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TECHNICAL MEMORANDUM

CLOSED-FORM SOLUTIONS FOR ATMOSPHERIC FLIGHT
WITH APPLICATIONS TO SHUTTLE GUIDANCE

INTRODUCTION

The numerical integration of any set of differential equations for the
atmospheric motion of a rocket-powered vehicle is usually a time-consuming
procedure even when a high-speed digital computer is used. For this reason,
approximate closed-form solutions, which take much less time to evaluate, are
often used to represent the atmospheric motion of a rocket-powered vehicle. A
set of closed-form solutions for reentry and atmospheric ascent is developed
in this report. For both cases accurate closed-form solutions for the three-
dimensional Cartesian coordinates of the vehicle's position and velocity vector
are obtained. Also, the partial derivative transition matrices of the final
state of the vehicle with respect to the initial state are obtained as closed-form
expressions. In addition, the closed-form solutions for the state and partial
derivative transition matrices are used to develop a variation-of-parameters
technique which can provide rapid numerical integration of the original
equations of motion,

DEVELOPMENT OF CLOSED-FORM SOLUTIONS

The starting point for all the work in this report will be the equations of
motion for atmospheric flight developed in Reference 1. The techniques devel-
oped could be applied to any other equations of motion, but a particular example
is useful in illustrating the ideas. Thus, the equations of motion derived in
Reference 1 are chosen as an example for this report. The derivations of these
equations will not be repeated here, therefore, the rea.der may want to
exammelReference 1 before starting the next section.

The equations of motion for the center of gravity of a space vehicle in
an inertial three-dimensional Cartesian coordinate system as given in Refer-
ence 1 are first-order ordinary nonlinear differential equations for the position
vector (X of dimension 3) and the velocity vector (Vv of dimension 3);i. e.,
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‘where

= + P, - P
F FS Ae( 0 )

m=mp - m(t -ty) ,

and

It should be noted that P is the three dimensional control vector which must be
determined or specified as a function of time, and the quantities FS’ Ae’ Po,

my, m, A " 5, and GM are constants defined in Reference 1. The quantities

p, P, c A’ L , and 7 are (in general) specified functions of xand v. The

exact form for these functions is also given in Reference 1. With the pre-
ceding statements, it can be seen that the right-hand side of the v equation is
a function of t, x, and v, Thus a given time function for the control vector

p and initial conditions x, and v, at some time to allows numerical integration.
to be used to obtain values of X and ¥V at any t > t,. Usually the time function -
for control vector p is determined by optimization theory to maximize or
minimize a quantity J defined by :

J = go(xf,v ,tf) + cqg
and to satisfy a vector function (of dimension < 6) called the physical bound-
ary condition and written in the following general form:

.F(xf, Voo tf) =0 .

In the above expression for J, c is an arbitrary positive or negative weighting
factor for q_f, and qf is a new variable defined by another ﬁrst-order nonlinear

ordinary dxﬁerenﬁal__equatmn with the following form:



= % 7, 5 0 -

Then, for a given control vector time function and initial conditions 'id, Vo»

dg, at some time t;, numerical integration can be used to obtain ’Xf, T/f, and

ay at the final time tf. Thus, it can be seen that the value of J depends on the

control vector time function and the initial conditions Xy, ¥, and q, at t;.
Since the initial conditions are usually assumed to be specified by the nature of
the proslem, the only thing left that affects the value of J is the form of the
control vector time function p(t), where ty = t =< tf

In order to use optimization theory to determine the control vector
time function p(t), the time functions A (a three-dimensional vector), T
(another three-dimensional vector), and y (a scalar) are introduced. These
time functions are usually called Lagrangian multipliers, or simply multipliers,
and are defined by their differential equations. To obtain the differential
equations for A, ®, and vy, define '

T T - .

T v+tyq ,

™.
+

H=2
where the superscript T denotes the ordinary matrix transpose.

Then

The above expressions allow the differential equations for A, 1, and v to be
obtained by performing the indicated partial differentiations of H with X and V
replaced by their right-hand sides in the expression for H. Then values for

A, U, and vy at any t > t, can be obtained by numerical integration of the

differential eqtiations '.XT ﬁT, and vy along with a simultaneous numerical -
mtegratmn of the d1fferent1a1 equations X v, and §q when a control vector

time function B(t), where t; = t = t.» is specified and the initial conditions

Ros Ty Vo» Kgs Voo Qo at ty are specified.



Now the results of optimization theory can be used to state that any
control vector time function which minimizes J must maximize at every t,

where t) = t = tf, the quantity H, and any control vector time function which

maximizes J must minimize at every t, where ty < t =t the quantxty H.

fl
In addition, any control vector time function Whlch minimizes or max1m1zes Jd
and satisfies the physmal boundary conditions [denoted by F(x, ¥, tf)

must maximize or minimize H as stated previously and must be produced by
initial conditions Ay, Uy, and 7y, that satisfy the following conditions:

T _ 99| T/OF
e "axf"l' (5"3%) ’

‘ﬁT= _,_,_acp /_\p.T<aF ) ,

f B'Vf vi
Yf = -C ’
Hf =0 .

In the above express'ions, ¥ is another vector of constant multipiiers that
must be introduced and has the same dimension as F(®, ¥, tf) . If a control

vector time function and the multipliers 7\0, Ty, Yy, and ¥ can be found that
satisfy the preceding necessary conditions, the optimization boundary valve
problem has been solved. Reference 1 discusses this problem in more detail
and indicates a few techniques for solving the problem when numerical integra-
tion is used on all the ordinary nonlinear differential equations involved. The
purpose of this report is to make simplifications in the ordinary nonlinear -
differential equations involved so that closed-form solutions can be used
(instead of numerical integration) to solve the optimization boundary value
problem. This work will be done separately for the ascent case and the reentry
case. -

- Ascent Case

For the ascent case, letq=mandJ = -qf so that it is desired to

determine the control vector time function p(t) to minimize J, thus maximiz-
ing mass. Then the equatlons of motion become

X=v )
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When the expressions for L and D are substituted into the ¥ equation, the
following expression is obtained:

" q (‘5‘)+ q {(2 pAr)cLa' ['Vrl (115!) - (vr Jﬁl)vr]
L oa \Wiie | - B\l GMR
'(5 PA_ )ler! (CA + chzLa)- 21r1c2Lm(vr m)]vr } - T

This expression can be rewritten as follows:

, ‘ pA -
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Then

7=<q)[A]-|—_;|+< )b+§ ,

so that the expression for H can be written easily as

H=12L v+ 0 {(l) (a] £ + (l)5+§} -y m

q | Bl q
Then
o ame ) () are. s ),
- g a0 (1) e ()
AR HOMTE S

Since J is to be minimized, p must be chosen to maximize H at every
t, where tO =t = tf. By examining the expression for H, it can be seen that
p = [A] TTA is sufficient to assure a maximization of H with respect to p at

every t such that t 0 =t = tf. - This result for p can be substituted back into

all the differential equations, and the formulation of the optimization boundary
value problem is practically complete. The entire system of differential
equations that must be integrated simultaneously can be written as:

X=7

- (5 )m{ IOk =) (e
T [AIlAl G q
q= -m ,



iT:ﬂ'G»{( fﬁMT‘>3ﬂ§;§)+GT%§}_ETa§
\Wu'[Al[A] U

[}
|
>
|

AT ST l{( riae3} )a([Aa)Tt +ET<§_§>} ,
T \WER RTINS v v

. [ . T__
:-(%)GT{[A]( (A1 )+s} .
q JET[A][AITE :

Given initial conditions %, ¥y, qg, Ags Uy, and vy, at t,, this system
can be integrated numerically; but a closed-form solution is to be derived here
that will approximate with some degree of effectiveness the solution obtained by
numerical integration. The first step in obtaining a closed-form solution for
the entire system is to write A(t) and T(t) as a Taylor Series expansion about
the initial conditions; i. e., -

R(t) = Ky + Kol - tp) + E‘i'o(t S ) ...

