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I INTRODUCTION

1.1 INTRODUCTION AND HISTORICAL BACKGROUND

Satisfactory control of multi-input, multi-output nonlinear system

with process uncertainty is a very basic and challenging problem in

systems science. The problem is made more complex by unavailability

of states of the system necessary to implement the control and by noise

associated with the observations. Several basic questions still to be

answered in this context are:

a) How large a control range is necessary to compensate for

parameter uncertainty and unknown process nonlinearities?

b) What is the minimum number of measurements necessary to

generate the required control signal?

c) What is an efficient way of controlling this class of

systems and what is the relative effectiveness of various

design techniques?

The present thesis will deal with these problems to some extent and

will propose various design procedures via optimal theory to generate

the control. Since the system involves parameter uncertainty, consi-

derable attention has been directed to implement the control via iden-

tification, usually known as adaptive control in the literature1- .

r R9
The fundamental concept was introduced possibly by Whitaker et. al. >

in 1958, followed quickly by Osburn et. al_. 47 . The basic idea is

illustrated in Figure 1.1. The plant structure is assumed to be known

but its parameters are unknown. The model generates the desired per-
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formance. The tracking error e is made small by adjusting controller

parameters in an appropriate way. The adaptive analyser senses plant

and model states and reference signal to provide proper variation of

the controller parameters. The control structure design is based on

the minimization of the integral square error between the plant and

model outputs. This technique of adjusting controller parameters is

referred to in the literature as the 'M.I.T.1 rule. Similar techniques

have been proposed by Krasovskii and may be found in the writings of

Meerov . These adaptive schemes may possess severe instrumentation

and stability problems.

In another direction, linear regulator design has been shown to be

an elegant design tool . The control function u_, with |u. | <_ 1,

i = l,2,...n is selected to minimize the performance index

qo

<Ku) = / xTQx
o

subject to

x = Ax + Bu.
•

Q is positive definite and the unforced system, x = Ax, has been assumed
[i, 1

to be stable. Bass has also suggested a number of additional tech-

niques for nonlinear regulator problems of the form:

x = Ax + bf(o)

where o is a linear feedback of all the state variables. This technique

says nothing about stability of the given system since the control

function f(o) decreases to zero as the system approaches equilibrium.

Another interesting technique has been suggested by Lee and Geiss

for systems of the form:

x = f(x) + u



where the unforced system is stable, but not asymptotically. The

resulting control u is designed to insure asymptotic stability, as well

as to maintain a maximum control amplitude or design for minimum time

to reach the origin x=o. An alternative approach to satisfactory solu-

tion of this problem combines Lyapunov theorŷ with the model-reference

concept. A control signal is generated via a design scheme, using a

dynamic model to guarantee that the plant follows the model. It is not

necessary to identify the plant to implement the control strategy,

although this technique may be used as parameter identification scheme

[53]as suggested by Rang . Rang assumes the process described by

x = Ax -f Bu

where A and B are constant but unknown matrices. The model is taken

to be asymptotically stable and of the form

y = V + V-
An error function defined as e = x-y satisfies the following

e = A e + (A-A_)x + Bu - B ro ° o

A Liapunov function,

V = eTpe -HIS/CD - AQ)S2 || + ||S3
T(F - BO)Ŝ  ||,

is then chosen, where S , S , S , S are constant column vectors and
-L fc O *T

D,F will be determined to approximate A and B by constraining the time
•

derivative V of V to be negative definite and setting indefinite terms

to zero.

[21:22j
Grayson ' synthesizes an algebraic (memory less) relay type con-

troller by applying Liapunovfs second method. Since Grayson's work, a

number of generalizations and refinements of the technique have been

r c ' U2-U£."I
made ' . .Trie efforts mainly have been centered on the elimination of



higher order derivatives from the control signal. Motivation of this

stems from the fact that it usually simplifies the hardware necessary

to realize the controller and also reduces the noise level associated

with differentiation involved in controller's implementation. Monopoli -*

[37]and Lindorff have shown that, in some cases, the following possi-

bilities exist:

1) Some or all of the plant state variables may be replaced

by the corresponding model state variables,

2) the need for some higher order derivatives may be elimi-

nated entirely,

3) a reduction in the gain associated with the higher order

derivatives will reduce the adverse effects of measure-

ment noise.

Lindorff has also successfully extended the Liapunov synthesis tech-

nique to multivariable system when there are no input derivatives.
-•

A reduction in instrumentation noise level and the problem of noise
[36]

rejection has also been treated by Lindorff . This is especially

directed to the systems which are not in phase variable form and where

the parameter uncertainties exist. But it seems that the technique is

restricted due to the requirement for special relationship. Non- '

linearities in the system are not permitted. Confronted with the prob-

lem of controlling a plant which is imperfectly identified, Taylor » -"

has obtained a realistic error bound for reduced order model-reference

controller. Nikiforuk et. al. extended the model reference control

synthesis technique to plant with unknown nonlinearities and unknown .

parameters. The controller has been synthesized via a reduced order

model. The resulting controller is highly nonlinear. The technique



is applicable to single-input, single-output minimum phase type systems.

The limitation of the above techniques based on Liapunov's second method

is not only the complexity of the controller structure, but also the

lack of any insight as how to determine the control amplitude.

Winsor and Roy combined optimal control and trajectory sensi-

tivity to develop a design of desensitized model following control

system. The control is generated by minimizing a quadratic performance

index involving the error (between the plant and model output) and the

control. Complete information regarding the plant, availability of all

the state variables necessary to control the system, and model transfer

relation being of same order as that of the plant, are assumed.

A somewhat different approach has been suggested by Donalson and

Leondes . They have selected a variable controller (controller has

variable parameters) which causes the form of the plant's transfer

function to match that of the model. The control law is synthesized

by minimizing a quadratic performance index involving the error and

its derivatives by following the path of steepest descent for f(e).

This method has produced a controller with memory, i.e., the controller

contains integrators. A discussion on overall stability of the system
[14]

has been suggested in L15J. Shackcloth and Butchart have also

selected a variable controller by choosing a Liapunov function of the

form:

V = eTpe + ZTMZ

where P and M are positive definite and symmetric and Z is the mis-
•

alignment vector. The time derivative V of V» evaluated along the

O8]
trajectory is constrained to be negative definite. Parks has also

suggested a similar technique and has shown clearly that the adaptive

ft
Minimum phase type system implies the system with lef—half plane zeros.



technique based on M.I.T. rule might result to an unstable controller.

He designes the controller so as to insure, under certain conditions,

asymptotic stability. Many extensions and generalizations of the above

technique have been made and may be found in the literature'- ' 57 57 T

1.2 PROBLEM STATEMENT AND ORGANIZATION OF WORK

To counter various limitations of the techniques mentioned earlier,

the present thesis deals initially with the problem of controlling a

dynamic single input - single output system having parameter uncertainty

using a minimax technique. Specifically, it treats the design of a con-

troller using a nominal model to insure a satisfactory performance of

the system in spite of ignorance of system parameters. The problem is

posed with the additional constraint that the controller be linear and

that it require only partial state feedback.

The system is described by n order differential equation

x *-' + a x (n"1J + + a x = b ufa) + b u(m"]Xl + an-l xl + • • • + V*! - bmu + bn_lU

+b,u + b u + f(x. ,...*.,l o 1 1 "

where x and u are the output and input to the system, superscript (n)

denotes the number of derivatives, and f(x..,x , ...x̂  ,t) is a non-

linear function.

Next we define a lower order stable model

y(n-m) + o y(n-m-l) + 4>> + 0 y . g p

where y and r are the model output and reference input respectively.

A schematic diagram of this model reference system is shown in Figure

2.2.



Error e_ is defined as

e = (x1,i1 ...x̂ -*-
1)1 - (ŷ ,...

If the system is minimum phase type and f(*) is a bounded continuous

nonlinear function, it is shown that the error e_ can be bounded with

an arbitrarily small bound, despite imperfect knowledge of a. ,b, , i=0,l

...,n,k=0,l,...m. Reduction of the error bound, however, requires in

general greater control amplitudes. Furthermore this is achieved by a

linear feedback obtained by minimizing with respect to control and

maximizing with respect to a signal 5 relating to the uncertainty, a

quadratic performance criterion of the form

J = i /"CeTQe_ + uTRu - £TL£ ] dt .
* o

The resulting control is linear and the number of states required to

generate the control is equal to system order less the number of zeros.

This discussion is the subject of Chapter 2.

One of the shortcomings of the minimax approach is that the control-

ler requires the output of the plant and its derivatives up to (n-m-1).

When some of the output derivatives are not available, a reduced order

dynamic compensator is designed using a minimax technique. The input

to the dynamic system is the available states or output of the plant

and its output is the required control signal. If the output observa-

tion is noisy, differentiation of the output signal to generate the con-

trol is no longer possible.

In this case, estimation of states becomes complex due to lack of

information regarding the system matrix. One way of approaching this

problem is to obtain an optimal mean-square error estimate of the states



[oq]
under specified parameter uncertainty . This class of adaptive

estimation problem constitutes a class of nonlinear estimation prob-

lems and the resulting estimator gains require the solution of a set

of simultaneous partial differential equations. In most cases, a

closed form solution does not exist and hence the estimator is diffi-

cult to realize. Recently, a simplified closed form solution of this
r30]

type of adaptive filter has been suggested . This thesis reports

an ad hoc estimation scheme to generate an estimate of the necessary

states from the noisy observations using a deterministic model. The

estimator is linear. Chapter 3 contains design of reduced order dynamic

compensator and estimator for systems with parameter uncertainty.

Another drawback of the present minimax procedure is the apparent

difficulty in extending the concept to multivariable cases. The diffi-

culty lies in the fact that a suitable canonical form for multivariable

case is not currently available. The general situation becomes much

more complex, due not only to multivariable nature of the problem, but

also the presence parameter uncertainty, disturbance in the system and

noisy measurement. One way of tackling the problem is to assume a form

for the controller structure. Optimization techniques may then be

employed to develop algorithms which yield optimum values of the para-

meters of the controller. This thesis will assume a linear structure

as illustrated in Figure 1.2,
roo_ocT POST I~9R 1

Athans, Levine, Johnson ana Kosut have discussed a simplified

version of the above problem. A dynamic compensator of specified order

is used along with the output feedback to provide the control. Matrices

G,H,P,N are chosen so as to minimize an integral quadratic criterion.
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The result is a set of simultaneous nonlinear algebraic matrix equations

which must be solved recursively for G,H,P,N. Basic limitations of

their approaches are:

1) A linearized system is assumed.

2) Disturbances, d_ , and measurement noise n_ are not con-

sidered.

3) Parameter uncertainty is not considered.

»O Gain matrices depend on the initial state, x of the

plant. Generally this is handled in [33,28]by assuming

that the initial state is random variable with a known

covariance matrix.

5) It is not generally known a prioiri whether a dynamic

compensator can stabilize the system unless the dimension

of y_ and £ together equals that of x_.

T381Maclane has considered a stochastic version of the problem to

handle the disturbance. The tracking problem can be treated within

this formulation by assuming that the desired inputs may be generated

by the initial condition response of a linear system. This, however,

[23]has not been done. Goldstein has designed a minimal order observer

to yield an estimate of x_ which, in turn, is used to obtain the control.

No disturbance or measurement noise is allowed. Ferguson and Rekasius'- *

Pearson , Pearson and Ding , Brasch and Pearson also use a

dynamic compensator of suitable order to provide an optimal control.

The gain matrices are independent of initial condition.

The present thesis deals with the problem as schematically shown

in Figure 1.2, Specifically, the problems of parameter uncertainty and
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the presence of disturbance and measurement noise have been considered.

The objective is to specify various gains G,H,P and N using optimiza-

tion technique. Theoinitial step is to design a controller for a linear

dynamic multi input - multi output system having parameter uncertainty

using a minimax procedure. The basic study here is to examine various

minimax criteria so that the system behaves acceptably well over a wide

range of parameter variation using only output feedback. Thus the dee

sign procedure involves the specification of G assuming H = 0. Mini-

max controller design for this class of problems using complete state

C29 M-l 56feedback has been suggested by many authors ' ' _ 'The present ap-
58,61J.

proach treats this problem by minimizing with respect to a feedback

gain matrix and maximizing with respect to uncertainty, a quadratic

performance index involving the system state, the control and a signal

related to the uncertainty. The optimal feedback gain satisfies a set

of nonlinear algebraic matrix equations. Several other minimax approa-

ches are then considered to relax the conservativeness of the previous

formulation. It has been demonstrated that the minimax design criteria,

under wide parameter variation, yield better performance than a purely

nominal design. This is the subject of Chapter 4.

Next the thesis treats the problem of designing a generalized con-

troller for systems excited by white noise disturbance. The measure-

ments are assumed to be contaminated with white noise of known variance.

It is well known that if the system is linear, is excited by white

gaussian noise and the measurement noise is gaussian, the estimator

and the controller can be designed independently. This is due to the

well-known separation theorem. The estimator is the well-known Kalman

filter whose dimension is equal to that"of the system. Sometimes the
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dimensionality of Kalman filter restricts its use in practice because

of added computational difficulty. With these points in perspective,

the thesis deals with the design of a generalized controller (combined

estimator and controller) of specified dimension. It is assumed that

the system is perturbed by white noise and the output observations are

contaminated with white noise signal of known variance. No parameter

uncertainty is assumed. The dynamic linear controller operating on the

available noise corrupted outputs of the system generates the required

control input to the system. The design involves determination of

optimal values of G,H,P and N. Chapter 5 deals with this problem and

presents a simplified analysis of estimator and controller combined.

Various special cases are also discussed.

Chapter 6 summarizes the achievement of the present work, its

shortcomings and possible extensions to more general problems.



