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FOREWORD

This work is based on the series inverter and control

system (ASDTIC) development work performed by Dr. F. C. Schwarz

while at NASA Electronic Research Center. The work was started

under Dr. F. C. Schwarz and Mr. Frank Raposa, formerly of the

NASA Electronics Research Center, 575 Technology Square, Cambridge,

Massachusetts, and completed under Dr. F. C. Schwarz and Mr. Howard

Shumaker, NASA Lewis Research Center, Cleveland, Ohio.

We would like to thank Dr. Schwarz for his support and tech-

nical guidance in performing the power processor development, JPL

Electric Propulsion Group for the loan of the 20CM Hollow Cathode

Ion Engine, and Mr. E. V. Pollock of JPL for technical support in

running the ion engine.
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1.0 SUMMARY

Prior to the work reported herein, the former NASA Electronic Research

Center (NASA/ERC) successfully demonstrated the performance of a fixed

input voltage, 35% efficient, 2kW series resonant inverter when operated

as a beam supply for a 20CM ion engine. The objective of this work

performed during the period of 1 July 1969 to 1 February 1970, and from

1 July 1970 to 1 November 1970 was to develop a basic power processing system

for the various loads of a 20CM ion thruster using the series resonant inverter

approach initiated at the NASA/ERC. The main effort was expended in the

following areas:

o Power Processor Design

o Power Processor Breadboard Fabrication and Test

o Power Processor Breadboard Integration Testing

o Power Component Evaluation

o Analysis of Power Processor Baseline Electrical Stresses,
Losses, Weight and Part Count

o Beam, Accelerator and Arc Supply Integration Testing with
the Hollow Cathode Engine

Development work was done which improved the SCR power circuits, SCR

control logic, output regulators and the command and protection system.

Section k, Block Diagram, documents all the detail block diagrams for the

basic system, output regulator and the command and protection system. The

Analog Signal to Discrete Time Interval Converter (ASDTIC) control system

was incorporated into the design in order to meet the +0.13; regulation

requirements for the magnet current, the arc current and beam output voltage.

Section 5 documents the detail schematic diagrams of each subcircuit of the

ion engine power processor.

The subcircuits were integrated and the complete power processing

system breadboard performed satisfactorily with an overall breadboard

efficiency of 88.6 to 89.4 percent at full load,and 86.2 to 86.6 percent

at half load on the arc and beam supply,over the input voltage range of

200 to *»OOVdc.



Testing of the SCR's was performed and critical component parameters

which contribute to efficiency loss were evaluated.

The electrical stresses of the processor breadboard components were

studied, and circuit and component modifications were made to maximize

efficiency.

The baseline power processor breadboard losses, weight, and part count

were analyzed and detail breakdowns are shown in Section 8 of this report.

The breadboard development was oriented to demonstrate the obtainable

efficiencies and to verify by testing the compatibility of the beam, accel-

erator and arc supply characteristics with an engine.

The preliminary engine testing with the beam, accelerator and arc

supplies has shown the excellent capability of the series resonant inverter

electric power processor on i n i t i a l turn on of the engine. The protection

schemes required to protect against failure of the power conditioner in case

of engine arcing, the clearing of shorts between the V5 and V6 electrodes,

and the a b i l i t y to return to normal operation without turning off any of

the power supplies were demonstrated. The command and protection system

can be simplified when using this type of power processor. Sequencing and

time delaying of the various outputs during engine turn on or restart are

not required for the protection of the series resonant inverter electric

power processor and the command and protection system can be optimized

strictly for the benefit of the engine.



2.0 INTRODUCTION

High power silicon-controlled rectifiers (SCR's) or thyristors

have been used in high voltage and high power equipment for industrial

applications for many years. The design objectives were primarily low

cost and low maintenance as the design requirements of low weight and

high efficiency for space equipment are usually not a factor in ground

applications.

In space applications, the primary design requirements are high

r e l i a b i l i t y and low weight. Power processor inefficiency results in

spacecraft weight penalties due to increased power source capacity

required to supply the additional power processor losses.

Future high power spacecrafts w i l l be using high voltage distri-

bution to minimize the cable weight and losses and w i l l have high

power loads such as electric propulsion, direct broadcast communica-

tions or other high power type loads or experiments.

Dr. F. C. Schwarz identified the basic advantages of the SCR

series resonant inverter operating at high input voltage and high

switching frequencies to reduce equipment weight without major penalty

in efficiency and to provide reliable operation where the current is

not subjected to transients when fault or overload conditions exist

in an ion engine.

Dr. Schwarz, at NASA Electronics Research Center, designed a

2 kilowatt beam supply using the SCR series resonant inverter to

operate off a 300V fixed input source. This unit was integrated

with the 20CM ion engine and successful performance was demonstrated.

The objective of this program was to design, construct and test

a multikilowatt ion engine power processor using the series resonant

inverter as the basic power stage operating at 200 to 400Vdc input.

The basic tasks to accomplish this objective were as follows:

1. Develop a detailed power processor block diagram

showing the flow of power from the input to the

output loads, the input command signals, control

logic, overload protection signals and the telem-

etry signals. Interface requirements between all

these functions were to be determined.



2. Design the required power and electronic control

circuits u t i l i z i n g the series resonant inverter as

the primary means of power conversion. Utilize the

Analog-Signal-to-Discrete-Time-Interval-Converter

(ASDTIC) in the critical voltage and current regula-

tion functions of the power processor. Series Resonant

Inverter Silicon-Controlled Rectifier (SCR) sequencing

and protection control logic is under development by

NASA for operation over a variable input voltage range

to be completed and adapted for use in the design of

the ion engine power processor.

NASA/ERC successfully demonstrated the performance of

a fixed input voltage, 95% efficient, 2KW series reson-

ant inverter when operated as a beam supply in conjunc-

tion with an ion engine. These tests clearly established

its inherent ruggedness for all conditions of engine

operation, including severe engine arcing or shorts.

3. Bu i l d and test the power and electronic subcircuits

over specified input, output and temperature ranges.

The construction of individual power supplies (with

telemetry circuits) shall be such as to allow electrical

integration of the individual subsystems.

A. Integrate the subcircuits into a complete ion engine

power processor and test with a dummy load to show com-

p a t i b i l i t y of the circuits.

5. Set up a hollow cathode engine and perform preliminary

integration tests with the beam supply.

6. Perform analyses to gain a detailed knowledge of the

distribution and magnitude of electric stresses in

the power circuit components for purposes of component

improvement and r e l i a b i l i t y redundancy analysis.

7. Translate the knowledge acquired under I tern (6) into

defining a program for the improvement of power circuit

components and of the power system characteristics,

including its power density and efficiency.



3.0 REQUIREMENTS

The requirements established as a goal for this development were as
follows:

3.1 Electrical Requirements

3.1.1 Input

The power conditioner shall be compatible with a spacecraft solar cell
array power source and provide stable operation of the 20cm JPL mercury ion
thruster. For design purposes a 300V input was considered the nominal voltage,
and the normal input voltage variation for which the power conditioner should
satisfy the output requirements specified was 200 to 400V. The power con-
ditioner should remain operating below 200V (with out-of-tolerance outputs
permissible) but would automatically shut off at or below 180V.

The solar cell array is an inherent unidirectional power source and
is current limited. The power conditioner should not supply reverse current
to the input power source. Any network of filtering necessary to assure
compatibility with the solar cell array power source was to be a part of the
power conditioner.

3.1.2 Outputs

The power conditioner electrical output requirements are a function of the
ion thruster input requirements and its operating characteristics. Fig. 3-1
shows a block diagram of the power conditioning system. The following sub-
paragraphs present the detailed power conditioner output requirements. Elect-
rical outputs are defined in Table 3-1 and Table 3-11.

3.1.2.1 Electromagnet and Manifold Heater Supply No. 1

The supply shall be capable of providing the requirements listed in
Table 3-1 and Table 3-II.

The No. 1 supply provides power to the electromagnet and manifold which
are connected in series. The resistance of the electromagnet is expected to
be as follows:

(a) Cold Resistance: R25<>c = 4.5n

(b) Hot Resistance:



22 AWG Copper wire is being used.

The inductance of the electromagnet is 7 mH.

The power requirement of the manifold heater is 7 watts at 0.67 amperes.
The manifold heater utilizes 80Ni-20Cr wire with a negligible temperature
coefficient. The resistance value of the heater is 14n and remains prac-
tically constant throughout the operating temperature range. The supply
shall be designed to provide a maximum of 16 watts or 19 volts at 0.85 amperes
for continuous operation.

3.1.2.2 Main Vaporizer Supply No. 2

Output requirements for supply No. 2 are given in Table 3-1 and Table
3-II. The load resistance is 5ft (dc) and remains practically constant through-
out the full range of operating temperature. Supply No. 2 will be current

limited and will operate at the spacecraft ground potential.

The power supply shall be current limited and shall be self-protected

against overloads.

Supply No. 2 shall operate closed loop with the beam power supply No. 5.

The feedback signal in this loop shall be derived by sensing U current.

An externally supplied reference signal, IRR , (see paragraph 3.1.5)
will be compared to the feedback current Ig.

Figure 3-2 defines the closed loop performance.

If proportional control is used, then the positive error signal Al,-

will control the output of the No. 2 supply (Figure 3-1).

3.1.2.3 Cathode Vaporizer Supply No. 3

The supply shall be capable of providing the requirements specified
in Table 3-1 and Table 3-II.

The load resistance is 16.5 +_ 0.5ft (dc) and remains practically constant
throughout the full range of operating temoerature. PS-3 will be current

limited; it will operate at 2kV above-ground potential, and shall be self-
protected against overloads.



Supply No. 3 shall operate in closed loop with the arc power supply
No. 4 (paragraph 3.1.2.4).

This loop is the major loop. Another, minor, current loop is
provided that maintains the output current constant and equal to the

preset reference value long*- The l^ef covers tne ran9e °f 0.8A to
l.OA (Figure 3-3).

Initially, after the thruster is ignited, the major servo loop is
opened (i.e., E. > E.R .) and the supply No. 3 operates at the constant
current mode (Figure 3-3).

The major servo loop closes when E. drops below E.R . because the arc
current I. has reached the level of reference I4Ref (Figure 3-4) and PS-4
has started to operate in the current limited region.

This loop is self-compensating which means that lowering of E. causes
a reduction of I- and a reduction of Hg vapor within the arc, resulting
in a rise of E..

The E4Ref shall be adjustable from 32V to 35V.

3.1.2.4 Arc Supply No. 4

Supply No. 4 shall be capable of providing the requirements specified
in Table 3-1 and Table 3-II.

The supply shall be capable of supplying a load floating at 2000V
above ground.

The specified value of E. shall be provided at the thruster terminals.
The anticipated line resistance amounts to 1.5n.

In view of the fact that the arc power supply carries the sum of the
arc and beam currents, the "true" arc current shall be derived from the
sensor placed in the negative arc return line, as per Figure 3-1.

The arc supply requires two modes of operation: (a) startup, and (b)
normal closed loop operation. These are discussed separately. The E-I
characteristic is shown in Figure 3-4.



(a) Startup: For startup, in order to initiate a discharge within
the thruster ionization chamber, a minimum of 150Vdc open circuit
with a short circuit capability of at least 20mA shall be provided,

(b) Normal Operation: Once a discharge has been initiated an unin-
terrupted voltage transition to the lower level of operation is
required.

The open loop E/I characteristic of the supply is shown in Figure 3-4a.
The exact shape of the characteristic shall be at the discretion of the
designer, providing that the output voltage at the thruster terminals at
10A in all cases is not lower than 36V.

A variable current limit will be provided; by means of I4Ref the true
arc current shall be limited within 2A to 10A. The current limited mode
of operation is shown in Figures 4b and 4c. Whereas in Figure 3-4b current
limit has been set for I4 = 2A (i.e., f(I4R) = 0V), in Figure 3-4c I4 = 10A
(i.e., f(I4R) = 5V).

The operating point will settle at a voltage level defined by E4R.
For example, in Figure 4b,E4R = 33V, andjn Figure 4csE4R = 34V. The
range of E4R setting shall be 32-35V, as further described in Figure 3.
The slope of the current limit shall be approximately AE4/AI4 = 400[V/A].

Arc supply No. 4 shall operate in closed loop with the cathode
vaporizer supply No. 3. This major loop shall force PS-4 to operate in
the current limited mode at the voltage level determined by the E4R ,..
This reference shall be presettable to 32 to 35V. For further details see
paragraph 3.1.2.3.

