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, COMPARISON OF TURBINE ANNULUS MASS FLOW COMPUTED BY

ONE-AND TWO-DIMENSIONAL ANALYSIS

by Charles A. Wasserbauer and Arthur J. Classman

Lewis Research Center

SUMMARY .

An analytical investigation was conducted to determine the difference in computed
mass flow rate between a one-dimensional and a two-dimensional analysis for a turbine
annulus using various radial distributions of swirl velocity. Variables considered in the
analysis included swirl velocity distribution, flow angle, critical velocity ratio, radius
ratio, and specific heat ratio.

The results of the analysis indicate that the variation in specific heat ratio had no
significant effect on the mass flow ratio over the range of various vortex flow conditions
and radius ratios investigated. The mass flow ratio is defined as the ratio of mass flow
rate as computed by a two-dimensional analysis to that computed by a one-dimensional
analysis. The critical velocity ratio had only a small effect on mass flow ratio. Very
little or no difference was found in computed mass flow between a one- and two-
dimensional analysis for all free-vortex cases. For non-free-vortex cases, the mass
flow ratio decreased as swirl velocity distribution deviated from the free-vortex condi-
tion and as radius ratio decreased. This decrease in mass flow ratio became more pro-
nounced as flow angle increased.

INTRODUCTION

In the annulus of a turbomachine, there is some variation in the mass flow per unit
area from the hub to the tip of a blade row. This is due to the specified radial variation
in tangential velocity and the balance of forces that must exist in the flow. Although this
radial variation in mass flow exists, an arithmetic-mean-section velocity diagram is
often used to compute the entire mass flow. Such a one-dimensional assumption is rea-
sonable with relatively high hub-to-tip radius ratio turbines (about 0. 85 or greater),
where the radial variation in flow is small. For lower hub-to-tip radius ratio turbines,
however, the radial variation in flow is substantial, and the mean-section flow conditions



may not represent true average conditions for computing the mass flow.
In the past, turbines were usually designed for free vortex conditions (rV = con-

stant). This type of design results in radially constant axial velocity and nearly constant
mass flow per unit area. Recently, however, there is increased interest in non-free-
vortex designs. In axial turbines with low hub-to-tip radius •ratio and highly loaded
blades, it may be desirable to use non-free-vortex designs since, for certain conditions,
they can result in improved aerodynamic conditions for the rotor hub section. Refer-
ence 1 shows that non-free-vortex designs have been used to obtain improved turbine
performance. The non-free-vortex designs can have large radial variation in mass flow
rate per unit area due to a large nonlinear radial gradient in axial velocity. Thus, the
mean section flow conditions will not represent the true average conditions for such
cases. Considerable error in computed mass flow may occur if such a turbine is de-
signed on the basis of one-dimensional mean- section flow conditions.

This report examines the difference in computed mass flow between a one-
dimensional analysis and a two-dimensional one to see to what extent a one-dimensional
analysis is still valid. A number of swirl velocity distributions (i. e. , radial variation
of V ) will be specified and examined over a range of radius ratios for several values of
specific heat ratio, flow angle, and critical velocity ratio. The results of this. study can
be used to indicate the error in computed mass flow associated with turbine mean-section
analyses, which are often used for preliminary design studies, and to provide compen-
sating correction factors .

METHOD OF ANALYSIS

The radial variation of the tangential component of velocity for most axial flow tur-
bines is usually specified as V = Kr . All symbols are defined in appendix A. When
the swirl distribution exponent N is set equal to -1, the flow condition is normally re-
ferred to as free vortex. Free- vortex designs have been used so often that all other ex-
ponents are usually referred to as non-free-vortex designs. In this report, a range of
exponents from -2 to +1, including the constant-flow-angle case, is investigated in order
to determine the ratio of mass flow as computed by a two-dimensional analysis to that
computed by a one- dimensional analysis.

For a one-dimensional analysis at the arithmetic- mean section of a blade row, the -
mass flow is given as

The mass flow for the two-dimensional case may be written as



••/*«'r_

dr (2)

The ratio of equations (2) to (1) yields the desired mass flow ratio

W
Wm

(3)

The equations for the axial velocity ratio Vv/V_rrn were obtained from reference 2.
A .AIX1.