<L
1

a(t) = T + Tt - ty) + §'uo(t S Y LI S
The differential equations for X and T can be used to evaluate A, Uy» '_7'(0,
"ﬁo, etc. Also, the quantities [A], b, and g are expanded in a Taylor Series
about the initial conditions; i. e.,

[A] = [A)] + [Agl(t - t,) + % [Ad(t - t)2 + ...

ol
I

By + ‘So(t - t) + -;-ﬁo(t ~t)2 oL,
=%+ Bolt - to) + 5 Bolt - o) ¥ ...

The quantities [A,], By, & [A,l, by, £y, etc., are determined by differen-
tiating the expressions for [A], b, and g with respect to t and evaluating
them at t,. Then the Taylor Series expansions for [A], b, A, and U can
be truncated at some power of (t - t,) and substituted into the expressions for
v and 7 to give expressions for v and 7 whose right-hand sides are functions
of only the independent variable time. Then numerical quadrature techniques

can be used to find the solutions ¥(t), y(t), and X(t), where t; = t = tf,



much more rapidly than could be done by simultaneous numerical integration of
the original system. The accuracy of this approach is limited only by the
accuracy of the truncated Taylor Series expansions over the time interval of
interest. To go further and obtain actual closed-form solutions requires a

few more approximations. First X(t) and W(t) are assumed to be represented
adequately by using only the linear terms in the Taylor Series expansions.
Then [A] must be assumed to be constant. With these asstimptions, the
expressions for Vv and 7 become

- ( =) Al ———————L—ﬂl__ M ECERACEEY)

+ G (t-t) [Ag][a] [m-+ o (¢ - t)]
+ %['Blo + Bo(t - ty) + %-:B:o(t _'to)2 + ]

+[§o+§o(t—to)+%§o(t—t%)+ ] s

. 1
Y= ~.T 2T ! v - e
T T - = 1= |
+[:o +u0(t-to)][b0+bo(t_t0) Eb(t-to)2+...]}
. L at 1 |
Since q = -m, then q = q; - m(t - t;) so that rrii and (t - ty)
1 _
= .= (q - qp). With these substitutions, 9-: and &y can be written as
m A dg dg
follows:
&
& _ 1 f/1 [Ao] [Ao] [“0 - H'l(q - Qo)]
dg ~m \\q T
T T T[T
B W - S o)
i b 1%, | ,
* a[bo - —r-n-(q - Q) t E;n'q?(q - qd? - ]
+g—°(q—q) l"(q-q)2 |
0 2 m* 0 ’
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~-T _ .
+[U}‘ - %";‘(q - Qo)]['f:;o %‘-(q - q,)

Now these equations can be integrated fairly easily in closed form. To illus-
trate this closed-form solution, only the constant terms in the Taylor Series
expansion for b and g will be used, although the integration for the inclusion
of any number of terms in the series for b and g is easily added. First, note
that ¢ = m and qy = m, so that the following quantities can be defined:

4 = f[Ao][.ﬁ.ojT?[ﬁo + —W\%)] =’5[A05]‘[-A03T‘ﬁ'0 ) moaz N
g = -lalla” & (%)
4 = [m + % (3E)] aita” {7+ G (S2) ]

= -4 uo( ) B (_\ U di = ‘("n"{\uo d

g = ()T Lanllan T & WET




T  T({m =
dyp = [uo + Ty (‘r‘nﬂ)] by

1\..T —
dyy = '(r_r'f)u" bo

With these definitions, the expressions for @ _a and

become ‘ ' q ‘

w1 1 3, + 4m 1\e . - )

am - -(a‘){(;) —LB ¢ (1), *go-} :
- M\ Nd, + dgm + dym?

[N

- ) @) VAT

The above expressions for % and de% can now be used along with a table of

integrals to obtain expressions for ¥(m) and y(m) at any m > m,. If ¥(t)

and y(t) are desired, then the relation m = m, - m (t - t;) can be used to

calculaté the m corresponding to any t > ts. To see how the expressions for
v(m) and y(m) are obtained with the aid of a table of integrals, define

X = dy + dgm + dgm? .

Then

7(m) = 7, --fg{ai[f mf“&]%{f j‘-—-;%]“ﬁo[

[ =)

e & |[[ 22w [ 5] [T 2]}

In order to evaluate the integrals involving N'X in the above expressions,
four cases must be considered. These cases are at the top of the next page.

10 -
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0 but dg > 0
2. d;> 0Obutdyg=0

3. d; > 0 and dg > 0

-
£
I

0and dg = 0 .

It should be noted that d; and dy can never be less than zero because

e st)

dg ?-37112.“ [Ao]T 7

d'{:

and

Also, if either d; or d, is zero, then dg is zero because

o Hauma ) T 5 (@]}

and if d; or dy is zero, then d; is zero or d, is zero, respectively.

For the first case, since d; = 0 and dy > 0, the expressions for v(m)
and y(m) become

13 [Pam] [P dm [ m
V(m)“o-a*{vq%;lfn]—n:' I R F S
L0 | 0 L0
_ 1 N/———(mdm -mdm [ dm
y(m)=v - = (NG ![ —| +do|l[ 2|+ au|f T
Mo | My | my

The 'integrals appearing on the right -hard sides of the above expressions are
now easily evaluated to give: :

11



i

7(m) = 7 3 -;3- {(q-a-g;+ Fo)fn<;n’%) + go(m - ?no) }

y (m)

|
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e em—
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&l
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To complete the closed-form solution for this first casé, it should be
noted that -

S () () EL ()

= _.1,. \7_.1_ a-’2 T m —
[k [E) m(2) e

This expression for %xﬁf can be integrated to give

+<E17)[<_§2_m+ b'o) [ (tnm — t o)

mo

m
g %o - Vi _“_l_ﬂ‘.o_)
g r{lo - mo)dm:] X0 - Vo ( =

1 92 m
Inf— 1\ - -
+ (_n?z) { ('\/_d; + 50) ':m n(m0 ) (m mo)]
2
- m - my
*+ Bo [( > ) ] }
Thus, the closed-form solutions that approximate the entire system of

ordinary nonlinear differential equations when d; = 0 and dy > 0 can be cal-
culated for any t > t; as follows:

12



mo '--n:l(t-te) 3y

3
——
o
v
it

o
——
~+
R
i

X0+:X0(t"'t0) ]

Alt) = 1w + T (t - tg)

mg m

) = vy - ;.nlf_ [(«]‘d‘s + dli)m(%) + dm(.i.. - -]:.)] ,

-

003 () vl ]

%(t)

4
2t

(t - %)2]
)

()6 5o (2) - o]

For case 2, Since d; > 0 and dy = '0, the expressions for ¥(m) and
y{m) become \

+Vb(t~to)+§'o[

| 14 d, P m _m
o) =% - gt R R |},
m, My

ey b -

o

, 1 (™ 4 Pam], [P odm
v(m)*vr-;ﬁ"{ﬁ = +dy| [ =l R T }

The integrals appearing on the right-hand sides of the above expressions are
also easily evaluated, and the results follow:

V(m) = v, -;%[(7%* Eo) In ("I%n;') + Folm - mo)] '

o) <= 2 65 (-2 ) (2)]

L
my

13



Then, to complete the closed-form solutions for this case, it should be noted
that

LA C AN L S Y
dm (dm '(E dt ('m)v |
1 — 1 5 - m\ - _l.
= 0= {7V - = (_.:;7. + bo) In <_m-;> + go(m - my) S

This expression for %— can be.integrated to give

m
g(m) = ¥, - (;11—) Vo f dm
. m,

@ ] ot

m,
+ go.f_ (m - mg)dm]
My

2

+ 'g'o[(——'—n—m —= )2] } ‘

Thus, the closed-form solutions that approximate the entire system of
ordinary nonlinear differential equations when d; > 0 and dyg = 0 can be calcu-
lated for any t > to as follows:

14



m(t)= mo -n.l(t-tO) >

R(t) = X + Nyt - t)

u(t) ﬁo + Ut - ty)

il

© <3 [0F w(E ) an (2)]

) 0 (@) -]

v(t) = v,
X(t) =% + Volt - t) + EO['&:?&X ]

For case 3, whered; > 0 and dy > 0, the expressions for ¥(m) and
" y(m) remain the same as the ones given on page 11;i.e., . -

m ' m m 7
. dm dm {\/_ X dm c .
The integrals f T o di and f —r appearmg in the above
m, m, m,
expressions are evaluated with a table of integrals. This gives -

