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I ntroduction

The Luenberger observer [1,2,3] allows extracticon of the state of an
observable linear system when glven .I. the system input, ‘2 the system
output, .3 the form of the system, and 14" the parameter values of the system.
In those cases for which the system parameters are unknown the state observation
is subject to error. Some previous Investigators of parameter ignorance In
observers [4,5] alleviate to some degree the observation error, but they are
unable to guarantee the error vanishes or that their computational algorithm
converges when the magnitude of parameter ignorance is large. We have previously
reported [ 6] the basics of a full order adeptive observer which negates these
disadvantages. Our present paper consliderably simplifies the exposition of
the previocus paper and extends, both computationally and theoretlically, the topic
cf that paper. Briefly, the full order adaptive cobserver for single-input
single-output cbservable contlnuous stable ilinear dffferenflal'sysfems In The
absence of a deterministic or randem disturbance vector guarantees the vanishing
of observation error regardless cf the size of the constant or slpwly varyling
parameter Ignorence. The observer parameters are directly changed in a
Liapunov adaptive way so as to eventually yield the unknown full order Luenberger
cbserver. The observer poles may throughout be placed freely in the stable

reglon and no derivatives are required in the adaptive law.

The Problem

A differential system Is assumed of the form

-~

W= Aw + Br w(0) = w
y =01 00 --- 00w = Cw ()
A nxn

B nxl
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for which only the single output y = Cw = W, Is avallable for measurement.
It is assumed that a similarity transformetion has been made if necessary so
that the single-input - single-output system has the form of (). It is
assumed that scme or all of the elements of matrices A and B are unknown, A is

stable, wo may be unknown, and the palr (C,A) Is completely observable. The

observer is of the form

z = Kz + GCw + Dr + Hu z(0) = z0 .
(2)

F nxn : G nxl

D nxl| H nxn and dlagonal

where K is arbitrary and u is a control vector yet to be defined but with the
property that u»0 as t»=~ . The problem Is to adaptively form a triple (G,D,T)

so that the error vector deflined as e=z-T

w vanishes as the system adapts. T
is a non-singular square matrix with the property that CT=C. Fig. | itlustrates
the adaptation. T(t) Is a matrix which varles according to the adaptation

procedure so that, when the adaptation Is completed T(t) becomes T (1.e.

Him T8 = T).

t>oo

Define a transformation x = T—'w so that ¢ = z-x. Then ({) beccmes

x = ﬂox + T_lBr x{(0) = T'lwo
y = CTx = Cx ’ (1A
~ - -1~
AO =T AT
and (2) becomes
- Z = KOZ+ GCx + Dr + Hu
0 (2A)
z(0) = 2

= T AT be In the “output®

{t is desired for subsequent devélopment that AO

form



I | 0 0 . 0

-2, 0 | 0 e e . 0
i =y 0 0 i . e 0
o:

-3 0 0 0 v e s 0

wherein the first column contalns the system parameters and all other elements
are zero save the super dlagonal elements, which are unity. 1+ is clear that for
any non-zero matrix A with a single invarient polynomial there corresponds a
similar matrix AO’ although the elements of the similarity transformation may be
unknown 1f elements of A are unknown. The following thecrem defines the addition-
al restriction that must be placed upcn A sc that both AO = T-IAT and CT = C.
Theorem

[proot given In Appendix Al. Let A be an nxn matrix, C = [k,0,0,...0] a

¢ . ] an

Ixn matrix with k#0, A, an nxn matrix In output form, and T =[ .

0 X
nxn nonsingluar matrix. There exists an (n-1)xn matrix f such ThafTA=TAOT— ~ife
the pair (C,A) is completely observable.