II MINIMAX MODEL REFERENCE CONTROL IN SUBSTATE SPACE

2.1 INTRODUCTION

The design of a controller for a dynamic single input - single

output system having parameter uncertainty will be undertaken in this

chapter using a minimax technique. Specifically, it will be shown that

a controller can be designed using a reduced order model to insure a

satisfactory performance of the system in spite of ignorance of system

parameters. "The problem is approached by minimizing and maximizing

with respect to the control and an "uncertainty signal" respectively,

a quadratic performance index involving the tracking error, the con-

trol, and the "uncertainty signal". The resulting controller is linear.

The number of states required to generate the control is equal to the

system order less the number of zeros. Bounded input - bounded output

stability is guaranteed, provided the system transfer function in mini-

mum phase type. The results also apply for systems with rather general

nonlinear it ies that do not involve the control. It is also shown that

the tracking error admits an upper bound and that the bound can be made

arbitrarily small with adequate control levels.

2.2 MOTIVATION OF THE PROBLEM

Consider the single input - single output system described as in

(2.1) - (2.3).

X,(s) b sm + bm .s
1"'1 + ---- tb.s+b. N(s)

"__ _ __ m<n (2.1)

U(s) sn + a-s"'1 + ....tas t a D(s)
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where X (s) and U(s) represent the Laplace transforms of output x,(t)

and input u(t) respectively. The equation (2.1) may be expressed in

F3 1the state variable fomr J

x = A£ + hu =

4

where h, =

0 1 0 ... 0

0 0 1 .... 0

. ' I I

0 0 0 . . . 1

-aQ -a^ -a2 ... -a^

x +•

0

0

0
hn-m

.

hn

0 k<n-m

k-1
b~_i, - X a_ , ^.h. k>n-m .

(2.2)

i=n-m

Since x. . = x., i=l,2, n-m-1, it can be seen from (2.1) that

N(s)

sN(s)

(2.3)

Nn-m
(s)

N (s)n

where N (s), k=0,l,...,m, are polynomials in s. Consider now the use
II™" 1\

of a linear feedback law -

u ' " k

Twhere k_ = [k]L,k ......
 k
n-m' °*

kn-ra>sn-m] = ~k(&. i
i

is a constant vector.
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The eigenvalues of the closed loop system are then solutions of

T T

0 = |sl - A + kjik | = |sI-A | | I + k (sI-A)~TikT|0

= |sI-A | (1 + kkT (sI-Af-Hi) (2.5)
Q— —

where |A| is the determinate of matrix A.

The last equality of (2.5) is obtained using the identity

| I + £ D1 | = 1 + £T£ ; (2.6)

£, D^ being vectors of compatible dimensions . Furthermore , combining

(2.3) and the definition of k_ with (2.5) yields

N(s)(k_ + k2s
|sI-A + khk1! = D(s)

D(s)

= D(s, [1 + k() N(s
u D(s)

(2.7) can also be obtained using Figure 2.1 which illustrates the

system with feedback. The characteristic equation of the closed loop

system is

1 - Loop Gain = 1 + kgk1 (sI-A)"1!! = 0,

which agrees with (2.5) and (2.7). We know as k -*• », that zeros of

(2.7) approach the n-1 finite zeros of N(s)"k(s) and one zero at -°°.

Hence if N(s), k(s) are Hurwitz polynomials with b , k > 0, the

system is stable for kQ sufficiently large - regardless of the zeros

of D(s) = |s!-AJ . Furthermore, response to any bounded input R(s)

will be bounded. The problem is to choose the nonzero, elements of k_

so that in addition to stability, the system exhibits behavior which

is in some sense good. Furthermore we should like a design procedure

which can yield this good behavior despite uncertainties in the system

parameters and with minimal control effort.
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2.3 SYSTEM DESCRIPTION, DEVELOPMENT AND PROBLEM FORMULATION

Define a stable model

2.=

0 1 0 ... 0

0 0 1 ... 0

0

0 0 0 ... 1

0 1 2 n-m-1

L +

'o '

0

*
*

0

6°

(2.8)

and a system

x< n> + a 1x,
(n"1) + + a.x, = b um + b_ ̂ u111"1 +...+b,u + bnu +1 n-1 1 0 1 • m m~l 1 0

f(x1,x1,...,x̂
n m ,t) (2.9)

where y_ and r are the model output and reference input respectively,

and f(-) is a nonlinear function. A block diagram representation of

the model reference system is shown in Figure 2.2.

If

(1) b >B>0 and b sm + b_ ,s + .,.+b,s + bn is Hurwitz, and ifm~~ m m—x j. u

(2) f(x1,x1,..., x̂
1"111" ,t) is a bounded continuous nonlinear

function, the objective now is to show that the error

e = (x-̂ ....̂ 11-111'1}1 - y. = x - y_ (2.10)

can be bounded with an arbitrarily small bound, despite imperfect

knowledge of a., b, , i = 0,l,...,n,k = 0,1,...m. This will be achieved
1 K

by a linear feedback law which requires only partial state feedback and

is in a sense optimal. Furthermore u will be similar in form to (2.4)

with k(s) Hurwitz.

Remark 2.1.

a) n,m, are integers which may be unknown but the difference (n-m)
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is assumed to be known. Also a lower bound of the highest order deri-

vative coefficient of , u is available.

b) Note that (2.9) is identical to the linear system (2.1) except

for addition of the nonlinear term.

c) When a regulator is being designed, it is admissable to let r=yj=0.

We proceed by rewriting (2.9) to obtain

-

n-1
(bm-B) u * i a._m,

I a.Xl
(j) + f(x ,...,xt) (2.11)

j=0 D -1

Integrating each side m times, gives

(2.12)

where C(t) is the ra fold integral of the right side of (2.11) together

with initial condition terms. In state variable form, (2.12) may be

written

•*
X =

' 0 1 0 ... 0

0 0 1 ... 0

.

.

0 0 0 ... 1

— ct« -ot. a ... —a J

. 0 1 n-n

ft
*. +

i-l

0

0

.

*

0

8.

u +

0

0

.
•

0

JE(t).

u (2.13)



21

*
where x_ corresponds to the first n-m elements of x. as in (2.10)

i *> x = TV i v (n-m-D-]T - fir v T
i.e. Jt - i _ x , x , . . . ,x_ J - L X , X _ .

Consequently, subtracting (2.8) from (2.13) yields

* - B

£= (x - £) = AQe •»• £ (u + O, u = (u - ° r),£ = J. 5- (2.15)

jf
?(t), of course, generates differences between the model ancKx^ ,

If £ = 0 = u , e(t) approaches zero asymptotically since A has negative
— 0

eigenvalues . Furthermore , even ifu = 0, £ 1 0 , e_ will be bounded for

£(t) bounded. The problem is to realize a u which not only will retain

stability but allow a bound on e_ to be made arbitrarily small.

2.4 CONTROLLER DESIGN

If the current and future values of C(t) were known for all time,

the 'ideal' optimal control would be obtained by minimizing

1 OO

J = i / (e
TQe + Ru2)dt (2.16a)

* o ~ ~~

subject to (2.15), Unfortunately such a priori knowledge about

is not available. Although it may be argued that C(t) can be generated

from (2.15) once u is known, one still needs to know £(t) ahead of

time to solve the optimization problem. If a bound on £(t) were known,
1

one way of designing a minimax controller would be to maximize w.r.t.

£(t) and then minimize w.r.t. u, the performance criterion (2.16a)

subject to (2.15). But it is clear that an a priori bound on £(t) is

difficult to ascertain. An indirect way of penalizing £(t) can be

achieved by modifying the criterion (2.16a) to include C. The form used

will be
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J = i f (eTQe + u2R - i2L)dt (2.16b)
2 o ~~ ~~

with R, L > 0 and Q positive definite. u,£ will be chosen to minimize

and maximize J respectively. Although C is not arbitrary, the design

assumes that £ acts in the worst possible fashion and thus maximizes J.

The term -£2L is introduced to limit £ . It is readily shown that

the optimum u, £ are given by*- •*

* IT 1 T
u = - ± exPe, ? = 7 6TPe (2.17)

K — — Jj — —

where P is the symmetric matrix satisfying

PA0 + A^P + Q - PS8
TP (I - I) = 0 . (2.18)

U U — R L

1 TFurthermore, (i) A - — 66 P has negative eigenvalues

(ii) P is the unique positive definite steady state

solution of -P = PA + ATP + Q - P86TP (£• - -), R<L.
0 0 K L —

* it
(iii) J[ e^; u,£ ] = min max J[ e ; u,£ ] = max min

u I ~° I u

(2.17) will, in one sense, yield a conservative design since £ is assumed

to act in the most perverse manner . In another sense , however , C need

not abide by the rules of the game and may be using a smaller L than

assumed. This may require that R in turn be decreased.

Remark 2.2

It should be noted that a unique positive definite solution P of

(2.18) exists if R<L. In case, R<L the implication is that we are

trying to balance the effect of the "uncertainty signal" with a larger

amplitude of control signal than what is needed with R = L. Consequently
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for much of the rest of the chapter, we shall restrict ourselves to the

case R = L. In case R<L, it is still possible to show that proposi-

tion 2.1 (mentioned below) is true. In case R>L, nonuniqueness of

Solution P of (2.18) poses some problem in the subsequent analysis .

of the error bound and is a subject of further investigation.

For convenience, define k̂  as the last row or column of P. Then

E2» •

From (2.17), u is given by

= - I kTe (219a)j\ ~ —

Accordingly

5(s)= -|1
T[l,s...,sn-m-:L]TE(s)= -|c(.)E(8> (2>igb)

where

11(5) = p̂ " [1 s ŝ  ... sn~in~̂ 3̂ '

Now it will be helpful, at this stage, to establish an important

property of this control signal u that is outlined in the following

proposition:

Proposition 2.1

With A. stable and as defined in (2.13), k(s) is a stable poly-

nomial for R=L.

Proof;

Consider the system defined by (2.15) and represented in Figure

C2.3), The open loop transfer function, z(s), between £(s) and u(s),

is given by
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z(s) = [ |P (sI-A-rt] = VP/DT/S) [l̂ .̂ .s11-111-1] = - -
R ° " *• . R D1(s)

(2.20)

where D-̂ s) = |sI-AQ| is a stable polynomial and k(s) is as defined

in (2.19b). Now using (2.18) we obtain

2Re[z(s)] =z(s) + z(s) = i [BT(sI-/J)"1 P8 + $TP (sI-A.)'3*]K ~~ 0 — —. Q

= ~ 8T(*I-Â )"1 [P(s+s) -h P3T (R-i-L"1) SP + Q](sI-An)~
1e

R ™~ (J ~~ (J —

= 2{Res> C6T(sI-AT)"1 P(sI-A_)~16] + 6T(sI-AT)-1Q(sI-An)"
13

— 0 0 — — o 0 —

for R=L.

*
Here s denotes the complex conjugate of s. Since P, Q are positive

definite, Re[z(s)] is nonnegative for Re(s)>0. Therefore the trans-

fer function z(s) is positive real which implies ;from (2.20) that

k(s) is Hurwitz.

2.5 DERIVATION OF A BOUND ON THE ERROR

In order to determine a bound on e_ when u satisfies (2.17) but C(t)

is arbitrary, let

V(e) = ̂ e
TPe_ (2.21)

where P is the positive definite matrix satisfying (2.18). e_ must

now satisfy the differential equation (2.15) with u as in (2.19a);

that is

e = [An - -, g
TP] e + g C(t). (2.22)— OR— — —

»

The time derivative of (2.21) is
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V(e) =
R

5 (t)8(kTe) (2.23)

where (2.18), (2.19a). and (2.22) have been used to refine the result.

Clearly if |£(t)| is bounded, (2.23) will be negative for | |e_| |

sufficiently large and admit an upper bound | | e| |. It is necessary

to examine £(t), therefore, by considering the behavior of the full

system described by (2.9), (2.10), (2.21). It will then be possible

to complete examination of (2.23).

2.6 STABILITY OF THE OVERALL SYSTEM

Turning now to the total system, (2.9) may be written in state

form basically as in (2.2, (2.14),

j{ = AJC + hu
ft

f (x, t) (2.25)

with f (x,t) = [0,0,...,0,f(x,t)]T.

Now define

ft
XT A-J, A -
V

'A*
AL v*

A*v'

A
v •* (2.26)

J
Z = [v], v = (v , v , v )
"™~ *~* "̂  *L. S tu

and combine (2.25), (2.8) and (2.10), to eliminate x̂  . The result is

= AZ + hu
A*-Ao

'ft

r + f_ (e_ + y, t)

= AZ + hu + v (2.27)

where
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n-m n-m .
v^= [0,0,...,0, I a. y. - 6Qr, 0, 0, . ,f (y_ + e, t) - I a. .y.]

i=0 i=l x

(n-m)fth entry (2.28)

v^ is bounded if the model input r, is bounded as assumed. If the

"optimal" u given by (2.19a) is used in (2.27), the closed loop

system satisfies

* B ~T

= [A - fh_£T] £+ v/ (2.29)

with

k = [k., k. k , 0,0,..,0]
— J- * n-m

(2.30)

BO A
v1 = v + h — r = [0,0,... 0, v1 ...v'3
~~ ~~ ~~ g n-m "

The characteristic equation of the closed loop system is obtained

as in (2.5) - (2.7), i.e.

