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EFFECTS OF FUEL NOZZLE DESIGN ON PERFORMANCE OF AN EXPERIMENTAL

ANNULAR COMBUSTOR USING NATURAL GAS FUEL

by Jerrold D. Wear and Donald F. Schultz

Lewis Research Center

SUMMARY

Tests of various designs of fuel nozzles with natural gas fuel were conducted in an
advanced-design full-annulus combustor. Various fuel nozzles were screened in an at-
tempt to find a design that would show improved combustion efficiency and altitude re-
light. Severe combustor operating conditions were used to accentuate possible combus-
tion efficiency differences resulting from the various nozzle designs. Three basic de-
signs of nozzles were tested having either axial, angled, or radial injection of the fuel.
Nozzle injection area and axial injection position were also varied. Test results indi-
cate that angled-injection nozzles exhibited the highest overall combustion efficiency
and had the least tendency for combustion instability. These nozzles also had altitude
relight characteristics equal to or superior to those of the other nozzles.

INTRODUCTION

The purpose of this investigation was to optimize the design of a fuel nozzle for
natural gas to obtain improved combustion efficiency at off-design conditions and to ex-
tend the altitude blowout and relight limits. Liquefied natural gas used as a fuel for
turbojet engines powering a supersonic transport has been shown to have many advan-
tages over the conventional ASTM A-l kerosene-type fuel (refs. 1 to 3). Some of the
reported advantages are increased heat-sink capacity, higher heating value on a weight
basis, low flame radiation, low smoke levels, and a reduced tendency for fuel decom-
position.

Previous tests with combustors designed for a supersonic engine have demonstrated
combustion efficiency with natural gas fuel equal to that of ASTM A-l liquid fuel at sim-
ulated takeoff and cruise conditions (ref. 4). However, at off-design conditions, com-
bustion efficiency decreased at a greater rate with decreasing combustor pressure and



was particularly sensitive to decreasing inlet-air temperature. Of particular importance
were the very poor altitude blowout and relight limits obtained with natural gas fuel. For
every operating condition, the blowout and relight pressures were significantly higher
than those obtained with ASTM A-l. Similar results are indicated by data presented in
reference 5.

Previous investigations have indicated that the method of gaseous fuel injection into
the combustor is of primary importance on combustion efficiency (refs. 6 to 9). In spite
of the many different fuel injector geometries used in these tests, no single method or
design seemed to excel.

For the tests described in this report, no attempt was made to alter the basic com-
bustor geometry, which was designed for use with kerosene-type fuel (ASTM A-l). In-
stead, all attempts at combustion efficiency improvement were focused on the method of
natural gas fuel injection.

Several different designs of fuel nozzles were investigated. Three basic modes of
fuel injection were evaluated: axial, radial, and angled injection. Several variations of
each type were also evaluated to determine effects of orifice size, injected gas velocity,
sheet or jet injection, and axial position.

The combustion efficiency test conditions simulate engine idle conditions and were
also intended to be severe enough so that possible combustion efficiency differences be-
tween nozzles would be evident. The nominal conditions were as follows: inlet pressure,
13. 8 and 17. 2 newtons per square centimeter (20 and 25 psia); combustor reference
velocity, 32.3 and 40.5 meters per second (106 and 133 ft/sec); and inlet air tempera-
ture, 422 K (300° F).

The altitude relight and blowout test conditions were obtained from a windmilling-
flight-Mach-number - altitude envelope. The conditions included two combustor refer-
ence Mach numbers, 0.08 and 0.10, and two inlet air temperatures, 300 and 425 K
(80° and 305° F).

APPARATUS

Test Facility

The fuel nozzle investigation was conducted in a full-scale experimental annular
ram-induction combustor installed in a closed-duct test facility at the Lewis Research
Center (ref. 10). An overall view of the test section is shown in figure 1. Airflows are
available for combustion up to 136 kilograms per second (300 Ib/sec) at pressures from
below atmospheric to 10 atmospheres. The air is heated by indirectly fired heat ex-
changers.



Figure 2 shows the combustor test section and the connected inlet and outlet ducting.
Flow straighteners installed in the air ducting (fig. 1) were followed by about 4^ pipe
diameters of constant-area inlet ducting leading to the test section. Following the inlet
ducting was the combustor housing, which included the diffuser inlet duct and the dif-
fuser. The combustor housing measured 106.3 centimeters (41. 85 in.) at the maximum
diameter and was 95.9 centimeters (37.75 in.) long. Following the combustor housing
was the outlet or exhaust instrumentation section. Following this section and down-
stream, the combustor exhaust gases were cooled by a water-injection spray system.
Airflow rates and combustor pressures were regulated by remotely controlled valves
upstream and downstream of the test section.

Combustor

The combustor used for these tests was a full-scale, full-annulus ram-induction
combustor designed for operation at Mach 3 cruise conditions with ASTM A-l liquid
fuels. This combustor is the same as the one used in references 11 and 12, designated
as model F. Figure 3 is a cross-sectional sketch of the ram-induction combustor with
pertinent dimensions. Figure 4 is an upstream view of a portion of the combustor and
shows original dual-orifice liquid fuel nozzles, air swirlers, and the combustor head-
plate. More complete details of the combustor and its performance are given in refer-
ences 11 and 12.

Fuel Nozzles

Figure 5(a) shows a portion of the fuel strut with the original dual-orifice liquid fuel
nozzle installed and the position relative to the headplate of the combustor. Pertinent
dimensions are included. The air swirler screws onto the fuel strut and acts as a re-
tainer for the fuel nozzles. The fuel strut with nozzle cannot be inserted into the com-
bustor housing if any part of the fuel nozzle extends downstream of the air swirler, as
shown in figure 5(a), because the downstream face of the air swirler engages the up-
stream face of the headplate swirl cup at assembly. Nozzles that did extend past this
plane had to be installed in the fuel strut after the strut was mounted in the combustor.
These nozzles were installed through the air swirler by being screwed into a threaded
insert that was retained by the air swirler. No change was made to the air swirler to
facilitate installation of the gaseous fuel nozzles.

The three nozzles that generally gave the best combustion efficiency values for each
of the three basic injection schemes were nozzles 13, 2, and 4. Nozzle 13, shown in



figure 5(b), was designed to provide downstream axial injection. The nozzle had the
largest feasible injection area without redesign of the air swirler. The injection area
was 0.811 square centimeter (0.1257 in. ). Nozzle 2, shown in figure 5(c), was de-
signed to provide injection of the fuel at an included angle of 27°. Each nozzle had six
holes and a total injection area of 1.068 square centimeters (0.1656 in. ). Nozzle 4,
shown in figure 5(d), was designed to provide fuel injection normal to the combustor
axis. The injection location was farther downstream than that of the previous nozzle.
The nozzle had two rows of five holes each and a total injection area of 3. 576 square
centimeters (0. 5542 in. ). The injection area of all nozzles is presented in table I.

Fuels

The chemical and physical properties of the natural gas fuel are presented in
table II. The natural gas composition reported is representative of the natural gas used
during the test program. The gas composition did vary slightly and was dependent upon
the season, demand, and gas field from which it was obtained. The variations in com-
position were accounted for in calculations of fuel-air ratio and theoretical temperature
rise.

Instrumentation

Combustion air and natural gas flow rates were measured by square-edge orifice
plates installed according to ASME specifications. Combustor-inlet-air total and static
pressures were measured at the plane of the diffuser inlet (station 3, fig. 2).
Combustor-outlet total and static pressures and total temperatures were measured at
the turbine-inlet plane (station 5, fig. 2). Combustor-exhaust total pressures and tem-
peratures were measured at 3° increments around the exhaust circumference. At each
point, five temperature and pressure readings were obtained across the radius. Exhaust
thermocouples were platinum-plus-13-percent-rhodium/platinum and were of the high-
recovery aspirating type. The indicated readings of all thermocouples were taken as
true values of the total temperatures. More detail of the instrumentation construction,
dimensions, and readout capability is given in references 10 and 12.



PROCEDURE

Combustion Efficiency Tests

Table HI presents the various values for three operating conditions used for per-
formance comparisons of the nozzles. These include inlet pressures, temperatures,
mass flows, reference velocities, and values of a correlating parameter PT/V, where
P is inlet total pressure, T is inlet total temperature, and V is combustor reference
velocity. The different operating conditions are designated as conditions 1, 2, and 3.
The severity of the conditions increases from 1 to 3. Conditions 1 and 2 compare a
change in reference velocity at the same inlet pressure. Conditions 2 and 3 compare a
change in inlet pressure at constant reference velocity.

After ignition, the inlet conditions of pressure, temperature, and airflow were ad-
justed to desired values. An approximate fuel-air ratio of 0.008 was chosen for the lean
operating limit. At constant conditions, fuel flow was increased and data were taken at
several fuel-air ratios. A rich fuel-air ratio limit of approximately 0.02 was arbitrarily
selected. However, in many of the tests, audible instability and/or erratic combustion
was encountered before this value was reached. When this situation occurred, the fuel
flow was slightly reduced so that a complete set of data could be obtained without damage
to the combustor. This reduced fuel-air ratio was considered to be the rich limit of the
curve. No attempt was made to go through the unstable combustion to possible blowout.
Previous tests had indicated that, when the fuel-air ratio was increased during unstable
combustion, combustion that may be described in one of the following ways would occur:

(1) Blowout would occur with increased fuel-air ratio after unstable combustion was
encountered.

(2) The pressure amplitude would remain at about the same level of intensity as fuel-
air ratio was increased.

(3) Combustion would become violently .unstable with an increase in fuel-air ratio,
and severe combustor damage would occur in a very short time.

Altitude Limit Relight and Blowout

The altitude relight and blowout characteristics of the various fuel nozzles are com-
1 pared by two criteria: (1) the minimum combustor-inlet total pressure at which ignition
occurred and stable combustion was maintained at the ignition fuel-air ratio, and (2) the
pressure at combustion blowout. These tests were conducted at reference Mach num-
bers of 0.08 and 0.10 and at inlet-air temperatures of 300 and 425 K (80° and 305° F).
No change was made to the igniter position or type for these tests (fig. 5(a)).