3.1.2.5 Beam Power Supply No. 5

The supply shall be capable of providing the requirements specified
in Table 3-1 and Table 3-II.

A minor servo loop shall keep the output voltage constant within 1.0%
for line voltage and load current variations specified.

Supply No. 5 will operate closed loop with the vaporizer supply No. 2
as described in paragraph 1.2.2. (Also see Figure 3-5.)
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The current sensor of !„ Bk (see Figure 3-1) shall be compensated, so
as not to measure the accelerator current that circulates through PS-5.

3.1.2.6 Accelerator Supply No. 6

The supply shall be capable of providing the requirements specified
in Tables 3-1 and 3-II.

A minor servo loop shall keep the sum of the output voltages E.+E-+E,
constant within 0.1% for line voltage of 200 to 400V over load current
variations as follows: I. = 2 - 10A, Ic = 0.5 - l.OA, Ic = 5 - 10mA.4 o b

3.1.2.7 Neutralizer Cathode-Vaporizer Supply No. 7

The supply shall be capable of providing the requirements listed in
Table 3-1 and Table 3-II. It should be noted that upper and lower current
limiting shall be provided: the lower limit shall be 0.3A or less, the upper
current limit shall be internally adjustable within 3.0 to 3.8A range.
Supply shall be capable of supplying a load floating at 100V below the ground.

The output of the No. 7 supply shall be controlled by a voltage
feedback signal from the output of the No. 8 supply. This signal will be

compared to a voltage reference (EoDe-f)
 and the error signal generated

will be used to control the output current. EgRef shall be internally
adjustable to allow presetting Eg anywhere within the range 10V to 20V.

In addition, another feedback loop which permits operating supply No. 7
at constant current will be provided. The lj current feedback will be com-
pared to a current reference U7Ref) and the error signal will keep I7 at
a constant, preselected value. The range I7Ref will be internally adjustable
to preset Iy within 3.0A and 3.8A. The two loops will be designed so that
the voltage loop will have priority over the current loop.

The control characteristics shall be such that the constant output
current I7 will be maintained until Eg drops below EgR f; below this value
of Eg, the current I7 will be reduced proportionally to 0.3A (RMS): this
will be accomplished by means of an error signal (EgRef - Eg) (see Figure 3-6).

Slope Al7/AEg (Figure 3-6) shall be approximately 1A/V.



3.1.2.8 Neutralizer Keeper Supply No. 8

The supply shall be capable of providing the requirements specified
in Table 3-1 and Table 3-II. An output isolation of 200V shall be
provided for bias operation. The neutralizer keeper supply requires two
modes of operation:

(a) Initiating a discharge, and (b) Normal operation.

(a) Initiating a discharge - For startup and initiating a discharge
in the neutralizer a minimum of 200Vdc at 5mA with a short
circuit capability of 20mA shall be provided. Once a discharge
has been initiated an uninterrupted voltage transition to the
normal operating level shall be provided.

(b) Normal operation - The normal operation of the neutralizer
keeper supply requires 50V at 20mA with a source impedance such
that the output drops to zro volts dc with a neutralizer
keeper current of 550mA +_ 5%. (See Figure 3-7.)

The operating point lies in the vicinity of 550mA in the
constant current region.

This supply operates in a closed loop with supply No. 7, as
described in paragraph 3.1.2.7.

3.1.2.9 Cathode Tip Heater Supply No. 9

The supply shall be capable of providing the requirements specified
in Table 3-1 and Table 3-II.

The load resistance is 4 +_0.1n (dc) at 1000°C. Tungsten wire is
used for this heating element.

The power supply shall be current limited and be selfprotected against
overloads. It does not need to be of a regulated type; tap changing can
be used in order to increase the output power to 12V/3A if required.

A signal from the power supply No. 4 shall be capable of turning
the PS-9 OFF. The level at which this occurs shall be presettable within
I4 = 3 to 9A (see Figure 3-8).

10



PS-9 shall be turned back ON, whenever the arc current drops below
minimum value. This value shall be presettable with I. = 1 to 3A. The
turn-on shall occur only if the condition persists for more than five
seconds. This provision shall blank out the response of the loop to the
discontinuities of arc current during the temporary shut-downs after
arcing.

3.1.2.10 Cathode Keeper Supply No. 10

The supply shall be capable of providing the requirements specified
in Table 3-1 and Table 3-II.

Supply requires two modes of operation: (a) initiating a discharge
and (b) normal operation; requirements for (a) are identical with these
defined for PS-8; requirements for (b) differ. In the low voltage
region supply will operate at the constant current, as preset by the

3.1.2.11 Bias Power Supply No. 11

This supply is not part of the power conditioning equipment but part
of the laboratory power system. Supply furnishes a dc voltage within a
10 to 100V range and carries the emission current, Ir (Figure 3-1).

3.1.2.12 Preheating of the Power Conditioner

Heater elements shall be mounted within the power conditioner for the
purpose of maintaining the temperature of the components above -50° F during
the period when the power conditioner is turned off but exposed to -300°F
cold plate in vacuum.

Heaters shall be capable of dissipating 200W of heat from 115V, 60Hz,
1 ph source.

One temperature sensor shall be installed within the power conditioner
to regulate the temperature to -50°F.

A second temperature sensor shall be installed with the power con-
ditioner to remove the ON-2 INHIBIT (see paragraph 3.1.4.3) when the
temperature of 0°F is exceeded.

11



A third temperature sensor shall be provided for indicating the
actual temperature of the power cnnditioner.

Preheating shall be initiated manually, after the pump down of the
vacuum chamber and cooling of the cold wall is started. Temperature of
the power conditioner shall be maintained at -50°F by means of an extern-
ally installed ON/OFF regulator. Temperature of the power conditioner shall
be raised automatically, by ON-1 CMD, until it exceeds the 0°F level, where
the ON-2 INTERLOCK shall be removed.

After an ON-2 CMD is given, preheating of the power conditioner shall
be discontinued.

3.1.3 Overload Response

It is necessary that each individual supply shall be protected against

excessive current.

It shall be the design objective that all the supplies shall be short
circuit proof and shall not be overloaded even by a permanent short. Each
supply should be capable of operating with any such load without causing
any component to exceed the temperature allowed by reliability assessment
of the component.

In addition, supplies 5 and 6 shall be equipped with an undervoltage
detector that initiates a temporary shutdown in case of a sustained arc
between grids. The shutdown shall occur only if the undervoltage condition
persists for a period longer than approximately 100ms. Undervoltage is
defined as a voltage below 90% of the nominal value.

3.1.4 Startup and Shutdown

3.1.4.1 Commands

The power conditioner will be activated from an external source by
means of commands for operating relays. Each command shall have:

(a) Amplitude of 20 to 31Vdc
(b) Duration of 20ms or more
(c) Current capability of 100mA

All command lines will be at tank ground potential.



3.1.4.2 Interlocks

The interlock will consist of an open switch voltage of 5V nominal
(35V maximum, 4V minimum). Closing the switch will remove the interlock.
Drain will be 10mA at VCES = 0.5V nominal (2.0V maximum).

3.1.4.3 Startup Procedure

(a) Set IBpef
 to zero volts.

(b) Apply "ON-1 CMD", this will increase the heating power and raise
the power conditioner temperature to 0°F, disabling the "ON-2
INHIBIT" interlock.

(c) Apply "ON-2 CMD." This will energize the Group I supplies.
Wait for five minutes.

(d) Apply "ON-3 CMD." This will energize Group II supplies. The
power conditioner is now ready to respond to I CMD.

(e) Set lon* at the desired value.

Note: The above individual commands will be given after
verification of telemetry data delivered.

3.1.4.4 Shutdown Procedure

Two types of shutdowns may occur:

(a) Regular shutdown

(b) Emergency shutdown

Regular Shutdown

External relay commands will be generated by the controller to terminate
normal operation. This procedure is aimed at eliminating any possible
contamination of surfaces by condensation of mercury.

(a) "OFF 1 RELAY CMD" - Vaporizer supply No. 2 is turned off.
Rate of delivery of mercury decays. Wait until beam current
decays below one-half of the preset reference value.

(b) "OFF 2 RELAY CMD" - Turn off all supplies.

Emergency Shutdown

"OFF 2 RELAY CMD" - will be given, "OFF 1 CMD" will not be used.
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3.1.5 Recovery from Arcing

Some of the arcs that occur within the thruster or between the thruster
and the facility ground will not extinguish and must artifically be inter-
rupted.

Shutdown of the thruster shall be initiated by one of the under-
voltage detectors (see paragraph 1.3) of the supplies Nos. 5 or 6.

Such a signal shall shut down supplies Nos. 1, 2, 4, 5, 6.

After a delay, that can be readjusted within 50 and 500ms, power supplies
Nos. 4, 5, and 6 shall be turned on.

The magnet power supply No. 1 shall be turned on after one second.

The main vaporizer power supply No. 2 shall be turned on after a preset
delay of one to two seconds.

Should the arcing and restart occur after "OFF 1" was applied, re-
starting sequence will not nullify such command.

3.1.6 Analog Control of the Spacecraft

3.1.6.1 The analog signal required to command the spacecraft will be supplied

in the form of IgDef ^rom a source with a maximum impedance of Ikfi; maximum

current drain from this source shall be less than 50yA. The value of this

reference signal shall be continuously varied from OVdc (Ir = 0.5A) to +5Vdc

(Ig = l .OA). Figure 3-7 shows the steady-state transfer characteristics of

the system. The command line shall be at power conditioner ground.

3.1.6.2 l4Ref shall be derived from IBR ~ by means of the function generator.

The generated accuracy of the transfer curve (Figure 3-9)* shall be within

+0.5% of full scale. The curve shall reproduce 90% mass utilization.

Function generator shall be designed to perform during the mission

time with a maximum predicted drift or deterioration of + \/2% of full scale.

High reliability of operation is essential. The possibility of a biasing scheme

which could shift the curve up and down shall be investigated.

3.1.6.3 A switch at the output terminal of the function generator (see Figure

3-1) will be added in order to permit the introduction of an external I.

reference.

*Wil1 be supplied by JPL at a later date.



3.1.7 Telemetry Outputs

3.1.7.1 Amplitude

The power conditioner shall provide telemetry signals which shall
continuously and linearly represent a given parameter from -0.5Vdc to 5.5Vdc,
where zero volts and 5Vdc correspond to zero and 100% points, respectively.

Telemetry signals shall not, under any condition, exceed the range
-2V to 7Vdc.

3.1.7.2 Source Impedance and Loading

The source impedance shall be lOkn or less.

The power conditioner shall not be inhibited from proper operation
by telemetry loads (such as a short circuit) or by externally-induced

telemetry-line noise or EMI.

3.1.7.3 Accuracy

Calibration accuracy of +2% of full scale setting plus an additional
+_ 2% of the real value will be provided, with a maximum design drift of 1%

over 10,000 hours of operation for all 0 to 5V telemetry signals, except
as noted below.

Telemetry signals I,, !«, I3, E., Eg, and Eg must be of high accuracy.
Over the temperature range 15°C to 75°C, these signals shall have a calibration

accuracy equal to or better than one-half percent of actual value plus one-half
percent of full scale for ranges specified in Table 3-II.

3.1.7.4 Grounding

The grounds for output power, chassis, commands, and telemetry shall
be separated to allow for common connection at a remote point on the payload
without the creation of ground loops. Power conditioner ground will be firmly
connected to the tank ground.

3.1.8 Miscellaneous

3.1.8.1 Maximum voltage between the grids shall be less than 5kV for no-
load to full load on the screen supply, and for 1mA to full load on the
accelerator supply.

3.1.8.2 Rise time of voltages E5 and Eg should be as fast as feasible.
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3.1.8.3 Toggle switches will be provided in order to modify the mechan-

ization of the automatic recovery from an arcing (see paragraph 3.1.5)
and to allow the substitution of automatic turn-on or turn-off of any of

the power supplies Nos. 1, 2, and 4 with a manual one.

3.1.8.4 The rectifiers of the accelerator supply No. 6 will be capable
of carrying the full screen current while the arcing between grids persists.

3.1.8.5 Because of an extremely high noise environment, great care in
selection of various logic devices shall be applied. Wherever possible high
threshold logic shall be used. Slow gates shall be given preference, but
if not available, slow-down networks in all critical digital lines shall be
added.