0 = |sI-A + -h_k_T| = |sI-A| 11 + (sI-A)"1 -h.k_T|
R R

= |sI-A| (1 + |k

= D(s) [1 + - Hil (k. + k s + + k £
R D(s) 1 2 n-m

= D(s) + |-N(s) k(s) • (2.31)
K

Now as R-K), (n-1) roots of (2.31) approach zeros of N(s)k(s), and

the last root goes to infinity along the negative real axis. Since

N(s), k(s) are "stable polynomials", then (2.30) is stable for R

adequately small.
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Consequently as the penalty R on control is reduced, permitting

larger control amplitudes, the system (2.1) - (2.2) or (2.7) is stable

for the feedback law (2.19) provided N(s) is a stable polynomial with

b >0.m

Now since (2.29) yields a bounded JS with a bounded input \̂ !, all

the elements of £ are bounded. In fact, bounds on v_* do not depend

on Ẑ  but are determined mainly by y_. From (2.29) - (2.31) it can be

seen that

; , n
£(e.) =E. (s) = -± I fT(s) v!(s) i=l,2 (n-

1 x D(s) + £N(s)k(s) j=n-m D 3

R

D(s) + E N(s)k(s) j=n-m
R

Cg!(s) +-£i(s)]v!(s),

i=l,2 ,. . . ,ro.
• • •

where ̂ (s), g1(s) and SL.(s') are polynomials in s, independent of R,
j j D

and of order <_ (n-1). £(') is the laplace transform of C')t

As R-»-0, |E.(s)|-»- 0, i=l,2,...,(n-ra-l)

and

|V.(s)| + I As) v'(s)
1 j=n-m ] _ J i=l,2,...,m. Thus an ultimate

N(s)k(s)

bound on V exists and is independent of R as R->0. Furthermore the

error bound, i.e., the bound on | |ej | goes to zero as R-*-0. We

explore this further.

2.7 FURTHER RESULTS ON THE BOUND OF THE ERROR

Let us now examine £(t). From (2.22)

n-m 2 «p
= ec(t) = e t I a. ,e. + £- k e_

n-m 1-1 1 * x R ""
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n-m

From (2.29), on the other hand

g T n"m 8

n-m n-m R m- - .=Q L^ L 0 —

Thus
n-m b

€(t) = v + I [a. ,e. H- a. .y.] + 3n ( ~^- -1) r + ̂  (g-b )k e1 j^ i-l i i-l i Og R m

= 5 + . (0-b )k (2.32)1 R m — ̂-

where '

has an upper bound which is independent of R and exists as R-+O.

Returning to (2.23) with (2.32) replacing C(t),

«.,. -HV-osV^-i^'-^
< - 1 e

T
Qe . I ( Je)

2 62 (i + f) * 6,k
Te

_ 2 — — 2 -- RL -L --

1 - eTQe - (kV g2 ( + i) + | 5 l l l kTe| (2.33)

I T

The last inequality is obtained by maximizing the last two terms in
m

the equality with respect to |k_ej.

Providing e_ is sufficiently large, the first component of w(e)

1 T
will dominate. Next -re_ e_ is maximized subject to w=0 , in order to

Testablish an upper bound on e_ e_. For this purpose , it i s required
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to maximize the Hamiltonian

= i eTe t „[ - i eV * c], c = i
 1-" (2.3«H

*«H
where n is a constant multiplier. Equating |^- to zero yields

Qe = - e = X^ (2.35)
~ TV ~ ^f~

Thus (2.35) shows that e_ and — are an eignevector and eigenvalue

of Q respectively. Since

£ Qe_ = 2c = X-ee

is required t

T 9c/
(e £)max = (\j) »in

where (X ) . is the minimum eignevalue of Q.

IF I2
* T I ̂  1 I

Thus V < 0 for all e e > —1 max

(i . i>B2 <
XQ>mln

• '

i.e., V < 0 for all | |e_| | >_ R =I Climax

Q min (r- + ̂ -)

(2.36)

This, of course, is conservative. Since we have permitted e_ to both

maximize certain terms in (2.33) and to maximize |'ej| subject to

W(£) >. 0.

The bound on ||ej| can now be found in standard fashion,

(1) Determine V = maximum V(e) subject to | |ej | <_ R.

(2) Determine R, = max ||e|| subject to V(e) <_ V

a

o
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Thus, to find VQ, we proceed as follows:

Minimize the Hamiltonian H given by

H = e_TPe_ + vR. - e_Te] (2.37)

or Pe_ = v,e_

indicating that e_ and v. are eigenvector and eigenvalue of P respectively.

Thus e. Pe_ = v eTe_ = v.̂ 2

"* Vo = Vmax = <VmaxRa2 (2.38)

where (X ) is the maximum eigenvalue of .P.

9 TNow to find R. , we maximize R^ = e_ e_ subject to

e_TPe = (Ap)maxRa
2. Thus

H = eTe + v[(X) Ra
2 - e_TPe 3 (2.39)

and = o = e-vPe

or Pe = — .e .
v2-

Hence e and — are eigenvector and eigenvalue at P.
V2

Furthermore eTPe = (X̂ )m=lv R
 2 = X e e— — p max a p— —

i.e. eTe = (Xp)max Ra
2/Xp

Thus the required" R. is given by
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Figure
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and
/(*.. max

• Ra
y(v.
L, t/ ~_max— mi
p " (XQ> min(i t i)

(2.41)

R represents an ultimate bound on ||ej| since e_ asymptotically

approaches the region defined by v(e_) <_ VQ but v(e) may be indefinite

therein. Thus | |e_| | is bounded by R as shown in Figure (2.4). This

bound can be made arbitrarily small by relaxing the penalty R on the

control u since I £ I admits an upper bound as can be seen from1 1'max ^

the previous section and (2.32).

2.8 EXAMPLES

To illustrate the preceding analysis, consider the following open

loop unstable system described by

*x* + x - x + x - sin x + x = u* + 2u + u (2.42)

with a first order model described by

y -h 2y = r (2.43)

where r is a step input. It is to be noted that the minimum order of

the model is specified by the difference between the number of poles

and zeros of the plant. This, in this example, is one. With a little

manipulation and integrating (2.42) twice, the error equation can be

expressed as

e + 2e - C + Q ' , (2.44)

u" = u - r



33

*
It is desired to find an optimal control u by maximizing w.r.t.

and minimizing w.r.t u the performance criterion

J = - £° (4e2 + RO2.- L£2) dt, R=L (2.45)

subject to (

The resulting control is given by

u = -R'-'e (2.H6)

and is applied to the original system (2.m).

The outputs of the plant and model are shown in Figure (2.5) for

different values of R. It can be seen that the error decreases mono-

tonically with the decrease of penalty R. Also plotted are the re-

maining states Xv = x, x- = x* for different values of R . These
2 O

are bounded as can be seen in Figure (2̂ 7) and (2.8). The control

signal characteristics are shown in Figure (2.9).

2.9 CONCLUSIONS

A linear time invariant controller has been designed for a single

input - single output system with parameter uncertainty. The number

of states required to generate the control signal is equal to the

system order less the number of zeros. The feedback gains are ob-

tained by minimizing a quadratic performance index involving the

tracking error, the control signal and the "uncertainty signal".

This, however, yields a conservative design since the "uncertainty

signal" is assumed to act in the most unfavorable manner. Bounded

input - bounded output stability is guaranteed, provided the transfer

function is of minimum-phase type. If. the uncertainties are bounded,
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it has been shown that the system can always be stabilized if suffi-

cient control amplitude is available. These results also apply for

systems with rather general nonlinearities that do not involve the

control. It has also been shown that the tracking error admits an

upper bound and that the bound can be made arbitrarily small. Since

very little a priori knowledge about the system is assumed, the feed-

back controller may be forced to supply excessive feedback gain in

order to insure stability. This is, it seems, a logical compromise

under the present situation. It is also clear that the controller

uses partial state feedback from the states of a certain companion

form. In practice, it is possible that some of these state variables

may not be available. This requires reconstruction of the states from

the available states or output. State reconstruction via well known

Luenberger observer is difficult, because of the uncertainty in the

system parameters. The problem may be compounded by measurement noise.

Differentiation of the output to provide unavailable states together

with a high gain design is likely to yield unsatisfactory performance

in the presence of measurement noise. These problems will be tackled

in the next chapter.



III DESIGN OF REDUCED ORDER COMPENSATOR AND

ESTIMATOR FOR SYSTEM WITH

PARAMETER UNCERTAINTY

3.1 INTRODUCTION

In the previous chapter, it has been shown that a linear time-

invariant controller can be designed to stabilize a single input -

single output nonlinear system provided that the system output and

its lower order derivatives up to (n-m-1) are available. Here n is

the system order and m is the number of zeros. In many practical

situations, these state variables may not be availablev In addi-

tion, output measurements may also be noisy. The inherent diffi-

culty associated with differentiation and possibly high gains limits

the minimax procedure described in previous chapter.

This chapter will deal initially with the generation of the re-

quired control signal as the response of a dynamic system to the

available states or output for deterministic case. The dimension of

dynamic compensator is arbitrary. Because of the previous theoreti-

cal development in Chapter 2, the highest order dynamic compensator

will be (n-m-1). The problem is to design a dynamic compensator

which is in some sense best to generate the required control signal.

It is shown that the constant parameters that specify the dynamic

compensator can be obtained by solving a set of simultaneous nonlinear

algebraic equations.
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The second problem in this chapter deals with the estimation of

states of a dynamical system, given noise-corrupted observation, when

there is parameter uncertainty in the dynamical system. The deter-

ministic case will be treated first.

3.2 DETERMINISTIC CASE: DESIGN OF DYNAMIC COMPENSATOR

One way of estimating the states or generating an optimal control

would be to assume that the observation is contaminated with noise

and then use a usual Kalman filter. In addition to the dimension-

ality problem of Kalman filter, it is difficult to specify various

covariance matrices of plant disturbances and measurement noise in an

essentially deterministic situation. Thus an alternative approach of

generating the optimal control will be suggested below. It is to be

noted that the gains of the dynamic compensator should be independent

of initial state of plant and compensator, otherwise the compensator

gains will have to be changed with the change of plant state due to a

disturbance.

3.2.1 PROBLEM FORMULATION

The model reference system described in previous chapter is shown

to be described by

e = A e +'fiu + ££ (3.1)

£=C± C3.2).

where £ is r-dimensional output vector .

The dynamic compensator of specified order, s, is described by

z(t) = Fz(t) + GC(t) = FzCt) + GCeCt) £3.31

u(t) = hz(t) + ne(t) = hz(t) + nCeCt) C3.4).

The input to the dynamic compensator is the available output whereas

its output is the required control signal. It is easy to see that



C is r x n-m matrix

F is s x s matrix

G is s x r matrix

h is 1 x s vector

n is 1 x r vector

The present formulation of the problem is similar to the one re-
roci

ported by Johnson and Athansu .

To design via optimization, the following cost function is chosen:

J(F,G,h,n;C) =

t T T T '
° + z (F R2F + h

1R1h)z - L5' dt (3.5)

The problem is to minimize the above criterion with respect to

F, G, h, n and maximize w.r.t. £ > subject to (3.3) and

e = AQe + 3u

= (A +Bnc)e_ +8hz + 6C (3.6)

The inclusion of the second and third terms in the performance cri-

terion avoids placing the poles of the compensator at -» and thus

allow the high frequency plant noise not to pass through the system

as mentioned in [25].

Now defining

A
P =

~ A
T =

n h

G F

I 0

0 I

" A
, A =

A

, Q =

A 0'

0 0

Q 0

0 0

" A
, 6 =

„
, R =

i °"

0 I

" A
, C =

Pi °1

0 R02.

A
, -w =

C 0"

0 I

e

z. — .

ft
» J§. = r e i

0
•



it can be easily seen that (3.3) and (3.6) can be represented as

w =

* • "

e
•

z
=

A + BnC Bh'

GC F
»

[I'

V!Z

+

' j."
0

i.e. w = (A + BPC)w

and (3.5) can be written as

J(P,5, w(to)) = j | f [wTQw - dt

(3.7)

(3.8)

- " * 1 -T T~ ~ ~T* *
where Q = Q + - (C P RPC + TC RPCT) (3.9)

Thus the problem is to minimize and maximize (3.8 ) with respect to

P and £ subject to (3.7). The resulting optimal P will depend on

initial condition w_(to). In order to remove this restriction w(to)

can be treated as a random vector in which case J may be replaced by

= E[J(P,C, w(to)].
[2]

Thus the requirement for optimal solution yields

-jp= ~ E[J(P,5, w(to)] = E[ sj|- (P,S, w(to)] = 0 (3.10)

3J.= 0
3£ (3.11)

The interchange of order of expectation (i.e., integration) and

differentiation is crucial here and is valid under rather general

conditions

3.2.2 ANALYSIS

Applying the technique presented in Chapter U, it can be easily

seen that the optimal gain matrix P is given by
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P = R-1bTKLCTci C(Lj»TLf )CT3 (3.12)

where

M = E[ I f (w wT)dt] = | f<fr(t) E[w(to)wT(to)]«>T(t)dt

to

i.e., - M = (A+ePC)M+M(A+ePC)T+E[w(to)w?to)] (3.13)

and K satisfies

-K = (A+ePĈ K+KU+BPCHQ-KfL'1?*; (3.14)

It t̂ -H» , t -H), M and K are the steady state solutions of (3.13) and
•*• o

(3.14) respectively.

If
Mo)]

= Erw(to)] =.wc
z(o) —o

and E[(w(to) - w)(w(to) - v] = W

Then E[w(to)wT(to)] = W + WJM T (3.15)o

The optimal cost can be seen to be

J = -Tr (KE[w(to)wT(to)]} = - Tr {K(wQ + WMW)} (3.16)

Thus the optimal signal requires only the available states Cf_ and

the states of dynamic compensator. This control signal is now ap-

plied to the original system (2.9). Overall stability of the sys-

tem is not apparent and is the subject of future investigation.

Computational schemes to solve the simultaneous nonlinear equations

have been discussed in Chapter 4.

3.3 STOCHASTIC CASE: DESIGN OF ESTIMATOR

3.3.1 PROBLEM FORMULATION

It is assumed that a continuous record of a realization of the



(n-m)xl vector observable process {z,(t)} is available where

£(t) = Hx(t) - Hy(t) + n(t) = Ite(t) + n(t) (3.17)

and n_(t) is white noise.

