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ABSTRACT

This report presents the the results of the application of Avco Data
Analysis and Prediction Techniques (ADAPT) to derivation of new
algorithms for the prediction of future sunspot activity. - The ADAPT
derived algorithms show a factor of 2 to 3 reduction in the expected
2-sigma errors in the estimates of the 81 -day running average

of the Zurich sunspot numbers. The report presents: (1) The best
estimates for sunspot cycles 20 and 21, (2) a comparison of the ADAPT
performance with conventional techniques, and (3) specific approaches
to further reduction in the errors of estimated sunspot activity and to
recovery of earlier sunspot historical data.

The ADAPT programs are used both to derive regression algorithm
for prediction of the entire 11-year sunspot cycle from the preceding
two cycles and to derive extrapolation algorithms for extrapolating a
given sunspot cycle based on any available portion of that cycle. Itis
suggested that further improvement in sunspot predictions is possible
by including more data in the learning set, accounting for the present
value of the sunspot number in the immediate future and for the extrap-
olation algorithm, using a three cycle base instead of a single cycle
base. '

‘The estimates obtained show that cycle 20 should last somewhat longer
than previously anticipated, with the minimum of the 8l -day run-

ning average occurring early in 1977. The estimates also show a lower
peak activity for cycle 21 than previous estimates, with a maximum
sunspot number of approximately 60 for cycle 21. '
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1.0 INTRODUCTION

This report presents the results of a study which has the objective of develop-
ing improved numerical techniques for predicting future sunspot numbers.

The improved techniques are based on the use of the Avco Data Analysis and
Prediction Techniques (ADAPT). ADAPT is a unique set of programs which
first obtains the best representation for any given set of data. This best repre-
sentation then allows one to characterize the data and to derive empirical
prediction, classification, extrapolation and/or clustering laws in an extremely
efficient manner. Previous applications of the ADAPT programs to reentry
physics, sonar, engine diagnostics, medical, meteorological, and solar physics
problems have demonstrated that the empirical prediction and extrapolation laws
derived using the ADAPT programs have significant advantages relative to those
developed by more classical techniques (see refs. 1 thru 7). The methods
currently employed for estimating future sunspot activity are based primarily
upon a classical empirical regression scheme developed by McNish and Lincoln
(see ref. 8). Thus, the ADAPT techniques should provide significant improve-
ment in the capability for estimating future sunspot activity. This report pre-
sents the results of a study which demonstrates this improvement.

The development of improved estimates of future sunspot activity is important
to the study of solar physics in general and possibly to astrophysics. The:
estimates of solar activity have a very practical importance in that they are
part of many geophysical models for predicting such quantities as satellite life
times, cosmic ray intensity, atmospheric and climatic phenomena.

The linear regression techniques developed by McNish and Lincoln have been-
modified by different investigators by using different lengths of past data for de-
riving the predictions of future sunspot numbers. The current estimates for
cycle 20 are based on the application of these techniques to the data obtained
from cycles 1 thru 19. References 9 and 10 summarize these current predic-
tions, which are reported monthly by solar activities indices memos such as
References 11 and 12. Until the second quarters of 1972, this method was used
by NASA/MSFC for the current estimates of sunspot cycle 21. Beginning in the
second quarter of 1972 the NASA/MSFC estimates for cycle 21 have been based
on a modification of this method introduced by Sleeper in Reference 13. This
‘modification consists primarily of an analysis of the similarity of sunspot cycles
which has produced classification of the sunspot cycles from cycles 1 thru 20
according to their polarity and their mode. By limiting the selection of the cycles
used in the linear regression forecast to that class of cycle which is being pre-
dicted, Sleeper has been able to obtain improved predictions.

In order to evaluate the -advantages of the ADAPT pfedictio'n techniques, it is
necessary to compare them with the currently-used techniques. For this pur-.
pose we shall call the application of the McNish and Ilincoln linear regression



techniques to the first 19 sunspot cycles as described in Ref. 10 simple
regression, and their application to a limited set of 9 negative cycles based
upon the criteria outlined in Ref. 13 selective regression. In addition to the
current simple regression and selective regression techniques, two separate
ADAPT techniques are evaluated. The first of these is designated the ADAPT
prediction technique, which refers to the algorithms developed for predicting
the current sunspot cycle from the preceding two sunspot cycles. This pro-
vides the capability to extend sunspot activity beyond the present cycle. For
completing the present cycle, the ADAPT programs have been used in their
extrapolation mode to develop extrapolations of the present cycle. This is
referred to as the ADAPT extrapolation technique. Both of these ADAPT
techniques have been used to predict the 81 day running average of the daily
Zurich sunspot numbers. This introduces some minor difficulties in com-
paring the ADAPT results with the simple and selective regression methods,
since these latter methods have been used to estimate the twelve month run-
ning average of the mean monthly Zurich sunspot numbers.

This report will present the results of the studies carried out and the recom-
mendations for the best method for estimating future solar activity, improve-
ments which may still be made in the methods, and the application of the
ADAPT techniques to further understanding of sunspot activity. The report
also contains a description of the ADAPT programs and a detailed description
of the efforts carried out to develop both the ADAPT predictions and extrapola-
tions. Additional applications of the ADAPT programs to analysis of sunspot
data are also outlined. The performance of the ADAPT sunspot estimates are
compared with the performance of the currently used techniques.



2.0 RESULTS AND RECOMMENDATIONS

The primary results of the application of the ADAPT techniques to the problem
of predicting future sunspot activity is a factor of 2 to 3 reduction in the RMS
error of the 1-sigma estimate of the Zurich sunspot numbers for the remainder
of the current sunspot cycle and the first half of the next sunspot cycle. To
achieve this reduction in the error one must use both the ADAPT extrapolative
and predictive algorithms. The present étudy, as well as comparison of the
present study with that of Reference 13, provides evidence that further signi-
ficant improvement in the ADAPT derived algorithms is almost certain if the
analysis recommended in this report is carried out.

The best ADAPT estimate of cycles 20 and 21 as compared to the latest available
conventional estimate (Ref. 12) is presented in Figure 2.1. In comparing the
ADAPT estimates with the conventional estimates the reader must realize that
the conventional estimates are for a 12-month running average while the ADAPT
estimates are for an 81 -day running average. The effects of this difference are
primarily that the 12-month running average reaches a given value approximately
3 to 4 months after the 8l -day running average has reached that value. The 81-
day running averages should have higher peaks and lower minimums than the 12-
month running average. The ADAPT analysis indicates that the next minimum
for the 81 -day running average will occur in February of 1977 which translates

to May or June 1977 for the 12-month running average. Considering the three

to four month correction which should be incorporated in the 12-month running
average, ADAPT predicts generally higher values of the sunspot activity for the
remainder of cycle 20 but approximately a 25% lower peak activity for cycle 21.
For a detailed comparison of these ADAPT predictions with both the prediction
in Fig. 2.1 and the latest predictions of Ref. 13, the reader is referred to
Section 4.4. Itis important to note, however, that the mid-1977 date for the next
minimum and the greater sunspot activity during the remaining portion of cycle
20 is in remarkable agreement with best estimate presented by Sleeper in Ref. 13.
Although the maximum sunspot number of 60 predicted for cycle 21 by ADAPT is
lower than the peak values of approximately 80 predicted by Sleeper in Ref. 13,
it is in better agreement with the trends of peak magnitude for negative cycles
and the maximum sunspot number versus period correlations in Ref. 13.

Figure 2. 2 compares the performance of the two ADAPT methods developed in
this study with the simple and selective regression techniques. This curve also
compares all four of these techniques with the simple assumption that the sunspot
cycle is equal to the mean of sunspot cycles 1 thru 19. Again the reader is cau-
tioned that the simple and selective regression as well as the mean sunspot cycle
shown in this figure are for 12-month averages whereas the errors for the ADAPT
predictions are for the 81 -day running average. Figure 2.2 plots the expected
2-sigma error (i.e. 95% confidence limit) as a function of position as defined by
number of months since start of cycle. Both the simple and selective regression




techniques have errors presented for long and near term estimates. The
curves-indicated by the circled numeral 1 are for the long term estimates.
Here we define long term estimates as those estimates which use the available
portion of the present cycle to predict the next cycle. The curves indicated
by the circled numerals 2 and 3 designate the short term estimates using the
simple and selective regression. The short term estimates are defined as

_ estimates using the available portion of the present cycle to predict the re-

mainder of the present cycle Thus, in their functional use, the short term
estimates correspond essentially to the ADAPT extrapolations and the long
term estimates correspond to the ADAPT prediction. The ADAPT prediction
performance is indicated by the solid line interrupted by circles. The solid
lines interrupted by plus signs, crosses, and squares indicate the performance
of the ADAPT extrapolations using 38, 76, and 93 months of the current cycle
to extrapolate the remainder of the cycle.

Although detailed discussion of the conclusions is presented in Section 4. 4,
we may summarize the conclusions reached from this study as follows:

1. The best method for estimating future 81 -day running averages
of the Zurich sunspot number is to use the ADAPT prediction
algorithm for estimating sunspot activity in all cycles for which
less than 70 to 80 months of the current cycle are available.
For those cycles for which 70 to 80 months are available the
ADAPT extrapolation should be used. A simple interpolation
from the current value to the ADAPT extrapolated value for the
period in the immediate future, i.e. the next approximately
3. to 6 months will provide further improvement to this ADAPT
estimate for the very near term. V

2. The ADAPT predictions are approximately a factor of 2 to 3
better than the long term predictions based on either the simple
or selective regressions over the first half of the sunspot cycle.
The ADAPT predictions are similar to both the simple and
selective predictions over the third quarter of the sunspot cycle
and again the ADAPT predictions show a significant advantage
for the end of the sunspot cycle.

3. The ADAPT extrapolations based on the first quarter to the first
half of the data in the sunspot cycle is similar to both the selective
and simple regression methods except for the immediate future
(i.e. 3 to 6 months) when the ADAPT techniques are inferior since
they do not use the knowledge of the present value to correct the
immediate future. The ADAPT extrapolations of the first quarter
and first half also shows significant advantages near the end of
the cycle. The ADAPT third quarter extrapolation is significantly
better than any of the selective or simple regression techniques
except in the immediate future which can be corrected as outlined
in conclusion 1 above. ‘ -



4. Approximately three quarters of the variation between sunspot
cycles occurs in the first half of the cycle. ADAPT's ability to
account for this is the major contribution to the improved accuracy
of the ADAPT predictions over the first half of the cycle.

5. The ADAPT prediction based on the preceding two cycles is
better than the ADAPT extrapolation based on the first quarter
of the cycle.

6. Incorporation of the preceding 2 cycles in the ADAPT extrap-
olation base will significantly improve ADAPT extrapolations
using the first quarter and the first half of the cycle and may
improve even the third quarter extrapolations.

7. The ADAPT derived algorithms can be significantly improved
by the addition of variables such as those outlined by Sleeper,
including such items as the angular momentum of the solar
system, the polarity, -and position in the 180 year cycle of the
cycles being predicted.

8. For purposes of the prediction techniques currently available
the 81 -day running average may be assumed to be identical
to the three-month running average.

9. After a period of three to five years, the simple regression
techniques are equivalent to assuming that the predicted value
is equal to the mean cycle of the cycles which are used to ’
carry out the predictions. :

10. Sunspot cycle 19 is an anomalous cycle.

The above conclusions are further confirmed by the summary of the RMS errors
of various quantities which are presented in Table 2.1. The first column of
Table 2.1 presents-the RMS error of the 1-sigma error in the estimate. The
second column presents the RMS error of the estimates of all of the sunspot
cycles in the learning data. The third column designated by 23.4 (JRaT is an
estimate of the quantity in the second column which can be performed relatively
simply from the standard outputs of the ADAPT algorithms. The fourth and fifth
columns present the RMS error for the predictions of cycles 19 and 20. There
is considerable evidence presented in this report of the anomalous nature of cycle
19, and therefore, it is not a good basis for evaluating the ability of the learning
data to project the performance of an algorithm. The anomalous nature of this
cycle was indicated by some of the ADAPT validity criteria.

Analysis carried out in this report has shown that the ADAPT techniques should
also be extremely useful for recovering earlier sunspot data, for predicting sun-
spot cycle properties and for performing cluster analysis. The ADAPT scatter
plots clearly show the separation into the mode 1 and mode 2 cycles as 1ntroduced
by Sleeper in Reference 13.



The most important recommendations resulting from this study are as

follows:

Future estimates of the 81 -day running average of the Zurich
sunspot number should be based on the techniques: outlined in
conclusion 1 above and updated on approximately a quarterly
basis. ‘ :

The present ADAPT algorithms should be immediately upgraded
using the existing data and technology which has been suggested
elsewhere in this report. :

Studies should be performed to use the ADAPT techniques in
conjunction with conventional approaches to recover additional
sunspot cycles.

After completion of the studies to recover additional sunspot
cycles this information should be used to develop additional
ADAPT algorithms for the long rang‘e forecasting of solar
activity.

ADAPT should be used for clustering studies of sunspot cycles.
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3.0 DESCRIPTION OF ADAPT

3.1 Definition of Data Histories

The ADAPT techniques address themselves to the representation and empirical
analysis of data which appear as data histories, i.e., an indexed series of
numbers. The features of ADAPT which make it advantageous for empirical
analysis are reviewed in Appendix A. In the present case the indexing variable
is time, in months. The histories may consist of numbers with different
physical meaning; for example, quantities such as cycle type, mode, and/or
position in the 180 year Jose cycle may be adjoined to the sunspot numbers.
This was not done in the present study but offers an interesting method of
incorporating additional information for the predictions. '

The histories may be given in continuous (analog) form or in discrete form;
since the ADAPT programs operate in digital computers, analog histories are
each digitized into a finite set of N numbers, so a history is treated as an N-
dimensional vector in Euclidean space. If there are M histories, the result
is an N x M matrix of numbers. '

The choice of the N numbers to represent each history is to some extent arbi-
trary, the chief criterion being that the desired physical phenomena are properly
contained in the N numbers. It may be desirable to perform some pre-processing
on the given data to bring out these features before entering the ADAPT programs.
-Such pre-processing could include Fourier transforms, normalization, taking
logarithms, etc. From a theoretical viewpoint, one could even use continuous
data at this stage, since the first step in ADAPT (discussed below) produces a
discrete output even when the input is continuous functions instead of vectors.
However, the realities of numerical analysis on digital computers require that
the input be in vector (digitized) form rather than functional (analog) form.

3.2 Optimal Representation of Data Histories

With the M input history vectors defined, the first step in ADAPT is to construct
from them an orthonormal set of base vectors by the classical Gram-Schmidt
procedure. This ignores any history vectors linearly dependent on others, and
results in a set of NC orthonormal N-component vectors where NC is less than

or equal to the smaller of N and M. (The maximum number of linearly independent
N-component vectors is N, so if M> N, some of the histories are surely linearly
dependent on others. If M < N, then there are a maximum of M orthogonal base
vectors.) The data history vectors are now expressed in the Gram-Schmidt base
by their components along the NC Gram-Schmidt vectors, so each history is given
by NC components, and there are M x NC components altogether.

This step has accomplished the task of discretizing the data, regardless of the
form of the input or of its dimensionality. The Gram-Schmidt base vectors
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have N .components (or would be continuous functions if the input histories
were functions instead of vectors) but the representation of the histories by
their components in this base is independent of N, depending only on NC.
Therefore, the Gram-Schmidt representation is largely independént of the
particular way the data histories were digitized, assuming only that the
numbers chosen to represent the histories properly contain their important
features. In addition, there is usually a reduction in the number of numbers
-at this stage, since the M x N original components have been reduced to

M x NC.

However, there is no reason to believe that the Gram-Schmidt base is the
best one for representing the data. It is really an arbitrary orthonormal
set of base vectors determined solely by the order in which the histories
are arranged. The next step is to find another orthonormal base which is
in some sense the best for the given data as a whole. * '

To achieve this, a new set of NC N-dimensional orthonormal vectors, rotated
from the Gram-Schmidt set, is postulated. This set is to be chosen in an
ordered fashion, so that the first vector is the best, and so on. Only a limited
number, NR < NC, of these vectors will be used as new base vectors for
representing the histories. They are chosen as follows: Each history is
represented by its coefficients in the Gram-Schmidt base, and is projected

onto the NR new vectors, giving M x NR components in the new base. If

there were as many new vectors as Gram-Schmidt vectors, NR = NC, this
would be an exact representation of the history vectors, but since NR< NC,

it is only approximate, leaving an error vector as the difference between the
history vector and its representation in the new vector base. The square
magnitude of this error vector is a measure of the error for each history,

and the average of these square magnitudes for all histories is the mean square
error incurred by representing the history vectors in only NR new base vectors.
The new orthonormal set of vectors is chosen by minimizing this mean square
error, thus defining the meaning of a "'best'' set of vectors. If only one vector
is used, NR = 1, it is that vector which makes the one-vector representation
error the smallest. If a second vector is used also, it is chosen so that together

*The approach taken is analogous to the expansion of functions in a set of
orthonormal functions, of which Fourier series is the most common example.
When one of the classical boundary value problems of mathematical physics
is solved, the appropriate differential equation defines a set of orthonormal
functions. To satisfy a given function on the boundary, this boundary function
is expanded in this set of orthonormal functions. In the present case, there
is no differential equation to-define a particular set of orthonormal functions.
However, it is possible to make this data define its own best set of such
functions, or vectors. '

11




with the first vector, it minimizes the two-vector representation error.
This is continued for as many vectors, i.e., as large a value of NR < NC,
as is necessary or desirable.

When formulated mathematically, this criterion requires the maximization

of a quadratic form whose unknowns are the Gram-Schmidt components of

one of the '"best'' base vectors, and whose coefficient matrix is the covariance
matrix of the Gram-Schmidt components of the input histories. This problem
is a classical one in linear algebra, which often appears under the name
Karhunen-Loeve Expansion or principal components analysis of a matrix. *

The solutions for the unknown vector components are the normalized eigen-
vectors of the covariance matrix, and the resulting values of the quadratic
form are the eigenvalues of this matrix. Once they are obtained, they are
simply arranged in order of decreasing size of the eigenvalues. The largest
eigenvalue gives the most reduction in mean square error that can be achieved
with only one new base vector and the corresponding eigenvector is this new
base vector. The next largest eigenvalue gives the most reduction in the error
that can be achieved by using a second new base vector in addition to the first
one found above, and this second vector is the eigenvector of this second
largest eigenvalue. This process can be continued until the desired accuracy
is achieved. The sum of the NR largest eigenvalues gives the maximum mean
square error reduction which can be achieved with NR new base vectors; when
adding additional eigenvalues does not significantly increase this sum, the use
of the corresponding eigenvectors as additional base vectors does not significantly
improve the representation. '

A convenient measure of the degree of representation achieved with a given
number of base vectors is the sum of the eigenvalues of the vectors used,
divided by the average square magnitude of the original data history vectors.
This represents the reduction in mean square error achieved divided by the
total error reduction possible; in statistical terms this is the percent of the
variation of the data explained by the representation used. Since information
is only conveyed by the variation in the data and the variation has the form of
an energy, the percent variation explained is also known as the information
energy. A similar measure of representation which is applied to the individual
data vectors is the ratio of the square magnitude of the data vector in the NR
base vector system to the original square magnitude of the data vector. This
provides a measure of the adequacy of the empirically derived base for repre-
senting each history, and when applied to a test history serves as the basis for

*For a detailed discussion of the Kahunen-Loeve Expansion and its advantages
in empirical data analysis see: S. Watanabe, '""Karhunen-Loeve Expansion
and Factor Analysis Theoretical Remarks and Application', Transactions of
the Fourth Prague Conference Information Theory, Statistical Decision Functions
and Random Processes, 1965, pp. 635-660. ‘
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the apriori test of the validity of applying the empirical data analysis to the
test case.

For each history the NR components in the optimal system are the optimal
representation of the data in the sense described above. Alternatively, these
components may be interpreted as coefficients of the Fourier series of optimal
orthonormal functions representing the history.

The optimal components are used in all further empirical analysis. Thus, -
the original M x N numbers representing M histories have been reduced to
M x NR components, plus N x NR numbers to define the optimal vector base.
Since the base system is optimal, the number of terms, NR, necessary to
give a useful representation of history is small, often of the order of 10 or
less, and the reduction in the number of numbers is usually large.

In the process described so far, the optimal vectors are represented by their
NC components in the Gram-Schmidt base, but this means they are a linear
combination of the NC Gram-Schmidt vectors, the coefficients being these NC
components. Since the Gram-Schmidt vectors are N-dimensional vectors, the
optimal vectors can also be represented in the original N-dimensional space
of the data history vectors by performing the linear combination.

The ADAPT representation process just outlined can be clarified with the
simple example of two input histories, which has been carried through analy-
‘tically in Appendix B. For this special case the first optimal function is
proportional to the average of the two history functions, the second to their
difference, a result in accord with simple intuition. The relative sizes of the
two eigenvalues is found to depend on the degree of correlation of the two
histories, which has implications discussed later.

3.3 Sunspot Estimates and Analysis Using Optimal Representation

Having arrived at the optimal (Karhunen-Loeve) representation, attention is

now turned to use of the optimal components for generating empirical algorithms
to perform the parameter prediction and extrapolation required for this study.

It should be noted that this optimal representation is also well suited for empirical
clustering analysis, classification and clutter subtraction. For clustering analysis,
one represents each history by a point in optimal coordinates, and the degree of
similarity of two histories can be defined as the distance between the two points.
If the optimal representations are normalized, this distance is simply related to
the correlation of the two histories. Thus, the application of visual, nearest
neighbor, or other cluster identification schemes to points (i.e. data histories)

of the optimal space will lead to 1dent1f1cat1on of natural clusters and algorithms
to identify their members.
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For classification (including the special classification problem of detection)
the same representation of a history as a point in optimal coordinates is used.
A number of parametric schemes and linear non-parametric schemes which
can be applied are included in the ADAPT programs. They may be extended
to multi-class problems by repetitive application, separating a different class
with each application. If the statistics of the learning data are Gaussian the
maximum likelihood technique, which is included as an option in ADAPT,

may be used for multi-class classification problems.

