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CARBON FIBER COMPOSITES FOR CRYOGENIC
FILAMENT-WOUND VESSELS

by
J. V. Larsen
R. A. Simon

ABSTRACT: Compared to metallic vessels, filament-wound vessels
for containment of cryogehs offer high potential weight -savings
for NASA spacecraft applications. Since carbon fiber/epoxy resin
composites exhibit high strength-to-density ratios, high fatigue
life, and excellent' strain compatibility with internal metallic
liners, advanced unidirectional.and bidirectional carbon fiber/
epoxy resin composites were evaluated for physical and mechanical
properties over a cryogenic to room'temperature range for poten-
tial application to cryogenic vessels. The results showed that
Courtaulds HTS carbon fiber was the superior fiber in terms of
cryogenic strength properties in epoxy composites.. Of the resin
systems tested in NOL Ring composites, CTBN/ERLB 46l? exhibited
the highest composite strengths at cryogenic temperatures but very
low interlaminar' shear strengths at room temperature. Tests of
unidirectional and bidirectional composite bars showed'that the
Epon 828/Empol 1040 resin was better at all test temperatures,
with the CTBN/ERLB 46l? composites giving somewhat unpredictable
results. Neither fatigue cycling nor thermal shock had a signifi-
cant effect on composite strengths or moduli. Thermal expansion
measurements gave negative values in the fiber direction and posi-
tive values in the transverse direction of the composites.
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CARBON FIBER COMPOSITES FOR CRYOGENIC FILAMENT-WOUND VESSELS

This report describes the test results on unidirectional and bi-
directional carbon fiber composites fabricated using various fibers
and resin systems. The tests were qonducted to provide data lead-
ing toward the potential use of carbon fiber composites in the
construction of cryogenic tankage for spacecraft.

This report covers Task VI under NASA Defense Purchase Request
(DPR) C-10360-B, and is the third report in a "series on Tasks I-VI.
The work on Task I .began -in May 1967 and .consisted of preliminary
materials screening and testing. In Task II, the best resin and
fibers were used to filament-wind internal pressure vessels, and
these were burst tested at." room and cryogenic temperatures. The
results of tasks I and II were reported in reference (a). Task
III, begun in April 1969, was an evaluation of elastomer/epoxy
resins and composites, and was.reported in reference (b). Tasks
IV and V were more extensive.evaluations of'elastomer/epoxy resins
and composites, and Task VI is the report on Tasks :IV and V.

This work was funded by .the National Aeronautic.s and Space Admin-
istration, Lewis Research Center (NASA LeRC"), Cleveland, Ohio.
The NASA Project Manager was Mr. Raymond F. Lark from the Materials
and Structures' Division.

ROBERT WILLIAMSON II
Captain, USN
Commander

ALBERT - LIGHjTBODY r
By direction

ii



NOLTR 71-201

CONTENTS
Page

INTRODUCTION 1
EXPERIMENTAL WORK ' 1

A. TASK IV 1
1. Resins 1
2. Fibers 2
3. Composites 3
4. Specimens and Tests 3

B. TASK V . . 3
1. Resins 3
2. Fibers 4

, 3- Composites 4
4. Specimens and Tests 4

RESULTS AND DISCUSSION 4
A. TASK IV ,. . 4

1. Re s ins' ' 4
a. Tensile Strengths '.,.. . 4
b. Moduli ...' '...';.'- 7

2. ' Composites '......' ..-• 7
' a. ' Tensile Strengths 7
b. Interlaminar Shear Strengths 7

B. TASK V 8
1. Tensile Strengths 8

a. Unidirectional Composites 8
b. Bidirectional Composites 8

2. Tensile Moduli 9
a. Unidirectional Composites 9
b. Bidirectional Composites (2:1) 9

3. Interlaminar Shear Strengths 9
a. Unidirectional Composites 9
b. Bidirectional Composites 10
c. Fiber Content Effect 10