As a result of the theorem, any observable system (]) may be placed by simil-
arity transformation Into system (IA) with CT=C. The elements of T may be unknown
since A is unknown. The problem will be considered as defined by equation ({A)

and (2A), so that e = z-x must vanish. Eventually the probiem of constructing w

from x will be solved. -



The Adaptive Law

It Is now assumed, more for explanatory purpose than actual practical need,

that some stable "nominal® plan+ matrix Is elther known or is chosen so that

)

0 = A0 + AAO, where A0

ly AAO contains all zero elements except for the left columwhich has elements

has all known elements and Is In output form. Consequent-

that are to be adapted. Letting e = z-x, the vector error equation Is
e = Ke + (K#GC—AO—AAO)X + ABr + Hu
e(0) = eO

where AB = D-T 'B. A theorem of Luenberger [1] allows the eigenvalues of Ay-GC

to be arbitrarlly placed by selection of G With the sole exception that AO-GC
cannot have the same elgenvalues as AO). For the above error equation, let

G=G‘ + 62 and K = A0~G2C. Then as a result of the theorem of Luenberger and

of the special forms of AO and C, the vector error equation Is

&= Koe + (GIC-AA Ix + ABr + Hu (3)

0

where K, is an arbitrary stable constant matrix in cutput form with elgenvalues

0

differing from AO. The adaptive strategy s to change Gl and AB to eliminate

the influence of x and r In (3); since by assumption K, is a constant matrix,

0

changing G, Is equivalent to changing G and wlil] be conslidered as such In the

!

ensuing.

For notatlonal convenlence in the next sectlons the following definitlons

are made,
-kn_I | 0 0 . 0]
-kn_2 0 { 0 ‘e 0
K0= -kn—S 0 0 i 0
;—ko 0 0 0 . e 0 ]




[« 0 0 . 0 ]
n-1
@ _p 0 O “os 0
@ _x 0 0 . 0
GC—AA0 =
. g 0 0 0
o
r9,._1 7
0 n-1|
9p-2
g
n-3
AB= 0 G =
Bm
8m—l g
0 J
Bn-2 -
L %
H = dlag [0, hoogr Nogs "1 hO] and nxn
n = order of plant
. (5
m = number of zeroes in system transfer functiocn.
The errcr between plant state x and observer state z may be measured on!:
by the scalzr state variable e T.z7Y = 27X, To Insure that only avall- -

measurement< aire called for in the adaptive laws, (3) Is “collapsed" to ¥y

a scalar differential equation of the form



A - -Sat  AC] IS PR
L ke ) S I S A
i=0 j=0 1=0 J
. g mEJ i+5) NOPREY ' (5)
j=0 1=0 | 1) M
n-2

For simplicity let A, be a real characteristic value of AO-GC. Letting

!
p=d/dt, the left side of (5 may be written as

n-1 i
(p+ap [ 1 2P } €

where the s 0 <1 < n-l, are defined by equating the above expression with
the left part of (5). |(f It is desired to have no real observer pole, an
obvious medification to Eq. 6 Is required. Now a reduction of order technique,

similar to that of Gilbart and Monopoli [[7], Is applied to (5). The result Is

(p+r)) [ nfl alpl]el’= .[ ?E;a'p]J [ "Em " ]

1=0 =0
n-2 .
Ff Hf o+ ] h uld (6)
j=0 J J
In which, assuming m < n-2, in (6)
o, - a, o i =0,1,2,...,n-2
i I “n~1
= = n- 47
¢i ﬁan_l ‘ n I h
l% I = n,ntl, n+t2,..., mtn < 2n-|

and, defining the "state variable filters® Vi



n-1 s
Y a, W= B 1=0, 1,2 , n=2
LS5
J-—
Vol o ol (8)
n:! Gy _ Ci=m
TR { = n, ntl, 2, , 2(n=1)
R j !
J-—
Von-! v
n-2 k=1 J
- ’) L
fx= ) 9__.J_ [X(k‘} ‘ 6]
=1 j=o ¢t ©)
) niz niz n'%‘J _— 9&,. [V;x) 0.3
k=0 j=0 1=0 g
m k-t Jj . il
fo= U AL U (10)
k=1 j=0 dt
+ - — - . .
—nn1n2 nf 2arr+‘ g*-[%3)$Q
ken j=0 1=0 *togyd
Should m=n-1 then (1) should be changed 10 the extent that
- = 4 v -
» B\—n 31.n Bn—\ o n,n*l, ntz, , 2n~2
T | (7.3)
B -1 i = 2n-1
and (10) is changed 1o
n-2 k-1 J e
fr © ) éj' Lentk e 3
Kl j=0 dt e
2n-2 n=2 n-2-] J (i
S LR

