sequence

111 101 Oil 010 001 100 000 000 000 •

Error sequence

001 001 000 100 000 000 000 000 000 •
Received sequence

110 100 Oil '

Step

1

Step s

2

ep Step

3 4

110

Step

5

001

Step

6

100

Step

;

000

Step

8

000.

Step

1

000 •

Step

10

©• ® ® ©

(c) Tracing survivor paths through the trellis structure.

Figure 12: - An example of Viterbi algorithm operation (with errors).
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TABLE II. - REGISTER CONTENTS (SS AND SC) FOR VITERBI ALGORITHM

EXAMPLE (WITH ERRORS)

Step no.

1

2

3

4

5

6

7

8

9

10

Register contents

SS00

--

0

00

000

110 0

110 00

101 100

101 100 0

101 100 00

101 100 000

scoo

--

1

2

4

3

4

3

3

3

3

SS01

--

0

10

110

101 0

101 10

110 010

110 001 0

101 100 10

101 100 010

SC01

--

2

2

2

4

3

6

8

8

8

SS10

--

1

01

101

110 1

110 01

110 001

101 100 1

101 100 01

101 100 001

SC10

--

1

3

2

4

5

6

6

6

6

SS11

--

1

11

111

101 1

110 11

110 Oil

110 001 1

101 100 11

101 100 Oil

scll
--

0

1

3

3

6

7

7

7

7

Thus, a bit decision can be made after an L-bit delay in which L is of the order
of five or six constraint lengths. To allow for the unlikely event in which all SS regis-
ters do not agree on the oldest bit in storage, the decoding decision rule will be to
choose the oldest bit of the survivor sequence having the lowest score. A decoded bit
can be shifted out of one end of the L-bit register as a new bit is shifted into the decoder.
Thus, except for an L-bit delay, decoding is performed in real time, on a bit-by-bit
basis.
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The oldest bits contained in the SS registers of tables I and II (after several steps)
do indeed correspond to the original message input bits at the encoder. The second ex-
ample (fig. 12 and table II) not only illustrates operation of the Viterbi algorithm, but
demonstrates the error correction capability of a convolutional code that is decoded by
that algorithm.

An important decoder design parameter is the required survivor sequence register
length L, sometimes referred to as the decoder search length or block length. As dis-
cussed in the introduction, the performance gain over no coding that is achievable by
using Viterbi algorithm decoding is dependent heavily on code constraint length K.
Other parameters that affect the achievable performance gain, but do not impact the re-
quired decoder hardware as severely as constraint length, are code rate R and number
of receiver quantization levels Q. The quantization process involves representing the
integrated signal level (from the receiver demodulator) as one of a finite number (Q) of
possible levels. In general, two quantization schemes, known as "hard" and "soft" de-
cisions, are used. The term "hard decisions" (Q = 2) implies that a threshold (usually
0 volt) is set and that the input bit to the decoder is recognized as 0 or 1, depending on
whether the integrated signal level is above or below the threshold. A disadvantage of
hard-decision schemes is that all bit decisions are weighted equally, regardless of the
relative proximity to threshold of the various integrated signal levels. This disadvan-
tage is overcome by soft-decision schemes, which incorporate multiple thresholds.
One common soft-decision scheme uses eight threshold levels (Q = 8). In general,
log2Q bits are required to indicate to the decoder the relative magnitude of each chan-
nel bit.

In addition, Viterbi decoder operation is code-dependent. For example, it has
been shown (ref. 7) that better performance is obtainable if nonsystematic codes are
used rather than systematic codes. The effects of these various parameters and of
various code types on the Viterbi decoder performance are reported in the following
sections of this paper.

SIMULATION DATA AND PERFORMANCE PREDICTIONS

Parametric studies of the Viterbi decoding algorithm were performed by using
digital computer (Univac 1108) simulations. Details of the FORTRAN IV computer pro-
gram are outlined in appendix A, and a complete program is listed in appendix B. The
program originally used an all-zero information bit sequence (without loss of generality)
and selected the upper of the two paths leading to any node in the trellis diagram when
the two scores are equal. By consistently making decisions favoring the upper paths
(which correspond to 0 information bits), the results were somewhat biased on the opti-
mistic side. The magnitude of this bias was determined later to be almost insignificant
(0. 15 decibel) when the program was modified (1) to make a random path selection when
the scores for the two paths leading into a node are equal and (2) to accept a random se-
quence of data bits and to make random path selections.
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Details on the various codes that were simulated are tabulated in appendix C. The
codes used are the "good" nonsystematic codes reported in references 8 and 9 and the
good systematic codes reported in reference 10. The data presented in appendix C in-
clude the rate, the constraint length, the generator sequence, the generator coefficients,
and the shift register representation of each code used in the computer simulations.

Appendix D contains the "raw" data obtained from the Univac 1108 computer simu-
lations. The data tabulated in appendix D for each code include the number of informa-
tion bits used for each computer run, the value of E /Nn (energy per information bit
per noise spectral density) and the resulting channel error rate at the decoder input,
the number of output (information bit) errors, and the output information bit error rate.
All data shown on the error probability plots presented later in this section were de-
rived from appendix D.

Effects of Noise on Predicted Performance

Some early simulation runs produced results that were found to be approximately
_4

2 decibels on the pessimistic side (at 1 x 10 bit error probability), when compared to
theoretical bounds predicted by Viterbi (ref. 11). These results were obtained by using
a random generator (RAND 4) that is based on Lehmer's method. The program is listed
in appendix B. As indicated in the program listing, the noise is generated in two phases.
Phase I involves the generation of uniformly distributed random numbers. In phase II,
these random numbers are translated into Gaussian noise in the dimensioned array
QUANT. A subsequent study of various noise generation techniques disclosed that, of
all the tests performed on the uniformity of the random numbers, the dimensionality V
(where 1/V is the code rate) of the serial and run correlation was very important for
this application. Because simulation runs using the Ran-10 program, which was tested
in particular for the correlation criterion, agreed much more closely with the theoret-
ical bounds, the Ran-10 generator was used for the simulation data presented in this
report. The Ran-10 noise is generated by the power residue method (ref. 12) and has
an initial value of 373620336005 octal and a multiplier value of 1045 octal.

Effects of Code Rate on Decoder Performance

The bit error probability curves shown in figure 13, which were derived directly
from the simulation data presented in appendix D, indicate that for a constant constraint
length, the performance improvement as a result of coding is greater for rate one-third
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Q • 2; K • 5, 8; V • 2, 3
Nonsystematic codes
Simulation on Univac 1108
L - 3 6

Note: For data on codes, see appendixes C and D

10
4 6

Eb/N0,dB

Effects of Receiver Quantization on
Decoder Performance

Figure 14 was obtained by replotting
two of the hard-decision (Q = 2) curves of
figure 13 and by adding a corresponding set
of curves for soft decisions (Q = 8). The
soft-decision curves were obtained for the
same set of codes as the hard-decision
curves. Figure 14 is indicative that an ad-
ditional performance improvement of ap-
proximately 1. 6 to 1.9 decibels at a bit

-4error probability of 1 x 10 can be realized
by using soft rather than hard decisions at
the decoder input.