4. Thermal Contraction 10
a. Unidirectional Composites 10
b . Bidirectional Composites 10

5. Tow Tests 11
6. Tests of Modmor II Fiber 12

CONCLUSIONS 12
RECOMMENDATIONS 13
FOLLOW-ON WORK ; - 13
REFERENCES 14

ILLUSTRATIONS

Figure Title

1 Resin Tensile Strengths and Moduli
2a Composite and Fiber Tensile Strengths
2b Composite and Fiber Tensile Strengths

iii

I



NOLTR 71-201

Figure Title

3a Composite Interlaminar Shear Strengths
3b Composite Interlaminar Shear Strengths • •
4 Axial Tensile Strengths ' . . .
5 Transverse Tensile Strengths
6 0° and"90° 'Composite Tensile Strengths
7 Axial Tensile Moduli
8 Transverse Tensile Moduli'
9 0Q-and"90° 'Composite Tensile Moduli

10 Composite • Interlaminar _Shear Strengths • ••
11 Thermal•Coefficients of Expansion

Table ' • • Title . Page

1 Resin Systems 2
2 Fibers and Their Properties 2
3 Specimens and Tests 3
4 Specimens and Tests 5
5 Task V Test Matrix, 6
6 Tensile Strength of Single Impregnated Tow 11

iv.



NOLTR 71-201

INTRODUCTION

High modulus carbon (or graphite) fiber/epoxy resin composites
are being evaluated as candidate materials for potential use in the
construction of high strength-to-density, filament-wound internal
pressure vessels for Space Shuttle applications.

The first effort under DPR C-10360-B began in May, 196?, as
Task I, and results indicated filament-wound carbon fiber compos-
ites have ultimate strain values of less than 0.5$ at cryogenic
temperatures. Such strains are low enough to be elastically com-
patible with thin internal high strength metallic liners required
for leak-free filament-wound internal pressure vessels (ref. (c)
and (d)). The brittle failure of vessels reported in Task II indi-
cated that composites exhibiting more ductile failure modes would
be desirable. Task III was a study to evaluate the preliminary
properties of carbon fiber composites using elastomer (CTBN)-modi-
fied epoxy resin systems.' Results of this work indicated that
such additions significantly increased the tensile strength and
toughness of ERLB 4617/Courtaulds HTS composite NOL Rings. Tasks
IV and V were continuations of the study of the effects of elasto-
mer additions to epoxy resins on the physical and mechanical
properties of carbon.fiber/epoxy resin composites.

EXPERIMENTAL WORK

The experimental work on Tasks IV and V is described below.

A. TASK IV

Task IV was a preliminary investigation to determine the physi-
cal and mechanical properties of unidirectional composites made
from four fibers and four resin systems. The resins and fibers
were chosen from the Task III effort (ref. (b)).

1. Resins

The resin systems used in Task IV are presented in Table 1,

1
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Assigned
Nomenclature

828/Empol

4617
828 polyblend
4617 polyblend

DSA ..7."

BDMA

MDA

D

Empol 1040 =

Hycar CTBN =

Table 1

RESIN SYSTEMS

Epoxy Resin

Epon 828

ERLB 4617
Epon 828
ERLB 4617

Curing Agent

DSA 115.9 Phr
BDMA 1 phr
MDA 46 phr
D 5 phr
MDA 46 phr

Additives

Empol 1040,, 20 phr

None
Hycar CTBN, 7.5 phr
Hycar CTBN,, 10 phr

dodecenyl .succinic anhydride, Monsanto Chemical Co.,
St. Louis, Mo.

benzyl dimethyl amine, Matheson, Coleman and Bell
Co., Norwood, Ohio.

methylene dianiline, Dow Chemical Co., Midland, Mich,

polyamine salt, Shell Chemical Co., New York, N. Y.

trimer acid, Emery Industries Inc., Cincinnati, Ohio.

carboxyl terminated butadiene/acrylonitrile copoly-
mer, B. F. Goodrich Co., Cleveland, Ohio.

The systems with a CTNB additive are called "polyblend" sys-
tems because on curing the rubber separates as a separate phase (in
particles nominally one micron in diameter). Reference'(b) details
Task III test results of these resins.

2. Fibers

The fibers used in Task IV are listed in Table 2 along
with their advertised properties.

