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I ntroduction

The Luenberger canonical form 1] Is an extension of the control canonical
formEz] for single-input of'single~ou+pu+ controllable and observable systems
to multivariable systems. The canonical form is not unique In the multivariable

case. However, the controllability indicies are structural invariants of the

£3-7]

system and correspond to the various blocks in the Luenberger canonical form.
Consider the linear time-invariant controllable system

X = Ax + Bu (N

where x is an nx! state vector and u':' is an mx! Input vector. |In addition

It is assumed that the columns of B are |lnearly independent. The controllability
matrix TI= [B,AB,AZB,..., An~{B] has rank n and an nxn nonsingular matrix
k, =1 k-1 k =1
- ol 2 m
P = [91, A94,...A 94, 22, AEQ,...AEQ seee, Agm ] can be selected from

the columns of T. Let €1s ©ps0-e6 be the Oys Ony ...om-Th row respectively

of F>_I where o = Jél kj‘ The vectors €| sey,...€ are used to construct the

(13

transformation matrix




The transformation T reduces the system (1) to the form
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There are several matrix computational difficulties, arising out of the
need to find P_I and T—I, in arriving at the canonical form following Luen-
bergers's construction.

Here, a new algorithm ls presented which ls more efficlent and accurate
than Luenberger's construction. Also, the canonical form is computed directly

and the transformation matrix T is computed only if necessary.

Basic Results

tet the transformatiocn matrix

T = EI4:IQ ...10 :10 1, ...Iq R io ]J. (4)
| | 2 m
Then the similarity transformation satisfies the conditions
AT = TA ~ (5)
B = TB (6)
Numbering the columns of B as [94 22 ces Em], equation (6) imposes the followling

restrictions on the columns of T:

b, =t
~I =0,

b=t +b 1t

2 8y 929y

b =t +b T+ ...4b t
-m O Ty.m = 0m-l’m —om—l

solving for IO ; we can find constants Cji such that
I

i
t =z C; 9.' = =
—0; =1 j1 =j with iy I, 1 l,..m, (7)
Further, from equafimn (5) the columns of T are related by the set of equatlions:
m
t . =At ... -] a o T . o
—0,-J =, JH =1 %10 9 J+l.-—c’I J—|,2,...k£-|, 2=1,2,...m (8.a)
b
0 = At a + 2= 1,2,...m (8.b)
—_— -k + - » .
-0, k’Q | 1= 9159, k£+[ ~0; ’



-4~

Examining (8) recursively, it can be seen that IO -] and 0 can be written entirely

2
in terms of the 1, 's by the equations
i
\ m =i
= "J - K . i = -] =
qu_j A 102 IZI kZO 9,0~ Jkt] A IOI J = 12,00 ko=l 2=, .0.m
) (9.2)

. kn g k§-l )

O=a "¢ - a At g=l,...m (9.b)

' R = TR AL
Substituting for io from equation (7) In equation (9.b) and rearranging the

i

terms, we get

“efe,sa-f 3]

0=A ~ [ b.l ~ (a ) A b 2=l,...m (10)
- - -k +k+
j=1 Jz j k=0 1=1 j=1 GJ’OQ kg k+t - IJ =1
Kaiman L5] has suggested use of the decomposition form:
kz k ! k
A Z Z oAby, 2= L2,0m (n
il k=0

where %ok are constants and {Akbi} P =1,2,...m; k=1, "‘ki is a basls for

the n-space. Unfortunately, the accompanying change of basis suggested by

53

Kalman does not lead elther to the Luenberger canonical form or to the form

suggested by him, as can be seen by applying his method to the example posed

herein.

Without loss of generality we can assume that k, > k

| 2 > e 2 km. Then,

by the selectlion procedure of basis vectors Akbl we can guarantee that
@ik T 0 for k > kl and a21k=0 for k =k£, i > 2. By defining a22k£=|,
condition (11) can be rewritten as

k, [ & m ! ‘
0= A J[ %k, by |+ Ig ZO G AL 2= h2,0, me (12)
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Comparison of equation (10) and (12) suggests the fo]lowlng procedure for

selecting c's and a's:

(n CJZ = aﬁjkz ’ £ =1,2,...m; j=1,2,...%
with Coq = a22k2= 1
m
an jéi Cij aojél"kg+ K+ " @)1k g =1,2,...m; 1 =1,2,...m;

L o Kﬁo,l,..-, k-l

Glven CIJ calculated In (1) and « K= 0 for k > ko, I # 2

21

k =k P> 2

2}
The a's can be obtained by backward substitution from (ii).
Also the b's can be obtalned In the same manner through the equation
. p=|
i b + ) c . b +c¢c, =0, k=p-1, p-2,...1; p=2,3...m.

kop o gekel M9 p

The algorithm suggested here computes the canonical form directly and, If
necessary, the transformation matrix T can be obtalned from equations (7) and

(8.a).

Computational Efficlency

The algorithm suggested in this paper results In a large reduction in the
amount of computation necessary to obtain the canonical form. A comparison
of Table | and Table 2 shows that, using Gaussian elimination techniques where
applicable, there is a saving of at least 2n3 multiplications (ie about 43%

reduction in the number of multiplications).



P n2(n-m) basis n2(n-m)
-1 4 3 . n n 2 '
P g(n nj [ 1 3—-'— —3-+ min"-1)
T 02 (n-m) | a8 mn(m-1)/2
LR TR b's m>/3 - m/3
17l {202 T o+ -g-nmz-anm + 2mn
7' |mm
23 2 2 73w |
Total 43n + 20" (n-m) ~ 43n + nm Total 3N + 3—-2mn(n-m) - 3-(4m+n)
23 '
> 40 < 250’
3
Table | Table 2
Total number of multliplications in Total number of multiplications In
Luenberger's Method the new algorithm

If only the canonical form is necessary there i§ a further reduction in the
numberlof multiplications since the canonical form Is computed directly without
having to compute T.

The algorithm should glve better accuracy than Luenberger's method for
+wo reasons. (1) the zercs are preserved In the canoniceal form and, as such,
round-off errors In their computation ere avolded. (2) the reduced amount of
computation and Gausslan technlques lend to greater Inherent accuracy and the

ability to refine the sclution with additional computations.

Exampie

Consider the system with



Then,

Thus k, = 2 and k, = 1.
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P c

11 %0 L0k + k+ 17 12 %oy,0,=k, + k+ 1T 0
> a, —%—aSZ =4 i.e.ay, =4

220 2% ok, + k+ 1 " %2207 233 = 2

210 ¢ aol,oz-kz +k+ 1T %2 aoz,oz—kz +k+ 17 %20,
Yoy - pag =0 le o = 3

B can be obtained from (111).

+ c ='0 l.e. b = =1

bo|,2 12 0,2 %1277

This glves the canonical form:

o
O
o
o

NN —
-
N —

Conclusions

A new algorlfﬁm Is suggested to obtain the Luenberger canonical form for
multivarlable systems. This method computes the canonical form directly with-
out having to compute the transformation matrix. In addition, there Is a
targe reduction In the number of calculations. The reduced computations along
with Gaussian techniques tend to greater inherent accuracy and the abiiity Yo

refine the solution with additional computations.
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