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I INTRODUCTION .

1.1 INTRODUCTION AND HISTORICAL  BACKGROUND

Safisfactory control of multi-input, multi-output nonlinear system
with process uncertainty ié a very basic and challenging problem in
systems science. The problem is made more complex by unavailability
of states of the system‘necessary to implement the control and by noise
associated with the observations. Several basic questions stili to be
answered in this context are: |

a) How large a control range is necessary to compensate for
parameter uncertainty and unknown process nonlinearities?

b) What is the minimum number of measurements necessary to
generate the required control signal?

c) VWhat is an efficient way of controlling this class of
systems and what is the relative effectiveness of various
design techniques?

The present thesis will deal with these problems to some extent and
will propose various design procedures via optimal theory to generate
fhebcontrol. Since the system involves parameter uncertainty, consi-
derable attention has been directed to implement the control via iden-

tification, usually known as adaptive control in the literature[lsj.

a1£62,63]

The fundamental concept was introduced possibly by Whitaker et.

in 1958, followed quickly by Osburn et. g},[”7]. The basic idea is

illustrated in Figure 1.1. The plant structure is assumed to be known

but its parameters are unknown. The model generates the desired per-
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formance. The tracking error e is made small by adjusting controller
parameters in an appropriate way. The adaptive analyser senses plant
and model states and reference signal fo provide proper variation of
the controller parameters. The control structure design is based on
the minimization of the integral square error between the plaht and
model outputs. This technique of adjusting controller parameters is
referred to in the literature as the 'M.I.T.' rule. Similar techniques
have been proposed by Krasovskii and may be found in the writings of
MeerovEuOJ. These adaptive schemes méy possess severe instrumentation
and stability problems.

In another direction, linear regulator-design has been shown to be

[s1

an elegant design tool The control function u, with luil'i 1,

i=1,2,...n is selected to minimize the performance index
o) = [ xTox
o

subject to
% = Ax + Bu.
Q is positive definite and the unforced system, x = Ax, has been assumed

[u ] has also suggested a number of additional tech-

to be stable. Bass
niques for nonlinear regulator problems of the form:

x = Ax + bf(o)
where o is a linear feedback of all the state variables. This technique
says nothing about stability of the given system since the control
function f(o) decreases to zero as the system approaches equilibrium.

. . . [32] . .[19]
Another interesting technique has been suggested by Lee and Geiss

for systems of the form:

x=f(x) +u



* where the unforced system is stable, but. not asymptoficélly. The
resulting control u is designed to insure asymptotic stability, as well
as to maintain a maximum control amplitude or design for minimum time
to reach the origin x=o. An alternative approach to satisfactory solu-
tion of this problem combines Lyapunov theorylag%h the model-reference
concept. A control signal is generated via a design scheme, using a
dynamic model to guarantee that the plant follows the model. It is not
necessary to iderntify the plant to implement the control strategy,

although this technique may be used as parameter identification scheme

[53].

as suggested by Rang Rang assumes the process déscribed by
X = Ax + Bu
where A and B are constant but unknown matrices. The model is taken
to be asymptotically stable and of the form
y = Ay +Br.
An error function defined as e = x-y satisfies the following

e = Aoe + (A-Ao)x + Bu - Bbr

A Liapunov functioh,
V = elpe +lIs,T - a)s, |1+ [Is,T(F - Bs, I,

is then chosen, where S 82, SS’ S are constant column vectors and

1’ y
D,F will be determined to approximate A and B by constraining the time
derivative V of V to be negati?e definite and setting indefinite terms
to zero.
[21,22] . .
Grayson ~ ' synthesizes an algebraic (memory less) relay type con-
troller by applying Liapunov's second method. Since Grayson's work, a

number of generalizations and refinements of the technique have been

' madets’u?'?fﬂe efforts mainly have been centered on the elimination éf



higher order derivatives from the control signal. Motivation of this
stems from the fact that it usually simplifies the hardware necessary -
to realize the controller and also reduces the noise level associated

with differentiation involved in controller's implementation. Monopoli“2““5—-l

and Lindorff[37]

have shown that, in some céses, the following possi-
bilities exist: |

1) = Some oy all of the plant state variables may be replaced
by the corresponding model state variables,

2) the néed for some higher order derivatives may be elimi-
nated entirely,

3) a reduction in the gain associated with the higher order
derivatives will reduce the adverse effects of measure-
ment noise.

Lindorff has also successfully extended the Liapunov. synthesis tech;
nique to multivariable system when there are no input derivatives.

A reduction ig instrumentation noise level and the problem of noise
rejectién has also been treated by Lindorff[aej. This is especially
directed to the systems which are not in phase variable form and where -
the parameter uncertainties exist. But it seems that the technique is
restricted due to the requirement for special relationship. Non-
linearities in the system are not permitted. Confronted with the prob-
lem of controlling a plant which is imperfectiy identified, Taylor[sg;GO]
ﬁas obtained a realistic error bound for reduced order model-reference
controller. Nikiforuk et. E&Eusj extended the model reference control
synthesis technique to plant with unknown nonlinearities ;nd unknown

parameters. The controller has been synthesized via a reduced order

model. The resulting controller is highly nonlinear. The technique



is applicable to éingle-input, single-output minimum phase*type systems.
The limitation of the above techniques based on Liapunov's second method
is not only the complexity of the controller structure, but also the
lack of any insight as how to determine the control amplitude.

[64]

Winsor and Roy combined optimal control and-tpajectory sensi-
tivity to develop a design of desensitized model following control
system. The confrol is generated by minimizing a quadratic performance
index involving the error (between the plant and model output) and the
control. Complete information regarding the plant, availability of all
the state variables necessary to control the system, and model transfer
relation being of same order as that of the plant, are assumed.

A somewhat different approach has been suggested by Donalson and
Leondes[ls]. They have selected a variable controller (controller has
variable parameters) which causes the form of the plant's transfer
function to match that of the model. The control law is synthesized
by minimizing a quadratic performance index involving the error and
its derivatives by following the path of steepest descent for f(e).
This method has produced a controller with memory, i.e., the contr;ller
contains integrators. A discussion on overall stability of the system

[14]

has been suggested in [15]. Shackcloth and Butchart have also

selected a variable controller by choosing a Liapunov function of the
form:
y = eTpe + 2TMz
where P and M are positive definite and symmetric and Z is the mis-
alignment vector. The time derivative Q of V, evaluated along the
(48]

trajectory is constrained to be negative definite. Parks has also

suggested a similar technique and has shown clearly that the adaptive

% :
Minimum phase type syvstem implies the system with lef--half plane zeros.



technique based on M.I.T. rule might result to an unstable controller.
He designes the controller so as to insure, under éertain conditions,

asymptotic stability. Many extensions and generalizations of the above

technique have been made and may be found in the literature[lsélj’zgéfé;fg’

1.2 PROBLEM STATEMENT AND ORGANIZATION OF WORK

To counter various limitations of the techniques mentioned earlier,
the present thesis deals initi;lly with the problem of controlling a
dynamic single input - single output system having parameter uncertainty
using a minimax technique. Specifically, it treats the design of a con-
trolleﬁ using a nominal model to insure a satisfactory performance of
the system in spite of ignaorance of system parameters. The problem is
posed with the additional constraint that the controller be linear and
that it require only partial state feedback.

The syétem is described by nth order differential equation
x,(8) 4 4 x, (31 4 +ax, =bu@ 4y @1
l n_l l .9 & o l m m-l LN N
byt + b u + £(x, (n-m-1)
+bju + b u + (xl,...xl ,t)

where x_ and u are the output and input to the system, superscript (n)

denotes the number of derivatives, and f(xl,il, ...xln'm'l,t) is a non-

linear function.

Next we define a lower order stable model

(n-m) (n-m-1) =
y +a t ... tay Bor

“p-m-1Y

where y and r are the model output and reference input respectively.

A schematic diagram of this model reference system is shown in Figure

2.2.

)



Error g_is defined as

. en-1.T
e :_ (xl,xl aooxln m l)

- (e

If the system is minimum phase type and f(*) is a bounded continuous
nonlinear function, it is shown that the error e can be bounded with

an arbitrarily small bound, despite imperfect knowledge of ai’bk’ i=0,1
..esn,k=0,1,...m. keduction of the error bound, however, requires in
general greater control amplitudes. Furthermore this is achieved by a
linear feedback obtained by minimizing with respect to control and
maximizing with respect to a signal £ relating to the uncertainty, a

quadratic performance criterion of the form
1 T T T
J =5 [7le'Qe + wRu - £°LE ]at .
o)

The resulting control is linear and the number of states required to
generate the control is equal to system order less the number of zeros. .
This discﬁssion is the subject of Chapter 2.

One of the shortcomings of the minimax approach is that the control-
ler requires the output of the plant and its derivatives up to (n-m;l).
When some of the output derivatives are not available, a reduced order
dynamic compensator is designed using a minimax technique. The input
to the dynamic system is the available states or output of the plant
and its oufput is the required control signal. If the output observa-
tion.is noisy, differentiation of the output signal to generate the con-
trol is no‘longer possible.

In this case, estimation of states becomes complex due to lack of
information regarding the system matrix. One way of approaching this

problem is to obtain an optimal mean-square error estimate of the states



under specified parameter uncertaintytagl. This class of adaptive

estimation problem constitutes a class of nonlinear estimation prob-
lems and the resulting estimator gains:require the solution of a set

of simultaneous partial differential equations. In most cases, a
closed form solution does not exist and hence the estimator is diffi-
cult to realize. Recently, a simplified closed form solution of this
type of adaptive filter has ﬁeen suggestedtaol. This thesis reports

an ad hoc estimation scheme to generate an estimate of the necessary
states from the noisy observations using a deterministic model. The
estimator is linear. CQapter 3 contains design of reduced order dynamic
compensator and estimator for systems with‘parameter uncertainty.
Another drawback of the present minimax procedure is the apparent
difficulty in extending the concept to multivariable cases. The diffi-
culty lies in the fact that a suitable canonical form for multivariable
case is not currently available. The general situation becomes much
more compiex, due not only to multivariable nature of the problem, but
also the presence parameter uncertainty, disturbance in the system and
noisy measurement. One way of tackling the problem is to assume a form
for the controller structure. Optimization techniqués may then be
employed to develop algérithms which Yield optimum values of the para-

meters of the controller. This thesis will assume a linear structure

as illustrated in Figure 1.2,
33-35 5 28 . s
Athans, Levi%e, ognson[%n% Kosut[ ] have discussed a simplified
version of the abpve problem. A dynamic compensator of specified order

is used along with the ocutput feedback to provide the control. Matrices

G,H,P,N are chosen so as to minimize an integral quadratic criterion.
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The result is a set of simultaneous nonlinear algebraic matrix equations
which must be solved recursively for G,H,P,N. Basic limitations of
their approaches are:

1) A linearized system is assumed.

2) Disturbances, d , and measurement noise n are not con-
sidered.

3) Parameter uncertainty is not considered.

4) Gain matrices depend on the initial state, X, of the
plant. Generally this is handled in [33,28]by assuming
that the initial state is random variable with a known
covariance matrix.

5) It is not generally known é prioiri whether a dynamic
compensator can stabilize the system unless the dimension
of y and z together equals that of x.

Maclane[38] has considered a stochastic version of the problem to
handle the disturbance. The tracking problem can be treated within
this formulation by assuming that the desired inputs may be generated
by the initial condition response of a linear system. This, however,

[23]

has not been done. Goldstein has designed a minimal order observer

to yield an estimate of x which, in turn, is used to obtain the control.

No disturbance or measurement noise is allowed. Ferguson and Rekasius[lsj’

[so0l [51] [12]

also use a

, Pearson and Ding

Pearson » Brasch and Pearson

dynamic compensator of suitable order to provide an optimal control.
The gain matrices are independent of initial condition.
The present thesis deals with the problem as schematically shown

in Figure 1.2, Specifically, the problems of parameter uncertainty and

-
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the presence of disturbance and measurement noise have been considered.
The objective is to specify Various gains G,H,P and N using optimiza-
tion technique. The:initial step is to design a controller for a linear
dynamic multi input - multi output system having parameter uncertainty
using a minimax procedure. The basic study here is to examine various
minimax criteria so that the system behaves acceptably well over a wide
range of parameter wariation uéiﬂg only output feedback. Thus the des
sign procedure involves the specificat;on of G assuming H = 0. Mini-

max controller design for this class of problems using complete state

[29,41756
58,61].

proach treats this problem by minimizing with respect to a feedback

feedback has been suggested by many authors >The present ap-
gain matrix and maximizing with respect to uncertainty, a quadratic
performance index involving the system state, the control and a signal
related to the uncertainty. The optimal feedback gain satisfies a set
of nonlinear algebraic matrix equations. Several other minimax approa-
ches are then considered to relax the consérvativeness of the previous
formulation. It has been demonstrated that the minimax design criteria,
under wide parameter variation, yield better performance than a purely
nominal design.' This is the subject of Chapter 4.

Next the thesis treats the problem of designing a genenalized con-
troller for systems excited by white noise disturbance. The measure-
ments are assumed to be contaminated with white noise of known variance.
It is well known that if the system is lineér, is excited by white
gaussian noise and the measurement noise is gaussian, the estimator
and the controller can be designed independently. This is due to the
well-known separation theorem. The estimator is the well-known Kélman

filter whose dimension is equal to that of the system. Sometimes the
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dimensionality of Kalman filter restricts its use in practice because
of added computational difficulty. With these points in perspective,
the thesis deals with the design of a generalized controller (combinéd
estimator and controller) of specified dimension. It is assumed that
the system is perturbed by white noise and the output obsérvations are
contaminated with white noise signal of known variance. No parameter
uncertainty is assumed. The dynamic linear controller operating on the
available noise corrupted outputs of the system generates the required
control input to the system. The design involves determination of
optimal values of G,H,P and N, Chapter 5 deals with this problem and
presents a simplified analysis of estimator and controller combined.
Various speéial cases are also discussed.

Chapter 6 summarizes the achievement of the present work, its

shortcomings and possible extensions to more general problems.
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IT MINIMAX ﬁODEL REFERENCE CONTROL IN SUBSTATE SPACE

2.1 INTRODUCTION

The design of a controller for a dynamic single input - single
output system haviné parameter uncertainty will ﬁe undertaken in this
chapter using a minimax technique. Specifically, it will be shown that
a controller can bg designed using a reduced order model to insure a
satisfactory performance of the-system in spite of ignorance of system
parametersFBJThe problem is approached by minimizing and maximizing
with respect to the control and an "uncertainty signal" respectively,
a quadratic performance index involving the tracking error, the con- '
trol, and the "uncertainty signal". The resulting controller is linear.
The number of states required to geneiate the control is equal to the
system order less the number of zeros. Bounded input -~ bounded output
stability is guaranteed, provided the system transfer function in mini-
mum phase type. The results also apply for systems with rather general
nonlinearities fhat do not involve the control. It is also shown that
the tracking errof admits an upper bound and that the bound can be made

arbitrarily small with adequate control levels.

