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INTRODUCTION

In the lasﬁ decade, with thé édvent of high speed com-
‘puters, numerical calculatiohs using finite-differencing
techniques applied to partial differential equations has
been of great interest to gas dynamicists and meteorqlogists.
This has been brought about byvthe accuracy, capacity and
speed that electronic computers offer in the solution of the
complex partial differential equations desciibing the motion
of fluids.

Fiﬁite—difference equations may be constructed and used
- 1n various ways depending on accuracy, stability and import-
iant physical considerations, e.g., conservation laws. A |
"conservation law form" of a-system of differential equations
may take the form

a —-—

Y E + %; F = 0 (1)

where F and E are conservative variables. Another form of
equation (1) may also be considered. This is the "advective

form" of equatioh (1) which is

st E + [R]

-

- Fy =0 - (2)

@

X

where T, and E are vectors and R is a matrix.



In development and_use of finite~differencing techniques,.
meteorologists have favored the advective form.ef the partial
differential equations. Thie is partly due tq the form of
the advection equations whieh are encouhtered in meteorological
studiee, -Molenkamp (9) and Crowley (4) have extensively ap-
plied advecﬁive differencing methods to meteorological model
problems and have examined the results. However, they have
not been able to obtainvaccurate solutions to the problems.
considered, except when relétively complicated and time-con-
suming fourth-order accurate techniques were employed. On
the_other hand, gas dynamiciste have particularly been
ihtereeted in the application of differencing techniques to
"conservative law form" of partial differential equatiOns.
Kutler (5) and Anderson and Vogel ‘l)ihave successfully
“applied conservative techniques to sonic—edged, conical;
wing-body cembinations and flow about a-rectangular wing_

' mQVing supersonically.

It is the purp0se of this reeearch to investigate the
vpossibility_of‘application of the most recen£ conservative
and Qidely applied numerical techniqdes in gas dynamics to
problems encountered in meteorological computations.
Solutione of the advection equation are obtained using con-
servative differencing methods common to gas'dynamics.

These results ere_compared to those obtaiﬁed by Molenkamp,

who differenced the advection equation directly. The



-compariéon shows that better results are obtained where
conservative form of goVerning equation is used. fhis‘is

in agfeement with the resulté'obtained by.Crowley~(4)} ‘In
addition, better results are obtained with lower ordef con-
sérvativé methods as compared with higher order differencing

appliéd to the advection equation,



PROBLEM DEFINITION

In a two-dimensional rectangular coordinate system, the

differential advection equation 1is

A A o,

R R @)
where A is the quantity being advected. Velocity components
u and w are respectively in the x and z directions and t is
time. If a steady velocity field is chosen then velocity
components are no longer functions of time, The above
>equatipn becomes linear and an analytical solution is then
possible. Considering the motion of the fluid to be a rotation
with constant angular velocity, 1, an equivalent form of
equation (3) in cylindrical coordinates becomes

3 3A ' | |

AR R . (4
when 6 is the angular coordinate and radial velocity is zero.
Equation (4) is the wave equation and its analytical solution

is found to be
A(r,8,t) = A (r,6-0t) | o (5)

where r is the radial distance from the axis of rotation and
A¢ is the initially given distribution of A at time zero.
Equation (5) shows that the solution of the wave equation (4)

is an angular displaéement of the initial distribution A,.



A conservative form of equation (3) may be obtained con- .

sidering_an,incompressible'flow. Then the continuity equa-

tion is

v.§=0 | | (6)
or -

du . aw _ ‘ o

multiplying each side by A

Sdu. d ' :
Aae't A 5% 0 o _ S (8)

Now add equation (8) to equatibn (3),>or

5A 9A A du aw] _ | '
§°€+u.3—§+w§—z'+{A——+A =0 : (9)

3X 3z
- which may be written in the following form

JA 9 :

A2t = (Bu) £ g (W) =0 - (10)
This is the conservative form of equation (3). The differ-
encing techniques that are described in the next section are

applied to the general form of this equation.