Figure 13. - Effects of code rate on
Viterbi decoder performance.

than for rate one-half. For K = 5, this in-
crease is approximately 1.1 decibels,
whereas for K = 8, the increase is only
approximately 0. 4 decibel (for hard deci-

-4sion) at 1 x 10 bit error probability.
Note that for a given rate and constraint
length, the absolute performance gain
(over no coding) decreases with increasing
error probability and that as the error

probability approaches 1 x 10 , the coding
gain approaches 0 or even becomes
negative.

Q • 2, 8; K - 5, 8; V • 3
Nonsystematic codes
Simulation on Univac 1108
L = 36

Note: For information on codes, see appendixes C and D
I I I I

Figure 14.- Effects of receiver quanti-
zation levels (Q) on Viterbi decoder
performance.
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Effects of Code Constraint Length on Decoder Performance

Although it can be seen from figures 13 and 14 that the performance improvement
Obtainable by using Viterbi algorithm decoding is greater for K = 8 than for K = 5, it
is of interest to explore this variation in somewhat greater detail. Performance curves
for Q = 8, V = 2, and K = 4 to K = 8 are shown in figure 15(a), and the correspond-
ing curves for V = 3 are shown in figure 15(b). These figures are indicative that the
performance gain increases with each increase in K. As mentioned previously, how-
ever, the hardware complexity of the decoder is highly dependent on K; consequently,
a practical upper limit on K is approximately 8. Figures 15(a) and 15(b) are indicative
that the increase in performance gain between K = 4 and K = 8 is approximately

1. 0 decibel for either
probability.

V = 2 or V = 3 (for soft decision) at 1 x 10 bit error

Nonsystematic codes
Simulation on Univac 1108
1 = 36

Note: For information on codes, see appendixes C and D

10

10

Code 20,
K - 7

Code 21,

1 I
Nonsystematic codes
Simulation on Univac 1108
L - 3 6

\
Note: For information on codes, see appendixes C and D

I I
6 8

Eb/N0,dB
10

Eb/N0,dB

(a) Q = 8, V = 2. (b) Q = 8, V = 3.

Figure 15. - Effects of code constraint length on Viterbi decoder performance.
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Nonsystematic code (code 211
Simulation on Univac 1108

Uncoded
coherent
PSK

Notes: (1) CO • coding gain, dB

(2) For information on code
see appendixes C and D

10 12

(c) K - 8, V - 3, Q -
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(d) K = 5, V = 3, Q = 8 (systematic
code).

Figure 17. - Concluded.

CONCLUDING REMARKS

-4The coding gains possible (at a bit error probability of 1 x 10 ) by using Viterbi
algorithm decoding are summarized in table III. These coding gains were determined
directly from figures 13 and 15 and represent gains achievable by using the nonsyste-
matic codes.
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TABLE III. - PERFORMANCE GAINS ACHIEVABLE BY USING VITERBI

ALGORITHM DECODING (BEST CODES)

K

5

8

5

8

4

5

6

7

8

4

5

6

7

8

V

2

2

3

3

2

2

2

2

2

3

3

3

3

3

Q

2

2

2

2

8

8

8

8

8

8

8

8

8

8

_ 4
Approximate gain achieved at P - 1 x 10

as compared to uncoded PSK, a dB

1.90

2.90

3.40

3.70

3.90

4.10

4.35

4.65

4.95

4.35

4.80

5.00

5.20

5.35

Reference

}

> Figure 13

J

\

> Figure 15(a)

j

'Figure 15(b)

Phase-shift keying.

The simulation results and performance predictions presented in this report can
be used to establish certain design goals for Viterbi algorithm decoders and for com-
munications systems employing convolutional encoding and Viterbi decoding. It was
determined that higher performance gains (over no coding) are obtainable by using non-
systematic codes, lower code rates, and longer code constraint lengths, and by incor-
porating a soft-decision capability at the receiver. Furthermore, it was found that a
decoder search length of four times the constraint length is sufficient for nonsystematic
codes, whereas a search length of two times the constraint length was sufficient for the
systematic code considered.

The relatively large coding gains realizable, together with the hardware advan-
tages discussed in this report, make the Viterbi decoding algorithm especially attrac-
tive for incorporation into many practical communications systems. Viterbi decoding
appears to be particularly well suited for the relatively high data rate systems charac-
teristic of manned space flight.

Manned Spacecraft Center
National Aeronautics and Space Administration

Houston, Texas, July 26, 1972
914-50-50-17-72
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APPENDIX A

PROGRAM DEFINITION FOR COMPUTER SIMULATION OF THE

VITERBI DECODING ALGORITHM

In this appendix, the digital computer program developed to simulate a communi-
cations channel employing convolutional encoding and Viterbi algorithm decoding is
described. The program is based on the requirements of the Univac 1108 computer and
has been made sufficiently flexible to accept variations in the encoder and decoder pa-
rameters. With the existing program capability, the bit error probability at the decoder
output can be determined for any input signal-to-noise ratio and for any set of encoder
and decoder parameters.

PROGRAM INPUT REQUIREMENTS

Input Data

The program has provisions for the following inputs.

Number of passes. - The number of passes (PASS) must be supplied as data. Each
PASS processes 324 information bits. This number is nine times the word length
(36 bits) for the machine and is selected for output considerations.

Number of adders. - The number of encoder modulo 2 adders (1 < V < 3) must be
supplied as data (RATE).

Constraint length. - The constraint length K must be supplied as data (CL).

Encoder hookup connections. - Encoder hookup connections, known as generator
coefficients (HOOKUP(l) to HOOKUP (RATE)), must be supplied as data.

Quantization threshold levels. - The quantization threshold levels for the soft-
decision logic at the decoder (QUANT(l) to QUANT(8)) must be supplied as data.

Crossover probability. - The binary symmetric channel crossover probability (P)
must be supplied for hard decisions.
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Data Card Formats

The data card formats are as follows.

Data card 1. - Data card 1 contains the following information.

PASS: PASS is contained in columns 1 to 5. For example: PASS = 20;
column 4 = 2 , column 5 = 0.

RATE: RATE is contained in columns 6 to 10. For example: RATE = 2;
column 10 = 2.

CL; CL is contained in columns 11 to 15. For example: CL = 8; column 15 = 8.

Data card 2. - Data card 2 contains the following information.

HOOKUP(l): HOOKUP(l) is contained in columns 1 to 5 in octal. For example:
HOOKUP(l) = 1110110 _ binary = 166 L octal; column 3 = 1 , column 4 = 6, column 5 = 6.

