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TECHNICAL MEMORANDUM

CLOSED-FORM SOLUTIONS FOR ATMOSPHERIC FLIGHT
WITH APPLICATIONS TO SHUTTLE GUIDANCE

INTRODUCTION

The numerical integration of any set of differential equations for the
atmospheric motion of a rocket-powered vehicle is usually a time-consuming
procedure even when a high-speed digital computer is used. For this reason,
approximate closed-form solutions, which take much less time to evaluate, are
often used to represent the atmospheric motion of a rocket-powered vehicle. A
set of closed-form solutions for reentry and atmospheric ascent is developed
in this report. For both cases accurate closed-form solutions for the three-
dimensional Cartesian coordinates of the vehicle's position and velocity vector
are obtained. Also, the partial derivative transition matrices of the final
state of the vehicle with respect to the initial state are obtained as closed-form
expressions. In addition, the closed-form solutions for the state and partial
derivative transition matrices are used to develop a variation-of-parameters
technique which can provide rapid numerical integration of the original
equations of motion.

DEVELOPMENT OF CLOSED-FORM SOLUTIONS

The starting point for all the work in this report will be the equations of
motion for atmospheric flight developed in Reference 1. The techniques devel-
oped could be applied to any other equations of motion, but a particular example
is useful in illustrating the ideas. Thus, the equations of motion derived in
Reference i are chosen as an example for this report. The derivations of these
equations will not be repeated here, therefore, the reader may want to
examine (Reference 1 before starting the next section.

The equations of motion for the center of gravity of a space vehicle in
an inertial three-dimensional Cartesian coordinate system as given in Refer-
ence 1 are first-order ordinary nonlinear differential equations for the position
vector (x of dimension 3) and the velocity vector (v of dimension 3); i. e.,

x = v



where

F = F_ + A (P0 - P.) ,
o G

m = m0 - m(t - t0) ,

and

V = v r - 5 J X x - W
r

It should be noted that p is the three dimensional control vector which must be
determined or specified as a function of time, and the quantities F , A , P0,_ S e
m0, m, A , (jj, and GM are constants defined in Reference i. The quantities

p, P, c , c , and 7] are (in general) specified functions of x and v. The
A J-j

or

exact form for these functions is also given in Reference i. With the pre-
ceding statements, it can be seen that the right-hand side of the v" equation is
a. function of t, x, and v^ Thus, a given time function for the control vector
p and initial conditions x0 and v0 at some time t0 allows numerical integration
to be used to obtain values of x and V at any t > t0. Usually the time function
for control vector p is determined by optimization theory to maximize or
minimize a quantity J defined by

J = (p (xf , V , t^ + cqf

and to satisfy a vector function (of dimension < 6) called the physical bound-
ary condition and written in the following general form:

F(xf, vf, tf) = 0 .

In the above expression for J, c is an arbitrary positive or negative weighting
factor for q.; and q^ is a new variable defined by another first-order nonlinear

ordinary differential equation with the following form:



q = f (x, v, 1>, t) .

Then, for a given control vector time function and initial conditions x0, ~v0,
q0, at some time tg, numerical integration can be used to obtain x , "v and

q at the final time t . Thus, it can be seen that the value of J depends on the

control vector time function and the initial conditions x0, v"0, and q0 at tfl.
Since the initial conditions are usually assumed to be specified by the nature of
the proolem, the only thing left that affects the value of J is the form of the
control vector time function p(t), where ^ ^ t ^ t •

In order to use optimization theory to determine the control vector
time function p(t), the time functions ~\ (a three-dimensional vector), u
(another three-dimensional vector), and y (a scalar) are introduced. These
time functions are usually called Lagrangian multipliers, or simply multipliers,
and are defined by their differential equations. To obtain the differential
equations for "X, u, and y, define

_T • T •
H = \ x + u v + y q ,

where the superscript T denotes the ordinary matrix transpose.

Then

-s-T 9 H

j_T 8HU = - "

8H

The above expressions allow the differential equations for X, u, and y to be
obtained by performing the indicated partial differentiations of H with x and v
replaced by their right-hand sides in the expression for H. Then values for

"X., H, and y at any t > t0 can be obtained by numerical integration of the

differential equations A , u , and y along with a simultaneous numerical
integration of the differential equations X, V", and q when a control vector
time function p~(t), where t0 ^ t — t,, is specified and the initial conditions

^o» u<>» y0, XQ, v0, q0 at to are specified.



Now the results of optimization theory can be used to state that any
control vector time function which minimizes J must maximize at every t,
where to — t — t , the quantity H, and any control vector time function which

maximizes J must minimize at every t, where t0 < t ;£ t , the quantity H.

In addition, any control vector time function which minimizes or maximizes J
and satisfies the physical boundary conditions [denoted by F(X, v, t ) = 0]

must maximize or minimize H as stated previously and must be produced by
initial conditions \, HQ, and y0 that satisfy the following conditions:

Bf = -
yf = -c

H = 0 . •

•

In the above expressions, * is another vector of constant multipliers that
must be introduced and has the same dimension as F("X", v", t ). If a control

vector time function and the multipliers \, UQ, y0, and * can be found that
satisfy the preceding necessary conditions, the optimization boundary valve
problem has been solved. Reference 1 discusses this problem in more detail
and indicates a few techniques for solving the problem when numerical integra-
tion is used on all the ordinary nonlinear differential equations involved. The
purpose of this report is to make simplifications in the ordinary nonlinear
differential equations involved so that closed-form solutions can be used
(instead of numerical integration) to solve the optimization boundary value
problem. This work will be done separately for the ascent case and the reentry
case.