2.2 MOTIVATION OF THE PROBLEM

 Consider the single input - single output system described as in

(2.1) - (2.3).

m m-1
X, (s) b s” +b ;s t ....tb;stby N(s)

m<n (2.1)

n n-1 =
U(S) s+ an-ls + ....+als + ao D(S)
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where Xl(s) and U(s) represent the Laplace transforms of output xl(t)

and input u(t) reépectively. The equation (2.1) may be expressed in

the state variable form[a ]
[ o l 0 as e 0 ] P0 )
0 0 1 .... 0 0
. * . L] o‘
x=Ax+hus=|. < I x+ |h o u (2.2)
0 0 0 cee 1 .
‘ _ _ _ _ .
g =2) ~Ay ... "B, Lhn
0 k<n-m
where h, =
k k-1
Phx - .Z An-k+iPi kzn-m .
i=n-m

Since x, 1 ° ii, i=1,24¢¢..,n-m-1, it can be seen from (2.1) that

i+
[ N(s) ]
sN(s)
X(s) - A)-L. . 1 n-m-1., (2.3)°
—-[T(;y (SI A) _11- —D-z-s—y S N(S)
N (s)
n-m
i &n(s) .

where Nn—k(s)’ k=0,1,...,m, are polynomials in s. Consider now the use
of a linear feedback law

u :.- ko [klx.l + k2X2 + s e e e + kn_mxn_m] = "kol(_?_(' (2.'4)

where 5? = [kl’kz"""k 0, ....0] is a constant vector.

n-m’
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The eigenvalues of the closed loop system are then solutions of

. T ) _
0= |sI-A+kghk | [s1-a | | I + K, (sI-A) lh_l{rl

| [s1-A | (1 + kol_c_T (sI-—A)-ll_1_) (2.5)
where |A| is the determinate of matrix A.
The last equality of (2.5) is obtained using the-identity
[T+coT|= 1+Dc - (2.8)
C, D being veétors of compatible dimensions. Furthermore, combining

(2.3) and the definition of k with (2.5) yields

N(s)(ky + Kps + «vev + I _gs™ ™)

|sT-a + kohkT| = D(s) [ 1 + kg ]
D(s)
= p(s) [1+ ko MELKE) 4. (2.7)

D(s)

(2.7) can also be obtained using Figure 2.1 which illustrates the
system wifh feedback. The characteristic equation of the closed loop
system is | '

1 - Loop Gain = 1 + kok? (sI-A)'l§_= 0,
which agrees with (2.5) and (2.7). We know as k0 + o, that zeros of
(2.7) approach the n-1 finite zeros of N(s)°k(s) and one'zero at -o,
Hence if N(s), k(s) are Hurwitz polyﬁomials with b, kn-m> 0, the
system is stable for ko sufficiently large - regardless of éhe zeros
of D(s) = |sI-A] . Furthermore, response to any bounded input R(s)
will be bounded. The problem is to choose the nonzero. elements of k
so that in addition to stability, the system exhibits behavior which
is in some sense good. Furthermore we should like a design procedure

which can yield this good behavior despite uncertainties in the system

parameters and with minimal control effort.
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2.3 SYSTEM DESCRIPTION,_DEVELOPMENT AND PROBLEM FORMULATION

Define a stable model

[ 0 1 0 ... © ] 0 ]
0 0 1 ... 0 0
y=Ay+B8r= | & o : v .
¥ =AY+ 8, 0 ¥y r (2.8)
0 0 0 ... 1 0
Qs =0, =, ... -Q 8
0 1 2 n-m-1 { 0
L. d
and a system
(n) (n-1) - m m-1 .
x, + an_lxl teeue + agxy = bmu + bp_ju +...+blu + bou +

f(xl,il,...,xin-m_lzt) (2.9)

where y and r are the model output and reference input respectively,
and f(-) is a nonlinear function. A block diagram representation of
the model reference system is shown in Figure 2.2.

If

1 . . .
(1) bm:ﬁ>0 and bmsm + bm_lsm- + ...+bls + bo is Hurwitz, and if

(2) f(xl,il,..., x(n-m_lzf)"is a bpunded continuous nonlinear

1
function, the objective now is to show that the error
. -M- A%
g = (xl,xl,...,xl(_n m l)T - z = l{_ - y_ (2.10)

can be bounded with an arbitrarily small bound, despite imperfect
knowledge of a;, bk’ i=0,1,...,n,k=0,1,...m. This will be achieved
by a linear feedback law which requires only partial state feedback and
is in a seﬁse optimal. Furthermore u will be similar in form to (2.4)
with k(s) Hurwitz.

Remark 2.1.

a) n,m, are integers which may be unknown but the difference (n-m)
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is assumed to be known. Also a lower bound of the highest order deri-
vative coefficient of u is available.

b) Note that (2.9) is identical to the linear system (2.1) except
for addition of the nonlinear term.

c) When a regulator 'is being designed, it is admissable to let r=y=0.

We proceed by rewriting (2.9) to obtain

. -1
(n) (n-1) (m) m_. (5)

n-1 .
(b _-8) Y a, x ()

3=m j-m"1 -
n"l (-)
Loagx 3, f(xl,...,x -mt) (2.11)
3=0
Integrating each side m times, gives
(n-m) ' (n-m-1) =
Xy ten1% teeetax = Bu + E(t) (2.12)

where E(t) is the m fold integral of the right side of (2.11) together

with initial condition terms. In state variable form, (2.12) may be

written

- — e - -

0 1 o ... 0 0 0

0 o 1 ... 0 0 0

o* . . * . .

X = . X +].f u + |.

0 0 0o ... 1l 0 0
'-ao —al a s e -an-;n—l LB. ,E(t)g

%
Ax + Bu+ £(t), (2.13)
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where ;.corresponds to the first n-m elemgnts of x as in (2.10)
i.e. §_= [xl,il,...,xl(nfm-l)]T = [xi;x2,...,xn_m]T . (2.14)
Consequently, subtracting (2.8) from (2.13) yields
. . Bo v _ 1
g=(§-z)=Aoe+§_(ﬁ+£),ﬁ=(u-E_r),£= z & (2.15)

&*
g£(t), of course, generates differences between the model and x ,
If £ =0 = u, e(t) approaches zero asymptotically since A0 has negative

eigenvalues. Furthermore, even if u = 0, £ # 0, e will be bounded for

E(t) bounded. The problem is to realize a u which not only will retain

stability but allow a bound on e to be made arbitrarily small.

2.4 CONTROLLER DESIGN
If the current and future values of £(t) were known for all time,

the 'ideal' optimal control would be obtained by minimizing

3= 2 [ (T + ruDar (2.16a)
o

subject to (2.15), Unfortunately such a priori knowledge about E(t)

is not available. Although it may be argued that g(t) caﬁ be generated
from (2.15) once ; is known, one still needs to know £(t) ahead of

time to solve the optimization problem. If a bound on £(t) were known,
one wa; of designing a minimax controller would be to maximize w.r.t.
E(t) and then minimize w.r.t. ;, the performance criterion (2.16a)
subject to (2.15). But it is clear that an a priori bound on £(t) is
difficult to ascertain. An indirect way of penalizing £(t) can be

achieved by modifying the criterion (2.16a) to include £. The form used

will be
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I= 2 [ (efee s uR - 2L (2.16b)
o]

with R, L > 0 and Q positive definite. u,f will be chosen to minimize
and maximize J respectively. Although £ is not arbitrary, the design
assumes that £ acts in the worst possible fashion and thus maximizes J.

The term -£2L is introduced to limit £ . It is readily shown that
[20]

the optimum ﬁ, £ are given by

&
= _ LT PO N :
= X B'Pe, £ =T BPe (2.17)

(<R} ]

where P is the symmetric matrix satisfying

T _peaTp (L -1y -
PA) + AP +Q - PBB'P (% r)-o . (2.18)

Furthermore, (i) AO - %-BBTP has negative eigenvalues

(ii) P is the unique positive definite steady state

: - T _paeTp (2 _ L
solution of -P = PAO + AOP + Q - PBR'P (R L)’ R<L.
* % .
u,t ] = min max J[ &y u,t ] = max min

u £ ' £

u
.~.. =1T
Jl e _; u,g ] 5e P €

(iii) JC 55

(2.17) will, in one sense, yield a conservative design since £ is assumed
to act in the most perverse manner. In another sense, however, é need
not abide by the rules of the game and may be using a smaller L than
aésumed. This may require that R in turn be decreased.
Remark 2.2 | |

It should be noted that a unique positive definite solution P of
(2.18) exists[ssj if R<L. In case, R<L the implication is that we are

trying to balance the effect of the "uncertainty signal" with a larger

amplitude of control signal than what is needed with R = L. Consequently
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for much of the rest of the chapter, we shall restrict ourselves to the
case R = L. 1In case Rdl, it is still possiblé to show that proposi-
tion 2.1 (mentioned below) is true; In case R>L, nonuniqueness of
Solution P of (2.18) poses some problem in the subsequent analysis .

of the error bound and is a subject of further investigationm.

For convenience, define E_és the last row or colummn of P. Then

— ’

Pg = [p1» Pys ---» By IL00...8] | =, ‘=‘, ak.

P '
From (2.17), u is given by

c o

Bgz_mg = - %5 e (219a)

| =

Accordingly

6(5) = _%-(-T [l’s...’,sn-m'l]T E(S) = - %((S)E(S) (2.lgb)

where

n-m-llT

k(s) = E:—m [l,s,s2,...,s

Now it will be helpful, at this stage, to establish an important

property of this control signal ; that is outlined in the following
proposition: |

Proposition 2.1

With Aq stable and as defined in (2.13), k(s) is a stable poly-

nomial for R=L.

Proof:

Consider the system defined by (2.15) and represented in Figure
(2.3), The open loop transfer function, z(s), between £(s) and u(s),

is given by
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T
- 8 2
z(s) = [ EP (sI-A.) %g] -6 P/Dl(s) [l,s....s -m—l] L4 .k(S)
R 0 R
D (s)
(2.20)

A ,
where Dl(s) = |sI-A0|> is a stable polynomial and k(s) is as defined

in (2.19b). Now using (2.18) we obtain

2Re[z(s)] =z(5) + z(s) = %-[g?(gl-A:)'l P + 8P (s1-a,) 7181 -

Ili e I-A) Ty-1 p(s+d) + pgT (R-1-L7Y) gp + QI(sI- a1

T * T -1 -1
2{Res} [B (sI-A)) = P(sI-A, )11+ 8 T(s1- A ) Q(sI-Ao) 8

for R=L.
Here : denotes the complex conjugate of s. Since P, Q are positive
definite, Re[z(s)] is nonnegative for Re(s)>0. Therefore the trans-
fer function z(s) is positive rea].[l ] which implies;from (2.20) that
k(s) is Hurwitz.
2.5 DERIVATION OF A BOUND ON THE ERROR

In order to determine a bound on e when u satisfies (2.17) but &£(t)

is arbitrary, let

v(e) = Ze'pPe (2.21)
4 2‘
where P is the positive definite matrix satisfying (2.18). e must
now satisfy the differential equation (2.15) with u as in (2.19a);

that is

é=a

~x ub

0" E_P] et B £(t). (2.22)

The time derivative of (2.21) is
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o v _ 1T 1 T T 1, T T eral
V(e) = Jelay -2 88P) P+ P (A -=88P)2] e+ £(t)BPe
= - LT 1.2, T .21 1 N T
= - ZeQe - K LAPO 3 .
=0 - 8 (ke =+ 2+ & (D8(Ke) (2.23)

where (2.18), (2.1%a). and (2.22) have been used to refine the result.
Clearly if l;(t)l is bounded, (2.23) will be negative for ||e|]
suffiéiently large and admit an upper bound |le||. It is necessary
to examine E(t), fﬁerefore, by considering the behavior of the full
system described by (2.9), (2.10), (2.21). It will then be possible
to complete examination of (2.23).
2.6 STABILITY OF THE OVERALL SYSTEM

Turning now to the total system, (2.9) may be written in state

form basically as in (2.2, (2.14),

. |
X =Ax + hu + £ (x, t) _ (2.25)
% *
with £ (X,t) = [0,0,...,0,£(x,t)]7.

Now define

]
1
~
<|
e
v
>
"

A A
M v (2.26)

2

: T
[_i‘]’ v = (vl, V2,....Vm)
and combine (2.25), (2.8) and (2.10), to eliminate x . The result is
r+f(et+y,t)

=AZ +hu + v | (2.27)

‘where
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n-m _ . n-m T
= [0,0,...,0, izo a; 1Y -8 o> 0 0, .,f(y + e, t) - Zl i-lyi] .

. 1-
(n-m)*th entry ~ (2.28)
v is bounded if the model input r, is bounded as assumed. If the
"optimal" u given by (2.19a) is used in (2.27), the closed loop

system satisfies

‘. AT 8
2= [A g-h k12+h Lr+y
— R——~=2" = 8 -
B ~T .
= [A -§'§£]§_+2} (2.29)
with
T _ .
)_<- - [kl, k2,--o.kn-m, 0,0,!0,0]
_ (2.30)
Bo A
\" =V h —_— = [0,0,--. o, \" .o-\,']

The characteristic equation of the closed loop system is obtained

as in (2.5) - (2.7), i.e.

B - - -~
=hLA+E£f|= |sI-A| |I+®LM1%££”
= |sI-A] (1 + %-kT(sI-A)-¥Q)
= D(s) [1 + 8 N(s) (k, +X.s+ .... + k s(n—m-l)]
R D(s l 2 n-m
= D(s) + £N(e) k(s) - | (2.31)

Now as R*0, (n-1) roots of (2.31) approach zeros of N(s)k(s), and
the last root goes to infinity along the negative real axis. Since
N(s), k(s) are "stable polynémials", then (2.30) is stable for R

adequately small.



27

Consequently as the penalty R on control is reduced, permitting
larger control amplitudes, the system (2.1) - (2.2) or (2.7) is stable
for the feedback law (2.19) provided N(s) is a stable polynomial with
b >o.

m .