The altitude relight data were determined as follows. At the desired inlet condi-
tions, the fuel-air ratio was slowly varied up and down from about 0.005 to 0.015 (dur-
ing a maximum time period of 60 sec). If ignition occurred and combustion was stable
at the ignition fuel-air ratio, the inlet pressure was recorded as an ignition pressure.
After a successful ignition, inlet conditions were adjusted to desired values if they had
varied at all during the start, and the fuel-air ratio values decreased or increased to a
value of about 0.01.

The altitude blowout data were obtained as follows. After ignition at a combustion
pressure value considerably higher than the blowout pressure, the values of inlet-air
temperature and combustion reference Mach number were adjusted to their desired val-
ues and then maintained constant. A fuel-air ratio of about 0.01 was held while making
combustor pressure changes. At a fixed inlet-pressure condition, fuel flow was in-
creased to a value that resulted in a fuel-air ratio of 0.012 to 0.013 (theoretical temper-
ature rise of approximately 556 K or 1000° F). The fuel-flow increase was over a time
period of 6 to 8 seconds. If the monitored exhaust temperature indicated an increase
during the fuel flow increase, the fuel-air ratio was reduced to about 0.01, combustor
pressure was decreased, and the series of steps was repeated. This procedure was re-
peated until combustor blowout was encountered.

CALCULATIONS

Combustion Efficiency

Efficiency was determined by dividing the measured temperature rise across the
combustor by the theoretical temperature rise. Exit temperatures were measured with
five-point traversing aspirated thermocouple probes and were mass-weighted for the ef-
ficiency calculation. The inlet temperature was the arithmetic average of readings of
eight single-point thermocouples around the inlet circumference. The theoretical tem-
perature rise was computed as a function of fuel (heat of formation and hydrogen-carbon
weight ratio), inlet-air pressure, inlet-air temperature, and fuel-air ratio.

Chromatographic analysis of the natural gas indicated about 98 percent hydrocar-
bons, as shown in table II. The heating value and fuel-air ratios used for theoretical
temperature rise and other calculations and figures were based on actual hydrocarbons
in the gas. The nonhydrocarbons were considered as air.

In let-Air Total Pressure

The inlet total-pressure average was obtained by mass-weighting values from eight
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five-point pressure rakes around the diffuser inlet. Static pressures, used in the mass-
weighting calculations, were measured around the circumference on both the inner and
outer wall of the inlet annulus.

Combustor Reference A/lach Number

The reference Mach number was computed from the total airflow, inlet total pres-
sure and temperature, and reference area (maximum cross-sectional area between inner
and outer shrouds, 4484 cm2 or 695 in.2) (fig. 3).

Combustor Reference Velocity

Reference velocity for the combustor was calculated from the reference Mach num-
ber and sonic velocity at the combustor-inlet conditions.

Diffuser-lnletMach Number

This Mach' number was computed from total airflow, diffuser-inlet area, and
diffuser-inlet static pressure and total temperature.

Total-Pressure Loss

The total-pressure loss is defined as the difference between diff user-inlet and
turbine-inlet mass-weighted total-pressure averages. The total-pressure loss, there-
fore, includes the diffuser loss.

Fuel Nozzle Injection Velocity

The injection area of the gaseous fuel nozzles was considerably larger than upstream
restrictions between the nozzle and the fuel manifold. The actual pressure differential
across the injection area of the various designs of nozzles was determined by air cali-
bration of the nozzles. These values, after adjustment for density (differences between
air and natural gas), were used to obtain fuel injection velocity.



Units

The U.S. customary system of units was used for primary measurements and calcu-
lations. Conversion to SI units (Systems International d'Unites) is done for reporting
purposes only. In making the conversion, consideration is given to implied accuracy
and may result in rounding off the values expressed in SI units.

RESULTS AND DISCUSSION

Combustion Efficiency Tests

Test results of all fuel nozzles are presented in table IV. As previously mentioned,
nozzles 13, 2, and 4 generally gave the best combustion efficiency for each of the three
basic injection schemes. Details of these nozzles are given in the APPARATUS section.
Pertinent details and dimensions of the additional nozzles tested are listed in appendix A.
A discussion of test results obtained with these additional nozzles is given in appendix B.

Figure 6 shows the effect of fuel-air ratio on combustion efficiency for nozzles 13,
2, and 4 at the three nominal operating conditions. As previously mentioned, the com-
bustion efficiency test conditions were chosen to represent engine idle conditions. A
range of conditions was chosen in order to have conditions severe enough to indicate pos-
sible efficiency differences between nozzles. At test condition 1 (fig. 6(a)) there was a
general increase in efficiency with all nozzles as fuel-air ratio was increased. At lean
fuel-air ratios, nozzles 2 and 4 gave slightly higher efficiency values, while at higher
fuel-air ratios, nozzles 13 and 2 showed better efficiency. At test conditions 2 and 3
(figs. 6(b) and (c), respectively) and low fuel-air ratios, nozzle 4 permitted as high or
higher efficiency values than nozzle 13 or 2; however, as fuel-air ratio increased, the
efficiency for nozzle 4 fell off quite rapidly to values lower than those for the other noz-
zles. Unstable combustion was encountered by nozzles 4 and 13 at successively lower
fuel-air ratios as test conditions varied from 1 to 3.

Nozzle 2, which injected the natural gas as six discrete jets at an included angle of
27°, clearly exhibited higher efficiencies and a wider operating fuel-air-ratio range.
Nozzle 4, which gave the lowest efficiencies at the higher fuel-air ratios, injected the fuel
normal to the combustor centerline. With this nozzle, the injection plane was farther
downstream than that of the other two nozzles.

Results of investigations at the Lewis Research Center (unpublished data) indicate
that combustion efficiency values obtained with ASTM A-l liquid fuel and the dual orifice
nozzles were 8 to 12 percentage points higher (test condition 3) than values obtained with
natural gas and nozzle 2.



The variation of combustor temperature rise with fuel-air ratio for nozzles 13, 2,
and 4 at the three test conditions is shown in figure 7. At test condition 1 (fig. 7(a)),
temperature rise values greater than 800 K (1440° F) were obtained with all nozzles. As
the test condition was varied from 1 to 3, the values obtained with nozzle 2 were some-
what greater than 750 K (1350° F). However, with nozzles 13 and 4, the maximum tem-
perature rise values dropped sharply to 550 and 430 K (990° and 774° F), respectively,
for condition 2 (fig. 7(b)) and to 380 and 325 K (684° and 585° F), respectively, for con-
dition 3 (fig. 7(c)).

Altitude Limit Tests

Test results for altitude limit ignition and blowout obtained with all nozzles are sum-
marized in table V. Discussion of test results of nozzles other than 13, 2, and 4 is pre-
sented in appendix B.

The inlet-air temperatures and reference Mach numbers listed in table V varied
slightly from test to test. The Mach number variations were considered to be small
enough so that no correction of the recorded blowout pressures was required. However,
as indicated in reference 4, small variations of the inlet-air temperature, particularly
at values near 300 K (80° F), had a large effect on measured altitude limits. In order
to make valid comparisons at the desired nominal temperature values of 300 and 425 K
(80° and 305° F), the measured pressures were adjusted for any variation in inlet-air
temperatures. The correction was made by making plots of the ignition or blowout pres-
sure against the inlet-air temperature and determining the proper pressure at the desired
nominal value of temperatures. These corrected data are presented in figure 8 for igni-
tion limits and figure 9 for blowout limits for nozzles 13, 2, and 4.

Data in figure 8 show that nozzle 13 (axial injection) provided ignition at the lowest
pressure at an inlet-air temperature of 300. K (80° F) at both combustor reference Mach
numbers. However, as the inlet-air temperature increased, this no longer held true.
Nozzle 2 was better at the low reference Mach number and 4 was best at the higher Mach
number. Minimum ignition pressures obtained with nozzle 2 were as low or lower than
those obtained with nozzles 13 and 4 at the low Mach number. However, at the higher
Mach number, the values obtained with nozzle 2 were considerably higher, at both inlet-
air temperatures. Nozzle 2 was more sensitive to variation of combustor reference
Mach number than were the other two nozzles.

The blowout results given in figure 9 show that radial, injection of the fuel, nozzle 4,
gives the highest blowout pressure. Angled fuel injection, nozzle 2, produces the lowest
blowout pressure at elevated air temperatures and is not greatly inferior to axial injec-
tion, nozzle 13, at the lower temperature.



Complete altitude limit data were not obtained with the nozzles at all test conditions.
In some cases, facility limitations of flow or pressure limited tests. In other situations,
previous results indicated that further tests would not be informative.

Altitude limit ignition and blowout data obtained with nozzles other than 13, 2, and 4
are presented in appendix B. The data include results from tests of nozzles of the same
injection scheme, but with variations in nozzle size and injection area. The results are
somewhat inconclusive in that no one type of nozzle design is clearly superior for both
relight and blowout. For example, the minimum ignition pressures obtained with noz-
zle 2 are considerably higher than those obtained with several other nozzles. However,
blowout pressures with nozzle 2 were as low or nearly as low as those obtained with any
of the other nozzles.

SUMMARY OF RESULTS

The wide variation in combustion efficiencies, stability range, and altitude ignition
and blowout pressures obtained with different nozzle designs indicates that the method of
gaseous fuel injection is an important step in the combustion process. However, the re-
sults are somewhat inconclusive in that no one type of nozzle design is clearly superior
at all test conditions. Fuel nozzles that gave good altitude relight often had a narrow
range of fuel-air ratios for stable combustion. Conversely, nozzles that demonstrated
high combustion efficiency and stable combustion were often inferior in some aspects of
altitude limit performance. From examination of the data, the following results were
obtained.

1. Gaseous fuel injected at a slight angle to the combustor axis (angled fuel injection)
generally gave better combustion efficiency, combustion stability, and lower altitude ig-
nition and blowout pressures.

2. Radial injection of the gaseous fuel generally gave the lowest efficiencies at the
high fuel-air ratio values and also the narrowest range of stable combustion of the three
injection methods. Radial injection results compare more favorably with results of other
injection methods from altitude ignition tests than with those from altitude blowout tests.

3. Axial injection of fuel gave combustion efficiencies approaching those of angled in-
jection, although the useful fuel-air ratio range of axial injection was reduced by combus-
tion instability.