Ascent Case

For the ascent case, let q = m and J = -q so that it is desired to

determine the control vector time function"p(t) to minimize J, thus maximiz-
ing mass. Then the equations of motion become

•

x = v"



GMx

q = -m

When the expressions for !• and D are substituted into the V equation, the
following expression is obtained:

GMx

This expression can be rewritten as follows:

Of

pAr\-K1

a o

P
I PI

A2q / r \ A
GMIc

Now define

[A] = 1 -

- /PA1b=-lT-



_ _ GMx
" " " ^

Then

so that the expression for H can be written easily as

Then

-T _ 3H
X ~ - 83f

Since J is to be minimized, p must be chosen to maximize H at every
t, where t < t ^ t. By examining the expression for H, it can be seen that

— T — —p = [A] u is sufficient to assure a maximization of H with respect to p at
every t such that t — t — t . This result for p can be substituted back into

all the differential equations, and the formulation of the optimization boundary
value problem is practically complete. The entire system of differential
equations that must be integrated simultaneously can be written as:

•

x = v

q = -m



8( [Aj T u) -T 3b
U

\ 8 ( [ A ^ u ) + - T

Given initial conditions sEJ,, v"0, q0, X0, u0, and y0 at t0, this system
can be integrated numerically; but a closed-form solution is to be derived here
that will approximate with some degree of effectiveness the solution obtained by
numerical integration. The first step in obtaining a closed-form solution for
the entire system is to write \(t) and u~(t) as a Taylor Series expansion about
the initial conditions; i. e.,

- to) +

u(t) = uo + u-0(t - to) + i^(t - to)2 +

The differential equations for ~X and. U can be used to evaluate
T3J), etc. Also, the quantities [A], b, and g" are expanded in a Taylor Series
about the initial conditions; i. e. ,

[A] = [A0] + [A0](t - t0) + - [A0](t - to)2 + ... , .

b = b0 + b"0(t - to)' + ^ Bo(t - t0)2 + .... ,

g = go + to(t - O + | f0(t - t0)2 + ... .

The quantities [A0], b0, |"0, [A0], "B0, g0, etc., are determined by differen-
tiating the expressions for [A], T>, and g with respect to t and evaluating
them at t^. Then the Taylor Series expansions for [A] , b, gX, and u can
be truncated at some power of (t - t^) and substituted into the expressions for
v~ and y to give expressions for "v" and y whose right-hand sides are functions
of only the independent variable time. Then numerical quadrature techniques
can be used to find the solutions v(t) , y(t), and x"(t), where t0 ^ t ^ t,



much more rapidly than could be done by simultaneous numerical integration, of
the original system. The accuracy of this approach is limited only by the
accuracy of the truncated Taylor Series expansions over the time interval of
interest. To go further and obtain actual closed-form solutions requires a
few more approximations. First \(t) and Tf(t) are assumed to be represented
adequately by using only the linear terms in the Taylor Series expansions.
Then [A] must be assumed to be constant. With these assumptions, the
expressions for v" and 7 become

tf + $ (t - to) [A.] [A0]
TK- + tf' (t - t0)]

t0(t - O + | b0(t - t0)2 + ...

+ [go + Io(t - O + |g0(t - t§) + ..

^ .7 [a°T + "«T (t - t0)J [AO] [AO] T [UO
T + U/ (t - tfl)]

+t 0 ( t - t f l) + ¥0(t - t0)2 + ...

Since q = -m, then q = q0 - m (t - tfl) so that -T- = - -r- and (t - t0)

= --r (q - qo) . With these substitutions, -7- and — can be written asm dq dq
follows:

B, -f (q - q.) + i|r(q - qo)! - . • - ] } ,



-q.)

Now these equations can be integrated fairly easily in closed form. To illus-
trate this closed-form solution, ionly the constant terms in the Taylor Series
expansion for 15 and ~g will be used, although the integration for the inclusion
of any number of terms in the series for b and g is easily added. First, note
that q = m and q0 = m0 so that the following quantities can be defined:

d7 -

T zT/m0\"| _ _T -
,= u« d,

a, -*T + *?

-T ^ /I \ / 1\ iT j / 2 - \ i T T
=

1 \ _iT T JL / 1 A JL.T -



^- -= - " 0 b °

become

dv"
With these definitions, the expressions for —

dq
dv" dy dy

-; — and — = -~-
dm dq dm

dv_ _ • /1\ /1_\
dm = -U; (m)

dy dv
The above expressions for -^— and -r— can now be used along with a table of

dm am
integrals to obtain expressions for V(m) and y(m) at any m > mD. If v(t)
and y(t) are desired, then the relation m = m0 - m (t - t0) can be used to
calculate the m corresponding to any t > t0. To see how the expressions for
v"(m) and y (m) are obtained with the aid of a table of integrals, define

X =

Then

v(m) = v0 - -r-
dm

m
r

J
jdm + b

m

J

jdm
"m"

= y0 - -
m

•s/lfd:m
J10

Lm0

" m -]
r dm

J STLm0 J
+ dlt

r m -i
r dm

J m
. mo J

In order to evaluate the integrals involving N/ X in the above expressions,
four cases must be considered. These cases are at the top of the next page.

10



1. dy = 0 but dg > 0

2. d7 > 0 but dg = 0

3. d7 > 0 and dg > 0

4. d; = 0 and dg = 0 .

It should be noted that d7 and dg can never be less than zero because

d7 = IA0]

and

-i
[A0]

T -i.

Also, if either d7 or dg is zero, then d8 is zero because

T L ^lA0] u0 + u0

and if d7 or dg is zero, then cTt is zero or d^ is zero, respectively.

For the first case, since d7 = 0 and d9 > 0, the expressions for ~v(m)
and y(m.) become

v(m) = v0 - 4

y(m) = y0

The integrals appearing on the right -har.d sides of the above expressions are
now easily evaluated to give:

^fe

i

"m j "f dm

mfl

f m .
r- r- f dm
^ \J m

[mo

+ 5.

+ -»

" m Jr dm
J m
m0

" mr dm

+ So

+ dii

mr

^m0

"m jr dm
J m •

11



- r, -

To complete the closed-form solution for this first case, it should be
noted that

~ = **
dm dt

1
m

_1_
m

This expression for -:— can be integrated to givedm

m

-f-^Vo f
-

mo

m
+ go / (m - m0)dm

mo .
= xo - vo

/ m - m0 \
V m )

_ ( m - m0

go
(m - m0)

2

Thus, the closed-form solutions that approximate the entire system of
ordinary nonlinear differential equations when d,? = 0 and dg > 0 can be cal-
culated for any t > t0 as follows:

12



m(t) <= m9 - m(t - te)

ty (t -

*(t) =

For case 2, since dT > 0 and dg * 0, the expressions for v{m) and
y(m) become

m

J dm
m

m
dm
ra So

m
/

m
dm

m0

d,
• m
J

LIU0

dm m

Lm

dm
m

The intepals appearing on the right-hand sides of the above expressions are
also easily evaluated, and the results follows

13



Then, to complete the closed-form solutions for this case, it should be noted
that

d x _ d x " / d t \ _ / 1 \ dx
dm ~~. "dt \dm"y ~ ~ V m / dt

- i/T 4-"m | ° m
*/di

(^

1 \ _

This expression for - — can be integrated to give
dm

m
= x-0 - Y-r v0 / dm

m

n m - £n m°)dm

m
+ -g g / (m - mo)dm J

m0

- m0)