3.1.9 Design Criteria and Considerations

Consideration shall be given to the requirements of the over-all system
at each step of the design and fabrication of the power conditioner. The
Contractor should consider the following criteria, in the priority listed,
in making the trade-offs required during design, manufacture, and test.

The criteria in sequence of importance are: efficiency, reliability,
and weight.
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0.5

f ( lB R)=5V

1) POINT AT WHICH \2 DROPS RAPIDLY IS CONTROLLED BY

'BR * AT 's ̂ 'BR : '2 = CONST

2) SLOPEAI2/AI5=400 [A/A]

Fig. 3-2. CHARACTERISTICS OF SCREEN-VAPORIZER SERVO LOOP.
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•4REF(SET)

1) POINT AT WHICH I3 RAPIDLY DROPS IS PRESET

BYE4 R E F ,ATE4>E4 R E F .3

2) SLOPE Al.j/AE4 = 3 [A/v]

Fig. 3-3 CHARACTERISTICS OF ARC CATHODE SERVO LOOP
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(a) OPEN LOOP CHARACTERISTIC

20mA 2 10 12
'4, A

(b) and (c)

CURRENT LIMITED MODE

OF OPERATION
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Fig. 3-4 E-| CHARACTERISTICS

OF THE ARC POWER SUPPLY No. 4 10 12 I4, A



No. 2

VAPORIZER BEAM

(A)

5.0

0.5 1.0
(B)

I5,A

Fig. 3-5. VAPORIZER/BEAM SUPPLIES CLOSED LOOP RELATIONSHIPS
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3.8

3.0

0.3

E8, REF SET VALUE

10

REF
SET VALUE

Fig. 3-6. SERVO LOOP CHARACTERISTICS OF NEUTRALIZER SYSTEM



5 20

E-l CHARACTERISTICS

. Fig. 3-7. NEUTRALIZER KEEPER SUPPLY, No. 8

25



'9 R

t
TAP 2

TAP 1

ON

OFF

I4, A

Fig. 3-8. ON/OFF CONTROL OF PS 9"



4.0 BLOCK DIAGRAM

4.1 System Block Diagram

Figure 4-1 represents the block diagram mechanization of the electrical
requirements of the ion thruster power processor. It can be divided into
three basic areas.

o The power circuit
o The command and protection circuit
o The output regulator circuitry

The mechanization of the system is influenced by the following items:

o Engine control functions during startup, during normal operation
and during overload„

o Use of the SCR series resonant inverter power stage
o Maximize efficiency
o Maintaining all control electronics at ground potential
o System grounding philosophy.

The heavy darkened lines show the flow of flie 200V to 400Vdc solar array
power through a common input filter into three SCR series inverters.

The input filter design consisted of a two-state LC network for filtering
the high ac current drawn by the inverters to 1% RMS. The filter design was
such that the filter Q was under 1.4 without causing any loss in filter effic-
iency. A common input filter was used to reduce the total filter weight of
the power processor. It was expected that there will be some minor cross-
coupling between the three inverters because of the common input filter, how-
ever, the regulator action of the three inverters were expected to eliminate
this modulation from appearing in the output loads.

Series inverter No. 1 is the multiple output inverter. It feeds a
fixed average current to all its loads which are connected in series. This
inverter supplies the following loads:

o PS 1 Magnet Supply
o PS 2 Vaporizer Supply
o PS 3 Cathode Heater Supply
o PS 4 Arc Start Supply

27



200-400VDC

Command
and
Protection
System

Magnet

19V.0.85A

Vaporizer

10V.2A

Cathode
Heater

17V. 1A

150V. 20ma
36V, 10A

Beam
2000V.1A

Internal
Power

Accelerator
-1000V.0.1A

Neutralizer
Heater

12V, 3.8A

Neutralizer
Keeper

300V, 5ma
20V.0.55A

Cathode Tip
Heater

12V,3A

Cathode
Keeper

200V, 5ma
20V.0.6A

FIGURE 4-1. POWER PROCECSOR BLOCK DIAGRAM
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o PS 7 Neutralizer Heater Supply
o PS 8 Neutralizer Keeper Supply
o PS 9 Cathode Tip Heater Supply
o PS10 Cathode Keeper Discharge Supply
o Internal Auxiliary Supply

The total power rating of the inverter is about 200 watts.

Series inverter No. 2 powers only the PS 4 output (the Arc Supply) and
has a power rating of about 400 watts.

Series inverter No. 3 supplies the PS 5 and PS 6 outputs (beam and
accelerator) and has a power rating of about 2200 watts.

4.2 Output Regulators

All the active control loops are shown in simple block diagram form in
Figure 4-1 to show the power and command interfaces. Detailed block diagrams
are given in the following sections for all the regulating loops. Detail
schematics are shown in Section 5.
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4.2.1 PS-1. Magnet Supply

Figure 4-2 shows the block diagram. Current from the multiple output
inverter excites the primary of transformer T,. The main output of T,
has 2000V insulation between primary and secondary. There are two regulating
loops, a voltage control loop and a current control loop. The voltage
loop controls the maximum value of the output and commands the shorting
shunt SCR. The current regulating loop utilizes the ASDTIC (analog signal
to discrete time interval converter) (ref. 1) principle to perform the system
regulation.

The primary current is converted to a dc voltage signal via the
primary current transformer and integrated by the operational amplifier.
To correct for output regulation, a dc current transformer measures the
actual output current and modifies the output of the integrating operational
amplifier to meet +0.1% accuracy. This system allows high dc gain to be
used in the amplifiers while maintaining stable regulator loop characteristics,

4.2.2 PS-2, Vaporizer Supply

Figure 4-3 details the control system for this supply. This supply
has three regulating loops.

0 \L voltage limiting
0 Ip current limiting
0 Ic current control

The first two loops are for maximum current and voltage limiting. The
third loop controls the ion engine beam current flow by varying the power
applied to the vaporizer. The beam current loop incorporates the ASDTIC
amplifier for control.
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4.2.3 PS-3, Cathode Heater Supply

Figure 4-4 is the block diagram. Transformer T~ provides 2000 volt
insulation. The supply has three control loops.

0 V, voltage limiting
0 I« current limiting

V^ voltage regulator

The first two loops control the maximum voltage and current output. The
third loop actually controls the operation of the ion engine arc source.

4.2.4 PS-4, Arc Supply

Figure 4-5 is the block diagram for the arc supply. The main power
is obtained from series inverter No. 2 through transformer T.J . Transformer
T~ supplies the high voltage (at low current) required to ignite the arc
supply. This supply has two feedback loops.

V4 voltage limiting
0 1^ current regulation

The first loop limits the maximum output voltage across transformer T,.
The command reference current 15 goes into the function generator and
generates the I. reference for the current regulation loop of the arc
supply. The current regulating loop incorporates the ASDTIC amplifiers
for control. The output of the amplifier determines the frequency of
operation for series inverter No. 2.



4.2.5 PS-5 and PS-6, Beam and Accelerator Supplies

Figure 4-6 is the block diagram for this supply. Series inverter
No. 3 supplies the total output power for this supply. Two regulating
loops are included.

0 Vg, and Vg output regulation
0 Ig overload control

The voltage regulation loop incorporates the ASDTIC amplifier which has
a major and a minor feedback loop. In the major feedback loop, the total
output voltage is sensed. In the minor loop, capacitor ac current is
sensed. The output signal from the threshold detector is transformer
coupled to the SCR inverter control logic to provide isolation between
the input and output power ground.

The Ig current limiting loop limits the amount of energy that can
flow into the accelerator output (Vg).

4.2.6 PS-7. Neutralizer Heater Supply

Figure 4-7 ,is the block diagram for this output.

It includes three feedback loops.

0 17 current limiting

0 Vy voltage limiting

0 Vg voltage regulation
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The first two loops limit the maximum output voltage and current of the
supply. The Vg voltage regulation loop controls the performance of the
neutralizer.

4.2.7 PS-8. Neutralizer Keeper Supply

Figure 4-8 is the block diagram for the neutralizer keeper supply.
Transformer T, supplies the main output power while transformer T2
supplies the high voltage (at low current) for the discharge supply.
The regulator includes voltage and current limiting loops.

4.2.8 PS-9, Cathode Tip Heater Supply

Figure 4-9 is the block diagram for this supply. It includes a
current and voltage limiting regulator. The current level of I* is
sensed and if it is greater than a reference level it sets a flip-flop
which turns the power supply off. If I. is below a different reference
value and remains for a fixed time period, the flip-flop is reset and
the system is allowed to return to normal operation.

4.2.9 PS-10. Cathode Keeper Supply

Figure 4-10 is the block diagram for this output. Transformer T,
supplies the main output power. Transformer T2 provides the high voltage
(at low current) for generating a discharge.

4.2.10 Internal Auxiliary Supply

Figure 4-11 is the block diagram for this output. The output voltage
of the transformer is held constant by the regulator. There are two
isolated sets of 20 Volt outputs. One set is common to the input power
ground and the second set is common to the output control circuit ground.

An additional set of diodes separate the power to the multiple output
control logic to isolate the two power circuit during startups.
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4.3 Command and Protection System

The command and protection system logic block diagram has been

completed, and Figures 4-12 through 4-14 show the detailed mechanization.
Figure 4-12 shows the interface between the input commands and the
different circuits in the power processor.

The ON-1 command is used to initiate the panel preheat. The ON-2
command is "and" gated with the panel 0°F signal and starts the multiple
output inverter, turns on the auxiliary dc source (Figure 4-14) to power
the multiple output inverter control logic and starts the five minute
engine preheat timer. The ON-3 command is "and" gated with the five
minute timer output signal and allows the remainder of the outputs to
turn on.

The OFF-1 command turns the Vp supply off and enables the Ir sensor
to become active. When lr reads Ir ref/2, an output signal turns the
power processor off. The OFF-2 command is used for emergency turn off
of the power processor. The undervoltage and overvoltage sensor on the
input power bus can also turn the power processor off.

The Ir reference command is amplified by a voltage follower amplifier
to increase the loading impedance on the Ir reference command source.
The output is also sent to a function generator which generates the I.
reference as a function of the Ic reference command.
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Figure 4-13 shows the protection of the engine due to overloads on

the beam supply and automatic sequencing of the VQ supply. If the Vj-
_7 D

(beam) supply is below 90% of rated value for 100 milliseconds, three one

shots operate. The first one shot turns off the beam (V,,) and arc (V )o 4
supply inverters for an adjustable period. The second one shot turns
off the magnet supply (V-,) and the third one shot turns off Vp supply.

All one shots have adjustable time periods.

I. sensor is compared to two different references. If I. becomes

greater than I.A reference, supply Vg is turned off. If 1^ becomes less

than I.B reference, a five second timer becomes active and after the fixed

period turns Vg on again.

Figure 4-14 shows the startup and input voltage protection system for

the power processor. The ON-2 command turns on SCR-1. DC current from

the 200-400 V bus passes through a current limit and charges up the
capacitor storage network. Zener diode CR1 limits the maximum voltage

that can appear on the capacitor. A voltage sensor senses the voltage

on the capacitor and when it reaches a fixed value, a series regulator
turns on and passes current to the multiple output inverter control logic.

A one second timer is also turned on which turns on SCR-2 and commutates

SCR-1 off. If the voltage on the storage capacitor falls below a predimined
value before the inverter can be started, the voltage sensor turns the

series regulator off and the storage capacitor is allowed to recharge.



4.4 System Grounding Philosophy

Figure 4-15 details the grounding philosophy for the ion engine power
processor. Two separate internal grounds are included in the power
processor:

0 Solar Array Ground/Control Circuit Ground
0 Output Power Ground

Each ground can be connected to the power system common ground.

Control circuit grounds in series inverters No. 1,2 and 3, all
output regulator control circuit grounds except V,- and Vg, and all
command and telemetry signal grounds are tied to the control circuit ground.

The V5+ Vg regulator power ground is only connected to the beam and
accelerator~supplies and there is no connection to the control circuit ground.
No overload current transient on the output can thus appear on the control
circuit ground.

All commands and telemetry could be easily modified to be a separate
ground except for the I5 reference command which has to be common to the
control circuit ground.
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5.0 ELECTRICAL DESIGN AND BREADBOARD TESTING

This section documents the baseline power processor electrical design
details and the test data and identifies any particular design problems still
outstanding.