10



4. Combustion instability was common to all nozzles. The effect of the combustion
instability was to narrow the range of fuel-air ratios where satisfactory combustion could
be maintained.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 26, 1972,
501-24.
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APPENDIX A

DETAILS OF GASEOUS FUEL NOZZLES

Axial Injection

Nozzle 11, shown in figure 10, was the same as nozzle 13, except that the injection
area was smaller. This nozzle was the threaded insert, described previously, that the
other natural gas nozzles screwed'into. The injection area was 0.199 square centimeter
(0.0308 in. 'I. Later this nozzle was drilled out, and the injection area was enlarged to
0.811 square centimeter (0.1257 in.^ to make nozzle 13.

Angled Injection

Nozzle 1, shown in figure 11, was designed as a replacement for the usual liquid fuel
nozzles. This nozzle did not extend downstream of the swirler. The natural gas was
metered through six angled holes in the nozzle body. These jets of fuel then converged
around the pintle on the nozzle axis which later served to spread the jet as a sheet as it
was injected into the combustor. The injection area of this nozzle was taken to be the
difference in areas of the swirler minimum area minus the area of the pintle stem. The
injection area was 0.773 square centimeter (0.1198 in. ).

Nozzle 6, shown in figure 12, had a slightly larger injection area than nozzle 1 and
injected the fuel at a 27° included angle, but 1. 5 centimeters (0.6 in.) downstream from
the usual injection position at the swirler face. The injection area was 0.888 square

o
centimeter (0.1377 in. ). The gas was injected as a sheet.

Nozzle 8, shown in figure 13, had the injection plane, which included 10 injection
holes, moved farther downstream and the physical size of the nozzle was substantially
increased. The injection area was 3. 576 square centimeters (0.5542 in. ). The in-
cluded angle of injection was 27°. The fuel issued more as discrete jets than as a sheet
as in nozzles 1 and 6. With the physical size of the nozzle increased, the fuel jets could
penetrate closer to the combustor walls than in previous angled-injection type nozzles.
The large size of this nozzle body, required in order to obtain increased injection area,
could change the airflow patterns from the air swirler.

Nozzle 9, shown in figure 14, was similar to nozzle 8 but had a smaller total injec-
tion area and only six injection holes. It had the same injection area as nozzle 2,
1.068 square centimeters (0.1656 in. ).
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Radial Injection

Nozzle 3, shown in figure 15, was a shorter length version of nozzle 4, shown in
figure 5(d). The first of two rows of radial injection holes (five in each row) was much
closer to the swirler face. The open or injection area of this nozzle was the same as

2
for nozzle 4, 3.576 square centimeters (0.5542 in. ).

Nozzle 5, shown in figure 16, injected the fuel as a radial sheet. The injection slot
was located 1.5 centimeters (0.6 in.) downstream of the swirler face, and the injection

2
flow area was 2.445 square centimeters (0.3790 in. ).

Nozzle 7, shown in figure 17, radially injected the natural gas from a set of eight2
longitudinal slots. The injector flow area was 2.140 square centimeters (0.3317 in. ).
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APPENDIX B

COMBUSTION EFFICIENCY AND ALTITUDE LIMIT IGNITION

AND BLOWOUT PRESSURES

Combustion Efficiency

The combustion efficiency obtained with the fuel nozzles described in appendix A, as
affected by fuel-air ratio, is presented in figures 18 to 21. Data are presented for each
nozzle at the three test conditions. Also included in these figures are results obtained
with nozzles previously described in the APPARATUS section.

Axial injection. - Nozzles 13 and 11, figures 5(b) and 10, were two nozzles designed
for axial injection that differed only in injection area. As shown in figure 18, nozzle 11,
with the smaller injection area, had slightly higher combustion efficiencies, particularly
at the lower fuel-air ratios. However, combustion instability was encountered at lower
fuel-air ratios than with nozzle 13.

The somewhat more limited stability range of nozzle 11 led to the choice of nozzle 13
as the better performing axial injection nozzle.

Angled injection. - Combustion efficiencies as affected by fuel-air ratio for nozzles
1 and 6, are shown in figure 19; data for nozzles 8 and 9 are presented in figure 20. The
efficiencies obtained with these nozzles were clearly inferior to that obtained with noz-
zle 2. Generally, the combustion efficiencies were low, even for the least severe oper-
ating conditions. Nozzles 6 and 9 had a very limited operational range before unstable
combustion occurred. Comparing the performance of nozzles 8 and 9 shows that injec-
tion of fuel at a low velocity enhanced the combustion stability range. The differences in
fuel injection position and angle may have also been responsible for differences in per-
formance, but the effect of each variable in this instance was not clear.

Radial injection. - The variation in combustion efficiency with fuel-air ratio and fuel
injection velocity with the radial injection fuel nozzles is shown in figure 21. A distinc-
tive characteristic of these nozzles was the rapid decrease in combustion efficiency as
fuel-air ratio increased at the more severe operating conditions. Efficiency results in-
dicated that radial jet injection close to the air swirler (nozzle 3) should be avoided.
When the injection position was moved farther downstream, as in the case of nozzle 4,
there was a slight increase in the stable combustion range, and combustion efficiency did
not decrease as rapidly with increasing fuel-air ratio. Radial sheet injection close to the
air swirler (nozzle 5) gave slightly better combustion efficiencies at the more severe op-
erating conditions than did nozzle 3 (radial jet injection close to the air swirler).

Summary. - Results obtained with the two axial injection nozzles were quite similar;
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nozzle 13 was considered slightly better because of a somewhat wider stable combustion
range at the most severe operating condition.

Nozzle 2 was clearly superior to the other angle injection nozzles tested. The vari-
ous nozzles included types that inject the fuel as jets or sheet, vary the injection plane,
and vary the injection velocity.

Radial injection nozzle 4 gave as high or higher combustion efficiencies and as wide
a stable combustion range as the other radial-injection nozzles.

Altitude Limit Ignition and Blowout Pressures

Altitude limit ignition and blowout data, of all fuel nozzles, are shown in figures 22
and 23, respectively. They include the data from nozzles 13, 2, and 4, which were pre-
viously discussed.

Ignition. - The radial injection nozzles 3, 4, 5, and 7 were designed to bring a high
fuel concentration near the igniter. This should have enhanced altitude ignition limits.
As shown in figure 22, some of the radial injection nozzles did show good relight char-
acteristics, although some other nozzles permitted lower ignition pressures. A study of
figure 22 indicates that angled injection, typified by nozzles 1 and 9, gave the lowest ig-
nition pressures at all operating conditions except the severest, low air temperature and
high combustor reference Mach number. At this severe condition, axial injection noz-
zle 13 gave the lowest ignition pressure. Also, nozzle 13 was least sensitive to varia-
tion in combustor reference Mach number. Axial injection nozzle 11, with a smaller
injection area than 13, gave about the highest ignition pressure of all the nozzles. The
disparity in minimum ignition pressure of the nozzles indicates that none of these de-
signs are optimum.

Blowout. - Data shown in figure 23 indicate that no one nozzle or nozzle type permits
the lowest blowout pressure at all operating conditions. Angled-injection nozzles 2 and 9
had the lowest pressures at low Mach number and both inlet-air temperature conditions;
axial-injection nozzle 13 permitted the lowest pressure at the high-Mach-number - low-
temperature condition; and radial-injection nozzle 5 showed the lowest ignition pressure
at the high-Mach-number - high-temperature condition. However, the pressure values
obtained with nozzles 13 and 5 were only slightly lower than values obtained with noz-
zle 2.

Summary. - Results of altitude limit ignition and blowout tests indicate that angled-
injection fuel nozzles generally permitted the lowest or nearly lowest pressures. The
large radial-injection area nozzle 13 permitted the lowest pressure for both ignition and
blowout tests at the most severe operating condition.

Several nozzle designs would ignite at fuel-air ratios as low as 0.004. In some
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cases, as fuel-air ratio was increased, after ignition, combustion was satisfactory; in
other cases, combustion blowout would occur before the fuel-air ratio reached a value of
about 0.010.

During blowout tests, there generally was a range of pressures over which the ex-
haust temperatures would remain constant or decrease, but not enough for blowout to
occur as the fuel-air ratio was increased to the desired value. Further decrease in
pressure would result in blowout.

Complete altitude limit data were not obtained with the nozzles at all test conditions.
In some cases, facility limitations of flow or pressure limited tests. In other situations,
previous results indicated that further tests would not be informative.
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TABLE I. - NOZZLE INJECTION AREAS

Nozzle

11
13

1

6
2
9
8

7
5
3
4

Injection area

2cm

0.199
.811

0.773
.888

1.068
1.068
3.576

2.140
2.445
3.576
3.576

. 2in.

0.0308
.1257

0.1198
.1377
.1656
.1656
.5542

0.3317
.3790
.5542
.5542

Type of injection

Axial
Axial

Angled

\

Radial

i
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TABLE II. - PHYSICAL PROPERTIES OF NATURAL GAS

Density,3 kg/m3 (lb/ft3) 0.7320 (0.0457)
Calculated net heat of combustion, J/kg (Btu/lb) 49 770X103 (21 397)
Normalized chromatographic analysis, vol. %

Methane 93.50
Ethane 3. 53
Propane 0.53
C4, Cg, and C. hydrocarbons 0.32
Nitrogen 1.05

Carbon dioxide 1.07
Oxygen trace

aAt temperature of 289 K (60° F) and pressure of 10.159 N/cm2 (30.00 in. Hg at 32° F).