Thus, the closed-form solutions that approximate the entire system of
ordinary nonlinear differential equations when d7 > 0 and dg = 0 can be calcu-
lated for any t > to as follows:

14



m(t) = m0 - m(t - to)

\(t) = \0 + t0(t - t f l)

K(t) = IT, + v,(t - t0) + ft

For case 3, where dT > 0 and d9 > 0, the expressions for v(m) and
•y(m) remain the same as the ones given on page 11; i.e.,

v(m) = v0 - -r-
m

dm
nWlT

m

m,

y(m)= y0

[
m -i

/ dm

mo J

-Iffm II Lm0

1 m
r
J

. mo

dm [ m , n
/ —J mmo

m m , m rrr ,
dm r dm , r v X dm, f dm r dm , r N X dm . ,, ,The integrals J —-» , J -:« , and J g— appearing in the above

m, mn nan

expressions are evaluated with a table of integrals. This gives

15



m

/
mn

dm
*n

2d7 / m \
[__— I

dm _ / 1 \ . / 2 v d N + 2d9m + d» \
N/1T V N/~d7 / n \ 2\f dj, W X0 + 2d9m + dg /

NTx dm ATXNx dm _ X *X . do r dm . dm
J — ̂ r- - -\^T ~ "m7/ + 2 J ^TX + ^ J ^7T
m ' m m

To facilitate writing the above expressions, let

and *0 and ft0 will denote * and Si evaluated at the initial conditions. Then
the expressions for v"(m) and y(m) can be written as follows:

- ~ + dtl in --m/ " \m0

To complete the closed-form solutions for case 3, it should be noted
again that

jix _ dx /dt \ _ _/l_\ dx = /_l_\ _
dm dt V d m / Vm/ dt " lm/V '

16



Thus,

dx"
dm

This expression for -5— can be integrated to givedm

/1 \ ^ i i i A \ r ^

m -i - m
- J (in m - in m0)dm + |^V / (in fi - in S20 )dm

Kin J TTln0

m m
+ bo J (in m - in mo)dm + go J (m - m0)dm

The only difficult integrals to evaluate in the above expression for x(m)
are the integrals involving in $ and in fl. The following steps will explain the

m m
integrals J in $ dm and J in fl dm. Both integrals will be evaluated using

the integration-by-parts formula; i. e.,

J u dv = uv - J v du

m
For J in * dm, let u = in * and dv = dm. Then,

m m fd(in *)1J in * dm = m in * - m^ in $0 - J m — *-: - - dm

17



Then note that

d(ln
dm

x J

m £•-*)m

1 + (4d7d9 -

N X - d m
- 2d7)m'|

- 2d7) J

1 (2NTd7 N/1T - dam - 2d7) 1
J

+ fes\..
N/T

m
When this result is substituted into the expression for J J?n

the result is mft

dm,

18



m m
in * dm = m in $ - m0 in $0 - J m

m,, m
dm

m m
= m in * - m0 in dm

= m

m0

in $0 - (m - m0) +

f dm

4 )te (Ir)d« / W

m
A similar procedure is used to evaluate j in J2 dm; i. e.,

m
J in £2 dm
m0

Then

d in
dm

m in fl - m.Q in 'J2g - J
m0

2d«m)

d(fa_a)1
-lm- J

.
dm

o

m
Now, as before, this result is substituted into the expression for J in J2 dm
to give m0

m m
J in J2 dm = m in J2 - mo in
m0 mo

m
„ _ .

= m in fl - mo in
CJ

mo

mdm
tnr

19



m Jmdm
For the expression J THB* » a table of integrals is again used to give

mo

mdm dm

Thus,

m
dm = m ^n J2 - m

m -(T;rry

^

With these results, the evaluation of the integrals appearing in the expression
for x(m) can now be completed; i. e. , for case 3, where d7 > 0 and dg > 0,

- m0) + g0

^ J

20



Now, again, the closed-form solutions that approximate the entire
system of ordinary nonlinear differential equations when d? >0 and dB >0 can
be calculated for any t > t0 as follows:

m(t) = in,, - m(t - t,,) ,

u(t) = UQ + TT0(t - t0) ,

x(t) - Ii + T, (t - t.) + g, i^ + (^ B0 [» to (2.

For case 4, when d7 = 0 and d9 = 0, the aerodynamic forces and thrust
forces are zero so that motion is two-body motion for which closed-form
solutions are developed in Reference 2.

21



The preceding work completes the 'cloae'd-form solutions for the ascent
case which can be used to approximate the optimal atmospheric motion of a
rocket-powered space vehicle. Some of the results will be used in the inext
section, which is concerned with the closed-form solutions for reentry'motion.

Reentry Case

For the reentry case, F is assumed to be zero and m is assumed to
be a constant equal to m0. Also, for the reentry case, q, which is a linear
combination of the instantaneous stagnation point heating rate and deceleration,
is defined by the following differential equation:

and the initial conditions q,) = 0. To simplify the writing of the equation for
q, define

and

Then

Since F = 0 and m is a constant, the equations of motion for the reentry
case become

22



x= V ,

= [A] jgr + b + g ,

where

m [I]

b = -

GMx

Now, as in the ascent case, the multipliers X(t) , u(t) , and y(t) (where
tg ^ t ^ t ) are introduced to allow the following expression for H to be
written:

H =

As in the ascent case,

^ T 8 H . L T 8 H , . 8 H
= ~8~F ' U = ~§T' Y = "Fq '

Now the quantity J, which is to be maximized or minimized by the
choice of p(t) (where ^ ^ t ^ t ), is defined. As in Reference 1, the choice

t
j = q is made, and it is desired that J be minimized by the choice of a

control function p(t). Thus, p(t) must maximize H at every t such that
t0 ^ t — t . An examination of the above expression for H will indicate that

23



p = [A] TT+ y h

is sufficient to maximize H at every t, where t,, ^ t ^ t .

When the above result for p is substituted into both the equations of
motions and the multiplier differential equations, the entire system of simul-
taneous ordinary nonlinear differential equations for the reentry problem is
obtained; i .e. ,

x =

= [A]
[A]Tu + yh

(uT[A] + yhT) ([A]TH + yh)

q = h + h J [A] u + y h

7 (uT[A] + y hT)([A]T -Q- + y h)

T _T
n [A] + y h

/(uT[A] + y E T ) ( [A] T u+ y E)

T/aB ag\ /8h
~* \dx dx) -

I 3([A]Tg) 81
9x r dx

_Tu = - uT[A] + y

N/(uT[A] + y TiT) ([A]Tu + y h)

8([A]Tn) + 3h__
7 9v

_ T / 9 b-u

y = 0

This system of ordinary nonlinear differential equations can be solved simul-
taneously by numerical integration if the initial conditions ICQ, v"0, qQ, X0, HQ,
and y0 are given; or, as in the ascent case, the quantities, X, u, h, h, [A],
b, and ~g can be expanded in truncated Taylor Series about the initial conditions
which will allow numerical integration by quadratures to be used.