L t o

HOOKUP(2): HOOKUP(2) is contained in columns 6 to 10 in octal.

HOOKUP(3): HOOKUP(3) is contained in columns 11 to 16 in octal.

Data card 3. - Data card 3 contains the following information.

QUANT(l) to QUANT(8): QUANT(l) to QUANT(8) are contained in columns 1 to 5,
6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, 31 to 35, and 36 to 40 in decimal. For
example: QUANT(4) = 741; column 18 = 7, column 19 = 4, column 20 = 1.

P: P is contained in columns 41 to 45. For example: P = 1. 0 percent = 0.01;
column 43 = ., column 44 = 0, column 45 = 1.

In addition to data cards 1 to 3, the program requires external noise subroutines
RAN and ZOR, which generate sets of uniformly distributed random numbers "be-
tween 0 and 1.0.

PROGRAM OUTPUT DETAILS

Output Data

For the supplied data input discussed previously, the program provides the follow-
ing' outputs.

1. The encoder hookup connections (generator coefficients) used in generating the
convolutional code (in octal)

2. The quantization threshold levels corresponding to a given information bit
signal-to-noise ratio or bit error rate

28



3. A complete printout of the quantized channel bits (three channel bits corre-
spond to one information bit) for each PASS (Each PASS processes 324 information
bits.)

4. A complete printout of the decoder output (information bits) for the all-zero
input and for each PASS (This output is in octal; that is, if, for example, the decoded
message is 010001000. . ., the printout will be 210.)

5. The number of output decoding errors in each PASS and the accumulated error
rate

After all required bits are processed, the following information is printed out.

1. The message length (number of information bits processed)

2. The encoded message length

3. The total number of decoding errors

4. The probability of decoding errors (information bits) in percent.

The input error rate that corresponds to the quantization threshold levels supplied also
is printed out.

i

A Sample Output

For a K = 5, V = 2 convolutional code for which the necessary parameters are
supplied to the program as data, the sample output will be as follows.

SOFT DECISION 3. 0 PERCENT FOR (5, 2)
HOOKUP - 00035 00023 00000
QUANT - 432 630 797 908 966 990 998 1000

ERROR RATE XX
ERRORS THIS PASS XX
INPUT CHANNEL BITS XX
DECODED INFORMATION BITS XX

The total number of outputs of this
type is equal to PASS.

SUMMARY OF RESULTS
Noise quantization level corresponding to 3. 0 percent (information)
MESSAGE LENGTH 133488
ENCODED MESSAGE LENGTH 266976
TOTAL NUMBER OF DECODING ERRORS 672
PROBABILITY OF DECODING ERRORS IN . 503

PERCENT
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FUNCTIONAL DETAILS

Definitions and Variables

The complete computer program, written in FORTRAN IV for the Univac 1108
machine, is listed in appendix B. Comment cards are inserted at appropriate places
to make the program self-explanatory. However, the following functional definitions
and notations are provided for the convenience of the reader.

PASS. - PASS is the integer value of multiples of 324 information bits to be
processed.

RATE. - RATE is the number of modulo 2 adders of the convolutional encoder.

CL. - CL is the constraint length of the code.

HOOKUP. - HOOKUP represents connections (octal representation) of modulo 2
adders to the stages of the convolutional encoder shift register (fig. A-l).

Generator sequence • 111

QUANT. - QUANT represents the
quantization threshold levels corresponding
to a given bit error rate.

REG, SREG. - REG and SREG are
equivalent variable names that represent a

maximum of 1 x 2
,4

8 dimensions or a maxi-

HOOKUP(l) • 110
HOOKUPI2) • 101
HOOKUP13) -111

Generator coefficients • 110 101 111

Figure A-l. - Convolutional encoder
example.

mum of 1x2^ storage dimensions used at a
time of processing a single information bit.

0

The dimension 1x2 corresponds to a value
of CL = 8 and can be changed accordingly.

4
The two 1x2 dimensions are used alterna-
tively for two consecutive information bits.
REG is a 36-bit sequence of 0 and 1 storing
the decoded information bits for a block
length of 36 bits. For a given CL (= K), the
dimension corresponds to twice the number
of nodes in the trellis diagram.

SCORE. - SCORE has a maximum of 1 x2 dimensions. As in the case of REG,
a maximum of half its dimension is used alternately for two consecutive information
bits in calculating the score in the transition from one state to another (moving to a

4
node in the trellis diagram). A maximum of 1 x 2 dimensions (corresponding to the
total number of nodes) is used to store the updated score for the corresponding paths
for deciding on the best estimate of the input bit.
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ENCODE. - ENCODE is the channel bit input to the decoder. This input simulates
the noise added to the channel bits corresponding to all-zero information bits. ENCODE
has a dimension of 6 by 324, half of which is used for each alternate PASS.

TABLE. - For a given hookup connection, TABLE represents the output of the en-
coder for a state transition. The TABLE values for the example are: TABLE(l) to
TABLE(8) =000, Oil, 101, 110, 111, 100, 010, and 001, respectively. The first
K-12 " dimension of the TABLE refers to the outputs corresponding to a 0 information

TC— 1 X*
bit input, whereas from 2 + 1 to 2 correspond to a 1 information bit input. To
the previously stored scores, the difference of the received segment and the TABLE
values leading to a node are added, and the lower of the two scores and the correspond-
ing path are stored.

AMASK(l) to AMASK(36). - AMASK is a 36-bit integer value such that

AMASK(l) - 100000000000000000000000000000000000

AMASK(12) - 000000000001000000000000000000000000

The dimension refers to the position of 1 in the all-zero sequence.

OMASK(l) to OMASK(36). - OMASK is a 36-bit integer value such that

OMASK(l) = 011111111111111111111111111111111111

OMASK(12) = 111111111110111111111111111111111111

The dimension refers to the position of 0 in the all-one sequence.

BUFFER. - BUFFER is a 36-bit decoded message in octal representation.

OUTPUT. - OUTPUT is the decoded information bit corresponding to the path with
the smallest score.

FIRST, SEC. - The FIRST and SEC pointers are set alternately to 0 and 128 (cor-
K-1responding to the maximum 2 ). While processing odd-numbered information bits,
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FIRST is set to 0 and SEC is set to 128; whereas for even information bits, the settings
are reversed. This interchange of FIRST and SEC values helps in keeping the SREG
and SCORE values.

TOP, EOT. - The TOP and EOT pointers are set alternately to 0 and 324. While
processing odd-numbered blocks of 324 bits (1, 3, 5. . ., corresponding to running PASS
values of 36, 34, 32. . .), TOP is set to 0 and EOT is set to 324; whereas for the even-
numbered blocks, the settings are reversed.

TQPP, BOTP. - The TOPP and BOTP pointers are set alternately to 0 and 324
after every output printout corresponding to a PASS (324 information bits).