-3 Y DRI -
k=n j=0 120 i gd 8
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I+ 1s noted that (9) and (10} contain no other derlvative of ¢k’
0 < k < ptm, but ék' According to the aceptive law (16), $ Is an available
measurement. By careful maenipulation of the state-space generation of (8),
It is possible therefore to remove the totality of terms in (9) and (10) from
(6). Generqffon of (8), I+ Is pointed out, requires né derivatives of Xy
It is further noted that, since ék is the change in parameters due to adapt~
}afion, as adaptation is compleféd 6k+0, 0 :ki_n+m,‘and consequently Ll: u.=0,
Table | gives the terms in uj for systems ranging from second to fourth
order when (8) has been chosen to be generated by a normal form. The table
can be extended . . RN

The implementation of Uj as described reduces (6) to

n=-{

i n-1 ; n+m
(p¥r € ¥ a; p e, = ( ) 3, p) D) ¢ Vij ()
i=0 i=0 i=0
n-| i
Taking Laplace transform of (I1) and dividing by } a;s yields
i=0
n+m .
i
(s+A,)e, - [ z ¢' v,] +;JE(In:+ial conditions)
120 1 1 (12)
a;s
i=0
for which follows
n+m n=-1
€ +xe, = } 6, v+ ) y. exp[-r,1] (i3)
I [ 120 I i jgp 1 |

where w‘ are unknown constants or time dependent functions depending upon i
n~1|

initial conditions and {Ai}, the set of characteristic values of } a,s’.
=0
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A Lliapunov function is now to be formed so that stability of the adaptive
Observer may be assured. To this end a positive definite function of the

measured error e and the unknown parameter errors ¢I Is deflned as

l nim 2

2
V=xsme + ) m ¢7) (14)
2 7sTE gy 1

Following Shackcloth [8], V can be made to be

-1
. - 2 n
V = mA e + e IZ ¥ exp[-xifj (15)
3 ms
when ¢I i 2 e 0< i < ntm (1e)
.i -

Other adaptive laws can easlly be chosen instead if it is desired to Increase
convergence speed [9,10].

Implementation of the adaptive law In (16) can be accomplished by

reference to (7) and to the definitions of the variables o and Bi' For
example
. m
¢,_ a_z. :-._i
n-1 n-1 e p X8
n-|
m
: = - a o = + a = X, €
$n-2 ®n-2 n~2 “n-1 9p-2 n-2 mo-i I 7l
m
=-= v e
m_p n=2-1
etc.

in which él may be ascertained.
From the form of V, e Is stable In the sense of Lagrange with the resicn
of attraction determined by.The-unknown constants wi and the decaylng exprantiaf
time function. Clear(y'fhe region of‘a++rac+¥on shrinks exponentially wi s
time and eventually vanlishes; consequently e Is eventually asymptotict| .

stable and lim el = 0. A}l derivatives of e must vanish in the [Imit 5% wail
F->0
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since the scalar error equation (13) is llnear and of first order and possessing
finite frequencies.

However, the Liapunov function (14) 1s defined on a non-compact manifold.
Consequently {¢i} is shown to be (eventually) stable but not necessarlly
asymptotically stable [11]. 1t is evident from (3) that each ¢i must vanish
by adaptation In order to observe the correct plant state. Theorem 2 defines

the restriction placed upon r(t) in order to guarantee vector error convergence.

Theorem 2 [Proof In Appendix B8]

Suppose there exists no set of real constents {qi}‘ i=0,1,2,..., ntm, for
which the (observable) system command Input r(t) in 1t+s steady-state condlition
is 2 solution of the homogeneous differential equation

n+m (N

¥ q;r =0
i=0

where n and m are defined In (4).

Then |im ¢i(f) =0, 1 =0, 1, 2, ..., ntm, and lim e(+) = 0 Is assured.
o0 Tro

Corollary

If the steady-state command input r(t) is periodic, a sufficient condlition
in order for fim e(+) =0 In (3) is that r(+) contain at least [n+m+1]/2 distinct
frequencies i:+?fs steady-state condition.

I+ is ﬁofed parenthectically that the corollary seems a genecralization of a
theorem of Lion [12] although the applicablility of that theorem to the present

topic appears obscure.

Reconstruction of T

Using the "nominal' matrix AO as Initial condition, the actual valuve <’ The
system parameters may be determined by integrating the change In parameters “o.%,

defined in (16), untli| adaptation is complete and combining appropriately in +he
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form of the matrix T. Thus T(+) “drifts" toward T as adaptation progresses and
Fim T(+) = T. The example makes this technique clear.