Clutter subtraction is the unique capability of the ADAPT programs to sub-
tract out characteristics associated with identifiable phenomena in the process
of constructing the optimal space. The phenomena to be omitted from the
optimal space is first characterized and then the directions associated with
this phenomena are given a low or zero weighting in constructing the optimal
space. The resulting optimal space or functions can then be used to recon-
struct histories which will not contain characterizeable portions of the signa-
ture due to this phenomena.

The two types of empirical analysis which will be used in conjunction with the
ADAPT representation to perform the prediction of future sunspot cycles and
to extrapolate the present sunspot cycles are the use of parameter estimation
and extrapolation techniques respectively. The mathematical basis for these
operations will now be discussed.

The ADAPT technique for constructing an algorithm to predict a physical param-
eter associated with each history again makes use of the components of each
history in the optimal system. For every history in the learning data, the known
value of the parameter is written as a linear combination of the optimal com-
ponents. The unknowns are the coefficients in this linear combination, which
are taken to be the same for every history. The sum, over all histories, of

the square error of this linear representation is then minimized to determine

the coefficients. This amounts to a regression of the parameter on the optimal
components. When the coefficients are found, they can then be used with optimal
components of any new history to obtain an estimate of the value of the parameter
for that history. '

Parameter estimation may also be used to predict data histories rather than
single parameters. The approach is to utilize the ADAPT parameter estima-
tion programs to predict the components of the ADAPT representation of the
history to be predicted. Thus, the ADAPT representation plays two roles in
this type of analysis. The first role is to define the optimal coordinate system
in which to represent the history to predict, so that the number of components
which must be predicted is minimized. The second role of the representation
is the usual ADAPT role of representmg the data h1stor1es used as predictors,
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to minimize the dimensionality of the space in which the regression is to
be carried out. For the case of predicting future sunspot cycles both
of these representations could be the same if a single sunspot cycle

were used to predict the next sunspot cycle. However, for the present study
it was decided, after consultation with NASA, that the preceding two sunspot
cycles should be used to predict any given sunspot cycle. Thus, the components
to be predicted are the components of the optimal representation for a single
sunspot cycle. The data histories to be used to make this prediction, which
must first be represented in the optimal coordinate system prior to carrying
out the regression analysis, are a set of two adjacent sunspot cycles. Regres-
sion is then performed to relate the components of a single sunspot cycle to the
components of the preceding two sunspot cycles. Once the components of the
sunspot cycle have been predicted from this regression equation, they may be
used in the Fourier series representation of the sunspot cycle, which provides
the prediction of the sunspot number as a function of data.

It is not necessary to actually find the optimal coefficients of a new history

which is being investigated to apply an ADAPT derived algorithm. The trans-
formation from the N-dimensional data vector space to the NR-dimensional
optimal vector space can be inverted and incorporated into the algorithm vectors.
Then the process of applying this algorithm to a new data vector -involves pri-
marily the dot product or combination of dot products of this N-dimensional data
vector with an N-dimensional algorithm vector or vectors, a rather simple
procedure. Thus, the algorithm for predicting the coefficients of the next cycle
can be expressed as a dot product of the end of the month values of the 81 -day
running averages of the daily Zurich sunspot number for the preceding two cycles
with the ADAPT-derived relative importance vector.

"ADAPT offers a unique approach to extrapolating data histories. The entire
learning data history, including the region over which one hopes to eventually
extrapolate is used to find the optimal representation for the histories. One
then determines the best components for the history to be extrapolated by
making a least square fit of the available portion of the history to a generalized
Fourier series using the part of the optimal orthogonal functions which cover
the available portion of the history. These components are then used to re-
construct the entire history from the complete optimal orthogonal functions.

- Clearly, the number of points in the known portion of the history must be o
greater than or equal to the. number of components which are being estimated.
In the special case where the number of points to be matched equals the number
of components to be determined, an exact fit rather than a least square fit can
be found. A detail description of the ADAPT history extrapolation program
whi ch performs this extrapolation is given in Appendix C.

3.4 Evaluation of Performance and Va)lidity of Estimates

An objective of the ADAPT approach to empirical data analysis is to provide the
analyst with information regarding both the performance and the validity of the
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algorithms which he develops. Performance tells the analyst how good his
algorithm is when it is applied to test data belonging to the same population as
the learning data used to derive the algorithm. The validity criteria is a mea-
sure of how well the test data belongs to the population of the learning data.
Thus, the availability of performance data allows the analyst to select the best
algorithm and to verify that the performance of the algorithm is sufficient to
insure that it is based on physics and not merely a fortuitous mathematical
manipulation of the data. The validity criteria provides the user a measure of
the applicability of the algorithm to the particular case being tested.

In the ADAPT programs the performance of regression algorithms is defined

by the classical correlation coefficient and by the ratio, ( O—-RAT) of the standard

deviation of the error to the standard deviation about the means of the learning
data. In the sunspot study these latter measures for the regression analysis
are used to decide which algorithms should be used in the prediction of the co-
efficients of the sunspot cycle.

Equations 1 thru 3 define O-I;AT for the estimation of each coefficient of a data

history.
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where Y. is the estimated coefficient, Y - is the mean of the coefficients of

(1)

(2)

(3)

of the learning data, Y; is the actual value of the coefficient of the ADAPT repre-
sentation, and M is thé number of cases used in the learning data. Note that this

performance estimate, like all of the other performance estimates provided as
part of the derivation of ADAPT algorithms, is based on the learning data.
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The evaluation of the prediction of entire histories, such as the sunspot cycle,
requires other methods of evaluating the performance of the prediction, rather
than the correlation coefficients or O_RAT' One classical method of evaluating
‘the performance of the prediction of a data history is to consider the two-sigma
error bounds about the history. This measure of performance is particularly
useful for understanding the performance of any particular estimate as a function
of the indexing variable. However, for comparing a large number of algorithms
or methods of predicting histories, the large number of numbers involved makes
the use of this measure rather awkward. To overcome this, a single number
which summarizes the performance over the entire history has been used in this
study to compare various methods and algorithms in the initial phases. This
measure is the RMS error between the estimated and actual data history.

The calculation of the two-sigma band for a data history requires that one
estimate the expected standard deviation between the estimated and actual

data histories. This is an example of a problem for which the ADAPT formu-
lation offers considerable simplification in the amount of caluclations required..
Consider the task of evaluating the standard deviation between the estimated
sunspot number, ﬁjt, and the actual sunspot number Rjt. Since ADAPT con-
siders both the actual and estimated values as represented by Fourier series

of optimal orthogonal functions the actual and estimated values can be expressed
as: . , L g

!:1 : :
o .
A —_ N\ . : : '
Rjt= Ry + ZYJI H_‘Qt ) (5)

2=1

where L is the number of terms required to achieve 100% representation, Q is
the number of terms utilized in the ADAPT representation used to estimate the
sunspot number, the bar indicates the average value, the hat indicates the
estimated value, the Y's are the coefficients of the generalized Fourier series
utilizing the optimal orthogonal functions designated by Hgt. Note that the coef-
ficients are independent of the indexing parameter t and that the optimal functions
are the same for all histories (i.e., all j's). . .

S _l_-ZiRjt - Rj¢)
. Noting that the standard deviation, (_y, is given by | M 5~ ' at each

value of time (in months) one may utilize equations 4 and 5 to write the standard
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deviation of the estimate at time t as:

L
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where:
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. Thus, Y'l. is the difference between the actual and the estimated coefficient
(i.e. the error in estimating the coefficient) and simply equal to the actual
coefficients for I greater than Q. This follows from the fact that since only
Q terms are being used in this analysis, this is equivalent to estimating zero
for the coefficients of all of the terms beyond the Qth term in the series.

. The standard deviation is found at each point in the data history and thus one
has one value of the standard deviation for each indexing value applicable to
all histories. The RMS error between the estimated and actual history will be
defined in such a way that one has only a single value for the entire history.
However, one will now have an RMS error for every history. The RMS error
for history j is defined by:

R; . ’
RMSJ \/ i (Rye - Byo® | (8)

t=1

Since there exis-ts an RMS error for each hiétory, one may define the expected
average RMS error baséd on all of the histories in the learning data. This is
the average of the RMS error when the algorithm is applied to the learning data,
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and may simply be expressed as:

ErMs ’1\1Z z RMSj (9)

The calculation of the RMS error for the special case where the estimate is the
mean of the learning data is another example when the ADAPT formulation
significantly simplifies the computation involved. For this special case equations
4 and 8 combined with the orthogonal property of the optimal functions, H 1t gives
the following expression for the RMS error of the jth history:

L R
1 2
ERMSj = —TZ Yig « (10)
£ |

in terms of the coefficients of the optimal series, Yjg

The RMS error between the nominal estimate and the/gne sigma error, ERMS
can also be calculated by substituting ¢ for. Rjt - Rjt in equation 8. Although
this is not identical to the average RMS error, ERmMS, both ERysg and Epypg
are estimates of the expected value of ERMSj for any given algorithms.

The ADAPT programs also provide validity criteria which are based on the ability
of the optimal functions derived from the learnihg data to represent the test data.
These validity criteria are identical for and applicable to all ADAPT classification
prediction and clustering algorithms. The validity criteria essentially makes use
of the data vector's geometric property of length. The length of the learning data
vectors may be calculated in the original data space and then compared with the
new length when the learning data is represented in the optimal ADAPT space.

A similar comparison can be made between the length of the test data vector as

it is represented in the original data space and the optimal ADAPT space. If the
test data vector's length is reduced significantly more than that of the learning data
vectors when it is represented in the optimal space, this is indication that the test
data is from a different population than the learning data used to develop that
algorithm. Thus, it is not valid to apply the algorithm to that particular case.

The validity criteria for the case of extrapolated data histories must be modified
since the learning data is now identical to the first portion of the data histories
or sunspot cycles and was not used to make the data base. However, the data .
which was used to make the base also contains the portion covering the identical
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range of the indexing variable as the learning portion of the data history to be
extrapolated. One may then compute the RMS error, ERMSj' for the first
portion of all the learning data histories. One may then take the average of
this, finding the average RMS error, ERMS L, for all the learning data
histories and also the standard deviation O-'E_J of these RMS errors. One may
then compare the RMS error of the test case with the average and standard
deviation of the RMS error for the corresponding region of the learning data
and calculate the confidence in the validity of the extrapolation. For example,
if the RMS error of the test cases falls outside of the range of the average RMS
error for the learning data plus or minus its two-sigma value one has only 5%
confidence that the extrapolation will be accurate to the degree indicated by
the performance estimate based on the learning data. "

The next section of this report will present the detailed results of the repre-

sentation, prediction and extrapolation of the sunspot cycles using the methods
which have been outlined above. V
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4.0 ESTIMATE OF FUTURE SUNSPOT NUMBERS

4.1 Representation of Sunspot Data

The objective of the predictions which are being investigated in this study is to
provide an estimate of the 81 -day running average of the daily sunspot number.
The daily sunspot numbers are available from 1890 or from cycle 13% to cycle
20. Since NASA desired to reserve cycles 19 and 20 as test cases, this would
leave a total of 6 cycles for learning data. This is believed to be insufficient
learning data to provide good algorithms. On the other hand, monthly sunspot
numbers are available from 1750 or cycle 1 and if one could use the monthly
data as learning data instead of the 81 -day running average one would have 18
learning cases instead of 6.

If one formulates the 81 -day running average of the sunspot numbers and com-
pares this with the 3-month running average of the sunspot numbers, one dis--
covers that 81 components of the two averages are identical and usually only

9 additional components are added to the monthly average. Thus, the total

error made in using the three-month running average instead of the 81 -day
running average is the order of 10% of the difference in the average of these 9
components and the average of the 81 -day running average. Since the 9 compon-
ents. of the average are adjacent to the 81 -day running average, one would expect
that their average would be quite similar to the 81 -day running average. Since
the total expected error is only 10% of the small difference between these averages,
- one would expect a very small error in using the three-month running average as
an approximation to the 81 -day running average. This is verified by Figure 4.1
which shows the difference between the 81 -day running average and the three-
month running average evaluated every five months for cycle 19. The maximum
difference observed is less than 3 sunspots. This difference is considerably
smaller than the expected error in any of the estimates which will be discussed
in this report. Thus, we conclude that the three-month running average is a
completely adequate approximation to the 81 -day running average for the studies
in this report and should be used since the factor of 3 gain in learning data signi-
ficantly enhances the probability of success in this study. '

The first step in an ADAPT analysis is to find the optimum representation of the
data histories which will be used to predict any given quantity. For the case of
the sunspot.estimates there are two data bases of interest. The first data base
is made up of single eleven-year cycles. This data base is required for both the
extrapolation and the prediction approaches to estimating future sunspot cycles.

. In both of these cases this base will be used in an unconventional manner when
compared to the normal ADAPT procedures. In particular, for the prediction

*The starting date for the cycles used in this study are g'iven-in Table 4.1
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of future sunspot cycles based on the preceding two sunspot cycles this base
will be used to reduce the approximately 180 numbers required to define a
sunspot cycle to two numbers. Thus, we will only have to make two prediction
algorithms rather than 180 prediction algorithms to predict the sunspot cycle.

The extrapolation of sunspot cycles only requires one base to carry out extrapo-
lation as defined in Section 3. For this study the single cycle base will be used

for the extrapolation. The double cycle base is the classical ADAPT base which
will be used to predict the two numbers required to define the next sunspot cycle.

Figures 4. 2 through 4.9 define the significant characteristics of the single cycle
base. Figure 4.2 is the average of sunspot cycles 1 through 18 which were used
to make the single cycle base. This average cycle was first subtracted from
each of the 18 cycles and then these data histories were processed through the
ADAPT programs to find the optimum empirical orthogonal functions to represent
the sunspot cycles.

Figure 4.3 shows the amount of information energy or the amount of variation
from the average input vector which is explained by each of the terms in the
-optimum generalized Fourier series expansion of the sunspot cycles. The first

- term in the optimal series explains slightly more that 60% of the variation from
the average cycle. The second term explains approximately 18% of the variation,
and thus the first two terms explain nearly 80% (as illustrated by the upper curve
in Figure 4. 3) of the variation in the sunspot cycles. Approximately another 10%
of the variation is explained by the third through sixth terms of this optimal
series. Examination of Figure 4. 3 indicates that remaining eleven terms in

the expansion provide very little additional physical information. This follows
from the term-by-term or lower curve in Figure 4.3 which shows that from the
seventh through the seventeenth term in the series the change in information

- energy as one goes from term to term is approximately equal.

The first optimal function, representing about 60% of the variation from the
average is shown in Figure 4.4. The most striking feature of this first optimal
function is that the great majority of the variation explained by this function
occurs in the first half of the cycle (i.e., before month 76). This is extremely
‘significant since more than half of the variation of the cycles from the average
is explained by this function. This implies that a minimum of slightly more than
a half of the entire variation from sunspot cycle to sunspot cycle occurs in the
first half of the cycle. Moreover, this variation is the most highly correlated

- of all the variations occurring and is thus the most easily predicted.

Examination of the second optimal function shown in Figure 4.5 shows that this
function, which explains the next 18% of the .variation, provides approximately
equal correction over the entire span of the sunspot cycle. Combining this with
the conclusions from the first optimal function, one can estimate that between
70 and 80% of the variation between sunspot cycles occurs during the first 76
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month of the sunspot cycles. This implies that extrapolations of the sunspot
cycles should be quite good if one uses the first 76 month as a basis for the
extrapolation. It also implies that if one is going to predict the sunspot cycle
from the preceding sunspot cycles, the prediction of only the first coefficient
will result in a very accurate prediction for the first 76 month of the sunspot
cycle but will yield a prediction which is little better than using the mean of

all of the cycles for the last half of the sunspot cycle. Thus, one believes that
the minimum number of terms which must.be predicted to provide a significant
improvement in the second half of the sunspot cycle is two terms of the optimal
series. This is consistent with the results of Figure 4.3, which shows that 80%
of the variation will be explained by using these two terms.

Examination of Figure 4.3 indicates that the third through sixth terms, although
making a relatively small contribution to the variation, might still contain some
significant information. These four optimal functions are presented in Figures

4. 6 through 4.9 and have the general characteristic that they apply approximately
equally throughout the entire sunspot cycle. They also have the characteristic
that they define specific spikes in the sunspot cycle. This follows from the spikey
nature of these optimal functions. The one exception to this is in the rear-most
portion of the sunspot cycle from approximately month 100 through month 160,
where optimal functions three, four and siX each appear to make a uniform con-
tribution to the last portion of the sunspot cycle. This indicates that these three
optimal functions may be providing a correction to the length of the sunspot cycle.

Figures 4.10 through 4.15 present similar information for the double cycle base.
The Double cycle base is constructed using two adjacent eleven year cycles or
approximately 22 year cycles of sunspot numbers. Just as in the case of the
single cycle base one still desires to keep the nineteenth and twentieth cycles

- as test cases and thus the learning data for predictions of future cycles based

on the preceding two cycles was limited to that data required to predict cycles
three through eighteen. Since the two preceding cycles are not available for
predicting cycles one and two, the number of learning cases available to make

this base is reduced by two from the number of learning cycles available for
producing the single cycle base. This base was constructed using cycles one-two;.
two-three, three four, . . . wup to cycles sixteen-seventeen. Note that the double
cycle seventeen-eighteen, although available for use in the representation would
not be available as a predictor in the learning data since this double base would

be used to predict cycle nineteen which is being withheld as proof data.

The average of these double cycles for cycles constructed from cycles 1 through

17 in the method outlined above is presented in Figure 4.10 and is the average
input vector which was subtracted from each of the double cycle learning cases
prior to constructing the optimal orthogonal functions for representing these
histories. Since there are only 16 cycles in the learning data, a total of 15 optimal
functions are sufficient to completely explain the variation in the data. The amount
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of explained variation as a function of the number of optimal functions (i.e.,
number of dimensions in optimal space) used is presented in Figure 4.11.

Here we see that for the double cycle the first optimal function only explains
about 37% of the variation. However, the second, third and fourth optimal
functions explain 25, 12 and 9% of the variation, respectively, which is
considerably greater than the vanatmn explained by the corresponding functions
in the single cycle base.

Examination of Figure 4.11 shows that there are breaks or changes in the

slopes of the explained variation occurring after the fourth, sixth, and twelfth
optimal functions. Thus, the most likely groupings of interesting information
consists of either the first through fourth optimal functions, the first through
sixth optimal functions, or the first through twelfth optimal functions. Actually,
it is quite 11ke1y that the last group, the seventh through twelfth Opt1ma1 functmns

) exp1a1n pecuhar characteristics of th1s set of learnmg data and will not be useful
for analysis of sunspots. Thus, one could guess that the first six optimal functions
would contain information which might be useful for predicting future sunspot
cycles. We shall see in Section 4. 2 that this is indeed the case. Thus, let us
consider the first six optimal functions in more detail.

Comparison of the first optimal function for the double cyclé base presented in
Figure 4.12 with the single cycle first optimal function presented in Figure 4.4
shows that the most highly correlated portion of the variation is still from the
first portions of the two eleven-year cycles which combine to make up the double
cycle. The second optimal function for the double cycle base shown in Figure 4.13
has the same characteristic and thus it is now taking two optimal functions to ex-
plain the variation occurring in the first 76 month of the eleven year cycles.

The third and fourth optimal functions presented in Figures 4.14 through 4.15
provide relatively uniform corrections over the entire cycle and thus play a role
similar to the second and third optimal functions of the one cycle base. Since

the first two optimal functions explaining a total of 62% of the information deal

with essentially the first 76 month of the eleven year cycle, we have a further
confirmation of the result obtained from.examination of the single cycle optimal
functions that approximately 70 to 80% of the variation occurring over the eleven
year sunspot cycle occurs in the first 76 month of the cycle. The fifth and sixth
optimal function presented in Figures 4.16 and 4.17 appear to make detail corrections
to the oscillations of the sunspot cycle and possibly minor adjustments to the length
of the sunspot cycle.

Thus, we conclude that one should estimate at least two coefficients and no more
than six coefficients of the optimal Fourier series representation of each of the
cycles to be reconstructed. If these coefficients are to be estimated from the pre-
ceding two cycles the preceding two cycles should be represented by at least three
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and not more than six terms in the optimum generalized Fourier series repre-
sentation. We have also seen that the three-month running average of the monthly
averages are a reasonable approximation to the 81 -day running average. Thus,
the remainder of Section 4 will explore the use of these two representations of

the three-month running average to estimate future sunspot numbers either by
extrapolation of the current cycle to its end or by predicting the future cycle

from the preceding two cycles.

4.2 Predictions from the Preceding Two Cycles

Prior to constructing the reference algorithm both the dimensionality and the
type of regression must be selected. For the prediction of sunspot cycles there
are two dimensionalities which must be considered. The first is the number of

. terms which will be used in reconstructing the new sunspot cycle. The analysis
of the ADAPT single cycle representation presented in the preceding section has
already indicated that the reconstruction should be based upon between two and
six terms in the optimal series. The second dimensionality which must be con-
sidered is that of the space in which the regression algorithm is derived. Again
the analysis in the preceding section indicated that the dimensionality of this base
should lie between 3 and 6. Thus, the remainder task is to select the best
dimensionality within these ranges.

There are two general types of regression algorithms available in the ADAPT
programs. The first is a canonical regression which amounts to a simultaneous
regression between the independent variables and all of the dependent variables
which are to be predicted. In the present case the number of dependent variables
to be predicted is equal to the number of terms which will be used to reconstruct
the sunspot cycle. A classical multiple regression which fits each dependent
variable separately to all of the independent variables individually is also available
in the ADAPT programs. The advantages of the canonical regression are twofold.
First a single processing derives the algorithms for all of the dependent variables,
thus saving computer time and manpower in deriving the algorithms. The more
important consideration is that the simultaneous fitting of all of the dependent
parameters to the independent variables rnakes it . more difficult for the mathematics
to make a fortuitous fit to the data which will not be applicable to the test cases.
The disadvantage of the canonical regression (i.e., the advantage of the classical
multiple regression) is that the canonical regression results in a slightly larger
least square error between the estimated and actual values and thus does not pro-
vide as small a value of G_RAT as is provided by the classical multiple regression
technique.