24



To continue and obtain closed-form solutions for the reentry system of
differential equations, the following assumptions are made:

X(t) = Xo + X0(t - to) ,

u(t) = HO + Ho(t - to) ,

h(t) = lo + \(t - to) ,

lA( t ) ] = [A0] ,

b(t) = b0 + 50(t - to)

g(t) = g0 + g-0(t - to) + (t - t0)2

h = ho + hfl(t - to) +

As in the ascent case, any number of terms can be used in the- Taylor
Series expansions for b(t), g (t), and h(t) ; .but only the constant terms will
be used in illustrating this approach. With the preceding assumptions, the
equations for v and q become:

0,T + B,(t - t,)] [A0] + y[tf + t,T(t - t,)]) (lA0]TK H- Ob(t - t,)] + yl\ * h,(t - to)])

T— T • T ~\ 'q = h0 + I h0 + Kg (t - t0)J (same term as above in the v equation} .

To simplify the expressions for v and q, define

dj = [A0] |[A0]T[uo - Oot0] + y(E0 -

dj = [A 0 ]{[A 0 ]T i3o+ yHo} ,

d7 ={[u0
T - aoTt0][A0] + y[hoT - E0

Tt0]}

+ y(E0 -

25



u-0
T - n0

Tt0][A0] + y[H0
T - h0

Ttfl]| { [A0]TTr0 + yh0} ,

= {UOTUO] + yfio/ I [AO]TOO + yh0 j ,

T — T f T — i. —d10 = [h0 - h0 10] [A0] [uo - Uot0] + y[h0 -

[A0]Tn0 + yE0 + E0
T [AO]T[UO -

y[h0 -

-T J TA
di2 = ho \ [AoJ UQ H

Then the equations for "v and q become

JL d\ .+ dot T j. -
V = . 1 *!== + D0 + g0

V d7 + dgt + dgt2

=
d7 + dgt + dgt?

These equations can be integrated in closed-form with the aid of a
table of integrals, but four cases must again be considered as in the ascent
case. These cases are

1. d7 = 0 but dg > 0

2. d7 > 0 but dg = 0

3. d7 > 0 and dg > 0

4. d7 = 0 and d9 = 0.

Also, as in the ascent case, d7 — 0 and d9 ^ 0; d7 = 0 implies that both
d^ = 0 and dg = 0; and d9 = 0 implies that both d^ = 0 and dg = 0.

Thus, for the first case,

- d, _,_ ,- _
V = T n* + O*«v UQ &0
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x_ h + d10 + dltt + dttt?q - n0 T

These differential equations are easily integrated to give

/ a, _\v(t) = v0 + [—-2- + B0 + g0) (t - t0)

q(t) = q0
 H

Then, since "X" = v",

* = v0+ ( A + b0+ go) (t - to)

which is easily integrated to yield

x(t) = X0 + v0(t - t0) + -A- + b0 + g0

Thus, for case 1, the entire closed-form solution which approximates
the original system of ordinary nonlinear differential equations is given by

\(t) = \o + \(t - to) ,

u(t) = u0 + ^(t - t0) ,

y(t) = r0 »

v(t) = v0 +__ + b0 + g0 ) (t - t0) ,
\T% )

x(t) = x0 + v0(t - t0) + A + b0 + g
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For case 2, since d7 > 0 and dg = 0 ,

v" = — 5- + b0 + g0

^= h + d10 + dltt + dl21?

These differential equations are also easily integrated to give

v (t) = T0 .+ [ -. + B0 + g0Vt - to)

Then, since x = v ,

" b0 + g;0 ] (t - to)

which is easily integrated to give

X(t) = x, + v,(t - t,) +

Then, for case 2, the entire closed-form solution which approximates
the original system of ordinary nonlinear differential equations is given by

X(t) = \ + \(t - t0) ,

u(t) = u0 + ii0(t - to) ,

r(t) = r0 ,

v(t) = ̂  + -A. + b0
 + to) (t - t0) ,
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- to)

q(t) - qo - to)

For case 3, since ̂  > 0 and d9 > 0, the original form of the
differential equations for V and q are unchanged; i. e. ,

v = So
d7 + dgt +

•s/ dy + dgt +

As was done in the ascent case, define X = d7 + dgt +

Then the differential equations for V and q can be integrated at least symbol
ically to give

v-(t) = 6,
N/1T t0 -sTx

b)( t - t0)

q(t) = q0 + h0(t - t0) + d10 ato ^yl^ to
With a table of integrals, the expressions involving N/~X~ can be integrated
to yield

/
*0

I

dt ,

tdt 1

V
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Let n = 2N/~d9~ '^/X~+ 2d9t + dg and fi0 be the value of
the expressions for V(t) and q(t) can be written as

v(t) = v0

at t0. Then

+ i0) (t - to)

q ( t ) =

2d9
(WIT-

Since x = v,

*(t) = 5T0
 + V0(t . to) + -i- / (in 0 - ^n Q0)dt + (b0 + g0)(t "

t t

J1 (sTx - \Tx"0)dt - ^L_/ (^ n - in n0)dt> .

m
The integral J In Q dm was evaluated for the ascent case; and when

mo t

m and m$ are replaced by t and t0, the integral J £n n dt can be evaluated.
That is, tj,
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in fl dt = t in « - to in J20 - - \
to

Also, using a table of integrals,

- fey - ft)
f <Jv dt - 2d9t +J ^x dt - —

(2dflt0 -f
^ B

/4d7d9 -

Thus,

x(t) = - t0)

/4d7d9 -

l n a

go)
(t -

dt

Then, for case 3, the entire closed-form solution which approximates
the original system of ordinary nonlinear differential equations is given by

\(t) = \o + o(t - to) ,

TT(t) = TIo + CT0(t - to) ,
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y(t) = r0 ,

(BO + - 10) ,

x(t) = xo + v0(t - t0) * (50 t ^ n t -

q(t) = q0 + h0(t - t0)

For case 4, when d7 = 0 and dg = 0, the aerodynamic forces are zero so
that again the motion is two-body motion for which closed-form solutions are
developed in Reference 2.