5.1 Series Inverter Power Stage

5.1.1 Characteristics and Equations

The series controlled rectifier inverter utilizes a series L-C resonant
circuit to provide the means of commutation of the inverter SCRs. Fig. 5-1A
illustrates, in basic form, a push-pull configuration of this type of
inverter. When one controlled rectifier is turned on, an oscillatory cur-
rent flows through the series combination of the inductor L, the load
transformer T, and the series capacitors C. The sinusoidal current flow,
occur!ng at a frequency determined by the L-C components, is zero when an
SCR is initially turned on, builds up to a maximum determined by the circuit
parameters and then returns to zero. As the current passes through zero,
the conducting SCR reverts to a non-conducting state.

To illustrate certain characteristics pecular to this type of inverter
and to develop the basic equations of the series inverter the circuit of
Fig. 5-1A has been redrawn, in Figure 5-1B to simplify the performance of
a transient analysis. (In this circuit a switch is used to simulate the
SCR.)

The current flowing through the inductor and transofrmer, i (t), upon
closure of switch SI, is given by:

i (t) = D°" T0 SIN /J~. (1)
/ L ~ 2LC l

2C

where EDQ is the voltage existing at the junction of the two capacitors at
time t = 0 (the time of switch closure) and ETQ is the voltage appearing
across the transformer primary. The latter voltage is clamped at a value
established by the voltage appearing across the output capacitor, C ..
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With the currents and voltages for each element established, the flow
of energy from the power source to the load and capacitors, can be analysed.
Expressing the energy balance in equation form results in

Z (0<t<t) = AZC (0< <T) + Z, (0<t<T) + Z, (0<t<T) (7)source x ' x ' L ' loss

which shows that source energy over a single switching event consists of
energy delivered to the load, (z . ) , that delivered to circuit loss elements,
z, , and a surplus amount which is stored in the previously charged series
capacitors, AZC. If an energy surplus continues to be supplied during
succeeding switching events, the total energy stored in the capacitor will
increase and eventually become infinite. Means, therefore, must be provided
to limit the capacitor energy build-up so that components will be operated
safely within their ratings.

Figures 5-lC(a) through 5-lC(d), illustrate the fast build-up of energy

in the series capacitors under the conditions of output short circuit and
system turn-on (output capacitors fully discharged). During normal steady-
state operation the build-up of capacitor energy still occurs but at a slower
rate.

In Figure 5-lC(a), both series capacitors are charged to one half the
value of the source voltage (lOOVdc in the example shown) just prior to

closure of switch S2- When S* is closed, voltage is developed across the
inductor and at the end of the half-period of the sinusoidal current flow,
$2 is opened and the capacitors voltages shown in Figure 5-lC(b) exist.

Figure 5-1 C(c) shows the situation just prior to closure of switch S,.
The driving source voltage is now 300V and the peak current flow through

S-| and the inductor is three times the value obtained in the previous half-
cycle. Figure 5-lC(d) shows the capacitor voltages existing at the end of
the second half-cycle. These voltages which initially were 100V each, have,

in the course of two power pulses, changed to 300V and 500V, respectively.
Thus it is seen how quickly an intolerable build-up can occur.
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This analysis assumes that no resistive components exist in C, L, T and the
source, EDC, presence of which would only slightly modify the results of
the analysis.

The current through each series capacitor is i/2 and as a consequence,
the current through the power source, EDC, is also i/2. The peak energy
sustained by the inductor L, needed for design, is given by:

ZL = \l\l (2)

where Ip is the peak value of i (t) and EL is the inductor energy. The
inductor voltage, V, , is obtained from

V = L —VL L dt

Substituting Equation (1) into Equation (3) gives

VL ' <EDO-ETO> COS -

The voltage across each capacitor C, can be determined from

Vc = Vox + ljidt (5)

where Vo is the initial voltage on the capacitor under consideration.
A

Substituting Equation (1) into Equation (5), Vc can be rewritten as

Vc = VV<EDO-ETO> cos

The transient analysis can be extended to describe circuit operation
with either step changes in transformer load voltage, such as would occur
under short circuit conditions or transformer saturation, or with step
changes in the source voltage, EDC.
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There are two basic methods for limiting the capacitor build-up:

a) Transfer of the stored energy in the inductor to the load
or to the source at a point during the half-cycle when a
particular capacitor voltage level has been reached.

b) Transfer of the excess energy stored in the capacitor to the
load or to the source between the end of a half-cycle power
pulse and the start of the following pulse.

In the succeeding paragraph, details on the particular system used for

this application is described.

5.1.2 Method of Limiting Energy Build-up in the Series Inverter

The basic schematic of the series resonant inverter power stage is shown
in Figure 5-ID.

Its operation can be described as follows:

S C R ' s 1 and 2 are the main power switches and SCR's 3 and 4 are the auxil-
iary power switches. When SCR-1 is turned on, current flows through inductor
LI & 12, output transformer T2, and series capacitor Cl and C2. The voltage
across capacitor C2 is monitored and when a predetermined maximum is reached,
auxiliary SCR-3 is fired. This allows current to continue to flow through LI,
L2 and T2 until all the energy sotred in LI & L2 is reduced to zero. With the
firing of SCR-3, SCR-1 is allowed to turn-off as a result of a reverse bias
voltage derived from the voltage across C2. When the current in SCR-3 linearly

decays to zero, it turns off, completing one switching event.

The current sensors (Tl) were originally in series with output transformer
T2 next to the center connection between the two series capacitors Cl & C2. In

the event that apreviously conducting auxiliary SCR reignited after another
cycle began the current sensors could not determine this event and a system would
not be protected from excessive energy. Movir.g the current sensors in series with
each resonant inductor LI & L3 always detected a false current flow in the
auxiliary SCR and protected the system.

The center tap inductor L2 was added to ensure that when a new half cycle
began that the previous conducting auxiliary SCR would be back biased by the

induced voltage from the other half of inductor L2 and prevent any reignition.
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The capacitor voltage clamp circuit would sense that the SCR control

logic had malfunctioned and allowed the capacitor voltage to overshoot. The

voltage clamp circuit would bleed off excess energy and the next half cycle,

the SCR control logic would take over control again.

The center tap inductor L2 and the capacitor voltage clamp are back-up

protection for the SCR control logic in the event there was a malfunction.

Inductor L4 was added to reduce the switching losses in the main line

SCR and auxiliary SCR when the auxiliary SCR was turned on. The inductor
absorbs voltage during the turn-on. During the turn-off of the main line

SCR high reverse current flows through the SCR and when it turns off the high
amp-turns (energy) in the inductor flows in the secondary wind on L4 through

the diode back into the source. The addition of this inductor and diode

improved the inverter efficiency approximately 0.75%. The inductance value

had to be carefully selected so as not to interfere with the protection
function of the auxiliary SCR and allow the series capacitor Cl & C2 voltage
to overshoot.

5.2 SERIES RESONANT INVERTER CONTROLS

The logic block diagram for the SCR series resonant inverter control
logic is shown in Figure 5-2. It shows the main bistable commanding the

firing of the main line SCR's as a function of the various inputs. The

main bistable also controls the transformer bias driver which continues the

excitation of the power transformer after the end of a half cycle to eliminate

power transformer saturation during flie next half cycle. The half cycle in-
cludes the time period when the main and auxiliary SCR's are conducting power

to the power transformer and the time period when the system is kept off due

to an intentional delay of 10 microsecond or longer due to the output regulator
or the miller integrator.

Two current sensors are used to sense when either the positive or the

negative half cycle current goes to zero and operate the respective 10 micro-

second monostables, and transfer the local bistable. If the signals from the

miller integrator and the output regulator are correct, the main bistable is
allowed to transfer.
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The miller integrator is used to give a soft start and to balance

the time period for the two half cycles during startup to eliminate power

transformer saturation.

The start circuit is a low frequency oscillator which transfers the

local bistable. When the system is running at normal frequencies, the

output from the main bistable clamps the start circuit.

The capacitor voltage sensor senses the voltages on the two series

capacitors and when a capacitor voltage reaches 450 volts, the respective

auxiliary SCR is fired and stops amy additional current flow into the capacitor.

Clamping circuits are added to allow the auxiliary SCR's to be fired only

during its correct firing event.

The schematics of the SCR inverter control logic circuit of the series

inverter are shown in Figures 5.3 through 5-7. The schematics represent the
circuitry that was used in the three Series Resonant Inverters.

The inverter control logic was contained in four common control cards

with an additional control card which includes the output regulator controls.

Card 1 (Figure 5-6A and B) includes the main bistable, the SCR firing circuit,

the start circuit, the miller integrator and the output regulator (which is
normally not used)but only when integrating the output regulator card. Card

2 (Figure 5-7A and B) includes the local bistable, the 10 microsecond one shot

and the transformer bias driver circuit Card 3 (Figure 5-8) includes the

capacitor sensors and the auxiliary SCR firing circuits. Card 4 (Figure 5-9)
includes the current sensor circuit. Figure 5-10 shows the interconnected

between the cards and the power inverter circuit.

The problem areas originally associated with the series inverter control

logic circuit have been satisfactorily remedied and the changes have been

incorporated in the breadboard. The problem areas were the following:

o Current Sensor

o Voltage Sensor
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The current sensor circuit Fig. 5-9 as was previously implemented was
susceptible to noise due to the fact that the clamp signals coming from the

main and the local bistable were operating into a high impedance resulting
in noise misfiring the current sensor. The change as shown in Fig. 5-9

clamps the base of the output transistor to ground which eliminates the noise

problem.

Another problem associated with the current sensor circuit was the

inability to set the threshold level of the sensor to obtain an output
pulse less than 10ys wide under all operating conditions of the inverter.

Since the current sensor transformer puts out a signal which is proportional

to the rate of change of current, under short circuit conditions the rate
of change of current is very small resulting in a low transformer output.

If the current sensor threshold is set to detect the current sensor trans-

former output under short circuit conditions, then under normal operating

conditions the curent sensor transformer output is very large and the output
pulse width out of the current sensor circuit is wider than lOys resulting

in the limiting of the inverter power since initiation of a new cycle occurs

at the trailing edge of the current sensor output pulse as shown in Fig. 5-11,
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In order to overcome the problem of the total "OFF" time varying
with the current sense transformer output, the triggering of the time
delay multivibrator was changed from the trailing edge of the current
sensor output pulse to the leading edge. The circuitry for this change
is shown in Fig. 5-6. It consists of a transistor and resistors to
invert the current sensor output signal. With this configuration, the
minimum total "OFF1 time of the inverter is controlled by the time-delay
setting of the multivibrator and is independent of the current sensor
output pulse width as shown in Fig. 5-9.

The capacitor voltage sensor was modified to decrease the delays
in turning on the auxiliary SCR's. A major portion of the delay was
occurring between the differential amplifier detector and the 7402A
driver. Circuitry shown in Fig. 5-5, consisting of a NPN-PNP pair from
the collectors of the differential amplifier and the addition of the
R-C speed-up circuit in the base of the transistor driving the 7402A,
resulted in eliminating most of the delay. The auxiliary SCR delay was
reduced from 7 >jsec to 1.5 psec with these changes. The capacitor voltage
overshoot is now limited to approximately 500V.
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5.3 Beam and Accelerator Supply (V5 and V6)

Figure 5-10 illustrates the schematic of the power circuit including the
series resonant inductors and capacitors, the main line and auxiliary SCR's
and their firing circuits, the output power circuitry and the capacitor
voltage clamp circuit. The schematic of the control logic is shown in
Figures 5-3 through 5.7.

The final configuration of the regulator using the ASDTIC concept has
been incorporated into the beam supply breadboard. The control amplifier
schematic is shown in Figure 5-11. Two regulating loops are incorporated.

0 V5 Output regulation
0 16 Overload control

The V5 voltage regulation loop incorporates the ASDTIC amplifier
which has a major and a minor feedback loop. In the major feedback loop,
the output voltage is sensed, in the minor loop, capacitor AC current is
sensed. The two signals are combined and fed to a threshold detector and
then to an isolation transformer which provides isolation between input
and output.

The 16 overload loop limits the current supplied from the V6 output.

Beam supply circuit waveform photographs for the main line and auxiliary
SCR voltage and current are presented in Figures 5-12.

Figure 5-13 shows the instantaneous plot power in the main line and
auxiliary SCR as a function of time. It shows the higher power dissipation
that occurs when the auxiliary SCR is fired to limit the energy build up
in the series capacitors.
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Main Line SCR
Voltage
Current

V = 200V/CM
I = 20A/CM
T = 2CWCM

-ov

-01

Auxiliary SCR
Voltage
Current

V = 200V/CM
I = 20A/CM
T » 20yS/CM

Figure 5-12 Photos of SCR voltage/current
Beam Inverter
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The output voltage variation from half load to full load was 2 volts.