15



J e ap [ GRERER) )

) (F%T)Z},i 22(3;:::1: +dﬂdﬁ )

m ‘ : | m. . | '
f Nf?fdm': _( X &L)*’%f dm +d9fm
m m

To facilitate writing the above expressions, let

& = NG NK + dm + 24
Q = NENK+ 2dm + 4

and &, and ) will denote & and © evaluated at the initial conditions. Then
the expressions for ¥(m) and y(m) can be written as follows:

m m, 0 m,
Q 1 1 m
N (-—) (—- . _) m
dy In 2 *+ dyg mg * dy fn mo)

To complete the closed-form solutions for case 3, it should be noted
again that

5 5(2)-() % @)

16



This expression for L‘E_ can be integrated to give

dm
_ _
%(m) = %, - _'_];_,-‘7 f drn'.'...,l.2 - d [f (n & - fn &,)dm
o= (@) [ o - ()L o
.--jn (Inm-lnmo)dm]+ d jn (fn € - fn ) )dm
my % my ’ ’

m m
+ Dy f (fn m - In my)dm + E; f (m -mo)dm}
myo 4mo

The only difficult integrals to evaluate in the above expression for %(m)
are the integrals involving fn ® and fn . The following steps will explain the

m m

integrals f In & dm and f in @ dm. Both integrals will be evaluated using
my my

the integration-by-parts formula; i. e.,

fudvé uv;fvdu

m
For f In ® dm, let u=4n & and dv = dm. Then,
my .

m m .
f iIn dm=min ® -m, n &, - f m[d .In Q)]dm
my my

17



Then note that

dm %[@(U}?) (d + 2dym) + d‘*]

(3 ) [

NG N+ 2d7+dam+(%;9-’-da)m}

) |
- (3)(z5) ;‘I’ ) (4;;1[ ) }

e e R )

) 1 (NENE - dgm - 2d;)
."E%H?[W* el |

>

_ m
When this result is substituted into the expression for f fn & dm,
the result is ‘ m,

18



m m —~
f 1n<1’dm=mln<b-m01n<l>o_.f m[—;-l-_ {dm.
m, my
m m
' dm
=min®.-mtnd - [ dm+ NG [ N
mp my
. Ndo Q-
=min® - mn & - (m - my) +(U=37: Hn <§)
' 0
| m
A similar procedure is used to evaluate f fn @ dm;i. e.,
my

1 d(in &
f 1nQdm=-m’1nﬂ_moln‘Qo..f m_[—%:i—-)]dm
m, my

Then

et 3l r)ia s

. m
Now, as before, this result is substituted into the expression for f fn @ dm
to give : ‘ m,

m m .
f M Q2dm=minQ - m In Q@ - f m[%]dm

my mg

=minQ - mginQ -~Ndy

19



m
For the expression f %%n , a table of integrals is again used to give
.mp ‘ ’ '

Thus,

m
[ modn=mma-m e (ﬁ)[ﬁﬁo

()

With these results, the evaluation of the integrals appearing in the expression
for X(m) can now be completed; i. e., for case 3, where d; > 0 and dy > 0,

%(m) = % - (I%l')vo(m - mo) ’*‘ 2o [M]

m

20



Now, again, the closed-form solutions that approximate the entire
system of ordinary nonlinear differential equations when d; >, and dy >, can
be calculated for any t > t; as follows:

m, -m(t-t) ,

m(t) =

R(t) = K, + K (t -t)

ﬁ(t)'=ﬁ0‘+ﬁ'o(t-_t,o') ' : . |

y() = v - = {-<7§ ‘%) i (ﬁa) [In (%) " <-’rn£°)J
(@) a2 e (@)

v(t) = % * B lt - t) + ;{_(5. > [ln (%) - <—n%>]

() ()5 @)
(t) =% + Ty (t - ty) + [ﬁ-—TEL)EJ _+ (;n’l-z) b [m {fn (—)

For case 4, when d; = 0 and dy = 0, the aerodynamic forceé and thrust
forces are zero so that motion is two-body motion for which closed-form
solutions are developed in Reference 2. '

21



' The preceding work completes the cloged-form' solutions for the ascent
case which can be used to approximate the optimal atmospheric motion of a
rocket-powered space vehicle. Some of the results will be used in the next
section, ‘which is concerned with the closed-form solutions for reentry motion.

Reentry Case

For the reentry case, F is assumed to be zero and m is assumed to
be a constant equal to my. Also, for the reentry case, q, which is a linear
combination of the instantaneous stagnation point heating rate and deceleration,
is defined by the following differential equation:

/2 3- <pA) T |4fc?
q—k1<»\/?) IVI + ky >‘|vr| -(A+4ncAL +‘zc'f’L>

o
oy - B Vw3l o+ |
2<vr ,If)l'>lvr-| <°La 2 ,°p, ) ’

and the initial condltlons qp = 0 ‘To simplify the writing of the: equatlon for
g, define

_T PAR\ T
H =_ § P 7 |3 (A2 ) 2 \=
- =-2k\5m ) 1V, ~<CL * 2"°ACLa>Vr

a
and
A pAr ’
= — 2l |3 — : 4 2 2
h k1< »)p 1V 1%+ i\ = [lvr|< + e + 268 )]
o o
Then

Since F =0 and m is a constant, the equations of motion. for the reentry
case become - : :

22



I ol
where
PA
=1 I 2
lA]—m (2>lvch [1]
o
PA
T . . T
_(T) °L (1 _zncL><vr r>
(¢ o
()
- I = 2
b=- ™ Ivrl (cA+2ncL >V
o
_ GMX
g= - R .

Now, as in the ascent case, the multipliers A(t), @(t), and y(t) (where
tg = t = tf) are introduced to allow the following expression for H to be

written:

T _T P - - =T P
= X <+ A] — 4 + + h+ h™ = .
H XU +T {[ ]_lpl b g} 7(_ Iﬁl)

As in the ascent case,

iT= 8—H:. '&T= ?_I.i and': 8—H
“5R 5V’ Y= -%q

Now the quantity J, which is to be maximized or minimized by the
choice of p(t) (wherety = t = tf), is defined. As in Reference 1, the choice

J=q is made, and it is desired that J be minimized by the choice of a

control function p(t). Thus, Pp(t) must maximize H at every t such that

tpy=t= tf. An examination of the above expression for H will indicate that
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§=[A]Tu+yH

is sufficient to maximize H at every t, where t, = t = te.

When the above result for P is substituted into both the ecjuations of
motions and the multiplier differential equations, the entire system of simul-
taneous ordinary nonlinear differential equations for the reentry problem is
obtained; i. e., .

X=v ,
T_ -
v = [A] [ [A] T+ vh - l+B+g
|V (aT1a1 + +6T) (ta1Ta + +E)
4=n+5F |- (alTg+ ¢ & ’
«l(ﬁT[AI sy ) aTa+vE)
£T _ a'[A] + y BT {8([A]Tﬁ) by cﬁ}
- 3% o% |
J(ET[A] + v BT)([A]Tﬁ +y 5)

T ~ ai(al + y BT {a([A]Tu) .y _ai}
- _ , ' v v
J(ﬁT[A] + y 'BT) ([A] T3+ y E)

() o)

y=0

This system of ordinary nonlinear differential equations can be solved simul-
taneously by numerical integration if the initial conditions %;, vy, q, Ao T,
and vy, are given; or, as in the ascent case, the quantities, X, §,-h, h, [A],
b, and. ¥ can be expanded in truncated Taylor Series about the initial conditions
which will allow numerical integration by quadratures to be used.
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To continue and obtain closed-form solutions for the reentry system of
differential equations, the following assumptions are made:

) =X+ At - )

ut) =T+ Gt -t)

B(t) = B+ Bt - t)

[A()] = (A,

B(t) =Bo+i‘)o(t-to)+§(t_to)2+... ,
B0 =T Bl -t) v B gL
h =ho+i10(t-t0)+.§zl(t'to)2+-.~

As in the ascent case, any number of terms can be used in the Taylor
Series expansions for b(t), g(t), and h(t); but only the constant terms will
be used in illustrating this approach. With the preceding assumptions, the
equations for V and q become:

¥ = (A, . (a0 Ty + Byt - to)] + 7By + Blt - 1)) - A
([0 + 5 - o] tag « o[BS + B (¢ - 1)) ((a0 Tlm + Gt - )] + ¥1B + Bolt - &)1)

q=hy+ [H;r + H;r(t - to)] {same term as above in the v equation} .