The preceding work completes the closed-form solutions for the reentry
case. These closed-form solutions can now be used to approximate the reentry
motion of a space vehicle. In the next section, the reentry and the ascent
closed-form solutions will be used to develop expressions for the closed-form
partial derivative transition matrices.
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THE PARTIAL DERIVATIVE TRANSITION MATRICES

In order to define most easily the partial derivative transition matrices
for the three ascent cases and the three reentry cases, a new vector of dimen-
sion 14 is defined; i. e. ,

q
Z =

X

TT

Then, for each of the three ascent and reentry cases, the partial derivative

transition matrix is the 14 by 14 matrix This matrix can be eval-

uated at any t, where t0 s t ^ t , by explicit differentiation of the expres-

sions for x, v", q, X, u, and y with respect to xj), V0, q, ~X0, uj, and y0.
f) 7 p Q r

Also of interest for later use is the vector -̂ r-. The transition matrix —
9t0 I 9Z

9Zand the vector -^- can be written more explicitly as follows:

9Z
9Z0

ax
&3f0

av
9x0

ax

8J
a?0

ax

av

ax

av

9q 9q

aX

an
8x0

%_
_axfl

aX

au
a?0

ax aX

ax
au0

av
9u0

9q

aX

9x

a?

ag

aX

an 9u
aX0

dy_

an
9u0

au

au0
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8Z
8 to

8x

3t0

±SL
3t0

dT.
8t0

9u

9y

-
To illustrate how the different components of

r) 7 r) 7
amd ^r- are obtained,

the expressions for -r=- and -r-r— will be derived in detail for case 3 of ascent

flight. The other components (including the other cases for ascent and reentry)
can be derived in a similar manner, but their derivation will not be shown in

detail. To start the derivation of -r=r- and •=— , note that for case 3 of ascent

x = x0 + v0(t - to) + g0
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To ease the problem of writing the above expression for x, define the scalars:

Cl

Then

X = X0 + V f l(t - to) + Ib [ 2
t(>) J C-jdj+ C-d +

and

. /.8d,+

9xTo complete the derivation of —s- , the unevaluated terms in the above

expression are taken one at a time. Since

_
SO ~~ T 37 '

/

then

9xn /WT ^ ,%
-GM + 3GM GM

__ T
3XQ XQ _ I

Similarly,

/pA
:) , V (cb°" -V2~/ "rTA
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where p, v , c. , 17, and c are all evaluated at t$ and thus depend on
Then, r A a

_(pA

/pA

2T)CT
 2 \ \ T

(CA +

3V /pA

'

c2 +C

Since T evaluated at t0 is given by

= v - w x

then

8v

0 -

0 - co

-co2 cot 0

where co A, co2, and 0)3 are the components of the constant vector co explained
in Reference 1. Also explained in Reference 1 are subroutines for the atmos-
pheric functions and the aerodynamic functions. The subroutine for the atmos-
pheric functions yields values for the density p, the pressure P, and the

velocity of sound v as functions of altitude and also the derivatives -7-77 ,S dalt

dP S-r-r , and -3-7- . The altitude at to is given bydalt dalt u

alt = _ R
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where R is assumed (for this development) to have a constant value equal to
G

the mean value of the earth's radius. The subroutine for the aerodynamic
functions yields values for the coefficients c. , c , and TJ as functions of

A Li

Mach number M and the derivatives , — , and -r- . The

Mach number M is computed by the following formula:

v

v

dp 9cA 3^
Now the quantities -r=- , , -r— r , and -— - — appearing in the expression

dx0_

8b0 , ... , , ., , , -. , ,, ... 8 alt , 8Mfor — =*• can be written in more detail, but first the quantites -r=- and — =-
9xo 9xo 3x0

must be written. This gives

8alt _ x

VS

Then

dp _ /dp \/3alt\

\ 8M/

8T] _ / 81? \ |8M
"
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This completes the derivation of -^- . Now note that (in the expression for

) Cj does not depend on XQ so that •—=*• = [0, 0, 0] . Then to continue,
. dx0

t = [A0][A0]

Thus,

=2!Ao)
To evaluate the quantity 8IA01

:

*pA \
-r) "r

I2 C
OL

, note that

I c
2 I La L

a>

_TB I *

Vr r

Then,

8F
The only quantity not already derived in the above expression is -r=-
Reference 1,

From

F = Fg + Ae(P0 - P)
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where F , A , and P0 are constants and P is obtained from the atmospheric
S e

subroutine. Thus,

8alt

This completes the derivation of the expression 8[A0]
9x0

To complete the expression for -r—^ , the expression rj-f- must be
OXg OXg

evaluated. To do this, it should be noted that

J.T -T 1
u = -A. - —

m
u [A] 8([AKu) + _T /9b_

| T T [ A ]

Then

^•K>"L("?M:
Q/\ / \

I ? I 2

r

LO

IF

T

-2cl -^

9c,

- 4TIC
a

Note that

TT

9M r

'Vvs

and

9c_ 9c_
L LJ
a c

9M \ 9v
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Also,

8b
fpA

'

.SM
a

L 9Ma ) ] •
Thus,

= -X -
a

Tu
r

C -
'8c,

T
[A]1!!

m|[A]Tu|

\ a.

Q! Q!
m r
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Now the above expression, along with the initial conditions, can be used to

evaluate TT0, and then -^- can be computed; but before attempting this tas9xo
the matrix [B] and the scalar c4 will be defined as follows:

Then,

m p A r C L
a.

-v

-2cl /_ _T\
[v v )
V r r/

2^ V

,T _
- -An -[Bn] — c4 (vj u

r°
v + c8o

r°
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and

UA 0 ] T u 0 |
uo

/-T _\

V*.*) r0 8X

In the above expression for ^r1 , the quantities
T \ )

—5=^ — / u0 f ,9xo / ;
9co dct

" , and •=?' have not yet been calculated. Before

attempting to calculate these quantities, some more constants will be defined;
i.e.,

PA L

~9M

ce =
\2m CL

or
1 - 2™

CK,

C7 =

'L
Q

V 9M
- 2c2

Q!

Then

[B0] =
Vr

l V r ' V S
, TC7 I V V' l r r

\
)/

where cg, ce, c7, v , and v are all evaluated at tfl.and thus depend on x0.r S

Now the quantityity | Q^0 UA0] u0J |IA0] u0 > can be written; i.e.,
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-fao)("«'V)(t) - , dx.n

IVr |vS

v
r
uo

C7

_Tvr
_ \
u0// r asy

T T

To complete the evaluation of the above expression, _/ , T=T-» and •==?• must
be written. This gives ° dx° °

2m
3 '^? /+Ml 8M

»Xo I P
01 '

a

a
9M

9M
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8x0 p 2m
a

9M 8M
- 2c2.