TABLE III. - COMBUSTOR NOMINAL OPERATING CONDITIONS

Operating
condition

1
2

3

Pressure

N/cm2

17.2
17.2
13.8

psia

25.0
25.0
20.0

Temperature

K

422
422
422

oF

300
300
300

Airflow rate

kg/sec

20.6
25.9
20.7

Ib/sec

45.5
57.0
45.6

Reference velocity

m/sec

32.3
40.5
40.5

ft/sec

106
133
133

PT/V

(N)(K)(sec)

m3

22.53X105

17.95
14.36

(lb)(°R)(sec)

ft3

25.81X103

20.57
16.46

Diff user -
inlet Mach

0.326
.415
.415
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TABLE IV. - COMBUSTOR EFFICIENCY

Combustor-in et-air conditions

Total pressure

N/cm2 psia

17.2
17.2
17.0

17.2
11.2

17.2

17.2

17.2

17.2

17.1

13.7

13.8

13.8

13.7

25.0
25.0
24.7
24.9
25.0

24.9
25.0
24.9
24.9
24.8

19.9
20.0
20.0
19.9

To*"1

tempe

K

nature

°F

Ftr low

kg/sec Ib/sec m/sec ft/sec

t>T/Vy 1 1 v

(NKKHsec)

m3

(lb)(°R)(sec)

ft3

Fuel
temperature

K °F

Nozzle

419

422

416

416

416

429

426

426

428

428

417

415

417

416

294

300

290

290

289

312

307

307

310

311

291

288

291

290

20.5
20.6
20.6
20.5
20.5

25.6
25.5
25.5
25.7
25.4

20.9
20.9
20.8
20.8

45.1
45.5
45.5
45.3
45.3

56.4
56.3
56.2
56.6
56.0

46.0
46.1
45.9
45.9

31.7
32.3
32.0
31.7
31.4

40.2
39.9
39.9
40.5
40.2

39.9
39.9
39.9
39.9

104

106

105

104

103

132

131

131

133

132

131

131

131

131

22.76X105

22.56
22.19
22.50
22.76

18.24
18.36
18.33
18.12
18.27

14.31
14.41
14.49
14.26

26.08X103

25.85
25.43
25.78
26.08

20.90
21.04
21.00
20.76
20.93

16.40
16.51
16.60
16.34

284

286

287

290

290

276

276
277

279

284

288

288

288

289

52

55

57

62

63

37

37

39

43
51

59

59

59

60

Nozzle

16.8

16.8

17.0
17.0

16.9

16.8

16.8

17.0

16.9

13.5

13.4

13.4

13.5

17.3

17.3

17.2

17.3

17.2

17.2

17.2

17.2
17.2

13.9

13.9

13.8

13.9

24.4
24.4
24.6
24.6
24.5

24.4
24.4
24.6
24.5

19.6
19.5
19.5
19.6

424

425

425
424

424

424

425

424

425

423

425

425

423

303
305

305
304

303

304

305

304

306

301

305

305

301

19.8
19.8
19.7
19.7
19.7

23.7
23.8
23.9
24.1

20.1
20.0
19.8
19.8

25.1
25.1
24.9
25.1
24.9

25.0
24.9
25.0
25.0

20.1
20.1
20.0
20.2

421

421

421

421

423

423

423

423

423

421

422

421

422

299

299

299

299

301

301

302

301

302

298

300

299

300

20.9
20.8
20.8
20.8
20.8

25.6
25.4
25.6
25.5

21.1
21.0
21.1
21.1

43.7
43.6
43.5
43.4
43.5

52.3
52.5
52.7
53.1

44.3
44.2
43.6
43.6

46.0
45.9
45.8
45.9
45.8

56.4
56.0
56.4
56.3

46.5
46.4
46.5
46.5

31.7
31.7
31.4
31.4
31.4

37.8
38.1
37.8
38.4

39.6
40.2
39.6
39.3

104

104

103
103

103

124

125

124

126

130

132

130

129

22.40X105

22.45
23.01
22.96
22.75

18.84
18.74
19.02
18.66

14.38
14.20
14.42
14.53

32.3
32.3
32.6
32.3
32.6

39.6
39.6
39.6
39.6

40.5
40.5
40.8
40.5

106

106

107

106

107

130

130
130

130

133

133

134

133

22.60X105

22.60
22.21
22.52
22.31

18.29
18.43
18.35
18.39

14.35
14.38
14.24
14.49

25.67X103

25.72
26.37
26.31
26.07

21.59
21.47
21.79
21.38

16.48
16.27
16.52
16.65

25.90X103

25.90
25.45
25.80
25.56

20.96
21.12
21.03
21.07

16.44
16.48
16.32
16.60

294

295

296
296

298

295

298

300

302

285

286

289

296

70

71

73
73

77

72

76

81

84

54

56

61

73

Nozzle

286

287

289

292

294

293

293
296

295

285

287

286

288

56

57

61

66

69

68

68
73
72

54

57

56
59
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DATA WITH NATURAL GAS FUEL

Fuel pressure
differential be-
tween manifold
and combustor

N/cra2 psi

Calculated fuel
injection
velocity

m/sec ft/sec

Fuel-
air

ratio

Combustor
average
exhaust

total
temperature

K °F

Combustor
temperature

rise

K °F

Combus-
tion effi-

ciency,
percent

Remarks

1

23.8
33.5
48.3
69.4
82.2

34.2
43.3
55.2
71.5
80.1

28.7
37.2
51.7
69.3

34.5
48.6
70.1

100.7
119.2

49.6
62.8
80.1

103.7
116.1

41.6
53.9
74.9

100.6

71.0
86.9

109.1
134.4
146.9

89.3
102.1
117.7
136.9
147.5

95.1
110.9
135.6
158.2

233
285
358
441
482

293
335
386
449
484

312
364
445
519

0.0079
.0099
.0129
.0173
.0199

.0082

.0097

.0117

.0144

.0158

.0081

.0098

.0128

.0164

728
800
896

1094
1215

724
758
769
831
893

697
714
739
827

850
981

1154
1509
1728

843
904
924

1036
1147

795
826
870

1029

309
378
480
677
799

295
332
343
403
464

279
299
322
411

556
681
864

1218
1439

531
598
617
726
836

503
538
579
739

86.0
85.6
85.0
92.6
96.6

79.7
76.4
66.7
65.2
69.0

75.7
68.3
57.5
58.9

High-frequency audible
combustion resonance
(buzz), erratic outlet
temperature

Erratic outlet temperature

Erratic outlet temperature

2

18.1
38.6
62.4
81.5
87.8

43.5
77.0

100.4
119.1

35.2
51.4
78.8

104.0

26.3
56.0
90.6

118.2
127.4

63.1
111.6
145.6
172.7

51.1
74.6

114.2
150.8

41.8
68.0
93.9

113.1
120.7

75.3
111.6
136.6
153.3

76.8
99.4

133.8
163.4

137
223
308
371
396

247
366
448
503

252
326
439
536

0.0062
.0104
.0152
.0189
.0201

.0094

.0148

.0187

.0212

.0094

.0125

.0180

.0226

658
832

1029
1188
1235

751
929

1103
1203

703
778
984

1184

725
1038
1392
1678
1764

892
1213
1525
1705

806
941

1312
1671

234
407
604
763
812

327
504
678
778

281
353
559
761

422
733

1087
1374
1461

588
907

1221
1400

505
636

1007
1369

82.3
88.3
93.0
96.7
97.5

77.5
79.2
86,9
89.0

66.6
64. '5
74.1
82.5

Erratic outlet temperature

3

23.2
37.0
53.3
76.5
98.5

31.6
50.4
60.0
71.5

26.8
40.1
52.0
57.8

33.6
53.6
77.3

110.9
142.8

45.9
73.1
87.1

103.6

38.6
58.1
75.4
83.8

14.6
20.4
26.5
35.4
43.3

18.9
26.8
30.8
35.1

18.9
26.5
32.3
35.1

48
67
87

116
142

62
88

101
115

62
87

106
115

0.0069
.0096
.0127
.0169
.0211

.0068

.0097

.0111

.0129

.0068

.0095

.0116

.0126

703
815
887

1050
1239

679
766
750
733

675
733
669
637

806
1008
1137
1431
1771

763
920
890
859

756
860
745
687

282
394
466
629
817

257
344
327
309

254
311
248
215

507
709
838

1132
1471

462
619
589
557

458
560
446
387

89.4
91.6
83.9
87.8
94.2

82.4
76. 0
66.8
55.2

81.9
73.4
48.7
38.9

Erratic outlet temperature

Low-frequency audible
combustion resonance
(rumble) , erratic out-
let temperature

Low-frequency audible
combustion resonance
(rumble) , erratic out-
let temperature
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TABLE IV. - Continued. COMBUSTOR

Combustor -inlet-air conditions

o pressure

N/cm2 psia

Total
temperature

K °F

low

kg/sec Ib/sec m/sec ft/sec

PT /Vr i / v

(N)(K)(sec)

m3

(lb)(°R)(sec)

ft3

Fuel
temperature

K °F

Nozzle

17.0

17.0

16.9

17.0

17.0

16.9

16.9
16.9

17.0

13.5

13.5

13.5

13.5

13.4

24.6
24.6
24.5
24.6
24.6

24.5
24.5
24.5
24.7

19.6
19.6
19.6
19.6
19.5

426

426

427

426

428

426

426

427

428

427

426

426

427

421

307

307

309

308

310

307

308
309

310

309

307

307

309

309

20.1
20.0

20.1

20.2

20.2

24.7

24.7
24.6

24.6

20.4

20.6

20.6

20.6

20.6

44.4

44.2

44.3

44.5

44.6

54.4

54.4
54.3

54.3

44.9

45.5

45.4

45.4

45.4

32.3

32.0

32.3

32.3

32.3

39.3

39.3
39.3

39.3

40.5

41.1

40.8

41.1

41.5

17.3

17.4

17.3

17.2

17.3

17.3

17.4

17.3

17.3

13.9

13.8

13.9

25.1
25.2
25.1
25.0
25.1

25.1
25.2
25.1
25.1

20.1
20.0
20.1

429

429

428

428

428

428

428

428

429

425

428

428

312

312

310

310

311

311

311

311

313

306

311

311

20.8

20.8

20.8

20.8

20.7

25.4

25.4

25.4

25.5

21.2

21.2

21.2

45.8

45.8

45.8

45.8

45.7

56.1

56.1

56.1

56.2

46.8

46.8

46.7

32.6

32.6

32.6

32.6

32.6

39.6

39.6

39.9

39.9

41.1

41.5

41.5

106

105

106

106

106

129

129

129

129

133

135

134

135

136

22.43X105

22.51

22.42
22.42

22.46

18.32

18.29
18.35

18.53

14.18

13.94

14.06

14.08

13.84

25.70X103

25.79
25.69
25.69
25.74

20.99
20.96
21.03

21.23

16.25

15.97

16.11

16.13

15.86

279

278

280

281

283

284

285

288

291

290

290

290

292

291

107

107

107

107

107

130

130

131

131

135

136

136

22.64X105

22.79
22.66
22.52
22.69

18.67

18.70

18.62

18.51

14.26

14.21

14.37

25.94X103

26.11

25.97
25.80
26.00

21.39

21.43

21.34

21.21

16.34

16.28

16.47

284

286

288

291

294

293

293

295

296

281

282

284

43

41

44

47

50

51

53

58

64

63

63

62

66

65

Nozzle

51

56

59

64

69

67

68

71

74

47

48

52

Nozzle

17.2
17.2
17.3
17.2

17.2
17.2
17.3
17.2

13.9
13.8
13.8
13.8

25.0
25.0
25:1
25.0

25.0
25.0
25.1
25.0

20.1
20.0
20.0
20.0

428

429

426

426

427

427
427

427

427

427

426

426

311

312

307

307

309

309
309

309

309

309
308

308

20.3

20.4

20.3

20.3

24.8

25.4
25.4

25.4

21.3

21.3

21.3

21.2

44.7

44.9

44.8

44.8

54.6

56.0
56.1

56.0

46.9

46.9

46.9

46.8

32.0

32.3

32.0

32.0

38.7

39.6
39.6

39.6

41.5

41.5

41.5

41.5

105

106

105

105

127

130
130

130

136

136

136

136

22.96X105

22.98
23.10

22.89

19.00

18.54
18.56

18.56

14.27

14.17

14.22

14.24

26.31X103

26.33
26.47
26.23

21.77

21.24
21.27

21.27

16.35

16.24

16.29

16.32

275

276

276

277

278

280
282

285

284

284

285

286

35

37

37

39

41

45
48

53

52

52

54

56
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EFFICIENCY DATA WITH NATURAL GAS FUEL