Table 2

Fiber

Thornel 50

HITCO HMG 50

Courtaulds HTS

Courtaulds HMS

FIBERS AND THEIR PROPERTIES

Mfr's Advertised
Mean

Density Tensile Strength
o u r\

gm/cm_ 10 n/m (p s i)_

Mfr's Advertised
Mean

Tensile Modulus

..10]i9n/m2__.(.ps.i.)_...
1.62

1.72

1.77
1.88

18

21

28

20

(260,000)

(310,000)

(400,000)
(290,000)

34
35
26

(49x10°)
(50xlOu)
(38xl06)

38 (55xl06)



NOLTR 71-201

3. Composites

The NOL Ring was the only composite specimen used in
Task IV. These were filament wound in a vacuum, with wet resin
dip impregnation at 22° C and strand tensions up to three'kilograms
to control resin content. Fiber contents in completed rings
ranged from 42 to 48 volume percent. Reference (f) gives addi-
tional information on the fabrication of NOL rings.

4. Specimens and Tests

Tests were conducted on resin as well as NOL Ring compos-
ite specimens, as shown in Table 3-

Table 3

SPECIMENS AND TESTS

Specimen

Cast resin bar

NOL Ring

Specimen Size

0.32 cm thick

full ring

NOL Ring segment 5/1 span/depth

Test

tensile modulus

tensile strength

tensile modulus

tensile strength

int e r1aminar
shear strength

Test Method •

ASTM D638-67T

ASTM D638-67T

Split pin
(ref. (f))

Split-D
(ref. (f))*

Case
(ref. (g))**

Short beam
(ref. (f))

* Used for cryogenic temperature testing
** Used for room temperature testing

Five replicates were used for each data point. Tests were run
at 22°C, -195°C, and -253°C. Testing at -253°C was contracted to
the Research and Development Division of the Whittaker Corporation,,
San Diego, California.

B. TASK V

The Task V effort was an intensive study of selected materials
fr'om Task IV, in the form of unidirectional and bidirectional lam-
inates, NOL Rings and tow specimens.

1. Resins

The 828/Empol and 4617 polyblend resins were the most
promising, and were chosen for the Task V work.
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2. Fibers

Based on Task IV data, Courtaulds HTS fiber was selected
for fabrication of the majority of the specimens in Task V. (A lim-
ited study was conducted in Task V to determine if Modmor II fiber • •
was equivalent to Courtaulds HTS fiber.)

3- Composites

Composites fabricated included unidirectional and bidirec-
tional flat plates, NOL Rings, and impregnated tows. The fiber
used in ''the flat plates was preimpregnated with the resins by
Hercules,, Inc.,, Cumberland,, Maryland (now Bacchus, Utah), and was
supplied to NOL in the form of unidirectional broadgoods. To make
the flat plates, pieces were cut from the broadgoods, laid in a
mold in the proper orientation, then heat and pressure were applied
to effect cure. The plates were 28 x 28 cm, and of various thick-
nesses from 0.15 to 0.32 cm. Fiber orientations were unidirectional
and 2:1; bidirectional with plies at angles of 0° , 90°, 0°, 0°, 90°,
0° , 0°, 90° and 0° to each other. Fiber.contents ranged from 49
to 56 volume percent. A few NOL Rings were made with Modmor II
fiber by wet winding as described in the Task IV work.

4. Specimens and Tests

Table 4 lists the specimens and the tests performed.

The allocation of flat plate test samples to the various
tests, the test temperatures, and the number of replicates are
listed'in Table 5. '

Testing of NOL Rings (5 replicates) was conducted at
-235° C. A minimum of 5 tow specimens, each, were tested at 22°,
195°, and -253°C. Testing at -253°C was conducted by the Whittaker
Corporation.