"’—)m

Q, the estimate of w, is constructed from the observer output z by forming

T(t)z. Consequently lim W= .
T

Practical Conslderations

Reference to Table | reveals that, speaking practically of analog implementa-
tion, for high order systems a prohibitively large number of multipliers must be
employed to generate the observer input uJ(f). Since the magnitude of each uj(f)
depends upon +ﬁe magnitude of parameter change due sclely to the adaptation
process, It is reasonable to Inquire whether uj(f) can be omitted altogether
(l.e. make H = 0),especially when the adaptation proceeds slowly by cholce of const-
ants in(6) By analysis of (14), it may be seen that omit+ing uj(+) tends to
degrade the adeptation process due to the inclusion of disturbances fx and fr,
eq. (9) and (10),

However a theoretical analysis of a second order system Indicates that the
u term may be safely omitted when the observer eigenvalues |ie left of a curve
passing through the left half-plane. This curve represents a trade off between
frequency filtering in the adaptive law and magnitude of the adaptive gains.

Generalization of this work awalts completion.

Exampie
A third order plant with cne zero Is considered for illustration. Let the

plant be described by

0 v o 0
W= |0 0 oW+ e | (1%)
-(ao+ ao) -(al+a|) —(a2+a2) co
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in which ans @5 G5y Cp and < are unknown. ao,‘al, a, are the nominal values.
In output form, (I*) is
-(a2+a2) | 0 0
X = ~(a]+a‘) 0 1 Ix + bl-sI r ( 1A¥)
i -(a0+ao) 0 © | L bo—eo ]
YEXPEW,
The error equation (3) Is now
- - (
-k2 | 0 a, 0 0
é = —kI 0 ] e + aply + B r + uy (3%)
—ko 0 0 ay By | Ug
L - -
and the scalar error equation (5) Is now
e + kZel + k‘el + kOG! = (ao + o + az)x! + (al + 2a2)x‘ + 2

. *
+8F 4 (g + B+ 0+ ug (%)

Employing the definitions glven In (7), (8), and Table | when n=3 and m=|, the

scalar error equation (5*%) is equivalent to
2 4
= *
p+agle = (p” +a p+ap (néo 6 V) (H*)

(ptA,) (p2 + a

when Uy and ub have been implemented as

g = ¢ptvpl2) +a, Vol + ¢ (v (2) +a v ()

+ 6 (va(2) + 2. v,(1)) + 54(v4(2) +a V. (N

3°°3 I3 4
= 6 V(1) + 6 b d
U ¢O O.l) ¢1 Vl(‘) + ¢3v3(l) + ¢4 v4(|)
As an illustration of the generation of VI(J) appearing above, consider vy which

s defined by
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and the generation of Vf(j) in normal form,

Then, what is equivalent for Vl‘

v, (1) 0 17 v, e ;
= + X

Ql<2) -y -a | v, @ -a

| vl(l) and both v'(l) and v‘(2) are available for measurement.

Other vi(j) are generated in a similar manner,

Consequently v

Defining éi as In (16), the observer has the form

-k, 1 0 9, 0 0
z= -k| 0 | z + 9| v + bI r + u
L% 0 0 |9 b B
where
- mS
LT, % Ve
. ms
07w, 1Y
mS
927 T, %
ms ms
g, =-e (— v, + a — x,)
| Lo Lom, T
. ms ms
gy = - e, ( —=v_ +a,— X
0 ] My 0 0 m, |
and -
! 0 0
.’- A
W= 3y - J g, df ' Olz=T(t)z"
0
T i X
2 - J 9 dt - J 9p dt ]
L 0 0 .
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w is the estimate of plant state w, and Iim y#w. Note that CT = C.
! o

A Simulation

The third order system of the example was simulated on a digital computer

using the following parameters

ay = 24 ay = 0 CI = 30 kO = 24 mo/m3 = 8000
3, = 26 a = 74 C2 = |95 kl = 26 mo/m5 = 2000
a, = 9 a, = O. b' = 30 k2 =9 99 =95 = 0
The elgenvalues of the observer (determined by {k’I)were AI = -4, Az = -2, A3 = -3,