To simplify the expressions for v and q, define

o,
-
|

= [A,] {[Ao]i[ﬁo _ tyte] + vIB -iaotol} .,

d = [Ao]{[Ao]T“;o“' 'Yﬁo} ,

£
|

dy ={[a;r _ T tol [Ag] + vlBg -"ﬁ;fto]} { [Ag) TITy - ]

+ 7'[50 - i‘.1oto]} ’
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dg = z{[uf,r Wl (A + YRy - ﬁ;fto]} { [A,] T, + yi';o} :
dy = {ﬁoT[Ao] + yﬁ;r} { [A(,]Tfl0 + yio} ,

dyp = [Be - hoty) {[Ao] T3, - Tty + vIB, - iotol} ,

dyy = [Be - Fit,] {[Aol Ts, + yﬁo} + B;r{ (2,0 1T, - Tt,]

+ ylhy - 1.ioto]} ’
dy = hy {‘[Ao] Uy + Yho} .
Then the equations .for 'V and q become
_ d, + dpt
N dy + dgt + dyt?

<l

+’[)0+§0

d=hy+ dg *+ dyt + dptf

Ndp + dgt + dot®

These equations can be integrated in closed-form with the.aid of a
table of integrals, but four cases must again be considered as in the ascent
case. These cases are

[y
&
ll

0 but dg > 0

)
£
v

0 but dg = 0
3. d; > 0 and dyg > 0
4. dy= 0 and dy = 0.

Also, as in the ascent case, d; = 0 and dy = 0; d; = 0 implies that both
d;= 0 and dy = 0; and dy = 0 implies that both &, = 0 and d; = 0.
\ ; ,

Thus, for the first case,

:i+so+§o
N

<.
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dgg + dyyt + dypt? -
Ndgt

q= hy+

. These differential equations are easily integrated to give

v(t)=v0+( 9 +50+'g'(> (t - tp)

N dy
M0=<ﬁ+ By + UL h-%)+3£fn(l>4+ﬁa<i;ﬁ>
NG NG W) Ng \ 2
Then, since % = v,
-é:-o*' (u/—dj_c;;+]—%+ go) .(t-to)

which is easily integrated to yield

' d ’ 2
%(t) = %, + Fy(t - t;) +(.{/‘%9 + by + go>___J—(t _2t)

Thus, for ca'se 1, the entire closed-form solution which approximates
the original system of ordinary nonlinear differential equations is given by

RE) = K Rt - tg)

Y(t) =vy
v(t) = ¥ + A + by + g | (t-¢t)
N dy’
%(t) = X + To(t - ) +<_a_2_.+ by + Eo) Q_-é_talf ,
dg
- dyy dyo t dp (¢ - &
q(t) = qo + (h+Fd9>(t to)+\/—-_592 <t0)+ﬁ9( . )
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For case 2, since d; > 0 and dg = 0 ,

2

<l

2|

L+ b+

L Gy + dyt + dpt?

N'd;

(.l=ho

These differential equations are also easily integrated to give

F(t) = v, + 4 4 by + Bt - tp)

N d;
a(®) = qp + [ hy+ 20 (e - g + S (ﬁlz—tzﬂ) + Se_ (f_‘_ﬁ>
’ Nd dy Ve~ 2

Then, since X = Vv . ,

which is easily integrated to give

- - d oz o= (& - )2
x(t) = T + Tyt - tg) + + by + g 2 e
N dy

Then, for case 2, the entire closed-form solution which approximates
the original system of ordinary nonlinear differential equations is given by

() =K+ Ryl - t)
A(t) = o + Gylt ~ t)

Y(t) =Y ’

F) = v+ [+ By + By (t-to)

&l
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%(t) = Ry + V(t - ty) + <‘_’1 + B +§0> (t -ztg)2 ,

Nd
a(t) = g+ [y +0 (e - to) + ﬁ1—('t-2—?;j) + do (—-——Qts = tz,)

For case 3, since d; > 0 and dy > 0, the original form of the
differential equations for ¥ and q are unchanged; i. e.,

V= G+ + By + B
Ndy + dgt + dyt?

djp + dygt + dpt?
Ndy + dgt + dyt

As was done in the ascent case, define X = d; + dgt + dyt?.

G = o+

Then the differential equations for and ¢ can be integrated at least symbol-
ically to give

t t
v(t) = 7+ &[S, g [

-+ (E)"' go) (t - )
ty N X ty VX :

t
: dt tdt t2dt

a(t) = qo + hy(t - ;) + d +d +d
0 0 0 10{:{)‘ < 11{:{ _ ‘Qt{_

With a table of integrals, the expressions involving N'X can be integrated
to yield ‘

}dt 1, [ NG NE + 2dgt + g
N dy NX, + 2dgty + d

ftt;dtz_l_ﬁ_ﬁ_iln Na;d'x_+zd,t+ds ’
WV % NG/ \ NGV + 2ty + gy
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¢ .
ENE 2% (t Y AR %o

N (?glﬁ - 49&) [

Let @ = 2N dy NX + 2dgt + dﬁ and €, be the value of € at t,. Then
- the expressions for v(t) and q(t) can be written as

e (R) 8% () ()]

dy

T(t) = 7 +

+ (By + o) (t - t,)

0= et -0 + ()« (4) o

[ 9% 2\], d |
() (R)] - 4 [ o

9

() m - (558) ()

Since X = V,

R(t) = X + Tt - tg) + (fn Q - In Q)dt + (Bob+ go)____ﬂ_(t ‘zt )

S e

t -
[ (@ - i Qp)at

(4
+’%§ [ WX -NXdt -

ty Ndy
" .
The integral f {n @ dm was evaluated for the ascent case; and when
my

m and m; are replaced by t and t;, the integral f In Q dt can be evaluated.
That is, : to
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t
fﬂnndt=t1nn-toznno-(_L>(f_ X0_<ds m(.‘?.)
to | NG NG, o

Also, using a table of integrals,

¢ t
VR gt = L2dgt GNX  (2dpty + WX, |, (4didy - & dt
{, X dt s o + ( ) {0

_ X - VX)L (VX - NX)
. 2 '

- (49'1‘;%9' dﬁ)(&) In (é—%)

Thus,
b'¢ = - d;' —-—S2 - ..__.—.1 -
X(t) = % + Yo(t ty) + —d9 {t fn (90 ’ < ds)[m} X -NX,
d 2\ 3 (VX -tNX, =
) (2'\‘ dfa)jln (5;)]} ’ da 2 '0, =l - )

Then, for case 3, the entire closed-form solution which approximates
the original system of ordinary nonlinear differential equations is given by

() = Ko * Nolt - )
() = 0 + Gt - )
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'Y(t) = YO ’

, di 2\, &l v (% \m (2
v = m (ﬂo) TN X_" (z«/’@>£ (%)
+ (Eo +§i)) (t - to) ’ .
i e s e _ o (t -t q Q
x(t) = %5 + Vot - tg) + (by + go)——z'a—*'&{t In (9_0)

o)

B e S

75\
: 25%3? (%)J +.§%[tr-to (BTN
+(3_d§_4.‘£91§1) 1n(§):| )
4dg\"dy °

For case 4, when d; = 0 and dg = 0, the aerodynamic forces are zero so

that again the motion is two-body motion for which closed-form solutlons are
developed in Reference 2,

case.

The preceding work completes the closed-form solutions for the reenti'y
These closed-form solutions can now be used to approximate the reentry

motion of a space vehicle. In the next section, the reentry and the ascent
closed-form solutions will be used to develop expressions for the closed-form
partial derivative transition matrices.
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THE PARTIAL DERIVATIVE TRANSITION MATRICES

In order to define most easgily the partial derivative transition matrices
for the three ascent cases and the three reentry cases, a new vector of dimen-
gion 14 is defined; i. e.,

[x ]

v

>t

<l

Y

b -

Thén, for each of the three ascent and reentry cases, the partial derivative

transition matrix is the 14 by 14 matrix This matrix can be eval-

87
9Z, |°
uated at any t, where t; = t = tf, by explicit differentiation of the expres-

sions for %, V, q, A, W, and y with respect to X, V;, d, Ags Uy and v,.