RESULTS AND DISCUSSION

A. TASK IV

Test results indicated that unidirectional composites made
from Courtaulds HTS fiber yielded the highest values of tensile
and interlaminar shear strengths at all three test temperatures.
Composites made from 46l? polyblend resin yielded the highest ten-
sile - strength- value's at "cryogenic " and " the" lowest 'value s" " at~~room
temperature. Composites made from 828/Empol resin performed con-
sistently well over the range of test conditions. Details of the
Task IV results are as follows:

1. Resins

a. Tensile Strengths. " The resin tensile strengths at

4
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the three test temperatures -are shown in Figure 1. At -253° C,
the strengths,-of all four resin systems were approximately the
same, 92 x 10° n/m2 (12000 psi). The coefficients of variation
were higher with the cryogenic measurements, the highest being
0.24 in the liquid hydrogen tests and probably caused by in-
creased brittleness at cryogenic temperatures.

b. Moduli. All four resin systems showed increased
moduli at lower test temperatures. Moduli at room temperature
were in the 21-45 x 10° n/m2 (0.3-0.6 x 10° psi) range, and in-
creased 70 to 150 percent to 50-80 x 10° n/m2 (0.65-1.1 x 10° psi)
at cryogenic temperatures (Fig. 1). Moduli increases at lower
temperatures are typical of polymeric materials.

2. Composites

a. Tensile Strengths. Composite NOL Ring tensile test-
ing was conducted to select the most promising fiber/resin combi-
nation. Test results indicated that no single fiber/resin combi-
nation indicated a clear superiority. The highest cryogenic fiber
tensile strength, 24 x 10° n/m2 (350,000 psi), was exhibited by
the HTS/4617 polyblend composite. This was the only resin/fiber
combination that exhibited higher strengths at cryogenic than room
temperature (Fig. 2b). Composites made from 828/Empol resin per-
formed reasonably well over a broad range of fiber types and test
temperature conditions, as shown in Figures 2a and 2b. In data
not shown in the figures, a decrease in the CTBN content from 10
to 7.5 Phr did not significantly affect cryogenic composite tensile
strength values. Increasing the CTBN content to 15 phr, however,
led to a decrease in the effective fiber strengths at cryogenic
temperatures to 17 x 10° n/m2 (250,000 psi), a 30$ reduction over
values obtained with 10 phr CTBN content.

b. Interlaminar Shear Strengths. The best fiber was
Courtaulds HTS with composite interlaminar shear strengths as much
as 100$ higher than those for the other fibers. The margin was
greatest at cryogenic temperatures where HTS composites exhibited
large strength increases ('to 130 x 10° n/m2 or 20,000 psi) over
room temperature strengths, while composites of other fibers exhib-
ited only small increases. The 828/Empol resin with the HTS fiber
gave highest strengths at cryogenic temperature followed by 828
polyblend and 4617 polyblend resins (Fig. 3a, 3b). The 4617 poly-
blend resin exhibited very low room temperature interlaminar shear
strengths, these being in the 12-25 x'10° n/m2 (2-4 x 10J psi)
range. Variations in the CTBN content of the ERLB 4617 to 7.5 arid
15 phr did not improve low shear strength values at room tempera-
ture. Additional postcuring of the composite slightly improved the
shear strength values but not nearly to the level exhibited by
composites incorporating the unmodified resin. Apparently the CTBN
additive inhibits good bonding of the matrix to the fibers, at
least at room temperature.

7
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B. Task V .

Task V was the further, more extensive testing of the 828/
Empol and 4617 polyblend resin systems and Courtaulds HTS fiber
in both unidirectional and bidirectional composites. The fiber
strengths obtained in these tests were the same as or slightly
lower than the strengths obtained in the Task IV ring testing ef-
fort. Composites with the 828/Empol resin generally gave the
higher values. Task V included some tensile fatigue testing to
1000 cycles. Results showed that such testing had no effect on
axial (0.°,), tensile properties'. Transverse (90°) fatigue testing
broke some o.f the specimens, jbut those specimens that survived
were as strong as the uncycled specimens. Details of Task V re-
sults follow:

1. Tensile Strengths

a. Unidirectional Composites.

(1) Axial direction. Fiber tensile strength values
of NOL Rings were lower at room temperature but the same at liq-
uid hydrogen temperature as the Task IV NOL Ring results. Com-
posites made with the two resin systems were generally equivalent
in strength properties except that composites with the 4617 poly-
blend system showed slightly superior tensile fatigue performance
at -253°C (Figure 4).