Figure 5-14 is a plot of beam supply efficiency vs input voltage.
Two curves are plotted. The new layout curve is a result of cleaning up
the breadboard wiring which reduced the total resonant inductance. This
reduction in inductance caused a higher peak current to exist thereby
increasing the I2R losses and reducing the inverter efficiency. The rapid
loss of efficiency with increase of voltage is caused by the higher loss
that occurred when the auxiliary SCR is fired and the main line SCR is turn-
ed off. As the line voltage is increased the switching frequency is
reduced to maintain output regulation thereby reducing the average switching
losses and improving efficiency.

5.4 Arc Supply (V4)

Figure 5-15 illustrates the schematic of the SCR inverter power stage
for the arc supply. The schematic of control logic is shown in Figure 5-3
through 5-7.

The arc supply control amplifier has been incorporated into the
breadboard and is operating satisfactorily. The control amplifier
schematic is shown in Figure 5-16.

The control amplifier has two feedback loops.

0 V4 Voltage limiting
0 14 Current regulation
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V4 voltage limiting is provided by sensing the voltage on an isolated
winding of the output transformer. 14 current regulation incorporates
the ASDTIC two loop concept. Loop 1 senses the DC load current and loop 2
senses the AC output current. The two loops are combined and integrated
and compared with a threshold level to actuate a threshold detector which
activates the inverter power switch to control regulation.

The arc supply circuit waveform photographs of the main line and
auxiliary SCR voltage and current are presented in Figure 5-17.

A plot of efficiency vs supply voltage is shown in Figure 5-18.
Figure 5-19 shows the output current regulation as a function of input
line and temperature. The current regulation error is due to the
variation in excitation circuit of the current transformer.
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Main Line SCR
Voltage
Current

V - 200V/CM
I - WCM
T - 20ys/CM

-01

-ov

Auxiliary SCR
Voltage
Current

V - 200V/CM
I » WCM
T - 20pS/CM

Figure 5-17 Photo of SCR Voltage/Current Arc Inverter
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5.5 Multiple Output Inverter

The Multiple output inverter consists of the inverter power stage
and regulators for each of the following supplies: VI, V2, V3, V7, V8,
V9, VI0, and Vaux. Also discharge supplies for V4, V8 and VI0.

5.5.1 Inverter Power Stage

Inverter power stage schematic is shown in Figure 5-20. The output
transformers of each supply are connected in series and located as shown.
The SCR control logic schematics are shown in Figures 5-3 through 5-7.
Figure 5-21 shows the current and voltage for the main line and auxiliary
SCR.

5.5.2 VI Supply (Magnet Supply)

Figure 5-22 shows the schematic of the VI Supply. This supply has
two regulating loops.

0 VI voltage limiting
0 II current regulation

The voltage control loop limits the maximum voltage value. The
current regulating loop utilizes the ASDTIC principle to regulate the
current.
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Main Line SCR
Voltage
Current

V = 200V/CM
I = 2A/CM
T = 2CWCM

Auxiliary SCR
Voltage
Current

-01

-ov V = 200V/CM
I = 2A/CM
T = 2CWCM

Multiple Inverter

Figure 5-21 Photos of SCR Voltage/Current
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5.5.3 V2 Supply (Vaporizer Supply)

Figure 5-23shows the schematic of the V2 supply. This supply has

three regulating loops.

0 V2 voltage limiting

0 12 current limiting

° 15 current control

The voltage control loop limits the maximum voltage value. The

current control loop limits the maximum current value. The 15 current

control loop regulated 15 current by varying the power of the V2 supply.

The 15 current control loop incorporates the ASDTIC amplifier for control

5.5.4 V3 Supply (Cathode Heater Supply)

Figure 5-24shows the schematic of the V3 Supply. This supply

has three regulating loops.

0 V3 voltage limiting

0 13 current limiting

0 V4 voltage regulator

The V3 voltage limiting and 13 current limiting loops control the

maximum voltage and current output of the supply.

The V4 voltage regulator loop controls V4 voltage by varying V3 power.
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5.5.5 V7 Supply (Neutralizer Heater Supply)

Figure 5-25shows the schematic of the V7 Supply. This supply has

three regulating loops.
0 V7 Voltage limiting

0 17 Current limiting

0 V8 Voltage regulation

The V7 voltage limiting and 17 current limiting loops control the

maximum voltage and current output of the supply. The V8 voltage regulation

loop regulates V8 voltage by varying V7 power.

5.5.6 V8 Supply (Neutralizer Keeper Supply)

Figure 5-26 shows the schematic of the V8 supply. This supply has

two regulating loops.
0 V8 Voltage limiting

0 18 Current limiting

The V8 voltage limiting and 18 current limiting loops control the

maximum voltage and current output of the supply.

5.5.7 V9 Supply (Cathode Tip Heater Supply)

Figure 5-27 shows the schematic of the V9 Supply. This supply has

two regulating loops.
0 V9 Voltage limiting

0 19 Current limiting

The V9 voltage limiting and 19 current limiting loops control the

maximum voltage and current output of the supply.
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5.5.8 VI0 Supply (Cathode Keeper Supply)

Figure 5-28 shows the schematic of the V10 Supply. This supply has
two regulating loops.

0 VI0 voltage limiting
0 110 current limiting

The V10 voltage limiting and 110 current limiting loops control the
maximum voltage and current output of the supply.

5.5.9 Discharge supplies for V4, V8, and V10

Discharge supplies for V4, V8, and V10 provide the high voltage at
low currents necessary for initiating a discharge. It consists of a
current transformer (T-730) in series with the primary of the power
transformer, and a full wave bridge connected to the output.
See Figures 5-16, 5-26, and 5-28.

5.5.10 Vaux. Supply

Figure 5-29 shows the schematic of the auxiliary supply. This supply
consists of:

0 20 VDC regulator to provide DC power to all the regulating
and control circuits of the system.

0 2 KHz square wave oscillator to provide exciting voltage to
the DC current monitors

0 Sync circuit to provide synchronizing signals to the shorting
SCR's in the output regulators.







5.5.11 Multiple Output Regulator Stability Analysis

1. INTRODUCTION

Early in this work it was found that an inherent instability was caused
by an increase of the ratio B/M, where B is the average load current, and M
is the peak current of the power switch. It was found that, when the ratio

reaches beyond a certain critical value (0.5 for the squarewave case), the

regulated system becomes unstable. This drawback seriously limited the
utilization of the regulating approach.

The problem was studied for possible remedies. One such means of
correction has been analyzed and experimentally mechanized with favorable

test results. Compared with the original system, the circuit modification

has been kept minimum, while the stalbe operating range of the regulator
is greatly extended without incurring major efficiency and weight penalties.

The improvement is accomplished by adding another ramp function to the
existing integrator ramp during the on-time of the power switch.

2. DESCRIPTION OF EARLY INSTABILITY PROBLEM

Using square-wave current for clarity, the current through the power

switch and the corresponding integrator output of the original circuit are

shown in Fig. 5-30A and B. In A, M and B are the peak and the average current

of the power switch, respectively. The switch is turned on for a time interval

t, within a period T. In B, e,. is the threshold voltage, and the slope of the

integrator ramp during the time interval T-t, is BG/RC, where G is the current-

to-voltage gain of the current sensor at the integrator input, and RC is the

time constant of the integrator. During steady-state operation,

e-e, = {jjht-V (1)

and

IT
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FIGURE 5-30 POWER SWITCH CURRENT AND INTEGRATOR OUTPUT VOLTAGE
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From (1) and (2),

Ae = |̂ B(M-B) (3)

The average voltage of the waveform shown in Fig. 5-30B is

• v «>
Differentiating (4) with respect to B gives

<te- GT ,M 9DA
"JD" "" onrM ln~cuJ
QtJ £KLn

Therefore,

^j| > 0 as M > B (6)

< 0 as M < B

Since there exists a phase inversion associated with the integrator, a
further inversion such as caused by M < 2B would result in positive feed-
back, which leads inevitably to system instability. The instability would
persist for all B's that are greater than M/2. The critical value of the
ratio is therefore:

B . I
M 2
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3. ANALYSIS OF THE MODIFIED SYSTEM

The revel ant waveforms associated with the modified system are shown in

Fig. 5-31. Fig. 5-31 (A) illustrates the current through the power switch where

t, = BT/M. The shaded area is effectively integrated without phase inversion

in (B). The slope of the integrated waveform is G(M-B)/RC. The new circuit

modification is expressed in (C) as a ramp with a slope K . The composite

waveform shown in (D) is the input voltage to the threshold detector.

The straight line passing the point (t, , e,.) with a slope K + (G/RC)(M-B)

is:

e-eT = [Kr + ] (t-t) (8)

This straight line intersects the axis t = 0 at

The waveform of Fig. 5-31 (d) contains three areas, I, II and III. In terms

of B and other circuit parameters, there areas can be expressed as:

A r e a l , ej = e T T - [ K r

Area II - 1 TK + G(M"B) It2 - 1 TK G(M"B)1 (^}2 Ml)Area u 2 LKp + RC J^ ^ |_Kr -^- J (M ) ( \ \ )

Area III - liflfcil t (T-t ) - iArea ill - 2 RC t] (I t]) 2 -^ ^- -^

The average value of the sum of the three areas is:

e = eT- -^ [Kr

Differentiating with respect to B gives

de~ T r

RT 2R
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Equation (14) vanishes when

2K + MG1 = r RC
M „ 2MG

Sl> + RT

This is the B/M ratio beyond which the system becomes unstable. Notice

that when K = 0, i.e., no additional ramp, equation (15) reduces properly

to eq. (7). As K increases, the critical B/M gradually increases from

1/2 and approaches unity as its upper limit. The function of the new ramp

is therefore to extend the critical B/tl ratio to higher value of B for a

given M. It is with this mathematical background that the new circuit

modification is successfully implemented.

4. ANALYSIS OF THE MODIFIED SYSTEM FOR THE SERIES INVERTER WITH
QUASI-SINUSOIDAL CURRENT

While the function of the additional ramp on a squarewave regulator

has been clearly demonstrated in the previous section, it remains to be

analyzed the corresponding improvement when the ramp is applied to the more

realistic current waveform in the series inverter where a quasi-sinusoidal

pulse is followed by an essentially linear decay. Such a current waveform

is illustrated in Fig. 5-32 (A) with a period T. The sinusoid starts at

t=0, reaches a peak amplitude of M, and lasts until t=t3, after which the

current decays linearly to zero at T-T,. A time interval T, is provided

to allow the complete turn-off of the SCR. Notice that, if the sinusoid

were allowed to complete, its half period would be at tp, where

0 <t3 <t2 <T-T. <T. Fig. 5-32(B) shows the part of the pulse from t=0 to

t=t, that passes through the power switch to the load. The average value

of this pulse over a period T is B. The shaded area shown in Fig. 3(B) is

integrated, giving an output resembling that of Fig. 5-32(C). Together with

the additional ramp shown in Fig. 5-32(D), the composite input voltage to

the threshold detector is given in Fig. 5-32(E).