Fuel pressure
differential be-
tween manifold
and combustor

N/cm2 psi

Calculated fuel
injection
velocity

m/sec ft/sec

Fuel-
air

ratio

Combustor
average
exhaust

total
temperature,

K °F

Combustor
temperature

rise

K °F

Combus-
tion effi-
ciency ,
percent

Remarks

4

27.3
36.0
52.3
73.6
96.7

37.1
48.6
61.5
78.7

30.3
41.1
41.1
58.0
63.9

39.5
52.3
75.8

106.7
140.3

53.9
70.5
89.2

114.1

43.9
59.6
59.6
84.1
92.7

16.8
20.4
26.8
35.1
44 .2

21.6
26.2
31.4
38.1

22.3
27.7
27.7
36.6
40.2

55
67
88

115
145

71
86

103
125

73
91
91

120
132

0.0083
.0101
.0133
.0174
.0218

.0082

.0100

.0120

.0146

.0079

.0098

.0099

.0130

.0141

750
825
957

1104
1265

711
771
833
860

686
729
731
743
698

891
1025
1263
1528
1818

821
928

1039
1088

775
852
856
878
796

325
399
530
678
838

286
345
405
433

259
303
306
316
271

585
718
954

1220
•1509

514
621
729
779

466
546
550
568
487

86.5
88.4
92.1
92.7
94.0

76.9
77.6
77.0
68.9

71.9
69.0
69.3
55.8
44.6

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature

Low-frequency audible
combustion resonance
(rumble) , erratic out-
let temperature

5

28.0
36.8
53.6
74.0
90.5

39.1
51.7
64.3
83.3

31.5
40.6
55.5

40.7
53.4
77.7

107.4
131.2

56.7
74.9
93.3

120.8

45.7
58.9
80.5

25.0
30.5
39.6
51.2
60.0

32.6
39.9
47.5
58.2

32.6
39.3
50.3

82
100
130
168
197

107
131
156
191

107
129
165

0.0082
.0097
.0128
.0166
.0196

.0081

.0100

.0119

.0146

.0080

.0096

.0123

753
805
870

1028
1183

'737
776
768
795

715
746
678

895
989

1106
1390
1669

867
938
922
971

827
884
760

324
376
442
600
754

309
348
339
366

289
318
249

583
677
796

1080
1358

556
627
611
659

521
573
449

87.8
86.6
79.2
85.4
92.8

84.1
78.4
65.1
58.2

79.9
74.3
46.3

Erratic outlet temperature

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature

6

27.0
35.9
37.3
54.8

37.2
47.7
60.0
73.5

30.5
40.5
55.4
63.0

39.1
52.1
54.1
79.4

54.0
69.1
87.1

106.6

44.3
58.7
80.4
91.4

59.1
70.4
71.9
91.1

73.5
87.9

101.2
115.8

76.2
91.4

113.1
124.4

194
231
236
299

241
287
332
380

250
300
371
408

0.0083
.0100
.0104
.0138

.0083

.0096

.0115

.0135

.0078

.0095

.0122

.0137

732
799
801
940

684
714
753
796

638
661
695
724

858
978
983

1232

772
825
895
973

689
731
792
844

304
370
376
514

258
287
325
369

211
234
269
298

547
666
676
925

464
516
585
664

380
422
484
537

80.7
82.9
81.5
86.4

68.5
66.9
64.2
63.0

59.8
54.9
50.2
50.4

Erratic outlet temperature
and inlet pressure

Erratic outlet temperature
and inlet pressure

Erratic outlet temperature
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TABLE IV. -Continued. COMBUSTOR

Combustor-inlet-air conditions

Total pressure

N/cm2

17.2
17.2

17.2

17.2

17.3

17.3

17.2

17.2

17.2

17.2

13.9

13.9

13.8

13.9

psia

Total

temperature

K °F

Flow

kg/sec Ib/sec

Reference velocity

m/sec ft/sec

24.9

25.0

25.0

25.0

25.1

25.0

25.0

25.0

24.9

24.9

20.1

20.1

20.0

20.1

421

422

421

422

422

420

421

420

420

421

422

423

423

422

299

300

298

300

300

297

299

297

296

298

300

301

301

300

21.0

20.5

20.5

20.5

20.5

20.6

25.5

25.8

25.7

25.8

20.9

21.0

21.0

21.0

46.4

45.3

45.3

45.3

45.3

45.5

56.3

56.8

56.6

56.8

46.1

46.3

46.3

46.2

32.9
32.0

32.0

32.0

31.7

32.0

39 3

39.6

39.6

39.9

40.2

40.2

40.5

40.2

108

105

105

105

104

105

129

130

130

131

132

132

133

132

PT/V

(N)(K)(sec)

m3

22.10X105

22.74

22.67

22. 74

22.96

22.71

18.43

18.33

18.20

18.15

14.46

14.51

14.33

14.46

(lb)(°R)(sec)

ft3

25.32X103

26.06

25.98

26.06

26.31

26.02

21.12

21.00

20.85

20.80

16.57

16.63

16.42

16.57

Fuel

temperature

K

289

290

292

295

293

294

290

288

288

289

292

293

294

294

°F

Nozzle

61
63

66

72

68

70

63

58

58

61

66

67

70

70

Nozzle

17.1
17.1
17.0
17.0
17.0

17.1
17.0
17.0
17.0
17.2

13.7
13.7
13.6
13.7

24.8

24.8

24.6

24.7

24.6

24.8

24.7

24.7

24.6

24.9

19.8

19.9

19.7

19.8

418

425

425

420

419

421

420

420

422

421

420

421

421

418

293

306
305

297

295

298

297

297

300

299

297

298

299

292

20.9

20.6

21.0

21.0

21.0

25.0
25.0

25.1

25.1

25.0

21.3

21.2

21.1

21.2

46.0

45.4

46.3

46.3

46.2

55.2

55.2

55.3

55;3

55.2

47.0

46.7

46.6

46.7

32.6

32.6

33.5

32.9

33.2

39.0

39.0

39.3

39.6

39.0

41.5

41.1

41.5

40.8

107

107

110

108

109

128

128

129

130

128

136

135

136

134

21.98X105

22.37

21.59

21.70

21.47

18.40

18.31

18.25

18.06

18.61

13.79

14.03

13.85

13.96

25.1 9X1 O3

25.63

24.74

24.87

24.60

21.08

20.98

20.91

20.69

21.32

15.80

16.08

15.87

16.00

275

275

276

279

281

282

283

284

288

289

288

286

287

290

36

35

37

43

47

48

49

52

58

60

59

55

57

62

Nozzle

17.0
17.0

17.0

17.0

16.9

16.8

17.0

17.0

13.5

13.4

13.4

24.7

24.6

24.6

24.6

24.5

24.4

24.7

24.6

19.6

19.5

19.5

424

426

423

421

420

418

420

420

421

421

419

304

308

302

298

296

293

296

297

298

298

295

20.8

20.8

21.0

21.0

25.1

25.1

25.0

25.0

20.9

20.9

20.8

45.9

45.9

46.2

46.3

55.3

55.3

55.2

55.2

46.1

46.0

45.9

32.9

33.2

33.2

33.2

39.3

39.6

39.0
39.0

41.1

41.5

41.1

108

109

109

109

129

130

128

129

135

136

135

21. 86X1 O5

21.67

21.61

21.50

18.02

17.86

18.29
18.12

13.78

13.68

13.68

25.05X103

24.83

24.76

24.64

20.65

20.47

20.96

20.76

15.79

15.68

15.68

274

277

274

275

275

277

278

279

280

279

280

34

29

33

36

35

39

41
43

45

43

45
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EFFICIENCY DATA WITH NATURAL GAS FUEL

Fuel pressure
differential be-
tween manifold
and combustor

N/cm2 psi

Calculated rue
injection
ve ocity

m/sec ft/sec

Fuel-
air

ratio

Combustor
average
exhaust

total
temperature

K °F

Combustor
temperature

r se

K °F

Combus-
tion effi-
ciency,
percent

Remarks

7

29.2
38.2
57.3
80.9
84.3
98.5

46.3
37.1
63.5
71.7

33.1
41.6
47.4
54.6

42.3
55.4
83.1

117.3
122.3
142.8

67.1
53.9
92.1

104.0

48.0
60.3
68.7
79.2

30.2
36.3
48.8
63.1
64.9
73.2

43.0
35.7
53.6
59.4

39.6
44.8
52.4
58.5

99
119
160
207
213
240

141
117
176
195

130
147
172
192

0.0082
.0100
.0136
.0180
.0187
.0212

.0092

.0077

.0118

.0130

.0082

.0098

.0108

.0121

738
802
853

1081
1124
1224

731
703
669
636

704
693
648
596

868
984

1076
1486
1563
1743

856
805
745
686

808
787
706
614

317
380
432
659
702
803

310
282
249
216

282
271
226
174

570
684
778

1186
1263
1445

558
507
449
388

508
487
406
314

85.7
85.0
73.4
87.5
89.8
92.3

74.9
80.3
48.3
38.3

75.7
61.8
47.3
32.8

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature

Low-frequency audible
combustion resonance
(rumble) , erratic out-
let temperature