Now since (2.29) yields a bounded Z with a bounded input v', all
the elements of Z are bounded. In fact, bounds on v' do not depend
on Z but are determined mainly by y. From (2.29) - (2.31) it can be

seen that

g n
£lep) =E, (s) = = DR ACTHOREE KRR

D(s) + %JN(s)k(s)' j=n-m

1 n
— )
D(s) + E.N(s)k(s) j=n-m

o i 13 ,
£Xvi) »Vi(s) = [gj(S) + - 2j(s)]vj(s),

i=1,2,...,m.
where f;(s), g?(s) and 2;(3) are polynomials in s, independent of R,
and of order < (n-1). £(*) is the laplace transform of (),
As R0, IEi(s)|+ 0, i=1,2,...,(n-m-1)
and

[v.(s)] + 2 2 1) vils)
1 j=n-m 3 i=1,2,...,m. Thus an ultimate
N(s)k(s)

bound on Vl exists and is independent of R as R0, Furthermore the
error bound, i.e., the bound on |]e|]| goes to zero as R*0. We
explore this further.
2.7 FURTHER RESULTS ON THE BOUND OF THE ERROR

Let us now examine £(t). From (2.22)

. n-m B
(t) = BE(t) = e + a, .e. --k e
: n-m 12; i-1°1 " p ==
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" n-m B2
= 'en_ + ) a, e; + — k. e,
m i=1 i-1 R i"i .
From (2.29), on the other hand
nem - éh-m = V1 - ibm]—(-s- + L ai_ly, - Bor +b Yr.
1-0 8
Thus
n-m bm 8 T
E(t) = v, + izl [a; je; + a5 3v;3+ 8, ( - ;1) v+ = (B-bpke
=g + 2 (8-b kTs (2.32)
l -R— m _\g .
where
n-m : bm .
17Nt izl [a; jos *og gl + Bl g™ -1 e

has an'upper bound which is independent of R and exists as R»0.

Returning to (2.23) with (2.32) replacing £(t),

2 2 :
y _ 1 T T2 mB 8 8~ T
V) = -ZFeQe- (o) (m-gptoph+ ke
1T 1 ,.T.2.2,1.1 T
i-EgQ_—-z—(gg) B (§+L)+EJ_§9_
irT 1 T 2 2 1 1 T
-, - &k 8 Gy g | ke (2.33)
1T 1 le |2max .
<-=eQtyF —b—7F =W(e)
- 2="="2 11,2
(=+ )8
L R

The last inequality is obtained by maximizing the last two terms in
the equality with respect to IiTg |.

Proviéing e is sufficiently large, the first component of wW(e)
will dominate. Next 'Jé'-_e_Tg_ is maximized subject to w=0, in order to

establish an upper bound on _e_Tg_. For this purpose, it is required



29

to maximize the Hamiltonian

' 2
€1 max
1.1y
(L+R)8

T

H = %—_e_g+n[-%-gTQg+c],c=% (2.34)

where n is a constant multiplier. Equating % to zero yields

Qe = %£= T (2.35)

Thus (2.35) shows that e and -:‘1 are an eignevector and eigenvalue

of Q respectively. Since

_e_TQ = 2¢c = AQS_TE

is required. |

(3T3)max = zc/(AQ) min

where ()‘Q)min is the minimum eignevalue of Q.

’ T | IEll?-max
Thus V < 0 for all e e > s
(1 1), (X)) .
T +§B Q'min
. | le, |, 1
i.e., V < 0 for all ||e|| > R_ = 1 max .
- - a B ().

Q’'min (% + 'l]_i')
(2.36) -

This, of course, is conservative. Since we have permitted e to both

maximize certain terms in (2.33) and to maximize |!_e_|| subject to
wie) > 0.
The bound on ||e|| can now be found in standard fashion,

(1) Determine V_ = maximum V(e) subject to llel] < R,

1]

(2) Determine R, = max ||e|| subject to V(e) < V_
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Thus, to find Vo, we proceed as follows:

Minimize the Hamiltonian H given by

H=elPe + vl[Ra2 - elel (2.37)

or Pt_a_ = v,e

indicating that e and v, are eigenvector and eigenvalue of P respectively.

T, _ T _ 2
Thus e'pe = v,ee = ViRa
v, 2 v -0 RS2 (2.38)
and o = "max “"p’maxa +2
where (Ap)max is the maximum eigenvalue of P.

Now to find Rb’ we maximize sz = g_Tg_ subject to
9_TP9_ = O‘p)maxRaz' Thus
R,2 - e Pe ] | (2.39)

and

Q»
io]%
1]
(o]
]
1]
[}
<
N
[as]
(1]

Hence e and L are eigenvector and eigenvalue at P.
- \Y
2

Furthermore e'Pe = (A) _ RZ = 1A

i.e. E_Tg_ = (2)) R 2/A

Thus the required Ry is given by

2
b

p’min

(2.40)
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and -
(XP)max .
Rb - Ra / (AP)min

lg, ] 1
—-—l—B—mﬂ— O (2.41)

) minck ¢ L
Q mln(L + R)

Rb represents an ultimate bound on IIEJI since g_asymptotiqally
approaches the region defined by v(e) < v, but v(e) may be indefinite
therein. Thus IIEJI is bounded by Rb as shown in Figure (2.4). This
bound can be made arbitrarily small by relaxing the penalty R on the
control u since Igllmax admits an upper bound as can be seen from-

the previous section and (2.32).

2.8 EXAMPLES

- To illustrate the preceding analysis, consider the following open

loop unstable system described by

"+ x-x+x-sinx+tx>=u +20+u (2.42)
with a first order model described by

y+2y=r : (2.43)
where r is a step input. It is toAbe nbted that the minimum order of
the model is specified by the difference between the number of poles
and zeros of the plant. This, in this example, is one. With a little

manipulation and integrating (2.42) twice, the error equation can be

expressed as

(2.u44)

]}
o
+
e

e + 2e
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- %
It is desired to find an optimal control 4 by maximizing w.r.t. &

and minimizing w.r.t 4 the performance criterion

-]

1
325 | (e« ra? - 1)) at, ReL (2.45)

subject to (2.44).

The resulting control is given by

i=-rt (2.46)
~and is applied fo the original system (2.41).

fhe outputs of the plant and model are shown in Figure (2.5) for
different values. of R. It can be seen that the error decreases mono-
tonically with the decrease of penalty R. Also plotted are the re-
maining states X, = X, Xy = x° for different values of R . These

are bounded as can be seen in Figure (2.7) and (2‘8)7 The control

signal characteristics are shown in Figure (2.3).

2.9 CONCLUSIONS

A linear time invariant controller has been designed for a single
input - single'output system with parameter uncertainty. The number
of states required to generate the control signal is equal to the
- system order less the number of zeros. The feedback gains are ob-
tained by minimizing a quadratic performance index involving the
tfacking error, the control signal and the "uncertainty signal".
This, however, yields a conservative design since the "uncertainty
signal" is assumed to act in the most unfavorable manner. Bounded
input - bounded output stability is guaranteed, provided the transfer

function is of minimum-phase type. If the uncertainties are bounded,

4
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it has been shown that the system can always be stabilized if suffi-
cient control amplitude is available. These results also apply for
systems with rather general nonlinearities that do not involve the
control. It has élso been shéwn that the tracking error admits an
upper bound and that the bound can be-made arbitrarily small. Since
very little a priori knowledge about the system is assumed, the feed—
back controller may be forced to supply excessive feedback gain in
order to insure stability. This is, it seems, a logical compromise
under the present éituation. It is also clear that the controller
uses paptial state feedback from the states of a certain companion
form. In practice, it is possible that some of these state variables
may not be available; This requires reconstruction of the states from
the available states or output. State reconstruction via well known
Luenberger observer is difficult, because of the uncertainty in the
system parameters. The problem may be compounded by measureﬁent noise.
Differentiation of the output to provide uhavailable states together
with a high gain design is likely to yield unsatisfactory performance

in the presence of measurement noise. These problems will be tackled

in the next chapter.
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ITII DESIGN OF REDUCED ORDER COMPENSATOR AND
ESTIMATOR FOR SYSTEM WITH

PARAMETER UNCERTAINTY

3.1 INTRODUCTION

In the previous chapter, it has been shown that a linear time-
invariant controller can be designed to stabilize a single input -
single 6utput nonlinear system provided that the system output and
its lower order derivatives up to (n-m~1l) are available. Here n is
the system order and m is the number of zeros. In many practical
situations, these state variables may not be available,: In addi-
tion, output measurements may also be noisy. The inherent diffi-
culty asséciated with differentiation and possibly high gains limits
fhe minimax procedure described in previous chapter.

This chapter will deal initially with the generation of the re-
quired control signal as‘the response of a dynamic system to the
available states or output for deterministic caée. The dimension of
dynamic compensator is arbitrary. Because of the previoﬁs theoreti-
cal development in Chapter 2, the highest order dynamic compensator
will be (n-m-1). The problem is to design a dynamic compensator
which is in some sense best to generate the required control signal.
It is shown tha; the constant parameters that specify the dynamic

compensator can be obtained by solving a set of simultaneous nonlinear

algebraic equations.
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The second problem in this chapter deals with the estimation of
states of a dynamical s&stem, given noise-corrupted observatiéﬁ, when
there is parameter uncertainty in the dynamical system. Thé deter-
ministic case will be treated first.

3.2 DETERMINISTIC CASE: DESIGN OF DYNAMIC COMPENSATOR

One way of gstimating the states or generating an optimal control
would be to assume that the observation is contaminated with npise
and then use a wusual Kalman filter. In addition to the dimension-
ality problem of Kalman filter, it is difficult to specify various
covariancé matrices of plant disturbances and measurement noise in an
essentiélly deterministic situation. Thus an alternative approach of
generéting the optimal control will be suggested below. It is to be
noted that the gains of the dynamic compensator should be independent
of initial state of plant and compensator, otherwise the compensator
gains will have to be changed with the change of plant state due to a
disturbance.

3.2.1 - PROBLEM FORMULATION

The model reference system described in previous chapter is shown

to be described by

Aye +‘E; + BE (3.1)

g =Ce 3.2)

é

where ¢ is r-dimensional output vector .

The dynamic compensator of specified order, s, is described by

z(t)

Fz(t) + GZ(t) = Fz(t) + GCe(t) (3.3)

u(t) = hz(t) + ng(t)

hz(t) + nCe(t) (3.4)
The input to the dynamic compensator is the available output whereas

its output is the required control signal. It is easy to see that
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c is r X n-m matrix
F is s x s matrix
G is s x r matrix
h is 1 x s vector
n is 1 x r vector

The present formulation of the problem is similar to the one re-

[25]

ported by Johnson and Athans

To design via optimization, the following cost function is chosen:

. tf
1 v T T
J(F,G,h,n38) = 5 J *{eTQg_ + (gTRzg + n'Ryn)g
t o 9 ‘
°© 4+ (FTR2F + hTth)z - Lg ] adt (3.5)

The problem is to minimize the above criterion with respect to
F, G, h, n and maximize w.r.t. £ , subject to (3.3) and

Aoe'+ gu +.B£

(A, +Bnc)e +Bhz + BE (3.6)

[ X3
([}

The inclusion of the second and third terms in the performance cri-
terion avoids placing the poles of the compensator at -« and thus
allow the high frequency plant noise not to pass through the system
as mentioned in [25].

Now defining

A (D h ~ A A 01 A A E 0 S A C 0
P= , AS , B = , C-=
G F 0 0 0 I 0 I
T = , = s R = R \E= ’ .B_= .
0 1] 0 0 0 R, z 0
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it can be easily seen that (3.3) and (3.6) can be represented as
. € A + BnC 8h [3 8
LA I S s
z | | G F N2 0
’ - ~ 3
i.e. w=(A+BPC)Ww +B E (3.7)

and (3.5) can be written as

t - .
J(P,§, w(to)) = = f £ [E?Q!_- Le?] at (3.8)
! |
(o]
where Q = Q + %-(ETPTﬁPE + TC RECT) . (3.9)

Thus the problem is to minimize and maximize (3.8 ) with respect to
P and £ subject to (3.7). The resulting optimal P will depend on
initial condition w(to). In order to remove this restriction w(to)

can be treated as a random vector in which case J may be replaced by

J(P,E) = ELJ(P,E, w(to)].

Thus the requirement for optimal solutiontigelds
239 vad
~5p~ 37 ELJ(P,E, w(to)] = E[ 55 (P,5, w(to)] = 0 (3.10)
3o |
& (3.11)

The interchange of order of expectation (i.e., integration) and
differentiation is crucial here and is valid under rather general

fio]

conditions .

3.2.2  AMALYSIS
Applying the technique presented in Chapter 4, it can be easily

seen that the optimal gain matrix P is given by
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P= ﬁ"ﬁTKLET[-;-'E(L ety (3.12)
where
M=E[ rf (v 1T)dt] = rfqh(t) E[»i(to)gT(to)JtpT(t)dt
t, t,
iie., - M = (A+BPCINM(A+BPC) T+ELw(to)ulto)] (3.13)
and K satisfies |
~K = (A+8PC) TkeK(a+8PC)+Q-KAL 1Tk (3.14)

It tgre , tb-*o, M and K are the steady state solutions of (3.13) and

(3.14) respectivel&.

If
e(o)
3 = E[w(to)] =.wo
E z(o) - -0
A

and E[(w(to) - go)(!ﬂto) - W,1 = W,
Then B[w(to)wT(to)] = wo + WoW T_ ‘ (3.15)
The optimal cost can be seen to be

=1 T } o= 1 T

J = > Tr {KE[w(to)w*(to)]} = > Tr {K(wo tww, )} (3.16)

Thus the optimal signal requires only the availéble states Cce and
the states of dynamic compensator. This control signal is now ap-
plied to the original system (2.9). Overall stability of the sys-
tem is not apparent and is the subject of future investigafion.'
Computatioﬁal schemes to solve the simultaneous nonlinear equations

have been discussed in Chapter u.

3.3 STOCHASTIC CASE: DESIGN OF ESTIMATOR

3.3.1 PROBLEM FORMULATION

It is assumed that a continuous record of a realization of the
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(n-m)x1 vector observable process {zi(t)} is available where

2(t) = Hx(t) - Hy(t) + n(t) = He(t) + n(t) (3.17)
and n(t) is white noise.

Note that this means that the model is used in the estimation
process to generate éft). Moreover, the process {ei} assumed for
mathematical treatﬁent to be a random one, is modeled as the output
of a dynamic system, excited by a pseudo-random signal £(t), uncor-
related with n(t); that is,

€ = Age + E(t) + g(t) '

g(t) = gu (3.18)
where é}t) and n(t) are assumed to be zero mean, random processes
“having covariance matrices Q and R respectively. In case, £(t) has
a bias, the system equation (3.18) can be augmented to take into
account‘this'factor.