Let m = TT/t2 in Fig. 5-32(B), then,

1 ~3 T-VTri (V^)
B = 4- [ , M Sin mtdt + (M Sin mt, + T ' T

q M Sin mtj '9
 J (16)

. -,\ J '"Vd
o



Eauation (16) can be simplified to

6 '
,, 1-cos mt, (T-t.)Sin mt, Sin mt-

T ^r- -Vtd a(T-t3-Td -

Solving (17) for t, and choosing the nontrivial solution gives

t] = I - /Y + JB (18)

where

I - T-T,

Y - L 2
+ f

1 2Y
i - - p- (19)

L = T - ^ - Td
M Sin int.,

p = _ £
T-VTd

K = (M/m) (1 - Cos mt3)

Equation (18) relating t, to B can now be used to evaluate Ae, of Fig. 5-32(C)

(M Sin mtJ(T-T -t)
Ael = c ^M S1n mt-B)dt + t - T-t -T - -- B^ } dt

o t3

where G is the current-to-voltage gain of the current sensor at the integrator
input, and RC is the time constant of the integrator. Following simplification,
equation (20) becomes

Ael = " tK-Bt3 + (PI-B)(L- /Y+JB") - (L- /Y+JB")(A- /Y+JB) (21)
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where

A • T + t 3 - T d (22)

Since the sum of eQ + Ae, of Fig. 3(C) and Ae^ of Fig. 5-32(D) must
be equal to eT at t, , one has

-B)(L-/Y+JB") - (L-^+JB")(A-v/7+JB")] (23)

+JB"

Here, K is the slope of the ramp function in Fig. 5-32(D). Simplifying

(23) yields

eo = eT-Kr(I-vYKJ5)- ^k-Bt3+(Pt-B)(L-/Y+JB")- |<AL-2t/Y+JB+Y+JB)] (24)

The average input to the threshold detector is thus

e = 1 [eQT + \ Krt
2 + RCAe] + 1 (T - t] ) Ae] ] (25)

Substituting equations (18), (20) , (23) , and (24) into (25) , and realizing

that

K + P I L - - - - = 0 (26)

and

one has

e = U + VB + W //+JB" + SBv^+JB" + XB2 (28)
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where

K
U = ^r

w GY p-r /I 1_ _ d" bl 1 " "_ _
2RCT " d RC " T " 2RCT

W = -L4 (29)

r t"b ( " "
RC T RCT

GJ
2 RCT

Differentiating (28) with respect to B gives

d¥ = 2v/7+JB' (V + 2xB) + WJ + 2SY + 3SJB
dB

Setting (30) to zero results in a third-order equation for B; its nontrivial
solution is the particular B at which the system would become unstable. While
such a solution can be obtained mathematically, the general influence of the
various system parameters on the critical value of B is difficult to interpret.
Therefore, a limiting case where t, approaches I=T-T, is considered in order to
establish the minimum ramp slope (K ) . needed to maintain stability throughout
the entire on time up to T-T. of the power switch.

From (18), t, approaches I as B approaches -Y/J. Setting (30) to zero
therefore gives

WJ - SY = 0 (31)

108



Combining (29) and (31) gives

K = G (PL2 + 2K)(T-RC-Td)
r 2 RCT T,d

which is equivalent to

G [(T-t,-T .)M Sin Mt- + — (1-Cos mt,)]
i/ _ J o o m o •
V " ' 2 RCT Td

Letting t3 = dT

t2 = cT

T-T. = aTd

mt3 = dn/c

RC = gT

then,

'Y'min s( l -a)gT

Equation (34) is the minimum K required to maintain stability throughout

the variation of on-time up to t,=T-T..

As a numerical check, the following parameters are noted from the

breadboard design and tests:

M = 8 C = 0.355 Cos ^- = -0.866

G = 2.12 d = 0.296 g = 0.74

a = 0.87 Sin ^ = 0.5 T = 135ys

Substituting these numbers into (34), one has

1C = 0 . 0 6 V/ys
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The K actually used in the circuit is

Kr = FT = W = °'°52 VM

r r

and it has been experimentally observed that stability is maintained up to

an on-time that is very close to T-T ..

Equation (34), therefore, represents very accurately the minimum slope
K of the ramp needed to ensure system stability for a fixed input current

waveform at a given regulator design.
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5.6 Command and Protection System

The command and protection circuitry is contained on five cards. The

cards and their functions are as follows:
0 Card A; Schematic Figure 5-33

Card A has the input command relays and the undervoltage detector

relay driver circuitry. Also the 14 and 15 reference generators are

located on this card.
0 Card B; Schematic Figure 5-34

Card B has the 5 minute timer circuit.
0 Card C; Schematic Figure 5-35

Card C contains the protection circuitry to protect against engine

arcs. The V5 and V6 voltage is compared to a reference and if the output

voltage is below 90% for 100 milliseconds, three adjustable one-shots are

commanded to turn off V4, V5 and V6 as a group, VI separately and V2 separately.
0 Card D; Schematic Figure 5-36

Card D has an 14 current level sensor which senses 14 current and

if it is greater than a reference level, it sets a flip-flop turning V9 OFF.

If 14 current is below a different reference level and remains for a

fixed time period (5 sec), the flip-flop is reset and V9 turns ON.

° Card E; Schematic Figure 5-37

Card E contains the starting circuit, the overvoltage protection

circuit and the undervoltage protection circuit. If the input voltage goes

below 180V or exceeds 425V the system is automatically turned OFF.

The command and protection system has been completely integrated into

the breadboard and is operating satisfactorily.
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5.7 Input Filter

Shown in Figures 5~38 is a schematic of the input filter. It is

of a two-stage design, with a resistor connected in series with the

capacitor of the first stage to control the resonant peaking of both

stages. The second stage is an ordinary LC filter. The filter has

to be redesigned to reduce input ripple with half load on the beam and

arc supplies.

The second stage capacitance value is I6yfd. It is distributed

throughout the breadboard directly at the different inverter inputs so

that high AC currents are not circulating throughout the breadboard
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5.8 Integrated Breadboard

The breadboard was constructed into five sub-assemblies:

input filter
0 beam supply
0 arc supply

multiple output inverters and output regulator
0 command and protection system.

Figure 5-39 is a photo of the integrated breadboard assembly.
Figure 5-40 is a photo of the laboratory facility showing the integrated
breadboard and the associated instrumentation and load banks.

Noise problems appeared when integrating the command and protection
system into the breadboard which caused false turn-off of the output
regulator. Lowering the input impedance of the circuits eliminated the
problem.

The VI, V3, V4, V9 and VI0 outputs were operated at +2000 Volts
potential and no insulation problems were observed.

Figure 5-41 shows the total breadboard efficiency including all internal
control power both at full load on all outputs and half load on the beam and
arc supplies.



\ y

FIGURE 5-39 INTEGRATED BREADBOARD ASSEMBLY
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FIGURE 5-40 LABORATORY FACILITY
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Figure 5-42 shows the input ripple as a function of input voltage both
at full load and half load. The unit meets specification at full load but
is out of specification at half load due to error in performing the filter
design. Changing the filter damping factor from + 3db to +12 db, the
present filter components would meet specification.
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6.0 COMPONENTS

6.1 CAPACITORS

A number of dielectrics have been considered for the series resonant

capacitors. These include mylar, paper mylar, polystyrene, teflon, mica,

polycarbonate, polysulfone, and polypropolene. Mylar and paper mylar ar«

not suitable because of high comparative dissipation factors. Polystyrene

has a temperature limitation which makes it unsuitable for internal rise

over the +70°C mounting plate. Teflon is questionable because of corona

deterioration. Mica and special mica materials have not been promising

due to high dissipation factors. Polysulfone is s t i l l too recent a develop-

ment to have performance data. Polycarbonate and polypropolene both are

apparently useful, with polypropolene the more attractive of the two because

of both its lower DF and, flat DF versus both frequency and temperature

(although it is not rated at quite as high in temperature).

The m u l t i p l e output inverter breadboard u t i l i z e d reconstituted mica

for the series resonant capacitors. The mica dielectric capacitors became

so hot that operation was l i m i t e d to five minute periods. These units

were replaced with polypropolene samples and they did not show observable

temperature rise for any period of operation.

The first models of the series resonant capacitors (polypropolene)

that were delivered experienced shorts after operating in the circuits for

some time. The failures may have been as a result of over-stressing the

capacitors. Additional insulation was designed into the capacitor

and then oil - f i l l e d . After this redesign no further failure of the series

resonant capacitors occurred.

Because of the 'tOOV input, tantalum capacitors could not be used

reliably for the input filter design. New capacitor designs were made

for the first stage input filter capacitor using polypropolene.



6.2 MAGNETICS

Magnetics losses in the series inverter were determined both exper-

imentally and analytically. To determine magnetics losses experimentally,

calorimeters were used and the temperature rise of the magnetic was measured

as it was operating in the inverter. Then dc power was substituted to the

magnetic device to obtain the same temperature rise as the dc power supplied

is equivalent to the loss in the magnetic when operating in the inverter.

Table 6-1 shows the calculated losses and measured losses.

TABLE 6-1

MAGNETICS LOSSES

MAGNETIC TYPE

BEAM TRANSFORMER

BEAM INDUCTOR (SINGLE)

BEAM INDUCTOR (CENTER-TAP)

CALCULATED LOSSES
WATTS

22.53

8.41

14.28

MEASURED LOSSES
WATTS

23.1

7.2

15.9

ARC TRANSFORMER

ARC INDUCTOR (SINGLE)

ARC INDUCTOR (CENTER-TAP)

6.67

2.37

3.55

10.3

1.65

3.05

The losses in the arc transformer were higher than calculated.
Because of the many parallel strands of wire for the high current
secondary wire, high circulation currents were present and increased
through copper loss. Further development work is required to reduce the
losses.

In performing the weight and loss analysis, the series inductors and
power transformers contributed to a large percentage of the overall weight
and losses. A further investigation was started on the use of ferrites.
Development models have to be made to prove the feasibility and determine
actual loss and weight improvements.
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6.3 SILICON CONTROLLED RECTIFIERS

Table 6-2 forms a brief specification sheet for the ion thruster power

processor power SCR's. The main parameters for operation are:

o Peak forward blocking voltage, V n (repetitive): listed

as desired 800V rating for 550V repetitive circuit con-

ditions.

o Peak reverse blocking voltage, V 0 (repetitive). This is

listed as a desired ^OOV rating for a 250V repetitive circuit

condi tion.

o Turn off time, t ,f. This must be 10 ms or less for any con-

dit i o n of device temperature or load.

Other parameters which are of v i t a l importance because of their impact on

circuit efficiency are:

o Dynamic forward "on" voltage VF(Dynamic). SCR devices take

li t e r a l l y tens to hundreds of microseconds to reach steady-state

values after being switched "on." Since the circuit operates

with switch "on" periods of about ^0 ms, it is obvious the devices

must reach near steady values wi t h i n the first few microseconds

if circuit efficiency is to be maintained.

126



o Forward voltage application rate, dv/dt. This parameter

determines the values of the RC suppression network and the

selection of the series inductor configuration.

o Gate pulse requirements. All manufacturer's advise that a

rapid rise of gate pulse is essential, preferably within 200 ns.

For best efficiency, where available pulse energy is limited, one

manufacturer recommends for its product a high gate pulse current

for a short period, such as 0.5 to l.OA for the 0.5~1.0ys rather

than, say, AOOma for 3ys.

o Stored charge, O-RECOVERY* This parameter is indicative of the

speed of recovery of the device. It affects the circuit by

discharging the capacitor after it has been commutated "off" by

the auxiliary SCR. The drop in the capacitor voltage is energy

expended in losses and is energy not available for the load al-

though "sensed" as available.

o Current application rate, dl/dt. The dl/dt rating w i l l determine

if an inductor is required in series with the auxiliary SCR for

l i m i t and control.

o Holding current, I... This parameter must be characterized in
H

order to design SCR gate pulse drive circuitry and current sensors

for the auxiliary SCR's.

A testing program for SCR's was setup to determine which SCR's were

suitable for the series inverter. Test circuit shown in Fig. 6-1 was used to

measure the SCR's turn-on characteristic and also the value of the forward

ON voltage. The LC values were selected to produce the rated peak current

without requiring high V input voltage. By this method high static voltages
cc

were not present on the SCR which would cause measurement error in the scope

in determining the turn-on voltage transient.
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The following SCR devices were tested:

o Type A, 800V, 35A o Type E, 600V, 110A

o Type B, 600V, 35A o Type F, 600V, 110A

o Type C, 550V, 100A o Type G, 800V, 110A

o Type D, 1000V, 110A o Type H, 800V, 110A

The Type A and B units are the 35A units and were being evaluated for

the arc and m u l t i p l e output inverters.

The lower forward drop, faster turn-on and the higher blocking voltage

(800V) for the Type A SCR makes it the best selected for the particular needs

of the arc and m u l t i p l e inverter. The remaining SCR's are 110A units and are

being evaluated for the beam supply.

The Type H unit is selected for the main line operation in the beam

inverter because of its high blocking voltage rating (800V). Lower forward

and saturated drop characteristics would improve inverter operating efficiency.

The Type C device is the best of the high current units but it has low

blocking voltage rating (550V). The Type C unit is used as an auxiliary SCR

which does not require high blocking voltage.

Actual photo of the main lin e and auxiliary SCR's for the beam, arc and

m u l t i p l e are shown in Section 5-3, 5-^* and 5 - 5 - 1 respectively.

It can be noted from Fig. 6-2 to 6-5, the forward saturated drop is high

(approximate 2Vdc) at the peak forward current which w i l l account for the

lower efficiency for the SCR inverter power stage.

