
NASA CONTRACTOR
REPORT

NASA CR-128996

MEMORY INTERFACE SIMULATOR:

A COMPUTER DESIGN AID

By D. S. Taylor, T. Williams,
and J. E. Weatherbee
Computer Sciences Corporation
Field Service Division
Aerospace Systems Center
8300 S. Whitesburg Drive
Huntsville, Alabama 35802

October 6, 1972

.
Copy

Prepared for

N A S A - G E O R G E C . M A R S H A L L SPACE F L I G H T C E N T E R
Marshall Space Flight Center, Alabama 35812

TECHNICAL. REPORT STANDARD TITLE PAGE
1 . RFPORT NO.

NASA CR-128996
2. GOVERNMENT ACCESSION NO. 3. RECIPIENT'S CATALOG NO.

4. T ITLE AND SUBTITLE

Memory Interface Simulator: A Computer Design Aid

5. REPORT DATE

6 October 1972
6. PERFORMING ORGANIZATION CODE

7. AUTHOR is)

Dr. D.S. Taylor, Dr. T. Williams, and Dr. J.E. Weatherbee
8. PERFORMING ORGANIZATION REPORT J

9. "ERFORMING ORGANIZATION NAME AND ADDRESS
Computer Sciences Corporation
Field Services Division, Aerospace Systems Center
8300 S. Whitesburg Drive
Huntsville, Alabama 35802

10. WORK UNIT NO.

11. CONTRACT OR GRANT NO.

NAS8-21805

12. SPONSORING AGENCY NAME AND ADDRESS

National Aeronautics and Space Administration
Washington, D.C. 20546

13. TYPE OF REPORT ft PERIOD.COVERED

Contractor Report

14. SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

1 6. *.f:STB ACT

This report presents the results of a study conducted with a digital
simulation model being used in the design of the Automatically Reconfigurable
Modular Multiprocessor System (ARMMS), a candidate computer system for future
manned and unmanned space missions. The model simulates the activity involved
as instructions are fetched from random access memory (RAM) for execution in
one of the system central processing units (CPUs). Microprogrammed CPU's were
assumed for this study and a series of model runs were made which measured
instruction execution time under various assumptions pertaining to the CPU's
and the interface between the CPU's and RAM. Design tradeoffs are presented
in the following areas:

1) bus widths

2) CPU microprogram read only memory cycle time

3) multiple instruction fetch

4) instruction mix

^
17. KFV WORDS Spaceborne Computer

Central Processing Unit
Configuration
Interface
Microprogram
Random Access Memory
Read Only Memory
Simulation

f
18. DISTRIBUTION STATEMENT

Mr. B. Hodges
Computer Systems & Simulation Division
MSFC/Computation Laboratory
Unclassified-Unlimited

19. SECURITY CLASSIF. (of this report)

Unclassified
20. SECURITY CLASSIF. (of this page)

Unclassified
21. NO. OF PAGES

24
22. PRICE

NTIS.

MSFC - Form 3292 (May 1969)

TABLE OF CONTENTS

SECTION I.

SECTION II.

SECTION III.

SECTION IV.

Page

INTRODUCTION 1

SYSTEM CONFIGURATION ASSUMPTIONS 3
A. Memory-CPE Interface 3
B. Central Processing Units . 3
C. Fetch Cycle 4

MEMORY INTERFACE SIMULATION MODEL. 8
A. General 8
B. Baseline Interface Parameters 10

CONFIGURATION TRADEOFFS 12
A. Bus Widths. 12
B. MROM Execution Times 12
C. Multiple Instruction Fetch 12
D. Long/Short Instruction Execution Time and

Instruction Mix 16

SECTION V. CONCLUSIONS. „ 19

ui

ACKNOWLEDGEMENT

The authors wish to acknowledge the project monitor, Mr. B. Hodges
(S&E-COMP-S) for technical contributions and liaison work with Astrionics
Laboratory and also his helpful discussions throughout the duration of
this project.

Thanks is also due to Dr. J.B. White (S&E-ASTR-CA) for his continued
cooperation and encouragement during the course of this work,,

IV

SUMMARY

The Astrionics Laboratory of the Marshall Space Flight Center, Huntsville,
Alabama, is currently designing a spaceborne computer system, the Automatically
Reconfigurable Modular Multiprocessor System (ARMMS). This report presents
the results of a study conducted with a digital simulation model being used in
the AKMMS design. The model simulates the activity involved as instructions . •••'
are fetched from random access memory (RAM) for execution in one of the system
central processing units (CPU's).