Note that this means that the model is used in the estimation

process to generate z(t). Moreover, the process {e.} assumed for

mathematical treatment to be a random one, is modeled as the output

of a dynamic system, excited by a pseudo-random signal £(t), uncor-

related with n(t); that is,

£ = AQe + £(t) + £(t)

g(t) = fju (3.18)

where £(t) and n(t) are assumed to be zero mean, random processes

having covariance matrices Q and R respectively. In case, £(t) has

a bias, the system equation (3.18) can be augmented to take into

account this factor.

The problem is to determine the initial state e(to) and S(t) for

all tf [t0,tf] which minimize

tf

[(zrHe_)
TR1"

1(zrHe_) + £ Q̂ tt +

" 1 ^ T -1 . *
J [£(to)-e_(to)] P Mt6)-e_ (to)] (3.19)

subject to (3.18).
&
e(to) is the expected value of e_(to). It is well known that, if

£(t) and n(t) are sample functions of white, zero-mean, uncorrelated

random processes, this procedure will give a maximum a posteriori

estimate. "If, in addition, 5(t) and n(t) are gaussian, this will

give a least mean-square error estimate. Even if-C(t) is not ran-

dom, the above performance index carries meaning in the sense that

an integral square error in the estimates is being minimized. Since



z(t) and He_(t) are the actual observation and predicted observation

respectively, [̂ (t)-He(t)] is the error in the estimate and Rj"1

provides relative weighting (related to the covariance of the noise)

on this component.

3.3.2 ANALYSIS

The estimate e(tf) of e_(t) at t=tf is the solution of equation

(2.18) using e(to) and l(t) as estimated. To obtain e_(to), _|(t),

the usual Hamiltonian

H = r- (z-He)TR ~1(z-He) + 1 cV"1? + AT[A_e •»• £(t) + g(t)D^ — — j. _ _ . . ^ _ j _ — _ u — ^.

(3.20)

is introduced with the costate equations and necessary conditions

X = - M = HTR T*1 (z-He) - ATX (3.21)— de j. — —

<3-22)

e_ = A^ + ?.(t) + g(t) (3.23)

and the boundary conditions

i *
_X(to) = -P"1 Ĉ (to) - £(to)3 (3.2H)

MV = ° . (3.25)

Using (3.22), (3.23) reduces to
•

e_ = A^ = Q^ + g(t) . (3.26)

Now we claim a feedback solution of the form

X(t) = K(t) [e(t) - vCt)'j .- -03.27)

Using (3.21), (3.26) and (3.27), it is clear that K and v satisfy

the following equations:



-K = KAQ + A*!* - KQ K + H^"3^ (3.28)

v = A0y_- K'V^'^-Hv] + g_(t) . (3.29)

Again as in (3.25),

Thus

X(tf) = K(tf) Ce(tf) - v(tf)] = 0 . (3.30)

t\

e_(t ) = v(tf) is the estimate e_(t ) of e_(t) at t given

z(t) on [t ,t_].~ ~ o r

Also from (3.24) and (3.27)

K(to) = -P"1 , v(to) = e_(to) . (3.31)

Thus
•

i(tf/tf) = v (tf) = AQe (tf/tf) - K"1HTR1"
1C2(tf)-He(tf/tf)]

+ g(t) (3.32)

where K is given by (3.28).
.'

Now defining

M = -K"1 ,

it follows that ft = K̂ KK*1 ..

Thus the estimator is given by

•

e Ct-/t.) = Ane (t./t,) + KH
TR1'

1Cz(t,:)-He(t.r/tf)3t g(t)— II U— II- -± — J. - ~ i j - "•

it
e_ (to/to) = e_(to) (3.33)

where the positive definite matrix M satisfies

M = A M + MA^ + Q - MHTR1~
1HM (3.34)

M(to) = P(to) (3.35)



3.H EXAMPLE

Case 1 : Deterministic Case

Following example will illustrate the design of a first order

dynamic compensator for a third order nonlinear system described by

•f x + 2x - x - smx = u + u (3.36)

with a second order model

y( ' + 2y + y = r . (3.37)

A second order model is chosen since the difference between

plant order and the number of zeros is two. (3.36) and (3.37) can

be combined to yield the error equation

e^2) + 2 e + e = u + C (3.38)

u = u - r .

It is clear from the previous chapter that the optimal controller

requires measurements of e and e. It will be assumed that only e is

available. Next a dynamic compensator

z = fz + ge (3.39)

is defined. The output of dynamic compensator is the required control

signal given by

u = hz + ne (3.10)

' 1 0 "
With Q = , R = .01 , R = .015 and L = ,01

. ° 1 J

(3.12) - (3.1H) are solved using the algorithms reported in next chapter
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to obtain

f=-11.68 g= 8.2 h=-51.2 n=-47.68.

The control signal is then applied to the original system (3.36). The

outputs of model and the plant are shown in Figure 3.1. The control signal

characteristic is shown in Figure 3.2. Thus the example establishes the

fact that a reduced order dynamic compensator can be effectively used to

generate the control when some of the necessary states of certain com-

panion form are not available.

Case 2: Stochastic Case

In this example, a first order estimator will be designed for the
•

above model-reference system to estimate e and e from the observation

z(t) = e(t) + n(t)

= he_(t) + n(t) (3.41)

h = (1 0),

where n(t) is a gaussian noise with standard deviation .01.

10 0
Using

-24.56 1

1.32 -2

A

e(tf) +
24.56

-2.36

t. = 1, the estimator is given by

z.(t) (3.42)

The controller is designed using the procedure of the previous

chapter with Q = 0 , R=L=0.01 and is given by

u = -R ( .5, .5)e . (3.43)

The control signal is then applied to the system (3.36). The outputs

of the plant and model are shown in Figure (3.3). Noise corrupted ob-
A

servation z(t) and its estimate e(t) are shown in Figure 3.4. The con-

trol signal is plotted in Figure 3.5. Thus a reduced order estimator can

be designed to implement the controller for a class of model reference

system.
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3.5 CONCLUSION

In this chapter, the problem of generating the optimal control as

the output of a dynamic compensator is treated for system with para-

meter uncertainty. The input to the dynamic compensator is the

available output of the system, whereas its output is the required

control signal. The minimax technique of the previous chapter has

been extended to the case where the state variables are not in phase

variable form and also the necessary state variables are not avail-

able.

Finally an ad hoc scheme for estimating the necessary states of

the system with process uncertainty has been developed using a re-

duced order deterministic model. Very little a priori knowledge of

the parameters is assumed. If the signal related to the uncertainty

and the measurement noise are uncorrelated, the resulting estimator

is linear and is optimal in the sense that it minimizes a quadratic

criterion involving estimation error and a signal related to uncer-

tainty. The minimax technique presented in Chapter 2 and 3 has

some limitations. First, it is difficult to extend this basic con-

cept directly to general multivariable system. The difficulty is

due to the fact that a suitable canonical form for multivariable

case is not available. Second, the uncertainty signal £(t) is re-

lated to the system parameters in a complicated way. Thus an ulti-

mate bound on parameter variation to insure system stability is

difficult to ascertain. The problem of controlling multivariable

system with parameter uncertainty will be reformulated and will be

treated in the next chapter.
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IV MINIMAX OUTPUT FEEDBACK CONTROLLER

4.1 INTRODUCTION

The design of a controller for a linear multivariable system

having parameter uncertainty is explored in this chapter. Linear

output feedback is employed with the feedback gains determined by

minimizing one of several criteria. The problem is treated initially

by minimizing with respect to the feedback gain matrix and maximizing

with respect to uncertainty, a quadratic performance index involving

[93the system state, the control and the "uncertainty signal"

The optimal gain matrix satisfies a set of simultaneous nonlinear

algebraic equations. The design procedure often leads to a pessi-

mistic result, either because the uncertainty does not act as per-

versely as assumed, or because the control often makes an effort to

reduce the cost where it is high, even with perfect knowledge of

parameter. To meet this objection, other criterion and in parti-

cular, a minimax sensitivity criterion are also examined. The

optimal feedback gain matrix for the so-called "regret criterion"

is shown to satisfy a set of nonlinear equations similar to those

obtained for the standard criterion. It is demonstrated that various

minimax design criteria yield better system performance under wide

range of parameter variation that a purely nominal design.
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4.2 SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider an n order linear system with state vector x(t)eR

and output vector y(t)eR defined by

(A-AQ)x + (B-B0)u_x = A^ + B

y = Cx_

with a controller

u = -Fy = -FCic .

where A ,B are nominal matrices. Using (4.3), (U.I) can be

m

(4.1)

(4.2)

(4.3)

represented as

x = (AO-BQFC)X + [(A-AO)-(B-BO)FC;|X

= (AO-BQFC)JC+ (w-w0)x_ = (AO-BQFC)

where £ represents the effect of uncertainty.

Since the uncertainty is assumed to be limited, £ will likewise be

constrained. In order to place any restriction on the form of (W-Wg

let W-WQ = DGC,. D, C are fixed and G contains variable terms. An

example is

0 0 0

B = B0. A-AQ =

0

(a0-«0)

Thus the uncertainty vector is specified as

r - op -v (U R}£ — VJU.. X V+.J/

where G is the gain matrix associated with the uncertainty vector

and C, has rank n or less. Both C, C are assumed to have maximum
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rank, i.e., rank equal to number of rows.

Substitution of (4.5) in (4.4) gives

x = (AQ-BOFC + DGĈ X. (4.6)

In order to achieve a design through optimization, the feedback

matrices F and G will initially be chosen to minimize and maximize,

respectively, the performance criterion

J(F,G) = ~ [xTQjc + u_TRu_ - £TL£] dt I
2 BifPCJC, £=GCx

U—ry^w c —f*f* »—ix*X 9 £ — OV--I X

f °°

= - xT!Q + CTFTRFC - C^LGCi] x dt; (4.7)

0
i.e.

(i) Find F and G such that

min max J(F,G) = max min J(F,G) . (4.8a)
F G G F

We shall also consider the following minimax procedures to obtain

optimal gain matrix F :

(ii) min J (u,£*)|
u 'u=FCx

i TTwhere 5* is obtained from max [rain J (u*, 0) - — |§_ L£ dt]
!* H* °~ o

and u* minimizes Jn assuming G=0. (4.8b)

(iii) min max [J(F,G) - J*(G)] (4.8c)
F G -1

where J*(G) = min [J(F,G)3 given G.
1 F
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Civ) min max [J(F,G) - J*(G)] (4.8d)
F G 2

where J*(G) = min [JQ(u £)3
u Î C-LX

Criterion (ii) is less pessimistic in the sense that £ is given the

first play and, in making its play, assumes that u(x.) is obtained by

an optimal full state design (with £=0) for the nominal plant.

Matrix F is then chosen to minimize the criterion based on the an-

nounced strategy of £.

In criterion (iii), (iv) the best control with perfect parameter

information , i.e., £_ known , is obtained with output feedback and

full state feedback respectively. Matrices F, G then minimize and

maximize respectively the difference between the actual cost and cost

with perfect parameter information.

4.3 MINIMAX PERFORMANCE CONTROL WITH DIRECT CONFLICT OF INTEREST

In this case, the saddle point is defined by the following inequal-

ity
) <̂  J(F*,G*) <̂  J(F,G*) . (4.9)

It is clear from (4.6) and (4.8) that J is determined by the initial

state, 21^^ as we^- as roatrices F and G. That is,

J = J(F,G,x (tQ)). (4.10)

In order to make the optimum F and G independent of x̂ ô ' 2L̂ n̂  can

be treated as a random vector in which case J may be replaced by

J(F,G) = E[J(F,G,x(t0)]. (4.11)

E (•) denotes expectation with respect to ̂(tQ). The necessary

condition that F and G should minimize and maximize J(F,G), respec-

tively, requires
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§ = |p ECJ(F,G.x(t0))3 = E[|i (F,G,x(to))] = 0

= e ECJ(F,6.x(t0))3 = E[<F,G, x(t0))3 = 0

The interchange of order of expectation (i.e., integration) and

differentiation is critical here and is valid under rather general

conditions

The partial derivatives of (_H.12)will be evaluated by the appli-

cation of following Lemma:

Lemma 4.1

If

ftf
J=J(x(tn))= W(x(tn)) + L(x,t) dt ,

— U •"• Q I —

where

x_ = f(jc,t) and W(jc(tQ)) is the penalty on the initial

states 2l(t0), then

3J
9x-(t

where

X dH - - d CL
— ~ ~ 3x_ ~ ~ 3x_ r

This Lemma follows from the variational calculus where the first

variation of J with respect to x(t ) is [X(tn) + 3W/3x]
T,5x(tn)f

13^— o — u — — u

In order to apply the lemma, the elements of F and G are treated as

additional "states" which satisfy

F = 0, 6 = 0. (4.13)

Vector multiplier X will be used for the regular state constraint

and matrix multipliers AP(t) and AP(t) will be used for matrices* . i o
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F and G respectively. It is to be noted that the Hamiltonian H will

be independent of Ap(t) and AG(t) due to (4.13). Thus the Hamiltonian

H for (4.6), (4.7) is

H = ̂C(AO-BQFCO + DGĈ X] + ixT [Q + CTFTRFC - cTGTLGc ]x

T V T T T T T- (
= Tr[CA0-B0FC0 + DGC-̂ x \^ + ± (Q + (TF RFC - Ĉ LGĈ JW1].