Also of interest for later usé is the vector -g—tz— The transition matrix SEZZ—]
0

0Z
and the vector — can be written more explicitly as follows:

3%
[ox & & & & K |
(24 0¥y 3y o ouy v
Xy 9V oqy 2% 9y, %
29 el o9 2 29 R
5% 2 vy dy OAg auy Yo
8Zy | - _ _' _ _
la & & & & A
09Xy vy 9qy g ouy g1}
S0 ou_ ou ou ou_ o
09Xy vy odg OAg duy %Yo
&y R Sy oy Ko Sy
_axo avo &10 . 3A0 3u0 3’)’0—-
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To illustrate how the different components of gz amd é—t; are obtained, |

o 9% ., . .

= and _é?; will be derived in detail for case 3 of ascent
A .

flight. The other components (including the other cases for ascent and reentry)

can be derived in a similar manner, but their derivation will not be shown in

the expressions for

detail. To start the derivation of -g_;.(—o and X , note that for case 3 of ascent

9ty
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To ease the problem of writing the above expression for X, define the scalars
e [mn (2) - n - ] () |
1 ~ (mo) - T\ ’
m L Q
—_— I ( —
(mo)] < ) . (%)} ’
9

)- ()|

Then
- = . — (t - tn)2
X = XO + Vo(t - to) + E.o ) + Cibo + Czdi + 03d2
and
9% a5, \ [(t - )2] ob - [ac 84
9% _ 98\ |t - t)” 8by ey 94y
5%, I+(a§0>[ 7 T alsR )t P \eR,) T2 5
- fac g - (dc
8¢y 8¢y
i (fﬂ) TG (m)’“ (axo>

, the unevaluated terms in the above

To complete the derivation of — ‘2
0

expression are taken one at a time. Since

%,
then
o7y . _GM _  , 3GM % % GM {320{ 1]
a— 5 - 3 -
% (T 5, %) (% %) (= %)

‘ pPA
% o= _ r - + 9 —
by <,2 >lvrl (cA chLa V.
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where p, Vr, Cpr Mo and ¢y are all evaluated at t; and thus depend on %.
Then, o

/

9 r} -~ [ 8p
OBy (_z 2 20
5%, '(z) v, (CA ¥ 2."‘“'Lo[) vr(axo)

ov

. \ T r

A g NIT ¥ ——
-l r)'(cA * 2mep, )(r r) 9%,

a
pAr 2 6Vr pAr) | acA
N2 W (e e ) wm -\ N e e
on acLoz
2l == &+ 23c = .
0%, Loz Loz 9%,

Since '\Tr evaluated at t; is given by

’Vr='\70-w><xo ,

then

Q
<l
p-‘
I
|

Q
2

(=3
-

where w,, w,, and w, are the components of the constant vector & explained
in Reference 1. Also explained in Reference 1 are subroutines for the atmos-
pheric functions and the aerodynamic functions. The subroutine for the atmos-
pheric functions yields values for the density p, the pressure P, and the

velocity of sound v S as functions of altitude and also the derivatives &

dalt ’
dv
g_:iﬁ , and EE% . The altitude at t; is given by

i
alt = (>—<0T io)/2 - R,
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where Re is assumed (for this development) to have a constant value equal to

the mean va{ue of the earth's radius. The subroutine for the aerodynamic
functions yields values for the coefficients c c , and 7 as functions of

A’ 'L
o
oc, acLa
Mach nuirber M and the derlvatl‘ves oM oM , and —m—aM . The

‘Mach number M is computed by the following formula:

M = vr .
S
0
op %A ou ‘L, ‘
Now the quantities o%, BX, 5%, , and 5%, appearing in the express;mn
for %.—29- can be written in more detail, but first the quantites aa:_;lot and ggl
- 0Xg

must be written. This gives

dalt _ XE

oV
SR W v av
oM _ 0%, r ( s> <8a1t)
S .

dalt/ \ 9%,

Then

5p _ [op \[oalt)
9%, \oalt/\d%, /) °’
%% _ <8°A> oM
0%, \oM/\ox%,/ °’
o _ (o) (om
9%, oM/ \o%,)

La _ Lae oM
9%, SM 9%, *
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5 |
This completes the derivation of ;0 . Now note that (in the expression for

X ) ¢y does not depend on X, so that Qec.l = [0, 0, 0l. Then to continue,
0%, : 9%,
3, = [Ao][Ao]T[Eo - Go(-r-:‘nrﬁ)] .
Thus,
- T ‘ . .
3d 9lA) . =~ m T [o%
s Ziogd - '}
52 = 2lAdl { P [uo “O(m)]} - (—n.f)[Aol_iAoy (axo)
d[A,) & * /m
To evaluate the quantity —-5-__)213—— [ﬁo -1 (-1;'19)] » note that
PA
T r - 12
(A " =] F + <—2—') lVr‘ (:La 1

The only quantity not already derived in the above expression is -g_g . From
Reference 1, Xy

F=Fg+ Ae(Po - P)

38



where F g’ Ae’ and P, are constants and P is obtained from the atmospheric

subroutine. Thus,
oF _ (@2_) (a_el_t)
8’20 T e \0alt o) #)
T

This completes the derivation of the expression { ﬂéé_)-?ql—[ﬁo - ﬁo( 29-)] } .
0

To complete the expression for %%_: , the expression -g;;o- must be
0
evaluated. To do this, it should be noted that :

+T_ =T 1 ﬁT[A] 8([A]Tﬁ')+ﬁT(_§_T_>_)

U = A - —
m lth[All ov ov
Then
' dc
T_ PA L
3([A] ) - T T 9 o
v (pA) cLa(u Vr) ( 2 > v\
pA_ |
_T cL <1-2ncL)v u I
o o
dc
<fﬁ | o
\ 2 r ( - "CL) oM
an m_ oM
2 —— —
-2°y, (8M) Vr(av)J .
oy \ 91
Note that
T
oM - vr
v |vr|vS
and
oc dc
Ly _ -La (BM)
o oM \ o7
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Also,

S
3l

PA
i 2 \1 - 2 Vo T
(2 ) IVrI (CA + chLa>I (PAr)(cA +' ZTIQLafr v. )

A dc :
2 T oM oM L

o

Thus,

ml{A] @

pA |
r . 9 -— ‘ 2
+( Zm) |vrl (CA * 2ncLa>u ¥ (pAr) ‘A :+(2"70La)
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‘Now the above expression, along with the initial conditions, can be used to

evaluate '1:1'0, and then %_x‘-l,i; can be computed; but before attempting this task,

the matrix [B] and the scalar c, will be defined as follows:

8cA
pPA L :
1 Tr a _JT
= = + | — —
[B] m| pAr cLa < 2 )M< oM ) (Vr v )

i)
T . ) —
R + .
Cg = 5 (cA 2ncLa_)|vr|

Then,

T .
0, = 2y -I[Bg) __[AJ.].?.EL+ C4, <VT ‘—1-0) vro + cgy Ty

LA~ Tl To
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and

T
—_ 9lA _
o {a'cng ' (lan” “°)} (B,] { < [afo] ) °} (acgo
! - + 4 —
%o AT &, | LAl T T, | &%

. -
T _\ - ([9cy . _T T _ ry
+ (Vro-u°> Vro ( _o)+ Cyy [(vro u0> + (vr u0> I] (8:?0 ) A

In the above expression for 94y , the quantities {a—gx_B:Q]— ([AO]T ﬁo)} ,
0 ' :

T\
‘ oc ac
a—l—éﬂl—- u( —& , and —40 have not yet been calculated. Before
| BXO &0 ﬁo

attempting to calculate these quantities, some more constants will be defined;

i.e.,
PA '8cL
cs = |\—} |2¢. + M @
5 2m L. oM ’
’ a
PA »
Cg = L c. 1 - 2nc
6 2m L L ’
a 04
' ac
(PP Yo 902 an
= \am)|\! ~ ¥ )\ " *L \ou
o (o3
Then
. . ‘ _‘7Tu :
- =T _T_. r ¢ — T
Byl = c5<vr Uy ) - Cg (vr u0>,1 - 5 1V Cq (vrvr> , -
. r S

where c5, ¢g, cq, Vr, and vg are all evaluated at ty.and thus depend on X,

Now the quantity { %—x_]_z“]— ([AO]T ﬁo) } can be written; i.e.,
_ ’ 0
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T ' -
Vet T T <_ T)< v, )
+<———3——-| _v_rl VS C7 [Vr ([Ao] Tl'(,):' VI' Vr A —8?0 .