INDEX. - INDEX is the counter for the output. Its value is incremented by 1 for
each information bit processed after the first 36 bits. The output is printed out when
INDEX = 324, then INDEX is reset to 0. This means that there is no output until
324 bits (one PASS) plus 36 bits are processed, after which the first 324 bits are printed
out. Subsequently, INDEX gives 324 bits output for every 324 bits processed.

ERROR, ACCUM. - The ERROR counter counts the number of errors in each
PASS, and ACCUM is the accumulated updated number of errors.

A. - The A is the decoded information bit error rate in percent.

SR, LB. - The SR and LB pointers are used to set the information bits in the
SREG and also to calculate the error corresponding to the path with minimum score.

H. - The H is the node pointer for the path with the smallest score.

Block Definitions

Although the program is not grouped into definite, discrete sections, it may be
broken into the following blocks for the purpose of functional details.

Block A. - Block A defines the dimensional statement and reads and writes the
data input.

Block B. - Block B defines the constants and calculates the OMASK and the
AM ASK.

K CLBlock C. - Block C calculates the 2 (= 2 ) TABLE values, which are the en-
coder output for all possible state transitions.

Block D. - Block D generates random numbers uniformly distributed between
0 and 1. 0 by calling an external subroutine RAND. If soft decisions are used, block D
generates values of ENCODE, the soft-decision channel bits corresponding to a required
bit error rate.

Block E. - Block E processes 324 bits for each PASS. The processing involves
K-1comparing the 2 " pairs of TABLE values with the corresponding ENCODE values,
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updating the REG and SCORE values for the survival paths, calculating the decoding
error, and packing the decoded output in BUFFER. The functions of five subblocks in
block E can be explained as follows.

Block E : Block E compares the two paths leading to a node (e. g., TABLE(l)

and TABLE(2) leading to node 00) with the ENCODE and updates the SCORE values.

Block E • Block E0 updates the INDEX values for printout.
£t c*

Block E, Block E packs the de-

coded output into BUFFER and calculates
and prints out the updated error rate, the
number of errors, the ENCODE values,
and the BUFFER for every 324 bits
processed.

Block E
LB pointers. 4'

Block E sets the SR and

Block EcJ (_. Block E,. updates theo o
SREG and SCORE values for each bit
processed.

Block E, Block E0 resets FIRSTo
and SEC values after each bit is processed
and sets pointer H for the path with mini-
mum score to be used in block E~.

Block F. - Block F resets the TOP
and EOT pointers after each PASS, checks
that the bits corresponding to every PASS
have been processed, computes the final
error rate, and prints out the summary of
the simulation results.

Figure A-2 is a flow chart for com-
puter simulation of the Viterbi decoding
algorithm.

Block A
Dimension; reads,
writes input data

Block B
Defines constants;
calculates AMASK, OMASK

: = :>CL - 1

Block C
Computes TABLE values
1 to PATHS

Resets all SCORE and REG
values to 0

Block D
Calculates ENCODE values
1 to RATE x 324 for
hard or soft decisions

[

Block E
Processes 324 bits
(or each PASS

NNN = 1. 324

Block Ej

For each bit, compares
the scores of two paths
leading to each node

(a) Start.

Figure A-2. - Flow chart for computer
simulation of the Viterbi decoding
algorithm.
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Is
the bit being

processed 36th or earlier
of the
pass?

Block E?
Increments INDEX by 1;
compute, output

Block E3

Packs in BUFFER; calculates
errors, error rate, total
updated error;
prints ERROR, ENCODE,
BUFFER

InterchangesTOPP and
BOTP

Block E4

SetsSR andLB

Block

Block
C

Block C

BlockE3

Compares the two scores
for each node; updates
the SREG (information
bits) corresponding to
the lower score

End of each bit processed

Block E6

Interchanges FIRST and
SEC values;
calculates node value H
for smallest score

End of a PASS of 324 bits

Block F
Interchanges TOP and BOT;
calculates total errors,
checks the number of
PASSES to be processed

Go to block D

Yes

Prints out the summary
of result

(c) End.

(b) Continuation.

Figure A-2. - Concluded.
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APPENDIX B

LISTING OF VITERBI DECODER SIMULATION PROGRAM

l» C V I T E R B I DtCOUER A L G O R I T H M COMPUTE* PROl>K*M LISTING ON U N I V A C I J 08
2« C
3* C BEGINNING Of BLOCK A, OEFjNES 0 I HE NS I ON At- STATEMENTS
H» C READS AND &RITE5 THE DATA INPUT
S» I M P L I C I T INTE&ERtA-Z)
6» HEAL SPRED.FACC ,F JN| T.FPASS, A. AK .RANLM
7* HEAL POCE.P
8* REAL RNU* (RANDOM >ZOR
9> A B N O R M A L KANDOM.ZOR

I0> D I M E N S I O N MS&I 18> l O U T E R R I V I
IJ» DIMENSION AMASK(3A| ,OMA.SK<36 I .iUANUtl' ,RtG(256,2l
IZ» I, OUTPUTt^SI , SCORE I 2561 iBUFFE*(9l .TAOLE<2S6) .HOOKUP! 10) i
13* 2 ENCODE (58H3I .SRE&(2S6.2>
IS» EQUIVALENCE IHE&iiREG)
lb« D A T A OMASM I 1/OtOOOOOOOOOQO/ . A M A S K I | )/Oj77777777777/
16* D A T A MSTART/OiCsOb/ , SS T AK T / Oi 7 ifc^OJ JbOUi/
17» tTHis PKO&RAM is MACHINE INDEPENDENT EACEPT FOK *ORO LENOTH CHAN&ES
18» C*H|CM QO A F F E t T THE SIMULATED SHlFl HEGISTtR UEN&THS AND F O R M A T I O N
!»• C D A T A INPUT
2Q> C .................................

2|» C • ...................... • .........
it' REAOI&.6301 I N I T . K A T E . C L
23* R E A U ( b i 6 3 1 ) I H O O K U P | l | l I * l , R A T E I
It* *R1 TE I 6 , 6 * ( O H H O O K U P I 1 ) , I -l , « A T f c )

26* 1 READ! bt630,END*7bU) (UUANT ( 1 ) , 1 • l ,bl |P
27« N K l T b t 6 i 6 M l ) IQUAN1 | 1 ) , !•! ,B)
28» PASS • I N I T
29« *J«*J »*2
30* PH (NT 6SO,*3,*I , A2
3J» *50 F O R M A T ( I M O i 7X , l&MPATnS OF LE N& T M , 1 3 i 2 i>M b J T S AWE BE|NG USED * l T M i
32* 1 13, IBM bITS |N «UROl AND,13,|SH b J T S IN »ORD2»)
33* C .......................... • ......
3t» CCOwsTANT D E F I N I T I O N
3S» C ............. • ............ • ......
3fc» C BEGINNING OF BLOtH. 8, CALCULATES THE
37« C CONSTANTS. DMAS* AND AMASK
38* ACCUM'Q
3»» FIRST-U
10* SEC- 128
1|» TOP«0
^2» 80T.321*
•*!• TOPP.Q

•*6» 1NDEX«U
17» OMASK ( J6)«l
•<e« DO 10 j» j i Jt
•<9» K-36-J
50* 10 QM*Sn; (M«2«OMASM K» I I
&!• DO 30 J-2,36
&2» 30 AMAS< ( J I «OK (( AMASK (J. I I -OMASK ( J I | ,OMASK ( J- l ) )
&3» 6MASlC«7
it* C ............ ....... .>..
5S« C C A L r U L A T l O N OF CONTROL CONSTANTS
b6« C ..................... ..