Tr denotes the trace and

= " (A0~B0FC + DGCi)1"̂  - (Q + CTFTRFC-CTGTLGC)x,Ax(tf)=0;

(4.15)

AF(t) = |g. = - RFĈ C7 + fiJ/^xV, Aj.(tf ) = 0 ; (4.16)

* aH T T T T T
AG(t) = " fe = LGC2̂ . Cl ' D 2^L Ci» ̂3(

According to the lemma, the necessary condition (4.12), and integrated

forms of (4.16) and (4.17), we obtain

0 = E[] = E[AF(tQ)] = E f f [RFCxxV - B X c V ] dt (4.18)

0 = EC^] = ECA(t)3 = E f f CLGxx1 - ̂  dt . (4.19)

Thus if R and L are constants, (4.18) and (4.19) yield

F = R"1 f f B^ Ep^xV dt I f f C ECxxT]CT dt J ~L ; (4.20)

1 f. f T T T ( f T T -1

G = L - D EĈ ] C^ dt I r ^ ECxxT]Ĉ  dt J . (4.21)

t_ 't«
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(4.20) and (4.21) can now be simplified. If X̂  = K(t)x̂ ls assumed,

then(4.6) and (4.15) give

T T T T T
-K= A&K + KAA + Q + C F RFC - Ĉ TLGC.̂  K(tf) = 0 (4.22)

f^f T T T T T
or K(t) = r <J>.(T,t) [Q + C F RFC - Ĉ LGC,] ̂(t.t) dr

J * 1 -1 *
* (4.23)

A
where 4>ft is the transition matrix corresponding to AA = (AO-BQFC'+

DGCj). Limiting attention to the time invariant case (Q,A0,BO,C,D,

constant) with tf =», t =0,equations (4.20) - (4.23) yield

F = R K M C C M C ] ~ (4.24)

G = L"IDTKMC^ [c^cj] "1 (4.25)

where
T

K = j e (Q+C F^RFC - cVLGC^) e dt

• I
T

09 A4° T T T T A*°
e (Q -e C^RFC - C 6 LGC.!^) e do (4.26a)

or

and

K(A -B FC + DGC ) + (An-B.FC + DGC.)?K + Q + CTFTRFC -
0 0 1 0 0 1

C^G LGC1 = 0 ^ (4.26b)

A , „ T AftT T A*r- r T....T, dt = e E[x(t )xT(t )3 e * dt,MS f - ECxx']

0 (4.27a)

or

(AO-BQFC + DGC.̂  M + M(AQ-BOFC + Dcc-̂
1 + E[x_(t(J)x

T(t )] = o..

(4.27b)
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m _ __ 1

[CMC 3~x and [Ĉ MC1"} exist because C,C have maximum rank and M is

positive definite.

If ECx(tQ)D = X0, ECx/tg)-̂ ) (iKt̂ -Xo)1] = XQ (4.28)

then

E[x(t0)x
T(t0)3 = XQ + Xx (4.29)

is positive definite for XQ̂ 0. Thus M is a positive definite solu-

tion of (4.27b) if XQ*0, M is positive semi-definite if XQ=0.

The optimal cost can be seen to satisfy

J = I E C xT<V Kx<t0)3 = \ Tr [KE(x(to)x
T(t0))3 =

Tr [KCXXx)] = i TR [K] when E [x(t0)x
T(t())3=I

Remark 1.1

It can be easily seen that rain max J(F,G) = max min J(F,G)
F G G F

4,4 COMPUTATION OF F* AND G*

The feedback gain matrices F and G are specified by (4.24) and

(4.25), where K and M are given by (4.26b) and (4.27b) respectively.

These equations must be solved numerically and the following algor-

ithm similar to that presented in [34] can be conveniently used for

this purpose.

F , G and M are computed by simultaneous solution of the

following equations :

F . = R'VlC X1C
T(CM ..C1)"1 (̂ .30)n+1 0 n+1 n+1
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(VB0Fn+lC + ^iV Vl + Mn+l(VB
0

Fn+lC +

)1 -1-1 = 0 (4.32)

where K, is given by the following equation:

(A0-B0FnC + DGnCl)
T Kn+1 + Vl (A0-B0FnC+DGnCl)

+ Q + CTFTRF_C - C^LGC, = 0. (4.33)
n u x n " -*•

Observe that (4.33) is approximate, while (4.30) - (4.32) are exact.

The iteration starts with an initial guess of FQ and GQ such that

(AO-BOFQC + 06̂ ^̂ ) is stable and also (Q + C
TFjFRQC - C^GQLGQC) is

positive definite. Then K^ is the positive definite solution of

(4.33). With this value of K , (4.30) - (4.32) can be solved simul-

taneously to get F, , G.., M which, in turn, give new estimate, 1^,

and the iteration proceeds. Alternately (4.24) - (4.27) can be

solved simultaneously.

Lemma 4.2

If (B.R̂ BQ - DL~1D ) >_ 0 and C = C^, the above algorithm will

converge in the sense that ̂ CKn'̂ +î  ̂ _ 0 for all n.

Proof:

The proof closely follows [34],

M can be expressed as

"••I * *I dt =*n n
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If C = Cf then

(BQFn-DGn) C= (B0R"
1Bj-DL"1DT) K̂ Ĉ CM̂ 1)'1^ (4.35)

and

CT(CM C1)"̂  (4.36)n

Substitution of (4.35) and (4.36) into (4.32) and (4.33) yield

equations identical to those of [34] for which Tr[K -*_.,] >_ 0 is

proven except that B R̂ B̂ -DL DT replaces B.R̂ BQ.. Thus Lemma 4.1

holds. Proof of convergence under less restrictive assumptions is

the subject of further investigation.

4.5 MINIMAX PERFORMANCE CONTROL WITH INDIRECT CONFLICT OF INTEREST

In the previous formulation, the feedback matrix F has been chosen

in a most favorable way after the uncertainty vector was allowed to

take its "worst" value. This will lead to a very conservative design

approach. On the other hand, it may be assumed that nature is not

perverse enough to alter its strategy with that of the control.

Under this situation of indirect conflict of interest, the previous

formulation may be modified as follows.

The game is, as usual, defined by

X = A^ + BgU + D£ . (4.37)

To start with, let us assume £=0. The optimal control u* is obtained

by minimizing
1 I T '

Ru) dt (4.38)

g ,-

= 7 J 'iV + H.V)
o

subject to (4.37).
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Thus the resulting control is given by

u* = - R'VPQX (4.39)

where P is given by

AJpo * Vo + Q - POBOR"IBOPO = ° <
Substitution of (4.39) in (4.37) yields

x = (AQ-B()R~
1Bjp0)x + D£ . (

To limit the uncertainty at this stage, the performance criterion

(4.38) is modified as

J"?
CO

T[x(Q+P B.R'p )x - 5LS] dt (4.42 )
— U U U v ~~ """ """

The 'worst1 value of £ is obtained by maximizing (4.42) with respect

to C_, subject to (4.41), and is given by

£* = L'Vr.x (4.43)
u •«•""

where P, is the solution of

(AO-BOR"IBOPO)TPI * pi(Ao-BoR~lBJV + Q + poBoR"lBJpo

-PIDL~
IDTPI = o (4.44)

Using the estimate of £ as in (4.43), the original system is reduced

to

x = (A + DL'-'-D1?, )x + B..U (4.45)
— 0 1 — 0 —

with the controller

u_ = -Fy = -FCx_ . (4.46)

(
CD m m
x [Q+C FTRFC]x dt"

0
subject to (4.45). The optimal F is given by
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F = -R'̂ PMĈ CMC1)"1 (
0

where P and M are given by

(A0 + DL"
1DTP1 - BQFC)

T P + P (A0 + DL~
1DTP1-B0FC)

+ Q + CTFTRFC=0 (4.48)

(AQ +DL~
1DTP1-B0FC)M + M(AQ + DL̂ D̂  - BQFC)

T+I=0 (4.49)

Remark 4.2

(a) To be more general, u* in (4.31) and £* in (4.43) nay be
0 —

constrained to the form

ug = F*Cx , % = G*Cjx

(b) It should be noted that this formulation assumes the exis-

-1 Ttence of matrices P , P and F that stabilize (A-+DL D P,-B0FC)

and (A0-B0R~-
LB0

1P0-DL~-
LD1P1). Under this condition, (4.47) - (4.49)

can be solved using basically the same algorithm as described in

section 4.4.

4.6 MINIMAX SENSITIVITY (OR LOSS) CONTROL

If G as defined in (4.5) were known., the ideal optimal control

would be obtained by minimizing

J = T I {xT(Q-Ĉ GTLGC,)x + uTRu} dt (4.50)
—M J. J- "™" *"" ~~"

with respect to F.. subject to
•

54 = (AQ + DGC )jc + Bu . (4.51)

where

u = -F̂ jc

The resulting optimal F* is given by

F* = R~1BjKMCT(CMCT)"1 • (4.52)
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* *
where K and H satisfy

N̂ rJ.G.K) = (AQ + DGĈ BQFJC)̂  + K(AQ

+ Q + CTF*TRF*C - Ĉ GTLGC =0 (4.53)

N2(F*,G,M) = (AQ + DGC-L -BQF*C)M -I- M(AQ +DGC1-BQF*C)
T-H=0

(4.54)

The ideal optimal control using output feedback is then

u = -T̂ Cx (4.55)
ft

where x_ satisfies

x = (A + DGC, - BF*C)x (4.56)
— i 2. ~

*
and the resulting cost J (G) = rain J is given by

1 Fl
f "

ft 1 I ftr T AT * T T *
J (G) = ~ x [Q + c F TRF^ - qc'LĜ ix dt . (4.57)

o

This is the best that can be achieved with constrained feedback

(4.55) and perfect parameter information (G) .

Note that
ft AT T

E[x(to)x (to)] = EWto)2CT(to)] = I (4.58)

has been assumed in (4.54) .

Now the following performance sensitivity or "regret loss" criterion

is considered:

S(F,G) = f[J(F,G),J*(G)] (4.59)

Definition 4.1

S(F,G) as defined in (4.59) is a performance sensitivity function

if [11̂ 54,56]
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1) f(') is continuous jointly in its two arguments

2) f>0 -»• J(F,G) > J*(G)

3) f=0 •»• J(F,G) = J*(G)
1

In this thesis, attention has been confined to the following

sensitivity function

S(F,G) = J(F,G) -J*(G) (4.60)

The immediate problem is to minimize and maximize S with respect

to F and G respectively, subject to (4.6), (4.56), (4.53) and (4.54).

(4.60) modified to include the equality constraints (4.53) and (4.54)

is

S = Tr [N1(F*,G,K)P1 + N2(F*,

¥ JV» CTFTRFC-CI
TGTLGCI]_X dt

o
CO

1 f *T T AT* ft T T *
- TE x [Q + C1?, RF.C - cX^IIx dt

2 J ~ 1 -1 -1 -1 ~ (4.(4.61)

where P and P are matrix Lagrange multipliers.

Thus the problem reduces to minimizing and maximizing (4.61) with

respect to F and G respectively, subject to (4.6), (4.56) and
•

F = 0, G = 0, F =0 (4.62)

The Hamiltonian H for this case is given by

H = j Tr [(Q + CTFTRFC - Ĉ LGĈ )̂* xT] - j Tr [(Q + CTF*TRFjc -

CTGTLGC.)x xT] + Tr [(A -B FC + VGC,)x AT] +
1 00 1 x

Tr t(A0-
B
0F?C + VGC^xfy (4.63)
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with the 'costate' equations

3H , T T T T
= --r-=- (Q + C^RFC - C.G LGC. )x - (AA-B FC<jx _L x ""*" ~ " U 0

X (oo) = 0

£

•

Ar

»

A*
F,

3H T AT * T T *
"5*" i i i i— o 10

X

X^.(co) = O,

x

3u T T T T T (°O
= - 42- = - RFC xx C + B^X x lCr, A =0

<*F -- 0— x~ F

3H T T *^ T T T T T '{T T
= - -^ = LGC.xx C - LGCxxC - D X x C, - D X x C. ,

3G 1— 1— 1 -x- 1 -*- 1

\(~) = o

3H * **T T T *T T , ;
= --rr = R F C x x C +B X,x C A. (") = 0

3* 1 — -«— =••r x r

r"c)I* '
(4.65)

(4.66)

(4.67)

(4.68)

Now according to Lemma 4.1 and the necessary conditions (4.12), it

can be easily seen after integrating (4.66) - (4.68) from 0 to <«> that

) [RFCxxTCT - B X xTCT] dt
— 0-x—

0

3 * * ft *
0 = E[A (0) + -^ Tr {N (F ,G,K) P + N.(F ,G

T* T • T T T T
= D K (P tpMc^ - LGC1(P1tP')C + D (P +

(4.69)

- LG

o

= D

E(C xxTC ') dt + LGC

T T T
X x^i dt + D1

E(»c ) dt C

...rj,

X,.X C (4.70)
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* G,K) P + N (F* ,
o * X -^ *•

0 = EIX (0) + - Tr {N (F G,K) P + N (F G,M)P }]

•1 FI
T* TT * T T T T ft

= - B K (P + P )C + RF C(P, + P,)C - B (P + P
O i l 1 1 1 0 2 2

•
ft ft^1 f f

- RF,. E(Cx x C ) dt - B E(X x^C dt
x (U.71)

0 0

As usual, the following feedback solution is assumed:

X = Kx , X^ = Kx (4.72)
~x x

This can be verified by (4.64) and (4.65) to be valid provided K

and K satisfy

(A -B FC+DGC )TK+K(A -B FC+DGC )+(Q+CTFTRFC-CTG LGC^ - 0^ (4.73)

ft T- - ft ft ft T
(A -B.F-C+DGC.) K+K(A -B F.C+DGC,)-(Q+C FTRF,C-cTG LGC,)=0 • (4.74)

001 1 0 0 1 1 1 J- 1 1

Furthermore
r - *

EC-xxJ] dt, M = | E[x x'3 dt (4.75)

0

are given by

(AQ-B FC+DGC )M+M(AO-BFC+DGCI) + i = o 9 (4.76)

* * *
(A -B F C-fDGC. )M+M(A.-B F.C+DGC,)1 + 1 = 0 (4.77)

O o l 1 O Q J - L

It can be easily seen from (4.53), (4.54), (4.75) and (4.77) that

* ft ft *
K = -K, M = M . (4.78)

Using (4.77), (4.72), and (4.75), (4.71) reduces to
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T* TT* TT T T * T * ? T T** T
0 = -BQK (P +P*)C

l+RF C (PjL+P̂ C - Bj(P2+P
T)MC -RF CMC -B KMC

(4.79)

Using (4.52), (4.79) reduces to

T * T T * T T T T * T
0 = -BQK (P^+PpC +KT.C (P.L-hP1)C

1 - fij (P2+P2)MCX , (4.80)

Now two cases may arise.