The problem is to determine the initial state e(to) and £(t) for

all tf [to,tf] which minimize

N =

t
[ j [(g;Hg)TRl-l(g;Hg) + E?Qlflgj +
° 1 % T -1 %
7 [e(to)-e(to)] P =~ [e(t6)-e (to)] (3.19)
subject to (3.18).

;ﬂto) is the expected value of e(to). It is well known that, if
g(t) and n(t) are sample functions of white, zero-mean, uncorrelated
random processes, this procedure will give a maximum a posteriori
estimate. "If, in addition, &(t) and n(t) are gaussian, this will
give a least mean-square error estimate. Even ifxéft) is not ran-
dom, the above performance index carries meaning in the sense that

an integral square error in the estimates. is being minimized. Since
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" z(t) and He(t) are the actual observation and predicted observation
respectively, [2(t)-He(t)] is the error in the estimate and Rl"l
provides relative ﬁeighting (related to the covariance of the noise)

on this component.

©3.3.2  ANALYSIS -
The estimate é(tf) of e(t) at t=tf is the solution of equation
(2.18) using e(to) and E(t) as estimated. To obtain e(to), E(t),

the usual Hamiltonian

3
. ='5_(Z_He) R, 1(Z_He) TQ -1, l?[A03-+ £(t) + g(t)]

M]l—‘

(3.20)

is introduced with the costate equations and necessary conditions

T _ 9H T, -1 T '
A =-5g=HR) (z-He) - A} (3.21)
..a.}_!. = 1 A = .22)
5 A gt) =0 (3,
e = Aog_+ E(t) + g(t) o : | (?.23)
and the boundary conditions
A(to) = -P™L [e(to) - e(to)] (3.24)
A(tg) =0 - (8.25)
Using (3.22), (3.23) reduces to
e =Ae=QX+ g(t) .~ (3.26)

Now we claim a feedback solution of the form
Alt) = KCt) fe(t) - v(t)1 * - . (3.27)
Using (3.21), (3.26) and (3.27), it is clear that X and y satisfy

the following equations:
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» _ T T - -
-K = Kay + AK ~ KQ K + H'R) 1y  (3.28)
V= Ay - K'lHTRl']f[g_ng] + g(t) . C (3.29)
Again as in (3.25), - )
A(tf) = K(tf) [g(tf) - \_r_(tf)] =0 . ‘ (3.30)
Thus - '
g}tf) = v(te) is the ésfimate éﬂtf) of e(t) at tf given
z(t) on [t .t ].
Also from (3.24) and (3.27) -
*
K(to) = -p71 v(to) = e(t0) . (3.31)

e(te/te) = v (1) = AS (tg/r) - K1

HTRl'l[z(tf)QH;(tf/tf)]

+ g(t) ' (3.32)
where K is given by (3.28).

Now defining

M = ‘K—l 9

it follows that M = K-le-l ..

Thus the estimator is given by

e (/) = Ae (te/te) + MHTRl'l[_z_(tf)—H;_(tf/tf)]+ g(t)

u

e (to/to) = e(to) | L (3.33)

where the positive definite matrix M satisfies

M= AOM + MAg +Q - MHTRlTlHM (3.34)

M(to) = P(to) - | C (3.38)
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‘3.4  EXAMPLE
Case 1 : Deterministic Case

Following example will illustrate the design of a first order

dynamic compensator for a third order nonlinear system described by

x(s) + x(2? + 2; -x -As;x = ; +u 4 (3.36)

with a second qrder model

y(2) + 2§ +y=r . ' 4 (3.37)

A second order model is chosen since the difference between
plaﬁt order and the number of zeros is two.. (3.36) and (3.37) can
be combined to yield the error equation
e(2) +2+e=u+i - : '_ (3.38)
u=u-1".
It is clear from the previous chapter fhat the optimal controller

requires measurements of e and e. It will be assumed that only e is

available. Next a dynamic compensator
z = fz + ge (3.39)

is defined. The 6utput of dynamic compensator is the required control

signal given by

u = hz + ne e B : (3.40)

With Q = .01 ,R, = .015and L = ,01

n
w

(3.12) - (3.14) are solved using the algorithms reported in next chapter



' 49
to obtain
="ll. 68 ) g= 8.2 h="5112 nz-q"losao

Tﬂe control signal is then applied to the original system (3.36). The
outputs of model and the plant are shown in Figure 3.1. The control signal
characteristic is shown in Figure 3.2. Thus the example establishes the |
fact that a reduced order dynamié compensator can be effectively used to
generate the control when some of the necessary states of certain_cgme
panion form are not available.

Case 2: Stochaétic Case

In this examplé, a first order_estimator will be designed for the

above model-reference system to estimate e and e from the observation

z(t) = e(t) + n(t)
= he(t) + n(t) - . (3.41)
h = (1 0), | |

where n(t) is a gaussian noise with standard deviation .0l.

10 0
Using Ql = Rl = 1, the estimator is given by-
0 55,36 ‘ :
a -24,56 1 - 24,56 o] .
e(ty) = : elty) + z(t) + u (3.42)
1.32 -2 -2.36 1l

The controller is designed using the procedure of the previous

1 0

chapter with Q = o 1

s R=L=0.01 and is given by

u=-R"I( .5, .50 . (3.43)
.The control signal is then applied to the system (3.36). The'oﬁtputs

of the plant and model are shown in Figure (3.3). Noise corrupted ob-
servation z(t) and its estimate ;(t) are shown in Figure 3.4, The con-
trol sigpa; is plotted in Figure 3.5. Thus a réduced order estimator can

be designed to implement the controller for a class of model reference

system. -

e
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3.5 CONCLUSION

In this chapter, the problem of generatihg the optimal control as
the output of a dynamic compensator is treated for system with para-
meter uncertainty. The input to the dynamic compensator is the
available output of the system, whereas its output is the required
control signal. The minimax technique of the previous chapter has
been extended to the case where the state variables are not in phase
variable form and also the necessary state variables are not avail-
able.

Finally an ad hoc scheme for estimating the necessary states of
the system with process uncertainty has been developed using a re-
duced order deterministic model. Very little a priori knowledge of
the parameters is assumed., If fhe signal related to the uncertainty
and the measurement noise are uncorrelated, the resulting estimator
is linear and is optimal in the sense that it minimizes a quadratic
criterion involving estimation error and a signal related to uncer-
tainty. The minimax technique presented in Chapter 2 and 3 has
some limitations. First, it is difficult to extend this basic con-
cept directly to general multivariable system. The difficulty is
due to the fact that a suitable canonical form for multivariable
case is not available. Second, the uncertainty signal~é5t) is re-
lated to the system parameters in a complicated way. Thus an ulti-
mate bound on parameter variation to insure system stability is

difficult to ascertain. The problem of controlling multivariable

system with parameter uncertainty will be reformulated and will be

treated in the next chapter.
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IV MINIMAX OUTPUT FEEDBACK CONTROLLER

4.1  INTRODUCTION

The design of a controller for a linear multivariable system
having parameter uncertéinty is explored in this chapter. Linear
output feedback is employed with the feedback gains determined by
minimizing one of several criteria. The problem is treated initially
by minimizing with respect to the feedback gain matrix and maximizing
with respect to uncertainty, a quadratic performance index involving
the system state, the control and the "uncertainty signal“[gj.

The optimal gain matrix satisfies a set of simultaneous nonlinear
algebraic equaticns. The design procedure often leads to a pessi-
mistic result, either because the uncertainty does not act as per-
versely as assumed, or because the control often ﬁakes an effort to
reduce the cost where it is high, even with perfect knowledge of
parameter. To meet this objection, other criterion and in parti-

[11] are also examined. The

cular, a minimax sensitivity criterion
optimal feedback gain matrix for the so-called '"regret criterion"
is shown to satisfy a set of nonlinear equations similar to those
obtained for the standard criterion. It is demonstrated that various

minimax design criteria yield better system performance under wide

range of parameter variation that a purely nominal design.
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4.2  SYSTEM DESCRIPTION AND PROBLEM FORMULATION

th

Consider an n order linear system with state vector x(t)t»:R.rn

and output vector y(t)eR., defined by

1
X=AXx+BUG+ (A-A))x + (B-Bu (4.1)
y =Cx . (4.2)
with a controller
u = -Fy = -FCx . (4.3)
where AO,Bo are nominal matrices. Using (4.3), (4.1) can be
represented as
:g,= (Ay-B,FC)x + [(A-Ao)-(B-Bo)FC]§
= (Ay-ByFC)x + (W-Wo)x = (A;-ByFC)x +DE  (4.4)
where £ represents the effect of uncertainty.
Since the uncertainty is assumed to be limited, £ will likewise be

constrained. In order to place any restriction on the form of (W-WO)

let W-W, = DGC,. D, C, are fixed and G contains variable terms. An

1
example is
[ 0 0 0
B = BO’ A-Ao = . : :
0 0 0
(ao-&o) X N Y (an-l-an-]_)

¢, =I1,6=1[8, u,8-a ...8 3, b= [0,0,...1]7T

1 1™% n-1"%n-1

Thus the uncertainty vector is specified as

g = Gcii (4.5)

where G is the gain matrix associated with the uncertainty vector

and Cl has rank n or less. Both C, Cl.are assumed to have maximum



rank, i.e., rank equal to number of rows.

Substitution of (4.5) in (4.4) gives

| % = (A -B,FC + DGC,)x. (4.6)
In order to achieve a design through optimization, the feedback
matrices F and G will initially be chosen to minimize and maximize,
respectively, the performance criterion:

l L.
J(F,G) = = [x7Qx + w'Ru - £'LE] dt

2 u=FCx, £=6Cx

0 |
=J5(u,£)
u=FCx, £=GC;x
= -;- [ x1'Q + CTFTRFC - C{GTLGc,_] x dt; (4.7)

0

(i) Find F and G such that

min max J(F,8) = max min J(F,G) . (4.8a)
F G G F

We shall also consider the following minimax procedures to obtain
optimal gain matrix F:

(ii)  min Jo(u,E*)

u=FCx -
where g% is obtained from max [min J_(u*, 0) - = I E?Qg dt]
- g yk 07 2
2 B 0
and u* minimizes J, assuming G=0. (4.8b)
(iii) min max [J(F,G) - Ji(G)] _ ' " (4.8¢)

F G

where Ji(G) = min [J(F,G)] given G.
F

58
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(iv) min max [J(F,G) - J*(G)] ~ (u.8d)
F G 2

where J%(G) = min [Jy(u £)] :
u E=GCix

Criterion (ii) is less pessimistic in the sense that E is given the
first play and,in making its play; assumes that u(x) is obtained by
an optimal full state design (with £=0) -for the nominal plant.
Matrix F is then chosen to minimize the criterion based on the an-
nounced strategy of.g: |

In criterion (iii), (iv) the best control with perfect parameter
information, i.e., E_known, is obtained with output feedback and
full state feedback respectively. Matrices F, G then minimize and
maximize respectively the difference between the actual cost and cost

with perfect parameter information.
4.3 MINIMAX PERFORMANCE CONTROL WITH DIRECT CONFLICT OF INTEREST

In this case, the saddle point is defined by the following inequal-

ity
J(F*,G) < J(F*,G*) < J(F,G*) . (4.9)

It is clear from (4.6) and (4.8) that J is determined by the initial
state, Eﬁto) as well as matrices F and G. That is,
J = J(F,6,x (ty)). ' (4.10)
In ordgr to make the optimum F and G independent of §(t0), §ﬂto) can
be treated as a random vector in which case J may be replaced by
J(F,6) = ELI(E,G,x(ty)]. )
E (+) denotes expectation with respect to Egto). The necessary

~

condition that F and G should minimize and maximize J(F,G), respec-

tively, requires
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aJ ; 9 )

3F = 37 ELI(F,6,X(tg)] = E[2E (F,6,x(t )] = 0 (4.12a)
3J ) _ e =

36 35 EL(R.Gx(to)] = ElglFsCs (g NI =0 ooy

The interchange of order of expectation (i.e., integration) and

differentiation is critical here and is valid under rather general

(10].

conditions
The partial derivatives of (4.12Will be evaluated by the appli-
cation of following Lemma:
Lemma 4.1
If
| te
J=3(x(tg))= W(x(t ) + I L(x,t) dt ,

o

where
| é_= f(x,t) and W(§ﬁto)) is the penalty on the initial
states x(t;), then

W _ (x(t;))

oJ
— = A (% ) + — ’
axi(to) i 70 8 .
where
- oH - 3 [L =
L:..al(.---—ai +X_']}\(t 0 .

This Lemma follows from the variati§nal calculus where the first
variation of J with respect to iﬂto) is [A(ty) + aW/aﬁjTaiﬁto)glsj
In order to apply the lemma, the elements of F and G are treated as
additional "states'" which satisfy

=0,6=0. ' (4.13)
Vector multiplier A will be used for the regular state constraint

—X

and matrix multipliers Ap(t) and Ag(t) will be used for matrices
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F and G respectively. It is to be noted that the Hamiltonian H will
be independent of AF(t) and AG(t) due to (4.13). Thus the Hamiltonian

H for (4.6), (4.7) is

T el
l

(™

A [(A -BFC, + DGC xl + Ex [Q + cTrIRFC -

= o]
L]

LGC1]§

: 4,1y)
T T.T T.T T (
Tr[(AO-BOPCO + nGcl)g_gx * 3 (Q + C'F'RFC - ch LGCl)xx ].