NUMERICAL TECHNIQUES

In the following section those differencing methods con-
sidered in the present paper are explained. The form of each
equafion is given when applied to the general conservative
hyperbolic partial differential equation in two dimensions,

OE OF G _
The modified equation for each technique is obtained by apply-

ing these methods to the one-dimensional wave equation

Ju , . ou _‘ ‘ : y
_-5—E+c§-£—0> - (12)

In addition to the above, the stébility criterion for each
téchnique 1s given- as obtaiﬁed from the linear stability

. analysis.

Brailovskaya Method
| The first-order predictor-corrector scheme described
below was devised by I. Y. Brailovskaya (2) based on central
differencing. When Brailovskayé's technique is applied_to

equation (11), the result is

=n+l _ _n _ At n _ph
Bk = B3,k ~ & Fy+1,x “Fy-1,x)

At n n.
- 78y (©5,k+1 "65,x-1
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n+1 ’Fn+1 p

ntl _ -n At -

ik = Eyx T 2 Fyeix T Fi-lx
- e (@@L "G‘g.‘*i_l) ' | (13)
| , _

j k+1

The modified partial differential equation (6) for

Brailovskaya's method may be found-by applying this scheme

to one~dimensional wave equation (12)

U, +cu. = %cvaxu
x 27007

t XX

f,.,;..‘ L ' (14)

where v is the Courant number.

Brailovskaya's technique is easy to program beéause of
the simplicity of the structure of the scheme and the simil-
arity of the differences in both predictor and corrector.
The lattervallows the programmer to define only one set of
boundary conditions for botﬁ of the above steps.

This first-order technique is étable under the follow-

ing conditions.

o At o At | . '
l max Ax|S L v l max By |°* 1 (13)

where O max is the maximum eigenvalue of the hyperbolié sys-
tem under consideration.
For better accuracy of the computation, the modified

equation above requires the mesh size to be small such that



it decreases the‘magnitude ot the.second-order error.
Brailovskaya's technique is not widely us ed because of

its low ordef of aCéuracy and also because of the predlctor-

corrector sequence form which increases the computation: time

to that of the second order techniques.

Lax-Wendroff Method
A second-order differencing scheme was derived by Lax
and Wendroff (7) for which the stability criterion is defined
by
" At

“max K?‘S'l ‘

At S ' .
Omax_K?ts 1 . . (16)

where again O ax is the maximum eigenvalue of the hyperbolic
C . . o
system under consideration, - This technique when applied to

"equatidn~(ll) yields

n+l _ _.n At

n n t n
E] xk = Eyx T 2% Fye1,x T Fy-1,6) T my C5,ke1 "G5 ,x-1)
| I _ | o
1 At -n n n -n n n ’
+ = A% ia (F" -F? y-act @D -FD )
2 AX j+%,k J+llk Jlk j-%lk Jrk J llk
L 4
2 [ ]
1 -n S o n -n n _.n
t 3 Gy |B 1065, k+1765, k)78 1065, x7C5 k-1’
J:k+§ . J,k-f ]
1 (a2 ‘
8 \ U ~-Nn n - -n _‘n
8 axoay M5, k((3+1 k+17%5+1,k-1) "P5-1,k+17C5-1,k-1]

~N n “ n
¥ Bj,k+1(F3+1 k+1” Fi-1, k+1) B] k- 1(13+1 k-1~ j-l,kil)]
C(17)



where A '

A” = 3% , B =32 o (18)
and

-1 - .1 N n .

Aj+%-k(E) = A _T(Ljfl,k+Ej kd

4 : .
-n N [ T . | - '
j+2‘rk ' 4

The Lax-Wendroff method applied to the one-dimensional wave
equation forms the following modified partial differential

‘equation

- _ 1 2 2 .
ut + cux = o (1-v %Ax‘ Uy vx Feoeonn (20)

The form of the above equation confirms the order of accuracy
of the Lax-Wendroff technique. One may note that at a Courant
number -equal to unity, the above equation reduces to the exact

wave equation (12) and thus provides an exact solution.