Case 1. (Px + pj) t 0

Solving for F. ., (4.80) yields

Fl = R"B0 t(P2
+P2} + K(Pi-hP)]C[C(P1+p)C]-, (4.81)

Comparing (4.81) with (4.52) yields

< p + p > = M and ( P ' h P ) = ° (4.82)

Using (4.82), (4.72) and (4.75), (4.69) and (4.70) give basically

the same result as obtained via minimax performance control.

Case 2. (P.,̂  + pj) = 0 (4.83)

Using (4.83), (4.80) gives

(P2 + P2) = ° • (4.84)

Substitution of (4.83), (4.84), (4.72) and (4.75) into (4.69) and

(4.70) gives

P = R'̂ J KMCT (CMC1)"1 (4.85)

-1 T -' * ~ T - * T -1
6 = L DT(KM+K M)C" [C1(M-M)CH . (4.86)

Thus it is clear that soltuion of F requires simultaneous solution

(4.85) - (4.86) together with (4.73) - (4.74) and (4.76) - (4.77).
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Remark 4.3

It can be easily verified that
A

(a) The optimal cost S = j Tr (K + K), E[x_(tb)x_T(to)3 =

* s*T
E[x(to)x (to)] = I (4.87)

(b) min max S(F,G) = max min S(F,G) (4.88)
F G G F

&
It can be seen from (4.55) that u is constrained. A rather

optimistic situation will be to allow u to have complete state

feedback. The problem here is to minimize and maximize with respect

to F and G respectively. The following sensitivity criterion

S = J(F,G) - J2(G) (4.89)

it
where J(F,G) is given by (4.7) and J2(Q) is given by

* 1
J.(G) = min =•
1 2u *

[xT(Q-Ĉ GTLGC1)x - u
TRu] dt (4.90)

0

This is a special case of the constrained feedback problem and the

required result is obtained by setting C=I in (4.55). Thus the

required feedback matrices F and G are given by

F = R"1BjKMCT(CMCT)"1 (4.91)

_1 T - -ft T * T -1
G = L D (KM + KM)C. [C.(M-M)C.] (4.92)

* * f t I ' l l

where K, K. , M, H are given by

(A -B FC+DGC )TK + K(A -B-.FC+DGC. )+Q+CTFTRFC-C?GTLGC1 = 0 (4.93)
0 0 1 0 U J . 1 - L

* * * * * T* T T
(A0+B0R"1BjK-H)GC1)

TK + K(A0+B0R"1BjK+DGC;L)-(Q+KB R'^K-C^ LGCj^) = 0

(4.94)
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-B FC+DGC )M + M(A -B FC+DGĈ )1 + 1 = 0 , (4.95)

(Ag+BgR'-Bg + DGC )M + M(AO+B R'K+DGc^) + i = o (4.95)

4.7 COMPUTATION OF F, F , G

An algorithm similar to that mentioned earlier can be used to

solve for the feedback matrices. As before, at iteration n, positive
ft

definite matrix K^ and negative definite matrix Kn are obtained from

the following linearized equations:

(A-BF C+DG C)TK Al+K ., (A-BF C+DG C)+Q+C
TFTRF C-C^GTLG C =0-- (4.97)

n n n+1 n+1 n n n n l n n

(4.98)

ft ft
F F4 , G , M , M are then obtained by simultaneous solution of then in n n n

following nonlinear equations:

ft

F̂  = R'̂ -sJiyy: (ĉ c1)"1 (4.99)

=0, (4.100)

* ft
F = R'̂ LM CT(CM C1)"1 (4.102)
n 0 " n n

*
G = L-1DT(K M + K M )c'F [C, (M_-M K̂ l'1 (4.103)n • nn n n J . - L n n o .

The nonlinear equations (4.99) - (4.103) can be solved at each itera-

tion n, by standard conjugate gradient technique. The algorithm

starts as follows:
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a) Assume initial guesses FQ, FIQ, G such that (A0-BQF C-HX3QC)

and (A0-B0F10C+DG0O are stable and also (Q+C
TFgRF C-C.jGg

T T

and (Q+CFRF.^C-C G0LGQC) are positive definite.

b) Solve (4.97) and (4.96) and store the values K +1 and

*
c) Using Kn+1 and i^^ , solve (4.99) - (4.103) by conjugate

*
gradient technique to obtain Fn+1 , Fln+1 , Gn+1 , V^^ ,

and M^ .
. »

d) With these values, K and K are updated and the iteration

continues till the specified stopping criterion is met.

4.8 SOME STABILITY BOUNDS IN TERMS OF PARAMETER VARIATION

The perturbed system (4.1) can be represented as

•

x = AO>C + BQU t (A-A0)x + (B-BQ)u (4.104)

= [(AO-BQFC) + AA + ABFC]X (4.105)

where F is given by (4.24). The following analysis is also true for

F, given by (U.47), (4.35), and (4.31) .

Define the Liapunov function V(x) as

V(x) = ̂ xTKx (4.106)

where K, a positive definite matrix, satisfies (4.26). The time
•

derivative V(x_) of V(x), evaluated along the trajectory (4.105), is

given by

V(x) = - -TCT[-(A0-BQFC)
TK-K(A0-B0FC)-2KAA-2KABFC]x (4.107)
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Using (4.26), (4.107) reduces to

V(x) = - VRFOC G LGC1)-2KAA + 2K(DGC1K"1 + ABFCK~1)K]x

(4.108)

Let the norms of jc and matrix A are defined as follows

A 1/2 T
||A|| = sup llAxllsothat I UJ I = X [A A]> i i i

where ̂ max( * ) is the maximum eigenvalue of a symmetric positive

definite matrix (•). Restricting terms in the bracket in (4.108)

to be at least p.s.d. to guarantee stability of perturbed system

(4.105), the bounds on AA and AB can be found as

X . (Q + CTFTRFC-C;fGTLGC,
mm 1 J-

(4.109)

||A Hi
(4.110)

It should be noted that (Q + C F RFC-Ĉ G LGC.,) is at least posi-

tive semidefinite under the condition mentioned in Lemma 4.2

4.9 EXAMPLE

Following example will be considered to illustrate various theo-

retical formulation discussed earlier.

Let the system be described by

x = u = Ax + b_u (4.111)
-1 a
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y = [0 1] x_ = cx_

with controller

u = -fy = - f [0 1] x

(4.112)

(4.113)

'a1 in (4.11) is the uncertain parameter. Let the nominal system

correspond to the one with a = 0. Thus (4.111) can be written as

•
x =

" 0 l"

-1 0
»- «

x +
' 0 '

1
u +

' 0 '

1

with £ constrained to be

5 = gx2 = gy = gcx (4.115)

where g is the gain (i.e., an estimate of the uncertainty) to be

determined.

Consider the following performance criterion

with

J = min max
f g

i o

E 1/2 [xTQx+Ru2-LC2]dt (4.116)

Q =
0 0

,R = 1, E[x(0)x1(0)3 = I

f optimal for the nominal system (i.e., with no parameter uncertainty)

is determined to be 0.816. f and g for different values of L are

obtained through minimax procedures (i), (ii) and (iii) and using

algorithms of sections IV and VII. Simultaneous nonlinear algebraic

equations, e.g., equations (4.30) - (4.32) :of minimax procedure (i)

and (ii) have been solved at each iteration using a conjugate gradient

technique. The computed values of f for different values of L are

tabulated for various minimax procedures.
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Table U.I

f
-1

L

0.1

0.2

0.3

0.5

0.7

Minimax Performance Control

Criterion (i)

.878

.917

1.03

1.265

1.69

Criterion (ii)

.911

.96

1.1

1.277

1.71

Minimax Sensitivity Control

Criterion (iii)

.821

.841

1.08

1.351

1.815

To study the effect of uncertainty, J is computed for different

values of 'a1 using f as tabulated above and

(
oe

T 29
[xQx_ + Rf x ]dt (1.117)

(A-bQ fc)
TK+K(A-b0 fc)+Q+c

Tf2c = 0

where K is the solution of
tp o

(1.118)

and are plotted as shown in Figures (1.1) - (1.2). In Figure (1.1),

cost J is plotted as a function of the uncertain parameter 'a1,

using the feedback gain as determined in minimax performance sensi-

tivity criterion (N), for difference values of L. For comparison,

we have also plotted the 'optimal* cost as a function of parameter

'a' if it were known. In Figure 2, different design criterion are

compared as "a" varies from nominal. It can be seen that the mini-

max procedure effects the design of f in such a way that the system

will operate acceptably over a wider range of parameters than a

purely nominal design.
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For any particular parameter set, however, the nominal design may

be superior. It is also evident from Figure (U.I) - (U.2) that the

penalty on the uncertainty should be relaxed to accommodate larger

parameter variation. For limited parameter variation, different de-

sign approaches nearly identical performance whereas the minimax per-

formance sensitivity control offers better design when the parameter

variation is large.

4.10 CONCLUSION

The problem of controlling a system with parameter uncertainty

has been treated using only available output feedback. Since the

controller is designed with incomplete state feedback, the uncer-

tainty is likewise constrained. To achieve a design via optimiza-

tion, a quadratic cost function involving the system state, the con-

trol and the uncertainty vector, is defined and the optimal feed-

back matrices relating the control and the uncertainty are chosen to

minimize and maximize, respectively, the performance criterion. The

resulting controller is linear, the optimal feedback matrix being

specified by a set of simultaneous nonlinear equations. The above

procedure usually leads to a conservative design. To meet this ob-

jection, a sensitivity or loss criterion is defined. Minimaximi-

zation of the sensitivity function with respect to feedback matrices

yields a linear controller. The optimal feedback matrices must

satisfy a set of nonlinear simultaneous algebraic equations. Some

algorithms to solve these algebraic minimax problems and their con-

vergence properties are discussed. An example has been treated to

illustrate the various formulations presented in this chapter.



82

It is assumed throughout this chapter that the nominal system is

stabilized with output feedback. Even if the nominal system is sta-

bilizable with output feedback, various minimax design procedures

allow only certain parameters in system matrices to vary in order to

maintain stability of the perturbed system. To relax these limita-

tions, the required control can be generated as the response of a

linear dynamic system whose input is the available outputs. Various

gain matrices specifying the dynamic compensator can be determined

in the similar as reported in previous chapter. An important limita-

tion of the various design techniques presented in this chapter is

the fact that the measurements are assumed to be noise-free and also

the system is not subjected to any disturbances. In the next chap-

ter, the stochastic version of the output feedback problem will be

explained with and without an estimator.
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V OPTIMAL INCOMPLETE STATE FEEDBACK CONTROLLERS

FOR STOCHASTIC SYSTEM

5.1 INTRODUCTION

The problem of optimal output feedback for system with parameter

uncertainty has been explored in the previous chapter where it was

assumed that the measurements are noise-free and the disturbances

in the system are negligible. This chapter will treat, among other

things, the determination of the optimal output feedback when the

system is excited by a white noise disturbance with and without

measurement noise. No parameter uncertainty is assumed. Next a

design procedure is developed for generating an optimal control as

the output of a dynamic compensator. The input to the dynamic com-

pensator is the available noisy output measurements of the system.

It is well known that if the system is linear, is excited by

white gaussian noise and the measurement noise is also gaussian, the

estimator and controller can be designed independently. This is due

to so-called separation theorem. The estimator is the well-known

Kalman filter whose dimension is equal to that of the system. The

present chapter deals with the problem of designing a combined esti-

mator and controller. The formulation used is more general than

designing Kalman filter since the dimension of the estimator or

dynamic compensator is arbitrary. Since the dimensionality of



Kalman filter is often a practical limitation, this problem of de-

signing a reduced order estimator is not only challenging but may

have substantial practical benefit. An important question to be

answered, in this context, is whether the control is composed of

both the estimator output and the noisy observations or only a linear

feedback of the output of the estimator as in the design procedure

via separation principle. The present design procedure involves

i) a precise formulation of mathematical optimization problem, ii)

determination of various gains specifying the dynamic compensator

and feedback controller. The various gains should be independent

of initial plant state so that compensator gains do not have to be

tuned up every time the disturbance changes the plant state. Because

of the above problem, a design procedure that is optimal only "on

the average" will be presented.

The state and output equations are given by

x^ = A£ + Bu_ + Dw (5.1)

y_ = Cst + y_ (5.2)

where the state sc (an n-vector) is the signal process; the output

y (an m-vector) is the observation process; u_ (an r-vector) is the

control and the vectors w£t) and y_(t) are zero mean white noise pro-

cesses of respective dimensions r and m. The covariances of these

processes are given by

E {w(t1)KT(t,)> = Q.6(t1-t ) (5.3a)
1 x 1 2

tj) (5.3b)

t) (5.3c)
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where Q.. and R are positive definite matrices, and E( •) represents

the expected value of (•). The following constraints on the control

will be explored in this chapter:

Case 1: Optimal output feedback with no measurement noise

u_ = -Ny_ (5.4)

R^ 0 (5.5)

Case 2: Optimal output feedback controller with dynamic compensator

u = Hz + Ny_ (5.6)

where z_ is the compensator state

z_ = Fz_ + Gy_ (5.7)

A schematic diagram is shown in Figure 5.1

Case 3: Optimal output feedback with white measurement noise

u_ = N£ (5.8)

Case 4: Optimal output feedback with nonwhite measurement noise

The controller is given by (5.8) and the output equation is

described as '

£ = Cx_ + H£ (5.9)

where the non-white noise z_ is generated as the response of a linear

dynamic system to the white noise y_

z_ = F£ + Gv . (5.10)

F, G, H, C are all specified but N is not.