It is expected that with the test circuit and new SCR's with inter-

digitaled construction that the losses w i l l be lowered and efficiency improved,
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-0

SEMICON SCRF 168F

VOLTAGE = 2V/CM
CURRENT = 2A/CM
TIME = 5uS/CM

RCA 60471

VOLTAGE = 2V/CM
CURRENT = 2A/CM
TIME * 5uS/CM

Figure 6-2 SCR V-I Waveforms
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GE C156E

VOLTAGE = 2V/CM
CURRENT = 10A/CM
TIME = 5uS/CM

GE C158P

VOLTAGE = 2V/CM
CURRENT = 10A/CM
TIME = 5uS/CM

Figure 6-3
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-0

NATIONAL 156M

VOLTAGE = 2V/CM
CURRENT = 10A/CM
TIME = 5ys/CM

NATIONAL
ACCELERATED GATE

156M

VOLTAGE = 2V/CM
_0 CURRENT = 10 A/CM

TIME = 5us/CM

Figure 6-4 SCR V-I Waveforms
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INTERNATIONAL
RECTIFIER
78-4718

VOLTAGE = 2V/CM
CURRENT = 10A/CM
TIME = 5yS/CM

WESTINGHOUSE 2501P45

VOLTAGE = 2V/CM
CURRENT = 10A/CM
TIME = 5us/CM

Figure 6-5
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7.0 MECHANICAL DESIGN

Figure 7-1 Layout of Power Processor breadboard shows the relative
location of each subcircuit and the relative maximum power losses. The
basic layout should be useful when designing an engineering model. The
control signal lines and the power lines should be isolated from each other
so as to eliminate any pick-up problem. One possible solution would be
to have power lines on one side and the control signal lines on the other
side of the chassis using the chassis as a shield.
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SERIES INVERTER. AMP P.S.4-

4-4- WATTS

SERIES INVERTE-R *t

(o X I 8.5

20 WATTS

CONTROL

5X10
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GK4D
TGR, P.S,

3.3VWATTS

P.S.B

. 5 WATT

P.S.I

? WATTS

.S.̂  AND P.S.

S.4

\MVERTER <
RS. S> RS. (b

l\ x
WATTS

INPUT FILTER

I 3 WATTS

RS.2 P.S.I Awo RSS

FIGURE 7-1 LAYOUT OF POWER PROCESSOR BREADBOARD
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8.0 EFFICIENCY. WEIGHT AND PART COUNT ANALYSIS

8.1 Efficiency Analysis

In order to improve efficiency, a detail investigation must be made
of all the losses that are present in the power processor.

Table 8-1 lists the losses of the beam supply at maximum load and

250 volt dc input. The main losses occur in the SCR's and magnetics.

Table 8-II lists the losses of the arc supply at full load and at
250V dc input. The magnetics and output diodes are the principle losses.
The SCR's are reduced because of the use of Semi con SCR with their fast turn-
on and low forward drop.

Table 8-III lists the losses in the multiple output inverter and the
output circuit at maximum load and 250 Volt dc input. The main loss occurs
in the series inductors and the feedback transformer and clamp transistors.

Table 8-IV lists all the losses in the SCR control logic, the
transformer bias driver and the output regulator cards. The total losses
are 44 watt which is 2% of the total output power and reduces the overall
breadboard efficiency.

Table 8-V summarizes all the power losses and determines the total
breadboard efficiency which is 89%. These lists of losses are not the
optimum values that can be obtained, but are used as a guide to identify
problem areas for further development work.
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TABLE 8-1

Main SCR
Auxiliary SCR
Transformer
Inductors
Output Diodes
Input Filter

TOTAL

BEAM SUPPLY LOSSES

WATTS PERCENT

82.0 3.75

33.5 1.53

23.1 1.06

30.3 1.38

6.0 0.27

10.0 0.46

184.9 Watts Loss
Output Power = 2000.0 Watts
Input Power = 2184.9 Watts

= 2000Efficiency
2184.9 X 100 = 91.3%

Main SCR
Auxiliary SCR
Transformer
Inductors
Output Diodes
Output Capacitors

TOTAL

TABLE 8-II

ARC SUPPLY LOSSES

WATTS PERCENT

5.90 1.34

1.40 0.32

10.30 2.34

10.90 2.48

9.80 2.22

1.89 0.43

40.19 Watts Loss

Output Power = 400.00 Watts

Input Power = 440.19 Watts

Efficiency = 400
440.19 x
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TABLE 8-111

TOTAL 198.8

MULTIPLE SUPPLY LOSSES

OUTPUT

VI, 19V

V2, 10V

V3, 17V

V7, 12V

V8, 22V

V9, 12V

VI 0, 22V

Vaux, 20V

OUTPUT
POWER
(WATTS)

16

20

17

45.6

11

36

13.2

40

POWER LOSS
IN OUTPUT
DIODE (WATT)

0.7

1.6

0.8

3.0

0.4

2.4

0.5

1.1

POWER LOSS
IN TRANSFORMER
(WATT)

0.7

0.9

0.6

1.5

0.6

1.1

0.6

1.5

POWER LOSS IN
OUTPUT CAPACITOR

WATT

0.2

0.4

0.2

0.8

0.2

0.6

0.2

0.7

10.5 7.5 3.3

Loss in shorting SCR

rcuitry 21.3 Watts
SCR 3.6 Watts

MULTIPLE INVERTER

Main SCR
Auxiliary SCR
Inductors
Transistors/Diode
Feedback Transformer

WATTS

3.6

0.84

4.80

3.12

7.20

PERCENT

1.5

0.35

2.0

1.3

3.0

Total Losses = 44.46

Input Power = 243.26

Efficiency = 198.8
243726 X 100 = 81.6%
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TABLE 8-IV

CONTROL CIRCUITS

SCR CONTROL LOGIC I 0 20V INPUT POWER

Card 1 -- Main Bistatic £
Main Firing Circuit 120 ma 2.4

Card 2 -- Local Bistable &
10 psec oneshot 34 ma 0.68

Card 3 -- Capacitor Sensor &
Auxiliary Firing 177 ma 3.54

Card 4 -- Current Sensor 40 ma 0.80

TOTAL 371 ma 7.42
(for three inverters) (X3) 22.26

REGULATOR CAKDS

Beam Supply 66 ma 1.32
Arc Supply 38 ma 0.76

Multiple Output 225 ma 4.50
2 KHz Inverter 30 ma 0.60

TRANSFORMER BIAS DRIVER

Beam 310 ma (OFF) 30 ma (ON) 6.20

Arc 230 ma (OFF) 200 ma (ON) 4.60

Multiple 192 ma 3.82

TOTAL LOSSES 44.06



TABLE 8-V

OVERALL SYSTEM EFFICIENCY

OUTPUT POWER LOSSES

Beam Supply 2000.0 184.90

Arc 400.0 40.19

Multiple 158.8 44.46

Control circuits 44.06

TOTAL 2558.8 Watts 313.41 Watts

Input Power = 2872.21 Watts

Overall Efficiency = 2558 x m ._ 8g<M
., c. I



8.2 Weight Analysis

The present breadboard design was analyzed to determine the relative

weights for each function. Table 8-VI through 8-X identify the

electrical components weights and the breadboard mechanical components.

The design objective at this time was to demonstrate circuit technology

and efficiency but not weight.

Table 8-VI lists the weights of the input filter. The penalty

of this design is the filter capacitor weight because of the use of

polypropolene instead of tantalum which also caused an increase in the
filter inductance value and weight.

Table 8-VII lists the weight of the beam supply. The weight of the
magnetics account for a major percentage of the total weight. Higher

frequency operation and magnetic redesign should reduce the weight.

Table 8-VIII lists the weight of the arc supply. The major weight

is in the magnetics and the control electronics. Magnetic redesign
should reduce the magnetic weight and a redesign of the control electronics

with integrated circuits will reduce the control electronics weight.

Table 8-IX lists the weight of the multiple output inverter, the output

regulators and the command and protection system. The major percentage

of the weight is in the magnetics and control electronics and a redesign

in these areas will reduce the component weight.

Table 8-X summarizes the total breadboard weight at the present time.

Many components are overdesigned at the present time in order to keep

the stress levels down and not cause failures. Designing for the 200

to 400 volt dc input source presents many component problems where
optimum components are not available and additional development work is
going on.

142



TABLE 8-VI

WEIGHT ANALYSIS - INPUT FILTER

Item

Input Inductor

Output Inductor

Capacitors - 1st stage
Misc Hardware

Subtotal Weights

Electrical
gms

658.2

265.3

873.0

1787.5

Components
Ibs

1.45
0.56
1.93

3.94

Mechanical Components
gms 1 bs

200.0 0.44

200.0 0.44

TOTAL of Electrical and
Mechanical Components

1987.5 gms 4.38 Ibs



TABLE 8 - VII

WEIGHT ANALYSIS - BEAM SUPPLY

Item

Transformer - Output

Capacitors - Series

Inductors - Series

Output Capacitors

Input Capacitor

Control Logic

Connectors

SCR 's

di/dt Inductors

Current Monitor Transformers

Misc. Transformers

Protection - Cap. Voltage

Suppression Network

Output Circuitry

Fiberglass

Heat Sinks

Chassis

Misc. Wire & Hardware

Subtotal Weight

Electrical

gms

1147.5

277.6

1585.7

414.6

150.4

432.5

514.0

336.6

247.5

143.5

355.6

133.2

60.0

5798.7

Components Mechanical

Ibs

2.53

0.50

3.49

0.91

0.33

0.95

1.13

0.74

0.54

0.32

0.78

0.29

0.13

12.54

gms

166.8

206.0

89.5

992.1

710.0

1820.0

900.0

4884.4

Components

Ibs

0.37

0.45

0.20

2.19

1.56

4.00

2.00

10.77

TOTAL of Electrical and
Mechanical Components

10683.1 gms 23.41 Ibs



TABLE 8 - VIII

WEIGHT ANALYSIS - ARC INVERTER

Item

Transformer - Output
Inductors - Series
Capacitor - Series
SCR's
Capacitors Output
Diode - Output
Control Electronics
Connectors
Zener Diode Output
Misc. Magnetics
Protection - Cap. Voltage
Chassis
Capacitor - Input
Epoxy
Bracket
Wire & Misc. Hardware

Subtotals

Electrical
gms

362.0

837.9

71.2

42.3

122.8

70.8
432.5

16.7

234.6
243.9

70.5

•

2505.2

Components
Ibs

0.80
1.88
0.16
0.09
0.27

0.16

0.95

0.04

0.52

0.54

0.16

5.57

Mechanical
gms

206.0

89.5

930.0

202.5

94.8

350.0

1872.8

Components

Ibs

0.45

0.20

2.05

0.45

0.21

0.77

4.13

TOTAL of Electrical and
Mechanical Components

4378.0 gm 9.70 Ib



TABLE 8 - IX

WEIGHT ANALYSIS

COtiMAND & PROTECTION SYSTEM & MULTIPLE OUTPUT INVERTER

Item Electrical

Inductors

Capacitors - Series

SCR's

Control Electronics

Connectors

Current Transformers

grns

635.6

40.5

42.3

380.8

210.0
I

Dummy Transformers

Filter Cap - Input

Power Transistors

di/dt Inductors

Protection Cap. Voltage

Regulators - Output

Output Circuits

Output Transformers

Oscillator Transformer

Storage Cap

Start Circuit

Command Controls

Plate

Brackets

Wire & Misc. Hardware

Subtotals Weight

574.8

70.5

72.6

109.4

243.9

288.0

405.0

1143.6

56.8

122.8

109.7

324.0

4830.3

Components Mechanical

Ibs

1.51

0.09

0.09

0.84

0.46

1.27

0.16

0.16

0.24

0.53

0.63

0.89

2.50

0.13

0.28

0.24

0.71

10.73

gms

164.0

70.8

i

473.6

630.0

206.0

2260.0

442.8

454.0

4701.2

Components

Ibs

0.36

0.16

1.04

1.39

0.45

4.97

0.9S

1.00

10.35

TOTAL of Electrical and
Mechanical Components

9581.5 gm 21.08 Ib



TABLE 8-X

TOTAL WEIGHT SUMMARY

Item

Input Filter

Beam Supply

Afle Supply

Subtotal Weight

TOTAL WEIGHT

tection/
ut Inverter

ht

Electrical
Components

3.94

12.64

5.57

10.73

32.88 Ibs

Mechanical
Components

0.44

10.77

4.13

10.35

25.69 Ibs

58.57 Ibs



8.3 Part Count Analysis

The part count for the total integrated breadboard was determined

and is shown in Tables 8-XII through 8-XVI1 . The quantity of each

component type is listed with its failure rate per part and the total

failure rate. Table 8-XI gives the generic part failure rates for

Spacecraft applications and is used in the tables. This table is not

meant to give an absolute value of the failure rate for components such

as the high power SCR's and series capacitors where no reliability data exist,

but is used as a guide to determine overall failure rate if data becomes

available.