The input to the plant was a square wave of magnitude | and frequency 6t. Two

parameters, bO and g, were adjusted by the adaptive law. These were initially

set at bo = 73, 9, = -5 corresponding to a correct value of bo = 75, 9, = ~-74.
Fig. 2 illustrates the behavior of bo, 9y» € and @5 3s a function of time.
Remark

As Has been previocusly stated, W= ?z and limw =w. In the general case of an
arbitrary plant matrix A; the determinant of % ;;; vanlsh for some instances of
time. These monentary occurrences of course, have no deterimental effect on W since
convergence of wtowis guaranteed. |In the Important particular case of the
preceding example, however, advanfage has been taken of the fact that det T is
constant by writing equation (¥) as w = (T H™! 2. Since for the case of phase
variable plant of high order the literal form of T—| is easily producéd, it is
surmised that writing 7" = T allows a particular simple construction of W

when digital computation, rather than amalog, is desired.

Conclusion

An adaptive observer has been demonstrated for single-Iinput single-outnut
systems with constant or siowly varying parameters, Work Is currently underway

to extend the observer to multivariable systems as well as systems with ranidly

R
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varying parameters and systems with noise. |t is hoped that the acaptive observer
will be eventually used not only for observing the state of an unknown system

but In model reference paroblems and pole placement problems as well.
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APPENDIX A

In order to complete the proof of the theorem when A has repeated eigen-
values (and the number of eigenvectors cf A.is fess than n), the following
femma s needed.
Lomma

Let A be an nxn matrix, ¢ = [k, 0, 0, ..., 0], k # 0, and ¢y(A) =
{all nonsingluar matrices P|J = P—IAP} where J Is an nxn mafrix of Jordan form.
Then there exists a Pe y(A) such that CP = [(p,,g), (py,0),enny (pj,g)] where
ach vector (pi,g) = [pi, 0, 0, ..., 0] has a dimension equal to the order of

the corresponding iID»Jordan block in J.

Procf of theorem

Since the similarity transformation matrix thet transforms the metrix AO
(in cutput form) into the ncrmal form An,

- -

0
0

a a . o

2
nl n2 nn

is triangular, It suffices to show that the theorem is irue with AO replaced by

A .
n

(2) Let An be partitioned info
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where AII scalar and AIZ is | x (n-1) row vector, A2l and A22 approprlately

formed. Then

L I T 0
A =
| -1 -
Ty T R Rl 2T Ty
for 1 > 1, and
T _ T~ _ =t _pr_, 1 41 O
CA = CTAnT =CAT  =[ AIZ T2 Tl : AIZTZ ]
since Al: = 0 for | i_n—l.v The term —A!;'Tngl Is a scalar which may be any
value.
P
AIZ = [6'I 62| 63| "'G(n-l)i] where
s
AN
T
I
| i=j I R
6!j = . Let T2 = . s
0 1#j
+ T
-.-_n—l—
where Ti are row vectors. Then
T o T.70 .21 .7 n-1 T
Q=[C AC .ATC .... (CA ) J =
K KLk Kn-1
0 .
t ot
0 - . -2 —n=~1
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Since T, nonsingular, Ii mutually independent as well as independent of C.

2
Therefore, observability matrix Q Is of rank n. Therefore,A observable.
(b) Suppcse (A, C) completely cbservable but An# T—!AT for any T. Let P

be @ modal matrix satisfying the lemma condltion so that J =P AP and J is in

Jordan canonical form. Let V be a Van der Monde matrix corresponding to J

such.that A = v~ lapv™! . Since (A,C) observable, A possess but one invariant

polynomial under supposition of the form of C [13]; therefore V exists. By
assumption,T # vl Since T 1s arbltrary, this Implies that CT # CPV'I, or
that
CTV = CV # CP
Because of the lemma, the P chosen in such that
CP = [p!, 0, 0, ..., 0].
A necessary condition on CP for observabitity is that Py be non-zero {14].
By the form of the Van der Monde matrix, CV = [ql, 0, 0, ..., 0] with
q, # 0 a constent.
CV # CP implies q, # P But q, Is any non-zero constant; thus, q, # P,

implies P, = 0 which Implies (A,C) not observable. Thus a contradiction Is

reached.
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APPENDIX B
Proof of Thecrem 2
I+ has been shown that
I'im e](f) =0
t >
lim u.(+) = 0 for each j (81
oo J
lim ¢.(+) = constant for each |

Therefore from (7) and (7.a)

lim ai(T) = constant  for each |

o0 (B2)
I im Bi(f) = constant  for each |

T

Referring to n equatlions (3), each equation may be differentiated In a manner

(n) (n-1) (n=2) . 97
[e| ;92 ’63 y *°ry eﬂj .