The time required for the execution of an instruction is a function not only
of the internal speed of the CPU and the memory cycle time but also the design
of the Memory-Processor interface and the amount of interference produced at
this interface when more than one CPU attempts to access the same memory bank
in RAM. Simulation of the instruction execution activity allows all of these
factors to be considered while measuring the effective execution time under
various design assumptions.

In this study the basic ARMMS configuration was assumed to consist of
a number of microprogrammable CPU's connected to a number of banks of RAM
by two sets of one-way busses; one bus set used to transmit memory addresses
from the CPU's to RAM and the other used to return instructions and data from
RAM to the CPU's. Design tradeoffs are presented in the following areas:

1) bus widths

2) CPU microprogram read only memory cycle time

3) multiple instruction fetch

4) instruction mix

SECTION I. INTRODUCTION

As the duration and complexity of space missions increase, the re-
quirements placed on the onboard digital computing equipment also increase.
Future missions, such as the earth-orbiting space station and astronomical
space observatory will be measured in years instead of days. Onboard
computing tasks are being expanded to include resource management and
experimental data processing. These requirements make it imperative that
spaceborne computers in the late 1970's and 1980's be characterized by
both high reliability and high computing capacity. The Astrionics Labora-
tory of the Marshall Space Flight Center, Huntsville, Alabama, is currently
designing a spaceborne computer system, the Automatically Reconfigurable
Modular Multiprocessor System (ARMMS), which can satisfy both of these
requirements [l].

In a previous report |2J, the use of digital simulation in the ARMMS
design was demonstrated through an exercise in which two simulation models
were used to obtain an optimal ARMMS configuration for a hypothetical mission.
The purpose of this report is to present the results of a study conducted
with an updated version of one of these models, the Memory-CPE Interface
Model.

Historically, the data processing workloads for spaceborne digital
computer systems have been characterized as primarily computation so that
the speed and efficiency with which instructions are fetched from memory
and executed are critical to overall system performance. The ARMMS Memory
-CPE Interface Simulation Model was developed to study, through simulation,
the effect of various design concepts on the speed of execution of instruc-
tions in the ARMMS. Figure 1 shows the general processor memory configura-
tion simulated in this study. Two sets of one-way busses interconnect the
Central Processing Element (CPE), composed of a number of Central Process-
ing Units (CPU's), with a number of banks of Random Access Memory (RAM).
One bus group is used to transmit memory addresses from the CPE to RAM and
the other is used to return instructions and data from RAM to the CPE.

MEMORY •*• CPE INTERFACE

CO

1 i

-1

t 1 i

A t

I

1

1 i

1

"T

CPU

1

T,
M
-2

i L <

t

1

...

'
I

1-

, i

'
'

N

> i I

C

.
'
1

:P":

<

>

z
CD

0

i

•

•

D-

i i

••

E ,
1

-1

1 i t

.
'
1

CP

I

D-

k i

' .

f '

L)h

'

-2

i 4

' —

i

...

<

'

D-

k 4

' .

-N

k i k

CPE-^-MEMORY BUSSES

MEMORY-CPE INTERFACE

Figure 1
2

SECTION II. SYSTEM CONFIGURATION ASSUMPTIONS

A. Memory-CPE Interface

The memory-CPE interface consists of three fundamental pieces of
hardware

(1) central processing units (CPUs)
(2) memory modules
(3) busses

Each of these items affects the system operation, not only in terms
of their numbers, and speed, but also in their operational concept. For
example, the memory modules may be logically separated into instruction
(I) and data (D) banks. Also, the CPUs may or may not time share the
busses.

In order to perform an instruction level simulation of this interface,
assumptions need to be made in the following areas:

(1) memory operation/speed
(2) bus operation/speed
(3) CPU operation/speed

The memory operation can be simulated by selecting a memory read cycle
time and memory read access time. The operation of the busses is also easily
simulated by specifying a bus width (in bits) and the time required to trans-
mit one bit stream across the bus. However, the operation of a CPU is more
complicated and an understanding of how the CPU fetches and executes individ-
ual instruction is necessary for proper simulation of this activity.

B. Central Processing Units

A candidate processor for ABMMS is the Space Ultrareliable Modular
Computer (SUMC) [5], a microprogrammable processor being developed at MSFC.
The processors assumed in this study are like SUMC in that they are also
microprogrammable and have internal logic which is being considered for SUMC.
This microprogramming allows the construction of a large number of unique
aerospace instructions from a much smaller number of microinstructions.
It is assumed that Microprogram Read Only Memory (MROM) in the CPU contains
the prestored sequences of internal microinstructions required to fetch
and execute the program instructions. The processors are also assumed to
contain a small buffer memory which may be used for temporary data storage
by a programmer or for instruction retention in the CPU by the system
executive. Traffic across the memory-CPE interface is generated during
the fetch cycle of instruction executions in the CPU's.