Table 8-XII lists the input filter data
Table 8-XIII lists the parts included in the SCR inverter control logic

Table 8-XIV lists the parts included in the multiple output inverters,

output regulators and the command and protection system.

Table 8-XV lists the parts in the arc supply

Table 8-XVI lists the parts in the beam supply.

Table 8-XVII summarizes the total part count of the present electrical

design.
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TABLE 8 - XII
PARTS COUNT ON INPUT FILTER

Input Filter

Diode
Choke

Resistor
Capacitor

Quantity

1

2

2

2

7

Failure
Rate

44

10

10

20

84

Total
Failure
Rate

44

20

20

40

124

150 ?*•--
'

•
:* ' '



TABLE 8 - XIII

Part Count for SCR Inverter Control Logic

Card #1 Logic Control Quantity R* Total

Transistor
Diode

Zener
Resistor
Capacitor
Pot.

Card #2 Logic Control

Transistor
Diode
Zener
Resistor
Capacitor

Card #3 Logic Control

Transistor
Diode
Zener
Resistor
Capacitor

I. C.

Card #4 Logic Control

Pot.
Transistor
Diode
Zener
Resistor
Capacitor
I. C.

40

65

5

93

26

1

230

18

30

3

46

18

115

15

11

4

48

9

2

104

4

6

20

10

26

14

2

82

10

2

23

2

9

50

96

10

2

23

2

9

46

10

2

23

2

9

50

96

50

10

2

23

2

9

150

246

400

130

115

186

234

50

1115

180

60

69

92

162

563

150

22

92

96

81

100

541

200

60

40

230

52

126

300

1008



TABLE 8 - XIV

PARTS COUNT ON OVERALL MULTIPLE OUTPUT INVERTER

MULTIPLE

Power SCR Section

SCR
Diode

Zener
Capacitor

Resistor

Transistor
Transformer (Includes Inductors,

Current Transformer,
Pulse Transformer)

VI Output (19V, .85A)

SCR

Diode

Zener
Capacitor

Resistor

Transistor
Transformer

I.C.

Pot

V2 Output (1QV @ 2A)

SCR

Diode

Zener

Capacitor
Resistor

Transistor

Transformer

I.C.
Pot.

152

•

Quantity

6

35

7

16

22

3
15

104

2

21

4

8

40

9

4

4

1

93

2

18

3

9

41

9

3

5
1

91

FR

136
2

23

9
2

40

14

226

136

(44) 2

23

9
2

10

14

150

50

396

136

(44) 2
23

9

2

10

14

150

50
396

Total

816

70
161

144

44

120

210

1565

272

126

72

72

80

90

56

600

50

1418

272

120

69

31

82

90
42

750
50

1556



TABLE 8 - XIV (Continued)

V3 Output (17V @ 1A)

SCR

Diode

Zener
Capacitor

Resistor

Transistor
Transformer
I.C.

Pot.

V7 Output (12V @ 3.8A)

SCR

Diode

Zener
Capacitor

Resistor

Transistor

Transformer

I.C.

Pot.

V8 Output (20V @ .6A)

SCR

Diode

Zener

Capacitor

Resistor

Transistor

Transformer

I.C.
Pot.

mtity FR Total

2

17
4

7

40

8

3
4

J_

86

2

17
4

9

39

7

3
4

1

86

2

21

4

10

33

8

4

3

_1

86

136

(44)2

23

9

2

10
14

150

50
396

136
(44)2

23
9

2

10

14

150
50

396

136

(44) 2

23

9

2

10
14

150

50
396

272

118
92

63

80

80

42

600

50

1397

272

118

92
81

78

70

42

600
50

1403

272

126

92

90
66

80

56

450

50

1282

153



TABLE 8 - XIV (Cent.)

V9 Output (12 V @ 3 A)

SCR

Diode

Zener
Capacitor

Resistor

Transistor
Transformer
I. C.

Pot.

V 10 Output (20 V @ .6 A)

SCR

Diode

Zener

Capacitor

Resistor

Transistor
Transformer

I. C.

Pot.

Aux. Output and Telemetry Inverter

SCR

Diode

Zener
Capacitor

Resistor

Transistor

Transformer

I. C.

Quantity

2

16

3
9

33

8

3

3
J_

78

2

21

4

10

33

8

4

3

J_

86

2

20

3

9

31

10

4

2

81

FR

136

(44) 2

23

9

2

10
14

150
50

396

136

(44) 2

23
9

2

10

14

150

50

396

136

(44) 2

23

9

2

10

14

150

346

Total

272
116

69

91

66

80

42

450

50

1236

272

126

72

90
66

80

56

450

50

1262

272

124

69

81

62

100

56

300

1064



Card A Command Logic

Transistor

Diode

Zener
Resistor
Capacitor
Relay
I. C.

Card B Command Logic

Transistor
Diode
Zener
Resistor
Capacitor
I. C.
Pot.

Card C Command Logic

Transistor

Diode
Zener
Resistor

Capacitor

Card D Command Logic

Pot.
Transistor
Diode
Zener

Resistor
Capacitor
I. C.

(Cont.)

Quantity

7

18

3

34

1

6

3

72

9

6

1

20

5

3

1

45

21

27

3

54

7

112

3
12

7
2

38

3

3

68

FR

10

2

23

2
9

64

150

260

10

2

23

2

9

150

50

246

10

2

23

2

9

46

50

10

2

23

2

9

150

246

Total

70

36

69

68

9

384

450

1086

90

12

23

40

45

450

50

710

210

54

69

108

63

504

150

120

14

46

76

27
450

883
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TABLE 8 - XIV (Cont.)

Card E Command Logic Quantity FR Total

Transistor 23 10 230

Diode 20 2 40

Zener 4 23 92
Resistor 55 2 110

Capacitor 6 9 54

Transformer 2 14 28

SCR 2 136 272

Relay 1 64 64

113 260 890

•Multiple Output Current Source

Transistor 1 10 10

Zener 1 23 23

Resistor 4 2 8

Capacitor 1 9 9

7 44 50

Output Vr V2, V3, Vy, V8, Vg, V1Q , Aux, = 687

Logic Control Card # 1, 2, 3, 4 = 5 3 1

Command Logic Card A, B, C, D, E = 4 1 0

Current Source = 7

Power Stage = 104
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TABLE 8 - XV

PARTS COUNT ON ARC SUPPLY

V4 Control Amp

Transistor
Diode

Zener
Resistor

Capacitor
Transformer
I. C.

Quantity FF^ Total

Output Transformer
Included

7

23

5

28

8'
5

4

80

10

2

23

2

9

14

150

210

70

46

115

56

72

70

600

1029

Power Stage
Logic Control Card # 1, 2, 3, 4
Current Source

100
531
_7_
718
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TABLE 8 - XVI
PARTS COUNT ON BEAM SUPPLY

V5 & V6 CONTROL

Transistor
Diode

Zener

Resistor
Capacitor

I. C.

Transformer
Pot.

Quantity

12

29
8

48
9

7
10

_2

125

FR

10

2

23

2

9

150

14

50

260

Total

120

58
184

96
81

1050
140

100

1829

Power Stage 101
Include Input Cap 1

Include Transformer 1
Include Output Diode 8

Include Output Cap. 2

Total

Logic Control Card # 1, 2, 3, 4

Current Source
Total

113

531
_7

776



TABLE 8 - XVII

PARTS COUNT ON TOTAL SYSTEM (ERC)

Failure Total
Part Count Rate Failure

Total Total Rate

MULTIPLE 1,739 4930 19533

ARC 718 694 4256

BEAM 776 744 5056

INPUT FILTER 7 88 124

3,240 6456 28969
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9.0 TEST EQUIPMENT

Four different load banks were constructed to act as loads for the

ion engine power processor outputs:

0 Beam supply load

0 Arc supply load
0 Multiple output loads operating at + 2000 VDC

0 Mulitple output loads operating at ground

These load banks were constructed to facilitate testing of the power

processor and to provide safety by shielding the high voltage from laboratory

personnel. The load bank for the multiple output loads operating at

+ 2000 VDC cannot be adjusted when the loads are floating above ground since

voltage insulation has not been added to the switch elements.

The beam and arc supply load banks can only simulate zero to full

load and a short circuit. Provisions have not been made to go into a

gradual overload because of expense for the high current components for

the arc load and the high current, and voltage components for the beam supply.

Figure 5 - 4 0 Laboratory facility shows the load banks around the breadboard

and not integrated into a complete test unit in order to reduce the cost

of test equipment and maximize the effort on the power processor development.
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10.0 ENGINE INTEGRATION

The hollow cathode ion engine without the neutralizer system was

received from OPL and mounted in the vacuum chamber at TRW Systems.

Figure 10-1 shows the ion engine test facilities including all the voltage

and current instrumentation and laboratory power supplies. Particles had

flaked off the interior of the laboratory engine, lodged between the beam

and accelerator electrodes and presented a short circuit to the laboratory

supplies. The engine was removed from the tank and cleaned. The engine

was returned to the vacuum tank and the startup proceedure for the ion

engine was determined, using laboratory supplies. During the beam startup,

the engine presents a short between V5 and V6 electrodes which can be

eliminated in either of two methods.
0 Reduction of the magnets supply VI, or
0 Reduction of the arc supply current limit.

The power processor beam and accelerator supply was substituted for

the laboratory supplies and system operated for approximately 20 hours.

The beam supply operated over the input voltage range of 200 to 400 VDC

and with beam currents of 0.25 amp to 1.0 amp and under overload condition

without any problems.
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10.0 Continued

The arc supply was also integrated with the engine to check for

interaction and observe performance of the ion engine with the arc, beam

and accelerator supplies which account for about 93% of the total electrical

input power to the ion engine.

The ion engine experienced shorts which caused the beam and accelerator

supply to go into current limiting mode of operation until the V, or V.

supplies were adjusted at which time the high voltage returned to normal.

Efficiency measurements using the test facility instrumentation were 91%

for the arc, beam, and accelerator supplies which include all control

power for the supplies.

The combination of the arc, beam and accelerator supplies of the

power processor operated approximately 10 hours. During all these tests,

there were no failures of the power processor, but there were some failures

of the test facility instrumentation due to high peak currents during

overloads and due to voltage transients.

As a result of these tests, it is expected that complexity of the

command and protection system could be reduced.

163



11.0 NEW TECHNOLOGY

During this reporting period, new technology was developed in the

following areas.

o SCR inverter power stage
o Multiple output regulator system

The addition of the center tap series inductor to the power stage
provided a positive back bias condition for the auxiliary SCR and eliminated
the forward dv/dt condition.

In the multiple output regulators, the ASDTIC controller when operating

in a constant frequency system became unstable at certain duty cycles.
To eliminate this instability an additional ramp function was summed with
the integrator output signal to change the power stage gain as discussed
in Section 5.5.11.



12.0 CONCLUSIONS

This program has demonstrated the feasibility of an electric

propulsion power processor design using high voltage and high power

silicon-controlled rectifiers (SCR's) as the main power switching

elements operating over the wide input voltage range of 200 to ^OOVdc.

The SCR series resonant inverter has also demonstrated the a b i l i t y to

control the load current and thereby protect the power processor com-

ponents from damage when overloads occur in the ion engine due to

internal arcing. Since the component stresses are continuously under

control by the LC resonant tank during startup, steady-state and

overload modes of operation, the series inverter provides inherent

ruggedness for all conditions of engine operation including severe

engine arcing or shorts.

The power SCR's can operate at higher switching frequencies

without efficiency or r e l i a b i l i t y penalties. Since the components

are passing sinewave currents, there are no switching losses during

turn-on of the SCR's, and since the LC resonant tank provides self-

commutation, the SCR's are reliably turned off.

Continued development work is recommended to reduce weight by

operation at even higher switching frequencies, to reduce part count

by the use of high noise immunity integrated circuits, and to inte-

grate the complete power processor with all its controls with the

ion engine in order to determine interface requirements between the

power source, power processor, ion engine and spacecraft.
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