Tr denotes the trace and

. aH '
A= - gx = - (Ag-BoFC pac;)TA, - (Q + cTFTRPC-cT6TIac)x, A, (tp)=04
(4.15)
. T.T
rp(e) = 38 = - c + BT xTCT, A(te) = 0 ; (4.16)
A = - M lee, el - T, TaT _

According to the lemma, the necessary condition (4.12), and integrated

forms of (4.16) and (4.17), we obtain

ot
- prady - _ £ TT T T.T
0 = B3] = EIA(t)] = E I [RFCxx'C - B'A x C ] dt (4.18)
to
0= ey = sa el =k | ruee el - oA x%cTT at (4:19)
T ¥eer T tetto’l T 12X ¢ Axc . ;
%

Thus if R and L are constants, (4.18) and (4.19) yield

F=grt f £ g7 E[_xﬁ_JC at [ [ cElxxlcT atl Tty (u.20)
%o %
-1 te T4 T -1
G = J D E[A X% J c at [ C, Elxx ]Cl dt ] . (&.21)
t, t

0
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(4.20) and (4.21) can now be simplified. If Ay = K(t)x is assumed,

then(4.6) and (4.15) give

K= ALK + KAy + Q + cTeTRrC - CIGTLGCI, K(t.) = 0 (4.22)
te o1 T.T TAT
or K(t) = I ¢,(t,t) [Q + CFRFC - c e L6C;] ¢, (1,t) dr
t O (4.23)

A
where ¢, is the transition matrix corresponding to A, = (AO-BOFC'+
DGC;). Limiting attention to the time invariant case (Q,AO,BO,C,D,

constant) with te ==, t,=0sequations (4.20) - (4.23) yield

0
-1 T - :
F =R BgKMC [emcty -1 (4.24)
1T, T T -1
G=L"D KMcl [clncl] (4.25)
where T
o A {1-t) A, (1-t)
-3 *
K = e (q+c FTRFC - cTeTLGe. ) e ar
1 1 1
t
. T
© A 0O Ao
. [ e ¥ (q+ c'rTreC - CiGTLGCl) e ¥ do (4.26a)
0
or
K(A -B FC + DGC.) + (A.-B.FC + DGC.) K + Q + CTFIRFC -
o o - TR 020 1 -
T.T )
c,6Lec, =0 (4.26b)
and
® T
At ATt
A © % &
M= J 5[55?3 at = [ e E[gﬂto)g?(to)] e = dt,
0 0 (4.27a)
or

' T T _
(Ag~B,FC + DGCy) M + M(A-BGFC + DGC)" + E[x(tg)x (¢ )] = 0.

(4.27b)
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[CMCT]‘l and [ClMcil-l-exist because C,Cl have maximum rank and M is

positive definite.

If ELx(t )] £ %), ELx(r)-x)) (a(t )-x0)"1 = %, (4.28)
then
ECx(ty)x (£,)] = Xg + x.x0 ' (4.29)

is positive definite for XO#O. Thus M is a positive definite solu-
tion of (4.27b) if X,#0, M is positive semi-definite if Xy=0.

The optimal cost can be seen to satisfy’

_1 T - _1 T _
J=zE[x (to) Kgc_(to)] = :‘;TI_' [KE(E_(to))—‘- (to))] =

N

= -;'-Tr [K(X0+x0'xTc)] = -12-TR [K] when E [i(to)_X_T(to)]=I.

Remark 4.1

~

It can be easily seen that min max E(F,G) = max min J(F,G)
F G . G F
4.4 COMPUTATION OF F# AND G#

The feedback gain matrices F and G are specified by (4.24) and
(4.25), where K and M are given by (4.26b) and (4.27b) respectively.
These equations must be solved numerically and the following algor-
ithm similar to that presented in [34] can be conveniently used for

this purpose.

Fn+1’ Gn+l and Mn+l are computed by simultaneous solution qf the

following equations:

-1,T T T,-1 M
= .30
le R BOKn+lC (cumlc ) (4.30)
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o -1T T T.-1
Gpey = LD KygaMy o€ (CoM0C)) (4.31)

(Ag=BoFp41C + DGpyyCy) My + My 3 (A-BF 4C +

DG YW +I=o0 (4.32)

n+1cl

where K ., is given by the following equation:
T
(Ao-BanC + DGnCl) Kn+l + Kn+l (AO-BOFDC+DGnCl)
T:T T.T e
+Q + C'F RFC - C,G LG Cy = 0. (4.33)

Observe that (4.33) is approximate, while (4.30) - (4.32) are exact.
The iteration starts with an initial guess of Fy and G0 such that
| T.T T.T

FOPROC - C.G.LG.C) is

(AO-BOFOC + DGOCl) is stable and also (Q + C 150560

positive definite. Then Kl is the positive definite solution of
(4.33). With this value of Kl, (4.30) - (4.32) can be solved simul-
taneously to get Fy» Gl’ Ml which, in turn, give new estimate, Ky,
and the iteration proceeds. Alternately (4.24) - (4.27) can-be
solved simultaneously.
Lemma 4.2,
-1.T -1.T _ . .

If (BOR B0 - DL D) >0and C= C,> the above algorithm will
converge in the sense that Tr[Kn—Kn+l] > 0 for all n.
Proof:

The proof closely follows [34].

Mn can be expressed as

. _ «© T é
M= ¢*n_¢*n at = v ¢ (4.34)

0
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If C = Cl, then

.

LT p=-1,T T Ty-1 A
Bo DL™-D") KMC (cunc ) ¢ (4.35)

(ByF,-DG,) C= (ByR
and
)-l

TeeTor T - Teoy oT -1,T_p -1 T
C(F RF_G 16 )C = ¢ (eM ¢ em x (B R™'BT-DL710T) K p,

cT(cnncT)’lc : O (4.38)
Substitution of (4.35) and (4.36) into (4.32) and (4.33) yield
eqqations identical to those of [34] for whiéh Tr[Kh-Kn+l] >0 is
proven except that'BoR°lBg-

holds. Proof of convergence under less restrictive assumptions is

-1
DL pT replaces BOR'lBg., Thus Lemma 4.1

the subject of further investigation.

4,5 MINIMAX PERFORMANCE CONTROL WITH INDIRECT CONFLICT OF INTEREST
In the previous formulation, the feedback matrix F has been chosen
in a most favorable way after the uncertainty vector was allowed to
take its "worst'" value. This will lead to a very conservative design
approach. On the!other hand, it may be assumed that nature is not
perverse enough to alter its strategy with that of the control.
Under this situation of indirect conflict of interest, the previous
formulation may be modified as follows.
The game is, as usual, defined by

X = A X + Bgu + DE . (4.37)

oX
To start with, let us assume £=0. The optimal control 23 is obtained
by minimizing @

[ (x'Qx + u'Ru) dt (4.38)
0

J =

N | =

subject to (4.37).
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Thus the resulting cqntrél is given by

-1, T,
u¥ = - R"BP,x 4,

where Po is given by

T } “15Tp
AOPO + POAO + Q POBOR BOPO =0 (4.40)
Substitution of (4.39) in (4.37) yields
x = (A -B RIBTP )x + Df . (4.41)
- 0 0 0 0= =

To limit the uncertainty at this stage, the performance criterion

(4.38) is modified as

g=1 J [x'(Q+P B RBIP )x - £TLED at (4.42 )
0

The 'worst' value of £ is obtained by maximizing (4.42) with respect

to £, subject to (4.41), and is given by

g = 1o'x L (n.s3)

where Pl is the solution of

-1, T, T -1.Tp - -1,T
(AO-BOR lBOPO) Pl + Pl(Ao BOR BOPO) +Q + POBOR BOPO

-1 T,
-P,DLTD'P, = 0 (4.44)

Using the estimate of § as in (4.43), the original system is reduced

to
x=(A +DL1DP )x + Bu (4.45)
C = 0 1°— 0—
with the controller
u = «Fy = -FCx . (4.46)

-]

Now F can be chosen to minimize E[J] = %-E [ 5?[Q+CTFTRFC]§_dt

0
subject to (4.45). The optimal F is given by
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F = -R‘lB'CI;PMCT(CMCT)‘1 »(4.47)
where P and M are given by
(A, + L7pP, - BFO)T P + P (Ay + DL710P,-B FC)
+ Q.+ CTFTRFC=0 (4.48)

-1.Tp _ -1 Ty _ T, o
(A +DLTD'P ~B FC)M + M(A; + DL™"D'Py - BJFC) +I=0 (4.49)

Remark 4.2
(a) To be more general, ug in (4.31) and g* in (4.43) may be
constrained to the form
uj POQ5 . 50 Gocli

(b) It should be noted that this formulation assumes the- exis-

-1.T

tence of matrices P Pl and F that stabilize (AO+DL D Pl-BoFC)

o,
and (Ay-B,R™B,TP -DL~10TP)). Under this condition, (4.47) - (14.49)
can be solved using basically the same algorithm as described in
section 4.4,

4.6 MINIMAX SENSITIVITY (OR LOSS) CONTROL

If G as defined in (4.5) were known, the ideal optimal control

would be obtained by minimizing

1
J=3 [ {;_g.T(_Q—CIGTLGCl)gi + P_TRE} dt (4.50)
0

with respect to Fl subject to

x = (A + DGC,)x + Bu . (4.51)

where

1}

u 'qui

The resulting optimal F#* is given by

T:’::’:

K % - ’ .
F = rR™1a7kcT (cue™) 1 . (4.52)



% % '
where K and M satisfy

vt e & a  pac B rPO)TE + b *
1(F156,K) = (Ag + l-Borlc) K+ K(a, + DGCl-BOPlC)
T %T__ % TAT -
+Q+ C Pl RFlC ClG LGCl =0 (4.53)
x A & &
2 A % X % T .
N2(F1,G,M) = (Ay + DGC,; -BOFIC)M + M(a, +DGC1—BOPlC) +I=0
(u.54)
The ideal optimal control using output feedback is then
% %
u = "FlCX (Q.SS)
%
where x satisfies
x=(A+ DGC, - BFIC)E' (4.56)

%
and the resulting cost J_(G) = min J is given by
1 F
1
[ -]
* *
J X+ CTF:TRPlC - C{GTLGCljg_dt . (4.57)

N

%
: Jl(G) =
0
This is the best that can be achieved with constrained feedback
(4.55) and perfect parameter information (G) .
Note that |
E[x(to)x (t0)] = ELx(to)xT(to)] = I (4.58)
has been assumed in (4.54) .
Now the following performance sensitivity or "regret loss" criterion
is considered:
S(F,6) = £LJ(F,6),d7(6)] . (4.59)
Definition 4.1 |

S(F,G) as defined in (4.59) is a performance sensitivity function

if [11,5%,56]

68
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1) f£(°) is coﬁtinuous jointly in its two arguments
2)  £0 > J(F,6) > J3(6)
3) f=0 + J(F,6) = Ji(G)
In this thesis, attention has been confined to the following
sensitivity function
S(F,G) = J(F,G) -Ji(G) ' (u..so)
The immediate problem is to minimize and maximize é with respect
to F and G respectively, subject to (4.6), (4.56), (4.53) and (4.54).
(4.60) modified to include the equality constraints (4.53) and (4.54)

1s

_ & % s =
S=Tr [Nl(Fl,G,K)Pl + N2(F1,G,M)P2] +

TLec, 3 x dt

MM*

o0
j x'[q + cTr'rec-c "6
0

1 AT 2 % *
- JE J x [+ cTF¥TreC - CIGTLGClJEc_ at
1 (4.61)

0

where Pl and P2 are matrix Lagrange multipliers.
Thus the problem reduces to minimizing and maximizing (4.61) with

respect to F and G respectively, subject to (4.6), (4.56) and

. %
P=0,G=0,Fl=0 (4.62)

The Hamiltonian H for this case is given by

H=2%m [(Q+ CFTRFC - C T

2

T

T
1 F_°RF C -

T T, _ 1
G LGCl)§_§_] 5 Tr [(Q+C 1 Ry

T.T **T‘ T
C'G'LGC,)x x'] + Tr [(A.-BFC + DGC.)x A ] +
1’'= = 00 1'= =

Tr [(A -B F*

07
0-BoF1C * DGC, )x 5;,2_] (4.63)
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with the 'costate' equations

S

. _ - aH _ T T T T -« T
A s 7% (Q + C'F'RFC - C.G LeC,)x - (Ay-BFC + DGC,)"A,,
Ax(w) =0 . ' (4.64)
# _ 3H _ T AT % T.T ol # 3T
AKX = -3 = (Q+CTF) RF C C1G LGC, )x - (A0+ DGC, -BF C) Az »
X
A (=) = o (4.65)
%
: 3t T.T , T, _T.T (=)_
A ap = - RFC xx g t B xcC, A, "=0 (4.66)
T O T.T ## T T TT T *T
e =" 3" LGCIEE_C - LGC1§§91 -D A x.Cl -~ D Axx Cl’
A=) =0 (4.67)
. 3 % T *T T 3
Ay = - H . RF_Cxx CT + BT)\ x C A, (=) =0 (4.68)
F a* l o —';'—— H
1 Fy R

Now according to Lemma 4.1 and the necessary conditions (4.12), it

can be easily seen after integrating (4.66) - (4.68) from 0 to = that

®
N 3 T.T _ T, _T.T
0 = E[AL(0)] = E I [RFCxx €T - B A xTcT] at (4.69)
0
9 x = k% P}

T* T..T T\AT T T T
DK (Pl+Pl)Cl - LGC, (P, +P))C” + D (P, + P,)HC,

TT r %
- LG E(C_xx C) dt + LGC E(XXT) dt CT
1— 1 1 —
0 OJ
T ® T.T T [~ ST T
=D . A X Cl, dt + D A.x C (4.70)
%= . ="
0 J




9 ® % %
0 = E(A 0 Tr {N G,K) P
[ & (0) + —3?;— { l(Fl, s ) 1 + N2 (Fl’G,’M)PQ}]

Fl Fl

T* T.. T * T. T T . T* T
= -BK(P + P )C + RF.C(P. + P;)C -B (P C
0 ( 1 l) 1 ( 1 .1) 0 ( 9 + P2)M
% *® & T
- RE. J E(Cx x°C) at - B [ £

0 0

As usual, the following feedback solution is assumed:

(4.72)

Ty

A = Kx A, =
x - =%
This can be verified by (4.64) and (4.65) to be valid provided K

%
and K satisfy
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T = T.T T.T _

(AO BOFC+DGC1) K+K(Ao BOFC+DGC1)+(Q+C f RFC ClG LGCl) = Q’ (4.73)

* 2 2 o THr X T.T .
(AO-BOF1C+DGC1) K+K(AO—BOF1C+DGC1)-(Q+C FlRFlc—ClG LGCl)—O o (4.74)
Furthermore

[~} * -]
~ A = ~ K
M < [ Ebx1 at, ¥4 I Elx x'] at (4.75)
0 0
are given by
éA B_FC+DGC )&+M(A BFC+DGC )T +I=0 (4.76)
00 1 0 1 - > ’

4 # % . T

(AO-B0F1C+DGC1)M+M(A0-BOF1C+DGC1) +I=0 (4.77)

It can be easily seen from (4.53), (4.5%), (4.75) and (4.77) that

i‘ % % f
K = -K, M=M . ('4.78)