Since the canonical regression is less expensive to apply to a large number of
dependent variables, the first step in further refining the estimate of the dimen-
sionality to be used was to apply the canonical regression for several different
dimensionalities. The results of this are included in Table 4.2. Algorithms
were derived using 4, 6 and 8 dimensions. In the case of the 4 dimensional
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algorithm, 4 coefficients were predicted. In 6 dimensions 2 algorithms were
derived, one for predicting 4 coefficients simultaneously and the other for
predicting 6 coefficients simultaneously, and 6 coefficients were predicted in
the 8 dimensional space. In each of these cases the performance of the algorithm
for predicting each coefficient as measured by the standard deviation of the error
in the estimate relative to the standard deviation of the input data about its mean,
O-RAT’ and the correlation coefficient, /OZVK are summarized in Table 4. 2
The expected reduction in the standard deviation about the mean for the estimate
of the entire sunspot cycle using the first few terms of the series is also pre-
sented in Table 4.2 and is designated by the quantity éRAT- This quantity is
simply calculated by summing the reduction in explained variation, Ey , times
the value of O-RAT ¢ for each term used in the estimate and adding to this the
amount of the explained var1at10n which is not included in the estimate. Thus -

RAT is given by:

Q L
A |
Orar * By 0 parg Z (11)

£:1 | A=q+1

This quantity, 6: , multiplied by the RMS error between the mean cycle and
the learning cycles should approximate the RMS error for the prediction using Q -
dimensions. Table 4.2 also gives the performance of these canonical algorithms
in predicting cycles 19 and 20. This performance is summarized as the root
mean square error (see Section 3) between the estimated and actual values for

these two cycles.

The canonical results presented in Table 4.2 lead to two conclusions. The first
conclusion is that the prediction algorithr‘ns should be derived in the ADAPT
optimum sixth dimensional space. Secondly, that algorithms derived from higher
dimensional spaces will tend to be overdetermined; that is, a significant portion
of the performance of the algorithm on the learning data is due to a fortuitous fit
to the data and not the physics of the problem. The first of these conclusions is
reached by poting that the best predictions of the entire sunspot cycle as indicated
~ by either : or the RMS error for cycles 19 and 20 which have been circled
in Table 4.2 Fﬁl occur for algorithms derived in.a 6 dimensional space.

This Conclusmn is further enhanced by examination of the relative importance .

spectrum for predicting the 6 coefficients which are presented in Figures 4.18
through 4.23. The relative importance spectrum is related to the spectrum in
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classical Fourier analysis except that the trigonometric functions have now been
replaced by the optimum empirical orthogonal functions and frequency no longer
has a physical interpretation but merely is a number identifying the term in the
generalized Fourier series. The relative importance spectrum tells the importance
of each of the optimal dimensions, in this case 6, to the particular algorithm in
question. Thus, examination of the relative importance spectrum presented in
Figure 4.18 indicates that the most important direction for calculating the first
coefficient is the fifth optimal-direction and that the second and sixth optimal
directions make significant contributions to this prediction. Thus, it is clear if
one were to use less than 5 dimensions, there would be a significant increase in
the error associated with the prediction of the first coefficient of the next sunspot
cycle. Similarly, Figure 4.19 shows that the sixth dimension is dominant in
predicting the second coefficient and that the error in the prediction of the second
coefficient would be significantly increased if all six coefficients were not used.
The same conclusion applies to the prediction of the third coefficient as can be
seen by examination of Figure 4.20. In general, by examining Figures 4. 21
through 4. 23 we see that the fifth and sixth optimal directions make significant
contributions to all the predictions and thus should be retained.

The on-set of the '""overdetermined' condition as one moves from six optimal
dimensions to eight optimal dimensions can be seen by noting that although the
performance of the learning data as indicated by ‘O’RAT and ﬂ ZVK impzrove
significantly as one increases the dimensionality of the space in which the algo-
rithm is derived from 6 to 8, the performance of the algorithms on the independent
test cases (i.e., cycles 19 and 20) decreases; that is, the RMS error is larger
for the algorithm derived in the 8 dimensional space than in the 6 dimensional
space. This is the characteristic of an overdetermined algorithm; namely, it

has a significantly better performance on the learning than on independent test
cases. . ‘

Based on these results 6 dimensions of the optimal space were used to derive

the prediction algorithm. For this reason the classical multiple regression
algorithms were only applied in 6 dimensions. ~ The results of the application

of these algorithms are also shown on Table 4. 2 for the prediction of 4 coefficients’
in 6 dimensions. Note that since each coefficient is predicted independently, sets
B and C are identical for the multiple regression (i.e., M.R.) algorithms. This
is indicated by the X's in the performance regions of set C. Examination of the
performance of the 6 dimensional algorithms for predicting the entire sunspot
history reveals the interesting fact that the best performance for cycle 20 occurs

- when only 2 coefficients are predicted. The OE{AT also indicates that the greatest
gain in prediction accuracy is achieved in the first two coefficients since the de-
crease in this parameter as one goes from the second to third or third to fourth
coefficients is quite small. Thus, we have an indication that one should use two
coefficients for reconstructing the predicted sunspot-cycle. The discussion of
Table 4. 2 should have made clear the advantages of a single performance criteria

27



for measuring both the performance of the prediction algorithm and the degree
of matching between the predicted and actual sunspot cycles which were claimed
in Section 3.

Table 4. 2 also provides a basis for selecting the type of regression to be used.
Since the major advantage of the canonical regression is in reduction of the
likelihood of the ''overdetermined' condition and since the standard multiple
regression algorithm always performs better on the learning data, the only
justification for using the canonical algorithm is its performance on the test
data. If it performs better, it is an indication that a significant portion, i.e.,
sufficient to account for the difference between the multiple and canonical re-
gression of the performance observed on the learning data is due to the '"over-
determined' nature of the algorithm. Examination of the performance of the
multiple and canonical regressions shows that for this case this is not true. In
fact for cycle 20 the multiple regression algorithm has significantly better per-

- formance than the canonical algorithm. For cycle 19 the canonical algorithm

has slightly better performance than the multiple regression; however, as will

be discussed in Section 4.3, cycle 19 is an anomolous cycle and is probably not
a valid cycle for making decisions as to the best way to construct the prediction
algorithms. '

Thus, the prediction of the future sunspot cycle will be based on the use of the
classical least square multiple regression applied in the first six dimensions

of the ADAPT optimal space to predict the first two.coefficients of the single

.cycle generalized Fourier series representation of the sunspot cycle. The
accomplishment of this prediction may be divided into two parts: 1) the pre-
diction of the first two coefficients of the sunspot cycle and 2) the reconstruction

of the sunspot cycle using these first two coefficients. : °

The relative importance spectrum for the algorithms recommended for predicting
the first two coefficients of the next sunspot cycle is presented in Figures 4. 24

and 4. 25 for the first and second coefficients respectively. These may be compared
with the relative importance spectrum obtained for the corresponding coefficients
using the canonical regression which were presented in Figures 4.18 and 4.19.
Comparison of Figures 4.18 and 4. 24 show that both types of regression give very
similar relative importance spectra and therefore similar algorithms for predicting
the first coefficient. Comparison of Figure 4.19 and 4. 25 show that the sixth
optimal direction is dominant for both the canonical and least square multiple
regression algorithms for predicting the second coefficient. However, the canonical
prediction made considerable more use of the first, third and fourth coefficients
than the least square multiple regression algorithms.

It is interesting to note that the prediction of the first coefficient is primarily
based upon a term containing about 30 percent of the variation in the sunspot
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cycles and has significant contribution from the first portion of each of the pre-
ceding two cycles. On the other hand, the prediction of the second coefficient
is based on only approximately 3 percent of the variation of the data and has a
relatively uniform contribution from both the first and second halves of both the
preceding cycles. These conclusions are reached by comparing the information
energy and relative importance spectra with the corresponding optimal functions
presented in Figures 4.13 and 4.17.

Figures 4.26 and 4. 27 present the relative importance vectors for these two
algorithms. These relative importance vectors represent the vectors which
when multiplied (dot product) by the sunspot numbers associated with the pre-
ceding two cycles will yield a number equal to the coefficient for the next sun-
spot cycle. Thus, the relative importance vector is the algorithm for predicting
the coefficients of the next sunspot cycle, and as such also defines the importance
of each portion of the sunspot cycle for predicting the next sunspot cycle. These
same relative importance vectors are included in the tabulation of the algorithms
“which are presented in Table 4.3. Table 4.3 has been constructed so that it may
be used independent of this report to calculate the coefficients of the next sunspot
cycle. :

The second step in constructing the sunspot cycle consists of utilizing the pre-
dicted coefficients in conjunction with the first and second optimal functions to
reconstruct the sunspot cycles. The detailed procedure for this is outlined in
‘Table 4.4. Briefly, this procedure consists of taking the average sunspot cycle
~ presented in Figure 4.2 and adding to it, for each month the product of the first
coefficient times the corresponding value of the first optimal function for that
month plus the product of the second coefficient times the corresponding value
of the second optimal function for that month. This procedure is carried out for
each month in the cycle and the result will produce the predicted sunspét cycle
history. This has been accomplished for the predictions of the learning data
(cycles 3 through 18), the predictions of the proof test cycles (cycles 19 and 20),
and for cycle 21. The resulting reconstructions for the learning data are presented
in Appendix D. We will now discuss the reconstruction of the proof test cases.

Examination of Figure 4. 26 shows that the decision to use the two preceding
cycles rather than just a single preceding cycle to predict the future sunspot
cycle was a wise one. We see that the second preceding sunspot cycle has
slightly more influence on the prediction of the first coefficient of the sunspot
cycle than the immediately preceding sunspot cycle. In particular, the second
half of the first of the two preceding sunspot cycles makes a significantly greater
contribution to the prediction than the corresponding second half of the sunspot
cycle immediately preceding that being predicted. One also can see that if the
preceding two cycles decrease in amplitude the first coefficient will tend to be
larger than if the preceding two cycles have increasing amplitude. Examination
of Figure 4.4 shows that if the first coefficient is larger, the first portion of
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the sunspot cycle will tend to have lower sunspot numbers than the mean cycle.
Thus, one may make the general observation that if the first fifty months of

the preceding sunspot cycle have lower sunspot numbers than the corresponding
fifty months of a sunspot cycle, the next sunspot cycle will tend to have a
relatively slow rise in sunspot numbers as compared to the mean cycle.

Figures 4. 28 and 4. 29 measure the performance of each of these algorithms

for predicting the coefficients of the learning data. The ordinate in these figures
is the estimated value of the coefficient whereas the abscissa is the actual value
of the coefficient; thus the solid line drawn on these: figures represents a perfect
prediction. The dash lines have been placed on these figures to indicate the
approximate bounds of the error in the coefficient which would yield an error.

in sunspot number of + 20.

Since the sunspot cycles are being represented by two numbers, namely, the
coefficients of the first and second terms in the generalized Fourier series
representation of the sunspot cycle, it is possible to display the cycles on a

‘two dimensional graph. Figure 4.30 is such a display. This display is known

as a scatter plot display and is simply a plot of the second coefficient of the
optimal generalized Fourier series representation versus the first coefficient

of this representation for each history. Thus, each sunspot cycle appears as a
single point on this plot. The scatter plot presented in Figure 4.30 is con-
structed on the single cycle base and thus represents 80 percent of the variation

- or information contained in the sunspot cycles. We shall see later that this

plot is very useful for studying groupings of sunspot cycles but it is also useful

for comparing estimated and actual sunspot cycles. Figure 4.30 shows all of

the actual sunspot cycle locations for cycles 1 through 20. These actual locations
are indicated by the circles with the sunspot number shown inside the circle.

The estimated position of the sunspot cycles is indicated at a sunspot cycle number -
enclosed in a square. If the estimated and actual sunspot cycle were to fall on
the same place in this scatter plot that would indicate that the two term recon-
structions would be identical. Since two terms of the optimal representation
account for 80 percent of the variation in the sunspot cycles, it is a very good
prediction. This scatter plot shows that the prediction of cycle 20 is rather
typical of the predictions in the learning data. The prediction of cycle 19 is not
very typical of the accuracy of the predictions in the learning data. However,
since the actual value of cycle 19 is far removed from any other cycle on this
plot there is a strong indication that cycle 19 is anomalous.

‘Table 4.5 compares the RMS error of the learning data and the proof test cases
with the average and standard deviation of this RMS error. This figure also
shows the value of the ADAPT validity parameter, Q for the two cycles used for
~each of the predictions. - This verifies that cycle 20 is an extremely good pre-
diction. Examination of the representation criteria (Q) indicates that cycle 19
has a relatively poor representation, namely .74 as compared to an average
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representation of .83 with a standard deviation about this of .13. This repre-
sentation can be taken as an indication that one should exercise some caution
in utilizing the prediction for cycle 19.

The value of . 74 for the validity criteria is sufficiently low that it would not

pass the more severe validity test of requiring that the representation be greater
than the mean representation of the learning data. However, this severe criteria
will limit the applicability of the predicted algorithm to a maximum of approxi-
mately half of the cases to which it would be applied. More reasonable validity
criteria for situations such as this where there is only one estimate upon which

to make a decision is the mean minus 1. or 2 standard deviations. The validity
criteria value of . 74 would pass either of these two less severe but more realistic
representation requirements. It appears from this that in terms of the predictive
algorithms one can probably have high confidence in those predictions which have
a representation test or Q value greater than approximately 80 percent. For Q
values less than 80 percent one must still use the predictions even if the confidence
is lower since approximately half of the valid cases will have such a value but it
is possible that invalid cases would also be in this region. Thus, some caution
must be exercised when one observes a validity criteria below . 8.

Figure 4. 31 shows the predicted sunspot number (solid lines) and two sigma
bounds (dashed lines) on this prediction for cycle 19. This prediction is com-
pared with the actual sunspot numbers (solid line) for cycle 19 in Figure 4. 32.

- We see that there is a great discrepancy between the actual and predicted sun-
spot values for cycle 19, especially over the first 76 months of the sunspot cycle.
This is entirely consistent with the scatter plot positions shown in Figure 4. 30
for this cycle. The first optimal function presented in Figure 4.4 was completely
dominated by the first 76 months of the cycle. Thus, a large error in the first
coefficient of cycle 19 would result in an extremely large error in estimating

the sunspot numbers over the first 76 months of the sunspot cycle. In particular,
since the estimated value of the first coefficient is considerably larger than the
actual value one would expect the prediction to significantly under predict the
sunspot numbers for the first 76 months of the sunspot cycle. On the other hand,
the prediction of the second coefficient is considerably better than the first coeffi- =
cient and one would expect that the second half of the sunspot cycle as well as the
length of the period might be predicted considerably more reasonably. Examination
of Figure 4.32 shows this to be the case. In fact, since the minimum of the mean
cycle is approximately five sunspots one should discontinue the predicted or dash
‘curve in Figure 4.32 when it crosses the five sunspot value. This occurs at
approximately 136 months which compares with the actual period of 125 months
or just slightly less than a year in error. Furthermore, the actual sunspot
number s from approxirmately the 80th through the 120th month are in good agree-
ment with the prediction. Figure 4.33 compares the actual sunspot number
(solid line) for sunspot cycle 19 with the two sigma bounds on the prediction.
Again we see that cycle 19 is extremely anomalous and as we compare the ADAPT
results with other results we shall see that cycle 19 is indeed an anomalous cycle
which should be included in the base but which is not likely to reoccur for at least
50 and possibly 150 or more years. ' ‘
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Figure 4.34 presents the predicted (solid line) and two sigma bounds (dashed
lines) the sunspot numbers for sunspot cycle 20. This prediction was made
using cycles 18 and 19, and is more typical of the performance observed on the
learning data as can be seen from Figure 4.30. Examining Figure 4. 35 which
compares the actuals to date (solid line) with the prediction (dashed lines), one
sees that the prediction for cycle 20 is indeed quite good. Figure 4.36 compares
the actual values (solid lines) of cycle 20 with the two sigma bounds (dashed lines)
on this prediction. We see that the two sigma bounds have been exceeded once

at about 38 months after the beginning of the cycle. In evaluating the meaning of
these two sigma bounds one must remember that the present predictions are made
on a monthly basis and therefore for the typical cycle there are approximately
132 opportunities to exceed these bounds. Since the two sigma bound is the 95
percent confidence bound one would expect five to ten months during each typical
cycle in which the actual values would exceed these two sigma bounds. Thus,

the performance of cycle 20 tends to verify the validity of the two sigma bounds.

- The same algorithm was used to predict cycle 21 and the predicted values of
the coefficients for cycle 21 are presented on the scatter plot in Figure 4. 30.
The actual predictions for this cycle as well as the two sigma bounds about this
prediction have been included in Figure 2.1 and represent the best estimate for
cycle 21. This prediction will be discussed in more detail in Section 4. 4.

4.3 Extrapolation of Sunspot Cycles

‘The extrapolation of sunspot cycles will be carried out using the single cycle
base in the manner outlined in Section 3.3. As discussed in Section 4.1, exam -
ination of the single cycle base showed that one should use at least two and no
more than six dimensions for the extrapolation of the history. To evaluate the
effect of dimensionality on the performance of the extrapolations we shall use
the parameter ?RAT as defined in equation 11. Figure 4.37 presents this
quantity for each of the three extrapolations which will be carried out in this
section. The dash line in Figure 4.37 is the result that would be obtained if

the first term on the right hand side of equation 11 were zero. In other words,
this is the result that one would obtain as a function of the number of terms

used if the estimates. of all of the coefficients obtained by ‘the extrapola‘tion were
perfect. Actually, the estimates of the coefficients will have some error and

as the number of terms increased one would expect that prediction to improve.
Thus, the value of JRAT should decrease unt11 the point is reached where the
extrapolation procedure no longer reduces the error in the estimated coefficient.
At this point the performance of the algorithm will degrade until the overdetermined
characteristic sets in.- When this occurs the curve will approach the dash line.
This behavior is illustrated by-the solid or third quarter extrapolation in Figure
4.37. The first and second quarter extrapolations have only been carried through
to their first minimum since one should use the number of terms at which this
minimum occurs for the extrapolation. :
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This study will consider three different extrapolations. The first will use

the first 38 months of the cycle to extrapolate the entire cycle, which is
designated as the first quarter extrapolation. The second quarter extrapola-
tion uses approximately half of a typical cycle or the first 76 months. The

third quarter extrapolation uses 93 months of the cycle to extrapolate the entire
cycle. This time for the third quarter extrapolation was picked so that there
would be sufficient data to extrapolate the 20th cycle using this approach. In
order to withhold cycles 19 and 20 as proof test cases these cycles were not
included in the single cycle base for the extrapolation. The locations of the
first minima on the curves in Figure 4. 37 suggests one should use two terms for
the second quarter extrapolation and four terms for the third quarter extrapola-
tion.

Extrapolations were formed for both the learning data, cycles ] through 18,

the proof test data, cycle 19 and the test data, cycle 20. The extrapolation

for all of these cases is carried out in the same manner. The portion of the

cycle to be used as the basis for extrapolation, i.e., the first 39 months the

first 76 months or the first 93 months, is substituted into the linear relation-

- ship between the coefficients to be predicted, the optimal orthogonal functions
and the values of the sunspot number. One equation is obtained for each of the
months for which data is available for extrapolation. Thus, we have 38, 76 and
93 equations for determining the two, two, and four unknowns for the first
quarter, second quarter and third quarter extrapolations, respectively. This

. overdetermined problem is solved by a standard least square fit procedure to
determine the best coefficients to satisfy the entire set of equations. These
coefficients are then assurned to be the correct coefficients for the entire cycle.
As in the case of the predictions the performance of the prediction can be evaluated
to a great extent by simply examining these coefficients. Again, the scatter plot
is a convenient way to examine them. For the case of the first and second quarter
extrapolations which are performed in two dimensions the scatter plot shown in
Figure 4. 38 is a complete comparison of the estimated and actual values of the
coefficients which will be used to predict this sunspot cycle. In the case of the
third quarter extrapolation it is a comparison of the dominant information; however,
two additional coefficients which are not shown on this figure will also be used in
the prediction and may result in slightly different performance than would be '
obtained from the examination of Figure 4. 38. Examination of this figure shows
that the 3rd quarter extrapolatzon is mgmﬁcantly better than either the first or
second quarter extrapolation in agreement with Figure 2.2. Itis also interesting.
'to note that extrapolation is the first pre‘dicti_on-t;echriique to give reasonably good
performance for cycle 19. :

The performance of each of these extrapolations for each of the d1mens1ons
considered on each of the learning and test cycles is summarized in terms of
the RMS errors between the estimated and actual cycles in Table 4.6. The
mean and the standard deviation of the RMS errors for the learning data are
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also presented on this table. As discussed in Section 3.4 these values of the
mean and standard deviation provide a validity criteria for the extrapolation
for data histories. For example, if the RMS error of the extrapolated portion
of a test history exceeds the mean of the RMS of the learning data plus twice
the standard deviation of this RMS error of the learning data one knows that
only 5 percent of the cases belonging to the population of the learning data could
have values of the RMS error which were this large. Thus, it is quite reasonable
to assume that this case is significantly different from the learning data and
caution should be exercised when using this extrapolation. Examination of the
RMS error for cycle 19 as compared to the means of the standard deviations
shows that this 95 percent confidence level is exceeded. This then is a strong
indication that cycle 19 is indeed an anomalous cycle. Thus, the ADAPT
validity criteria does appear to work for the extrapolation.