To complete the evaluatlon of the above expression, i_-(_:i, 22-_5-, and 9o must
90X 9%, %,
be written. This gives

2 -(3)(3)- (%1—1')[3(85; ) &—3@)]—;&
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dc [ op pAr La
—_ = —_— ] —
- (o) = | ( “”"La) W
dc. dc
L L
« o o o [9%n\{ oM
- + LA/ o
Now /|"\om cha<8M)‘ cha(aM? %,
8%

azn LOZ
Note that o2 andl M

are assumed to be available from the aerodynainic

a.‘_ . )
subroufine of Reference 1. To continue evaluating (—-9-9-) , the expression

0%,
(aragT
. T_iﬁ-!o—- T, ¢ will now be evaluated. Since

A {pA ) . pA '
(A" = | F + ( > ) .lvr| cLa I- < 5 >cLa(1 - zncL )vr v,

o

then

R
R
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where

- and

To complete the evaluation of

0 Uy
%, '

g _ fog 3 . 9¢cq\ /oM N
9%, p ) 9%, aM / \ 8%,

oc
4 1
M o (pA_) | =

l

Also,

8040 'S
8VS 0%,

9
Vs

>

A VT (avr
oc A—
(a2 (Z) (e, + e __qur L 2
9%, p 0%, 2m A La Ivrl
dc
pA dc L
r A on o
—_ ¥ —_—t+ 2{——— ] & +
+< 2m> V. m 2<8M> L, " oL \Tou
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d%¢ ac
. A b . .
Again note that ey needed to compute 5% 18 assumed to be available from

the aerodynamic subroutine of Reference 1. This completes the evaluation of

e

égl and thus also -{?-gl . Tb continue the evaluation of __8__)5_ ,» the next tei‘m to
9% 9%y 9%, ‘

be evaluatéd is —g—% . Since

then

BQ
. L ﬁ) [y
N \ ¢ 9%, )

To complete the evaluation of -g% , the terms

(5;)

— must be evaluated. First,
0%,

T *2T/{m -
o[- & (%))
and thus

ad T: -T/m ad m
__J.:-_- 1. __‘.0 __J -—.9.
9%, [_u" + u(,(m)} 87('0+< r'n)
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Then, since

To evaluate 8_ , hote that
9%,

& - -tadiad (%)
Thgs, '

-
m

Note that the expression for i (EI—AQ-]—
T
for { ———9-——8[A 13 }

ax, 0

with the exception that W, is replaced by ;uo. This
completes the expressions for

9dy od .
5%, and -—iaYo . Also, since
2 \.T =

dg = -(’I;;)“o d

then
- -(3)[W(8) - 75

( : )
9 ®
which will be needed in the expressions for a%

& = nNd NX + dgm + 2d;

and

| a(ﬂg )
and -0 . Since
0%,
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then

and

R
AT (E) ) () (%))

i [E(5) F () () ()]

In the preceding expressmns, the terms %_)i amd %Z-(_ﬂ- are evaluated as
follows: %

X - 2%, (2%} s w20

9%, 0%, 9%, axo

0Xg_ 8y .  (8dh), a(0d

5%, 0%, | ol +mam :

This completés thé evaluation of the term —%- The next term to be
evaluated in the expression for 8_3?0 is —-% which was evaluated already in
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a .
order to obtain 5:;20- « Thus, the only term left unevaluated in the expression

ax dc dc '
= —, —
for 3%, is the term 3%, To evaluate 5%, ’ note that

Then

5 ,
? This completes the detailed derivation of =X A similar approach is

9%, °
used to derive an expression for % . That is, since
- - - _ |t - ty)? - = -
X=X+ Vo (t -t) + B ['('—22)—'] + cqby + cdy + c3dp
then
9% ac 0 - 9cy ) =
—_ = T 3 _ il § + [(2& +f =2 .
S -+ (53T (72) 3 ( 8%) .
Note that -g%o-, g—%’- , and -g—f'ol are zero because T)o, 31, and (-]_2 are constants.
. 0
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The terms -g—:—: _3& and -g-;(c-;i must now be evaluated. Since

or [mafR) - ()

then

Note that m = mg - Th(t - t;) so that — = m,

Thus,

then
\m T - .
8 o La8h fp (2 (2|, = (L)[02
9ty o Wl | ) ™/ NG ¢ ty
L(__am)‘ . (9.9.)
mY 9t J _ SZ'\I—EI-; oty /.
Note that |
& =WNGNX+ dm + 24, ,
Q = 2‘st NX + 2d9m+ (% ,
and '
X = dy + dgm + dym? .
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Thus,

3¢ _(Ndy \fax\, ,[8m
9ty NX /\%t dew ’

(D) | -

This completes the expression for -a-t—o- .
. . . . oxX Bx
The preceding work has shown in detail how to compute 87 and —— TS
0

- : 07
The other terms in the partial derivative transition matrix 37 and the vector
0

9 : : _

-a—t% can be written in a similar manner and, in fact, most of these terms are
. :

much easier to write than the ones used for illustration purposes. In the next

section, the partial derivative transition matrix :TZ will be used in deriving
a variation-of-parameters integration scheme. 0

VARIATION OF PARAMETERS INTEGRATION

For more information about this approach to variation of parameters
integration, see References 2, 3, and 4. Variation of parameters integration
is to be used to obtain Za(t) where Za(t) ‘is the vector
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Z‘t:"
0=

defined by the differential eguations as given in Reference 1 {(also listed in
a previous section, Development of ‘Closed-Form Solutions) and the initial
conditions ,Za..(ito') = Zg.

-

Now define ZP = -Za - é., where Z is the approximate vector

differential equation used to derive either the ascent or the reentry closed-
form solution .and Z-a is the actual vector differential equation mentioned
above. For example, in the ascent case

_ - v )
v

Craara T = |
(l) '-[Ao][A'i‘i [T, + ot - to)] | (l)i’o g
UV tag T ¢ Bt - )11 O

-m

_- N.
I

e

U

S 1A [T + Gyt - )11 + [T+ (¢ - )15,
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- and

—

7 ]
l-)[A] _[é.]_’.ri + l)'f>+ 7

(5 (I[A]Tul) ()b

-

5 ,--_I) oAl \ a(al’m |, o1 (Q_f;) T (_q_g__) T
q IﬁT[A] | ax 9x% /. 9X
: . _T T -
5T _(3) , 1_1T[A] a([;;.]v @, T (%) _
YI\iE 1an 4

' LT
(%F) 5T [A][A] i,%

A (Al Ya

Then 2a =7 + iP' Now a vector Z'(t) is defined to be a set of values

Which, when used as initial conditions in the closed-form solution, Z(t) will
make Z(t) = Za(t) . The following diagram might help to understand the

definition of Z'(t).

(.20 ¢f osep FORM $SOLUTION

[t.Z(t) = Z_(0)].

(te.Zo)

The diagram illustrates that Za(t) is obtained by numerical integration of

the actual differential equations with the initial conditions (t;, Zy). Also,

ld

a value Z(t) =.aah’:), is obtaimed using the closed-form solutions and the
initial conditions (§;, Z'(t)) because this is the definition of Z'(t). Given a
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value of Za(t) a value for Z'(t) is obtained from the closed-form solutions
by letting Za(t) = Zy and interchanging the role of t and ty. To be more
specific about the definition of Z'(t) let the closed form solution Z(t) be
denoted more generally as

Z(t) = glt, t, Zo) .