Using (4.77), (4.72), and (4.75), (4.71) reduces to
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T# T, T, % T _ T, r*r # %o riiq
0= -BK (P + + - -
0 ( 1 Pl)C RF.C (P1+P1)C BO(R2+P2)MC ercmc B KhicT
(4.79)
Using (4.52), (4.79) reduces to
. _oI% T AT, % T, T T T * 7
0= —BOK (P1+Pl)C +RF1C (P1+Pl)C - Bo (P2+P2)MC . (4.80)
Now two cases may arise.
T
Case 1. (Pl + Pl) £0
- '
Solving for Fi (4.80) yields
8 1 T T
F, = R By [(P, +P M + K(P +P )]c [c(p, +P ) [ol (4.81)
Comparing (4.81) with (4.52) yields
(P,+PT) = 3 and (P_+P2) = 0 (4.82)

Using (4.82), (4.72) and (4.75), (4.69) and (4.70) give basically

the same result as obtained via minimax performance control.
T
Case 2. (Pl + Pl) =0 (4.83)

Using (4.83), (4.80) gives

(P2 + Pz) =0 (4.84)

Substitution of (4.83), (4.84), (4.72) and (4.75) into (4.69) and

(4.70) gives

P =R lBT e’ (emeTyt (4.85)
R .
G = L pT (kMK M)C [c, (M~M)C 771 (4.86)

Thus it is clear that soltuion of F requires simultaneous solution

(4.85) - (4.86) together with (4.73) - (4.74) and (4.76) - (4.77).
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Remark 4.3

It can be easily verified that

(a) The optimal cost S = %-Tr (K + K), E[gﬂto)g?(to)] =

* T
E[x(to)x (to)] = I (4.87)

(b) min max S(F,G) = max min S(F,G) (4.88)
F G .G F

It can be seen from (4.55) that ﬁ is constrained. A rather
optimistic situation will be to allow 3 to have complete state
feedback. The problem here is to minimize and maximize with respect
to F and G respectively. The following sensitivity criterion

= J(F,6) - 3,(6) (4.89)

%
where J(F,G) is given by (4.7) and J,(G) is given by.
(-]

J,(G) = min %- I [xT(Q-CiGTLGCl)i_- u'Ru] dt (4.90)
u
0

This is a special case of the constrained feedback problem and the
required result is obtained by setting C=I in (4.55). Thus the

required feedback matrices F and G are given by

F = lBgiMc (cMe?)~1 (4.91)

%

1DT(RM + Rﬁ)c{ [Cl(M-ﬁ)CT]_l ' (4.92)

¢ 1

. #
where K, K , M, ﬁ are given by

= - T.T T.T )

(A,~B,FC+DGC, )TK + K(A -B(FCHDGC, )}+QsC F RFC-C\G'LGC, = O (4.93)
'0'0 * * * J. T'

(Ay+B R“1B0K+DGC )Tk + R(A0+BOR'1ng+DGc )- (Q+KB R-1B K-ch LGC ) =0

(u.94)
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A _m T -
- + - = .
(Ay-B,FC DGC_ )M + M(A -BFC+DGC,)" + I =0 , (4.95)
Lo %
(A +B R 187K + pec_)M + M(A +B R-1BTKkeGC )T + I = o © (4.96)
0 "0 0 1 00 0 1 *

X
4.7  COMPUTATION OF F, Fl s G

An algorithm similar to that mentioned earlier can be used to

solve for the feedback matrices. As before, at iteration n, positive

P

definite matrix K and negative definite matrix K/ are obtained from

the following linearized equations:

_ Ty y _ T.T _oTaT -0
(A-BF_C+DG_C) Kn+1+Kn+1(A BFDC+DGnC)+Q+C F,RF, C-C,G LG C =0- (4.97)

% %
% < . KX
TS % TH  pp ToT =
(A-BFy C+DG.C))K g + K\, (A-BE) C+DG,C,)-(Q+C Fy RFy C-C1G IG, C;)=0

(4.98)

& *
Pn Fiﬂ’ Gn’ Mn’ anare then obtained by simultaneous solution of the

following nonlinear equations:

2
% _ o-1,To ® T T\-1
F, = RTIBgKCH C (cﬁnc ) (4.99)

* ® %

T -~ o T* T &
, (A0+DGnC1'BoF1nC) K, + Kn(AofDGncl—BrinC)+Q+C Fin RPinc

T.T - '
-ch LGC, = 0, | (4.100)
o % % ( DG % T _
(A0+DGnCl-BOF CIM, + M (Ay+ ncl-Borlc) +I =0, (4.101)
1 Tf & T T\-1
Fh = R BoKnMné (CMnC ) (4.102)
1.T,2 L T £ . T.-1 '
T & _ -
Gn =L D (KnMn + KnMn)Cl fc, (M, Mn)Cl] (4.103)

The nonlinear equations (4.99) - (4.103) can be solved at each itera-
tion n, by standard conjugate gradient technique. The algorithm

starts as follows:
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a) Assume initial guesses Fos Fios G0 such that (AO-BOFOC+DG0C)

% T.T T.T
and (AO-BOF10C+DGOC) are stable and also (Q+C FORFOCfplGoLGOC)
and (Q+CT$T RF C—CTGTLG C) are os’f'v definit

10810 oo positive definite. .

b) Solve (4.97) and (4.96) and store the values Kn+l and Kns+1

: . *
¢) Using K 41 and K py » solve (4.99) - (4.103) by conjugate

%
gradient techn;que to obtain Fn+l » Fin+1 > Cn+1 » Mo+l o

%
and Mpy, . N
d) With these values, K, and Rn are updated and the iteration

continues till the specified stopping criterion is met.

4.8 SOME STABILITY BOUNDS IN TERMS OF PARAMETER VARIATION

The perturbed system (4.1) can be represented as

+Bou + (A-Ag)x + (B-Bj)u (4.104)

x = Agx

[(A;,-B,EC) + AA + ABFCIx (4.105)

where F is given by (4.24). The following analysis is also true for
F, given by (%.47), (4.85), and (4.31) .

Define the Liapunov function V(x) as

1
V(x) = 51_(_T1<§_ (4.106)
where K, a positive definite matrix, satisfies (4.26). The time

derivative V(x) of V(x), evaluated along the trajectory (4.105), is

_given by

. l :
T(x) = - 2x [-(A;-ByFC) K-K(A)~BGFC)-2KEA-2KABFCTx (4.107)
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" Using (4.26), (4.107) reduces to

. T, T - -
() = - 7% [(QrcTFTRFC-CIGTLGE, )-2KaA + 2K(D6C; K™Y + aBFCK™1)KIx
(4.108)

Let the norms of 5_and matrix A are defined as follows

lNxll & "*/?
A ' 1/2 T
[1al] =  sup ||ax||so that []a]] = 17" [A"A]
[xfl=1 = max

where A _ () is the maximum eigenvalue of a symmetric positive
definite matrix (°). Restricting terms in the bracket in (4.108)
to be at least p.s.d. to guarantee stability of perturbed system

(4.105), the bounds on AA and AB can be found as

laall <A (@ + c’rTrec-cleTiac)) (4.109)
2| |||
-1
a1 < 1Peey
ek (4.110)

T
It should be noted that (Q + CTF RFC-C{GTLGCl) is at least posi-

tive semidefinite under the condition mentioned in Lemma 4.2

4.9  EXAMPLE
Following example will be considered to illustrate various theo-
retical formulation discussed earlier.
Let the system be described by
oo 1 [0
X = X + u = Ax + b_u (4.111)
l a 1
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y=[01]x=cx : C o (8.112)

with controller

u=-fy = -¥fF[01])x (4.113)

'a' in (4.11) is the uncertain parameter. Let the nominal system

. correspond to the one with a = 0. Thus (4.111) can be written as

[ [

Agx + bou + d & : (4.114)

with £ constrained to be

&= g#2 = gy = gex , (4.115)
where g is the gain (i.e., an estimate of the uncertainty) to be
determined.

Consider the following performance criterion

o

J = min max [E 1/2 J [xTQx+RuZ-LE2Jat (4.116)
f g
0
with
1 0 T
Q= R =1, E[x(0)x(0)] =1
0 0

f optimal for the nominal system (i.e., with no parameter uncertainty)
is determined-to be 0.816. f and g for different values of L are
obtained through minimax procedures (i), (ii) and (iii) and using
algofithms of sections IV and VII. Simultaneous nonlinear algebraic
equations, e.g., equations (4.30) - (4.32) of minimax procedure (i)
.and (ii) have been solved at each iteration using a conjugate gradient
techniqué. The computed values of £ for different values of L are

tabulated for various minimax procedures.



78

Table 4.1
Minimax Performance Control Minimax Sensitivity Control
£ .

-1 Criterion (i) | Criterion (ii) Criterion (iii)
L
0.1 .878 .914 .824
0.2 947 .96 . 84l
0.3 1.03 1.1 1.08
0.5 1.265 1.277 1.354
0.7 1.69 1.71 1.815

To study the effect of uncertainty, J is computed for different

values of 'a' using f as tabulated above and

[--]
1
J = %Tr K=3E f [x'Qx + REx1dt (4.117)
0
where K is the solution of
(A-b, fc)TK+K(A—b0 fc)+Q+c £2c = 0 (4.118)

and are plotted as shown in Figures (4.1) - (4.2). 1In Figure (4.1),
cost J is plotted as a function éf the uncertain parameter ‘a‘,
using the feedback gain as determined in minimax performanée sensi-
tivity criterion (N), for difference values of L. For comparison,
we have also plotted the 'opfimal' cost as a function of parameter
'a' if it were known. In Figure 2, different design criterion are
compared és "a'" varies from nominal. It can be seen that the mini-
max procedure effects the design of f in such a way that the system

will operate acceptably over a wider range of parameters than a

purely nominal design.
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For any particular parameter set, however, the nominal design may
be superior. It is also evident from Figure (4.1) - (4.2) that the
penalty on the uncertainty should be relaxed to accommodate larger
parameter variation. For limited parameter variation, different de-
sign approaches nearly identical performance whereés the minimax per-
formance.sensitivity control offers better design when the parameter

variation is large.

4.10 CONCLUSION

The problem of éontrolling a system with parameter uncertainty
has been treated using only available output feedback. Since the
controller is designed with incomplete state feedback, the uncer-
tainty is likewise constrained. To achieve a design via optimiza-
tion, a quadratic cost function involving the system state, the con-
trol and the uncertainty vector, is defined and the optimal feed-
back matrices relating the control and the uncertainty‘are chosen to
minimize and maximize, respectively, the performance criterion. The
resulting controller is linear, the optimal feedback matrix being |
specified by a set of simultaneous nonlinear equations. The above
procedure usually leads to a conservative design. To meet this ob-
jection, a sensitivity or loss criterion is defined. Minimaximi-
zation of the sensitivity function with respect to feedback matrices
yieldé a linear controller. The optimal feedback matrices must
satisfy a set of nonlinear simultaneous algebraic equations. Some
algorithms to solve these algebraic minimax problems and their con-

vergence properties are discussed. An example has been treated to

illustrate the various formulations presented in this chapter.
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It is assumed throughout this chapter that the nominal system is
stabilized with output feedback. Even if the nominal system is sta-
bilizable with output feedback, various minimax design procedures
allow only certain parameters in system matrices to vary in order to
maintain stability of the perturbed system. To relax these limita-
tions, the required control can be generated as the response of a
linear dynamic system whose input is the available outputs. Various
gain matrices spécifying the dynamic compensator can be determined
.in the similar as reported in previous chapter. An important limita-
tion of the various aesign techniques presented in this chapter is
the fact that the measurements are assumed to be noise-free and also
the system is not subjected to any disturbances. In the‘next chap-
ter, the stochastic version of the output feedback problem will be

explained with and without an estimator.
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V  OPTIMAL INCOMPLETE STATE FEEDBACK CONTROLLERS

FOR STOCHASTIC SYSTEM

5.1- INTRODUCTION

The problem of optimal output feedback for system with parameter
uncertainty has been explored in the pfevious chapter where it was
assumed that the measurements are noise-free and the disturbances
in the system are negligible. This chapter will treat, among other
things, the determination of the optimél output feedback when the
system is excited by a white noise disturbance with and without
measurement noise. No parameter uncertainty is assumed. Next a
design procedure is developed for generating an optimal control as
the output of a dynamic compensator. The input to the dynamic com-
pensator is the available noisy output measurements of the system.
It is well known[55] that if the system is liﬁear, is excited by
white gaussian noise and the measurement noise is also gaussian, the
estimator ahd controller can be designed independently. This is due
to so-called separation theorem. The estimator is the well-known
Kalman filter whose dimension is equal to that of the system. The
present chapter deals with the problem of designing a combined esti-
mator and controller. The formulation used is more genefal than

designing Kalman filter since the dimension of the estimator or

dynamic compensator is arbitrary. Since the dimensionality of
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Kalman filter is often a practical limitation, this problem of de-
signing a reduced order estimator is not only challenging but.may
have substantial practical benefit. An important question to be
answered, in this context, is whether the control is composed of
both the estimator output and the noisy observations or only a linear
feedback of the output .of the estimator as in the design procedure
via separatién principle. The present design procedure involves

i) a precise formulation of mathematical optimization problem, ii)
determination of various gains specifying the dynamic compensator
and feedback controller. The various gains should be independent

of initial plant state so that compensator gains do not have to be
tuned up every time the disturbance changes the plant state. Because
of the above problem, a design procedure that is optimal only‘"on

the average" wili be presented.

The state and output equations are given by

Ax + Bu + Dw, (5.1)

y=Cx+v ) (5.2) .

— e

X

where the state x (an n-vector) is the signal process; the output
y (an m-vector) is the observation process; u (an r-vector) is the
control and the vectors git) and v(t) are zero mean white noise pro-

cesses of respective dimensions r and m. The covariances of these

processes are given by

E {E_:(Lt;)ﬁ'i(t2)} = Q8(t-t) (5.3a)
E {y(t)v (t)) = R&(t;-t,) (5.3b)
E {v(t)y1(t,)} = Ly6(t,-t,) (5.3¢)
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where Ql and Rl are positive definité matrices, and E(°) rep?esenté
the expected value of (°). The following constraints on the control
will be explored in this chapter:
Case 1: Optimal output feedback with no measurement noise

u = -Ny (5.4)
1= 0 ' (5.5)

‘Case 2: Optimal output feedback controller with dynamic compensator

-

u=Hz + Ny (5.6)
where z is the compensator state
z = Fz + Gy (5.7)
A schematic diagram is shown in Figure S,l' '
Case 3: Optimal output feedback with white measurement noise
u =Ny (5.8)
Case 4: Optimal output feedback with nonwhite measurement noise
The controller is given by (5.8) and the output equation is
described as i
y = Cx + Hz | (5.9)
where the non-white noise z is generated as fhe response of a linear
dynamic system to the white noise v
z=Fz +Gv . (5.10)

F, G, H, C are all specified but N is not.

