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A COMPARISON OF TECHNIQUES

FOR INVERSION OF RADIO-RAY PHASE DATA

IN PRESENCE OF RAY BENDING

By H. Andrew Wallio and Mario D. Gross! *
Langley Research Center

SUMMARY

Derivations are presented of the straight-line Abel transform and the seismological
Herglotz-Wiechert transform (which takes into account ray bending) that are used in the
reconstruction of refractivity profiles from radio-wave phase data. Profile inversion
utilizing these approaches, performed in computer-simulated experiments, are compared
for cases of positive, zero, and negative ray bending. For thin atmospheres and iono-
spheres, such as the Martian atmosphere and ionosphere, radio-wave signals are shown
to be inverted accurately with both methods. For dense media, such as the solar corona
or the lower Venus atmosphere, the refractivities recovered by the seismological
Herglotz-Wiechert transform provide a significant improvement compared with the
straight-line Abel transform.

INTRODUCTION

Radio occultation measurements of planetary atmospheres and ionospheres have
been an integral part of the standard scientific investigations performed with planetary
space probes since the Mariner series of the mid-1960's. The Mariner IV spacecraft
provided the first reliable measurements of the atmosphere and ionosphere of Mars by
this technique in 1965. (See refs. 1 to 3.) Similarly, the Mariner V spacecraft provided
refractivity profiles for Venus. (See refs. 4 to 6.)

One of the basic observables used in these experiments is the observed frequency
of the radio signal received from the spacecraft. This frequency is compared with a
fixed stable oscillator to derive an observed Doppler signal. By subtracting the amount
of shift expected from the spacecraft-Earth link geometric changes from the observed
Doppler signal, a "Doppler shift residual" is determined. For situations in which both
link terminals are outside the medium being probed, the presence of a nonzero residual
indicates a change of the emitted and/or received angle of the ray that propagates between
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the links and through the atmosphere of the planet being probed. The inversion problem
is to obtain the atmospheric refractivity profile as a function of radial distance from
the planetary center of mass from the observed Doppler shift and/or Doppler shift
residuals. From the refractivity profile and certain assumptions about the constituents
of the atmosphere and the planetary magnetic field, such atmospheric properties as the
electron number density and its distributions, pressure, temperature, density, neutral

/

number density, and their radial dependence can be deduced.

In the past, the inversion of the data has been performed with a variety of geometric
optics techniques ranging from the closed-form Abel transform (based on the assumptions
that the medium possesses spherical symmetry and based on the additional hypothesis-,
generally accepted by occultation experimenters, that there is straight-line ray travel
(ref. 7)) to ray trace model-fitting approaches (based on iterative model update schemes
(ref. 8)). For a planet with a thin atmosphere, such as Mars, all these methods are, in
principle, adequate approximations to the ray-propagation theory. For dense media, like
the atmospheres of Jupiter and Venus or the Sun corona where ray bending is large,
closed-form inversion algorithms which utilize a straight-line ray approximation are
inadequate. A suitable method to solve the problem in these cases is available from
seismology and is based on the Herglotz-Wiechert approach for interpreting seismic
data. (See refs. 9 and 10.)

In seismology^ this bent-ray-path technique leads to the derivation of velocity-
depth profiles and to the calculation of the position and the identification of geological
features in the Earth's mantle. The observables are the travel times of seismic waves
between stations located at known positions on the Earth's surface. Phinney and
Anderson (ref. 11) have shown that this method is applicable to situations where the
observables are the Doppler residuals of the radio occultation measurements. This
method has been independently derived, programed, and applied to the Martian atmo-
sphere (ref. 12) and this report is an extension of this earlier work to include denser
atmospheres.

The purposes of this paper are to present the equations of the closed-form straight-
line Abel transform and the Herglotz-Wiechert transform, and to compare the refrac-
tivities and minimum probing radius recovered by the two transforms for various cases
of ray bending.