The evaluation of all the terms in the integral for various flow conditions is given in
appendix B.

From the equations of appendix B, the radial variations in velocity for the various
swirl velocity distributions can be determined. The radial variations in velocity dia-
grams associated with several of the swirl distributions being studied herein are illus-
trated in figure 1. For simplicity, the rotor exit flow was assumed to have no swirl
velocity component, and the radial variations in velocity appear only at the stator exit
(rotor inlet). This figure shows the velocity diagrams for a blade mean section, which
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Figure 1. - Radial variation of velocity diagrams for various swirl distributions. Stator
mean-section exit angle, 60°.



is the same for all cases, and for the hub and tip sections of blades with radius ratios
of 0.8 and 0.6.

The free-vortex (N =' -1) case is seen to have constant axial velocity from hub to tip.
The constant-flow-angle case shows a small decrease in axial velocity with increasing
radius from hub to tip. The other cases, N = -2, 0, and 1, show large changes in axial
velocity as a function of radius. For N <-1, the axial velocity increases with increas-
ing radius from hub to tip, while for N > -1, the axial velocity decreases with increas-
ing radius. Where diagrams are not shown, the axial velocity has become imaginary,
and there is no real solution for that point. Limitations associated with this situation
are discussed as part of the analysis results.

A number of independent variables were used in computing the mass flow ratio for
several values of N (-2, -1, 0, and 1) and for constant flow angle. The independent
variables are specific heat ratio y, critical velocity ratio V _„/¥„„, flow angle a ,m c* r xxi
and the radius ratio r, /r.. These were varied over the following ranges:

r. 1.3, 1.4, and 1.67

V™m : 0.4, 0.6, 0.8, and 1.0
Vcr

am: 45°, 55°, 65 , and 75l

r,
— : 0.5 to 1.0
rt

RESULTS OF ANALYSIS

An analysis of the mass flow ratio for a turbine annulus was made using a wide
range of independent variables. The results of the analysis will be presented as follows:
The effect of specific heat ratio on the mass flow ratio will be discussed first. This will
be followed by a discussion of the limits of real solutions to the mass flow ratio equation
for some of the swirl distribution cases investigated. The effect of radius ratio on mass
flow ratio will then be presented and discussed for each swirl distribution case over the
ranges of flow angle and velocity ratio considered. Finally, the results are extended to
all swirl ^isjribjatiqnjexpqnents^^^inthe_rangeic.onsidered,by=crossplotting"mass-flow
against swirl distribution exponent for two values of radius ratio and all angles.



Specific Heat Ratio

The effect of specific heat ratio y on the mass flow ratio was examined. Three
specific heat ratios were considered for this analysis: 1. 3, 1.4, and 1. 67. The effect
of these ratios on the mass flow ratio was insignificant for all swirl distribution cases
considered (usually less than 0.3 percent). Therefore, the figures in this report will be
presented for the specific heat ratio of 1.4 only.

Radius Ratio Limit

Figure 2 shows the variation of radius ratio limit with swirl distribution exponent
for various flow angles. There are no limits for the exponent N = -1 and the constant-
flow-angle case. The radius ratio limit is that radius ratio below which no real solution
exists for the axial velocity ratio V /Vvrv,, as determined from equations (BIO) or (B12).

X XLLI
Below the limiting value, therefore, the mass flow ratio (eq. (3)) cannot be evaluated.
The significance of this limit is that it is not possible to have the indicated swirl velocity
distribution for blades with radius ratios less than the limiting value. As seen from fig-
ure 2, the limiting value of radius ratio decreases for all angles as the swirl distribution
exponent approaches the free-vortex condition, N = -1. There is also a decrease in the
radius ratio limit with a decrease in flow angle. For lower radius ratios and large flow
angles there is little opportunity for selecting a turbine design with a swirl velocity dis-
tribution much different from the free-vortex or constant-flow-angle design cases.

1.0

.9

Mean flow angle,

>'deg

-1.5 -1.0 -.5 0 .5
Swirl distribution exponent, N

1.0

Figure 2. -Variation of radius ratio limit with swirl
distribution exponent.