Figure 4. 39 through 4. 56 compare the extrapolated data histories with the

actual histories, with the anticipated two sigma variation in the prediction.
Figure 4. 39 presents the extrapolated sunspot cycle 19 and its two sigma

bounds based on the extrapolation of the first 38 months of the cycle. Figure

" 4.40 compares the extrapolated history with the actual data history. Here we
see the surprising result that despite the indication from the validity criteria
that cycle 19 is an odd cycle, we have an unusually good estimate of this cycle
when compared to other techniques. It must be pointed out that although this
estimate is quite good compared to other techniques it is not nearly as good as

. the estimates which can be expected by this extrapolation for normal sunspot
cycles. But even the first 38 months of cycle 19 provided sufficient information
to allow significantly better prediction of this cycle than any other technique has
been able to do by utilizing only data from preceding cycles.: This appears to be
an important attribute of the extrapolation technique, namely, that it has a better
chance of accounting for the anomalous cycle than the prediction techniques.
Figure 4.41 compares cycle 19 actual values with the estimated two sigma errors
that would be expected from the 38 month extrapolation. One would expect only
five to ten months during the sunspot cycle in which the two sigma bounds should
be exceeded. Examination of Figure 4.41 shows that the two sigma bounds are
exceeded for approximately 20 months of sunspot cycle 19. Thus, the validity
criteria indication that cycle 19 is anomalous and its extrapolatmn would be poorer
tha.n expected is ver1f1ed

The first quarter extrapolation of the 20th cycle and its expected two sigma

errors are presented in Figure 4.42. This cycle is compared with the actual
values in Figure 4. 43 and the predicted values are in good agreement with the
actual values. When one compares the actual values with the expected two sigma
errors in Figure 4. 44 one finds that the two sigma error is only exceeded two
times during this history. Thus, cycle 20 appears to be a reasonable extrapolation
based on just the first 38 months of the cycle. Figures 4.45 through 4.47 present

34



the same data for cycle 19 based on the extrapolation using the first 76 months

of the cycle. Here we see, as would be expected from examination of the optimal
functions, very good agreement between the estimated and the actual although we
still see an unexpectedly large number of cases for which the actual values
exceed the expected two sigma error bounds. Figures 4. 48 through 4.50 provide
the same information for the second quarter extrapolation of cycle 20 and the
conclusions are similar to the first quarter extrapolation with the exception

that the accuracy of the extrapolation has been somewhat improved.

Figures 4.51 through 4. 53 present the results of the third quarter extrapolation
of cycle 19. The results are very similar to the first and the second quarter
extrapolations of this cycle with the exception that the error bands have been
significantly reduced. Figures 4.54 through 4.56 present the third quarter
extrapolation of cycle 20 and again the only significant difference between the
third quarter extrapolation and the extrapolation using 76 or 38 months of the
cycle is the reduction in the two sigma error. '

.4.4 Comparison of Predictions

The preceding two sections have developed and presented the results of the
two ADAPT approaches to predicting future sunspot numbers. Section 4.2
presented the ADAPT predictive approach which provides a capability to per-
form long term predictions. Section 4.3 presented the ADAPT extrapolation
"approach to completing the present cycle. The detailed results of the pre-
dictions for cycles 19, 20 and 21 for these two methods have been given in
those sections. In this section we shall compare the results of the ADAPT
‘predictive and ADAPT extrapolative predictions with the simple and selective
regression models which have been used for predicting the sunspot numbers.

Comparison of Predicted Values

Figure 2.1 presents the comparison of the latest available estimate (June 1972)
with the ADAPT estimate for sunspot cycles 20 and 21. In examining this figure
it must be realized that the conventional prediction is for a 12-month runmng
average and evaluated quarterly, whereas the ADAPT predictions are for 81-
day running averages and evaluated:monthly. This difference has three major ‘effects -
on the predictions: the first is that the ADAPT predictions, being based on
shorter running averages and evaluated more often, tend to have more of the
detailed oscillations retained than the longer 12-month running average. The
second effect is that since the 12-month running average contains data from
earlier times the 12-month running average will reach a given sunspot number
later than the 81 -day running average. Third, the 12-month running average
will tend to lower the peak values and raise the minimum values assoc1ated with
the sun5pot cycle '
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Thus, we see there is considerable disagreement between the ADAPT methods
and the current predictions of the sunspot cycles. The most significant of these
is the disagreement in the time of the next minimum and therefore also the pre-
diction of the time of the next maximum. Figure 2.1 shows a minimum on the
current predictions of the 12-month running average of June 1975 as compared
to a minimum of February 1977 for the ADAPT predicted curve. However,
realizing that the ADAPT curve based on an 81 -day running average will reach
the minimum approximately 3 to 4 months earlier than the 13-month running
average of the same data, February of 1977 is equivalent to April to June of
1977 for the 12-month running average. Thus, we see that the ADAPT predic-
tions indicate that the end of cycle 20 will occur approximately 1 1/2 to 2 years
later than the current predictions.

The ADAPT predictions presented here are a composite of the extrapolation for
cycle 20 and the prediction for cycle 21. The extrapolation for cycle 20 is the
best available extrapolation based on extrapolation the first 93 months of cycle
20 to the end of cycle 20. Since extrapolation techniques are only suitable for
.completing the present cycle, the prediction of cycle 21 was based on the pre-
dictive approach. The two predictions are attached together at the point where
they each reach a value of approximately 5 for the sunspot number. This is
based on the result that the means of the minimum of the 81 -day running average
sunspot number for the first 18 cycles is approximately 5.

' The expected time difference between the 12-month running average and the 81 -
day running average implies that for the remainder of the present cycle one
would expect the estimated of the 12-month running average to remain higher than
the estimate of the 81 -day running average. Thus, the fact that the 12-month
running average lies slightly below the 81 -day running average in Figure 2.1 is
an indication that the difference between the present method of estimating sunspot
numbers and the ADAPT extrapolation of cycle 20 is somewhat greater than would
be indicated by Figure 2.1. Similarly, for the beginning of cycle 21 one would
expect the 12-month running average to lie underneath the 8l -day running average
and therefore Figure 2.1 indicates considerable difference in the estimates for
cycle 21. However, the major portion of this difference is due to the difference
.in the predicted time of the next minimum, i.e. the start of cycle 21. Clearly,
the approximately year and half to two years later start of cycle 21 predicted

by ADAPT accounts for the major difference between the estimates of cycle 21
based on ADAPT predictions and the conventional estimates. One other major
difference in the estimates for cycle 21 is that the June projection for cycle 21 -
indicates a maximum sunspot number for the 12-month running average of slightly
over 80 sunspots; whereas, the ADAPT prediction for cycle 21 indicates a maximum
of the order of 65 sunspots. This is particularly significant if one realizes and -
recalls that the 1 2-month running average should tend to have lower peaks than
the 81 -day runnmg a.verage
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Since the June projection of the remainder of cycle 20 and cycle 21 sunspot
numbers is a combination of the simple regression for the remainder of cycle
20 and the results of Reference 13 for cycle 21, it does not represent a fair
comparison between the results of Reference 13 and the ADAPT predictions

~ for the sunspot numbers through cycle 21. Figure 4.57 presents a figure
similar to Figure 2.1 which compares the best estimate presented in Reference
13 (see Figure 4.67 of Reference 13)with the ADAPT predictions. This figure
shows remarkable agreement between these two methods for the remainder of
cycle 20. The estimate provided by Sleeper remains just slightly above the
ADAPT 81-day running average for the remainder of cycle 20 which is exactly
what would be expected based on the fact that the Sleeper prediction is for the
12-month running average whereas the ADAPT prediction is for the 81 -day
running average. Cycle 21 comparison between these two methods is identical
to that in Figure 2.1 corrected for the approximately year and half to two-
year difference in start time for cycle 21. That is, the Sleeper prediction

for cycle 20 yields the same start time for cycle 21 as does the ADAPT extrapo-
lation on cycle 20. Thus, this presents a better comparison of the cycle 21

~ predictions based on the selective regression proposed by Sleeper which utilizes
only the 9 negative cycles to predict negative cycle 21. The only significant
difference between these two predictions is that the ADAPT predicts a lower
peak activity for cycle 21 than does the selective regression method.

\Comnparis"o'n of Expected Accuracy

The most significant way to compare the expected accuracy of the various
methods of predicting the sunspot cycles is to' compare plots of their 95%

. confidence bounds. These plots comparing the four ADAPT predictions, simple
and selective regression techniques based on 18 sunspot cycles are shown in
F1gure 2.2. The mean value of the first 18 cycles is presented as a solid curve
on this figure. The 3 dashed curves No. 1, 2, 3 represent the results of the
simple regression. The dash curve 1 represents the results of the simple re-
gression for pred1ct1ng the next-cycle based on a portion of the current cycle. -
‘Dash (-) curves 2 and 3 represent the results of predicting the remainder of the
present cycle starting at 51 and 84 months respectively. The curves cons1st1ng
only of plus (+) signs, known hereafter as the plus curves, present similar
results for the selectwe regression technique. Again, the plus curve identified
by Number 1 is the pred1ct1on of the next cycle from a portion of the current
cycle. The plus curve Number 2 shows the results for predicting the remainder
of the current cycle starting at month 90. The results for the S1mp1e and selectlve
regressmn have been taken from References 10 and 13..

The solid lines interrupted by plus signs (+), crosses (x)’,' squares ( O ), and
circles (O) present the 95% confidence bounds for the ADAPT predictions. The
solid line interrupted with plusses represents the ADAPT extrapolation based
on using only the first quarter of the sunspot cycle. The solid line interrupted
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by crosses represents the ADAPT extrapolation utilizing the first half of the
sunspot cycle and the solid line interrupted by squares indicates the ADAPT
extrapolation based on the first three quarters of the sunspot cycle. These
extrapolations are essentially based on the same information as the dash curves
2 and 3 and plus curve 2. Comparison of these six curves shows that in general,
with approximately half of the sunspot cycle available, the simple and selective
regressions can be expected to give better estimates than the ADAPT extrapola-
tions for periods of approximately 30 to 40 months. After that time the results
of the two approaches become quite similar until near the end of the cycle,
where the simple and selective regression approaches have difficulty associated
with the large variation about the mean being introduced by the following cycle.

Comparison of the solid line interrupted with squares with the dash line 3 and
the plus line 2 indicates that when approximately 80 months of the cycle are
available the selective and simple regressions only hold their advantage for
a period somewhat under a year after which the ADAPT extrapolation proves
~considerably better for the remainder of the cycle.

If one wishes to project from the present cycle to the next cycle the comparison
of the solid line interrupted by circles with the dash line 1 and plus line 2
indicates that the ADAPT prediction is significantly better for the first half

of the cycle and approximately equal to the other methods during the greatest

- portion of the second half of the cycle with the exception of the very back portion
of the cycle when the simple regression has difficulties associated with the large
variation expected around the beginning of the next cycle. It is interesting that.
.ADAPT prediction from the preceding two cycles performs as well or s11ght1y .
better than e1ther the first or second quarter ADAPT extrapolatmns

In the first. approximately 70 to 80 months of the cycle both the selective and
simple regression techniques have 95% error bounds significantly larger than
the ADAPT methods. The reason for this is apparent if one recalls the shape

of the first optimal function for representing the sunspot cycles. Figure 4.4
showed that the first optimal function is almost entirely composed of information
in the first 70 to 80 months of the sunspot cycle. Recalling that this explained
approximately: 75% of the variation from the mean, it is clear that any technique -
which tends to compensate equally throughout the cycle will make much larger
errors in this first 70 to 80 months due to the fact that this is where the greatest
variation lies.

The _simple and selective regression techniques are essentially methods of
utilizing the ‘average or mean of the preceding cycles as a basis for extrapolating
the present cycles. This can be seen by considering the regression curves
started at later dates in the cycle as indicated for the simple regression by the
dash curves starting with the numbers 2 and 3. The number 2 dash curve starts
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at approximately month 51 and by approximately month 80 has reached the

dash curve 1 which represents the results of extrapolating forward an entire
cycle. Dash curve No. 3 starts at approximately month 85 and reaches this
extrapolation of an entire cycle forward approximately at month 120. Similarly,
a selective regression prediction indicated by the plus curve 2 starting at month
90 also reaches the full cycle forward prediction based on the selective regres-
sion indicated by the plus curve 1 at approximately 120 month. From this we
conclude that the effect of the regression portion of the simple and selective
regressions is to buy 30 to 40 months of imptrovement over simply assuming
that the next sunspot number is the mean of all the preceding sunspot cycles.

In other words, the simple and selective regressions amount to an extrapola-
tion procedure to account for the additional information that the knowledge of
the present position of the sunspot cycle provides the user. We conclude that
we would achieve similar results to both the simple and selective regression

by applying these regressions over no more than a three or four year period
and at the end of this three to four year period simply assuming the remainder
of the cycle is the mean cycle. '

Thus, it appears that the best methods currently available to predict future
sunspot numbers are.as follows: The prediction over the next three to six
month period from any given time is presently best made using an interpola-
tion between the predicted value and an extension of the present value using

the predicted variation. If one has more than approximately half of the present
" cycle available the prediction to the end of the present cycle can best be accom-
plished by usirig‘ the ADAPT extrapolation. Projection of the next cycle regardless
of the position in the present cycle is best made by using the ADAPT prediction
"algorithms. ‘ -

The preceding results also provide strong indications of how the prediction of
future sunspot numbers can be further significantly approved. The first major
improvement which can be made to the ADAPT techniques is to incorporate some
extrapolative capability to make use of the knowledge that the sunspot number in
the immediate future is very strongly influenced by the present value. This is
‘particularly true because of the fact that one is using running averages and it.is .
not possible for radical changes in the sunspot number to occur in very short -
times. Thus, it is recommended that an interpolative procedure be added to the
ADAPT extrapolations to better account for the current value of the sunspot
number. ‘

The preceding 2 cycles contain extremely important information for the prediction
of the sunspot cycle. On the other hand, the ADAPT extrapolations have shown
that considerable advantage can be gained by utilizing information in the present
sunspot cyclé. " Thus, it is recommended that the best procedure for estimating
future sunspot numbers is to develop an ADAPT extrapolative procedure utilizing

39




the preceding 2 cycles plus the available portion of the present cycle. For

long term estimates, the ADAPT prediction algorithms based on the preceding
two cycles will give the best results. The fact that one has reasonably good
estimates based on predicting the current cycle from the preceding two cycles
suggests that this procedure should be good for a period of at least 22 years

and probably significantly more. The next section of this report will summarize
these recommendations as well as outline a program to implement it.

Table 2.1 presented a more compact summary of the errors of the various
prediction techniques. The first column in this table presents the RMS error
defined in Section 3 of the one sigma error band relative to the estimated
value of the sunspot number. The second column presents the RMS error of
the learning data when one assumes the estimate to be the mean of the learning
data and for the ADAPT predictive techniques. An approximation to the-RMS
error is equal to the reduction in RMS error expected for particular algorithm
times the RMS error achieved by using the mean of the sunspot cycles. This
estimate of the RMS error is presented in column 3 which is headed 234(J.

- This table also préesents the RMS error observed for predictions of cyclés

19 and 20 utilizing each of the methods.:

The methods considered are simply taking the sunspot number as the mean

of the corresponding point in the learning data histories, the simple regression
over the period of September 1971 to September 1983, and the selective regres-
- sion over the period of March 1972 to March 1984. These are compared with
the four ADAPT estimates: 1) ADAPT predictions, 2) the ADAPT extrapolation
over the first quarter cycle, 3) the ADAPT extrapolation using first and second
_quarters, and 4) the ADAPT extrapolatmn using the first three quarters.

Table 2. 1 prov1des further venﬁcatmn of Fxgure 2. 2, i.e. ,.that considering
the entire cycle one finds that the best prediction is made by the ADAPT
‘extrapolation using the third quarter data, the next best is the second quarter
'extrapolation and the third best is either the ADAPT prediction or the ADAPT
extrapolation of the first quarter. It is clear from the preceding discussion
of Figure 2.2 that these gross summaries do not give the entire story because
there are regions in which some of the techniques which show up relatively
poorly as a predictor of an entire cycle show certam s1gn1ficant advantages
for a portxon of the cycle.

A more detailed examination of the performance of the ADAPT derived prediction
on the learning data can be made by comparing the actual and predicted learning
sunspot cycles.. The information required to perform this comparison for the
ADAPT prediction and third quarter extrapolation algonthm is presented in

) Appendlx D.
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4.5 Recommendations

The application of ADAPT to estimating future sunspot cycles which has been
described in Section 4 leads to recommendations in two general areas. The
first is that of defining how one should best make estimates of future sunspot
numbers using the available algorithms. The second is the definition of analysis
which should lead to significant improvement in the available algorithms for
estimating future sunspot numbers. :

Sunspot Estimates Using Available Algorithms

Based on the preceding analysis it is recommended that the prediction algorithm
presented in Tables 4.3 and 4.4 be used to predict all future sunspot cycles
(i.e., cycles beyond the current cycle) and for the first 75 months of the current
cycle. For months 75 through the end of the current cycle the ADAPT extrapola-
tion as described in Section 4.3 and Appendix C should be used. In both cases,
the immediate future, that is the next 3 to 6 months, can be improved by inter-
polating between the predicted value and the value which would have been obtained
by extending the current sunspot number utilizing the predicted variation for the
next six months.

The short term (i.e. six months) correction to the ADAPT predictions has been
recommended to overcome the disadvantage which ADAPT has as a result of pre-

- dicting the entire sunspot cycle without insuring that the prediction actually goes
through the most recent known values of the sunspots. It is believed that if the
above recommendations are followed, predictions having approximately a factor
.of three improvement over any currently available can be achieved. It is also
been shown that these prediction techniques offer an opportunity to provide rea-
sonable predictions as much as two or more cycles in advance of the current sun-
spot cycle.

Improvement in Sunépot Prediction ‘Techniques

Although the ADAPT analysis to date has produced significant improvement in

the ability to estimate future sunspot numbers, considerably greater improve-
ment can still be achieved by making use of what has been learned from this

study and from the studies outlined in Reference 13. Thé improvements in pre-
diction capability can be expected in the two areas of methodology and an improved
data base. - - . ’ :

The present study has shown that the two cycles preceding any given cycle con-
tains significant information for predicting that cycle. Furthermore, the re--

" sults from cycle 19 showed that this information is not completely redundant
with the information contained in the first part of a sunspot cycle. Thus, it fol-
lows that one could significantly improve the extrapolations which have already
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been quite successful using the ADAPT approach by using a 3 cycle rather

than a 1 cycle base for the extrapolation. Both the extrapolation and the pre-
dictive approaches can be improved over the present results by including a

" procedure to account for the fact that the present value for the sunspot cycle

is known and in general different from the present value estimated by the ADAPT
approach. It is also possible to make use of the fact that negative sunspot
numbers are inadmissible. This is perhaps more important for the studies
which will be disucssed in Section 5 but could make some additional contribu-
tion to the accuracy of the estimates of future sunspot cycles. To incorporate
this in the extrapolation algorithm requires the use of a nonlinear programming
analysis in place of the least square fit for the extrapolation.

In addition to improving the methods as outlined above, it is clear from the
results from the present study and of the work in Reference 13, considerable
additional information is available which can be used to improve sunspot pre-
dictions. The first thing that should be included in the predictions is all of the
available sunspot data. Avco believes that the present study has adequately
demonstrated the advantages of the ADAPT approach to predict future sunspot
cycles and any future applications should include all of the available data. Thus,
it is proposed that as a minimum cycles 19 and 20 be included in the base for
developing any further algorithms. In addition, Reference 13 has shown that
there may be a high correlation between sunspot cycles and such quantities as
the angular momentumn of the solar system (dP/dt), the position of the sunspot
_ 'cycle in the 180 year period, the polarity of the expected sunspot cycle and the
- mode classification of sunspot cycle. With the exception of the mode of the sun-
spot cycles, all of these quantities are known prior to the beginning of the pre-
diction task.. They may therefore be included in the data vector used to predict
the sunspot cycle. It should be noted that the angular momentum is a data history
in itself and may be included in the same way as the preceding sunspot cycles.
It is suggested that an annual measure of angular momentum of the solar system
for the preceding two cycles as well as for the period over which the sunspot
history is to be predicted should be included in the data history. The position in
- the 180 year sunspot cycle should be included in two different ways to account
for possible nonlinear effects. The first is simply to assign a value to this
variable ‘equal to the number of months from the start of the most recent 180
year period to the start of the present sunspot cycle. In addition to this, 16
binary variables should be introduced which have the value of zero except for
that variable corresponding to the position (i.e. number of cycles since begin-
ning of the 180-year history) for the sunspot cycle being predicted. Inclusion
of these additional variables in the derivation will probably lead to improved
predictions, and at the very least provide a conclusive determination of the
importance of these variables to the estimation of sunspot number. - '

" The p:eseht,study has indicated that there is a reasonably high probability that ‘
application of the ADAPT techniques to the available data plus an analysis similar
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to that carried out in Reference 14 can result in the addition of a signi-

ficant number of sunspot cycles to the learning data. Justification and approach
to accomplishing this will be presented in more detail in Section 5; however,

to the degree to which this is successful more learning data will be available

at the conclusion of such an effort. Clearly, this additional learning data
should be included in the development of algorithms for predictions of future
sunspot cycles. It may be possible to recover sufficient data to make the
estimate of future 180 year cycles feasible. If this is the case, the prediction
of the next 180 year cycle provides additional information which should be
incorporated in the data history as learning data.

Based on the preceding discussion, it is recommended that a two-phase pro-
gram be implemented to upgrade the prediction of future sunspot cycles. The
first phase would be aimed at immediately improving techniques for estimating
sunspot cycles. The second phase would be aimed at a long term upgrading of
the techniques for estimating sunspot cycles, by making use of additional informa-
tion and techniques such as the recovery of additional sunspot cycles prior to
.1750 which would take a considerable length of time to achieve. This two-phase
program is recommended since it is believed that significant improvements,
even relative to the new ADAPT derived algorithms, are possible in a matter

of months. This can be accomploshed by using all of the currently available
data, the three cycle base for extrapolation, and the available auxiliary mforma-
tion such as polarity, angular momentum and position in 180 year history. On
"the other hand, it is also believed that after the use of the ADAPT techniques to -
carry out the recovery of additional sunspot cycles further significant improve-
ments: especially in the long range prediction (greater than 15 to 20 years) of

‘the sunspot cycles are likely. -

Immediate improvements are recommended for both the extrapolation and pre-
diction techniques using the ADAPT technology. For both the extrapolation and
prediction techniques it is recommended that the data base consist of all available
data from cycles 0 through 20, as well as the polarity and position in 180 year

- cycle of the cycle being predicted. In addition, the angular momentum of the
solar system over the period of the preceding two cycles and for the period of

the cycle being pred1cted should be 1nc1uded in the data history.