&8» C ..................
59» C END OF BLOCK B
*o« c .......... •••« ......... ............
M« C8U1LOINI, OF NODE P A T H TABLE
62» C B E G I N N I N G OF BLOIK C, C A L C U L A T E S THE
63» C TABLE VALUES FOR STATt T R A N S I T I O N S
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65* KK-,
66* 00 90 J«l , K K

67* M-0
68* JJ • ABSI J-l I
69* 00 80 N-1.RATE
70* K=AND(J.
7 |* KOUNT'O
72* DO 50 L«l,36
73> K A O D - A N O I K ,
7H« IF (KADD) 50,50,tu
75. MO K O U N T « * O R ( K O U N T ,1)
76* 50 CONTINUE
77« K«KOUNT
78* LL«36
79* M«M«8
80* DO 70 M M - l , 3
81* IF I K) 70.70,60
82* 60 M • O R t M . O M A S K I L L ) )

83* 70 LL-LL-I
8M* 80 C O N T I N U E
85* 90 TABLEIJI'M

86* C
87* C ENU OF BLOCK C

88* C
U9« t • . , . . . . • • • « • » • « « « • • • • • • • • • •

9U* C RANDOM BIT G E N E R A T I O N AND Q U A N T I Z A T I O N
91* C . . . . » . . • • • « • • • • » • • • • • • • • • • «
92* C B E G I N N I N G OF BLOCK. D, THIS BLOCK IS TO
93. C BE CHANGED *H£N C H A N G I N G THE
VM« C S I M U L A T I O N FROM HARD DECISION TO SOFT
95. c . D E C I S I O N OR V I C E - V E R S A , BLOCK GENERATES THE INPUT
94. C SEQUENCE TO THE DECODER *HlCH IS ThE ENCODED MESSAGE
970 C CORRESPONDING TO KANDOM INPUT PLUS NOISE
98* 00 100 J«l.PATHS
99« REG(J,1)-0

1UO» REGIj,2I-0
|0|• RE G I J * I 28,1 l«0
102* REGIj*I28,2)»0

103* SCORE(JI«0
IOM* 100 SCORE!j«128)«Q
I 05* SR»*1 * 1
106* S*.l
107° SX-2

IDS* L*'l
109* IS'SSTART
10. M I » M S T A R T
11° SHIFy • 0
U« RANOH = R«
13* 153 • 262139
IM« IMJ « 282729
15* 110 CONTINUE
16* IN-1
17* I M « I
18° U-0

119° TP«0
120° If(TOP.NE.O)TP«9
121* DO 131 1-1 ,32H
122* RNUM = ZOR(O)
123* IF (RNUM-.5) 135. I-*6, 136
12M* 135 M S G I 1 M * T P ) " A N D l M S G ( I M « T P ) , A M A 5 K ( I N ) )
125* RMSG • 0
126* GO TO 137
127* 136 MSG(|M»TP) « OR|"SGI IMtTP) .OMASK I IN) )

128° RMSG = I
1 29* 137 IN « IN * I
130* IF I1N.LT.37)GO TO 138
131* IN « 1
132* IM . |M » 1
133* 138 SHIFT * SHIFT/2 » RM5&*2*•1CL-I )
lite 00 130 J-l.RATE
135° K'ANOISHIfT,HOOKUP(J))
136° KOUNT • 0
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137* 00 6SO L"l,36
138* KADD • «ND<K.OlASK(L))
13V* IF lKADO)8SO,8bOle

l40
1HO* 8HO KOUNT • X O R I K O U N T . i l

HI* BSO CONTINUE
I1*!* RMSG • KOUNT • 7
HJ« U • U * 1
»tt* CALL R A N I I S,Ml,AK)
i^S* K • AK « 1000.
1*6* 00 120 L-l ,8
117* H • K-WUANT(L)
1*8* IFIMJ130,120,|2Q
|S9* 120 CONTINUE
ISO* It(L.6T.8IL=8
151* 130 ENCODE(RATE*TOP*IJ) • X O R ( A B b I L - 1 I ,RMbfa,
152* 131 CONTINUE
153* C
15H» C END OF BLOCK D
1SS* C
154* t ••...••••..••..........•

1S7» CINPuT TO V I T E R B 1 AL&ORITHM
Ib8« C ........................

15»» C B E G I N N I N G OF BLOCK E, THIS BLOCK PROCtSs^i
160* C 32<4 I N I - O R M A U O N BITS CORRESPONDING TO EACH PASS
I6|* SPRED»0
1*2* EKROR-U
163* 00 <*HO NNN»| ,32M
1*S* M M M « R A T E * ( N N N - 1 I
!*&« C •«
1*6* C V I T E R B I A L G O R I T H M
167* CNNNr NODE COUNTER
168* CJ = PATH COUNTER (l-PAtMS)

169* CK = GENERAL V A R I A B L E -
170* CL - O R I G I N A L STATE CQUNTE.R
171* CM = DOUBLE O R I G I N A L COUNTER
172* CN = FINAL STATE COUNTER
(73* CJJ=MOLDER OF POSSIBLE ENCODER
I7N* CKK = *OKKING VALUE
175* CLL = SCORE HOLDER - FIKST
176* CC MM = SCORE HOLDER - SECOND
1 7 7 * C
1 78* UO HOO J-l . P A T H S

179* L=J-|

|BQ. M=2*L

181* M=M* |
182* N-M

183* N N = N - P A T H S

IBM* IF iNNi iso, no, no
IBS* 110 N - N - P A T H S

186* ISO JJ-TABLEIM)
IB7* C B E G I N N I N G OF SUBbLQCK El. COMPARES THE T*0
188* C PATHS LEADING TO A NODE #1TH THE INPUT
18V* c FROM BLOCK 0 AND UPDATES THE SCORE
190* CFIRsT COMPARISON
191* LL-0
192* NDX z R A T E * T O P * M M M » R A T E » 1
193* oo (BO N N * I . R A T E
19S* KK. = ANDl JJ .GMASM
I9S* KK ; K K - E N C O D E ( N D X . N N )