MacCormack Method
MacCormack (8) developed a second~order predictor-
corrector sequence  for use in studies involving hypervelocity

impact cratering. When applied to equation (11), it yields
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=n+l _ gl At n . n At n n )

By k = Bk~ & Fie1,x7Fy,607 &7 C5,k+17%5,x

n+tl _ 1 +1 At =n+1 n+1
Ey. ’f[ ,kEn K“Fg,k Fi-1,x

§n+ 1 an+ 1

K-( jok T3 k= i)] (21

It is interesting to note that this technique is a prefer;
ential scheme using a forward predictér and backward cor-
rector, The.backward prediétor and forward corrector version
of MacCormack's technique is also examined and results are
reported in this paper. MacCormack's differencing scheme

has beeﬁ’applied to gaé dynamic probiems in recent years

and has resulted in aécurate 501utions comparable to better
second-order methods (1, 5). |

In this case, the stability bound is again found to be

At | At o |
lomax K?I‘ 1_' ¢ lomax Z?I‘ 1 L ' (22)

The following modified partial differential equation is
obtained when MacCormack's technique is applied to equation

(12) -

_ 1 2 ,._.2 »
u +cux =-zcC Ax® (1-v7) Uk et , (23)

Note again that at Courant number of unity the above equation

reduces to equation (12),
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Rusanov Method
In 1969, Rusanov (10) and Burstein and Mirin (3)
separately developed a third-order accurate scheme which
has been of great interest to gas dynamicists where high—'
speed computers are available. This three-level predictor-
corrector technique provides accurate solutions when applied
to gas dynamic equations. The Rusanov method applied to the .

general equation (11) results in

(1) 1[ on n n ]
E = . +E". +E".
j+%,k+l T "j+1, k+1 3,k+1 j+1,k “3,k| .
- 1At [pn n _aon _on
¢ ‘i {Fj+1,k+1“‘"j+1,k Fj,k+1 Fj,k]-

At n - n n n
Ay [Gj+l,k+1+Gj,k+1 Gj+1,k'Gj,k]}

2y _on _ 1 At[.(1) (1) (1) a
Esx "Bk "3 GxFo1, 1*F 1, 17F 1 17F 1
Jtz.ktx gtz k-3 jo-z,k+x - 7, -5
PAETGM) C kel) @) ),
3kt 3okt J*r' -3 7"‘7
n+l _ ..n 1 Fh _ph __At n -oph
En,k = 5k = T e kT 5o1, k0 "T0% Pz k2
+ 2F7 n AL (Gh -GT )

S-1,xT3-2,k) * 23 (65, k1703, k-1

. _At,n P o} n
Shy (G5, k+272C5, xk+172C5 k-1"C 3, k-2
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3 (2) F(2) (2) -cl2) 4y
8 .

At
Ex Fy51,x7Fj-1 k)+K—(GJ,k+1 i, k-1

n n n n n ‘
~4E +6E —4Ej_l,k+Ej_2,k}.

Y30 (Eje2,x"4E541, %7685 x

, n P ¢ ‘ n n .n ‘
* Y30 By ke27%F5 k1?6853 k74E5 k-1tEy k2] (24)
This technique is stable when
. Al , 1 P T (25)
max max °Y '
and
av? - vl cw < 3.0 S (26)
where
w= - 24 vy, (27)
When Rusanov's technique.is applied to equation (12), the
following:modified'partial differential equation results,
u, + cu, = - c Ax 3 —4v + v3 ‘u_
t fT KKXX
- o oax® [su-a-1svZiavd] + (28)
120 XXXXX 7 °° :
Again it may be noted that when
v=1.0 , w=23.0 - (29)

an exact solution of wave equation is formed.
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Kutler-Warming Method
The most recent third-order differencing scheme developed
is the modified version of the'Rusanov three-level predictor-
corrector sequence developed by Kutler and Warming (11).