L I 8M2
8M
8x0

82c

Note that-rr?9 and .--2~ are assumed to be available from the aerodynamicoM dM / • \
/ fliT \

subroutine of Reference 1. To continue evaluating (-r^-1, the expression

8xo will now be evaluated. Since

/PA
F.+ I -

then

O!
J T"v v"

r r

©
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To complete the evaluation of
9*0 '

where

9M + "I (fi)\ '

'PA
-£U-i.
2 ) U,

+ SCL
Q! Q!

97? a

and

!!A
9M 8M/ "L

o;

'8c,
01

L \ SM
Q!

Also,

fM /"M/(a^j+(^r;(cA +
Iv I

r

2m/ r 9M 8M

8c.

2 +4T]CL ' L 8Mot a
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needed to compute -~. is assumed to be available fromoMAgain note that

the aerodynamic subroutine of Reference 1. This completes the evaluation of

:?• and thus also -^=^-. To continue the evaluation of -r=-,, the next term toXo oxo 0X0

be evaluated is -r=?- . Since

1 ( m P. /* m

then

8^
3*o

m
—*?m*

*n -=H -J
m

m

>^ l
$

+ -W2i

81 r^
..O must be evaluated. First,

8xo

complete the evaluation of —£?• , the terms -—-I- , —=2- ,
OXg dXo dx0

, and

and thus

_T ^.
UQ + Ufl
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Then, since

To evaluate -%=2- , note that

= -[A0][A0]
Tn0(i) .

Thus,

T
K T\ i

— — ̂  — Iu0 >
9X0 / )

— — — Iu0 > is the same as the expression

for \ 0 — u"0 / with the exception that \T0 is replaced by ufl. This
Q J

completes the expressions for -r- and -r— ?• . Also, since

then

which will be needed in the expressions for 0 '• and • Q . Since

+ dgm + 2d7

and

~ ~ 2d8m
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then

9 -r-

9*0
_1_

*0

J_

*fl

*

*

and

fl =

Q,

In ,the preceding expressions, the terms -r=r
follows:

amd -r=?- are evaluated as

9X
m -r-

\ .
I +

\9x0/

This completes the evaluation of the term -r. The next term to be
_

evaluated in the expression for — rr- is -~r- which was evaluated already in
9 X
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order to obtain ~?- . Thus, the only term left unevaluated in the expression

for -r=r- is the term -^ . To evaluate — =?• , note that
dX0 dXg dXg

c, =
m

Then

9c

1
as/xU

\2NTd7

9(;rL

This completes the detailed derivation of —:— . A similar approach is

used to derive an expression for -^— - . That is, sincedto

X = V0 (t - to) + g0 + Ctb0 +

then

r\"r" r\ j r\ j ^

Note that —"•, -r—^ , and -rj2- are zero because b0, dlt and dg are constants.
910
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The terms -—*-, -r-2-, and —^ must now be evaluated. Since
8t<)

then

9Cl

Note that m = m0 - m(t - tg) so that 7- =

Thus,

9ct

9t0

1
-»-m

m 1 ,+ — * - -1

Next, since

•^.jfa^JS-^fyj

then

9m

1 / 9m
"8*0 ./

/9

Note that

= 2^fd7^/"x~+ dgin + 2d7 ,

and

X = dT + dom +

m
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Thus,

at«
8m

9X

Then, sine*

°3 =

8c3 _
etc "

r 8m
n

2NTd7

8^c
This completes the expression for -rr-.

The preceding work has shown in detail how to compute — - and -r— .
dX0 dt0

8Z and the vectorThe other terms in the partial derivative transition matrix
,0

82•rrr can be written in a similar manner and, in fact, most of these terms are

much easier to write than the ones used for illustration purposes. In the next
Q ry

section, the partial derivative transition matrix will be used in deriving
a variation-of-parameters integration scheme. °

VARIATION OF PARAMETERS INTEGRATION
For more information about this approach to variation of parameters

integration, see References 2, 3, and 4. Variation of parameters integration
is to be used to obtain Z (t) where Z (t) is the vector

a a
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za<t) -:

defined by the differential equations as given in Reference 1 (also listed in
a previous section, Development of Closed-Form Solutions) and the initial
conditions Z (to) = Z0-

fl

Now define Z = Z - Z, where Z is the approximate vector

differential equation used to derive either the ascent or the reentry closed-
form solution and Z is the actual vector differential equation mentioned

a
above. For example, in the ascent case

Z =

=JiU*fIYs.+- =

-m

uo

l [ A 0 ] T [ u o + H0 - t0)l
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and

-m

-
U
-T /8b

- U
T /8g

A] u) T /8b\
dv \dvj

|[A]Tu|

Then Z = Z + Z . Now a vector Z'(t) is defined to be a set of valuesa p
which, when used as initial conditions in the closed-form solution, Z(t) will
make Z ( t) = Z ( t)

3-

definition of Z'(t).

make Z ( t) = Z ( t) . The following diagram might help to understand the
3-

lt.Z(t)

(U.Z.)

The diagram illustrates that Z (t) is obtained by numerical integration ofa
the actual differential equations with the initial conditions (t^, Z0). Also,
a value Z(t) = -Z U), is obtained using the closed-form solutions and thea
initial conditions (L, Z'U)) because this is the definition of Z'(t) . Given a
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value of Z (t) a value for Z'(t) is obtained from the closed-form solutions
a

by letting Z (t) = Z0 and interchanging the role of t and IQ. To be more
3-

specific about the definition of Z'(t) let the closed form solution Z(t) be
denoted more generally as

ZU) = g(t, to, Z,,) .

Then from the definition of Z'(t)

Z (t) = git, to, Z'(t)]a

or

Z«(t ) = glto, t, Z (t)]
a

since the closed-form solution works backwards or forwards when t is
replaced by to. From the expression

Z'(t) = glto, t, Z (t)] ,
a

a differential equation for Z'(t) can be written. This differential equation is
the variation-of-parameters differential equation, and from the diagram the
initial conditions for the variation of parameters differential equation can be
seen to be Z'(to) = Z0 because Z0 used in the closed-form solution over a
zero length of time will still be Z0, which is also Z (t0). To write out the

a
differential equation for Z'( t) explicitly, note that

d 8g[to, t, Z f l(t)] 8glto, t, Za(t)]

dt '^ 8tJ + 3t

Now

Z = Z + Z
a P
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Thus,

d̂t

, t, Za(t)] | 8g[t0, t, Za (t)]

8t

, t,

az (t)
a

8g[to, t, Z (t)]
Z .