196* IF UK) 160,170,170
197* 160 KKr-KK
198* 170 LL=LL**K
199* 180 JJ-JJ/B
2UO* JJ=TABLE(M« I )
20J* CSECnNO COMPARISON
202* MM=0
203* oo 210 N N * i , R A T E
•201* KK = A N O ( J J . G M A S M
20S* KK r K K - E N C O D E ( N D X . N N I
20«* IF (KK) 190,200,200
207* 190 K K T - K K
208* 200 M M = M M » K K
209* 2|0 JJ-JJ/8
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2100
211 *
2120
2 1 3o
2 1 10
2150
2 160
2170
2 I8o
2190
220°
22lo

222o

223°
221°
22S0
2260
2270
2280
2290

LL-LL«SCORE(N«F1RSTI
M M « M M » S C O R E ( N « I » F 1 R S T I

CSTORAGE OF OUTPUT BIT

220

230
C
C
C

210

250
C
C
C

IF (LI 220,220i3-*0
NN'INlT.PASS
IF INN) 230,230,210

NN°NNN-ft3
BEGINNING OF SUBBLQCK E2, UPDATES THE
INDEX VALUE FOR THE PRINTOUT. S T A R T S
COUNTING ONLY AFTER * 3 b l T S ARE PROCESSED

IF (nut 300i3oO,2lQ
K = A N D < K E G < H , L * I , " M A S K < L B > )
I NDEXo INDEX* 1
OUTPUT | 1NOEX»TOPP )>K
NN° !NDEH*i21
IF (NN) 300,250,25(3
lNDtx°o

END OF SuBBLOC* *-2

230o C F O R M A T T I N G FOR P R I N T O U T
23|o
2320.
2330
2310
2350
236°
2370
2380
2390
210o
2110
2120
2N30
211°
2*So
2160
2170
2«8o
2190
2500
251 o
2520
2530
251o
255o
2560
2b?o
258°
259o
2600
261 o
2620
263o
2610
265o
2660
267o
268«
269o
27Qo
27|o
272o
2730
2710
2750
2760

C
C
CIJ -

UK •
UN D

C
C
C
C
C
C

260

270

280

290
CPRliw
600

561
SSI
571
C
C
C
CSHlf

291

292

F I R S T OUTPUT TO PROCESS
LAST OUTPUT BIT TO PROCESS
I N C R E M E N T P O S I T I O N INDEX

BEGINNING OF SUBBLOCK E3, PACKS THE PtCoDED
D A T A INTO BuFFtRi C A L C U L A T E S AND P R I N T S
OUT UPDATED ERROR R A T E , NO- OF ERRORS

ENCODE AND BUFFER
1 J= I
IK = 36
TP = 0
IF (BOT .Nt.OITP"9
00 290 IM- 1 ,9
I N = 1
00 280 I = Ut IK
lF(OUTPUTU»TOPPI>260i270,26U
BUFFER! |M|oOR(8uFfER( I M> lOMASM INI 1
IF (FLO ( I IN-I ) , 1 ,MSfi( IM*TP) I .NE. 1 ltRROK»ERRO"*l
GO TO 280
B U F F E R l l M l o & N Q l B U F F E R t IM) ,AMASM 1 * I 1
IF(FLD(IIN-1),1,MS(,(IM*TP)).NE.O)ERROR. ERROR*!
IN- 1 No 1
1 J=IJ«36
O U T E R R ( I M ) •> x O R I B u F F t R I IM) ,MSGI I M « T P I 1
1 K=1K»36

TOUTP
A C C U M ° A C C U M « E R K O K
F A C C = A C C U M
FIN|T= IN IT
FP/lSS-PaSS
A = F A C C / 1 (F IN! T-FPASSI • 321«0)
FORMATI20H T R A N S M I T T E D MESSAGE)
FOKMATU6H OECOOE.0 MESSAGE)
F O R M A T 1 2 5 H ERROR IN DECODED MESSAGE)

END OF SUBBLOCK E3

T OF OUTPUT REGISTER
IF ITOPPI291 ,291 ,292
TOPPo32l
aoTp=o
GO TO 293
TOPPoQ
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277* BOTP.32M

278* 293 CUNT[NUE
279« C bLGlNNlNG OF sUBbLQCH EH, SETS TMt
2BO» C SR AND LB POINTERS,Lb FOLLOWS SR
281« 300 SR-SR-t
282» IF (SR) 310.3lO,320

2B3« 310 IF(Sn.NE.1)GO TO 3|1 « USE o"LY ONE *ORO

28b»
2B6>
2B7»
288»
289*

290»
29 I •
292»
293*

29b>
2»6«
2»7«
298*
299*
300«
JO) •

302»
303*
30t»

30b*
306*
3U7«
308*
309«
310*
31 |»
312«
313*
3 it*
31S«
316*
31 7»
318«
319»
320«
32l«

322*
323*
32t*
325*
326«
327»
328*
329*
330*
331«
332«
333*
33t»
33b«
336»

337*
338*
339«
3 M Q«

3H|»
3H2*
3^3*
3HM»
3HS*
3 H 6 •

3 M 8*

31 1

320

330

331

C
C
C

C
C
3MO

3bl

CF IhsT
3bO

C L A S T
360

370

380
390
C
C
too
c
c
c
c
c
c

1 10

t20

H30
CFINU

MbO

<460

C
C

c

c

SX«2
So-1
GO TO 320
SR*ft2
S X » l

S*'2
Lb*SR» 1
IF (LB ) 330 .330 ,3MQ
IF (LuiNE. 1 IGO TO 331 » USE Q NLY ONE ftQRo

LB«A|
GO TO 3tO
L«»2
L 8 - t, 2
ENO OF SUBBLOCK ES
SCORE COMPARISON
BEGINNING OF SUaoL0CK t i, , f OH E V t H Y

BIT PROCESSED, UPDATES 2»«K V A L U E S
OF SREl» AND SCORE
NN«LL-MM
IF INN) 3SO,3bl , 360
CALL R A N 3 I 1S3, IM3, AK )
I F 1 AK .LT . .b ) GO TU 360
CHOICE is SMALLER