Free-Vortex Flow, N = -1

Using this exponent in equation (BIO) results in a radially constant axial velocity.
Figure 3 shows the mass flow ratio as a function of-radius ratio for flow angles of 45°,
55°, 65°, and 75° and for various values of critical velocity ratio.

The mass flow ratio decreases with decreasing radius ratio, but the change is small.
At a radius ratio of 0.50 and critical velocity ratio of 1.0, the mass flow ratio is 0.993
for all angles investigated. It can be seen that the difference in mass flow rate is negli-
gible from one flow angle to another for each velocity ratio and from one velocity ratio
to another for each angle. Thus, there is very little difference between a one- and two-
dimensional approach for the free-vortex condition in the range of radius ratios covered
in this analysis.

1.00=

Critical velocity ratio,

-0.4

.6 .7 .8
Radius ratio, rn/rt

(d) Mean flow angle am = 75°.

Figure 3. - Variation of mass flow ratio with radius ratio. Swirl dis-
tribution exponent N = -1.

Non-Free Vortex, a= Constant

Figure 4 shows the variation of mass flow ratio with radius ratio for a number of
flow angles and critical velocity ratios. The decrease in mass flow ratio with a decrease
in radius ratio, for all values of critical velocity ratio, is somewhat larger than for
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Figure 4. -Variation of mass flow ratio with radius ratio. Constant flow
angle.

free-vortex flow. For a flow angle of 55 and a velocity ratio of 1.0, the mass flow
ratio is 0.979 at a radius ratio of 0.50. This compares with 0.993 at the same condition
for free-vortex flow. There is also a decrease in mass flow ratio with an increase in
flow angle. At a radius ratio of 0.50 and a velocity ratio of 1.0, the mass flow ratio was
about 3 percent lower for a flow angle of 75° than for a flow angle of 45°. Variations in
the critical velocity ratio have little effect on the mass flow ratio at any radius ratio.
The greatest difference occurs at a flow angle of 75° and a radius ratio of 0.5, where
there is about a 1 percent difference in mass flow ratio between each value of the critical
velocity ratio used.



Non-Free Vortex, N = 0

Figure 5 shows the variation of mass flow ratio with radius ratio for a number of
flow angles and critical velocity ratios. The decrease in mass flow ratio with a de-
crease in radius ratio for any velocity ratio is much larger than the two previous cases.
The figure also shows a significant decrease in mass flow ratio with an increase in flow
angle. Note too, there are no solutions below radius ratios of about 0. 56, 0. 79, and
0. 93 for flow angles of 55°, 65°, and 75°, respectively. There is very little change in
the mass flow ratio for variations in the critical velocity ratio at any given radius ratio.

1.00,—
Mean flow angle,

.2
TS

5 .92 —

Radius ratio,

Figure 5. - Variation of mass flow ratio with radius ratio. Swirl distribution exponent N = 0.

Non-Free Vortex, N = 1

Figure 6 shows the variation of mass flow ratio with radius ratio for various flow
angles and critical velocity ratios. Only the 0.4 and the 1. 0 critical velocity ratio

-curves are plotted sinee^the differencie between the velocity ratios investigated for any
flow angle is small. The decrease in mass flow ratio with radius ratio is the largest for
all cases considered. The decrease in mass flow ratio with an increase in flow angle is
also the largest for this case. There are no solutions to the equations below radius ra-
tios of about 0.63 for 45°, 0. 79 for 55 , 0. 90 for 65l and 0.95 for 75l
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Figure 6. - Variation of mass flow ratio with radius ratio. Swirl distribution exponent
N-l.

Non-Free Vortex, N = -2

Figure 7 shows the mass flow ratio as a function of the radius ratio for various flow
angles and critical velocity ratios. As in figure 6, only the 0.4 and 1. 0 critical velocity
ratio curves are plotted since the difference between the velocity ratios investigated for
any flow angle is small. In this case, the effect of critical velocity ratio is reversed
(i.e., the 0.4 velocity ratio produces the lowest mass flow ratio). The figure shows a
decrease in mass flow ratio with a decrease in radius ratio. However, it is not as
severe as in the previous figure where N = 1. With an increase in the flow angle, there

Mean flow angle,

1.001—

Radius ratio, rh/r(

Figure 7. - Variation of mass flow ratio with radius ratio. Swirl distribution exponent
N= -2.



is a large drop in the mass flow ratio. There are no solutions to the equations below
radius ratios of about 0. 61 for 45°, 0. 73 for 55°, 0. 84 for 65°, and 0.94 for 75°.