P

Note that Z (t) is used to evaluate Z and Z . Now it will be shown that the
term a P

8g(to, t, Z (t)) 8g[to, t, Z (t)]

at
9gtt0, t, z (t)]

az (t)
a

= o,

so that

d j agtto, t, za(t)j
JA ™ ^^ V / J \ ^^^^^^^^^^^^^^^^ f L\ ^^^^^^^dt . I 8Za(t)

To see that the term just mentioned is zero, note that the initial conditions for
the closed-form solution are constants. That is,

Z0= g[t0, t, Z ( t ) j

for all [t, Z(t)] on a particular closed-form trajectory. Thus,

d Zt

dt = 0

and using the above expression

dt
8g(t0, t, Z(t)) 3|

ato
?[to, t, z(t)] (a{

at i
;[to, t, Z ( t ) ] l £

)
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Now if a particular Z (t) is considered to define a closed-form solution, then
a ,.

Z (t) substituted in the right-hand side of the above expression will give thea
result that

, t, Za(t)) , t, z (t)]
d

~~at

. '. z
a(t)I .a l z } = o

Thus, the variation-of-parameters differential equation can be written as

d̂t

t, Z (t)]

Now note that since

Z (t) = g[t, to, Z'(t)J and Z'(t) = g[t0, t, Z (t)] ,
a «

then

t, Z a ( t ) l _ |8g[t t t, Z.

a
8Z'(t)

and { —*—'Q^/'I } is the partial derivative transition matrix

evaluated with Z0 = Z' (£). Thus, the final form of the variation-of-parameters
differential equation is

P '
Z0=Z'(t)

where Z is calculated using Z (t) given by the closed-form solution applied
P a

to Z'(t). That is,

Z (t) = g[t, t0> Z'
a
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so that the right-hand side of the variation-of-parameters differential equation
can be seen to depend only on [ t, Zf (t) ]. Thus, numerical integration of this
differential equation will yield Z'(t) at any t > 1^. Then the closed-form
solution can be used to determine Z (t) = git, tg, Z'(t)] at any t > V

Since Z is usually very small, the differential equation for Z'(t) is usually

integrated much more rapidly than the differential equation for Z (t). An
3

additional benefit of variation-of-parameters integration as explained here is
Z (t

athat the transition partial derivative matrix 8Z, can be approximated
8Z (t)

very easily. To see how this is done, suppose a value of
f

is desired.

Then the interval (to, t ) can be divided into as many subintervals (t,),

(ti» (t , t) as desired. If this division is fine enough,

8Z

ez

Then

8Z(t f)

8Z (t ) f 9Z(Oa 1
(t f)]

I7^)]

Note that the quantities are evaluated
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equal

the closed-form partial derivative transition matrix

••• , Z f ( t ), respectively.

/
f\ r-t

- with Z0

If a numerical integration routine with step-size control is used to

t willnintegrate-— [Z'( t)I , then the subinterval boundaries tlt t^, •••

be selected automatically to assure that across each interval the approximation
in the partial derivatives is accurate. This is because the requirement of a
specified accuracy on the integration of the variation-of-parameters differentia]
equation will not allow Z to become very large in any particular interval of

time. Then the beginning of a new interval can just be considered as a new set
of initial conditions. The following diagram might help to visualize this
approach:

The-diagram exaggerates the differences ZT(tj) and Z0, Z'^) and
Z (tj), ••• , Z ' ( t ) and Z (t ); but if the subinterval boundaries

a i a n .
(ti» t2, ••• , t ) are selected by a numerical integration routine with a

step-size control (based on accuracy requirements) , the differences will be

small and the approximations

"aZa(V
K

s
az (tJa 1

. azo
[az(tl) 1
laz'ttiJj '

"az (t,)"a
aza(t1)

will be accurate.

This completes the explanation of the derivation of a variation-of-
parameters numerical integration technique to obtain Z (t) and the partial

8Za(t) a

derivative transition matrix —r;=— . In the next section, this informationdZl0
will be used to solve what is normally called the optimization boundary value
problem. An algorithm that can solve the optimization boundary value problem
rapidly enough is, in effect, a guidance scheme.
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GUIDANCE SCHEME DEVELOPMENT
The problem of guiding a space vehicle consists of determining an

optimal trajectory from a measured set of initial state conditions to a specified
set of boundary conditions. To formulate this problem more precisely, define
the state vector denoted by X(t) as follows:

X(t)

x(t)

q(t)

where t0 t =£ t

Then X(t) can be given by the closed-form solutions or obtained from
numerical integration of the actual nonlinear differential equations. Also
define the multiplier vector P(t) as follows:

P(t) = u(t)

r(t)

Closed-form solutions for X(tJ ̂ and P(tJ can be used or the non-
linear differential equations for X and P can be integrated numerically by
the variation-of-parameters technique to yield X(t) and P(tJ. In

either case the matrices -QT: and ._: are available because
L 9P0 J L 9po J

are a part of the partial derivative transition matrices

developed in the previous sections. The matrices

are used to set up a Newton's method iteration to solve

the guidance boundary'value problem. To see how this is done, define a set
of physical boundary conditions to be satisfied by a space vehicle as follows:

F[X(tf), tf] = 0 .

Then the optimization boundary value problem consists of determining an
optimal trajectory X(t) from a measured set of initial conditions X(to) such
that X(t.) satisfies the physical boundary conditions given above. In order
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to determine an optimal trajectory X(t) satisfying the above conditions, the
vector P(t) must be introduced so that the control vector p shown in a
previous section, Development of Closed-Form Solutions, can be defined in
terms of X(t) and P(t). Also, from the necessary conditions of optimization
theory, the following transversality conditions associated with the physical
boundary condition F[X (t ), tj must be satisfied:

'f '
Twhere J(tf) is the scalar function to be minimized and p is a new vector of

constant multipliers with the same dimension as the vector function
F[X(tf), tf]

2. J(tf):+ pTF[X(t f),t^i = 0 .

Now the physical boundary conditions and the above transversality conditions
can be combined to form the total set of boundary conditions denoted by

G[X(t£), P(t f), P, tf] = 0 .

Note that the dimension of the vector function G is equal to the dimension of
the vector X(t) plus the dimension of the vector F[X( t ) , t] plus one. Then

the optimization boundary value problem consists of determining P(t0),. p, and
t such that the boundary conditions

G[X(tf), P(tf), p, = 0

are satisfied by an optimal trajectory X(t) originating from a set of measured
initial conditions X(to). The following is a reiteration of the previous state-
ment of the optimization boundary value problem.

