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A full order adaptive observer is described
for observing the states of a single-input single-
output observable continuous differential system
with unknown parameters. Convergence of the
observer states to those of the system is accom-
plished by directly changing the parameters of
the observer using an adaptive law based upon
Liapunov stability theory. Observer eigenvalues
may be freely chosen. Some restriction is placed
upon the system input in that it must be suffi-
ciently rich in frequencies in order to insure
convergence.

Introduction

The Luenberger observer [1,2,3] allows
extraction of all the states of an observable
linear system when given the output and the
parameters of the system. In some cases the
system parameters may not be known; consequently,
in these cases the state observations are sub-
ject to error. Previous investigators of this
phenomenon have attempted to estimate the error
[6] or change the observer parameters in some
beneficial way [5]. Their analysis suffers in
that the error cannot be guaranteed to vanish.
We report a full order observer for a restrictive
class of systems (that is, single-input single-
output observable continuous linear differential
systems in the absence of a deterministic or
random disturbance vector) for which the observa-
tion error is guaranteed to vanish regardless of
the size of the constant or slowly varying para-
meter ignorance. The observer parameters are
directly changed in a way that satisfies a quad-
ratic Liapunov function of the error and the
correct but unknown Luenberger observer para-
meters. The observer poles may be placed at any
stable location and no derivatives are required
in the adaptive law.

The Problem

A differential system is assumed of the
form

(1)
w = Aw + Br w(0)

y = [10 0 0]w

A nxn
B nxl

for which only the single output y= Cw = w is

available for measurement. It is assumed that

some or all of the elements of matrices A and B
are unknown, A is stable, w" may be unknown, and
the pair (C,A) is completely observable. The
observer is of the form

Fz + GCw + Dr + Hu z(0)
(2)

F nxn
D nxl

G nxl
H nxn and diagonal

where z is arbitrary and u is a control vector
yet to be defined but with the property that u-*0
as t-H». The problem is to adaptively form a
triple (G.DjT) so that the error vector defined
as e = z-T w vanishes as the system adapts. T
is a non-singular square matrix with the property
that CT=C.

Define a transformation x = T~ w so that e =z-x.
Then (1) becomes

AQx T-1Br x(0) = Tw"

y = CTx « Cx

and (2) becomes

(1A)

Fz + GCx + Dr + Hu

z(0)
(2A)

„-!:„It is desired that A- = T AT be in the "output"
form

-a

-a

11

21

31

1 0 0

0 1 0

0 0 1

ill

wherein the first column contains the system para-
meters and all other elements are zero save the
super diagonal elements, which are unity. It is
clear that for any non-zero matrix A there corres-
ponds a similar matrix A_, although the elements
of the similarity transformation may be unknown
if elements of A are unknown. The following
theorem defines the additional restriction that
must be placed upon A so that both An = T~^AT and



CT = C.

Theorem [proof given in ref. 11J. Let A be
an nxn matrix, C = [k,0,0,...,0] a Ixn matrix
with k#0, A_ an nxn matrix in output form, and

£
T = (. . . ] an nxn nonsingular matrix. There

T ' ' -1exists an (n-l)xn matrix T such that A=TAQT iff
the pair (C,A) is completely observable. As a
result of the theorem, any observable system (1)
may be placed by similarity transformation into
system (1A) with CT=C. The elements of T may be
unknown since A is unknown. The problem will
be considered as defined by equation (1A) and
(2A), so that e = z-x must vanish. Eventually
the problem of constructing w from x will be
solved.

The Adaptive Law

It is now assumed without restriction that
some stable "nominal" plant matrix is known or

where

is chosen so that A, AQ + A- where A- has all

known elements and is in output form. Then AAfl

contains all zero elements except for the first
column which has unknown elements. The vector
error equation may then be written, letting
e = z-x, as

e = Fe + (F + GC - AQ - AAQ)x + ABr + Hu

where AB = D-T B. F may be chosen as F =A.-GC.

The resulting error equation Is

(AQ-GC)e - ABr + Hu (3)

It is desired to reduce AAni AB, and u to zero.
Then, if G is chosen so that A.-CC is stable,

e(t) approaches zero. A theorem of Luenberger
[1] allows the eigenvalues of A..-GC to be placed
arbitrarily by selection of G, with the sole
exception that A--GC cannot have the same eigen-
values as Afl. Consequently, A.-GC can always be

made stable. Moreover, it is assumed throughout
that G will be chosen so that all elements of
AO-GC will be constant even under changes in

AA- due to the adaptive law.

The error between plant states x and observer
states z may be measured only by the scalar

z.-y = zi~xi • insure that only avail-

able measurements are included in the adaptive
law, the vector error equation (3) is "collapsed"
to yield a scalar differential equation of the
form

n

1=0

(i)

i-0

n-1

i=-0

.<!>

(1)

n-1

1-0

(4)

(i)

Kg A--GC, a constant matrix

a. e -AA.j and its several derivatives

6. e fiB and its several derivatives

ht e H

Letting p = At At, the left side of (4) may be
written as

iSi (P + V *!

Now a reduction of order technique, similar to
that of Gilbart and Monopoli [6], will be applied.
n-1 of the (p + A ) terms will be selected and
factored out of tfie right side of (4) excluding
the u. terms. Assuming that p + A was not

selected, the error equation then has the form

(P (p+At)[

-f
n-1

i=0

(i)

(5)

where

j=2

j=2

(p + A )v.
J i

(P + A )v = r
(±-n)v '

1=1,2,...,n-1

i=n,n+l,...,n-hQ

<|>. are functions of {a.} and (B . ) , and f ( 4 j ,1 i i j
(k)

vi ) is a function of derivatives of $ but

does not contain 4> for any j .