SREG(J»SEC,S*)"ANLl(SKEG(N»FIHST,S*) ,AMAS».ISR) 1
SREG(J*SEC,SX).SREG(N«F1RSI,SX|

SCORE ( J*SEC I -LL
GO TO 370
CHOICE IS SMALLER

S R E G ( J * S E C , S * ) * A N U ( S R E G ( N » 1 * F 1 R S T , S W I , A M A S K ( S R M
SREG(J*SEC,SX)«SHEi,(N»l»FiRST,Sx)
SCORE ( J«SEC I «MM
NN»M-N
IF I N N ) 360,390,380
SREG(J»SEC,S»I«OR(SREG(J»SEC,S.VI .OMASN(sR) )
CONT INUE
ENO OF SUBBLOC* tb
ENU OF LOOP OF STATES
CONT INUE
I N T E R C H A N G E OF R E G I S T E R S
B E G I N N I N G OF SUbBLQCK E6, Ki.St.TS THE
•FIRST' AND 'SEC' V A L U E S A F T E R E v E R Y bn IS
PROCESSED, SETS THE P O I N T E R M
COHRESPONUlNG TO TH£ M I N I M U M SCONt
PATH
IF (F 1RST I t20.t 10, H2U
F I R S T « 1 2 B
SEC-0
GO TO "430
F IRST'O
SEC. 128
CONT INUE
M I N I M U M
F«9999V9
00 H6Q G« 1 ,PATHS

NN*p*StORE' G*F IR-*^ 1
IF (NN| *I60,'*60,'*&0
F«SCOKE|G»F IRS' I
H«G»F 1 RST
CONT 1 NU£
ENO OF SUBBLOCK E6 AND BLOCK. L

N U M E R I C A L SPREAD UF SCORES

ENO OF LUOP OF 32t B I T S PKOCLSSEO
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3bO«
3b[.
3b2«
3b3«
3bS«
3bb«
3b6«
3b7»
3b8»
3b9»
360*
361*
362*
363.
361.
36S«
366*
1 ̂  7 AJ 6 7 .
368*
369*
370*
371.
372«
373.
37M.
375.
376*
377"
37B*
J79«
380*
3B|*
382*
383*
381.
385.
386*
387*
388*
389*
390«
39|.
392*
393«
39H«
39b*
39t»
397«
398*
399»
suo«
N0| «
N02«
MU3«
SUS«
SOS"

M06»
MU7«

HHO
C
c
C
c
c

H70

t80

M90

btO
C
CRET.i
C

b l O
700

701

702

703

706

707

7bO

6H2

C
C
b20
b30
bMO
bbO
610
6 1 1

630
631
6HO

6M 1

CONT 1NUE
BE.61NNING OF Bl-OCN F, KtbtTS TOP
AND SOT POINTEKS FOR E V t K Y P*SS, PRIM'S OUT
THE. F 1 NAL S U M M A R t
EMU OF BLOCK F

IF I TOP) t70 i M 7 0 i H80
CONT INUE
TOP«32t
BOT.Q
40 TO M90
CONT INUE
TOP«0
BOT «32t
CONT INUE
DO bOO l«l .P»THS
SC O K E ( l « F I R S T | « S C O R E | l * F l R i T | - F

RN FOR A N O T H E R PASS

E R R T O T - E R R T O T « E R R O R

PASS«PASS- 1
IF (PASS) b l O . b l O > 1 10
*KI TE (6, 7001
F O R M A T ( IH1 i/// i 16* , 1 8 H S U M M A R Y OF HfcSULTsI
• R I T E (6, 701 ) P
FOR M A T ! 1H0.20X iH2M N0[SE Q U A N T I Z A T I O N LEyt-L CORRE SPON0 I N& TO

1 9H PERCENT i I
NMLSDC. •( INI T-l I .32H
NCHNOG • RATL.NMtiDG
*RITE(6,702|NMtSUd
F O R M A T ( |MO |20X I I6HMESSA&E LENfaTH "il39|
*R1 TE (6,7031 NCHND6
F O R M A T ( IMO ,20X >2'<«ENCODEU MESSA6E LENGTH « , 1 3 I )
*R 1 TE (6 ,706)ERRTOT
F O K M A T i IHO >20x (33MTOTAL NUMBER OF oECOoiNd ERRORS .,1221
POCE « FLOAT I |00*ERRTOT I /f UOAT ( NMESDGl
*R 1 TE ( 6,707 IPCCE
F U K M A T ( 1H0.20X i < t J M p R o b » B J u l T Y OF DECOUj Nij E R R O R , \N PERCENT

IF 12.3)
60 TO I
CONT INUE
P R I N T 612, Is
F O R M A T I |HO,SX,3tMKE INI T 1 AL I 2AT ION V A L U E FON R A N I O -.0121
STOP

F O K M A T (IbH ERRUR R A T E * ,Elb.8l
F O R M A T (2IH E^Rf^S THIS PASS » ,IS)
F O R M A T 1 2X ,s( >**,20l I ) )
F O R M A T I2X ,S!H* ,0<Q) |
FO R M A T I 8 H PASS • iM,bX,6H CL > , l 3 i b X , g H K A T E « ,|J|
FOR M A T ( 2 b M T O T A L OECOOIN6 ERRORS • ,16)
F O K M A T (elb,FS.3)
F O R M A T (80b)
F O R M A T I IH0.7X .9HMOQKUP • ,8(Ob,2XII
F O R M A T I 1H0.7X .OHWOANT » . B l l b l l
END

1* S U B R O U T I N E
2« I S " 1 M « I S
3* I I«IS/3S3b973836/
t« IS«IS-I 1 J»3'*3S?736367 I
b« A^ABS(IS)
6» A-A/3M3b973B367
7» R E T U R N
B. END
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C BEGINNING OF ALTERNATE VERSION OF BLOCK D.
C THIS VERSION, WHICH IS TO BE USED FOR
C HARD-DECISION SIMULATIONS, SHOULD
C REPLACE STATEMENTS 115 TO 154.

110 CONTINUE
NN=RATE*324
DO 130 J=1,NN
CALL RAN(IS, MI, AK)
IF(AK. LT.P)GO TO 133
ENCODE(RATE*TOP+J)=0
GO TO 130

133 ENCODE(RATE*TOP+J) = 1
130 CONTINUE

C END OF ALTERNATE BLOCK D
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APPENDIXC

DETAILS OF CONVOLUTIONAL CODES USED IN V1TERB1

DECODER SIMULA!IONS

This appendix contains configuration details of "good" convolutional codes that
have been suggested by several investigators (refs. 8 to 10). The parameters (K, V,
generator sequence, and generator coefficients) of each of the various codes are sum-
marized in tables C-I to C-III, and the same information is presented in pictorial form
(shift register representation) in figures C-l to C-3, respectively. Although simulations
were not performed using all the codes described in this appendix, details on the unused
codes are included for reference and potential use by some readers.

REFERENCE

C-l. Heller, J. A.: Sequential Decoding, Short Constraint Length Convolutional
Codes. Jet Propulsion Laboratory Space Program Summary 37-54, vol. Ill,
Dec. 1968, pp. 171-177.
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(a) Code 1 (V - 2, K = 3). (b) Code 2 (V - 2, K = 4).

(c) Code 3 (V - 2, K - 5). (d) Code 4 (V = 2, K = 6).

(e) Code 5 (V = 2, K = 7). (f) Code 6 (V - 2, K - 8).