8

27.7
36.7
54.2
77.8
87.6

38.2
49.3
61.5
83.1
95.1

30.2
42.3
58.1
82.4

40.2
53.2
78.6

112.8
127.1

55.4
71.5
89.2

120.6
137.9

43.8
61.4
84.3

119.5

16.8
19.5
25.3
32.3
35.4

21.0
24.4
28.3
35.1
39.0

21.6
26.2
32.6
42.4

55
64
83

106
116

69
80
93

115
128

71
86

107
139

0.0083
.0102
.0132
.0176
.0194

.0084

.0101

.0119

.0151

.0171

.0079

.0100

.0128

.0172

686
782
895

1086
1158

658
696
756
878
978

630
639
676
937

776
948

1152
1495
1625

725
794
902

1121
1300

674
690
758

1227

269
356
471
666
739

237
276
336
456
556

210
218
256
408

484
641
848

1199
1330

427
496
605
821

1001

378
392
460
735

71.2
78.3
82.0
89.9
91.4

62.2
61.2
64.2 •
70.5
76.9

58.5
48.7
45.6
56.2

High-frequency audible
combustion resonance
(buzz)

Erratic outlet temperature

Erratic outlet temperature

9

28.4
37.7
52.3
57.4

36.2
47.9
62.3
69.1

30.3
39.9
54.5

41.2
54.7
75.8
83.3

52.6
69.5
90.3

100.3

43.9
57.8
79.0

55.5
64.3
78.3
83.5

64.3
76.5
90.5
96.0

68.9
80.5
98.5

182
211
257
274

211
251
297
315

226
264
323

0.0086
.0103
.0130
.0138

.0082

.0100

.0123

.0133

.0080

.0098

.0125

716
786
895
926

643
698
784
831

614
635
713

830
955

1152
1207

698
796
951

1037

645
683
823

292
359
472
506

223
279
364
412

192
214
294

526
647
850
910

402
503
655
741

346
385
529

75.5
78.8
83.6
84.4

60.1
62.6
67.4
71.4

52.7
49.0
53.6

Erratic outlet temperature
and inlet pressure

Erratic outlet temperature
and inlet pressure

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature
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TABLE IV. -Concluded. COMBUSTOR

Combustor -inlet-air conditions

T tal p

N/cm2 psia

To*'1'
tempe

K

rature

°F
kg/sec Ib/sec

I ty

m/sec ft/sec

PT-'V

(N)(K)(sec)

m3

(lb)(°R)(sec)

ft3

Fuel
temperature

K °F

Nozzle

n.o
n.o
17.0

17.0
17.0

17.0

17.0

16.9

17.0

17.0
17.0

13.4

13.5

13.4

13.5

24.7

24.6

24.6

24.7

24.6

24.7

24.7

24.5

24.7

24.6
24.6

19.5

19.6

19.5

19.6

424

424

423

424

424

423

430

428

427

426
423

424

423

422

423

304

304

302

304

303

301

314

311

309

307
302

303

301

300

302

20.9

21.0

20.8

21.0

21.0

20.8

25.4

25.6

25.8

25.5
25.6

21.0

20.9

20.8

20.8

46.1
46.2

.45.9

46.3

46.4

45.8

56.1

56.4

56.9

56.3
56.4

46.3

46.1

45.9

45.9

33.2

33.5

33.2

33.5

33.5

32.9

40.8

41.5

41.1

40.8

40.8

42.1

41.5

41.5

41.5

109

110

109

110

110

108

134

136

135

134
134

138

136

136

136

21.66X105

21.47
21.65
21.67
21.36
21.83

17.88
17.48
17.72
17.74
17.62

13.58
13.78
13.69
13.82

17.3

17.2

17.2

17.2

17.2

17.1

17.3

17.2

17.0

17.0

17.1

17.2

17.2

13.7

13.7

13.7

13.7

13.7

25.1

25.0

24.9

24.9

24.9

24.8

25.1

25.0

24.7

24.7

24.8

24.9

25.0

19.9

19.9

19.8

19.9

19.9

426
424
424

423

424

423

424
424

425

425

421

421

423

423

423

425

425

424

307
304
304

302

303

301

303
303

305

306

298

299

301

302

302

306

305

304

22.1

22.0
22.1

22.0
22.1

22.1

22.1

22.0

25.6

25.5

25.5

25.4

25.5

22.0

22.0
22.1

22.0

22.0

48.8

48,6

48,7

48.6

48.7

48.8

48.7
48.6

56.5

56.2

56.3

56.1

56.2

48.6

48.6

48.7

48.6

48.4

34.7

34.4

34.7

34.7

34.7

34.7

34.4

34.4

40.5

40.2

39.9

39.6

39.6

43.0

43.0

43.6

43.0

43.0

114

113

114

114

114

114

113

113

133

132

131

130

130

141

141

143

141

141

21.17X105

21.23
20.92
20.94
21.03
20.78
21.31
21.12

17.93
17.99
18.03
18.34
18.37

13.46
13.47
13.38
13.53
13.56

24. 82X1 03

24.61
24.81
24.83
24.48
25.01

20.49
20.03
20.30
20.32
20.19

15.56
15.79
15.69
15.84

294

293

295

295

298

298

292

293

293

293
295

298

296

296

297

24.26X103

24.33
23.97
23.99
24.10
23.81
24.42
24.20

20.55
20.61
20.66
21.02
21.05

15.43
15.43
15.33
15.50
15.54

295
296
295

297

299

299

301

302

289

291

292

291

294

298

296

296

297

296

70

68

71

71

77

77

66

68

68
68
71

76

74

73

75

Nozzle

71

74

72

75

78

79

83
84

61

65

66

65

69

77

74

73

75

74
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EFFICIENCY DATA WITH NATURAL GAS FUEL

Fuel pressure
differential be-
tween manifold
and combustor

N/cm2 psi

Calculated fuel
injection
velocity

m/sec ft/sec

Fuel-
air

ratio

Combustor
average
exhaust

total
temperature

K °F

Combustor
temperature

rise

K °F

Combus-
tion effi-
ciency,
percent

Remarks

11

28.8
40.0
49.9
67.2
85.4
97.9

38.7
50.0
60.2
71.0
93.0

32.5
42.7
52.0
55.6

41.8
58.0
72.3
97.4

123.9
142.0

56.1
72.6
87.2

102.9
134.8

47.1
61.9
75.5
80.6

222.5
249.3
264.3
284.1
296.9
302.1

249.9
270.4
282.2
289.6
304.8

269.1
289.9
306.6
310.0

730
818
867
932
974
991

820
887
926
950

1000

883
951

1006
1017

0.0081
.0100
.0119
.0150
.0181
.0205

.0080

.0096

.0111

.0129

.0159

.0080

.0098

.0115

.0122

734
821
903

1025
1137
1231

703
754
800
838
910

673
_726

758
768

862
1019
1166
1385
1587
1757

805
898
981

1049
1179

752
847
905
922

310
398
480
601
713
809

273
326
373
413
487

249
303
336
344

558
716
864

1081
1284
1456

491
587
672
743
877

449
546
605
619

86.1
90.4
93.1
95.0
95.8
97.0

76.3
77.0
77.7
74.7
73.1

70.0
70.3
67.3
65.6

High-frequency audible
combustion resonance
(buzz)

Low-frequency audible
combustion resonance
(rumble) . erratic out-
let temperature

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature

13

24.7
33.3
43.0
52.5
60.2
69.1
82.0
93.0

34.2
44.5
55.6
64.9
82.4

30.2
39.0
47.6
55.9
67.8

35.9
48.2
62.4
76.1
87.4

100.2
118.9
134.9

49.5
64.6
80.6
94.2

119.5

43.7
56.5
69.1
81.1
98.3

59.1
73.2
86.9

100.6
110.9
123.4
137.8
149.7

75.6
91.4

107.3
118.9
139.0

82.3
100.0
117.0
130.8
150.0

194
240
285
330
364
405
452
491

248
300
352
390
456

270
328
384
429
492

0.0074
.0091
.0110
.0127
.0142
.0158
.0182
.0203

.0082

.0098

.0117

.0133

.0161

.0078

.0095

.0113

.0128

.0151

702
767
837
910
975

1047
1161
1246

705
745
799
361
974

657
685
711
750
803

804
921

1047
1179
1295
1425
1630
1783

810
882
979

1091
1294

723
774
820
890
985

276
343
412
487
551
625
737
822

281
320
379
441
552

234
262
286
325
378

497
617
742
877
992

1125
1327
1480

505
576
682
793
993

421
472
514
585
681

82.5
84.1
85.5
88.1
90.5
93.1
96.9
98.2

76.1
73.5
73.8
76.4
81.0

66.3
61.8
57.7
58.3
58.5

High-frequency audible
combustion resonance
(buzz), erratic out-
let temperature

Erratic outlet temperature

Low-frequency audible
combustion resonance
(rumble), erratic out-
let temperature
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TABLE V. - COMBUSTOR ALTITUDE LIMIT DATA WITH NATURAL GAS FUEL

Combustor inlet-a r conditions

Total pressure

N/cm psla

Total temperature

K °¥

Flow

kg/sec Ib/sec

Reference
Mach

number

Rating criteria

Ignition - stable
combusUon at

ignition
fuel-air

ratio

Combustion -
blwwoMt as tuel-

air ratio
increased above

0.010; stable
combustion at

fuel-air ratio of
0.010 or less

Nozzle 1

8.3

7.0

5.6

4.8

4.1
3.6

13.8
12.4
11.0
9.7

9.0

8.3

2.8

2.8

2.1

6.9

5.6

4.8

4.1

3.4

2.8

12.0
10.1
8.1

7.0

6.0
5.2

20.0
18.0
16.0
14.0
13.0
12.0

4.0

4.0

3.0

10.0
8.1

7.0

6.0

5.0

4.0

299

295

292

290

289
288

301

301

300

287

288

287

416

416
412

422

425

426

427
425

423

78

72

66

62

61
59

82

82

81

57

58

57

289

289

282

300
305

308

309

306

302

11.9
10.0
8.0

7.1
6.0
5.2

24.0
22.4
19.8
17.7
16.5
15.2

3.4

3.4

2.5

10.5
8.4

7.3

6.3

5.2

4.2

26.2
22.0
17.6
15.7
13.3
11.5

54.9
49.3
43.6
39.1
36.3
33.6

7.5

7.5

5.6

23.2
18.5
16.1
13.8
11.5
9.3

0.080
.079
.078
.081
.080
.079

.101

.100

.100

.100

.100

.100

.081

.081

.080

.101.