When applied to equation (li), the Kutler-Warming technique

yields
(1) _.n _ 2At,.n  _.n , 2 At .n _ D
Eik = Byk 7 3 & Fye1,x7F5 k073 7565, k+1765 %)
(2) _ Ifon L (1) 2 At (1)__(1) ,_2 at, (1)__(1)
By x = 7[Ej,k+Ej,k 3 5% T3,k Fi-1,K0 73 7 Ci.x Gj,~k—1’}
Pt - g? 4 {E“ -43“ +6E" -4ﬁ“ +E
.k i,k T Y30[%5+2, kT 941,k 0%,k P 5-1,k TP 9-2,k
n n n n n o
* Y30[Ej,k+2 4Ej,k+1+6Ej,k-4Ej,k-1+Ej,k-2]

At n n n n
Elxi'{ 2Fj+2,k+7Fj+1,k'7?j-1,k+2Fj—2,k]j

At n n n
ETK§'[ ZGj,k+2+7Gj,k+1'7Gj,k-1+2Gj,k-2]

_ 3 At (2) _.(2) 3 at[L(2)  _L(2)
8 ix Fj+1,k‘Fj-1,k] 8 y[Gj,k+1 Gj,k—lJ

(30)
The modified equation which results from the application of

this technique to the linear wave equation (12) is

- _ .1 3w _ 3
u +cux = zz c Ax [U 4v+v ] u

t XXX

1

- 135 € Ax4[5w-4-15v2

+4v4] Uy xxxx MERER BAEEY
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‘This technique is modified so that results comparable
with the Rusanov scheme are obtained in less computation
time. Similarity of the results come ffom the fact that
their modified equatiohs aré similar,. and, in fact, identical
up to the fourth-order. A decrease in computation time is
the direct result of simpler equations and less computation
in all three levels due to elimination of intermediate grid

point calculations. Note again when
v =1.0 s, w=3.0 ' : ©(32)

the modified equation reduces to'equation (12). The usual
stability requirement is

At

ot FIPr

Iomax_Axl <1 ! Iomax Ayl <1 , . (33)
and

2 4

4v7 = v’ < w < 3.0 . ) | (34)
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SAMPLE PROBLEM

An initially specified disturbance is considered in’
rotation about an axis normal to the XZ-plane or the plane
of grid points. The angular velocity Q is taken to be

constant for which the stream function is defined as

Y _ Qr
= = (35)
where l
, 2
r° = [(x-x’)2 + (z-z’)z] _ (36)

and x~ and z° are the coordinates of the intersection point
of the axis of rotation and the grid plane.
An incompressible flow is considered where the govern-

ing equation of the fluid flow is

3A . 3 (Au) . 0 (Aw) _ : S '
5t T x ot 5z =0 , ' _(37)

Velocity components u and w are determined from the follow-

ing equations

oy dy

u = = — W = o : . -(38)

oz ' ax
The initial distribution of A is chosen as

i :
1 - Ir r" for r"< 4A
: ’ A
A, (X,Z) = { . .
0 for r"> 4A (39)



l6

where A is the grid interval and

L
2

r* = [<x-x">2 + (z—z"-)z} (40)

where x" and z" are the cqordinétes of the point of the maxi-
mum value of A.
| It may be noted that the prescribed initial distribution'
above describes a cone with its base on the XZ-plane. The
peak is placed such that the disturbance is awayAfrom the
axis of rotation énd does not hit the boundaries of the grid
plane in the course of its rotation about (x”,z”). Also,
the values of A are forced to be equal to zero along the
boundaries during the sequence of numerical integration.

The following constants were used in all the calcula-

tions except where otherwise specified.

n = number of time iterations = 40
2 = angular velocity = -0.001 radian/second
At = time interval = 30 seconds

AXx = Az = A = 1.0

x~ = 12A
z” = 12A
x" = 18A
z" = 124

- All of the computations were performed on an IBM 360-65
digital computer at the Iowa State University Computation ’

Center.
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RESULTS AND CONCLUSION .