C. Fetch Cycle

A flow chart of the fetch cycle is presented in Figure 2. Every
instruction requires a fetch cycle since a fetch is executed to read pro-
gram instructions from memory for subsequent execution.

At most six distinct steps are involved in the fetch cycle with each
step requiring at least one MROM cycle.

1. The program counter (PC) is incremented by one and stored in the
memory address register (MAR). Main memory control is set for a read and
a memory read cycle is initiated if the instruction is not in the CPU
buffer memory.

2. This step involves looping through one or more MROM accesses; the
exact number depends on the location of the instruction to be executed.
If the instruction is in the CPU buffer memory it is moved to the memory
register (MR) in one MROM cycle time. If the instruction must be fetched
from main memory the CPU clock advances an integer multiple of MROM cycles
until the instruction has been moved from main memory to the MR.

3. The instruction is moved from the memory register to the instruc-
tion register (IR). The address displacement field (MRD) is summed with
the contents of the index register (X) specified by the instruction index
field and the result is placed in the Product Remainder Register (PRR).

4. The content of the PRR is summed with the content of the base
register (B) specified by the instruction base field and the result is
placed in the memory address register. If a second operand is required
main memory control is set for a read and step 5 is performed; otherwise
step 6 is performed next.

5. The CPU clock advances an integer multiple of MROM cycles until
the operand specified by the content of the MAR has been moved to the MR.

6. The starting address, in MROM, for the microinstructions required
to execute the specified instruction is fetched from the instruction address
read only memory (IAROM).

At the end of step 6 the desired instruction is ready for execution
in the CPU. The time required to complete the execution cycle depends of
course on the type of instruction being executed. From Figure 2 it is
readily observed that the time required to complete the fetch cycle is not
the same for all instructions. An analysis of the various routes that a
fetch cycle may encounter is shown in Table 1.

The action of the memory-CPE interface simulator in executing the fetch
cycle is illustrated in Figure 3. The MROM numbers on the simulated fetch
cycle (Figure 3) are presented in order to compare the simulated fetch cycle
with the actual fetch cycle (Figure 2).

o

H
H
D
O
P4

H
J

8
u
K
O

W
J
CQ
<
H

W

o
o
X

W
fn
otf
o
PH

Q

M

Cf

g
M
H

<j

j3j

Z
O
M
H

1
H
CO
Z
M

W

O

•

CO
z
O
|-H
H
O

I
CO

a
g
O

s
m

Q
2 O

§3
co w

PH
O O
Z

>j
Pi

H M

si
O
z

<:

CO
zo
n
H
O

g
H
co

5
§
aî ^
s
vO

CO
W Q QS z S
M O <
P o 2
O* W W
Cd CO PH
P5 O

P^
O

E H

O

m

CO

o
M
H
0

§
H

Z
hH

o
CO frf
Z O
O M Z
M S O
H M
U LH E-i
P O O
H Crf 5
CO W H
Z Q CO

P M
Q Z
PM Z

H
S C O

Z

+ W H

Z Oo z
O <J

o oz

CO
fVl |̂

M 9 H

S

0

CO

o
H
H
O

3.
H
CO

co Z
1̂ ; J_|

o
M O Q
H P=S S
O O •<
P H p3
PS IS W
E-l P-i
CO fn O

erf z
O fd O

H P CO
S Z

e n B
+ B O

" s S
+ w H
"*

CO
W Q Q
2 Z ZM o <;p o pa
<y ta w
pq co Pu
P5 O

CO

M O M

o" w !s
2

0

The most difficult area of the fetch cycle to simulate is the "Memory
Ready" loop (MROM 2 and 6). This portion of the fetch cycle is concerned
with a CPU sending an address over a bus to memory, obtaining the instruc-
tion or data from memory, and then transmitting it back to the CPU. If
the MROM clock is not stopped, then the time required to complete this loop
must be an integral number of MROM cycles, as depicted in Table 1. A brief
discussion of the simulation model is presented in the following section.

SECTION III. MEMORY INTERFACE SIMULATION MODEL

A. General

The Memory Interface Simulator operates under the assumption that
there is always a non-empty set of instructions awaiting execution by
each CPU. This corresponds to a 100 percent CPU utilization and represents
a worst case condition from the standpoint of memory contention. Instruc-
tions are classified as either long or short, with the difference being
the actual instruction execution time (independent of the fetch cycle time)„
The selection of either a long or short instruction for execution is deter-
mined via a probability distribution derived from a Gibson instruction mix.