Then from the definition of Z'(t)

z (1) = glt, t), 2(t)]
or

z'(t) = glt,, t, Za(t)]

since the closed-form solution works backwar_ds 6r forwards when t is
replaced by ty. From the expression

z'(0) = glty, t, 2 (],

a differential equation for Z'(t) can be written, This differential equation is
the variation-of-parameters differential equation, and from the diagram the
initial conditions for the variation of parameters differential equation can be
seen to be Z'(ty) = Z, because Z, used in the closed-form solution over a

zero length of time will still be Z,, which is also Za(tb). To write out the
differential equation for Z'(t) explicitly, note that ‘

dglty, t, Z_(t)]  Oglty, t, Z_(t)]

d A ] —_—
I 2 ()] = aty * at

dglty, t, za(t)}

* 5Z_() z,

Now
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Thus, -

oglty, t, Z,(t)] | 881te t, Z, (0)]

d ' .\
E('Z'j‘vt)’)= T ¥ Bt
| { dglty, t, Z_(t)] } [Bg[to, t, Za(t)l-.
+ VA + Z_ .
8Z (1) l EAC) p

Note that Za(t) is used to evaluate Z and ip' Now it will be shown that the -
term : '

ag(tyy t, za(t)) aglty, t, Z (t)] agl ty, t,'Za(t)]
+ a__ 4 zZ|=o0,
9ty at aza(t)
so that
d ' ag[to, t, Za(t)] .
= [z'(t)] = l gga(t) (Zp -

To see that the term just mentioned is zero, note that the initial conditions for
the closed-form solution are constants., That is, o

Zo= glty, t, Z(t)]

for all [t, Z(t)] on a particular closed-form trajectory. Thus,

dz
—l =
& -0 o

~and using the above -expression

4z, _ | oglty, t Z(t) , 2alty, t, 2], {aglto, t, z(t)]}i
dt aty at 9Z(t)



Now if a particular Za (t) is considered to define a closed-form solution, then
Za.(t) substituted in the right-hand side of the above expression will give the
result that '

[’ aglty t, 2 (1) dglty, t, Z ()]

l T ¥ 3¢
| aglte, t, Z_(t)] |
o+ l 570 Z =0 .

Thus, the variation-of-parameters differential equation can be written as -

d aglty, t,'Za(t)]
x 2 (t)-v') S 5210 Zp

qu note that since

Z (1) = glty t, 2'(0)] and 2'(t) = glto, £, 2, (]

then

dglte, t, Z_(1)] _ ﬂg[to t, 2'(8)]1 | 1
oZ Tt) az'(t) ’

9Z'(t) 9Z,

~evaluated with Z, = Z'(f). Thus, the final form of the variation-of-parameters
differential equation is ' :

3 z!
and { glt, to, 2'(t)] } is the partial derivative transition matrix ( 0Z )
] 1 ’

d . _[oez()]t;
& [z'(t)] = [_a_z'(',"} ZP ’

Z,=2'(t)

where ip is calculated using z.a (t) given by the closed-form solution applied‘
to Z'(t). That is,

z (t) = 81t to, Z'(1)]
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so that the right-hand side of the variation-of-parameters differential equation
can be seen to depend only on [t, Z'(t) ]. Thus, numerical integration of this
differential equation will yield Z'(t) at any t > t;. Then the closed-form
solution can be used to determine Za(t) = glt, to Z'(t)] atany t > t,.

Since Z p is usually very small, the differential equation for Z'(t) is usually
- integrated much more rapidly than the differential equation for Za(t) . An

additional benefit of variation-of-parameters integration as explained here is

97z (t)]

32,

can be approximated
3z (t,)
a
3Z,
Then the interval (t,, tf) can be divided into as many subintervals (ty, t;), .

that the transition partial derivative matrix [

is desired.

very easily. To see how this is done, suppose a value of

(t t)y = (tn, tf) as desired. If this division is fine enough,

9z (t,) )
3azo N(SZZ'({H))

9z (t,) "E)Z( )
az:(t,S ~ az'st,)

8Za(tf) zaz(tf) .
aza(tn) 8Z'(tf)

Then
aza(tf) ~ ‘, aZ(tf) 9Z(t,) 9z (ty)
oz, || T o) | | 50T|
| ' 9z (t,) ‘
Note that the quantities [%'(t‘%] , [:TZ'((%-)Y] S ot [az - tf ]are evaluated
' , f
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using the closed-form partial derivative transition matrix ( -58—2- ) with Z,
. . o/

equal Z'(t), Z'(t), +*° , Z'(tf), respectively.

If a numerical integration routine with step-size control is used to

integrate -dqt_ [Z'(t)], then the subinterval boundaries t;, t,, *** , t will

be selected automatically to assure that across each interval the approximation
in the partial derivatives is accurate. This is because the requirement of a
specified accuracy on the integration of the variation-of-parameters differential
equation will not allow Z p to become very large in any particular interval of

time. Then_the-beginning of a new interval can just be considered as a new set
~of initial conditions, The following diagram might help to visualize this
approach:.

ZT)NZTM\ a
' Z, L Z,i) z,(t;) Z(t) - Z,(t)

The-diagram exaggerates the differences Z'(t,) and Z,, Z'(t,) and
Za(ti)' ces Z'(t) and Z (t ); but if the subinterval boundaries

(ti, thy *¢° 5 t ) are selected by a numerical integration routme W1th a

step-size control (based on accuracy requirements), the dlfferences will be

9Z_(ty) 9Z_(ty)
small and the approximations[ 2 1] ~ [SZ(ti] =2 ] ~ [fﬁ(hl],

9Z, 9Z' (ty) 9Z, (ty) dZ! (ty)
az (tf) . az(tt)
az (t YRR 8Z‘(tf)

] will be accurate.

This completes the explanation of the derivation of a variation-of-
parameters numerical integration technique to obtain Z (t) and the partial
9z (t)

9Z,
will be used to solve what is normally called the optimization boundary value
problem, An algorithm that can solve the optimization boundary value problem
rapidly enough is, in effect, a guidance scheme,

derivative transition matrix . In the next section, this information

58



GUIDANCE SCHEME DEVELOPMENT

The problem of guiding a space vehicle consists of determining an
optimal trajectory from a measured set of initial state conditions to a specified
set of boundary conditions. To formulate this problem more precisely, define
the state vector denoted by X(t) as follows: '

[‘ %(t) 7

x(t) =] v(t)

a(t)
b -
where t, = t = tf .

Then )'{(t) can be given by the closed-form solutions or obtairied from
numerical integration of the actual nonlinear differential equations. Also
define the multiplier vector P(t) as follows:

.~

G

P(t) = u(t)| .

| v(t) ]

Closed—form solutions for X(t) and P(t) can be used or the non-
linear differential equations for X and P can be integrated numerically by
the variation-of-parameters technique to yield X(t) and P(t). In

either case the matrices M and -am are available because
2 9P,

0
B_XS_)_ and & are a part of the partial derivative transition matrices
| 9Py ap, -

- - - .

raz(t)- 'aza(t)
57 and 57 developed in the previous sections. The matrices
0 | 20

[ ]
———’3;{19) and —;)Ist) are used to set up a Newton's method iteration to solve
0 0

the guidance boundary value problem. To see how this is ddne, define a set
of physical boundary conditions to be satisfied by a space vehicle as follows:

F[X(tf), tl=10 .
Then the optimization boundary value problem consists of determining an

optimal trajectory X(t) from a measured set of initial conditions X(t,) such
that X(tf) satisfies the physical boundary conditions given above. In order
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to determine an optimal trajectory X(t) satisfying the above conditions, the
vector P(t) must be introduced so that the control vector P shown in a
previous section, Development of Closed-Form Solutions, can be defined in
terms of X(t) and P(t). Also, from the necessary conditions of optimization
theory, the following transversality conditions associated with the physical

. boundary condition F[X (’cf ) tfl must be satisfied:

ar(t {OF[X(t,), t.]
1, P(tf).T=' 1 T { L } ’

- ax(tfj; - P BX(E)

where J (tf) is the scalar function to be minimized and pT is a new vector of

constant multipliers with the same dimension as the vector function
FIX(t), t] |

) . o To- ‘ . L
2. 3ty + o FIX(t), th=10 .