The extrap‘ola’.’tion should be based on the use of the data from the preceding

two cycles as well as the available portion of the cycle being predicted. In
addition a short term correction algorithm should be developed to account for

the fact that the present values of sunspot number is known but slightly different
from the extrapolated value for the present sunspot number. This correction
 algorithm would take as input the predictions over the next six to.twelve months
and the actual value and'provide as Outpil,t corrections to the predicted values to
account for the present actual value of the sunspot numbers. The ADAPT pre-
diction algorithms should be developed exactly as they were in the present study
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with the improved data base described above. Analysis should also be carried
out to determine the feasibility and complexity associated with introducing the
constraint of positive values of the sunspot numbers into the extrapolation
algorithm.

The long term improvement in sunspot prediction accuracy should rest pri-
marily on the addition of the data developed by the studies recommended in
Section 5. When these studies are completed it is recommended that the new
‘data be used to develop improved algorithms in essentially the same manner
as outlined above. It may also prove desirable to develop algorithms for pre-
dicting the 180 year cycle if sufficient sunspot data can be recovered. It also
may prove possible to recover annual data considerably further back in time
than monthly data in which case algorithms should be developed to predict annual
sunspot averages for long periods in the future. Clearly, the detail definition’
of the phase two tasks must await the completion of the studies for recovering
additional sunspot cycles which will be discussed in Section 5.
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. TABLE 4.1

SUNSPOT CYCLE START AND END DATES AS USED IN ADAPT ANALYSIS

CYCLE NO. - " BEGIN DATE - . - END DATE

1 June, 1755 Aug., 1766
2 Aug., 1766 Sept., 1775

3 Sept., 1775 July, 1784

4 July, 1784 - - July, 1798

5 July, 1798 Sept., 1810
6 Sept., 1810 - June, 1823

7 June, 1823 May 1834 =
8 -~ May, 1834 Oct., 1843

9 ‘Oct., 1843 Sept., 1855
10 Sept., 1855 Feb., 1867
1 Feb., 1867 . .. March, 1879
12 March, 1879 - April, 1890-
13 April, 1890 June, 1902
14 ‘June, 1902 June, 1913 .
15 - June, 1913 March, 1924
16 - March, 1924 - Dec., 1933 .
17 - Dec., 1933 June, 1944
18 - June, 19%4 June, 1954
19 June, 1954 - - Sept., 1964
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TABLE 4.5

COMPARISON OF RMS ERROR AND REPRESENTATION USING 6 DIMENSIONS

CYCLE NO. RMS-ERROR Q
. n-1, n-2
(n) ErMs
3 26.13 .781
4 18.51 . 890
5 15.79 . 950
6 8. 85 . 963
7 21.28 . 950
8 20. 56 . 951
9 19. 68 . 923
10 11, 88 . 978
11 : 14. 83 . 904
12 23.51 . 815
13 14, 81 .780
14 19. 81 : . 552
15 12, 47 . . 698
16 20.78 , . 627
17 11,23 .680
18 19,17 . 801
Avg. 17.5 .83
Std. Dev. 4.7 .13
19 44, 3 . .74
20 13.7 : .91
21 - .92
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SUMMARY OF RMS ERROR, Egpys¥, FOR EXTRAPOLATION OF SUNSPOT CYCLES

. . |
No. Dimensions i

Cycle # E2
1 11.
2 15.
3 21.
4 11 10.
5 8
6 . 8
7 9
8 P22
9 II 26.

10 14.
11 11 P17,
12 P11,
13 P13
14 P12,
15 16,
16 15,
17 i 15,
18 11 | 14.
Mean ; 14
o P4
1911
20 II §

|

19
51
50
21

.25
.91
.09
.78

36
57
31
09

.15

13
23
16
53
12

.62
.83

[PE—
N~

et

W NN NN GNP WO N

[

13.
8.

.53
.67
.45
.46
.76
.63
.7
. 41
.56
.11
.21
. 96

.71
.49 |
.32
. 46

.53
.21,

|

11.
2.

. 87
.5
.55
.26
. 81
.39
.93
.67
.38
. 89
.05
. 87
.32
. 69
.47
.72
.94

13
49

27 /18.4
111.3

8

i

TABLE 4.6

2

. 84

.11
.74
.22
.99
. 69
.52

.39
.71
.90
.71
.77
.50
.73
.19

Ey = Error in X-Quarter Extrapolation

49C

- -
t1

ONO O N NN NO WO =W

[

.54
.34
.67
.61
.94
.51
.34
11
.41
. 06
.68
. 69
.19
.18
.23
.26
.42

. 07

. 07
.79

[
O~ OO

[
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QO W WD 00O~ O WO

P
W = W

~10.
. 2.28
18.
10.

. 45
. 84
.88
.10
.80
.38
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.03
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.15
.27
. 66
.27
.44
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.20
.39

21

38
5

o
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P =
w = W O

—
N O
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FISURE 4,1

CIOMPARISON - END OF MONTH \"ALU‘E OF 81-DAY RUNNING AVERAGE WITH 3-MONTH
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FIGURE 4,2 SINGLE CYCLE AVERAGE INPUT VECTOR
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INFORMATION ENERGY
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FIGURE 4,3 SINGLE CYCLE INFORMATION ENERGY
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NP2 COLUMN OF H
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FIGURE 45 SINGLE CYCLE SECOND OPTIM U FUNCTICN
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FIGURE 4,6 SINGLE CYCLE THIRD OPTIMUM FUNCTION
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FIGURE 4.7 SINGLE CYCLE FOURTH OPTIMUR FUNCTION
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NPE COLUMN OF H

FIGURE 4,9 SINGLE CYCLE SIXTH OPTINUM FUNCTION
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SUNSPOT NUMBER

FIGURE 4,10 DOUBLE CYCLE AVERAGE INPUT VECTCR
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FIGURE 4,11 DOUBLE CYCLE INFORMATION ENERGY
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NP3 COLUMN OF H
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NP4 COLUMN OF H
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FIGURE 4,16 DCUBLE CYCLE FIFTH OPTIMUM FUNCTICN
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NP6 COLUMN OF H
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FIGURE 4,18 RELATIVE IMPORTANCE SPECTRUM FOR CANONICAL PREDICTIGi OF

FIRST COEFFICIENT 1
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FIGURE 4,19  RELATIVE IMPORTANCE SPECTRUN FOR CANONICAL PREDICTION OF )
[ SECOND CGEFFICIENT
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FIGURE 4, 20 RELATIVE I PORTANCE SPECTRUN FOR CANONICAL PREDICTION OF
3 THIRD COEFFICIENT -
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FIGURE 4,21  RELATIVE IMPCORTANCE SPECTRUM FOR CANGMICAL PREDICTION OF ]
[ FOURTH CCEFFICIENT
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FIGURE 4,22 RELATIVE IMPORTANCE SPECTRUM FOR CANONICAL PREDICTION OF
FIFTH COEFFIC IENT o]
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FIGUPE 423 RELATIVE IMPCRTANCE SPECTRU FOR CANORICAL PREDICTION OF
SIXTH COEFFICIENT
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__FIGURE 4,24  RELATIVE IMPORTANCE SPECTRUM FOR PREDICTION OF FIRST ___
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__FIGURE 4. 2%
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FIGURE 4,26  RELATIVE IMPORTANCE VECTOR FOR PREDICTION OF FIRST COEFFIC IERT
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FIGURE 4,27 RELATIVE IMPORTANCE VECTOR FOR PREDICTION OF SECOMD COEFFIC IE T
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[ FIGURE 428 CQMPARISON OF PREDICTED AND ACTUAL FIRST COEFFICIENT |
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[~ FIGURE 4,29 COMPARISON OF PREDICTED AND ACTUAL SECOND COEFFICIENT ]
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FIGURE 431  PREDICTED (USING CYCLES 17 AND 18) SUNSPOT NUMBER AND 2-SIGMA
ERROR BOUNDS FOR CYCLE 19 -
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__FIGURE 4,32 COMPARISON OF PREDICTED AND ACTUAL SUNSPOT NUMBER FOR ;

CYCLE 19
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-r FIGURE 4,33 COMPAR ISON OF ACTUAL SUNSPOT NUMBER AND 2-SIGMA BOUI;DS
: “ON PREDICTIONS FOR CYCLE 19
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FIGURE 4,34 PREDICTED (USING CYCLES 18 AND 19) SUNSPOT NUMBERS AND 2-SICMA
ERROR BOUNDS FOR CYCLE 20 |
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- FIGURE 4,35 CCMPARISON OF PREDICTED AND ACTUAL SUNSPOT MUMBERS FOR |

CYCLE 20
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FIGURE 4,36 COMPARISON OF ACTUAL SUNSPGT NUMBER AND 2-S1GMA BOUNDS OM
PREDICTION FOR CYCLE 20
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FIGURE 4,39  1ST QUARTER EXTRAPOLATION OF SUNSPOT HUI.,PER AND 2-S1GMVA ERRZOR
BOUNDS FOR CYCLE 19
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FIGURE 4,40  COMPARISON OF ACTUAL AND 1ST QUARTER EXTRAPOCLATIOMN OF SUNSPOT

CYCLE 19
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FIGURE 441 COMPARISON OF ACTUAL AND 2-SIGVA ERRCR BOURNDS FOR lSI

B QUAPTER EXTRAPCLATICN OF SUNSPCT CYCLE 19
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FIGURE 4,42 1ST QUARTER EXTRAPOLATION OF SUNSPOT NUMBER AND 2-S1GVA ERROR
BOUNDS FOR CYCLE 20 |
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FIGURE 4,43- COMPARISON OF ACTUAL AND 1ST QUARTER EXTRAPOLATION GF SUfIS POT

CYCLE 20
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FIGURE 4, 44

ese OFF-SCALE OATA oo

SUNSPOT NUMBER

COMPARISON OF ACTUAL AND 2-SIGMA ERROR BOUNDS FOR IST

QUARTER EXTRA POLATION OF SUNSPOT CYCLE 20
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FIGURE 4,45  2MD QUARTER EXTRAPOLATION OF SUNS POT NUMBER AND 2-SIGiIA

SUNSPOT NUMBER

ERROR BOUNDS FOR CYCLE 19
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__FIGURE 4, 46 COMPARISON OF ACTUAL AND 2ND QUARTER EXTRA POLATION OF _
SUNSPOT CYCLE 19
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FIGURE 4,47  COMPARISON OF ACTUAL AND 2-S1GMA ERROR BOUI DS FOR 2i. D

B - QUARTER EXTRAPOLATION OF SUNSPCT CYCLE 19 .
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FIGURE 4,43  2ND QUARTER EXTRA POLATION OF SUNSPOT NUMBER AND 2-S IGMA

( | ERROR BOUNDS FOR CYCLE 20
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FIGURE 4,49  COMPARISON OF ACTUAL AND 2KD QUARTER EXTRAPCLATICH OF -

[ SUNSPOT CYCLE 20
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~ FIGURE 4,50  COMPARISON OF ACTUAL AND 2-S1GMA ERROR BOUNDS FOR 21D _
. QUARTER EXTRAPOLATION OF SUNSPGT CYCLE 20
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FIGURE 451  3RD QUARTER EXTRAPOLATION OF SUNSPOT NUMBER AND 2-SIGMA

r ERROR BCOUKDS FOR CYCLE 19
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FIGURE 4,52 COMPAR1SORN OF ACTUAL AND 3RD QUARTER EXTRA POLATION OF
SUNSPOT CYCLE 19 ]
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FIGURE 4,53  COMPAR ISOi OF ACTUAL AND 2-SIGIA ERROR BOUMDS FOR 3RD

QUARTER EXTRAPCLATIORN OF SUNSPCT CYCLE 19
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FIGURE 4,54 3RD QUARTER EXTRAPGLATION OF SUNSPOT NUMBER ARD 2-S1GIA
ERROR BOUNDS FOR CYCLE 20 1.
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FIGURE 455 COMPARISON OF ACTUAL AND 3RD QUARTER EXTRAPOLATICI] GF SUTISPOT
CYCLE 20
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e

SUNSPOT NUMBER

FIGURE 4,56  COMPARISON OF ACTUAL AND 2-S1GA ERROR BOUIDS FOR 3RD

QUARTER EXTRAPOLATION OF SUNSPOT CYCLE 20
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5.0 ANALYSIS OF SUNSPOT DATA

5.1 Estimate of Sunspot Cycle Properties

The ADAPT regression techniques provide a capability to estimate character-
istics of future, or past, sunspot cycles, based on the present or previous
sunspot cycles and auxiliary information. Three characteristics which appear
particularly useful to predict are the period, the maximum sunspot number,

and the time of the maximum for the preceding or succeeding sunspot cycle.

This information, although it may be extracted from the prediction of the

sunspot numbers for the cycle, is useful as an independent prediction for two
reasons. The first is that the selection of these parameters from the predicted
sunspot number is often somewhat ambiguous. For example, consider the task
of estimating the period of the cycle. The estimated cycle approaches zero and
in some cases drops below zero sunspot number. The exact intercept which

one should take as the end of the cycle is not absolutely clear. Similar problems
occur when one adds the error bands to estimating the exact time of maximum

or value of maximum. Thus, the direct prediction of these quantities could over-
‘come some of the ambiguity in estimating them for cycles which have been
predicted.

The second and perhaps a more important reason for this prediction capability

is to predict characteristics of future or past cycles for which the sunspot
numbers have not yet been predicted. Reference 13 has shown that certain
characteristics of sunspot cycles behave in an orderly way. Figures 5.1 and

5.2 which have been taken from Reference 13 illustrate such behavior. Figure 2.1
shows the peak sunspot number as a function of date for the negative cycles. Exam-
ination of this figure shows a very orderly process over a 180 year cycle. A
similar figure for the positive cycles is presented in Reference 13. However,

the positive cycles have a much less orderly behavior. The solid squares on
Figures 5.1 and 5. 2 represent the updated _poSitions for cycles 20 and 21 based

on the most recent ADAPT predictions presented in the preceding sections. It
should be recalled however, that the ADAPT predictions are for 81 -day running
averages rather than for 12-month running averages. The ADAPT points shown
in Figures 5.1 and 5.2 have been corrected to 12-month averages. The polarity
and mode for cycle 20 remains.the same as estimated in Reference 13 and, in
fact, the new values show better agreement with these correlations than the pre-
dictions of Reference 13. -

The ability to predict the maximum sunspot number, the period, and location of
the maximum allows one to place the next sunspot cycle on one or both of these
types of figures. From this one can obtain an estimate of how typical the next
cycle will be and thus have an additional validity criterion. In addition, the rela-
tionships between these quantities indicated by these figures allows one to correct
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" these predictions by moving the point to a region on the plots consistent with

the behavior of the previous sunspot cycles. This improved estimate of the
period, the maximum sunspot number and the time of maximum sunspot number
could be used as input data to the prediction of the sunspot cycle. It would
probably add information which is not used in the present ADAPT predictions
since it involves a very nonlinear procedure.

The present analysis was concerned primarily with development of techniques
for predicting future cycles, and thus very little effort was spent on predicting
properties of the cycle in general. However, a good estimate of the period of
a cycle is required to estimate the next succeeding cycle. The simplest method
for predicting the period of a sunspot cycle for which one has estimated the sun-
spot numbers as a function of time is to examine this estimate and determine
when it reaches zero. The difficulty with this approach is in the definition of
when the predicted sunspot cycle actually reaches zero. Because there is always
a finite error to be expected it is extremely unlikely that the sunspot cycle will
reach a true zero at the end of the cycle; in fact the minimum for the 81 -day
running average over the first 18 cycles is a sunspot number of 5.3. Thus, it
‘appears more reasonable to use the crossing of 5.3 as the nominal estimate of
the period of the sunspot cycle. Table 5.1 presents a comparison of using the
crossing of sunspot numbers 3, 5, and 10 as an estimate of the sunspot period
over the learning set of cycles 1 thru 18. We see that the use of sunspot number
of 3 tends to underestimate the threshold and use of a threshold of a sunspot num-
ber of 10 tends to overestimate the threshold. The standard deviation of the error
in the estimate of the period actually tends to be a minimum between sunspot
numbers of 5 and 10. Thus, we shall use the general ground rule for this pro-
cedure that the intercept of the prediction with the sunspot number of 5 constitutes
the end of the sunspot cycle and defines the period of the sunspot cycle. A similar
analysis using the third quarter extrapolated éunspot histories indicated that the
best estimate for the extrapolated histories is obtained by using as the intercept
5 above the minimum sunspot number. This modification was required since
some of the extrapolated histories produced small negative sunspot numbers.

Algorithms were also developed to predict the period of another cycle both from
the preceding two cycles and from the coefficients of the cycle itself. The latter
- prediction algorithm was made for use with the extrapolation predictions where
one has estimates of the coefficients of the cycle for which one would like to know
the period. The prediction of the period of the next sunspot cycle is based on a
two cycle base and allows one to predict the period of the future sunspot cycle
for which the coefficients have not yet been estimated. :

Figures 5.3 through 5.7 present the performance and relative importance informa-
~tion for the algorithms developed to predict the period of a sunspot cycle using the
ADAPT estimate of that sunspot cycle. Note that one could either use the extrap-
olated estimate or the predicted estimate with this algorithm to find the period
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of the sunspot cycle. Figure 5.3 presents a plot of the estimated and the actual
values of the period for sunspot cycles 1 through 18 which were used as learn-
ing data for developing this algorithm in six dimensions. The solid line on
Figure 5.3 is the line of perfect agreement. The dash lines indicate a one-
year error in estimating the length of the sunspot cycles. Only three cycles
have their period estimated in error by more than one year using this algo-
rithm. The 2-sigma error for this algorithm is approximately 18 months.
The relative importance vector for this algorithm is shown in Figure 5.4. As
before this vector shown the importance of each region in the estimate of the
sunspot cycle to determining the period of that sunspot cycle. The dot product
of the relative importance vector with the data history yields a number which
differs from the period estimate by a known constant. This algorithm is sum-
marized in Table 5. 2 which has been designed to allow one to implement the
algorithm without further reference to this report. The relative importance
spectrum associated with this algorithm is shown in Figure 5.5. Here we

see that the dominant term in the optimal series for determining the period is
- the sixth term. The second, fourth, and fifth terms also make contributions
to this estimate. Thus, we conclude that one can make a better estimate of
the period using six dimensions than one would using only two dimensions. To
verify this an algorithm was developed in two dimensions. The estimated ver-
sus actual predictions of the period is shown in Figure 5.6 for the two dimen-
sional algorithm. Again the dash lines indicate an error of one year by more
than a year. .The 2-sigma variation of the estimate of the period using this
algorithm is 24. 4 months. - Thus, we have verified the conclusion suggested
by examination of the relative importance spectrum.

The algorithms derived on the single cycle base allows one to predict the period
which should be associated with any estimated sunspot cycles. Itis also desirable
to be able to predict the period of the next sunspot cycle without making the pre-
diction for the cycle itself. To do this it was decided that the best predictor
would be the same predictor used to predict the next sunspot cycle, namely, the
double cycle base. Thus, an algorithm was developed using the double cycle

base to predict the period of the next cycle. This algorithm was developed in
exactly the same way as the algorithm to predict the coefficients of the next sun-
spot cycle. The performance of this algorithm, when developed in six dimensions,
is shown in the plot of the estimated versus actual periods in Figure 5.8. The
dash line shows the one year error bands and we see that the predicted periods
for four cycles have errors greater than one year. The 2-sigma error for this
prediction is 20.4 months. Figure 5.9 shows the relative importance vector for
predicting the period of the next sunspot cycle using the preceding two sunspot
cycles. It is'interesting to note that both of the preceding sunspot cycles make

a significant contribution to the estimate of the period of the next cycle. The
most dominant half cycle in the estimate is the first half of the second cycle pre-
ceding the cycle for which the estimate is being made. The least important half
cycle is the second half of this same cycle. This relative importance vector
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provides further evidence of the wisdom of selecting the two preceding cycles
basis for predicting information regarding a sunspot cycle, rather than
utilizing just the preceding cycle. Table 5.3 presents the detail instructions
for applying this algorithm for predicting the period of future sunspot cycles.
Figure 5,10 presents the relative importance spectrum associated with this
algorithm for predicting the period of a sunspot cycle based on the preceding
two sunspot cycles. This relative importance vector shows that the most
important term in the double cycle base for predicting the period of the next
cycle is the third term and that the first and fourth terms also make significant
contributions to this prediction.

We have presented three general methods by which the period of a sunspot
cycle may be estimated: 1) The intercept of the estimated cycle with the
threshold sunspot number, 2) Utilizing the estimated cycle in the ADAPT
single base period prediction algorithm presented in Table 5.2, and 3) The
prediction of the period directly from the preceding two sunspot cycles using
the algorithm presented in Table 5.3. Table 5.4 compares the performance
of these three methods in terms of the standard deviation of the error based
on the learning data and the performance in predicting the period of cycle 19.
The predictions for the period of cycles 20 and 21 are also included. It is
interesting to note that the period for both cycles 4 and 9 was underestimated
by the prediction based on the preceding two cycles. Since both the analysis
of Reference 13 and the scatter plots obtained in this study indicate cycles 4
and 9 are similar to cycle 20. This suggests that even the estimates of a
significantly longer cycle 20 reported here, might actually be underestimates
of the length of cycle 20.