Then associated with each <K is a u5 ;
(1) •*specifically, u^ is made equal to the negative

of all the terms in which $| appears for

every i and j. Here it is noted that by construc-
tion neither v nor u. require a derivative net-

work for implementation. Then (5) becomes
n r n+nri-1n T n+nri"1 T

I Vi

(6)
and each u

Taking Laplace transform of (6) and dividing by

:i,(6 + A ) yields



Reconstruction of T

I n-HB-n

Jo *iVi

(7)

+(initial conditions)/ [J2 (a + X )

for which follows

1=0
i + I «.. exp [-X t],
i i=0 * *

X., real

where ;(». are constants depending upon the initial

conditions if {X̂ } are distinct; otherwise some

<». may be time dependent. (Note: should it be
desired, when n is even, to have no real
observer pole, the operation in (7) may still be
made by modifying the right side of (7) in an
obvious way) .

I 2 n+m+1 -
A Liapunov function V = o^n ei +ili mi('>î

is chosen, and V Is calculated. Following
Shackcloth [7], V can be taade to be of the form

V= - m-X e
" A i

+ e exp [-X t]

^en ^ = _ _2 v^ for all 1

(9)

(10)

Other adaptive laws can easily be chosen instead
if it is desired to increase convergence speed
[8,9].

From the form of V, e. is stable in the
sense of Lagrange with the region of attraction
determined by the unknown constants iji. and the

exponential time function. Clearly the regior
of attraction shrinks exponentially with time
and eventually vanishes; consequently e.. is
eventually asymptotically stable, and lim e =0.

£-*•«>

All derivatives of e., must vanish in the limit
also since the error equation is linear of
first order. Although the Liapunov function is
defined on a non-compact manifold (i.e., tf con-
tains e. but not $.,)• it can be shown that

{$ } is eventually asymptotically stable if the
input to the plant, r, is periodic and contains
(n-hn+l)/2 distinct frequencies, none of which
has a phase shift of kit through the plant, k any
integer. [10] It must be assumed that the adap-
tive observer is limited to systems for which
convergence to parameter differences {$ ) is

assured.

Since AA-,fiB0,u. approach zero, the vector
e is eventually asymptotically stable if G is
chosen so that A.-GC is asymptotically stable.

Using the "nominal" matrix as initial condi-
tions, the actual value of the system parameters
may be determined by integrating the change in
parameters (6.) until adaptation is complete and
combining appropriately. This procedure nay be
accomplished while the adaptation progresses by
forming a matrix T(t) with elements composed of the
combination of nominal values and the integrals

/%.dt where {?.} is defined in (10).
o i i

to, the estimate of u, is constructed from the
observer output 2 by forming T z. Since lim z — x

•x, - t-x°
and lim T = T, so lim u = to.

A third order plant with one zero is con-
sidered for illustration of the previous dis-
cussed design. Let the plant be described by

0 f o
w+

y - wl (1*)

where a^.a ,<*„, C1, and C- are unknown. A

transformation T that delivers the system into
output form is

1 0 0

.-1
a2*"2

a2+02

Note that C = CT. Then in output form, (1*)
becomes

x + bl+0l

V60

(1A*)

The error equation is

e +

o2 0 0*

ax 0 0

a0 0 0

x +

' 0 "

-81

-so

10

(3")



and the scalar error equation is

where
(4*)

Where n. are unknown constants depending upon
initial conditions. Dividing by (s+X )(s+X )
yields * 3

2 it

±-1=0 i=3

expl-X2t] (8*)

kl =

Let s3+k2s
2+k s+kfl = ). Then

Consequently,

<£>
v.e.

v.e
i 1

i - 0,1,2

i = 3,4
(10*)

(p + X j i X p + X2) (p + The observer has the form

-k2

k

1 O

0 1 z +

g2 o o

g0

0 0

o o

dT (5*)

r +

where

=al-

V0 ' Xl

"*'X2X3V2 ° x

where

• 82 eivo

- (.— v + (X +X,) — v )em3 2 2 3 «x 0 1

Let - (5T Vl + X2X3 ST Vel

Kb ' -

Then elV4

(7*) v I v d dt

-1

2 (*)



A Simulation

The third order system of the example was
simulated on a digital computer using the follow-
ing parameters

V24

3^26

V° Cj=30 V'24

0^=74 C2=195 mn/m =2000
^ o

o_=0 1^=30

The eigenvalues of the observer (determined by
{k^} were X = -4, A_= -2, A = -3. The input to

the plant was a square wave of magnitude 1 and
frequency 6t. Two parameters, b- and g. , were

adjusted by the adaptive law. These were initially
set at bg = 73, g. = -5 corresponding to a correct
value of bg - 75, g = -74. The accompanying graph

illustrates the behavior of b., g., e_, and e,

as a function of time.

Remark
* *\»

As has been previously stated, u - Tz and Jig
u = u. In the general case of an arbitrary plant
matrix A, the determinant of T may vanish for some
instances of time. These momentary occurrences, of
course, have no detrimental effect on u since con-
vergence of u to ID is guaranteed. In the important
particular case of the preceding example, however,
advantage has been taken of the fact that det T is
constant by writing equation (*) as £ «, (T"1)"1 z.
Since for the case of phase variable plant of high
order the literal form of T~ is easily produced,

it is surmised that writing (T™ )~ = T allows a
particularly simple construction of u> when digital
computation, rather than analog, is desired.
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Conclusion

An adaptive observer has been demonstrated
for single-input single-output systems with con-
stant or slowly varying parameters. Work is
currently underway to extend the observer to
multivariable systems as well as systems with
rapidly varying parameters. It is hoped that the
adaptive ovserver will be eventually used not
only for observing the state of an unknown system
but in model reference problems and pole place-
ment problems as well.
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