(2) Transverse direction. Figure 5 shows that the
transverse tensilestrengths of 4617 polyblend composites are very
low (less than 10 x 10° n/m2,, or 1000 psi)-. The 828/Empol system
in composites performed reasonably well in both the single cycle
and -the 1000 cycle fatigue tests. Reasons for the poor perfor-
mance of the 4617 polyblend are not evident since the interlaminar
shear strengths in both Tasks IV and V were high at cryogenic
temperatures. Postcures of these composites produced only slight
improvements in transverse tensile strengths.

Composites with the 828/Empol resin showed some strength
increases after cyclic fatigue but these improvements may not b-e
significant due to the high coefficients of variation of both the
uncycled and cycled test specimens. The 4617 polyblend composites
were so weak that cyclic tests were not meaningful. Only one of
the room temperature specimens made it through the 1000 cycles.
Specimens subjected to thermal shock (50 immersions in the cryo-
genic liquid) showed no apparent changes in tensile strengths.

b. Bidirectional Composites (2:1)

Bidirectional composites with the 828/Empol system
had approximately 2/3 the strength in the 0° direction and 1/3 the
strength in the 90° direction of the axial strength of unidirec-
tional composites. The bidirectional layup, therefore, did not re-
sult in reduction of fiber strengths when the 828/Empol resin was
used. The strengths of the 4617 polyblend composites were,
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however,, somewhat reduced in the "bidirectional layup, particularly
in the 0° direction and after tensile fatigue. The high modulus
and low extensibility of the 4617 polyblend system probably resulted
in high internal stresses in the crossply configuration, resulting
in resin microcracking and reduced composite tensile strength (Fig.
-6).

2. Tensile Moduli

a. Unidirectional Composites

(1) Axial direction. Moduli of unidirectional com-'
posites, measured in the axial direction at the three temperatures
showed very little difference between composites employing the two
resin systems. Moduli increased an average of 20$ with decreasing
temperatures, which is consistent with results in previous tasks.
Cycling had very little effect on the moduli. Composite moduli
were in the range of 10-15 x 1010 n/m2 (15-20 million psi), as
shown in Figure 7.

(2) Transverse direction. Moduli in the transverse
direction of unidirectional composites increased with decreasing
temperatures, in some cases over 200$ (Fig. 8), with the 828/Empol
resin showing the higher moduli of the two. The 4617 polyblend
neat resin had the higher moduli at all temperatures (Fig. 1), but
in composites there evidently was enough resin microcracking and
debonding from the fibers to result in low composite moduli values.
The coefficients of variation of the measurements of the 4617
polyblend resin composites averaged 0.23- This high variation is
another indication of the probable presence of cracks or flaws
which could have a significant effect on the moduli values. The
effects of tensile cycling on moduli values were negligible with
the 828/Empol composites, and indeterminate with the 4617 polyblend
composites because of the number of specimens that fractured during
the test. This is indicated in the extremely low transverse ten-
sile strength and high coefficients of variation values for this
resin system shown in Figure 6.

b. Bidirectional Composites (2:1)

Moduli of bidirectional composites generally increased
with decreasing temperature (Fig. 9). For composites with the
828/Empol resin the 0° moduli values were twice the 90° values•,
as expected for these 2:1 layups. However, with the 4617 poly-
blend composites the moduli values were lower, and the 0° values
were only approximately 70$ higher than the 9°° values, which
indicates poor bonding of the crossplied layers.

