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PART I

SUMMARY OF WORK ACCOMPLISHED DURING THE PERIOD

SEPTEMBER 1, 1971 - APRIL 30, 1972

During the period of September 1, 1971 through April 30, 1972,

several improvements were made on the Compensator Improvement Program

(CIP).1 In the first interim period (September 1, 1971 - December 31,

1971) CIP was modified so that multi-channel systems and factored compen-

sators could be handled. The factored compensators make allowances for

the control of compensator pole-zero locations, and the factored compen-

sators can be used to increase the convergence rate of the program. These

two advantages of the factored compensators were demonstrated experi-

mentally by using the CIP program to design a single channel compensator

for a Saturn launch vehicle that had been previously designed using a

single rational function form.2

In the second interim period (January 1, 1972 - April 30, 1972)

finalization of the CIP was accomplished. In this time interval several

additional options were included in the program. These options are the

choice of allowing nonminimum phase compensators, the choice of perturbing

some frequency points with respect to more than one point, and the choice

of the program continuance mode, i. e., the total improved frequency

response mode or the sum improved frequency response mode. The practical

usefulness of CIP was demonstrated by designing compensators for the

Saturn V/S1-C Dry Work.Shop and the Saturn V/S1-C Sky Lab. From these

examples it is pointed out that using CIP considerable improvement of

compensators can be made, and the amount of effort to design compensators

is reduced greatly.3



As,a conclusion to CIP summaries of the subprograms were documented

in May, 1972. This information was considered necessary in case some of

the subprograms are to be modified or replaced by equivalent programs.

These summaries present and explain the basic programming theory.of the

specialized subprograms (programs not normally found in a computing

center system library). Also, complete descriptions of each I/O variable

of each subprogram are given. With the programming theory and I/O vari-

able information the modification or reproduction of any of these programs

should be minimized.**
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PART II

MAGNITUDE ERROR BOUNDS FOR SAMPLED-DATA FREQUENCY RESPONSE

OBTAINED FROM THE TRUNCATION OF AN INFINITE SERIES

Introduction

In order to properly design a control system it is first necessary to

be able to analyze the performance. In general there are three basic classi-

cal approaches for analyzing control systems; these approaches are the

frequency response method, the time domain method, and the root locus method.

These methods all transmit the same information. However, deciphering some

information which is obvious while using one technique can be very difficult

while using either of the other techniques. Thus, each method has certain

advantages and disadvantages which usually depend upon the type of system

performance to be measured.

Probably the most widely used technique of analyzing control system

performance is by the frequency response method. The reasons that this

technique is so popular are the simplicity of obtaining frequency response

information with the aid of the digital computer and the availability of

experimental frequency response information.

The frequency response method has been of great utility in the analysis

of sampled-data control systems that are unity feedback and error sampled.

However, one major problem that is associated with the application of the

frequency response method to sampled-data control system analysis is the

difficulty of obtaining the sampled frequency response of the continuous

system. A technique for accomplishing this is given by the following

infinite series:

G*(j«o) = Y I G(ju> + Jqus) + g(0)/2 (1)
q=-oo



where G (ju) is the sampled frequency response, G(jco) is the frequency

response of the continuous system, T is the sampling period, ws is the

sampling frequency and co is the radian frequency.1 Practical use of (1)

is made by truncating the series after a certain number positive and

negative terms, e.g., q's on the interval of -k _<_ q £ k where k is a

positive integer. The result of performing this produces the following

finite series:

1 k

G*(ju) - £ I G(Ju + jqoos) + g(0)/2 (2)
q-k

in which G*(j<o) is the approximate sampled frequency response. It then

follows that

= G*(Ju>) . (3)

Upper Bound Magnitude Error Derivation

It is important to know how many positive and negative terms of the

series must be taken so that G*(JOJ) is a reasonable approximation to G (jto)

for - — -T— . One technique for studying 'this is to determine the
2. — — /

magnitude error between the two frequency responses. This error is defined

as

|E(jw)| = |G*(Jw) - G*(Ju)| (4)

where E(JOJ) is the error between the actual sampled frequency response

and the approximate sampled frequency response. Subtracting (2) from (1),

*It is only necessary to consider the frequency range —— _<_ w ̂ _ -z—
which defines t?he primary strip in the G* (s)-plane, since the

-,*frequency response G (jio) is simply duplicated for frequencies in each
secondary strip of the G*(s)-plane.



(4) becomes

|E(Jw)
1..
T I G(jto + jqu)s) + I G(ju

q=k+l q=-k-l
(5a)

or

|E(JU) I [G(Ju
q=k+l

jqua) + G(J«o - Jqws)] (5-b)

In order to determine the magnitude error exactly it is necessary to

evaluate the infinite series given by (5a) or (5b). This is impractical

and actually defeats the purpose for truncating the original series.

However, if an easy approach to calculating a reasonable upper bound on

the magnitude error can be established, then a useful relation exists.

Consider the continuous frequency response G(jco) and suppose that

for all a) > ku),, and for all to < -ku)0 that

|G(JU)| <. M/ ni (6)

where M is an appropriately chosen constant and n is the difference in

the number of poles and zeros of G(s). This assumption is certainly

not unreasonable if kio is greater than all break frequencies of G(jio).

Next assume that n _>_ 1.

Using the identity for complex numbers, Zj, z2, ... , z. which

+ I Z I (5) becomesstates that zl + z2 + ••• + _<_ zl + z2 +

It should be obvious that (6) assumes G(ju) ^
) and for all u) < ~^u«

for all



|E(ju>)| = £ I [G(j.u + jqus) + G(ju - Jqu )]
q=k+l • ...