5.2 Rearward Predictions

Since the methods investigated in this study have shown better than a factor of

two improvement in the ability to predict the sunspot numbers, and the addition

of data such as the angular momentum of the solar system can be expected to
significantly enhance this improvement, it is apparent that the recovery of earlier
sunspot information can be significantly improved by the application of these
techniques to estimating sunspot cycles in a rearward direction. This is extremely
important since it will increase the amount of learning data available. There is
confirming data for sunspot averages based on historical information such as the
auroral displays. Others, for example see Reference 14, have shown that this
information can be combined with even relatively crude estimation techniques for
recovering estimates of the sunspot behavior as early as 600 B.C. Thus, the
ability to accurately predict in a rearward direction would allow one to fill in

the gaps between the available observations more accurately. It appears likely
that the periods and perhaps maximum sunspot number would be easiest to re-
cover. The next most likely quantity to-be estimated in a rearward direction is

See Appendix D for further discussion of this point.
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the annual sunspot numbers. The ability to estimate the 81 -day running
averages to significantly early dates will depend greatly on the ability to
develop algorithms which can make use of the annual information to estimate
the monthly information. Since it is unlikely that there will be observations
which can be useful in pinning down monthly values other than through the
annual averages, it is unlikely that the learning data for the 81 -day running
averages can be extended much earlier than 1700. On the other hand, it is
quite likely that at least 100 and maybe several thousand years of additional
annual data can be obtained.: If this is the case, and if it can be shown that
the annual data is useful in predicting the monthly data, this annual data can
then be used to predict forward beyond cycles 20 and 21 and then used as
input to the monthly predictions for the forward-running information. Thus,
the development of rearward prediction algorithms and the use of these
algorithms to recover as much of the annual sunspot history prior to 1700

as possible should significantly improve the ability to make long range pre-

" dictions of sunspot activity.

There are additional advantages to carrying through this rearward prediction
over a significant length of time. For example, the availability of solar
activity for a significant length of time (i.e., thousands of years) could pro-
vide sufficient information that this activity could be incorporated into stellar
models. The verification of stellar model predictions of solar activity would
be a major breakthrough in the understanding of stellar models and in the
ability to project the effect of the sun on the solar system's environment for
the distant past and the very distant future. Another potential benefit from
studying the sunspot cycles over a significant length of time is the verification
of the relationship between the angular momentum of the solar system and the
sunspot cycles. If this proves to be valid, it offers an opportunity to use the
stellar activity as a basis for inferring information about possible planetary
systems beyond our solar system.

Although not required by the present study, it was possible to incorporate pre-
liminary analysis of rearward predictions during the early exploratory studies
as part of the development of exploratory representations. As a result of this
a preliminary base using cycles 1 through 19 suitable for rearward predictions
-'of sunspot cycles was developed and its major characteristics are presented in
Figures 5.11 through 5.17. The major difference between this base and the
single cycle base used for the forward predictions is that the start of the sunspot
history is left open instead of the end, and the end point of the sunspot history

" were selected as month number 180. The sunspot cycle was then plotted with
zeros in those month from zero until the first sunspot of the history. This had
the effect of more highly organizing the variation of the back half of the sunspot
cycle since they were all forced through point 180 and disorganizing the first
half of the sunspot cycle. The average of the cycles 1 through 19 constructed
in this manner is presented in Figure 5.11.
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The ADAPT representation for the cycles 1 through 19 was then constructed

by subtracting the average of cycles 1 through 19 presented in Figure 5.11

from each of the cycles and processing the resulting histories in the ADAPT
programs to find the optimum representation. Figure 5.12 presents the
information energy as a function of the number of terms retained in the optimal
series representation. We see that for this base the first term contains
approximately 50% of the information as compared to approximately 60% for

the forward facing representation. The second term contains approximately
29% as compared to 18% for the forward facing sunspot cycles and the third
term contains approximately 9%. Again there appears a second break at the
fifth term in this history. By far the greatest amount of the information,
namely 88%, is contained in the first three terms of this history. The first
five optimal functions are presented in Figures 5.13 through 5.17. Comparison
of Figure 5.13 with Figure 4.3 shows that the first term of the series now con-
tains information over almost the entire cycle. The second term of the series
shown in Figure 5.14 looks very much like the first term in the forward running
sunspot cycles. This behavior is a direct result of the enhanced order of the
second half of the sunspot cycle at the expense of the first half. The fact that
the rearward representation has only 50% of the information in the first term

is an indication that the most natural way to present the data is in the forward
direction. The fourth and fifth optimal functions presented in Figures 5.16 and
5.17 show the characteristics of the higher numbered optimum functions for
the forward running base, namely, they present the detailed structure information
which is required to fill in the detailed oscillations occurring in the sunspot
cycle.

Since the availability of an appropriate single cycle base is the only requirement
for extrapolating a data history, it was possible, within the constraint of the
present program, to apply the extrapolation program to this rearward facing base
to complete cycle zero. Since the first optimum function now contains information
over the entire cycle and the break point in the energy curve occurs at the fifth
optimum function, it appears that any number of terms from 1 to 5 might be the
best for extrapolating the sunspot histories in the rearward direction. Figure '
5.18 presents the results of the rearward extrapolation for 1, 2 and 18 terms.
The 18-term extrapolation is clearly overdetermined and we have a clear illus-
tration of the effect of overdetermination here. Namely, the 18-term representa-
tion is a very poor estimate of the future although it does a reasonably good job
of matching the input values. The 3, 4 and 5 term predictions lie between the

2 term and the 18 term prediction and thus have not been included in this figure.

Examination of Figure 5.18 indicates that either the 1 or 2 dimensional recon-
structions probably represent the best results. The 2 dimensional reconstruction
already has the difficulty that it has negative sunspot numbers although the
maximum negative value is only minus 10. Also, if we use the sunspot number
of 5 above zero intercept method of predicting the period, the 2 term recon-
struction extrapolation predicts a period approximately a year less than that
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would be indicated by Reference 14. The 1 term reconstruction has no
negative values of sunspot numbers but tends to overpredict the Schove
minimum by slightly more than a year. If we use the 5 sunspot number
above the minimum as the intercept the 1 term representation still over-
predicts the period by a year, but the 2 term now only underpredicts by
about half a year. Thus, the two term estimate ending at about month 60
appears to be the best estimate of cycle 0. The advantage of adding the 2
preceding cycles to the forward predictions suggests the rearward pre-
dictions can be improved by adding the 2 following cycles. In fact, there
may even be significantly greater gain in the rearward predictions because
of the greater amount of information contained in the rearward terms 2
through 18 as compared to the forward terms 3 through 18. Thus, it is
clear that the ADAPT techniques would significantly improve the recovery
of information from the earlier cycles. In particular, it has already
achieved a somewhat better estimate of the 81 -day running averages from
March of 1749 to early 1744. '

5.3 Clustering Studies

The ADAPT programs provide as by-products to any analysis of data a

series of outputs which are extremely useful for finding natural groups or
clusters in the data. For example, a plot of the first coefficient versus

the second coefficient of the optimal Fourier series representing each

history is the best two dimensional representation of the data which can

be made. This follows from the fact that the first coefficient explains the
greatest amount of variation that one can explain in any single term repre-
sentation and that the first two terms in the optimal series explain the greatest
amount of variation in any possible two terms representation of this data.

Since this latter amount of variation is displayed grai)hically in a two dimen-
sional scatter plot when these two coefficients are plotted as a function of each
other, one has the best two dimensional representation possible. Figure 5.19
presents such a plot for the single cycle forward facing base. FEach of the
cycles designated by the numbers enclosed in circles, triangles or squares

are located according to the values of the first coefficient and second coefficient
of the optimal Fourier series representation. For example, consider sunspot
cycle 1 which is located at an NP 1 coordinate value of approximately 190 and
an NP 2 coordinated value of approximately -95. This means that to reconstruct
sunspot cycle 1, one takes the average of the single sunspot cycles presented

in Figure 4.2 and adds to it at each point or for each month 190 times the value
of the corresponding month in the first optimal function shown in Figure 4.4

and to that sum adds the product of -95 and the corresponding value of the second
optimal function shown in Figure 4.5. The relationships between the sunspot
cycles as displayed on this scatter plot, accounts for approximately 80% of the
variation in the data. ' ‘ '
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The circled sunspot cycles on this figure represent the actual values obtained
by projecting the observed sunspot numbers for that cycle on the single cycle
base discussed in Section 4.1. The triangle around cycle 20 indicates that this
position for cycle 20 is based on the third quarter extrapolation of cycle 20

as described in Section 4. 3. Since the cycle has not yet been completed, this
is the best available estimate of cycle 20's location. Similarly, the square
around 21 indicates that this is the best estimate based on the predictions using
the cycles 19 and 20 in the algorithms presented in Table 4. 3.

The scatter plot can be used to obtain the same classification of sunspots
according to mode that was reported in Reference 13 by plotting the maximum
sunspot number versus period independently for the positive and negative sun-
spot cycles. If one considers the scatter plot to be divided into two regions
by line c-d one notices that all of the sunspot cycles to the right line c-d are
mode 1 and to the left of line c-d are mode 2 sunspot cycles. However, a
more careful examination shows that one may also draw the line a-b and then
consider the region A to the right of a-b, B between lines ab and cd, and C
between lines cd and ef and D to the left of line ef.

If one now considers the negative and positive cycles independently, one sees

that there is an even stronger separation between mode 1 and mode 2 for fixed
polarity. That is, the negative mode 2 cycles all lie in region A and the negative
mode 1 cycles all lie in region C. Regions A and C are separated by the entire
expanse of region B. Furthermore, no positive mode 1 cycles lie in region C

so the positive mode 1 cycles are separated from cycle 19 which has been ten-
tatively identified as the only known positive mode 2 cycle, by the entire expanse
of region C. Thus, we see that the scatter plot was capable of identifying the
separation between mode 1 and mode 2 as a weak separation even when the polarity
was ignored and that when the polarity was considered the separation became very
strong. Although these classifications into mode 1 and mode 2 have been found
independently by Sleeper using more conventional analysis it is hoped that this
example will illustrate how the ADAPT scatter plot can be used to accomplish
this analysis.

The 2-dimensional representation provided by the scatter plot is not the only
useful form of clustering analysis. It is oftendesirable to perform clustering
analysis in higher dimensional spaces. This is especially true when the first
two dimensions do not explain the great majority of the variation, it is not ex-
pected that a higher dimensional cluster analysis will yield more significant
results. However, to illustrate the technique, the single cycle data was pro-
cessed through the ADAPT nearest neighbor program and the nearest neighbor
of each of the sunspot cycles determined. This information is plotted in Figure
5.20. Figure 5.20 may be used to construct nearest neighbor trees as follows.
Since Figure 5. 20 plots the sunspot cycle as the abscissa and the nearest sun-
spot to each of the sunspot cycles as the ordinate, one may now read the curve
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in the other direction and answer the question: For which cycles is cycle X the
nearest neighbor? Each of these cycles for which a given cycle is the nearest
neighbor are assumed to be a member of a grouping containing cycle X and
provide the first branch in the tree presented in Figure 5.21. The process

is then repeated for each element of the branch. There are one of three pos-
sible results: 1) One might find that a given cycle is not the nearest cycle to
any other cycle in which case the procedure terminates for that path, 2) One
might find that a given cycle is the nearest cycle to the cycle which produced
that branch in which case the procedure terminates for that path, or 3) One
may find that a given cycle introduces an entire new branch and the procedure
may be continued. This procedure has been carried out and as shown in
Figure 5.2 where three other groups of four or more sunspot cycles are de-

. fined. These four groups are enclosed in the dash lines shown in Figure 5.19.
The groups are logical groups on this figure as could be expected from the
fact that Figure 5.19 actually contains 80% of the variation. Other examples
of this nearest neighbor analysis are given in References 1 and 4 and the
reader is referred to these references for more details on this analysis.

As pointed out, these clustering outputs are by-products of the ADAPT analysis
and have been included in the present report to illustrate some of the potential
of the ADAPT programs for further analysis. There is no intention that this
report be a complete clustering analysis as the major objective of this study
was the development of advanced prediction techniques. However, to provide
the reader with capability to perform clustering analysis which may be useful
for other purposes the scatter plots for the other two bases which have been
used namely the single cycle rearward prediction and the double cycle base are
given in Figures 5. 22 and 5. 23 with the location-of the sunspot cycles indicated
on these figures. The numbers for the cycles on Figure 5. 23 is the number
associated with the first cycle in the pair for the double cycle. For example,
No. 2 on Figure 5. 23 is the location of double cycle 2-3.

5.4 Recommendations

This section briefly summarizes the recommended analysis suggested by the
preceding three sections. The result most pertinent to the present study is
that the best estimate of the periods of a sunspot cycle for which one has es-
timated the sunspot numbers is given by applying the algorithm presented in
Table 5.2. This algorithm yields a period of approximately 150 month for
cycle 20 which has been incorporated in the prediction shown in Figure 2.1.

The studies carried out here have shown that there is great potential for re-
covering additional sunspot data from historical records by applying the ADAPT
techniques. To accomplish this it is recommended that the same developments
outlined in Section 4.5 to improve the forward prediéting algorithms be incorpor-
ated into developing algorithms for predicting rearward cycles. In addition, it
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is recommended that these algorithms be developed to predict the individual
properties of sunspot cycle such as period, maximum sunspot number and time
of maximum in both the forward and rearward directions. It is also recom-
mended that algorithms be developed in both the forward and rearward directions
to predict the annual average sunspot numbers. The annual sunspot numbers
for the cycle being predicted should also be included in the data vector for pre-
dicting the 81 -day running average sunspot number, since it is likely that the
result of the analysis suggested here will be that one can predict the annual
sunspot cycles significantly better than the monthly cycles. Having developed
the algorithms to predict the properties of the sunspot cycles and the annual
values it is recommended that these algorithms be incorporated in an analysis
similar to that carried out in Reference 14 to determine the best estimate of
sunspot activity to the onset of available records or at least 600 BC. When
this has been accomplished, it is recommended that the implications of both
the sunspot activity and its relationship to the angular momentum of the solar
system be applied to the construction of stellar models and to developing
observational techniques for gaining information about planetary systems.

It is also recommended that the ADAPT clustering analysis be used for '"a
scientific fishing trip' to determine if there are any groupings of interest.
This analysis should be carried out using both single and double bases,
scatter plots and nearest neighbor analysis. Ahny groupings which are found
such as those enclosed in dashed circles in Figure 5.19 should be studied
individually. The ADAPT programs may be used for this both to construct
average sunspot cycles for each of the groups and to construct relative impor-
tance vectors for separating each of the groups from one another and from all
of the remaining data. These relative importaﬁce vectors will show exactly
what portions of the cycles make each of the groups stand out as a group and
can be used as a basis for trying to understand the reason for the groupings
observed.
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FIGURE 5.3  ESTIMATED VERSUS ACTUAL PERIODS USING SIX DIMENS IONS OF THE
SINGLE CYCLE BASE
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FIGURE 5.4 RELATIVE 14 PORTATICE VECTCI: FOR PREDICTIRG THE LEFGTH OF A CYCLE
FRClvi THE ESTIMATED CYCLE USIMG SIX DIMENSIOIHS
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. FIGURE 5.5 RELATIVE IMPORTANCE SPECTRUM FOR PREDICTING THE PERIQD OF A
CYCLE FROM ITS COEFFICIENTS USING SIX DIMENSIONS
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FIGURE 5.6 ESTIMATED VERSUS ACTUAL PER 10D USIRG TWO DIMEKS 10FS OF THE
SINGLE CYCLE BASE
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(FIGURE 5,7 RELATIVE IM PORTANCE FOR PREDICTION.CF PER10D FRGivl ESTIMATE
| OF CYCLE USING TWO DIMENSIONS
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FIGURE 5,8  ESTIMATED VERSUS ACTUAL PERIOD PREDICTED FROM SIX DIMENS [UNS
| OF THE PRECEDING TWO CYCLES
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FIGURE 5.9  RELATIVE IMPCRTANCE VECTOR FOR PREDICTING PERIOD FRGi THE
PRECEDING TWO CYCLES
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'FIGURE 5,10~ RELATIVE IMPORTANCE SPECTRUM FOR PREDICTING THE PER1CD FROM
THE CGEFFICIENTS OF THE PRECEDING TWO CYCLES
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FIGURES,11  REARWARD PREDICTION-SUNSPOT AVERAGE 1KNPUT VECTCR THREE-
MONTH RUNNING AVERAGE-CYCLES 1 THRU 19
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'FIGURE5.12 REARWARD PREDICTIOR VECTOR-SUNSPOT INFORMATION ERERGY-
| THREE-MAONTH RUNNING AVERAGE-CYCLES 1 THRU 19
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FIGURE 5,13 REARWARD PREDICTION-FIRST OPTIMAL FUNCTICN-THREE rORNTH
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FIGURE 5,14 REARWARD PREDICTION-SECOND OPTIMAL FUNCTION-THREE -MONTH
- RUNNING AVERAGE-CYCLES 1 THRU 19
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FIGURE 5, '15. REARWARD PREDICTION-THIRD OPTIMAL FUNCTION-THREE MORNT
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FIGURE 5,16  REARWARD PREDICTION-FOURTH OPTIMAL FU’\ICTION-TI-iREE iMOMTH
RUNNING AVERAGE-CYCLES 1THRU 19
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REARWARD PREDICTION-FIFTH OPTIMAL FUNCTION-THREE MONTH
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FIGURE 5,13 ESTIMATE OF CYCLE ZERO USING DATA FROM MARCH 1749 TO JUTE 1755
AS PREDICTCR
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- FIGURE 5, 22

SCATIER PLOT REARWARD PROJECTIOR OF CYCLES 1 THRU 19 —
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SCATTER PLOT DOUBLE CYCLE BASE

FIGURE 5, 23
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APPENDIX A

FEATURES OF ADAPT ANALYSIS

The unique aspect of the ADAPT approach to empirical data analysis is pre-
ceding the analysis with the derivation of the optimal representation for the
particular data set. The ADAPT programs provide a unique capability for
determining this optimum representation for large data sets. However,
regardless of the size of the data set, the availability of this optimum repre-
sentation provides many significant benefits to any further empirical analysis.
These benefits include: 1) definition of which variables dominate the variation,
2) ordering of the data by its general usefulness for extracting information,

3) reduction in the computation required to perform further analysis, 4) re-
duction in the amount of learning data required to perform any given analysis,
5) an improved ability to establish performance and validity criteria, and

6) the ability to perform special functions such as clutter subtraction and
extrapolation. -

The availability of the optimum functions for representing any given data set

is analogous to having the governing differential equations for a classical physics
problem. These optimum functions provide information regarding the nature of
the physics which govern the phenomena associated with this data. In particular,
these functions will define exactly where the greatest and most highly correlated
variation from case to case occurs. This information can be extremély useful
in selecting data to be used for the analysis and in understanding the mechanism
governing the phenomena which produced this data.

In addition to simply having the optimum functions for representing the data,
these functions are ordered such that each function explains successively less
variation in the data. This provides the user with a capability to reject variables
in an intelligent rather than a random manner, if the resources or available
learning data require the use of fewer dimensions than would naturally be used
to describe the data. This ordering allows one to throw away those variables
which explain the smallest amount of variation and therefore in general should
be least useful to any analysis. Although it might be more desirable to be
selective based on the particular analysis to be performed, this is not usually
possible until after the analysis has been performed, when it is obviously no
longer useful. Thus, it is almost axiomatic that the apirori rejection of data
for a particular analysis cannot be based on that particular analysis, so the
rejection based on explained variation is an attractive approach to eliminating
data when realities of the resources or available learning cases makes such an
elimination necessary. -

Regardless of any prior decision to reduce the dimensionality, the ADAPT
approach to any real problem will automatically lead to a significant reduction



in dimensionality. When the information energy curves which are produced
by the ADAPT programs are examined, it is almost always possible for the
analyst to select some dimensionality after which it is inconceivable that
further useful information is incorporated in the data. This criteria alone
usually results in a reduction of dimensionality of more than an order of
magnitude. :

A reduced dimensionality obviously allows one to perform computations with
smaller computer capabilities. Furthermore, the orthogonality of the optimum
representation also provides simplifications in the computation. For example,
in the optimal ADAPT space one can in some cases derive the Fisher discrim-
inant without inverting the covariance matrix. This combination of reduction
in quantity of computation required and simplification due to orthogonality also
makes it feasible to update classification and regression algorithms in real
time for cases where this might otherwise be impossible. '

A more significant aspect of the lower dimensionality of the learning space
follows from the requirement that the amount of learning data be large com-
pared to the dimensionalty of the learning data. This requirement arises

from the situation analogous to fitting a third order polynomial through a
series of points. If the third order polynomial is to be fitted to three points,

it will always fit perfectly and no physical relationship need be involved. How-
ever, if the third order polynomial is to fit a hundred points well then one
knows that this third order polynomial must be related to the data in some
physical manner. The same is true for empirical analysis in general. If

the number of dimensions of the learning space is equal to the number of learn-
ing cases one can expect most empirical algorithms to provide a perfect fit to
‘the learning data. However, this fit is normally based on differences between
the population and the sample statistics and is not based on the physics of the
problem. Experience has shown that the number of learning cases required to
derive an empirical algorithm varies from 2 to 6 times the number of dimensions
of the learning space. Thus, the usual ADAPT reduction of an order of mag-
nitude or more in dimensionality of the learning space translates immediately
into an equivalent reduction in the requirement for learning data. Since obtain-
ing learning data is one of the most expensive aspects of empirical data analysis,
this attribute of the ADAPT approach is often sufficient by itself to make the
difference between feasibility and infeasibility of solving a given problem.

The ADAPT representation also provides an opportunity for establishing a
necessary, although notsufficient, validity criteria. Validity criteria provide

a method of determining whether a particular test case is from the same popu-
lation as the learning data, and therefore determine the validity of applying

the algorithms derives on the learning data to that particular test case. The
ADAPT validity criteria consists of comparing the length of the test data vector
in the original data space and in the ADAPT optimum space. If this transforma-
tion from the original data space to the optimum space results in a shortening



of the test data vector by a factor considerably greater than the shortening
which the learning data vectors suffered, one has an indication that the test
data and learning data are from different populations. In addition to providing
this validity criteria, the ADAPT programs have been designed to calculate
performance criteria as part of the learning process. These performance
criteria provide the analyst with a basis for immediately evaluating how well

he can expect a given algorithm to perform on test data. The ADAPT programs
provide the analyst with both the performance criteria and the experience factor
required to determine whether the algorithm derived is overdetermined. If

the algorithm is overdetermined, the analyst must adjust the dimensionality

of the problem or increase the quantity of learning data to derive a physically
meaningful algorithm. :

The ADAPT approach of obtaining the optimum representation of the data prior
to performing the analysis introduces the capability to perform clutter sub-
traction on the data prior to performing the analysis. The clutter subtraction
can be used to eliminate any characterizable aspect of the signature from the
data histories. This is accomplished by subtracting the coordinate directions
corresponding to those characteristics to be eliminated from the space prior
to the optimization procedure. Another unique capability resulting from the
optimum representation step is the ability to do an extrapolation making use

of both historical data from previous data histories and the available portion
of any given data history. Conceptually this is equivalent to utilizing historical
"information to guide the interpolation over missing data points.