The numerical techniques described earlier were first

applied to the modified Burger's equation in one-dimension

Conservative:' %% + 3%(%? =r0
Advecrive:.' ‘ %% + u%% =0
An initiel distribution of
u(x) = 1.0 for 0 < x < 50
u(x) = 6.0 | for 50 < x < 100

was assumed. = The results obtained were in complete‘egree;
ment with Crowley's results indicating.that conservative -
techniques are to be preferred over advective methods.
Another important conclusion is aISO_derived.' Conservative
methods are preferred for‘problems with continuous and smooth
solutions as shown by Crowley and also in problems involving
discontinuities such as shock waves. 1In fact, non-conservative
differencing can result in improper wave speed in flows in-
volving discontinuities. |

In order to further examine the conservative differenc?
ing techniques described earlier, they were applied to the
sample problem discussed in the last section with governing
equation (37). The relationship of the solution obtained by

difference approximations to the analytic solution may be
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better represented when contour»plots of A are e#amined;

Also, the accuracy of each solution in terms of its general.
approximation, phase'and radial displacementlcan'be easily
investigated (Figures 1-15). In these figures, the anaiytical
solutions are‘représented by broken lines, while the solid
lines are the solutions obtained by differencing tecﬁniques.
Table 1 contains a summary of several important features

of the resulté obtained by Molenkamp, while‘Tablé 2 contains
the resuits of present conservative solutions.

Examining Figufes 1, 2 and 3 with results given in
Tables 1 and 2 for the first-order schemes, the superiority
of conservative approximationsvis clea:ly shown over advéctive
solutions. The advantagé is more obvious when higher values
‘of A isolines are considered. Computation time is 30% highér
for Brailovskaya's technique than either Upstream N or
Upstream N+1, but its higher maximum isoline approximation
- and lower radial displacement justifies its use. it is to be
noted. that the accuracy of these first-order techniques may
be increased somewhat by decreasing the mesh ratio, %% and
%5-. llowever, first~order techniques are only simple means
of.determination of the general behaviour of the solutions
and therefore are not recommended for use in solution of
complicated partial differential egquations,

Second-order techniques (figures 4-9) resulted in

generally better solutions than the first-order methods as



19

echcted.’ fhe quality of.the approximations of A isolines,
using MacCormack and Lax-Wendroff conservative schemes are
compafable to those apprékimdtions obtained by Molenkamp
using advective Leap-Frog, Arakawa-Euler, and Arakawa-Adams-
Bashforthrtechniqﬁes with conservative angular displacement
error being 16 to 66 percent less than errors invol§ed ;h
advective solutions.

.In_general, the MacCormack differencing scheme is a
bettér method erralI than any other second-order adQective
or consérvgtive technique considering fhe general approxima¥
tion, cOmputation.time, error, and structure of the differ-
enéing’eqﬁations. | |

Third-order techniques (FiguresAlo—IS) resulted in the
most accuraﬁe solutions obtained in this investigation.
?he accﬁracy-éf RuSanov—Burstein-Mirin technique had been
investigated (1) where acCufate solutions were obtained for
gas dynamic model equétion,li.é;, Burger's EqUation}' The
Kutler-Warming methbd is‘basically‘a modified form of the
Rusahovvtechhique and, 1in fact, the similarity of théir
modified cquatiéns suggests a close agreemént of the solutions.
This proved to be true_for.the problem under consideration in
this report. The approximation dbtained by application of
these third-order methods closely follows the ciréular pat-
tern of the analytical solutions proving their advantage over .

any lower order advective or conservative scheme. Tests
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were made for different combinations of values of Y30 and

At. When‘the values

__,1 =
Y30 = " 5O , At = 60

are ﬁséd, the Kutler-Warming technique yieclds the best
solution to the above problem. It is interesting to note
that the above values of Y30 and At correspond to about
one-seventh of the lower bound for 730 prescribed by equation
(34). Anderson and Vogel also found that better results are
obtained when the Y30 values.correspohding to. lower boupd and
fractiéns of the lower bound of the stability equation (34)
were used (11). This indicates that linear stability analysis
resulting in eqhation (34) does not define accurate stability
bounds for all 1inear and non-linear problems. It should be
noted that Y30 may not assume the value of zero,:and there-
fore a limit exists on how small the value of 'Y30' is to be.
chosen. This iIs also shown in Figures 10-15 and Table 2.