5.2 OPTIMAL OUTPUT FEEDBACK WITH NO MEASUREMENT NOISE

5.2.1  STATEMENT AND FORMULATION OF THE PROBLEM

' The initial problem in this chapter is the control of the time-
invariant system (5.1) with outputs

y(t) = ca(t) : (5.11)
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and with a controller
u(t) = -Ny(t) = -Ncx(t) (5.12)

The closed-loop system is given by

x = [A-BNCIx + Dw, . (5.13)
The solution of (5.13) may be written
x(t) = ¢(t-to)x(to) + ft ¢(t-1)Dw; (1)dr (5.14)
to
where the state transition matrix ¢(t) satisfies
¢ = (A-BNC)¢ . (5.15)

The problem is to determine N by minimizing

te te
J = -;'-E [ fgc_TQi + g_TRp_]dt = —;’-B [ §_T[Q+CTNTRNC]§ dt
4 to . to
with respect to N and subject to (5.13). (5.16)
It is clear from (5.16) that J is determined by the initial state

x(to) as well as matrix N. In order to make the optimum N indepen-
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dent of §ﬂto), the expectation operation will be carried out over the

initial conditions also. The necessary condition that N should mini-

2]

mize (5.16), requires

LA T
aN T 2 N x [Q+C'N'RNCIx dt
to
ts
3
= %-E J Sﬁ'f?[Q+CTNTRNC]§_dt =0 (5.17)

to

The interchange of order of expectation (i.e., integration) and

differentiation is assumed to be valid[loj.



5.2.2  RESULT
The optimal feedback gain
N = R kT [epe’yd | (5.18)
where K and P are the solution of

(A-BNC)TK+K(A-BNC)+Q+CTNTRNC =0 (5.19)

P(A-BNC)T + (A-BNC)TP + DQlDT =0 (5.20)

5.2.3 DERIVATION OF THE RESULT
The partial derivative of (5.17) will be evaluated by the appli-
cation of Lemma 4.1 and by treating the elements of N as additional
"states" which satisfy
N=o0 (5.21)
Vector multiplier Ax will be used for the regular state constraint
(5.12) and matrix multiplier Ay will be used for constraint (5.21).

Thus the Hamiltonian for (5.16) and (5.13) is

H= 7 x [orcTNRNCIx + AT[(A-BNC)x + Du. ]
L= - X - -1
= Tr [ % (Q+CTNTRNC)x xT + {(A-BNC)x + Dw} _Ai] (5.22)

with the costate equations

. 3H T T. T e

A =- o =- (A-BNC)'A_ - (Q+C'N'RNC)x , A (tf) = 0; (5.23)

A o= - 2B _ _ puex xTcT + 8T xTC” At.) = 0. (5.28)
N N fuliiod — ’ £ * *

According to the Lemma 4.1, the necessary condition and integrated
forms of (5.24), it can be seen that

te

] |
0=E[ _g%] = | [RNcx x cT-BTA x'cT7] at (5.25)

A
—Sl—

to
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Thus (5.25) yields

N = R1 ] B E[A x 1T at [ I CE[5_§?JCTd?] . (5.26)
to to

Now assume a solution for &#, of the form

89

=Kx+n (5.27)

A
-x ——
Then (5.13), (5.23) and (5.27) give

T

y T T
-K = (A-BNC) K+K(A-BNC)+Q+C N RNC, K(tf) =0 ; (5.28)
L] T
n = -(A-BNC) n+KDw n(t.) =0 . (5.29)
1 ’ f
The solution of (5.29) is given by
t
n(t) = - ¢(t-T)KDw, (1)dr | ' (5.30)

to

In order to complete (5.22) we now obtain the required averages.

First, it can be easily seen from (5.14) and (5.3) that

P 2 E[g_z?] = ¢(t-to)P(to)¢T(t-to) + ¢(t-T)DQlDT¢T(t-T)dT .
te (5.31)
where E[§ﬁto)§?(to)] = P(to) . (5.32)

Solving (5.31) is equivalent to solving the differential equation

. T
P = (A-BNC)P+P(A-BNC)T+DQ1D (5.33)
which may be verified by differentiation of P with respect to t.

Next,



KE[x x'1 + ECnx ]

jaz]
™
>

»
d

n

t .
KP + E [{ J ¢:t-T)Kle(T)dT}

tg

t ’
{5?(to)¢T(t—to) + I wl(rl)ﬂT¢T(t-r)drl}]

to
since the above integrals do not overlap.
Thus (5.26) reduces to
t
f t
N=RrRT [ BTKkpcTdt [ [ fepclary 2 (5.35)

As tg + =, t, = 0, K and P are the steady state solutions of (5.28)
and (5.33), respectively. Consequently (5.35) is indeterminate.

Applying L’ Hospital Rule as te > >, (5.35) reduces to

' -1 T T _T.-1
N = R "B KPC [CPC"] (5.36)
where K and P are the steady state solutions of (5.28) and (5.33)

respectively.

5.2.4 COMMENTS
It should be noted that if C = I,
N=RBK. (5.37)
(5.37) implies that the optimal feedback for the deterministic case

(no plant disturbance) is the same as for stochastic case (without

90

measurement noise) if all the states are available for feedback. This

is not true with incomplete feedback. (5.18) - (5.20) can be solved
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basically with the same algorithm as suggested in Chapter 4.

5.3 OPTIMAL DYNAMIC CéMPENSATOR
5.3.1  STATEMENT AND FORMULATfON OF THf PROBLEM
Consider now a control law
u=Hz + Ny = Hz + NCx + Nv (5.38) .
where z is the state of a time-invariant dynamic compensator of fixed

order (sl),

z=Fz + 0y = Fz + GCx + Gv . (5.39)
The problem is to determine the time-invariant ‘matrices F(slxsl),

G(syxm), H(rxsl) and N(rxm) by minimizing the quadratic criterion

J =

wur

(e

{x Qx + u'Ru }dt (5.40)

to

" where Q is positive semidefinite and R is positive definite. Note
that this formulation is general enough to include the Kalman filfer.
In order to avoid the dependence of various gain matrices to be deter-
mined on the initial state (both the plant and the compensator), the
expectation operation in (5.40) will also be carried out over the

initial states by treating x(o) and z(o) to be random variable with

1]
>

E {x(0)x (o)} = X, (5.41)

"
N

E {z(0)z (0)} = Z, O (5.42)
Using (5.28), (5.1) and (5.39) can be written as

[a+BNc  BH] | x BN D] |[v
(5.43)

GC F




and (5.40) becomes

1 A
J=7E [x ,z ]

to

T T N'RNC N'RH
+ v, w]l
1 1o 0
NTRN v
TT y
+ [v wl]
0 W
—1
Defining

[ -4 - L
- A O . B 0

A= , B =
10 0 10 I
N B -~ J1r o

P. = s, I =
1 g F 0 o
. R o] . [qo o

R = , Q:
0 0] 0 0l
(5.43) and (5.44) reduce to

[ ]
W

Ca
]

to

to

Thus the problem is to minimize of (5.47) with respect to Pl

1
; E rf v(t)dt

(A+BP C)X + (D+BP;I)s

1

1 3 . AT
SE ’ (' [Qs3 P RP.
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Q+c"NTRNC CTNTRH} [5_ ]
| HTRNC HTRH z
Ty o] [v
T,T A&
txz1| o
HRN 0 Lw,

(5.44)
.~ fc o] . Joop
C = s D=
10 I 0 0
] .
y X
_s_: ’ i:
z
w, z
(5.45)
(5.46)
T.T T“ ~ A TA -~ TA TA -
Clwtw C PlRPlI§_+ §_IP1RP1C§i§ IPlRPlI§}dt
(5.47)
subject

to (5.45). The necessary condition that'Pl should minimize J requires



a3
spdt =0 (5.48)

5.3.2 RESULTS

The optimal gain matrix P. is the solution of

_ 1
T “‘\. - A T ~ -~
RP [CPC + —-(D+BP1 R 1+ %- (D+BPlI) TeTy + 8Tkpe? = o

(5.49)

with N=o0 _ g (5.50)
where K and P are the solutions of

(A+BP c) Ty (A+BP c)+ Q+C P{RPlc 0 (5.51)

(A+BP C)P+P(A+BP 10 +(D+BPI)§1(D+BPI) (5.52)

respectively.

5.3.3 DERIVATION OF THE RESULTS

Once again the elements of the matrix Pl will be treated as addi-

tional "states" which satisfy

Pl =0, E ‘ (5.53)

Vector multiplier ) will be used for state constraint (5.46) and

matrix multiplier AP for (5.53). Thus the Hamiltonian H for (5,46)
‘ 71

and (5.47) is now

¢

58TpT20 oy + & JoTpTap
[Qe+c P RP.C¥ + P c PlRPllg ]

1%,

~ 1l
H = 3

1 T _ T~ -~ 1 T~rs =
-—— . w —
+78 IPRPICW + 38 IPRPIs

+ AT [(A+BP.C)w + (D+BP,1)s] , (5.54)
L3 12 118
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-~

- a A -~ T
RP Is - (A+BPlC) A",

with
* _ 3H _ a aT Pa’ =~ “T.T
A, = - 55" - (QCPRP N - CPIRP Is
-k-w(tf) =0 (5.55)
. oH ST 2o NP S
1 1
- RP,%s sTI - BTA w'CT - B'A s'1
1= T —w—

Apl(tf) =0 (5.56)

According to the Lemma 4.1 and the necessary condition (5.48),

or

‘- éince E[g(t)gT(t)] is

B[BJ/3P1] = E[APi(to)] =0

t : rt
A A £ T AT A A £ T 7
0= RPlC E[ww Jdt C + RPlI E[S w Jdt C
: - ) :
L to to
-~ ~ t -~ -~ "~ rt ~
+ RP,C J f}:[g _s_T]dt I+RPI fB[g(t)_S_T(t)]dtI
)
to to
(5.57)

. -
+ BT th E[_)_\w(!TcTik_s_,_ I] dt .

to
infinite for white noise, (5.57) can only be

' |
true if
“ A RN O
RPlI = (5.58)
0 0
(5.58) implies that unless R = 0 then
' I
N=0 (5.59)
The result (5.59) is rather interesting. It implies that the obser-

vation contaminated with white noise must be filtered irrespective of
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the dimension of the dynamic compensator. (5.59) is, of course, true

for the Kalman filter where its dimension is the same as that of the
plant. '
(5.57) is the basic result which can now be simplified. For this
purpose, a solution for &w of the form
i

A = Kw+n (5.60)

= z+h
is assumed.

Substituting (5.60) into (5.55) yields

-K (A+BP C) K+K(A+BP C)+(Q+C P:RP C), K(tf) =

(5.61)

-(A+BP &)'n - [K(D+BP 1)+6TPT§P I]s, n(t.)=0. (5.62)

! L
|

Proceeding as previously to evaluate the averages in (5.57), define
, .

The solutions of (5.61) and (5.62) are given by

t ‘
w = ¢(t-to)w(to) + J ¢(t-1)(D+BP, I)s(1)dr, (5.64)
t to
n = - [ p(t- t)[K(D+BP I)+CTPTRP I]s(r)dr (5.65)

o
where ¢(t) and ¢(t) are the state transition matrix satisfying

(t) = (3+§P16)¢(t) . (5.66)
bee) = -(R+ﬁplé)w(t) . | | C (5.87)

Using (5.64) and assuming w(to) is independent of s(t) for all time t,
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P is given by

; t
P = $(t-to)P(to)  (t-to) + J ¢T(t—r)(5+§Pli)ﬁl(ﬁ+§Pli)T¢?(t-r)dr

where B[gﬂto)w?(to)] = P(to) | (5.69)
- T R4
and R,8(t)-t,) = E[s(t;)s (t,)] = T 6(ty-t,) . (5.70)
, : , L
(5.68) can be seen to satisfy
P + (A+BP,C)P+P(A+ER,C) +(D+BPIIR, (D+BRD)T . f (5.71)
Similarly
. T T
Els w'] = [E{s(t)w (to)} ¢ (t-tolt
P -
!‘ + {A B{gﬂt)sT(tl)}(D+BPlI)TQT(t~Tl)d1i]
to
t _ Ca e
= J Rlé(t—rl)(D+BPlI) ¢T(t-tl)dt1
to
| T §
‘ = 1 (DBP D), (5.72)
| e m
ELu(t)s’ (6)] = (B+iP,) 22 , (5.73)

l

t
f A a Amoma A
E[gﬂt)g?(t)] = { J W(t-tf)[K(D+BPlI)+CTP§RPlI]s(t)dr}
t t
{w(to)¢T (t-to) + l sT(r)(ﬁ+§Pli)T¢T(t-r)df}-o,

[o]
(5.74)
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since the integrals do not overlap.

o |
EAM ()] = KE[w(t)w ()] + ECn(t)w’ ()]
. O (5.78)
E[A s] = KE[ws! T
As = KE[ws']+Elns’]
. t
= S (b+BPDIR, - E | w(t-t{k(D+BP,1)+cTeTRE. T}s(1)sT(t)d
= 3 | 1 '] T ) 1 1RFy s{1)s T
| 3
= o L AT Ty 2
= - > CPRP IR, - (5.76)

with tg >, ta = 0, K and P are steady state solution of (5.61) and
(5.71) respectively. Under this condition and using (5.59) and (5.72)

- (5.76), (5.57) reduces to

A aap € haasa Too aa A Tall  oT LT
RP, [CPC" + 7 (D+BP,I)R;I + > Rl(D+BP;I) ¢’ +BKPC =0 (5.77)
|
Partitioning K and P as
K K P P
_ 11 12
k=11t 12 }, P= [ T ] R (5.78)
STRRSY! P12 Py

(5.77) reduces to equations involving the original variables:

T .T 1 T TyaT _

RH(Pj, C' + ZCRy) + BT (Kjy Ppy + K, Ppy)C =0 (5.79)
TP+ K. P eT=0 (5.80)
12 11 22 *12 - - .
RHP. + BY(K,. P.. + Ko P._) = 0 | ’ (5.81)
22 11 " 12 12 " 22 . °
x.Tp 4 (5.82)

12 P12 * Ko P, = 0

Using (5.59) and (5.78), (5.61) and (5.71) reduce to
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ATk, + CTeTK.T + KA+ K.GC+ Q=0 .