Effect of Swirl Distribution Exponent

In order to show the results of the analysis for all swirl velocity exponents in the
range studied, cross plots of mass flow ratio versus exponent were made. These are
shown in figure 8 for radius ratios of 0. 8 and 0.6. Since it has been shown that critical
velocity ratio has only a small effect on mass flow ratio, the critical velocity ratio was
held constant at a value of 1.0 for this figure. In figure 8(a) with a radius ratio of 0. 8,
the curves for all flow angles have the same maximum value of 0.999 for the mass flow
ratio at the swirl distribution exponent N = -1 (free vortex). In figure 8(b) with a radius
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(b) Radius ratio rh/r t = 0.6.

Figure 8. - Variation of mass flow ratio with swirl
velocity exponent.
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ratio of 0. 6, the curves for all flow angles have the same value of 0.996 for the mass
flow ratio at the exponent N = -1. This is the maximum value for all flow angles shown
except for 45°, where the maximum value of mass flow ratio is slightly higher and is
displaced to N - -0. 8. For both sets of curves, the decrease in mass flow ratio from
its maximum value becomes more rapid as flow angle increases.

It is seen from figure 8, as well as from previous figures, that the mass flow ratio
is nearly 1 for a free-vortex (N = -1) design under all conditions of interest. Thus, a
one-dimensional computation of mass flow rate for a free-vortex design is always quite
accurate. For non-free-vortex designs, in general, the accuracy of the one-dimensional
computation becomes less as the swirl velocity distribution increasingly deviates from
the free-vortex condition. In addition, there is a further decrease in accuracy as the
flow angle becomes larger and the radius ratio becomes smaller. For many non-free-
vortex cases, the inaccuracy of a one-dimensional computation of mass flow rate could
be on the order of 5 to 10 percent or more. In the special case of a constant flow angle,
the inaccuracy of a one-dimensional computation would be less than 5 percent even for
large angles and low radius ratios. Note that, in all cases, the mass flow ratio is less
than 1; therefore, the mass flow in a turbine will always be less than that computed by a
one-dimensional mean-section analysis.

SUMMARY OF RESULTS

The difference in mass flow between a one-dimensional and a two-dimensional analy-
sis using various radial distributions of swirl velocity was investigated. The independent
variables used in the analysis were swirl velocity distribution, flow angle, critical ve-
locity ratio, radius ratio, and specific heat ratio. The results of the analysis can be
summarized as follows:

1. The specific heat ratio had no significant effect on the mass flow ratio for the
radius ratios, flow angles, and swirl velocity distributions investigated.

2. The mass flow ratio is relatively insensitive to changes in critical velocity ratio
at any given radius ratio for all flow angles and swirl velocity distributions investigated.

3. There is little or no difference between a one- and two-dimensional approach in
determining mass flow for the free-vortex case under all conditions investigated.

4. For the non-free-vortex cases, the mass flow ratio decreases significantly as the
swirl velocity exponent increasingly deviates from the free-vortex value of N = -1. The
rate of decrease becomes greater as flow angle increases.

5. For the non-free-vortex cases, the mass flow ratio decreases as radius ratio de-
creases. The rate of decrease becomes greater as flow angle increases.