A single address instruction format is assumed, together with a bank
of General Registers: This means that, in general, one operand is fetched
from memory and the other from a General Register.

As Figure 3 illustrates, an instruction fetch and data fetch are not
required for all instructions executed. For example, an instruction fetch
is not always necessary if a multiple instruction fetch is incorporated in
the simulated CPU; similarly, a data fetch is not required for every instruc-
tion executed, e.g. JUMP. Values of functions defining the fetch/no fetch
ratios are supplied as inputs to the simulator. This fetch/no fetch ratio
for instructions is a function of the system being simulated while the data
fetch/no fetch ratio is a function of the instruction mix.

The output from the Memory Interface Simulator is the average instruc-
tion execution time for both long and short instructions. This average
instruction execution time is computed after simulating the execution of a
large number of instructions (currently 5000), and consists of the follow-
ing incremental times

(1) Instruction address transfer time

(2) Instruction memory access time (if required)

(3) Instruction transfer time

(4) Data address transfer time

(5) Data memory access time (if required)

(6) Data transfer time

(7) Any interference or idle time (queue)

(8) CPU instruction execution time.

it.

UJ
_l
o
>-
o

o

I
o

Bo Baseline Interface Parameters

The "baseline configuration" of the memory-CPE Interface Simulator
is depicted in Table 2. All future parameter changes will be compared
to this baseline. Since it is not possible to present the effects of
varying all of these parameters, tradeoffs will only be presented for
those parameters which are starred in Table 2. The baseline configura-
tion is not meant to be interpreted as the baseline ARMMS configuration.
Instead, it merely represents a reference point to which other system
configurations can be compared and their relative merit assessed.

10

TABLE 2. BASELINE CONFIGURATION

PARAMETER ASSIGNED VALUE

NO. OF CPUs

NO. I-BANK MEMORY MODULES

NO. D-BANK MEMORY MODULES

CPU-MEMORY WORD SIZE

*ALL BUS WIDTHS

BUS SPEED

MEMORY CYCLE TIME

MEMORY ACCESS TIME

*NO. OF INSTRUCTIONS FETCHED PER I-BANK ACCESS

MEMORY-CPU WORD SIZE

NO. OF BUSSES

*MROM EXECUTION TIME

*RATIO OF LONG TO SHORT INSTRUCTIONS

NO. OF INSTRUCTIONS RETAINED IN CPU

% INSTRUCTIONS REQUIRING NO SECOND OPERAND

*% DATA RETENTION

MROMs FOR SHORT INSTRUCTION EXECUTION

*MROMs FOR LONG INSTRUCTION EXECUTION

4

8

16

30 BITS

15 BITS

65 NSEC

520 NSEC

260 NSEC

1

38 BITS

4

325 NSEC

1:7

8

16%

0%

1

11

11

SECTION IV. CONFIGURATION TRADEOFFS

A. Bus Widths

Figure 4 shows the results of a bus width tradeoff. Two different
MROM cycle times were utilized in this tradeoff to emphasize the relation-
ship between bus widths and MROM cycle time. For example, with a 325 nsec
MROM cycle time, a 15-bit bus is preferred while a 390 nsec MROM cycle
time indicates that a 10-bit bus would be preferable. The discontinuities
in the curves are caused by the fact that the fetch cycle requires an inte-
gral number of MROMs to be executed for each step in the fetch cycle (ref-
erence Figure 2)„ The difference between the "with queue" and "no queue"
curves reflects time lost due to memory conflicts and waiting for the MROM
clock to complete a cycle.

This figure, as well as all of the remaining figures, has the base-
line configuration clearly indicated. This enables one to readily discern
variations in the average instruction execution time for different system
configurations.