In addition to these advantages which accrue from the optimal representation,

the ADAPT programs have been operational since approximately 1965. They

have been applied to a great many different problems, and during this period

part of the practical pit falls associated with empirical analysis have been
encountered, overcome and the programs improved to take advantage of this
experience. This experience has also provided Avco with the understanding

of what diagnostic outputs are required to enhance the ability of the analyst to
develop the required algorithms, and to provide the data necessary to reintroduce
the physics to the problem at as many points as possible. The key areas where
the physics may be reconsidered as part of the analysis are: 1) at the time of
data selection and preprocessing decisions; 2) after the development of the
optimum representation,it may be examined to insure that the variation is con-
sistent with the expected variation based on the physics of the problem; 3) after
the development of the algorithm, the relative importance vector may be examined
to determine if the variables which appear important to the decision are con-
sistent with the analyst's understanding of the physics and the relative importance
spectrum may be examined to determined if the difficulty in obtaining the algo-
rithm is consistent with the difficulty which would be expected based on the physics
of the problem.

In summary, the capability to find the optimum representation for large data
vectors has been combined with many years of experience in using this representa-
tion as a preliminary step preceding empirical data analysis. This unique




combination has been used to prepare a set of computer programs for per-
forming empirical data analysis. These programs provide the user with a
fast and economical way to generate simple empirical algorithms for
classification, regression, clustering and extrapolation and/or analysis

of any given set of learning data.
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APPENDIX B
OPTIMAL ORTHOGONAL, EXPANSION FOR TWO FUNCTIONS
We wish to carry though the ADAPT expansion of each of two given functions in the

series of the optimal orthogonal functions defined by these two functions, as

described in the Introduction.

Suppose we are given the functions ul(t) ;and'ug(t)'of the independent variable t

over some domain t.lf. t 5 t2. Let the functions be normalized, so that
2 R |
fuiat :\Su.‘df = |
Then the only parameter is the product integral

&Egu\u;d\t) EARN

the last inequality being Schwarz' inequality for normalized functions.'

First we construét an orthonormal set of 2 functions Vi, Vo from the given ones

by the Gram-Schmidt procedure. Thase functions are easily seen to be

We now find the expansion coefficients of uy, u, in a series of Vi Vol
v' = . v N ¢, w . .

2, =l %X.=0 x, = I
W=, 1a ) .Zl'c')‘)ﬂllfl/t
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The optimal orthogonal functions are now obtained by finding the eigenvalues

and eigenvectors d of the two-by-two matrix

S"' ‘_‘A\.Y S J.A

(the factor in front corresponds to weighing by dividing by the number of functions,

in our case 2.) They are easily found to be

Az(tslel) | A =L (islel)
¢ =5, ) | 4 (X -1X)

The eigenvectors are the expansion coefficients of the optimal orthogonal functions

hi, hy in a series in vy Vo, l.e.,
)\b: d;,v‘ +d.‘.zv1 ) é;:(d;\) d;z>

Returning to the original u functions we find the associated optimal functions

to be

A

S (e Ew) ) ke (w - Ew)

I t <l N K},

and the expan51ons of the u funetions in them are

w={X, & TR A "C(ﬂ‘?\ {4 )
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It is sufficient to discuss the case of£ 2 O because if £ <€ 0, a change in the éign
of u, returns to the first case. We note that the optimal function h; is proportional
to the average of the input functions. The average is intuitively the best single
function to represent two functions, so we see the best single function is associated
with the larger eigenvalue )\1. The optimal function associated with )\z is
proportional to the difference of the given functions.

We also note that
A\*)\;: ) >\\-XL=/C - S\u‘%d*s ‘

The decrease in the eigenvalue from the first to the second is the product integral
of the two functions. If the functions are closely correlated one would expect ¢
to be near unity, and >s1 would be much less than X‘ . But if the functions are
neariy uncorrelated one would expect o to be small, and there is only a slight
decrease in the eigenvalue, going from the larger to the smaller. Thus the rate

of decrease of eigenvalues can be associated with.the degree of correlation of

the input functions.

B-3 -
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APPENDIX C

DESCRIPTION OF ADAPT HISTORY EXTRAPOLATION PROGRAM

This appendix contains a mathematical description of the method used in this
project to extrapolate a complete sunspot cycle from a partial one and a set

of optimal vectors derived by ADAPT analysis of past cycles.

Given T values of an input history vector which is normally N (N < T} values

in length i. e.
< LT

and a set of optimal data vectors NR in number, with each vector containing N

values. . h L= ,,Z, j)?}._u ‘,‘Q.{T__g-. R,
H: s l:/'jz/‘_._..‘/NR

and an assumption that the data vector ,u, of whicﬁ ,,'tls is a segment is well

represented by these optimal functions, this program will calculate the entire

vector “uy L= ,Z--,N) by estimafi;lg the coefficients of the vector A4 from

the given segment of the history and the corresponding region of the optimal

vectors. Two cases can be distinguished depending upon the value of

/xR

and the mathematics for each is described below.

Case 1: T/NR 1

.
'

=R, R+1,....,R+T-1
Let HS = (hig) .



q
Setup ® = u° yS

S
which is T equations in T unknowns (Y )
Now this can be solved exactly for YS

¥ - uS! uS

and the history can be estimated by

——

.

. , LT s

) .. E . . N 3 !

; . P . I . . R %4
- R

~ S Ly

In this case the T points of the estimated history /.  will equal that

data points of the segment uS.

Case 2: . T/NR 1
LetuFP=( . ) . =R, R+1. .. .. ,R+T-1
[ 1: :NR
Setup UuS = gPyP

which is T equations in NR unknowns (Yl:s
Now this cannot be solved exactly.. ‘One method of solution is by least
squares

YyP - (uPTyP )7} 4PT S

where = transpose of HP

Again we can reconstruct_i}il}e history

O ] N
= : s \J

‘
< e eal

&

e

] P
P .
PR A
PR

In this case the T points of the estimated history UE which correspond to
the T points of the segment US are not exactly equal, but rather differ by

an amount which has been minimized by the least square technique.

Cc-2



For the case T/NR =1, both methods are exactly identical and therefore,

either can be used. ,

Also attached to this appendix is a copy of the FORTRAN listing of the program

which performs the analysis just described.



(esng)in

CLOS0ZIAS L0
(0C0C 7 H

2

(

(0 *AS *ASPUS *L
H * 00cotH )

0ane

0on¢

OCIASC e *{osn2gy Ly
/017

Sex QL ATIIIN G0 YUY NI U0 151V dud * 40 dNISA 05=INDIN T T0=1dN* Nl vy

Qa*10°»1/501°2L

31U

H

NydLaAd 4

09¢/S0

Lix
i

"s

W

174D

=0.071

=001 N

OZRENG T
117

Y e AN TR |
Nl
2= ¢ H-¥) g o= Wvad LR

2his/

=N

NE VW D
voLO9 D

SNZ114d)

EERREITD]

(39 AON 1

000 NS|
000 4Si
Loco nsi
9000 451
2000 NS
00N N5l

cO0n sl
J000 St

) LT IA37

(@]



96 °10°71/501°2L

0.1%°0 = rav9ls €00
00 = Z-3ddd) “gon
010 =939)7 €00
PN oo e e e i e e e i e e e . . - OC..—HWZQ ﬂmOO
(10H *3 ¢, 10He YdL s 1v) zZg o
(4Sv *3 ¢, IS 726 1 4AALIT 1Te) €00
(NON *7 ¢, HONG YA Lds 117D ngon
- . : {47 LN 2 ) dNLIS 1V 2200
(en LIFLIN SNG4 ) 1i4S 117D 3200
- G v e e o @) A4 L YR %y dUAYL )N EAS VD L200
( ZIAIAT *3%  ZIAOAY bl LIS 171D J20n
( 29271d) *8 *s  Zuuldde) dl1sS 179D 5200
( LINOAY ¢ g ¢ 0 LIW9AT, ) anLds v %200
- ( WHONMAD ¢ 6 ¢ ¢ WINdU 1OLAS 7Y €2on
L INTAdH ¢ v ¢ 0 Lalddr Jan L3S 1179 2200
- PO SRR (SRR S W R P20 JRRCHR - B IRE) ' FE TU PR 1401138 119D -1zon
( CIvals ¢ 8 * 4 FIY915, 1dnyiIs 1170 0zZoeo
- ( ZWINDI ' B« ZAUNdU ) 3iL3S 11V &10n
t 0g02* N ¢ 8 * o N }4L3AS 17D 3100
- \ { - IV 2 INs RO R A L1GO
( ol * 7t dhis YdAnLis 1) J100
- L - B T - (I N 2 6 TN S1dLds 19) 5100
09°*T= VYt | 2100
01 1=145v) €100
A1 =o1N Zio0
FAEICANEISNERRED ’ 1100
4333 =11 oto0
U O R N notn=3S1) H000
. U 3707L ) 3amm ) 2000
/. S073526033G20€°2 / DUWNIL ¥19.) Loeo
J oy SHENT LD,
t e s [ HTe/ WIH9Hd ¢ N SN bR A 9000
P3N o« (T-F)  =(rs)x Nt 5000
- . . (Zretaiyi ¢ (& )Idonx
(CLISA ¢
0502114 (0502IAS ¢ (0Z)AVLIN ¢ (0L'0L)SH  *{0SNTIASEI? *1NyD2)EY
. seerrreNIIL N YNNG 00027 = M
(0s02MWEB0 % ( 00O0TIH *  (0Z)dLISHIN ¢ (00310 HIISN WL 2000
( 7-0 *H-9)d % 17944 LI V4a1 €000
Cee oo M AN N SHULIN A DAY L IN4Ln )
(3dvl LNANT LOZIT) SH4ILIDITIA T4wIVLS SVYH (505N ddvyl Litgrn) )
. treretretddvL LNGNT C(ST)*S5TN M3 1d%L XDalva H )
dIINOH *dWdd 3I4 NT1I4SILLUO A0 wyd9)dd NOLLYONILAYD Adulsid D
0L0s J
(N *AS *ASCUYV *LIY *will *0502N*
H Y 0000 1IN INVWANS GNILNOYINS 2000

ddax AT LIOIONSAYW IO TAUN S LSTTION TIY * 3D9N0S 0G=INDI NIV TO=L O NIVW  =3wdW — SMOIL40 J371dw)

H Nvdi1404 09£/S0

) LT 13IAN

C-5



230 39vd

(/77724°°°dULS 34 o Cl* W NTHL AI3LV3NY9 41 HIIIM feTte=s x IV
o/ a7V N0S LSV SEONITILINIUS G NTHL SdLV AD L 4D 3L el 2

za.dnﬁ mo:
32 0L 1) (OIN t Lot )4l
{ (L1084 1) /7 €1% s )L IAA NWD N D=4 JLVkad4d €001
{ NNST=FCUT)IaNT) ¢ 1{(200T142) 30 T4M(°T 04" LIy )4l

e - e b NN T = Pt (TN T (ST ) VY

N T =1 90
T= 19 3 = TLie
T 0L 09 ( g "L 0030TN ) Il
HE LN LYy
1T a1 69
[ SRR 1Y [V 4

D AMIVAVY SN W XI2/// /0 duLS ¢L A3 et 7l Y Ml eibs 4N ST MO

S ST X[dIJsA H ONT SINIWITI S0 4 Juwilh /77 LVEY o101
0302N ¢ (CTI0T *2) 401 4"
L2 L U9 (05028 "1 i

Y41

H €

=AY et x0T/ CETCCSUULIAN ST a2

L]
AT AN S SLNIAINT w21 ¢ HLTM M7 SHILDIA riNIC) w feT T
SyH LT o *21%, LInN NO 3dvi H ONTIAVAY YV 2M ’ biviN3d4 1001

OOO00TIN * ANNN * IN®* dNUNNS*LIN (TODT *2)3LT 4M
N e N = INN
e e e s T d» = Tdw
(0L *dIN *)0ON[w =N
2t T AN NN (1N IV
) \ ST )NIMad
(7777 1S 3dVL NI LND ONIND ST W * 4
92T 0T e 1 T

*03S533J8d ONIIY. ¢ 7l * sHIHWNN ML IFA N ST STHL 0w )LV eay 5001

TaA S LNAOIN (HO00T*2) LT 4%
( 2 3¢ A0l 1Y)
L ANC) 1

. 0=0n
(Wvd9dd ‘W18 *4WwuN¥ A il 10v)
1= LN )N
CUy =2 YAV
0d*0  =¢s g
GRS G NE NS
F AN
54N
COT= 44
0 1*1=11WwoAY
, 0uU0 = W30N4D
04°0 = LINIMgH
00°0 = 90140

nAn0
#Lee
LLee
SLOG

LI00
I900
7300

£300

<00,

13200

L0300

250N
g500
L0

- aN Mo,
DODT D I
D DD

2

g
5
3
15
Gs
i

LA N

NSH
NS1
NS
ST
NST.
r.m—
nNSI
NS1
NS
NST

NSl
NST
NS

NST
NSIT
NG
NS
NSIT
NS
NS

NS
NSI
NST
NS
NST



e e . L . . e e . . S 31 or o
) . ' ANNTLNT) s1
e e e s S - (CIAS *» (F*1I)3H 3 (IISA =(1)5A | 21
’ IN *T =0 =1 91
e emenen e et rm i o e o« e e [P AR THNRICTNNPT - S5 S 1 N U B B L B S o e
01°0 =(1)54A
O N .. . e e e e e e e e . . N wd = i 31 37 L.
: €T UL U2 ( oy "L9° LN b4l
S . . - B : {13 TUAIASEDY = LTAOAY - {1 = (1)AS . 21
IN *1 21 )
e oo o . . o A3 % wdoNdQ ¢ LN ¢ IR R LA
- (LN 4 AS ¢ 204D favwdt 117)
ERTE . Co - Cee . Co- : 101 0V ( *0 TANT Y4 4l -
( 443 * Zw3Nd) * LN ¢ AS IZ2r499 117D 1
o . o . ceram - . { *0 *3IN°* Cwait:dd )31
\ 01 0=13419
P oS e . (I)n. = (1)A> .. .. 9
. INT T =1 4 N
[, . - . . . L . INSTLNED k4
. : 1T 91 09 (2 °39° d4:21 131
PR e oo ‘ ' . R S0 dN fT=T ENtT =0 (P TISH M LA00T )3T M
( 4431 ¢ AN ¢OSH O INIX LW 1199
R S PRI - - P - e e s . ((H°CTA0TAT ) /oXTdLIW SH  0a// LW 3D - 00T
{ dNCT=] ¢ dN* I=F¢ (FE ISHII(700T 9 ) L] wu
( (e IXIND IH x(IFF*TIIXUNDIH 3 (ACDISH = (M*T)ISH 01
£f2 19 = FF
—— - . ’ . . 1M ‘1T = a1 ci
’ 10 = (N*1)oH
e et e e e - e e e e e e o oo N T = N 01 J.
’ N T = 1 c1 N
. N ANM) 3
T 1L 09
(/7 20 *42V dMT *XIdivd SH 4uUd 3SHIANT W ' [N TP o0t
Madi ( COQT ¢ 2)aplum 11
— - - - - e . yooOL J9 < VR el il
CUIN*T=1 0 INST=FS (P DISHI) (00T 9151 4M
{ 9430 ¢ LN ¢ SH INIXLTW 7))
C INST=] *( AN*T=0 (P ISHY ) (00T %9 ) 50T 2
. . 3 0L 09 g T ut N 4l
, ol dMT¥ g
_— .. . . ———— . - . o . Ce e . e e . o NNST=T f (IIASE OV ) (TN IVIA
( NN'T =1 ¢ (IML7Y) (5TN) 193y
o PN . . ) vl ENG) 92
(Pt = (1% wW-1727 ISH L
TidWw % da = 1 L
32 UL 09 {IN *19°1 )41
- . B . . - - .32 J1 99 ( uN - *L1C* N 4T

(Fywny =t(C*TIXIND M €

€00 4uvd

JETD
5€£10
2€1 N
gETN
1€10
eI
2219
210
21NH
5210
P2l
£210
| F4 48]

4110
ER 8 N
L1ia
AR
st1e
£ETIn
FAREY
I1tce
otT o
4010
ROTC
LOTD
2010
01N
01N
gcrn
catn
101C
oote
S00
L6N0
Is0n
3500
500
2ol
1500
Coln
)
g0
LRNe
2300
780C
Z304
1800

NST
N5
NS
NSIT
NSI
ISI
NSI
NSt
NST
NSE
4S5t
NSl
NSI

NSI
NSt
NS
NS
NSI
WSI
NSI
NSI
NSI
NST
NGI
NST
NS
NS
NS
NS|
NST
NS
NS
NS
4S1

c-7



200 39vd

fo - IWVIANYA ONIXIANT PH6T ¢ v JLVALILSH d37180 HLUXA L, *2
SZUN SN S TN OSNN ) LY T T f0 XSG Y 1Y)

I =¢1)r V7
tI1=f OY 20

D

CE)sA ¢ 1 Y2001 %3 )1 [un
A1)
SCDIASPAY *UI)WN T “T) (30019 TLT9n
1N =dL A
e - . F€ )1 J) (NN 3D Tlxs )41 -
(TldWw *dh=] *(I)ASTIY S {T4d=100 *{TIAN0 T *TIELONT* ) 5L v
S (T3Ad *T=1 *LDIASTT7  C 1MW) ¢ 1 ) (JODT ) ILT 1™
FURS RIS
PLIWAS
R S ]
(30074 2) 41 IMv
T3iy =T1IN
*hyc [ I

- (4N *1=1 ¢

(NN *dldn =1

: e : 0 ?°8TITAT *x3T *I°3TITdT *xl'ol*X1

e e e ANN CTIN=L A DIASEAY C{1)ANG *1 )

€ Ul J9 (NN

( (9°3TEdT *XZ *S51 *XT) YL7w+ld
SEIIASEOdY (1IN S (DWW *1) (L00OT*2)3LT AN
3¢ 21 00 (1 *19® d4 )41
- . : / o L3N LD g
04-N IN T | FUNCINE
. (2001 *) 411 yM

SV LN )
{ (DN Jd= Q3INIL Y43 ) =011«

TE DL )) (0 *0 g3 914041

oo - TR 3L 09 7T 04 gonTdAn gy 41
4303 (1 =H
. (IJASF ) xLdwAY =
27 L 09 (1 *&1° Z1-9A

NN*T =1
-39 =T 1y
(Cruml = (e

(1IN T=1

(

A SA w4 ATEIXANT IH 3

03-1n SI

44 T = M <y
000 = AT )
Nt *T1 = ¢ 12 RV
IONTTND )
NDYD T 0DISA = LS
MeIIsH 12 NI o= N D
I = 3T )
‘0 = NOD
roLT
01°0 =(1)s4A
| | i
AR B AYIIN]

(FIAS %

0 Tda3r *A IXINT MH #*

Lo
b
-
—_
"

2°31-11dl xZ*>1°4%x1)
/v 03-A AON T YLTWNCS

*OAYT

0e

2001

9¢

SE
4001

L001

5001

1€

7

e

91
L1
31

€1

Wwnl 2

43106
581 n
7310

£81

YA

€910
251N
1210
N30
EIA A
sl

REA NS

ANEY
1512

210
L2210

oD

EA!
77110
AN
%Akt
1210
0710
HE10
BET N
L€10

Sl
NSI
NSI

N¥S1
NSt
AS1

vy 2y
—

et St et ey ot bt e bee

Ll L e
2 P Ve VA IR V3 IV

C-8



13 oloe wst

[= 2%

MNYNL 1Y € 2000 NS
. SR . - e e . DIWNZL /7 € (LIAS )21 =(11IA5 1 3000 w3
NUW O CT=ET L) 2 LOQO NS
. .. . . - o . o . . 2 '€ ‘2 ( 90ran a1 . 2000 WSl
/92075622063 620€°2 / 99INIL Jiv) 3020 V31
e {J00C1IAS  NOISNINT] . 7009 NSI
(2 =) *H=v] 8 &« 1734 LI1D3Ivdnl 000 N3I
_— e oL - L o CNIN 2 AS 292730 ) 7907 INILN)AINS : 2000 NSI
33X I CLIOFONCAVR A ITO T NIIQON S LSTTON®UIY* 323NDS* 05=INDINTT*TO=1dO*NIYY  =3wIN = SNOIL4O ¥3ITNI4WG)
F1°¢0°721/601°2L 31vQ H Ny3l304 09€/S0 : {89 AON 1 ) LT J3AD
@)
[4ER] 120 NS1
g ) N 3 1120 wsSl
. I W 34 012o ust
’ 2N 170 40N) ACI0 NSE
. ~ . S 4704 IN) - "eGT0 NSl
2o LY (0 C04° ¢addvy )4l 200 St
N . . . Miotd 1y) sC?0 N3
4 NSt
B _ : Tt m 451
' LN ON 3 T= L0 00N S\ NSH
e e e R . el . o .o o . SUNTENOD A 2 1070 NS
. (AN *T=E*CTISA) () 101 9w sy 4 0nip 4§l
. . . [ I 2010 NSt
INI*CTENAT=T (4N *T=F *ONTZ)*IND ) (4N *T=T*{1)ISA) (o) 3Ll
BE-I 2 N RN ) I AN SO A AT IR B B I D
DTy =10
o . . ) B . . (N 2and L7 *eNYr ol 34 1)
: R B FE VAL RV GRYE ENR