11 12 ¥ *11 12 Q= (5.83)

T.T T T T -

H'B'Kyy + F Ky + Kyph + K GC = 0 | (5.84)

HTBTK , + F'Kyp + K. TBH + K__F + H'RH = 0 (5.85)

12 2 12 22 *

T T

APy, + BHP)5 + Py,A' + Py HIB' + DQ,DT = 0 (5.86)
T TAT ToT

chll + FPy; + P12A + Pp,H'B =0 (5.87)

: T.T.T T T _
GCPy, + FPy, + P1pC'G" + P )F" + GRyG" = 0 (5.88)

In general, evaluation of F, G, H requires simultaneous solution of

(5.79) - (5.88).

5.3.4 RECURSIVE ALGORITHMS FOR COMPUTING FEEDBACK GAINS
Various gains of the dynamic compensator can be comﬁuted using

basically the same algorithm as reported in previous chapters.

P2+1 and Pn+l are computed using

-~

PS ‘A.+. Ladied . T A -~ ™ A A Ta ~ ~
RP2+1[CPn T, g-(D+Bp§*1I)R11 + Rl(D+BP§+11)TcT] +BTgPtpntIaT

N>

(5.89)

An A a a A “T ~n A ’;~AA S
(A+Bp§*lc)9“+l~+ PP L(A+BPTHIE) + (D+BPn+1I)Rl(D+BPn+lI), (5.90)

where Kn+1 is the solution of

. e a ma A A qa A AT nTa na _ |
Kn+1(A+BPlC) + (A+BP1C)Kn+1 + Q+C Pl RPlC =0 (5.91)

The iteration starts with an initial guess Pl° such that the augmented
system, i.e., (A+§P26) is stable. Kl is the positive definite solu-

tion of (5.91). With this value of Kl, (5.89) and (5.90) are solved
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5.4  OPTIMAL OUTPUT FEEDBACK WITH WHITE MEASUREMENT NOISE

5.4.,1 PROBLEM STATEMENT

The basic problem is to determine matrix N which minimize

t

£f T o '
£ | (xox+uRaar (5.92)
-to
subjgct to
X =Ax +Bu+Dw (5.93)
Ly = Cx +v(t) ' : (5.94)

and with the controller

u = -Ny = -NCx -Nv ' (5.95)

5.4.2 RESULT

The optimal feedback gain ’ )

‘N=20 | (5.96)

5.4,3 DERIVATION OF RESULT AND COMMENTS
This is a special case of the previous problem and the result
follows by settiﬁg |
F=0,6=0,H=0 (5.97)
Note that condition (5.50) will still have to be satisfied. This
implies (5.96) although (5.96) seems surprising but is not difficult

-

to reason out.

For any nonzero N, (5.92) is infinte since the quadratic term in the
control involves the term E[xﬂt)!?(t)] which is infinte. Thus the per-
formance index is infinite. (5.92) is finite if N = 0 for tf is

finite. Thus N = 0 is the optimal solution. This does not necessarily
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imply that a nonzero optimal solution does not exist. This only points

out the mathematical optimizatidp problem is ill-posed.

5.5 OPTiMAL OUTPUT FEEDBACK WITH NONWHITE MEASUREMENT NOISE
| 5.5.1 . STATEMENT AND PORMULATIbN OF THE PROBLEM
If measurement ﬁoife is not white, which is of course reasonable,
thenN # 0. The controller without dynamics is given by
u=N ' (5.98)
where the output y
y=Cx+Hz | (5.99)
is contaminated with noﬁwhite noise z described by
2'=Fz+0Cv . (5.100)
F, G, H, and C are all specified. The problem is to determine N.
Using (5.98) and (5.99), (5.1) becomes
X = (A+BNC)x + BNHz + Dw;, | | (5.101)

Using (5.98) and (5.99), the performance criterion becomes

t
£
. T
= %-E J {x [Q+C'N'RNCIx + x'CT

(=
[}

TT
RNH5.+ E.H RNCE

to

T
+ 2z HTNTRNHE ldat.

1% ¢ o [eec™Tmee  cIwTmw] [ x
oE (x,2) | pp T T at |
" - o' Ree HNRVH| |z

(5.102)
Now defining

% A 0 & B 0 % ¢ H % gh}
A = B = C = s = H W=

0 F o 0 0 0

In %
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. N o A Q o A D © % R O
N = ,Q: ,D: s R =
: 0O O© 0 o0 0 G .0 O
T -
F-3 - Q L i )
R.8(t.-t,) = E[s(t )*T(t )] = 1 1] §(t.-t,) ; (5.103)
1 -1 "2 2 1 2
L R
1 1
(5.101) and (5.102) reduc; to
; % Ai% %
W = (A+BNC)w + Ds (5.104)
*:’ek*
- (5.105)

l E?[ RNC+Q]H dt.
to

Thus the problem reduces to the minimization of (5.105) with respect

% .
to N subject to (5.104).

5.5.2 RESULT

%
The feedback matrix N satisfies

ﬁﬁéﬁgT + gTﬁgéT = (5.106)
* %
where K and P satisfy
K(§+§§C) + (A+BNC)TK+Q+ET§T§§3 =0 (5.107)
% %%k T f ik & k% % .
P(A+BNC) + (A+BNC)P + DR,D" = 0 (5.108)
respectively.
5.5.3 DERIVATION AND SIMPLIFICATION OF THE RESULT
can be

Proceeding exactly in the same manner as in Case 1, it
%
easily seen that the feedback matrix N satisfy (5.106) - (5.108)

%

%
Partitioning K and P as in (5.78) and expanding (5.107) and (5.108),

it can be seen that
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: T ¢ TTT T T
P..(A+BNC)  + P_. H N B +(A+BNC)P__ + = .
.u( ) 12 ( ) 1 'BNI:{PD + Dan q (_5 109)
T T T T .
P),(AtBNC)" + FP , + GL)D" = 0 (5.110)
P_FL 4+ FP__ + GR.G! = 0 (5.111)
22 22 1 ’
T APPSR
(A+BNC) Kyp + Ky, (A+BNC)+Q+C 'N'RNC = 0 (5.112)
T ;
(BNH)TK. . + F K..(A+BNC) + HIN'RNC = 0 (5.113)
11 12
T T T T.T _
(BNH) 'K, + F Kyp + 1<12mm + KyoF + HN'RNH = 0 . (5.114)
and the optimal feedback matrix N is given by
. .-1T T T T-r T ST
N=-R B [Kllpnc K1 9P H #K) )P C 4Ky 5P, oH ][CP12C
T, T.T Tao1
+CPyoH +HP, ,C +HP, H ] . (5.115)

If the measurement noise and plant disturbance are “uncorrelated, then

Ly = 0. Thus (5.115) reduces to

= p-1gT T T T.-1
N=-R B [xllpnc +K12P22H ](HP22H._] , (5.116)

5.6 EVALUATION OF OPTIMAL COST UNDER STEADY STATE CONDITION

Note that as tf >, t 0 the integrals are in effect being

o

dropped and criterion is

%E [_)_c_',rQ}_ + u'Ru] c(x,u) | (5.117)

t
£ _
In order to retain a finite cost, [” c(x,u)dt as tf + o, Q and R
to

l .
can contain a factor (tf-tos which will not affect resulting gains.
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5.7 CONCLUSION

A unified design procedure for optimal incohplete stéte feedback
controllers for stochastic system has been presented. Various gains
specifying the output feedback controllers with and without dynamics
are obtained by minimizing a quadratic criterion. It has also been
established that white noise observations musf be filtered irrespec-
tive of the dimension of the dynamic compensator. In the absence of
any controller dynamics, the optimal feedbéck gain turns out to be
zero if the observation process is contamipated with white noise and
the quadratic performance index involves both the state and control.
This merely suggests an alternative problem formulation. When the
meésurement noise is non—white; the optimal feedback matrix satisfies
a set of nonlinear algebraic equations: In the absence of measure-
ment noise, the.optimal'feedback gain must satisfv a set of algebraic
nonlinear equations. In all the problem formulations, it is assumed
that the feedback controller with or without dynamics stabilizes the
system. It should be noted th;t the feedback matrices result from
necessary condition of optimality. Thus the solution is not necess

sarily globally optimal.

[
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VI CONCLUSION
6.1 - CONCLUSIbN AND LIMITATIONS OF THE PRESENT WORK

The present thesis has atfempted to present a unified design phil-~
osophy for limited state feedback control problems with parameter un-
certainty for both geterministic‘and stochastic problems.

Basically two different approaches have been suggested. In one
approach, a linear compensator is specified, in some cases with dyna-
mic eleménts. In the deterministic problem with parameter uncertainty,
a minimax design has been accqmplished by proposing an integral quad-
ratic performance crite?ion which was maximized with respect to an
uncertainty matrix and minimized by the feedback matrix. Various
other integral quadratic criteria and design procedures have been
examined including a sensitivity type criterion. The resulting mini-
max controller is linear and.it has been shown that minimax designs
offer better system performance than a purely nominal design under a
wide range of parameter variations. The vafious minimax proéedures
assume that the nominal system can be stabilized with output feedback.
‘The stochastic problem without parameter uncertainty has been treated
in a similar way. The stochastic problem dealt with white noie plant
disturbance and white a;d colored meééurement noise. Optimal limited
state feedback controllers with and without dynamics have been formu-
ated and optimizéd. The criterion is the average of an energy func-

tion. Various optimization techniques for both stochastic and deter-
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{
ministic problems result in nonlinear algebraic equations which must
be solved recursively for the compensator matrices.

The second approach to design is applicéble for single input- single
output systems with parameter uncertainty gnd uses a model of order equal
to that of_the system less the number of zéros. A criterion involving
tracking error, control, and a signal related to parameter ﬁncertainty
was maximized with respect to the uncertainty signal and minimized with
respect to the control. The resulting controller is linear and uses
oﬁly partial state feedback from states of a companion form. It has
been shown that the plant can be stabilized with this partial state
feedback, and the tracking error can be made arbitrarily smail despite
arbitrary parameter uncertainty, provided sufficient control energy is
available and provided the plant is min}mum phase type. The results
hold true for nonlinearities that do not involve contr;l. In order to
generate the control when soﬁe of the necessary states are not avail-
able, a minima# design of redﬁced order dynamic compensator has been
accomplished. The design procedure assumes noise-free measurements.
When some of the available states are contaminated with white noise,
an ad hoc scheme has been suggested to estimate the necessary states
to implement the controller.
| The above two basic approaches have certain limitations. The prob-
lem of designing a dynamic compensator for stochastic system assumes
that the system does not involve any parameter uncertainty, although
a minimax compensator design for stochastic system can be carried out
in a manner simil;r to that reported in Chapter 3. Another limitation

is the unavailability of efficient computational schemes for solving
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the simultaneous algebraic equations which result from application of
necessary conditions for an optimum controller. The minimax techniqué
for single input - single output system has some drawbécks. First, it
is difficult to extend the approach to multivariable system. The diff-
iculty seems to be due to the fact that a suitable canonical form for
mu;tifariable system is not currently‘available. Second, thé uncer-
tainty signal is related to the system parameters in a complicated way.
Thus an ultimate bound on parameter variation to insure system stabi-
lity is difficult to ascertain. These problems, along with Other-limi-
tations, and possible-extensions of the techniques will be discussed

in the next section.

In spite of the various limitations of the present work, the design
philosophy presented in this thesis makes a considerable inroad in
handling parameter uncertainty in deterministic systems, and plant
distufbance and measurement noise in stochastic system. It embraces a
very challenging field in system theory- control of systems with para-

‘meter uncertainty and disturbances using available measurements. Cer-
tain basic investigations have been carried out in this thesis and some
basic results héve'been obtained. The contribution of the present work

will, the author hopes, stimulate further research in this field.

6.2 OUTSTANDING PROBLEMS, POSSIBLE EXTENSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH
Although some basic results have been obtained, the investigation is
far from complete} however, some of the outstanding problems and sug-

gestions for further research in this direction will be outlined below:
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(i) The minimax design for single input - single output system as
presented in Chapter 2 is applicable fo time-invariant system. The
present formulation can be, at best, extended to include some time-
varying parameters. For time-varying systems, the success of the pre;
sent technique depends much on the results of stability theory of time-
varying systems. The present status of stability theory is not suffi-
cient to readily establish a general result.

(ii) Another limitation of minimax technique of Chapter 2 is the
assumption that the system should be minimum-phase type. One way of
approaching the problem will be to constrain the control amplitude
leading to a saturation-type controller. The immediate question that
arises is whether or not the tracking error can be made arbitrarily
~small with the available control amplitude. Another problem in this
direction is to ascertain a priori the control amplitude, when very
little is assumed to be known about the system. This, in turn, re-
quires some more information regarding the system.

(iii) It has been estéblished in Chapter 3 that reduced order dy-
namic compensator cén be designed using the available measurements.
When some of the states (or output) are noisy, a reduced order estima-
tor has been designed to estimate the necessary states to implement
the control. Further research is required to establish a) what order
dynamic compensator is necessary to stabilize the overall system,

b) whether the reduced order compensator can give performance compara-
ble to, that of a compensator having dimension equal to that of the
system,

(iv) Possibly the greatest effort should be directed to extend the

basic concepts presented in Chapter 2 to géneral multivariable system.
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- This will reveal the conditions for output stabilizibility. This is
important since the derivation of optimal outpﬁt feedback controller
with or without dynamics requires the closed-loop system to be stable.
The difficulty in extending the present approach is due to the fact
that no suitable canonical form for multivariable system has been found.
(v) Obvious factors regarding minimax output feedback contro]lér.as
presented in Chapter u; which require further study-includei
(a) Computational feasibility and convergence properties
of v;fious algorithms,
(b) Existence and uniqueness of the solutions
(c) Stability properties of the nominal system with outputA
feedback and conditions for stability if all the parameters
in the system are allowed to vary
(@) Extension of the minimax design analysis to mare general

sensitivity criteria.

Some basic questions regarding the design of dynamic compensator
for stochastic systems include

(1) When the dimension of the dynamic compensator is less than

that of the controlled system, how much does the perfor-
\ mance degrade? |

(2) 1Is it possible to achieve separation in design of estimator
(or dynamic elements) and the controller, when the compen-
sator dimension is less than that of the system?

(3) Can the parameter uncertainty be effectively treated for
stochastic systems in the ;ame manner used for determinis-

tic problems?
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(4) 1Is it possible to stabilize the system if the dimension of
the'dynamic compensator is not equal to the system order?

(S) How should the mathematicai optimization problem be refor-
mulated to obtain a nonzero optimal feedback gain matrix
when the observation is contaminated with white noise? A
possible approach would be! to reformulate it as singular
problem (integralzquadratic criterion penalizing the state
only).

(6) Under what conditions does the algorithm presented in Chap-

ter 5 converge?

The answer to some of these questions and investigation of certain of
these factors is essential before a truly practical engineering design

approach can be obtained.
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