1. The term X(t0) is measured by the space vehicle.

2. Values of P(t0), p, and t must be determined so that when

X(t,,) and P(to) are used as initial conditions for the closed-form solutions
or tiie variation-of-parameters integration, the resulting solution X(t) and
P (t) when evaluated at t. will satisfy the total set of boundary conditions

G[X(tf), P(tf), p, tf] = 0 .
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To solve the optimization boundary problem as stated by the preceding
sentences, note that X(tJ and P(t.) depend on the initial conditions X(t0)

and P(to). Thus, a Taylor Series expansion of the vector function G[X(t f),

P(t£), P, tj can be made about a set of guessed values (denoted by P(t(,)*,

p*, and tf*) for the parameters P(t(,), p, and t. That is, assume that the

initial conditions X (to), P* (to) yield X* (t *), P* (t *).

Then

G[X(tf), P(tf), p, tf] = G[X*(tf*), P*(tf*), p*, tf*

9G[X(t£), P(tf), p, tf]

8G[X(t) , , p, tj

( d ( G [ X ( t ) , P ( t ) , p, t ]
+ - — -

where the subscript * of the braces means that the entire term in the braces

is evaluated with * values. The terms

(d(G[X(t f), P(tf), p, t{J)

dt

8G[X(tf), P(tf), p, tf]

d~p and

can be evaluated explicitly, but the term

pc[x(tf), p(tf), p, tf]
\ gp/ . v / can only be evaluated using the matrices

and
8P(t£)
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That is,

8G[X(tf), P(tf), p, tf] 8G[X(t), P( t ) , p. t 8x(t£)
8P(to

8G[X(t£), P(tf), p, t^ 9P( t )

J *

Now a modified Newton's iteration formula can be developed from the above
Taylor Series expansion truncated after the first-order terms. To do this,
note that the desired value for G[X(tf), P(t) , p, t] is zero so that

G[X(tf), P(tf), p, tf] = a G[X*(t£*), P*(tf*), p*, tf*] ,

where 0 — a < 1, can be substituted into the truncated Taylor Series expan-
sion for G[X( t ) , P(tf), p, t ] to give corrections AP(t0), Ap, and Atf

which, when added to P*(to), p*, and t*, will produce a value of G[X( t ) ,

P(tf), P, t 1 nearer zero. That is,

a G[X*(tf*), P*(tf*), p*, tf*] = G[X*(tf*), P*(tf*), p*, tf*]

|9G[X(t f), P(tf), p, tf]
+ \ dPfid

M
ac[x(t), p ( t ) , p , t ]f , f , , f

Ap

Jd(G.[X(t f), P(tf), p,

dt
Atf ,

or

AP(t0)

Ap

Atf .

= (a - 1ME]-1 JG[X*(t{*), P*(tf*), P*, t{*]

62



where

(El
f , p, £

•>
d(GlX(t f) , P(t{), P,

' l

The above expression for the correction vector Ap

At,

is used repetitively

until the boundary conditions G[X(t ), P(t ), p, t] are zero to a desired

tolerance.

The preceding discussion completes .the general explanation of the
solution of the optimization boundary value problem.

For illustration purposes, this development will now be applied to a
specific set of physical boundary values. That is, let

xf xf -

F[X(t f), tf] = vf v£ -

—T —x, v. - R ,v . cos 1? ,
i t d a d

Then F[X(t ), t] is a three-dimensional vector and the quantities R, v ,

and 1? . are constant desired values for the position vector, velocity vector,
d

and the angle between the two, respectively. Assume that J = -CL is to be
minimized. Then the transversality conditions become

-T2xf

= -P 0, 0, 0

_T
Vf
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uT(tf) - -p
T

0, 0, 0

-T2v f

-T
Xf

y(tf) - i ,

*T(tf) J(tf) + uT(t f) x(tf) + q = H(t£) = 0 .

When the transversality conditions are combined with the physical boundary
condition, the following form for G[X(t ), P(t )., P, t ] results:

xf xf -

-T - ,vf vf - vd

G[X(t f), P(tf), p, tf] =

_T _
x. v, - R.v, cos i>,
i f d d d

2x f ,

, 2v£, xf > p + uf

T *

From the above expression for the vector G[X (t ), P(t ), p, tf ],

the expression for the components of the [ E] matrix can be obtained. That is

[E]
p(tf), p, tf] 8G[X(t(), P(tf), P, tfj 8GlX(t{), P(t{). p. tf)

8p

|dGtX(t{), P(t{). p,
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where

8G(X(t f), P(tf), p, tf]

o-2x

[0, 0, 0]

T
Vf

P1[I13X3

/ to, o, o]

-T

.<
_T
Xf Bv

P2[I]3X3

IT

}

l°J3X3

1 [I]3X3

[013X3

tT

/ax \
1 — — - J *
\9*o/*

[0]

[0]

[I]
* TT
•y
f

3x3

3x3

3x3

/•M
V8^/*
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= Same as
, p ( t ) , P, tfj

8JI *, tel ** ̂ v**™1*

9GlX(tf), P(tf), p, t f ] \

8^ : I

[0] 3x3

0:

,2vf,

P, t f])

n- -2xf xf

-T L

.LT _ _T _
xf v£ + vf xf

0

0

0

•Q-

0

LOJ
2v£,
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The preceding work completes the explanation of a Newton's iteration
procedure for solving the optimization boundary value problem. Note that this
Newton's iteration procedure can be used with either the closed-form solutions
or the variation-of-parameters solutions.

CONCLUSIONS

Closed-form solutions which approximate the optimal motion of a space
vehicle during powered ascent flight and unpowered reentry flight have been
developed. Also, the entire system of partial derivative transition matrices
for these closed-form solutions have been developed. This work allows a
variation-of-parameters integration technique to be used to obtain more
accurate representations of the motion of the space vehicle in both powered
ascent and unpowered reentry. Also, the optimal guidance boundary value
problem is formulated, and a Newton's method algorithm developed for solving
the guidance boundary value problem is explained using either the closed-form
solutions or the more accurate variation-of-parameters solution.

Peter Leung of Northrop Space Laboratories has checked and devel-
oped a computer program which evaluates the ascent closed-form solutions.
Table 1 shows how these results compare with the numerical integration of the
more accurate equations of motion given in Reference 1. The computer
programming of the rest of the results developed in this report is still in
progress. When these computer programs are complete, more numerical
results will be published.
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