€2 QL 39 (°0 03" .
Iy 2 44 4085 458
{oce * 003 *4=1
‘e

id4vL Y41
A CTON IATDGY 138
Jite *IALNL et 19D
. $ 2 %0€ *OLS * SS5¢Y ) AT TNW)
e S o . o : S (005 * 008 * 213171 ¢ 20U YALNI >4 7))
(IN *ON *IN *dNA *TA CIN *d4nNxX *IX TN 4 IN 40 04 'y 2

300 49vd




0TTU140N . . Vv £100 451

SO U0TOLNDN . L S . - LA I Z21nn
0,00 SICLA=0 ) 5Ly 2 Ttoee
0eQ0L A =B GRS 0100 NS

v (s)Lsg=3 2000 WS1
075004049 o (I )IA5=5 1 A0 00 NS
Us00Laiin NAT=1 T W _L0O0 NS
- 0,00040N e T . . . . 01 0=35 ¢ 2000 NS
. 0£00L40MN ' e (aunidg)) gl aenn S|
e : . . OCO0LYIN . F3LVIN JZU S wWAUN )
0100Lu0N HHOND
0100%¥0ON . (OO-TISNVE(COTIA NNTSMYKW] ] y000 ST
(Z=U'H=¢) 357743 111 Tdw?! €000 NS|
(SNYSQJINADENSAY WaON INTLNGN ANS ) 2000 S1
uuxx.cw.»_awcz dVW aqOJ.xum:cz »w—auz.Cum muu:um 05=LNIINIT*T0=LA0*NIVW =3n N = SNIIL4D ¥3111daD)
¢e 2o .l\moﬂ L ..:qo . H zﬂz.w_ou ovm\ms A89 AON T ) L1 13A3
JIe0 NSE
. LI0D NSI
o1 = S1CO NSIT
e e e . : L R (TIAS /7 (T)IAS = 1 e G100 ST
NN 42 = TN NS
.. . 4 S ET00 NS
AN LA 100 ISt
( /7 o 7***%dn M4 3T NOISTIAL Y Sl *431 '
Z ST 34vye NU 3SV) 3L 4] ANIW3ITII L1S3Id 7 *1T = 2NN dT, YLIWw4J4 OCOT 11¢n NS5T
e . . . {0001 3) 3L [aM . .oaton st
C1°1=143 2000 N3E
2 UL 1Y (0110 * (1IN )4l LCOO NS
WANL (01D 030 ZwWENags Vil 5000 ISI
(00NTIAS NO TS wT 00NN NS
(2=~ % H=¥) 3 & VW44 LIDT 1dul €000 NS
(4d3 * Nzazau fONNP O AS JEWANN GNTLHDAHNS 200N N5]

uuax.LH bHLuC7 aqt u\ZJ.zuwucz LSsINON*QOE 4D4N0S  05=UNIINTT TO=0dUNTIIW = 2aTN - SNITLE4D NI 4w

3¢°20°%1/501%2L 11VQ : H NVdLy0d  09¢/50 (89 ADN T ) LT AN

‘Ct10



01 70Livw Le6ToL((ItMTY) 4l IR0 NSI
0070L1017w : e : : INNILNG) 3 . 300 NSI
OceQLivnA w=tT ) TN 2400 NSI
et e e e e e e COQEEOLLT A - e e e e O VN (T I0=( ) Tu [T % Zals IRNIS §
OLEOLLIVN C 113 -=13) "Z900 N1
0J€0Livy - - . - e . INTLNU) 5 - 1700 y31
03¢0LLiva . GG (W-(T)100M) JI 202 00N NS
07€0L1VW PE : - . . - : - AN LMY & AECC HSI
0€E0L v ) INNILNUD 01€ S 00 NST
e ey e w4 e e e D2EDLLY N C i . [ O . N . (1) 10N=w - - .- LEO0 NSI
01€0LLV . . . MKNTLNGD  90€ 3¢00 MSH
0CcQLivA : S . (T*1)1u=Ad47 50 CEND WSI
0OE0L LYW . 308 9L 69 o 2€00 NSL
ORZOLL "W : : : ) (11T v==Adhy 20€ - LEQOC ST
QLLOLLYW S0€4G0E 0 (T I)T1v) 4i : cC 300 NST
e e i e R € L A I A T T S e e U, e . . 1=r PN e 1EON NST
0580LLVA : EDEN SRS T 1 CEOn Ns1
022041 S e : OTE0TE E(SHry=Adug) 41 102 €200 NSI
NCINLLTW (1*1)1v=S4yv 40Ff HZO0 NS
0220L1yR : 102 11 09 . Leon NSt
0120L144 STty -=Sd4y LOf 3200 MNSI
e e . . i OCZOLLIV N e e et ;e am e e e e e e e 20€ .m.um. IOECIT *I¥Twv) 41 . e G200 NS
0610410y 1¢2=1 % L4 701 2200 431
03T0Livw . JnrliNg)  20€ €200 NSI
0LTILLI™ (11T v=Adnv 10€ Zean wst
04T0LLVW o ’ : 206 il Y 1200 NS1
021001V (1T )T /== Aduwv 0DOF Gz o0 N3
- 07100 1Ve - e - . T0ET10CCNEN(T *T T o) 4 ST NS
0teT0LLvW ’ INTING) 2 3100 NS
0ZT10LLYw . : . : 2L 0N=-N) 41 002 LIno 431
OTT10LLV A 1=r . 210 VST
GOl LLY S (1) 10N=) S100 NS
0.00LL7u Tun~i=1 2100 N31
0d00L LV . A . L . . . N*T=x 2T 1J 10 £100 NST
QLOULLTW IS VS RNMEIS SR AT 2100 NSI
0000419 Hee=1 1 2 001 1100 w3l
. 0uCOLLV A T=(1)0L o1en Nsi
O-ONLLYN . : Zad=141 LONe aSt
0E00L LY A 00D T1=74) #0000 NS
O - 0EV0LLIvW . . S - . . . . . 1=\ Loen NSl
0100L1vw . V345 3LLDD A0 NIxiVW)
' (0L *0L 1T¥ NOISNANI] Rlalala
0100717VA i (OO 1Y TIHLO0T) 40 WAL 5N ] MU RN |
: DEN ¢ 000ZIN *WN'W % Q002TIN-/ LNl / VN ) yCNY ST
: (Z~U%H=9) 37734 L1140 £000 N31
olonegsy . . . . (XIIMNTEINCTEINIXL 2 ANT LN INS Zn00 481
31X AT LT IUN VWS IVOTENIJA0N LSTONA A3 4 1DYNIS  0u=UNDI NIV T0=L JO*NI VW =3t = SNITLIY 831 dw)
g€ °20°y1/501%2L 34v0 ©o 0 T H NVYLW04 09€/50 ’ (89 AN T ) L1 13A9

C-11



Ng
ERIIV S
(N3N *T=] CCI*TYunys CCEC 1) 222 ) (avINMT) gLl n
(OCOT*Z)»AS (0001 2) 27 P)Us ol

seseccecceer SAVMIV ST d143SdNS L3d£4 57 SNIISHINTY TTa7047A N SN

ctetSaaM JiAg 3
. (NIN *PAS 527 CygviNT )31 TYmINLLNDNANS

IN

20006
5000
Y000
foon

cana

338X*01 *L10ION4yw 70T X JION® 15110V AD9*3IANS 0= NI NI 1I=L 30 NI TW  =3vTH = SNITLAD ¥111dw0D

32°20°%1/301°2L

<00

ERAL]

3iva

0230417
O0s40L 19w
Cr30LLaw
0CINLiVA
030l Lviv
OTHOLLIVA
0030L170
Quilliwn
O3L0LLTwW
QLLDLLYn
O20Li7n
U5L0L17w
Q7L0Liva
0LdnNLLV .
02 LILIVA
OTiNLLvA
00L0LL T
Qo70Liva
Qd4730LL7w
QLIQLLETN
0920LLVa
O0+710L1Tw
07I0L 1IN
JCI0LLY N
IOl LYW
01 ,‘.QF_.QS
GO 0L1Yw
Ja533L17a
Q200174
0L50Livw
0233017 W
O350L1va
OralLlva
0C30LLTn
0Z50L1vw
0150419
00=0L1L9.
U 70LLVw
037QLiva
0L,0LLvw
032001V a
06,0017
Orr0LiVH
QEIILidhn
0270Lava

H NYdLly0d  09€/SD

12 41 Yy
C=X1IN]

e o . . . . . N L d 4
INNTLNGD

OO e T=x3 141

FAIMLINC)
12 a4 9
£=x10N
. . in
L IT 9L @
i e e e e e e R A o . w={1) N
. 1= 00 oy
() IN¥=W

CoInnaL
(1) d={der)1 v
(N*PYTo=tl*r)Tw

(1)t =iy

N*T=F ST i

BT 2T LT (n~( 1)) 4]
AR BEREE B
ETCITLT(A~EAD IDN) g
NCT=N 21

- ce e e i e N W= 1O
‘ ) ER R SENED

(Cyma=(rey)ty

(Tyr)ad={r) 12w

MTECTT )

NILNYD
‘T-119
ER S ]
(1-FIMDGAANY (T I v= (1 =F*T~1)T 7
MAZET o oLl

(YD) Tv=Ad0Y

AREIEE BEEAR BRI |
(NST)T7=(N )Y
Advv/Zeda=) 2L

AN LNC)
(I=-1*T)Tv=t1~-1*r)1Y
AdWV/ (1)1 7={T-1)n o
=1 2 )

A fval3a=g i)
(1*C M 7=Ad 7

o o (NIMIHR ALY ==

189 AN 1 ) L1 13A3Y

iCt

€0l

L

1600
000
SN
IBCO
LenC
00
He00
7800
€300
ZEN0
Tgan
nane
6L0D
Lee
Lene
L00
3L0C
glnon
cLoQ
cLCC
L WARTH
oLon
FEAMU
RET
L50N
900
8610
=900
Lno

NSl
NGT
HEY
NS

NSI

451
NSl
NS
sl
NSt
NSl
Sl
NST -
NS
51
NS T
NS
NS
N5
NS

1700
0300
S:i00
RO
Lson

~n

..
et

LS LEN
£500
7500
Tgne
N300
RR2sih
3700
Ly 00

C-12



d2411
8eill
JT411
20411

- 94 31T

73411
PRERR
Jdi11
Jvdtt

84311
39511

NOfLvJU

TJGLN
QIXHIA
AINIWyd
GJJGH

UJIHUTH -

Jden
J3A Y
UJAAAA
1311

-JNL7d
€EMLNe

ERT AT

77311
7¢€411
01311
[JleF RN
04411
[EERRT
8J311
39311
37411

3yLTIL.
00%11

9€301

NGILvIU1

MJd I
QJ443A
BRLE RPN
3154 )}
BRERIE

RN

NNpAY
dIXXXX
AS9Y 14

3MLd
Z2Mid

HOLMSLWI

IWIN

adsn

0GIf1
Jasel

QG4 1T
Cr411
CEdTL
0411
43711
DEERS
331311
2)311
Y31l
25411

e €T -
0lell

7144

NJT 17301

{ SINCI L40 11094371

ERRERI gedET

04VET -
. 9019 0)89¢€1
AZ3414 R ER R
3Ivas1 IES1T
13493x 02311
Q40 LA 40411
AA XX 54311
DLW - - 83I3TT
TIMA U 03311
JIAY Q2311
AASXX( 03311
A3y 43S 0€3T1
wMLTd Y1911
MLd 55€ 11
04011
=590 104 3144
30491
856101
OYd)d

AWYN MITLVIDY

4va 410N

R L

YEELE]

1330S}

019 ag

XZ2J1Ltd
JIAHIA

1405
FINWV)I
AA 11130
GHOTHO

Jax
Yidida?
LA BGEN

Vel id
4N 3d0

A5 7I03S

C=W991

LIx3
aX 3l

L VG

JWN

AALNS

-{2613*50€35)=13213
STV L3Nt dwa

G331 D4aS

972
Vs
21

ne2
39
337
3121 -

»21

YoV

RIRA
231
ALy
M
plor4
vl
J704
of 1

HL1IN3I T

= 13S0 SNTLLdO 373VINVA

33121
8e el
04vel
0J3el

003¢1
aL1el

S AGATT-

1] 22 Q1

g5€T1
05401

3144
827

3073
319

BEEN]
1233
nied
00¢)
0439

S04

O£l
00

NTOTHO

L] AYN
e W443 4]
=440 31IHI
® oc_dur—

" A91Q
= A8V

s - AW¥43T - -

L] 03]

* X4114

2ZHW ) IIHL

aH W3 IO -

& 13714213
=1l 14 M1
« J¥3I1I4T

* X3 1iv)
EERSEL!

NI Ly
BARN
Zad N
=3l
NVJANS
MIvW

JNIN

NJELIIS T4 LN

15104731
1510131

SWOTL5Y #0113y IDIWNTY 1IAIN-39



€ vdsl

09551

MILL YO0

.o Z1zat -

HIMSILINI
dLi0JTADS .

Jni3s

InIN

INONEIW
114S87)

valyyd

FELRSIV ]

HILMSrQav

dlNU3AD4L

diNDVYADS.

S92

N TJIH

: 06531

Zve 3l EI ¥ 3S€31

B - 08401

31901

’ J945)1

va2a1l JLNIINI3 - ovval

23081 . dANIIAIY . ZE03T ..

Jol3l

Vdg sl Ja4dHM L3551
NOL L9007 IwiN N3 A7 IO

INYN

Jed61

CEMER

J1e3t

84T
823371 .

087331

31901 -
00121

36501

- 383VY

06581

03191
R361

737351
3L571

NOT1v307Y

HNAAR N

VLS AW

HJY1 ]
- =1dXdd

34Ud

=+l 14V

dlNJIAIY
=N DOV

AZ3114d

=1dX 44

0190y
NV

NI1Dd 32
NIV

JAIN

IV
34
Vil
3¢

it

215

et
34¢

741
vil

301

041
0we
e

HL9NI

82171
3301

31231
30231

3L401
3¢

031N
o)xn
02491
LT

3191
0011

33471
333vl
34¢71
drewl
051v1
31071

04557
3Ed41
00381
03011
olHRl
31201

05501
ove Ll
35011
EREEA
31391
07L91
Are Q1

08191
Q04451

333481
3le9l
gLl
0h7451

NIOTNC

"% & @

LR I

LR ETIRERD]

R B Iy

*

Aldw]
% w4vTHIr

LEDEIRRL]
#14x14041

=34J)
Al il49
ASTXTA
14 30K
LTI RRER

sHINS I

*H1AYI NI

% ASIXvX
ALV ]
AVIVAS
A)N13S

S AW LIS

L O

«  ALSITH
L Lid M4
«  1ALlU
&« ANYAva3
* AAXNT
& LENA

LR EEMIIR
4022
S INY

AAIX
AZ1S9)
ATHWY DY
Alg

9I1TSM]
1408

P x9S

L

*00030CYY
& ALNIMA
& AAN

I IN

C-14



’ ) TN

NU11VJIOD

. 9€422- -

%35€2

aN3gyv

41$343 .

20502 NIS
€902 ¥S5qW . 31902 . ANSTW
00641 d43)HI ILEAT dNOIHI

NOLLYIDY 347N

NJTLVII IAIN

331012

004¢2

-878¢€l

o B1422-— - AVYSd43 .— 81222--

03vee

34302

00L02

8460¢

deedl

3331
32931

NDI1v¢207

AONY

1 TAUNS

-1 35S ddd

NOJ IV

T 9uTEnN

S0

D]

SAS VW

dwiing

11Ny
J1dwnd

IWIN

w DD
__'_n—‘
e’}
N
<

Moy,

H0¢
1”71

)¢

e
me

LERS

wE e
0)
0¢l

3ta

H19131

S8.)741

0T05R
odied
024€72
BZdee

00472
RREI AN

EREAYA
arLee
01cec
02422

31372

04vc?

0d92?
nzaee

-054¢7

0Jr22
05¢e2
3J)¢1¢
otrire

81n1¢
WI0T

8340
32102

olLae
07902

34602
4741
[FIGAEA

S7341
galdl
PEEER
07741
DIAER
N4

01041

01n31
[CRERA

NTOT AN

* 3 # &R R

R EREEEEE R

riyar
9740113

% AZ L4HS
* A¥09

* XAINT
* AJIHIA

L] AINS

& A14712S

= 1d LY NINHT

a ATTH

® L4 IHT
YRR R

®

NIV
A1TDSA
A17)5X
ALd9D LS
A 23S
A4 170d
ALMTOd

#*

BEF IR
A ININ

*

* NJS3OHI
AT L4HS

#

% 4100745

-

AAXSH

XM 3
CAANTY
ISRRRE
[RFEEE!
A41343

AIOA

Abdis X
1315dA1l

LEOARE]
141901

 wINNINW
J 1M
% XIHNIR

*

# 71in)

FAIN



‘
5
- . - - R - - - ‘
.- ;

*SJAA0 ¥Z15 J3IU33dIxd IAVH u._:o.uz v ANGLND 335 SLaINIHAIN0Ty Jovd IS NIZ ~ ININGUY T510MT]

A43193910 39755 DILSONOYI

L3S 91va 0L 33907 ~330 S NG LSIXA 0N 5330 MITAnxHdamas
05074 HION3T vl
00 5541713V A41N]

c-16



APPENDIX D

COMPARISON OF ESTIMATED AND ACTUAL SUNSPOT CYCLES
FROM THE LEARNING CASES

This appendix presents a comparison of the actual and predicted sunspot
numbers for cycles 3 through 18 which were the learning data for developing
the prediction algorithm discussed in this report. Figures D-1 through D-16
present the actual sunspot numbers as the dash lines. These figures present
graphical interpretation of the RMS error of 17. 4 of the learning data for
ADAPT prediction algorithm.

Figures D-17 through D-35 present the information required to make a
similar comparison for the ADAPT third quarter extrapolation. Figures D-17
and D-19 give the actual sunspot number for cycles 1 and 2 and Figures

D-18 and D-20 through D-35 give the extrapolated sunspot numbers, based

on the first 93 months of the cycle.

The predictions, for which Figures D-1 through D-16 indicate the performance
are used for the recommended estimate of cycle 21. The third quarter extrap-
olations, for which Figures D-17 through D-35 indicate the performance are
used for the recommended estimate of the remainder of cycle 20.

Comparison of the predicted and extrapolated cycles with the actual cycles
show that the third quarter extrapolations are significantly better than the
prediction. In both cases, it is interesting to note that the predictions of the
location of the short term oscillation is quite good. The actual amplitude,

and in some cases the phase of the short term oscillation is quite poor for

the prediction algorithm. When the error in the undérlying basic cycle is
also considered, the extrapolated values for the short term oscillations are
actually quite good. Thus, we conclude that one can use the estimate presented
in Figure 2.1 of the report to infer the general characteristics of the short,
term (scale of several months) behavior for cycle 20, but only as an indication
of when a spike might occur for the estimates of cycle 21.

Sleeper, in Reference 13, has pointed out that cycles 4 and 9 should be con-
sidered as models of cycle 20. Thus, a comparison of the extrapolation of
these two cycles with their actual values may be used to anticipate the types

of error which might be expected in the estimates of sunspot numbers presented
in Figure 2.1. Note that the prediction technique compared in Figures D-2

and D-7 which significantly underpredicted both of these cycles was not used

in the estimate of cycle 20. However, comparison of the extrapolation of cycle
4 shown in Figure D-22 with the actual cycle presented in Figure D-2, and
assuming the cycle ends at a sunspot number of 5 shows that the period is still



underpredicted by approximately 1 1/2 to 2 years and in general the sunspot
activity for the last quarter is underpredicted from 5 to 20 sunspot numbers.
Comparison of the extrapolation of cycle 9 shown in Figure D-27 with the
actual values of cycle 9 shown in Figure D-7 shows that both the period and
sunspot numbers are estimated quite well for cycle 9. Thus, one concludes
that the estimate of the current cycle presented in Figure 2.1 might range
from quite good to slightly underestimating the sunspot activity and period
“of cycle 20.
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FIGURE D-2
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FIGURE D-3
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FIGURE D-4

COMPARISON BETWEEN THE PREDICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-5
COMPARISON BETWEEN THE PREDICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-6

COHPARISON BETWEEN THE PREDICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-7
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FIGURE D-8
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FIGURE D-9
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FIGURE D-10
COMPARISON BETWEEN THE PREDICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-11

COMPARISON BETWEEN THE PREDICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-12

COMPARISON BETWEEN THE PREOICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-13
COMPARISON BETWEEN THE PREDICTED AND ACTUAL SUNSPOT CYCLES
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FIGURE D-14
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FIGURE D-15
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FIGURE D-16
CYCLE 18
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FIGURE D-17
ACTUAL SUNSPOT CYCLE 1
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FIGURE D-1%
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FIGURE D-19
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FIGURE D-20
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FIGURE D-21
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FIGURE D-22
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FIGURE D-24
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FIGURE D-25

PREDICTED SUNSPOT CYCLE 7
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FIGURE D-26
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FIGURE D-27
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FIGURE D-2 8

SUNSPOT NUMBER

100

[ "]

00

40

20

PREDICTED SUNSPOT CYCLE 10

1
i !' +L' 1
A - L NDR = L]
P I
L i
!
e
(] 20 40 60 0 100 120 llq 160

INDEXING VARIABLE

160

72

.D-30




FIGURE D-29
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FIGURE D30
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FIGURE D-31
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FIGURE D-32

SUNSPOT NUMBER

S0

LT

L]

20

PREDICTED SUNSPOT CYCLE 14

R : T
RPN S ty L
. N F
' ! MOR . :
- - + 1
: i
i
s J
. iend
o
~peed b +
S ; !
e -+ - - N
: 1
| !
. .
Co §
[ i o
- ; L
L. 4
1
!J;A
D e
o
Co
g g
i
}
i
i
4
1
L
—- +
Lo
—4——t
7 {
R S S
° 20 40 ) ) 100 120 140 160 180

INDEXING VARIABLE

2

D-34




EIGURE D-33
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FIGURE D-34
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FIGURE D-35
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