Now the physical. boundary conditions and the above transversality conditions
can be combined to form the total set of boundary conditions denoted by

G[—X(tf), P(tf), P, tfl =0 .

Note that the dimeh_sion of the vector function G is equal to the dimension of
the vector X(t) plus the dimension of the vector F[X(tf), tf] plus one, Then

‘the optimization boundary value problem consists of determining P (to) y- P, and
tf such that the boundary conditions

GIX(t), B(t), o, t = 0

" are satisfied by an optimal trajectory X(t) originating from a set of measured
initial conditions X(t,). The following is a reiteration of the previous state-
ment of the optimization boundary value problem,

1. The term X(t,) is measured by the space vehicle,

2. Values of P(t;), p, and te must be determined so that when

X(t,) and P(t,) are used as initial conditions for the closed~form solutions
" or the variation-of-parameters integration, the resulting solution X(t) and
P(t) when evaluated at 1:f will satisfy the total set of boundary conditions

 GIX(tp), P(gf), py Bl =0 .
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To solve the optimization boundary problem as stated by the preceding
sentences, note that X(tf) and P(tf) depend on the initial conditions X(t,)

and P(t,). Thus, a Taylor Series expansion of the vector function G[X_(tf),
P(tf), o, tf] can be made about a set of guessed values (denoted by P(ty)*,

p*, and tf*) for the parameters P(t;), p, and t. That is, assume that the

f‘
initial conditions X(t)), P*(t,) yield X*(tf*), P*(tf*).

Then

GIX(tf), P(t), o, tl = GlX*(tf*).' P*(tf*). p*, t¥

aGIX(tf). P(t), o, t]
+ { 3P (t;)

AP (ty)

J %

9G[xX(t,), P(t.), p, t.]
i £ £ |

;d(G[x(tf). P(ty), p, t]
+l T — .*Atf+,...,

where the subscript * of the braces means that the entire term in the braces
aG[X(tf), P(tf), P tf]

is evaluated with * values., The terms | 5 and

*

{d(a[x(tf). P(t), o, tfl)}
*

T can be evaluated explicitly, but the term

3G[X(tf), P(tf), P tfl 1
9P (ty) ; * <‘:an‘ only be evaluated using the mafcrices

ax(tf) oP(t,)
[-—(—”P % }* and [——mp % ]* .
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That is,

3P (to)

aGIX(t), P(t), », tfl..} ) {aetx(tf), P(t), o, t, }
*

ax(th

*

[ 2SIXG), P o0 )
aP(tf)

8X(tf)
9P (to)J "

aP(t,)
]
* %

Now a modified Newton's iteration formula can be developed from the above
Taylor Series expansion truncated after the first-order terms, To do this,
note that the desired value for G[X(tf), P(tf), P, tf] is zero so that

.G[X(tf)’ ' P(tf)9 P,

] = @ GIXK(E%), PH(t*), ¥, ¥

where 0 = o < 1, ‘can be substituted into the truncated Taylor Series expan-

sion for G[X(tf), P(tf), Pyt ] to give corrections AP(t)), Ap, and At

f

which, when added to P*(t,), p* and t f , will produce a value of G[X(tf),
P(tf), P, tf] nearer zero. That is,

o GIX*(tf*). Px(t*), o*, ¢

{1 = GIXX(t%), PX(t*), ¥, tX]

[BG[X(tf). P(t), p, t.l

. .
+ l 3P(t0) | }* Ap(to)
{ aG[x(t), P(t), Pyt ] }
Ap
-
d(G[X(t), P(t), Pyt 1)
fm e
oY
[ AP(tg) ] _
Ap = (@ - 1)[E]? {G[x*(tf*), Px(t*), o, tf*'l'} ,
hAtf ]
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where

- [{GGIX(t{). P(t), », tfl} | {m'fx(tf). P(t), », t‘l} {d(G(x(tf). P(t), o, tfl)} ]
E = ' : : ,
: « . * *

oP(ty) TR at
F AP(ty)]
The above expressidn for the correction vector Ap is used repetitively
A
tf

. L i
until the boundary conditions G[X(tf), P(tf), P, tf] are zero to a desired

tolerance.

The preceding discussion completes the general explanation of the
solution of the optimization boundary value problem.

For illustration purposes, this development will now be applied to a
specific set of physical boundary values. That is, let

o . .
xf xf - Rd
| =sT= _ 2
F[X(tf), tf] = V¢ V- vy
=T —
Xe vf - Rdvd cos &d
Then FI X(tf) , tf] is a three-dimensional vector and the quantities R & Ve
and ¢ , are constant desired values for the position vector, velocity vector,

d
and the angle between the two, respectively. Assume that J= - is to be

minimized. Then the transversality conditions become

- _T -
2xf
T T
A (tf)= -p 0, 0, O ,
VT
f
- o
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[0, 0, O
=T T ~T
G (tf) =-p |2V ,
iT
— 3 f -l
Y(tf) = 1 ]

XT(tf) ;?(tf) + @r (t,) é(tf) +q= H(t) = 0

When the transversality conditions are combined with the physical boundary
condition, the following form for ,G[X(tf) , P(tf) , Py tf] results:

- -

* X - Ry
A
f £ 'd
T
xf Vf-ded cos &d
GI[X(t,), P(t), o, t ] = 0. ,
f f f 9% I
_ X,10l, V.,)>p+ A
f f f
0
0
0,2vf, xf p+uf
0
=T = =T = . A
| M R T Vet % .

~ From the above expression for the vector G[X (tf), P(tf), Py tf] ,
the expression for the components of. the [ E] matrix can be obtained. That is

- B0IK(t), Plt). o byl | [BGLX(), Pt). o 1) [SGIXG). P, o 1) [dSIK(), B, £ Y]
) 8% ) * ’ %, - - o .’t ) a - - *
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where

8G[X(t£), P(tf), P, tf]
|

)

<8xf

3%,

)

*
[0, 0, 0]
zvt?‘
zL |
f (avf>
X
*
PlTl g
p2[113x3
oy
f %k
(0] g (o],
JRLI P <Bif> [0].s (aaf
'y - *
o/, Ep
(0] g REP
i
~T v
xf . £ "
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{oq[X(t ). Pt). 0. t.
g &G[X‘(ti).. P(tf)a 0y ]

I

) /f: A /
it _1> (ﬂ z(a
W 8"%-0 i % '\. ‘BXO % "\ 451—'

{ 8GIX(t), P(t), p, t.]
5 .
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’ 3“0 Y,

0

k)

.-

} = Same as
}"cf": x(aﬁf“l (
S % -and :-a-i?f % replaced by o

>. *’

5«a:c'tx(*tf)' P(t). o, t)

8%,

, respectively
:r T
[0]3><3
L -k
[ 2%) %
t %t
T 2
2vf vf_
AT_  _T_
xf vf+v,f Xf,
. ‘50 *
_2.X-f, 0’ -‘; p+
Flol F
[0] . |
10}, 2v, X, ) p+
0. f f
0

&y
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The preceding work completes the explanation of a Newton's iteration
procedure for solving the optimization boundary value problem. Note that this
Newton's iteration procedure can be used with either the closed-form solutions
or the variation-of-parameters solutions.

CONCLUSIONS

Closed-form solutions which approximate the optimal motion of a space
vehicle during powered ascent flight and unpowered reentry flight have been
developed., Also, the entire system of partial derivative transition matrices
for these closed-form solutions have been developed. This work allows a -
variation-of-parameters integration technique to be used to obtain more
accurate representations of the motion of the space vehicle in both powered
ascent and unpowered reentry. Also, the optimal guidance boundary value
problem is formulated, and a Newton's method algorithm developed for solving
the guidance boundary value problem is explained using either the closed-form
solutions or the more accurate variation-of-parameters solution,

Peter Leung of Northrop Space Laboratories has checked and devel-
oped a computer program which evaluates the ascent closed-form solutions.
Table 1 shows how these results compare with the numerical integration of the
more accurate equations of motion given in Reference 1. The computer
programming of the rest of the results developed in this report is still in
progress, When these computer programs are complete, more numerical
results will be published. '
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