B. MROM Execution Time

The effect of the MROM execution time on the average instruction
execution time is illustrated in Figure 5. Intuitively, one expects the
average instruction execution time to increase as the MROM execution time
increases. However, Figure 5 shows that this is not necessarily true,
as evidenced by the fact that as the MROM execution time increases from
520 to 585 nsec, the average instruction execution time decreases. The
reason for this decrease is due to the characteristics of the fetch cycle.
Since the "memory ready" portion of the fetch cycle requires an integral
number of MROM cycle time advances (reference Table 1), extending the
MROM cycle time could result in fewer such cycles being executed during
a fetch. Thus, even though the MROM cycle time increases, the fact that
there might be fewer MROM cycles, could result in a net reduction of the
average instruction execution time. For the baseline parameters chosen,
Table 2, this condition occurs for a MROM cycle time between 520 and 585
nsec. In this particular baseline configuration, however, it does not
appear that one would take advantage of this reduction, since the average
instruction execution time at this point is much higher than the baseline,

C. Multiple Instruction Fetch

Experience has indicated that approximately 85 percent of the time,
the next instruction required for execution will be the next sequential
instruction in memory. With this in mind, one would like to explore the
possibilities of multiple word instruction fetches per I-bank memory
access. Figure 6 shows the result of such a tradeoff for this baseline

12

ioc•s.
u
UJ

z
in

O
Q£

U
UJ

9

D

UJ
Z

Ul

CQ
II

Or-

-ft''-?*

OQ
oo
CO

II

Ul
M
to
Q
QC
O

OQ

o
•

CO

NOIin03X3
13

z
_l
Ul

CD
II

ins

o
CNin

O
LU

LU

=3
O
LU
X
UJ

O

S 8

3WI1 NOIin03X3 NOIlOndlSNI 39VH3AV

14

UJ

00
II

bO
tx>
UJ
O
O
<c

UJ

<coa
i

O
O

o

0
00

o

O

a:

O
DC
UJ
CO

-V-1
o

<*>

o

CO

oo o
c4

15

configuration. As a result of this tradeoff, it is concluded that the
greatest savings, approximately 8 percent, occurred for a two-word fetch.
Instruction fetches per access of greater than two instructions do not
appear to be worthwhile, especially since the hardware complexity increases
as the number of instructions fetched per access increases. The advantages
of a multiple instruction fetch would be enhanced if there were severe
memory interference problems.

D. Long/Short Instruction Execution Time and Instruction Mix

Figures 7 and 8 are included in this paper to illustrate the system
dependence on two parameters whose values are difficult to determine precisely.
However, if exact instruction execution times are not required, then relative
speeds can be obtained from these curves, and then applied to the previous
curves. Also, since both of these figures show approximately parallel "queue"
and "no queue" curves, then no substantial change in memory interference
has been experienced over the range of values shown.

16

UJ

111
«/>
00

o
o

o
UJu.
(O

5

o
X

C<0
UJ

O
UJ
X
UJ

o
H-
O
3
oc
bO

ce
o

C3
SE
O

u.
o
o

<c

O

o
CO

o
CO

o
•O

3WI1 NOIin03X3 NOIlOndlSNI 39VH3AV

17

UJ

X
UJ

UJ
CQ

O
»-
O

oc
o
</>
U_ '%v
o

ce

o
o CO

fN

O3S rf) NOIin03X3 NOIlOndlSNI 30Vd3AV

18

SECTION V. CONCLUSIONS

This paper has illustrated the importance of utilizing simulation as
an aid in the design of a microprogrammable, modular computer. In parti-
cular, two distinct areas where intuition may cause the system designer
some problems were made evident:

(1) Bus widths. Increasing the bus width between the CPU and
memory does not necessarily mean that the average instruction
execution time will decrease. Furthermore, the selection of
bus widths depends greatly upon the MCROM cycle time.

(2) MROM cycle time. Increasing the MROM cycle time could result
in a reduction of the average instruction execution time. Thus,
one should be aware of this condition before a great deal of
time and effort is spent in an attempt to reduce the MROM
execution time.

As expected, multiple instruction fetches per access does reduce the
average instruction execution time. However, the greatest saving is for
a two-word fetch.

19

REFERENCES

1. Hughes Aircraft Company, "Design of a Modular Digital Computer System,"
DRL 4, Phase I Report, FR 72-11-450, April 15, 1972.

2. To Williams, H. Kerner, J. Weatherbee, D. Taylor, and B. Hodges,
"Optimum Spaceborne Computer System Design by Simulation", Symposium
Proceedings of the XXIV AGARD Avionics Panel Technical Meeting on
Automation in Manned Aerospace Systems, Oct. 1972.

3. Katz, J.H., "Simulation of a Multiprocessor Computer System,"
Proceedings of 1966 Spring Joint Computer Conference, pp.

4. Merikallio, R.A. and Holland, F.C., "Simulation Design of a Multi-
processing System," Fall Joint Computer Conference, 1968, pp. 1399-1409,

5. Sperry Rand Corporation, "MSFC Advanced Aerospace Computer," SP-232-
0384, July 6, 1970.

20 NASA—MSFC