1 7 I
q=k+l

' 1 7 E [|G(J« + j-qUg)| + |G(jo> - jqus)|] . (7)
q=k+l

Using (6), the magnitude error is bounded by

'—n + n I (g)

s sin which it has been assumed that qtus > to since,o).e[- -r— , -r— ].

The result is that the magnitude error can be bounded by the sum of

two infinite series. It is possible to bound either of these series from

above and below by Riemann Zeta series minus certain constants. Since

either of the series in (8) can be bound from below by a Riemann Zeta

series then neither series converges for n=l because for n=l Riemann Zeta

series diverge. Thus the above,bound is only applicable for system's with

at least two more poles than zeros, i. e., n _>_ 2.

Returning to (8) it is observed that both series are positive series.

Thus the values of each series is less than the integral between the

A Riemann Zeta series or p-series is an infinite series of the form
00 n °°
jj^ 1/k. A series of the form _l ^ u + u)n where u> = po)g and pe[p,0.5]

is bound by ̂ qj+1 -^ > q=J+1l/(q-s
 + ̂  1 ̂  q=|+1 ToTlF '

The series on the extremes of this inequality are simply weighted Riemann
Zeta Series with the first (k-1) and k terms, respectively, subtracted off.
The subtracted terms form the constants mentioned above. The series

oo 1
Z. —, vn" may be bound in a similar manner.

q=k+l ~



limits of k and °° of the continuous curves fabricated by replacing

each summing index by a continuous variable.2 In mathematical notation

this produces

•|B(J«o).|-. < £ I
q=k+l

^—1- w)n J

<
- T

L Jk

00 —\

dx f dx _
(xu> + to)n (xw - u))ns J,_ s J

M /_JL_ f
T I u)s(-n+l) !

(9a)

or

M
2Tr(n-l)

1 1
(9b)

The expression given in (9) can be used to calculate an upper bound

tos cos ' . , . .
magnitude error for any uje[- y- , -r— ]. It is obvious that |E(jcu)| is

an even function with respect to to, i.e., [E(jo>)| = |E(-JOJ)|. It is then
o)s

only necessary to consider to's on the range 0 <_ to _<_ -r— =

" For ID'S on this range it is easily deduced that the maximum value of

the upper bound magnitude error occurs at o> = wg/2. Thus the absolute.

maximum magnitude error that any point on this given frequency . range can

achieve is

M

max 2Tru>n-1(n-l) (k (k -
(10)

The relation (10) allows for the calculation of a bound on the maximum

magnitude error that any point in the allowable frequency range.can

possess. A quick estimate of the magnitude error of any frequency point,



where o)e[0, o)g/2] , can be obtained from (10), whereas (9) can be used to

obtain a point by point maximum magnitude error for frequency points on

the interval 0 < 01 < o> /2.
— —» o

It is obvious from both (9) and (10) that the choice of M affects

the maximum magnitude error upper bound. In fact the smaller M is, the

smaller the upper bound error. Thus, the .closer that M/|(onj approximates

the magnitude of G(JUJ) for u) >_ ku)g and to ̂-"kto the more accurate the

upper bound magnitude error will be in predicting the actual error. One

technique for calculating the value of the smallest M is to plot the

|G(JOJ)| for u> > ko)s on log - log paper and then construct a straight. line

whose slope is [-(octave)x n/octave] which is greater than |G(ju))| for •

o) > ko)g but is as near as possible to |G(jto)|. This straight line may be

labeled as S(o)). From the log - log plot for some value of frequency, e.g.,

to = a>i, the corresponding value of S(o)) can be read, i.e., S(o)j). Then

M = 8(0)!) • ojj11.

'Examples

The previously derived upper bound magnitude error for bounding the

magnitude error caused by truncating the infinite series^ (1), after k

positive and negative terms is of practical use only if the bound can

produce a reasonable estimate of the actual error. In order to illustrate

that the upper bound calculation given in (9b) can do this, two examples

of.its use are given in the followings

Example 1 - Consider a continuous system described by the following

transfer function:

•« '



It is desired to use (9b) to approximate the sampled frequency response

of this system when oo = 25 rad/sec and k = 2. Table 1 is used to compare
s

the approximate frequency response,to the exact frequency response and to

compare the actual magnitude error to the upper bound magnitude error

calculated from (9b) when M = 1.0.*

Example 2 - In this case.consider.a continuous system described by

(s+2)
G(s) = 256.0 (s + 4)(s + 8)(s + 16)

For k = 5, ojg = 25 rad/sec, and M = 256.0 Table 2 can be used to make

comparisons between the approximate and the exact.frequency responses and

the actual and the upper bound magnitude errors.

Analysis of .Results and Conclusion

From the preceding examples it is seen that the upper bound magnitude

error equation, (9b) can yield reasonable estimates of the actual error.

However, it should be pointed out that upper bound calculations depend

very much upon M. In fact in the examples given the upper bound calcula-

tions are as sinall as possible because M was chosen so that M/1 to | is the

actual asymtote of JG(jw)| as ui ->• °°. If kojg had been small enough so that

this would not have been possible then the upper bound calculation would

have probably been much greater than the actual error,.e.g., cases where

ktos is less than the last break frequency of G(jo>) or the value of ku>s is

close to the break frequency of a pair of complex conjugate poles with

6 < 0.707.

*
Magnitude error is defined in (4).
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There are two extensions or modifications which would greatly improve.

upper bound magnitude calculations. First, the technique derived in this

report is not applicable to systems with only one more pole than zero.

Thus the upper bound magnitude derivation should be extended so that this

case is included,, Secondly, modifications of the derivation should be made

so that a tighter bound can be calculated. This could be done by producing

tables that could be used for the actual evaluation of (8). This would

eliminate the error caused by approximating the value of the infinite

series of (8) by integrals of continuous variables. With these extensions

the upper bound magnitude calculation would be enhanced greatly.

References
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