11



6. Except for the constant-flow-angle case, all non-free-vortex flow cases had ra-
dius ratio limits below which no real solution exists for the mass flow ratio. These ra-
dius ratio limits increase with increasing flow angle.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, August 22, 1972,
501-24.
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APPENDIX A

SYMBOLS

p
g conversion constant, 1; 32.174 Ibm-ft/lbf-sec

h specific enthalpy, J/kg; Btu/lb

J conversion constant, 1; 778.029 ft-Ib/Btu

K proportionality constant

N swirl distribution constant ' •

P pressure, N/m2; Ib/ft2

r radius, m; ft

s specific entropy, J/(kg)(K); Btu/(lb)(°R) '

T temperature, K; °R

V absolute velocity, m/sec; ft/sec
n n

v specific volume, m /kg; ft /lb

w mass flow rate, kg/sec; Ib/sec ' • • . • • •

a absolute gas flow angle, angle between absolute velocity vector and meridional
plane

•y ratio of specific heat at constant pressure to specific heat at constant volume

p gas density, kg/m3; Ib/ft3

Subscripts: . .

cr conditions corresponding to Mach 1

h hub

LIM limit

m mean

me meridional

t tip

u tangential component

x axial component

Superscript:

' absolute total state .
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APPENDIX B

ANALYTICAL PROCEDURE

The equations for the axial velocity ratio Vx/Vxm used in the calculations of mass
flow ratio were obtained from reference 2. However, they are repeated here as well as
their development for the convenience of the reader.

The radial equilibrium equation for a turbine blade row is

._ v2 v2 dV
- «_.--22-n,^

f > d r r rme dt

Since the meridional streamline curvatures 1/r and inclination angles a are
Hlc 1116

both quite small for axial or near axial turbines, we may neglect the last two terms.
We can then write

V2

1^ = -"- (B2)
p dr r

This is known as the "simple" radial equilibrium equation. Now since we can assume
the meridional streamline slope to be zero so that no radial component of velocity exists,
then the total enthalpy can be written as

V2 V2

h' = h + —- + — (B3)
2gJ 2gJ

Differentiating with respect to radius and using dh = T ds + 4 v dP and p = 1/v we have

^ — T* _i_ ^^^ j_ _ _i_ ^T^d^— 1 h -1 I- V-*-r*/

dr dr Jp dr 2gJ dr 2gJ dr

Using the "simple" radial equilibrium expression (B2) and with the additional as-
sumption that total enthalpy and the entropy are radially constant we get

, d(V2)
V*

2

(B5). -____
r - 2 ^r 2 dr "~ '~ — — • ,~^_^ ___ _

At this point, it is necessary to specify a relation between V and V or between
V or V and r. The relation most frequently used is that of swirl velocity with
radius and is stated as

14



-N (B6)

Substitution of equation (B6) and its differential with respect to radius into equation (B5)
and multiplying through by dr gives

dr dr + dV 0 (B7)

Integration of equation (B7) between the limits of V to V and r to r yields
X XIII III

v? - v:2x "xm
r 2 N _ r 2 N ) (B8)

Dividing through by Vym and substituting the following relations into equation (B8):xm

and

give

V
K2 u -

um

r2N r2N

tan a.

(from eq. (B5))

m
um

xm

(B9)

Using the radius relations

we finally obtain

= <
xm

1 -

1/2

(BIO)
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Equation (BIO) is not valid for the special case of N = 0 (Vu = K from eq. (B6)).
For this case equation (B5) becomes

K2 ld(Vx)
r 2 dr

= 0 , (Bll)

Integrating this equation with the same limits as before and using the same radius rela-
tions as in equation (BIO) yield

= - < l - 2 t a n a ! m l n
xm

(B12)

For a radially constant flow angle, we can write V.. = V tan a, and substituting this
. id • Jv

expression in equation (B5) gives

V2 tan2 a
± tan" 01 —^- + - ^ A/ = 0
2 dr 2 dr

(B13)

Integration of this equation with its proper limits gives

v- s ina

xm

The equation for the static density ratio is developed as follows:

(B14)

(B15)

and

P_ = _ y - l •/ V >

7 + \ cry
(B16)
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Thus,

P _

m

1 - y - 1 / v
y+ 1 \Vcr/

1 - V(y-D
(B17)

Now,

V\ 2 / V m\ 2

cr/

m

cr/

(B18)

Also,

v:xm
m

cos m

and

um
m

sin am

(B20)

Substituting equations (B18) to (B20) into equation (B17) gives

m

I V Y ,

where

Vx\2

xm/
mm

umy
m

1 -

(B21)

u N N

um \rm/
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