3. Interlaminar Shear Strengths

a. Unidirectional Composites

Unidirectional composites with the 828/Empol System
gave room temperature shear strengths more than twice as high as
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the 4617 polybl.end composites (Fig. 10). At cryogenic temperatures
the same difference existed with strength generally increasing.
Thermal shock had no noticeable effect on shear strengths. All of
these .results, are consistent with the Task IV results on tests .of
rings. • . • - , . . •

b. Bidirectional Composites

Bidirectional shear strengths at room temperature
were the same as the unidirectional strength values (Fig. 10).
At cryogenic temperatures, however, the bidirectional values were
considerably lower than the unidirectional values. This is as-
sumed to. be the result of increased thermal stresses which o.ccur
in the composites when they are cooled to cryogenic temperatures.
The 0° shear strengths at cryogenic temperatures were essentially
the same as the 90° strengths. The 4617 polyblend composites gave
lower shear strengths than the 828/Empol composites throughout the
Task V testing and was consistent with the Task IV shear strength
results.

c. Fiber Content Effect

Fiber content effects on shear strengths were measured
on specimens with fiber contents ranging from 42 to 58 volume
percent. There was no difference in shear strength attributable
to fiber content over the range of 42 to 52 percent. At 58 volume
percent fiber, shear strengths decreased generally by 10 to 15 per
cent. At cryogenic temperatures the coefficients of variation
were greater than 10$j therefore, firm conclusions cannot be drawn.
It appears that over the small range tested the fiber content ef-
fect may be negligible.

4. Thermal Contraction

a. Unidirectional Composites

Average thermal contraction coefficients for unidirec-
tional specimens in the transverse direction were large, result-
ing in specimen contraction of 0.006 cm/cm or more when cooled
from 22°C to -253°C (Fig. 11). In the axial direction the response
was different. On cooling from room temperature, expansion oc-
curred until some temperature above -195°C when a reversal occurred
and the specimens began contracting. The contraction continued
through the range -195°C to -253°C, but at -253°C the contraction
did not equal the prior expansion that had occurred and the net
-result -was- an- expansion. - The coefficients- of -thermal" expansion"
presented are averages over the entire range and are not valid for
calculating other points within the range.

b. Bidirectional Composites

Bidirectional composite specimens exhibited low

10
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coefficients of thermal expansion in both the 0° and 90° direc- ••
tions. In the 0° direction, the thermal expansion values were
negative and small in magnitude at both -195°C and -253°C. In the
90° direction, the expansion was positive and similar in magnitude.
These differences in the axial and transverse expansions result in
large thermal stresses within bidirectional specimens and contrib-
ute to their reduced composite strengths.

5. Tow Tests

Tow test results using Courtaulds HTS and three resin
systems are shown in Table 6.

Table 6

TENSILE STRENGTH OF SINGLE IMPREGNATED TOW

Temp

°C

22
-195
-253

Tow with
828/Empol resin

108 n/m2

21.7
18.7
22.2

Cv

0.10
0.16
0.27

Tow with
4617 polyblend resin

108 n/m2 Cv

Tow with
ERLB 461? resin

108 n/m2 Cv

Average 20.9 0.18

16.6
21.4
19.2

19-1

0.10
0.08
0.20

0.13

The same table is shown below in English units.

°F psi psi

72
-320
-423

315,000
271,,000
322,000

Average 303,000

241,000
310,000
278,000

276,000

16.6

psi

277,000
211,000
234,000

241,000

0.07

Five replicates were tested for each value. These results
show that the 828/Empol system generally yielded higher results
than the ERLB 4617 systems. This was in contrast to results ob-
tained in Tasks IV and V in tests of NOL Rings, in which the 4617
polyblend system yielded the highest values. This conflict in re-
sults is believed to result from the different specimen configu-
rations that were utilized. The NOL Ring, as tensile tested in
Tasks IV and V by the "Split D" method, undergoes bending. This
combination loading of tension and bending evidently is better
accommodated by composites incorporating the polyblend resins
than the nonpolyblend types. The tow test is "pure" tension, with
no bending and the nonpolyblend resin yielded higher fiber
strength values than the polyblend resin.

11
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6. Tests of Modmor II Fiber . •

Tensile strengths of NOL Rings fabricated using Modmor II,
instead of Courtaulds HTS, and 4617 poiyblend resin averaged 10.2
x 108 n/m2 (148,000 psi)' at -253°C (-423°F). This value compares
with 10.3 x 10° n/m2 (150,000 psi) for the Courtaulds HTS fibers

. in NOL Rings of equivalent fiber content. Shear strengths of
Modmor II composites using the 828/Empol and 4617 polyblend resin
systems were approximately the same as the values obtained in Task
IV tests. Based on limited test data, Modmor II fiber appeared to
be equivalent to Courtaulds HTS fiber.