.100

.101

.101

.101

.101

Yes
...

Yes
Yes
No

Yes
Yes
Yes
Yes
No
No

Yes

—
No

Yes
Yes
Yes
Yes
Yes
No

No
No
Yes
Yes
Yes

—
No

Yes
Yes
Yes
...

—
No

Yes
Yes

No
No
Yes
Yes

—

—
Nozzle 2

9.7

8.3
7.6

7.0

17.9
15.2
12.4
11.0
9.7 '
8.3

7 6

7.6

4.8
4 .2

3.4

2.8

8.3

7.6

6.3

5.5

4.8

14.0
12.0
11.0
10.1

26.0
22.0
18.0
16.0
14.1
12.0
11.0

11.0
7.0

6.1

5.0

4.0

12.1
11.0
9.1

8.0

7.0

299
298

296

297

300

296

304

305

304

301

300

416

416

408

408
410

418

416

421

419

416

78

77
74

75

80

73

88

89

88
82

80

290

289

274

275

278

293

290

298

295

290

14.0
11.8
10.8
10.0

31.8
27.6
22.2
19.7
17.3
14.7
13.5

9.3

5.9

5.1

4.2

3.4

12.6
11.7
9.5

8.4

7.4

30.8
26.0
23.7
22.1

70.0
60.8
49.0
43.5
38.1
32.5
29.7

20.6
13.1
11.3
9.3

7.4

27.8
25.8
20.9
18.6
16.3

0.080
.079
.078
.080

.099

.100

.100

.100

.100

.099

.099

.081

.081

.079

.080

.079

.100

.102

.100

.101

.101

Yes
Yes
No
No

Yes
No
No
No

—
—

Yes
Yes

Yes

No

No

No

No

No

No

---

No
No

No

No

No

No

No

No

No

Yes
Yes

No

No

No

No

Yes

No

No

No

No

Yes

Nozzle 3

15.2
13.8
13.1
12.5

4.8
4.2

4.1

3.8

22.0
20.0
19.0
18.1

7.0

6.1
6.0

5.5

293

294

294

294

422
419

419
419

68

70

70

70

300
295

295
295

27.7
25.2
23.9
22.7

7.3
6.3

6.3

5.8

61.0
55.5
52.7
50.0

16.2
13.9
13.9
12.1

0.100
.101
.101
.100

.101

.099

.101

.100

Yes
Yes
Yes
No

Yes
Yes
Yes
No

No

Yes
Yes

—
Yes
Yes

—
—
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TABLE V. - Continued. COMBUSTOR ALTITUDE LIMIT DATA WITH NATURAL GAS FUEL

Combustor inlet-air conditions

Total pressure

N/cm2 psia

Total temperature

K °F

Flow

kg/sec

17.2
15.9
11.7
11.7

16.6
15.9
15.2
13.8
12.5
11.7

6.9

5.6

4.8

3.5

3.3

25.0
23.1
17.0
17.0

24.1
23.0
22.0
20.0
18.1
17.0

10.0
8.1

7.0
5.1

4.8

304

304

306

306

304

300

305

306

306

306

419

418

420

419

418

88

88

92

92

88

88

89

91

92

92

294

293

296

295

293

24.5
23.1
16.9
16.9

29.0
27.7
27.2
24.7
22.3
21.1

10.5
8.4

7.3

5.3

4.1

Ib/sec

Reference
Mach

number

Nozzle 4

54.0
51.0
37.2
37.2

64.0
61.0
60.0
54.5
49.2
46.5

23.2
18.6
16.2
11.6
9.0

0.079
.081

' .081
.081

.098

.098

.101

.101

.101

.101

.101

.100

.101

.099

.081

Rating criteria

Ignition - stable
combustion at

ignition
fuel-air

ratio

Combustion -
blowout as fuel-

air ratio
increased above

0.010; stable
combustion at

fuel-air ratio of
0.010 orless

Yes
Yes
No
Yes

Yes
Yes
Yes
Yes
Yes
No

Yes
Yes
Yes
Yes
No

No

No
---

---

No

Yes
Yes
---

—
—

Yes
Yes
Yes

- —

—
Nozzle 5

12.4
9.7

6.9

5.6
4.1

3.4

17.3
16.5
15.9
15.2

3.4

7.0

5.5

4.2

3.4

18.0
14.0
10.0
8.1

6.0

5.0

25.1
24.0
23.0
22.0

5.0

10.1
8.0
6.1

5.0

313
312

311

307

306

305

309

310

311

314

416

421

420

420

418

103
102

101

93

92

90

96

98

101

105

289

298

297

296

293

17.5
13.6
9.8

7.9

6.0

4.9

30.8
29.8
28.3
27.0

4.2

10.5
8.4

6.3

5.3

38.6
30.0
21.5
17.4
13.2
10.9

68.0
65.6
62.5
59.5

9.3

23.2
18.6
13.9
11.6

0.080
.080
.080
.079
.081
.080

.101

.102

.101

.101

.080

.100

.101

.099

.101

Yes

—Yes
Yes
Yes
No

'Yes
Yes
Yes
No

No

Yes
Yes
Yes
No

No

No

•Yes
Yes

—
—

No

Yes
Yes

—
No

No

No

Yes
Yes

Nozzle 6

8.3

6.9

5.5

4.8
4.1

16.5
15.2
13.8
12.4
11.7
11.0

7.0

6.2

5.5

4.8
4.1

12.0
10.0
8.0

7.0
6.0

24.0
22.0
20.0
18.0
17.0
16.0

10.1
9.0
8.0

7.0

6.0

304

304

303

301

303

293

294

295

299

299

299

419

421

422

423

422

88

87

86

83
85

68

70

72

78

78

78

294

298

300

301

300

11.7
9.8

7.8

6.9
5.9

30.2
27.7
25.2
22.1
20.9
19.6

10.8
9.5

8.4

7.3

6.3

25.8
21.5
17.2
15.2
13.0

66.5
61.0
55.5
48.7
46.0
43.3

23.7
20.9
18.6
16.2
13.9

0.079
.079
.079
.080
.079

.100

.101

.101

.099

.099
.099

.102

.101

.101

.101

.101

Yes
Yes
Yes
No
No

Yes
Yes
Yes
Yes
No
No

Yes
Yes
Yes
Yes
No

No
Yes
Yes

—

—
No

No
Yes
Yes

—

—
No

No
Yes
Yes

—
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TABLE V. - Continued. COMBUSTOR ALTITUDE LIMIT DATA WITH NATURAL GAS FUEL

Combustor inlet-air conditions

Total pressure

N/cm2 psia

Total temperature

K °F

Flow

kg/sec Ib/sec

Reference
Mach

number

Rating criteria

Ignition - stable
combustion at

ignition
fuel -air

ratio

Combustion -
blowout as fuel-

air ratio
increased above
0.010; stable
combustion at

fuel-air ratio of
0.010 or less

Nozzle 7

13.8
12.4
11.0
10.3
9.7

4.1

7.6

5.5

4.8

4.1

20.0
18.0
16.0
15.0
14.0

6.0

11.0
8.0

7.0

6.0

309
311

309

307
306

419

419

420

419

420

96

100

96

93

92

295

295

297

295

296

24.0
22.0
19.5
18.2
17.1

5.0

11.7
8.4

7.3

6.3

53.0
48.5
43.0
40.2
37.7

11.1

25.7
18.6
16.2
13.9

0.098
.100
.100
.099
.100

.080

.101

.101

.101

.101

Yes
Yes
Yes
Yes
No

Yes

Yes
Yes

Yes
No

Yes
Yes
Yes

—
—
No

No

NO

No

No

Nozzle 8

13.8
12.4
11.7
11.0

16.6
16.5
15.2

20.0
18.0
17.0
16.0

24.1
24.0
22.0

301

301

301

300

300

297

297

83

83

83

81

80

75

75

19.8
17.9
16.9
15.9

29.9
30.1
27.4

43.6
39.4
37,2
35.0

66.0
66.4
60.4

0.080
.080
.080
.080

.:oo

.101

.100

Yes
Yes
Yes
No

Yes
Yes
No

No
Yes

Yes
Yes

Yes
No
Yes

Nozzle 9

9.7

8.3

7.0
5.5

17.2
16.5

2.8

2.1

8.3

7.0

6.2

5.5

4.8

3.4

2.8
2.1

14.0
12.0
10.1
8.0

25.0
24.0

4.0

3.0

12.0
10.1
9.0

8.0

7.0

5.0

4.0

3.0

304

303

303
302

298

294

403

403

420

420

419

419

418

415

414
411

87

85

86
84

76

70

265

265

296

296

295

294

293

288

285

280

13.8
11.8
9.9
7.9

31.2
29.7

3.4

2.5

12.6
10.5
9.5

8.4

7.4

5.3

4.3
3.2

30.5
26.1
21.8
17.4

68.7
65.5

7.5

5.6

27.8
23.2
20.9
18.6
16.4
11.7
9.4
7.0

0.080
.080
.079
.080

.100
.099

.080

.079

.101

.100

.101

.101

.102

.101

.101

.100

Yes

Yes

Yes
Yes

Yes
Yes

Yes
No

Yes
Yes
Yes
Yes

Yes

Yes
Yes
No

No
No
Yes

• Yes

No
Yes

No
Yes

No
No
Yes
Yes

—— -
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TABLE V. - Concluded. COMBUSTOR ALTITUDE LIMIT DATA WITH NATURAL GAS FUEL