The quality of the solution'is degraded as Y30| assumes
values lower than.gé .- In general, thé Kutler-Warming tech-
nique is preferred over the Rusanov-Burstein-Mirin method
mainly because of the simpler structure of the differencing
equations in all three levels and elimination of intermediate
grid calculationsf A direct result of this is a considerable
decreasc in computation time. A comparison of the épproxima-

tions obtained from the application of the above conservative

third-order schemes with the results of the advective
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Roberts-Weiss method, indicates again;.the superiority of
 the conservativé differencing over advective computation.
Comparable approkimations were obtained in both dases Qith a
ratio of'l,Z to 45 of required computation time in favof of
conservétive differencing (Tables 1 and 2). | |
In’general, conservative.differencing is to be ﬁre-
ferred over the advective approximation. Numerical experi-
ments by Crowley énd those reported in this paper cdnfirh'this
fact. An improvement in results is obtained when higher.order
~differencing techniques are applied. This is shown to be
independent 5f whether the equation is in conservative or
advective form. Those differencing techniqueé discussed in
this paper are mainly gas dynamic differencin§ methods,
but the results of this investigation in comparison with those
by Molenkamp and Crowley indicate that these techniques may
be applied to adveétion equations as well[ resulting in
better accuracy and mpré economical computation.v Thé Kutler-
Warming version of Rusanov's third4order-téchnique resulted
in the most accurate solutions and along with iﬁs short
computation time presents, at the present time, an’optiﬁum
differencing method in the solution of meteorologicél and

gas dynamics equations.
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------ Analytical solution
Computed solution

Figure 1. Solution using the Upstream N Method.
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------ Analytical solution
Computed ‘solution

Figure 2. Solution using the Brailovskaya Method.
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------ Analytical solution

_ Computed solution
At = 60 '

Figure 3. Solution using the Brailovskaya Method.
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--~---= Analytical solution
Computed solution

Figure 4. Solution using the Lax~Wendroff Method.
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Cm———— Analytical solution
Computed solution

At = 60

Figuré 5. Solution using the Lax~Wendroff Method.
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------ Analytical solution
Computed solution

Figure 6. Solution using the MacCormack (forward predictor,
backward corrector) Method.
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------ Analytical solution
~ Computed solution

%

At = 60 T

Figure 7. Solution using the MacCormack (forward predlctor,
: backward ‘corrector) Method.
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------ Analytical solution
‘ Computed solution

Figure 8.

Solution using the MacCormack (backward predictor,
forward corrector) Method.
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------ Analytical solution
Computed solution -

A

S

Figure 9. Solution using the MacCormack (backward predictor,
forward corrector) Method.
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------ Analytical solution
———— Computed solution

At = 30
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Figure 10. Solution using the Rusanov~Burstein-Mirin Method.
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-=-==-=-= Analytical solution
————— Computed solution
At = 30

: 1
Y =" §%

Figure 11. Solution'usihg the Kutler-Warming Method. .
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------ Analytical solution’

Computed solution
At = 30
1
Y =737

Figure 12.

Solution using the Kutler-Warming Method.
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------ Analytical solution
———— Computed solution
At = 30

1

L & v

Figure 13, Solution using the Kutler-Warming Method.
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------ Analytical solution
- - Computed solution
At = 60 '
1

Y = - 35

Figure

14, Solution using the Kutler-Warming Method. .
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-=----=- Analytical solution

Computed solution
At = 75 ‘
_ 1
Y S° 30

Figure 15. Solution usingAthe Kutler-Warming Method.
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