CONCLUSIONS

1. Conclusions from the Task IV effort are as follows:

a. Courtaulds HTS fiber composites yielded fiber tensile
strengths in NOL Rings of up to 24 x. 10° n/m2 (350,,000 psi) at
cryogenic temperatures. HITCO HMG 50,, Thornel 50, or Courtaulds
HMS fibers in composites, while sometimes stronger at room tempera-
ture, yielded strength values at cryogenic temperatures only 50 to
QQ% as high. The Courtaulds fiber composites showed composite
interlaminar shear strength values ranging from 10 to 125 x 10°
n/m2 (1500 to 20,000 psi), depending on resin and temperature.
Coldest temperatures gave highest values. Other fibers in com-
posites gave shear strengths averaging about two thirds as high.

b. The ERLB 4617 polyblend resin system generally
yielded the strongest composites, followed by the Epon 828/Empol
1040 resin system. These two resins and the Courtaulds HTS fiber
were chosen for the Task V work.

2. Conclusions from the Task-V effort are as follows:

a. Fiber tensile strength values in both unidirectional
and bidirectional bars were similar to values developed in the
Task IV ring studies when the 828 Empol resin system was used.
The 4617 polyblend resin in composites resulted in lower strengths,
typically 80$ of the Task IV values but with wide variations depend-
ing on the test and temperature.

b. Composite and fiber tensile moduli increased with
decreasing temperature. The 828/Empol resin system in composites
gave composite moduli as predicted by the_ law of mixturesi. _._The
4617 polyblend' re'sin "system in crossply laminates gave composite
moduli nominally 70$ of that predicted by the law of mixtures,
indicating that the composite probably contained microcracks and
unbonded areas possibly caused by thermal stresses on cooling.

c. Interlaminar shear strengths for both resins in uni-
'directional composites were about as measured in Task IV. But
strengths in bidirectional composites were lowered, no value
exceeding 105 x 10° n/m2 (15,000 psi). Internal stresses in the

12
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crossply laminates probably were responsible for this.

d. Generally, neither tensile cycling nor thermal shock
had a significant effect on strengths or moduli.

e. Coefficients of thermal expansion of composites were
negative in the fiber direction and positive transverse to the
fiber direction. For 2:1 crossply layups, the coefficient was
essentially zero in the "2" direction and positive in the "l"
direction.

f. A small amount of tensile testing of impregnated
tows showed that tows impregnated with 828/Empol resin gave higher
strengths than tows impregnated with 4617 polyblend resin, a
result 'in conflict with ring test results in Task IV. The mea-
sured strength apparently depends on specimen configuration and
the types of nontensile loads introduced into the specimens during
tensile testing of NOL Rings.

g. Modmor II tow was found to be equivalent to Courtaulds
HTS for cryogenic applications.

3. From both the Task IV and Task V results, it is concluded
that Courtaulds HTS fiber and the Epon 828/Empol 1C40 resin sys-
tems are the best materials tested for general cryogenic use in
both unidirectional and crossplied laminates.

RECOMMENDATIONS

Based on the work performed in this program, the following
recommendations are presented:

1. Perform single filament tests at cryogenic temperatures
to determine if strength and modulus changes are intrinsic to the
fiber.

2. Fabricate internal pressure vessels with the best mater-
ials, and determine the mechanical properties over a cryogenic to
room temperature range.

FOLLOW-ON WORK

• Recommended work described above (2) is continuing as Tasks VII-
and VIII, and will consist of the design, fabrication and testing
of up to 20 internal pressure vessels. The work will be contracted,
as was the Task II vessel work, and is expected to be completed in
September 1972.

13
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(Dotted lines indicate average values over the
temperature range from 22°C to -195°C)
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FIG. 11 THERMAL COEFFICIENTS OF EXPANSION

Average values for composite bars over the
temperature range from 22°C to -253°C.
All composites with Courtaulds NTS fiber.
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