Combustor inlet-air conditions

Total pressure
n

N/cm psia

Total temperature

K °F

Flow

kg/sec Ib/sec

Reference
Mach

number

Rating criteria

Ignition - stable
combustion at

ignition
fuel -air

ratio

Combustion -
blowout as fuel-

air ratio

increased above
0.010; stable
combustion at

fuel-air ratio of
0.010 or less

Nozzle 11

11.0
9.1

9.0

8.3

6.9

6.2

19.0
19.0
17.2

6.2

4.1

3.4

9.7

8.3

6.9

6.2

5.5

16.0
14.1
13.0
12.0
10.0
9.0

27.5
27.5
25.0

9.0

6.0

5.0

14.0
12.0
10.0
9.0

8.0

299

299

296

297

297

300

295

294

296

425

429

432

423

423

423

417

418

78

78

73

75

75

80

72

70

73

305

313

318

302

302

301

291

292

16.1
14.2
13.2
12.2
10.0
9.1

34.0
34.1
30.8

7.6

5.0

3.9

14.7
12.6
10.5
9.5

8.4

35.5
31.2
29.0
26.8
22.0
20.0

75.0
75.1
68.0

16.7
11.1
8.5

32.4
27.8
23.2
20.9
18.6

0.081
.081
.081
.081
.080
.081

.099

.099

.099

.081

.081

.075

.101

.101

.101

.'101

.101

Yes
Yes
No

No
No

Yes
No

No

Yes
Yes
No

Yes
Yes

Yes
No
No

No

No

No

No
No

Yes

No
Yes
Yes

No

Yes

Yes

No
No

Yes
Yes

—

Nozzle 13

7.6

6.9

5.5

10.3
8.3

6.9

5.5

8.3

5.5

4.8

4.1

8.3
6.9

5.5

4.8

4.1

11.0
10.0

8.0

15.0
12.0
10.0
8.0

12.0
8.0

7.0

6.0

12.0
10.0

8.0

7.0

6.0

301

297

301

291

290

297

303

422

417

418

416

422
421

421

420

420

82

75

82

65

63

75

85

300

291

292

290

300
299

298

296

297

11.0
10.0
7.9

18.9
15.1
12.6
9.9

10.1
6.8

6.2

5.0

12.6
10.5

8.4

7.7

6.3

24.2
22.0
17.5

41.6
33.3
27.8
21.8

22.2
14.9
13.6
11.1

27.8
23.2
18.6
17.0
13.9

0.080
.080
.080

.100

.100

.101

.100

.080

.081

.084

.080

.101

.101

.101

.106

.101

No

No

No

Yes

No

No

No

Yes
Yes
No
No

Yes
Yes
No
No

No

No

No

Yes

No
No

Yes
Yes

No

No

Yes

Yes

No
No

Yes
Yes

—
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iply air

Facility
exhaust

Fuel manifolds

- Exhaust duct >- Water manifolds

-Conical
straightener

Flat plate
straightener

CD-10713-11

Figure 1. - Test section overall view.
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Diam,
80.77
(31.80)

Diam,
71.12
(28.00)

Compressor
exit plane

lombustorouter liner

Diffuser

rOuter shroud

Exit transition
liners-y

H
l\

Fuel nozzle
and swirler

Headplate^
""Combustor inner liner^'nner shroud

Diam,
106.2
(41.85)

Turbine
inlet plane

Fuel nozzle centerlme
row. inner

Figure 3. - Cross-sectional sketch of ram-induction annular combustor, model F.
(Dimensions are in centimeters (in.).)
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^—Original dual-orifice
nozzle for liquid fuel

Figure 4. - View of ram-induction combustor looking upstream.

C-67-3607

35



I

C-71-590

C-70-3841

Original dual
orifice liquid
fuel nozzle-\

| Air swirler
center hole;
diam, 1.016 cm

Liquid fuel

'-Air swirler

(a) Original dual-orifice fuel nozzle, for liquid fuel.

Fuel nozzle

Diam, 1.016cm
(0.400 in.)

Gaseous fuel

(b) Nozzle 13.

Figure 5. - Fuel strut installed in combustor.
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Fuel nozzle

C-69-3937

Holediam, a 478 cm (0.188 in.
six holes on 1.27-cm- (0.50-in. -)
diam circle-^

(c) Nozzle 2.

rHole diam, 0.675cm
/ (0.266 in.): two rows

C-«9-3935

(d) Nozzle 4.

Figure 5. - Concluded.
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10'J

90-

90

Nozzle

D 13
O 2
O 4

Tailed symbols denote
unstable combustion
(see table IV)

Nozzle 4

Nozzle 2

(a) Test condition llnominall: inlet total pressure, 17.2 newtons per square
centimeter (25 psial; reference velocity, 32.3 meters per second (106 ft/sec).

90r-

80

70r-

ja 60

(b) Test condition 2 (nominal): inlet total pressure, 17.2 newtons per square
centimeter (25 psia); reference velocity, 40.5 meters per second (133 ft/sec).

90i—

80

70

60

50

40
.006 .008 .010 .012

I J
.014 .016

Fuel-air ratio

.018 .020 .022 .024

(c) Test condition 3 (nominal): inlet total pressure, 13.8 newtons par square
centimeter (20 psia); reference velocity, 40.5meters per second (133 ft/sec).

Figure 6. - Combustion efficiency as affected by fuel-air ratio for various fuel
nozzles. Inlet-air total temperature, 422 K (300° F).
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1600

WOO

1200

1000

800

600

400

1400

u_ 1200

£ 1000
e
o>
CL

I 800
3
I/I

I 600

400

1400

1200

1000

800

600

4001-

900

800

700

600

500

400

300

200

Nozzle

D 13
O 2
O 4

Tailed symbols denote
unstable combustion
(see table IV)

J_ _L I _L

(a) Test condition 1 (nominal): Inlet total pressure, 17.2 newtons per square
centimeter (25 psial; reference velocity, 32.3 meters per second (106 ft/sec).

800r-

700

60°
&
I 500
feu-iD
| 400
O

300

200

(b) Test condition 2 (nominal): inlet total pressure, 17.2 newtons per square
centimeter (25 psia); reference velocity, 40.5 meters per second (133 ft/sec).

800i—

700

600

500

400

300

200 J
006 008 .010 .012 . 014 .016

Fuel-air ratio
.018 .020 .022 .024

(c) Test condition 3 (nominal): inlet total pressure, 13. 8 newtons per square
centimeter (20 psia); reference velocity, 40. 5 meters per second (133 ft/sec).

Figure 7. - Combustor temperature rise as affected by fuel-air ratio for various fuel nozzles.
Inlet-air total temperature, 422 K (300° F).
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30i-

20

15

10

0 5

20

16

12

1

Nominal inlet-air
temperature,

.07 .08 .09 .10
Combustor reference Maori number

Figure 8. - Variation of minimum ignition pressure with
combustor reference Mach number.

25

20

I
I 10

B1̂ 1
3̂

o
U

5 -

O1—

Nominal inlet-air
16 temperature,

12

8

4

o

K m

Trtrt (Qfi\
3UU (SU)

_ 425 (305)

Combustion blowout not
— obtained because of facility

limitation-, ^^

-Q "̂̂ ^ .-'
-Q-" — *~~ —

-o-''"

.07 .08 .09

jy*****/

Nozzle

0 2
D13
0 4

^
~~-*y'
"-D-
-O'

1
.10

1
11

Combustor reference Mach number

Figure 9. - Variation of combustor blowout pressure with
combustor reference Mach number.
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C-70-3840 i-Fuel nozzle (also used as
inserts for attaching
other types of nozzles)

Figure 10. - Nozzle 11.

Plane of minimum
injection area

C-69-3938

Fuel nozzle

Figure 11. - Nozzle 1.
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;-69-3933

Fuel nozzle

Figure 12. - Nozzle 6.

Fuel nozzle-j

C-70-263

^Holediam, 0.675 cm
(0.266 in. I; 10 holes
on 3.02-cm-U. 19-
in.-)dia,n circle

Figure 13. - Nozzle 8.
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C-70-266

Fuel nozzle

3.% cm
© \(1.56 in.)

, 0.478cm
(0.188 in.); six holes
on 3.02-cm-)(l. 19-
in.-)diam circle

Figure 14. - Nozzle 9.

C-69-3936

Fuel nozzle /-Holediam, 0.675cm
/ (0.266 in.); two

rows of five holes

Figure 15. - Nozzle 3.
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C-69-3934

Fuel nozzle-v

\ _J\ JJ_ 0.406 cm
(0.160 in.)

Figure 16. - Nozzle 5.

C-69-3932

Fuel nozzle

rEiqht equally spaced slots
/ 1.52 by 0.180 cm

/ (0.60 by 0.71 in.)

Figure 17. - Nozzle 7.
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100-

90-

80-

70

•\E
Nozzle 8

Nozzle

A 8
V 9

2 (data from fig. 6)

Tailed symbols denote unstable
combustion (see table IV)

Nozzle 9

I J

(a) Test condition 1 (nominal): inlet total pressure, 17.2 newtons per square
centimeter (25 psia); reference velocity, 32.3 meters per second (106 ft/sec).

80

70

:s 60

50 I I I I I I

(b) Test condition 2 (nominal): inlet total pressure, 17.2 newtons per square
centimeter (25 psia); reference velocity, 40. 5 meters per second (133 ft/sec).

90i—

80-

70-

60-

50-

J I I I
.006 .008 .010 .012

I
. 014 .016

Fuel-air ratio
.018 .020 .022 .024

(cl Test condition 3 (nominal): inlet total pressure, 13. 8 newtons per square
centimeter (20 psia); reference velocity, 40.5 meters per second (133 ft/sec).

Figure 20. - Combustion efficiency as affected by fuel-air ratio for three types of
angled-injection fuel nozzles. Inlet-air total temperature, 422 K (300° F).
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4 (data from fig. 6)

Tailed symbols denote unstable
combustion (see table IV)
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(a) Test condition 1 (nominal): inlet total pressure, 17. 2 newtons per square
centimeter (25 psia); reference velocity, 32.3 meters per second (106 ft/sec).
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(b) Test condition 2 (nominal): inlet total pressure, 17. 2 newtons per square
centimeter (25 psia); reference velocity, 40. 5 meters per second (133 ft/sec).
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(c) Test condition 3 (nominal): inlet total pressure, 13.8 newtors per square
centimeter (20 psia); reference velocity, 40. 5 meters per second (133 ft/sec).

Figure 21. - Combustion efficiency as affected by fuel-air ratio for four types of
radial-injection fuel nozzles. Inlet-air total temperature, 422 K (300° F).
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