(g) Code 7 (V- 3, K = 3). (h) Code 8 (V = 3, K = 4).

(i) Code 9 (V = 3, K = 5). (j) Code 10 (V - 3, K = 6).

Figure C-l. - Shift register representation of the encoders using codes suggested
in reference 8.
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(k) Code 11 (V = 3, K - 7). (1) Code 12 (V - 3, K - 8).

Figure C-l. - Concluded.

(a) Code 13 (V = 2, K = 5).

(c) Code 15 (V = 2, K = 7).

(e) Code 17 (V = 3, K = 4).

(g) Code 19 (V = 3, K = 6).

(b) Code 14 (V- 2, K - 6).

(d) Code 16 (V = 2, K = 8).

(f) Code 18 (V = 3, K = 5).

(h) Code 20 (V - 3, K = 7),

(i) Code 21 (V = 3, K = 8).

Figure C-2. - Shift register representation of the encoders using codes suggested
in reference 9.
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(a) Code 22 (V = 2, K = 5). (b) Code 23 (V - 2, K = 7).

(c) Code 24 (V - 2, K - 8). (d) Code 25 (V = 3, K - 5).

(e) Code 26 (V - 3, K = 7). (f) Code 27 (V = 3, K = 8).

Figure C-3. - Shift register representation of the encoders using codes suggested
in reference 10.
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APPENDIX D

SIMULATION DATA FOR VITERBI DECODER SIMULATIONS

The input and output data for the Univac 1108 computer simulations of the Viterbi
decoding algorithm are summarized in this appendix. For each code investigated,
tables D-I to D-III contain the following information.

Code

Q

K

V

Information bits

Identification (the particular code)

Receive quantization levels (Q = 2 is 2-level or hard-decision;
Q = 8 is 8-level or 3-bit soft decision.)

Constraint length of the code

Number of modulo 2 adders in the encoder (Code rate = 1/V.)

Number of information bits processed (The number of channel
bits is V times this number.)

Output errors Number of information bits in error after decoding

Input error
probability

Output error
probability

VN0

Channel bit error probability at decoder input or information bit
error probability before coding

Information bit error probability at decoder output

/ number of output errors \
\number of information bits/

Ratio of energy per information bit to single-sided noise spectral
density at decoder input
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TABLE D-I. - VITERBI HARD-DECISION (Q - 2) SIMULATION DATA

(NONSYSTEMATIC CODES)a

Code
number

3

9

16

21

K

5

5

8

8

V

2

3

2

3

Information
bits

66744

66744

66744

66744

Output
errors

22

92

128

915

0

11

52

127

22

46

628

2839

3

22

63

129

Input error
probability

(b)

3.038X10"2

4. 523 xlO"2

4.981 xlO" 2

6.975 XlO" 2

5. 00 xlO"2

6. 993 xlO"2

9. 00 x lO" 2

10.008X10"2

4. 523 xlO" 2

4.881 xlO" 2

6. 975 xlO" 2

8.99 xlO" 2

8.013X10"3

9.0 xlO"2

10.008 xlO"2

10. 996 xlO"2

Output error
probability

3. 3X10"4

1.38X10"3

1.92 xlO"3

1.371 xlO"2

_ _

1.65 xlO" 4

7. 8 xlO"4

1.9X10"3

3. 3 xlO"4

6.9 xlO"3

9. 41 xlO"3

4. 254 xlO"2

4. 5X10"5

3. 3 xlO"4

9. 4 xlO" 4

-1.93X10"3

VN0'
dB

5.99

4.58

4.32

3.38

6.09

5.14

4.31

3.92

4.58

4.32

3.38

2.55

4.72

4.31

3.92

3.52

Refer to figure 11 and table I.

Channel bit error probability (after coding).
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TABLE D-D. - VITERBI SOFT-DECISION (Q = 8) SIMULATION DATA (NONSYSTEMATIC CODES)

Code
number

2

3

4

5

16

8

9

19

20

21

K

4

5

6

7

8

4

5

6

7

8

V

2

2

2

2

2

3

3

3

3

3

Information
bits

66744

66744

66744

66744

66744

66744

66744

66744

66744

66744

Output
errors

4

128

446

1

100

. 306

319

56

154

305

16

67

190

8

56

167

4

67

224

4

18

71

189

22

55

148

15

23

65

15

64

Input error
probability

b1.0xiQ- 2

h
2 :0

b3.0
Ubi.o
hb2.0
b2.5
b3.0
V.b2.0
hD2.5
hb3.0
hD2.0
hb2.5
hb3.0
b2.0
Kb2.5
hD3.0
bi.o
hD2.0
hb3.0

C l l
b2.0
b2.5
V,b3.0
b2.0
hb2.5
hD3.0
Kb2.0
hD2.5
hD3.0
b2.0
hD3.0

Output error
probability

5.99X10"5

-31.91 xiO
6.68x 10"3

.5
1.49x 10

.3
1.5x10

4. 58X10"3

4. 78x fO" 3

-4
8. 39 x 10

-32 .307X 10
-34 . 5 7 X 1 0
-42.397x10
.3

1.004x10 °
-32.847x 10

1.2 x 10"4

.4
8.39 xiO

_3
2 . 5 x 10

5.99 x 10"5

_3
1 .004X 10

.3
3.356x10 °

5 .99X10" 5

2. 7x 10"4

1.06x 10"3

-32 .83x 10

3.296x 10"4

-48 . 2 4 X 1 0
.3

2 . 2 1 7 X 1 0
.4

2 .247X10
-43. 446 x 10
-49 . 7 4 X 1 0

2 .2 x iO" 4

-49 . 6 x 10

Eb/NQ, dB

4.325

3.24
2.48

4.325

3.24
2.84
2. 48

3.24
2.84
2.48

3.24
2.84
2.48

3.24
2.84
2.48

4.325
3.24
2.48

3.54
3.24
2.84
2.48

3.24
2.84
2. 48

3.24
2.84
2. 48

2. 72
2. 48

Refer to figures 12 to 14 and tables I and II.
Information bit error probability (before coding).

CChannel bit error probability (after coding).
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TABLE D-IH. - VITERBI SOFT-DECISION (Q - 8) SIMULATION DATA

(SYSTEMATIC CODES)a

Code
number

22

25

K

5

5

V

2

3

Information
bits

66744

66744

Output
errors

2

13

43

177

437

6

21

72

Input error
probability

(b)

3, O x l O " 2

4.8

5.0

7.0

9.0

7.0

9.0

11.0

Output error
probability

3X10"5

1.9 xio"4

6. 4X10"4

2.65 XIO" 3

7.09 xlO"3

9 xlO" 5

3. 1X10"4

1.08 xlO" 3

VN0' dB

5.49

4.86

4.33

3.38

2.55

5.14

4.31

3.54

aRefer to figures 13 and 14.

Channel bit error probability.
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