Employing (Bl) and (B2) in determining |im gs(f) and letting Bi =0 for | >m,

so as to form the vector gs(f) =

» F>o
equations (B3) result.
. (n~1) (n-1) (n-1)
O=ey THeyy T T
(nsl=0) _  (n-1) (n-1) ((n=1) _ _
oF = ey + a ;Y + Bn-i r I = 2,3,4,...n-1

. (B3)
0 T %Y * BT

All e's may be easily eliminated from (B3) yielding

0= [ ni' a si } + [ % 8 si )r (84)

R A W -
Let the stable (but unknown) plant transfer function be
¢ v i |
[rzo a;s ] y = [ rzo bs }r (B5)

a = |
n
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Combining (B4) and (B5) yields

’f I g I
) + ( B,s') ( a,s )Jr
E E (86)

! i

B
0=[C]

m
120 Zo i

a;s') ¢
i
(B6) represents a condition upon r(t) which is assured In the limit, by:(gl)

and (B2) that is to say, after adaptation has forced e to vanish. Two distinct
pcssibillties exist regarding the solution of the (n+m)-th order Ilinear
hemogeneous differenflél equation (B5): (a) either the steady-state system
ccmmand input r(t) obeys (B%) for some values o and 8', or (b) the ntm+| co-
efficients of polynomial In brackets are In the limit each zero. By supposi-
tion of the thecrem, (a) cannot occur; consequently (b) must be true.

Using the assumption of cbservability tc insure that (B5) is relatively
prime, it Is easy to show by mathematical induction that condition (b) Implies
that the constants a; and Bi'are each zero, which was to be proved.

Corol lary

The corollary Is a direct result of placing the characteristic values
of (B6) along the imaglinary axis. The least number of distinct poles required
of r so that it is not 2 solution of (B6) is exactly one more than the order

of (B6), or ntm+l. Therefore r must contain at least n+$+l distinct

frequencies In its steady~state condition.
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TABLE 1

Notation for generation of Vi in normaj form. In vi(j), J denotes
the state variable, i denotes the function in (8)., Example: for

n=4, v, is defined by

and generated by

- -

&I(ai‘ To ! 07 [ v,(h o |
0,(2) =0 0 [ v o+ X,
jl(S) J‘—ao =y -az- v|(3) -3,
n=2 Up =02 V2t 99 Vo
m=0
n=2 Yo %0 Vo T2 V2
m=|
n=3 Ug = &, v|(2) ta @1 v](l) + 9 vo(2) +a) 0, vO(I)
m=0
a4 v3(l) t 0x v3(2)
= 0, (VI(Z) + 2 vl(l)) + 95 (v0(2) +a, vo(l))
+ os (v3(2) + 3, v3(|))
up = 9y vO(I) + o vl(l) + o v3(|)
n=3 Ug = 4o (v0(2) + a, vo(l)) + ¢| (v|(2) +a, v'(l))
. m= i
+ 43 (v3(2) + a, v3(l)) + 9, (v4(2) +a, v4(l))

c
il

I ? ‘E’i Vi“)



8

3

3
- n

3

3>
o
(X

same
with

C
it

C
i]

same
with

-?23=

as n=3 m=|
{¢i} define in (7a)
2

. 3

3 .
) 685 Vi) * 9, ) a; vy(i)

i=0 j=I j=1
;7 1
d, a., v.(j) + ¢ a.,, v,0(J)
=0 j=1 S R 4 j= j*l "4
. ¢I vi(l) + ¢4 v4(l)
5 3 .
. v, (j)
PRI
i#3
5 2
ca.,, v.{j)
iZO jgl ¢l JHE i J
i#£3
5
) $; v
i=0
i#3
A
6. a. v,(j)
i=0 j=t ' J !
i#3
6 2
ZO jgl ¢, 2541 Y (j) .
i#3
6 L[]
) o, vith
i=0
1£3

as n=4 m=2
{¢i} defined in (7a)
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