5.2 OPTIMAL OUTPUT FEEDBACK WITH NO MEASUREMENT NOISE

5.2.1 STATEMENT AND FORMULATION OF THE PROBLEM

1 The initial problem in this chapter is the control of the time-

invariant system (5.1) with outputs

y(t) = Cx(t) . (5.11)
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and with a controller

u(t) = -Ny(t) = -NCx(t) (5.12)

The closed-loop system is given by

:* = [A-BNC]x_ + Dŵ  . (5.13)

The solution of (5.13) may be written

x(t) = «(t-to)x(to)- + r <fr(t-T)Dw1(T)dT (5.14)

to

where the state transition matrix <|>(t) satisfies

•

$ = (A-BNC)4> . (5.15)

The problem is to determine N by minimizing

tf
J = ±E [xTQx + uTRu]dt = - E

to to

t
f
xT[Q+CTNTRNC]x dt

with respect to N and subject to (5.13). (5.16)

It is clear from (5.16) that J is determined by the initial state

x_(to) as well as matrix N. In order to make the optimum N indepen-

dent of x(to), the expectation operation will be carried out over the

initial conditions also. The necessary condition that N should mini-
fy ]

mize (5.16), requires

2 3N xT[Q+CTNTRNC]x dt

to

3
-E ~ xTCQ+CTNTRNC]x dt = 0 (5.17)
2 3N - -

to

The interchange of order of expectation (i.e., integration) and

differentiation is assumed to be valid'- ^.
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5.2.2 RESULT

The optimal feedback gain

N = R^B KPCT [CPC1]"1 (5.18)

where K and P are the solution of

(A-BNC)TK+K(A-BNC)+Q+CTNTRNC = 0 (5.19)

P(A-BNC)T + (A-BNC)TP + DÔ D1 = 0 (5.20)

5.2.3 DERIVATION OF THE RESULT

The partial derivative of (5.17) will be evaluated by the appli-

cation of Lemma 4.1 and by treating the elements of N as additional

"states" which satisfy

N = 0 (5.21)

Vector multiplier A will be used for the regular state constraint
H

(5.12) and matrix multiplier A« will be used for constraint (5.21).

Thus the Hamiltonian for (5.16) and (5.13) is

H = r xT[QtCTNTRNC]x + AT[(A-BNC)x + Dw. ]
*• — — —x — —1

= Tr [ 1 (Q+CTNTRNC)x xT + {(A-BNC)x + Dw} AT] (5.22)
2 -- — .— -x

with the costate equations

X = - — = - (A-BNC)TX - (Q+CTNTRNC)x , X (t_) = 0; (5.23)
— x . 3x "X — -x f

. au T T T T T
AM = - ig. = - RNCx x

1Ci + B'A xlC , A(t_) = 0. (5. 24)
N ON -- "X r

According to the Lemma 4.1, the necessary condition and integrated

forms of (5.24), it can be seen that

0 = E [ !£ ] = E
9N

[RNCx xTCT-BTA xTCT] dt (5.25)-x—

to
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Thus (5.25) yields

rt.

N = R'1 I ~BTE[X xT]CT dt T CE[x xT]CTdt| * . (5.26)
—x—

to to

1 -1
t .

Now assume a solution for X , of the form

X = Kx + n ; (5.27)
~x — —

Then (5.13), (5.23) and (5.27) give

-K = (A-BNC)TK+K(A-BNC)+Q+C NTRNC, K(tf) = 0 ; (5.28)

rj = -(A-BNÔ +KOWĵ  f n(t ) = 0 . (5.29)

The solution of (5.29) is given by

n(t) =
t
(|)(t-T)KDw1(T)dT p (5.30)

t,o

In order to complete (5.22) we how obtain the required averages.

First, it can be easily seen from (5.14) and (5.3) that

P = E[x xT] = <J)(t-to)P(to)4» (t-to) <J.(t-T)DQ1D
T((.T(t-T)dT ,

tf (5.31)

where E[x(to)xT(to)] = P(to) . (5.32)

Solving (5.31) is equivalent to solving the differential equation

P = (A-BNC)P+P(A-BNC)T+DQ1D
T (5.33)

which may be verified by differentiation of P with respect to t.

Next,



90

E[X x1] = KE(> xT] + E[nxT]

rt
= KP + E [{ <t)d7}

{xT(to)*T(t-to)
f*T .
J •!«!>

to

= KF , (5.34)

since the above integrals do not overlap.

Thus (5.26) reduces to

- 1 I T T -
N = R B KPC dt [ CPCdt] (5.35)

f f T -1rCPCldt] X

J
to to

A s t j : - » - » , t = 0 > K and P are the steady state solutions of (5.28)r o

and (5.33), respectively. Consequently (5.35) is indeterminate.

Applying L* Hospital Rule as tf -*•«>, (5.35) reduces to

-1 T T T -1
N - R B KPC [CPC ] (5.36)

where K and P are the steady state solutions of (5.28) and (5.33)

respectively .

5.2.4 COMMENTS

It should be noted that if C = I,

N = R'VK . (5.37)

(5.37) implies that the optimal feedback for the deterministic case

(no plant disturbance) is the same as for stochastic case (without

measurement noise) if all the states are available for feedback. This

is not true with incomplete feedback. (5.18) - (5.20) can be solved



91

basically with the same algorithm as suggested in Chapter 4.

5.3 OPTIMAL DYNAMIC COMPENSATOR

5.3.1 STATEMENT AND FORMULATION OF THE PROBLEM

Consider now a control law

u = H£ + Ny_ = H£ + NCx. + Ny_ (5.38) .

where z^ is the state of a time-invariant dynamic compensator of fixed

order (ŝ ),

• '

£ = Fz_ + Gy_ = Fz + GCx_ + Gv . (5.39)

The problem is to determine the time-invariant-matrices F(SJXS,),

G(s1xm), H(rxs.) and N(rxm) by minimizing the quadratic criterion

{x Qx + uTRu }dt (5.40)

to

where Q is positive semidefinite and R is positive definite. Note

that this formulation is general enough to include the Kalman filter.

In order to avoid the dependence of various gain matrices to be deter-

mined on the initial state (both the plant and the compensator), the

expectation operation in (5.40) will also be carried out over the

initial states by treating x_(o) and z(o) to be random variable with

E {x(o)x1(o)} = Xr

E {z(o)zi(o)} = Z,

Using (5.28), (5.1) and (5.39) can be written as

(5.41)

(5.42)

X

•

Z

=
A+BNC BH

GC F

X

.5..
*

'BN D"

G 0

V

w
— \*

(5.43)
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and (5.40) becomes

i f tf T T [Q+CTNTRNC CTNTRH "x "
J r T E | - i ' 5 . : i T T

^ 1 L H RNC H RH J Lz .
to —

T _ FNTRNC NTRH] f x 1 _ „ TCTNTRN ol f v
+ Fv w 1 ~ + Fx z 1 "~T LV , W I T L£ Z J m

Lo o J U J LH RN oj lwv

r T T..
+ [v w 3

'NTRN o] f v ]

o qj [wj

Defining

A =

'x-

A

R =

A 6'

P o.

N H"

G r» •

R 0

P o.

IB o' « c o , o D
, B = , C = , D =

LO il lo ij Lo o.
^ _ ^ t r *

1 ° X. i
, I = , s = , w =

LO 0 Iw^j L £ .

. [Q o:

, Q = (5.45)
IP o.

(5.43) and (5.44) reduce to

. * » » « ~
w = (A+BP C)w + (EH-BP.Ds (5.46)
-> i — 1 —

_ 1
rt,.

T A ^T T^ ^ T ^ T T ^ A T A ^ A ^ m ^ i r i A A
{w [Q+C P RP C]w+w C Pj^RP.Is + s_ IP RP-j^Cw-f^ IP RPj^.

to

V(t)dt (5.47)

to

Thus the problem is to minimize of (5.47) with respect to P subject

to (5.45). The necessary condition that'P should minimize J requires
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3J 1
W = 2

§<=
1

to

(5.18)

5.3.2 RESULTS

The optimal gain matrix P is the solution of

1

RP̂ CPC1 + 5. (DtBPjI)!̂ ! + - R1(D+BP1i)
TCT] + BTKPCT = 0

(5.49)

with N = 0 . (5.50)

where K and P are the solutions of

(Â BF C)TKtK(A+BP C)+ Q+Ĉ RPjC = 0 (5.51)

(A+BP OP+PCA+BP-l-dHBPDRj^CD+BPI) - 0 (5.52)

respectively.

5.3.3 DERIVATION OF THE RESULTS

Once again the elements of the matrix P will be treated as addi-

tional "states" which satisfy

= 0 . (5.53)

Vector multiplier X will be used for state constraint (5.46) and

matrix multiplier A for (5.53). Thus the Hamiltonian H for (5.46)
Pl

and (5.47) is now

H = j wF [Q+cVaP Cw + - KTCTP^RP Is_ 3

I ••IT T». 1 T * T* *
* J s IP^CW + - s IP^Is

-w
.Ow + (D+BP,I)s] , (5.54)
-L — J- —



with

X-w 3w j. j. — - (A+BP.C)TXj. —

xw(tf) = o

• 1H A ~ «.»_ . «. T _ _<»n * ~ n»*m « «. T^T * * T~
A = - — = - RP.Cw_ w_ C - RP Is w_ C RP Cw si -
Fl drl . A 1 1

T:T

(5.55)

»
- RP.Is s*I - B^A w C1 - B X si.

1 — -w —w— '

Ap (tf) = 0 (5.56)

According to the Lemma 4.1 and the necessary condition (5.48),

ECaj/ap^ = E[Ap (to)] = o

or
0 = RP,C I E[w wT] dt CT -h RP.I E[S w ]dt C

to

RP,C E[w s ]dt I + RP I

to

ft.,

to

rE[s(t)si(t)]dtI

to

It T"T T*
B f E[X (vC+s I] dt .1

to

(5.57)

Since E[s_(t)s_ (t)3 is infinite for white noise, (5.57) can only be
I

true if

RN 0

0 0
= 0 (5.58)

(5.58) implies that unless R = 0 then
l

N = 0 (5.59)

The result (5.59) is rather interesting. It implies that the obser-

vation contaminated with white noise must be filtered irrespective of
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the dimension of the dynamic compensator. (5.59) is, of course, true

for the Kalman filter where its dimension is the same as that of the

plant.

(5.57) is the basic result which can now be simplified. For this

purpose, a solution for X of the form

= Kw + (5.60)
w

is assumed.

Substituting (5.60) into (5.55) yields

-K = (A+BP C)TK+K(A-I-BP C)+(Q+CTP̂ RP1C), K(t ) = 0

(5.61)

rj. = -(A+BPjC)1^ - [KCD+BPjn+C^RPjlDs., n(t f)=0. (5.62)

Proceeding as previously to evaluate the averages in (5.57), define
I

P = E[w w1] . (5.63)

The solutions of (5.61) and (5.62) are given by

ft

w = <J>(t-to)w(to) *(t-T)(D+BP1Ds(T)dT,

to

iKt-T)[K(b+BP "T?;jRP l3s(T)dt

(5.6U)

(5.65)

where $(t) and ̂ (t) are the state transition matrix satisfying

. (5.66)

(5.67))Kt) '= -(A+BP C)<Kt) .

Using (5.6U) and assuming w_(to) is independent of s_(t) for all time t,
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P is given by

P = <|>(t-to)P(to)4> (t-to)

where E[w(to)w (to)J = P(to)

Pt

to

and = E[£(t1)s
T(t2)3 =

Rl Ll

Q

6(t1-t2)

(5.68) can be seen to satisfy

P + (A+BP1C)P-t-P(A-»-BP1C)
T+(D+BPI)R1(D+BPI)

T.

Similarly

w:i = CE{£(t)wT(to)} 4>T(t-to)t

to

to

R

(5.68)

(5.69)

(5.70)

(5.71)

(5.72)

(5.73)

y» ** A- Ari

{w(to)4> (t-to) S
T(T)(IHBP.Li)V(t-T)dT}-0,

(5.7U)
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since the integrals do not overlap.

rp

wT(t)] = KECw(t)w (t)3 + E[n(t)wT(t)3

= KP .

= KE[w sT] + ECn sT]

K - - A -
= - (D-hBPDRĵ  -

E[A

(5.75)

(5.76)

with t- -»• » , t = 0, K and P are steady state solution of (5.61) andr o

(5.71) respectively. Under this condition and using (5.59) and (5.72)

- (5.76), (5.57) reduces to

* AT C
CPCT + T[CPC + BTKPCT = 0 (5.77)

Partitioning K and P as

K =

V V *Kll K12

K tx
TO ^^^

P =9 *

"P PPll P12
p T p

L^12 ^22 J

(5.78)

(5.77) reduces to equations involving the original variables:

T JT 1
12 L + T

= 0

B

K,I P
12 12 + K22 P22

= 0

= 0

(5.79)

(5.80)

(5.81)

(5.82)

Using (5.59) and (5.78), (5.61) and (5.71) reduce to
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ATKU + CTG K12 + K^A + K^GC + Q = 0 (5.83)

HVK^ + FTK12 + K^A + K GC =0 (5.8f)

HTBTK12 + FTK22 + KBH + K2F + HTRH = 0 (5.85)

+ P11A + Pi2HB * DQ^1 = 0 (5.86)

GCP11 * FP12 * Pi2AT + P22Hl>BT = ° (5.87)

GCP12 + FP22 + PjJcV + P FT + GR^7 = 0 (5.88)

In general, evaluation of F, G, H requires simultaneous solution of

(5.79) - (5.88).

5.3.4 RECURSIVE ALGORITHMS FOR COMPUTING FEEDBACK. GAINS

Various gains of the dynamic compensator can be computed using

basically the same algorithm as reported in previous chapters.

_ . _ . ,P and P are computed using

(5.89)

(5.90)

where K_+1 is the solution of

K A.(A+BP"C) + (A+B>!?C)K , + 6>CTPnTRPnC = 0 (5.91)
n+1 1 1 n-H i i

The iteration starts with an initial guess P.° such that the augmented
A ^ T\A

system, i.e., (A+BP C) is stable. K is the positive definite solu-

tion of (5.91). With this value of K1, (5.89) and (5.90) are solved
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5.1 OPTIMAL OUTPUT FEEDBACK WITH WHITE MEASUREMENT NOISE

5.U.I PROBLEM STATEMENT

The basic problem is to determine matrix N which minimize

ft

¥ f T T
(x Qx + uxRu)dt (5.92)

to

subject to
•

x = AJC + Bu + Dw (5.93)

y_= Cx +v(t) (5.94)

and with the controller

u = -Ny = -NC3C -Ny_ (5.95)

5.4.2 RESULT

The optimal feedback gain *

N = 0 (5.96)

5.4.3 DERIVATION OF RESULT AND COMMENTS

This is a special case of the previous problem and the result

follows by setting

F = 0 , 6=0, H=0 (5.97)

Note that condition (5.50) will still have to be satisfied. This

implies (5.96) although (5.96) seems surprising but is not difficult

to reason out.

For any nonzero N, (5.92) is infinte since the quadratic term in the

Tcontrol involves the term E[v_(t)y_ (t)] which is infinte. Thus the per-

formance index is infinite. (5.92) is finite if N = 0 for t is

finite. Thus N = 0 is the optimal solution. This does not necessarily
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imply that a nonzero optimal solution does not exist. This only points

out the mathematical optimization problem is ill-posed.

5.5 OPTIMAL OUTPUT FEEDBACK WITH NONWHITE MEASUREMENT NOISE

5.5.1 STATEMENT AND FORMULATION OF THE PROBLEM

If measurement noise is not white, which is of course reasonable,

thenN ̂  0. The controller without dynamics is given by

u = Ny ! i (5.98)

where the output y

y = Cx + Hz_ (5.99)

is contaminated with nonwhite noise z_described by

£ = Fz_ + Gy_ . (5.100)

F, G, H, and C are all specified. The problem is to determine N.

Using (5.98) and (5.99), (5.1) becomes
»

>c = (A+BNC)x_ + BNH£ + Dw^ ' (5.101)

Using (5.98) and (5.99), the performance criterion becomes

J = f
to

T T T T T T T
[Q+C N RNC]x + x C*RNHz + z H RNCx

zTHTNTRNHz}dt.

= oE
*f T T

(}C ,Z_ )

hn

r T T T T 1
Q+C N RNC C N RNH

T T T T
H N RNC H N RNH

x

z
dt

(5.102)

Now defining

ft
A =

'A o'

.0 F

ft
, B =

"B o

0 0

A
, c =

'C H

0 0

ft
, s = '-J

i » iL =

y.J
X

z
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ft
N =

N 0

0 0,

[Q o
» Q =

U

ft
, D =

ft * ftr
R,6(t,-t0) = E[s(t,)s (t,.)] =1 J. *• — J. 2

'D o

0 6

r TiQi L

Ll Rl-

ft
, R =

"R o

. o o

i

6(tl"t2) » (5.103)

(5.101) and (5.102) reduce to

* ,ft ftft*v **w = (A+BNC)w + Ds (5.104)

J =

rt.
T ftT*T*** "
w [C N RNC+Q]w dt.

to

(5.105)

Thus the problem reduces to the minimization of (5.105) with respect
ft

to N subject to (5.104).

5.5.2 RESULT

The feedback matrix N satisfies

ftftftftftT ftT***T
RNCPC + B KPC = 0 (5.106)

where K and P satisfy
ft ft ft** ft ftftft T* * *T*T***
K(A+BNC) + (A+BNC) K+Q+C N RNC = 0

ft ft ftftft T ft ftftft ft ftft *T
orAj-nM^N + (A+BNC)P •*• DR,DX = 0

respectively.

(5.107)

(5.108)

5.5.3 DERIVATION AND SIMPLIFICATION OF THE RESULT

Proceeding exactly in the same manner as in Case 1, it can be
ft

easily seen that the feedback matrix N satisfy (5.106) - (5.108).
ft ft

Partitioning K and P as in (5.78) and expanding (5.107) and (5.108),

it can be seen that
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PII(A-»-BNC)T +'P HTNTBT-KA+BNC)P + BNHP.J + DQ DT = o (5.109)

P f A^Tltff"1 ^ '7 /•» V *»• Oil ^ /

TP F + FPr22r + tr.

(A+BNC)1^

(BNH)TK11 ^

(BNH)TK._ H

P T T
* "^ * GL1 = °

22 * ^1 " °

L + Kn(A+BNC)+Q+CTNTRNC = 0

T T T
h F ^(A+BNC) -h H N RNC = 0

Y FTK__ + K,][BNH + KOOF + HTNTRNH = o

(5.110)

(5.111)

(5.112)

(5.113)

(5.111)

and the optimal feedback matrix N is given by

N = -R"1BTCK.L1P.L1C
T+K12P12H

T+K.L2P;L2C
T+K12P22H

T][CP12C
T

If the measurement noise and plant disturbance are \incorrelated, then

t± = 0. Thus (5.115) reduces to

N = -R"1BTCK11P.L;LC
T+K12P22H

T]CHP22H
T]~1 (5.116)

5.6 EVALUATION OF OPTIMAL COST UNDER STEADY STATE CONDITION

Note that as t •* « , tQ = 0 the integrals are in effect being

dropped and criterion is

- E [xTQx + uTRu] = c(x,u) (5.117)

2 — —
ftfIn order to retain a finite cost, c(jt,u)dt as t •* «, Q and R

to

can contain a factor (tf-tQ) which will not affect resulting gains,
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5.7 CONCLUSION

A unified design procedure for optimal incomplete state feedback

controllers for stochastic system has been presented. Various gains

specifying the output feedback controllers with and without dynamics

are obtained by minimizing a quadratic criterion. It has also been

established that white noise observations must be filtered irrespec-

tive of the dimension of the dynamic compensator. In the absence of

any controller dynamics, th.e optimal feedback gain turns out to be

zero if the observation process is contaminated with white noise and

the quadratic performance index involves both the state and control.

This merely suggests an alternative problem formulation. When the

measurement noise is non-white, the optimal feedback matrix satisfies

a set of nonlinear algebraic equations. In the absence of measure-

ment noise, the optimal feedback gain must satisfy a set of algebraic

nonlinear equations. In all the problem formulations, it is assumed

that the feedback controller with or without dynamics stabilizes the

system. It should be noted that the feedback matrices result from

necessary condition of optimality. Thus the solution is not necese

sarily globally optimal.
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VI CONCLUSION

6.1 CONCLUSION AND LIMITATIONS OF THE PRESENT WORK

The present thesis has attempted to present a unified design phil-

osophy for limited state feedback control problems with parameter un-

certainty for both deterministic and stochastic problems.

Basically two different approaches have been suggested. In one

approach, a linear compensator is specified, in some cases with dyna-

mic elements. In the deterministic problem with parameter uncertainty,

a minimax design has been accomplished by proposing an integral quad-

ratic performance criterion which was maximized with respect to an

uncertainty matrix and minimized by the feedback matrix. Various

other integral quadratic criteria and design procedures have been

examined including a sensitivity type criterion. The resulting mini-

max controller is linear and it has been shown that minimax designs

offer better system performance than a purely nominal design under a

wide range of parameter variations. The various minimax procedures

assume that the nominal system can be stabilized with output feedback.

The stochastic problem without parameter uncertainty has been treated

in a similar way. The stochastic problem dealt with white noie plant

disturbance and white and colored measurement noise. Optimal limited

state feedback controllers with and without dynamics have been formu-

ated and optimized. The criterion is the average of an energy func-

tion. Various optimization techniques for both stochastic and deter-
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ministic problems result In nonlinear algebraic equations which must

be solved recursively for the compensator matrices.

The second approach to design is applicable for single input- single

output systems with parameter uncertainty and uses a model of order equal

to that of the system less the number of zeros. A criterion involving

tracking error, control, and a signal related to parameter uncertainty

was maximized with respect to the uncertainty signal and minimized with

respect to the control. The resulting controller is linear and uses

only partial state feedback from states of a companion form. It has

been shown that the plant can be stabilized with this partial state

feedback, and the tracking error can be, made arbitrarily small despite

arbitrary parameter uncertainty, provided sufficient control energy is

available and provided the plant is minimum phase type. The results
i

hold true for nonlinearities that do not involve control. In order to

generate the control when some of the necessary states are not avail-

able, a minimax design of reduced order dynamic compensator has been

accomplished. The design procedure assumes noise-free measurements.

When some of the available states are contaminated with white noise,

an ad hoc scheme has been suggested to estimate the necessary states

to implement the controller.

The above two basic approaches have certain limitations. The prob-

lem of designing a dynamic compensator for stochastic system assumes

that the system does not involve any parameter uncertainty, although

a minimax compensator design for stochastic system can be carried out

in a manner similar to that reported in Chapter 3. Another limitation

is the unavailability of efficient computational schemes for solving
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the simultaneous algebraic equations which result from application of

necessary conditions for an optimum controller. The minimax technique

for single input - single output system has some drawbacks. First, it

is difficult to extend the approach to multivariable system. The diff-

iculty seems to be due to the fact that a suitable canonical form for

multivariable system is not currently available. Second, the uncer-

tainty signal is related to the system parameters in a complicated way.

Thus an ultimate bound on parameter variation to insure system stabi-

lity is difficult to ascertain. These problems, along with other limi-

tations, and possible extensions of the techniques will be discussed

in the next section.

In spite of the various limitations of the present work, the design

philosophy presented in this thesis makes a considerable inroad in

handling parameter uncertainty in deterministic systems, and plant

disturbance and measurement noise in stochastic system. It embraces a

very challenging field'in system theory- control of systems with para-

meter uncertainty and disturbances using available measurements. Cer-

tain basic investigations have been carried out in this thesis and some

basic results have been obtained. The contribution of the present work

will, the author hopes, stimulate further research in this field.

6.2 OUTSTANDING PROBLEMS, POSSIBLE EXTENSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

Although some basic results have been obtained, the investigation is

far from complete; however, some of the outstanding problems and sug-

gestions for further research in this direction will be outlined below:
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(i) The minimax design for single input - single output system as

presented in Chapter 2 is applicable to time-invariant system. The

present formulation can be, at best, extended to include some time-

varying parameters. For time-varying systems, the success of the pre-

sent technique depends much on the results of stability theory of time-

varying systems. The .present status of stability theory is not suffi-

cient to readily establish a general result.

(ii) Another limitation of minimax technique of Chapter 2 is the

assumption that the system should be minimum-phase type. One way of

approaching the problem will be to constrain the control amplitude

leading to a saturation-type controller. The immediate question that

arises is whether or not the tracking error can be made arbitrarily

small with the available control amplitude. Another problem in this

direction is to ascertain a priori the control amplitude, when very

little is assumed to be known about the system. This, in turn, re-

quires some more information regarding the system.

(iii) It has been established in Chapter 3 that reduced order dy-

namic compensator can be designed using the available measurements.

When some of the states (or output) are noisy, a reduced order estima-

tor has been designed to estimate the necessary states to implement

the control. Further research is required to establish a) what order

dynamic compensator is necessary to stabilize the overall system,

b) whether the reduced order compensator can give performance compara-

ble to: that of a compensator having dimension equal to that of the

system.

(iv) Possibly the greatest effort should be directed to extend the

basic concepts presented in Chapter 2 to general multivariable system.
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This will reveal the conditions for output stabilizibility. This is

important since the derivation of optimal output feedback controller

with or without dynamics requires the closed-loop system to be stable.

The difficulty in extending the present approach is due to the fact

that no suitable canonical form for multivariable system has been found.

(v) Obvious factors regarding minimax output feedback controller as

presented in Chapter 1, which require further study included

(a) Computational feasibility and convergence properties

of various algorithms.

(b) Existence and uniqueness of the solutions

Cc) Stability properties of the nominal system with output

feedback and conditions for stability if all the parameters

in the system are allowed to vary

Cd) Extension of the minimax design analysis to more general

sensitivity criteria.

Some basic questions regarding the design of dynamic compensator

for stochastic systems include

(1) When the dimension of the dynamic compensator is less than

that of the controlled system, how much does the perfor-

, mance degrade?

(2) Is it possible to achieve separation in design of estimator

(or dynamic elements) and the controller, when the compenr-

sator dimension is less than that of the system?

(3) Can the parameter uncertainty be effectively treated for

stochastic systems in the same manner used for determinis-

tic problems?
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CO Is it possible to stabilize the system if the dimension of

the dynamic compensator is not equal to the system order?

(5) How should the mathematical optimization problem be refor-

mulated to obtain a nonzero optimal feedback gain matrix

when the observation is contaminated with white noise? A

possible approach would be! to reformulate it as singular

problem (integral1quadratic criterion penalizing the state

only).

(6) Under what conditions does the algorithm presented in Chap-

ter 5 converge?

The answer to some of these questions and investigation of certain of

these factors is essential before a truly practical engineering design

approach can be obtained.
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