SYMBOLS

A amplitude factor of electric field wave, V-m"*

a,x,Z limits of integration



c speed of light, km-sec"1

D Doppler shift, sec"1

^atm Doppler shift due to atmosphere, sec"1

De Doppler shift of unperturbed radio ray, sec"1

dl differential actual radio ray-path length, km

dZ' differential straight-line radio ray-path length, km

dr differential of r, km

dS differential of S, km

d<9 differential of 8, deg

E electric field vector, V-m"1

f frequency of radio wave, sec"1

G phase factor of electric field wave

G^ imaginary part of complex G

Gr real part of complex G

g(x), g'(x), £, IJ. dummy functions used to illustrate Abel's integral equation

i incidence angle, deg

K propagation constant, km"1

KQ propagation constant in free space, km"1

L total path length, km

I actual radio ray-path length, km



V straight-line radio ray-path length, km

N refractivity, 106(n - 1)

Np refractivity at minimum radial distance of radio ray

n index of refraction

np index of refraction at minimum radial distance of radio ray

p impact parameter, km

r radial distance from planetary center of mass, km

TQ starting position of radio ray, km

r radial distance of minimum point of radio ray, km

S position of spacecraft on trajectory, km

5 spacecraft velocity along trajectory projection, km-sec"*

T,t,x defined dummy variables

T. - dT(P)
" dp

Q!e geometric angle (see fig. 3), deg

/3 variable between 0 and 1 used in Abel's integral equation

6 deviation angle, deg

e inductive capacity, N~*(C-m~l)

r\ defined variable, km

?]Q starting value of 77 for a given ray, km

77 minimum value of 77 for a given ray, km



9 unit of angular measure (see fig. 2), deg

A wavelength, km J

p perpendicular miss distance, km

$ angular measure of phase cycles

0a defined ray residual, cycles

0U geometric phase term, cycles

i// radio-wave emission angle (see fig. 3), deg

i//e unperturbed radio-ray emission angle (see fig. 3), deg

Subscripts:

0 starting position

L last position of integration

ANALYSIS

Straight-Ray Abel Inversion Transform

The differential phase-path length is the difference between the straight-line geo-
metrical distance between transmitter and receiver and the phase-path length for radio
waves and is obtained from an integration in time of the Doppler residuals. The integra-
tion constant is zero when provisions are made for starting the integration from a posi-
tion time where the probing link is completely external to the medium under investigation.

Figure 1 depicts the straight-ray Abel transform geometry. By assuming that the
index of refraction is a spherically symmetric function,

pOO pOO

Differential phase-path length = \ dl' - \ n(r) dl (1)
•J_oo *J- oo

By assuming that the radio-wave ray path is a straight line and sufficiently close to
the geometric straight line that dl ~ d£',



Differential phase-path length = \ [l - n(r)l d£' (2)
«J-oo

The integral is a function of the distance of the ray from the center of the planet at
the point of its closest approach.

Define

T(p)S r+°°[i - n ( r j ] d Z ' (3)
•J -00

Then, by changing the variable dl1 (see fig. 1),

- n(r)lr dr ^°° yj(r\~ nr
T(p) = 2 . ^ = -2 10-6 f ^ElL .̂ (4)

- P2 p r2 . p2

In this equation the radicand in the denominator is nonnegative, because for every value
of the miss-distance range p of the ray from the center of the planet, r > p.

Let t s -_ and 2r dr = --=r dt. Equation (4) becomes

21/p2

Let x = — ̂  and p = ./-; then equation (5) becomes
Z vx

- dt

(6)

Applying Abel's integral equation in the form given in reference 13 as if

a (x -



then

_ sin ffff fz g'(x) dx_ sinjir f=_— \
a (Z -

(under the appropriate conditions as given in ref . 13) to equation (6) results in

N(4
_W_ io6 r tdxlyx v
W*~ = ~ « Jo JF^

dx (7)

Let t = — and then equation (7) becomes
r2

_r3N(r) = 10! C
^ J

1/r2
dx

- X

Now

(8)

Ta wii \^y
2~?72-~2

 x2 (9)

so that equation (8) becomes

2;r

3/2 Xx dx (10)

where T' = . Let x = — and 2p dp = -—• dx; then equation (10) becomes
dp

106
27T

fT(p)

(11)



or rewritten

•nr* Jr i/D2 - r2

and

(12)

Because of the change in the limits of integration, the radicand in the denominator is
nonnegative. In fact, for every radial height r, N(r) and n(r) are obtained from
columnar measurements made at miss distances p always larger than r.

Thus, under certain restrictive assumptions, the index of refraction of the medium
being probed is shown to be a function of the differential phase-path length and its deriva-
tive which are known observables.

Herglotz-Wiechert or Seismic Inversion Transform

In seismology, the observable is the central angle 6 subtended by seismic wave
rays in the Earth. (See fig. 2.) The analytical steps are arranged in such a way that the
velocity-depth profiles are obtained by operations on 6.

In radio occultation measurements, the observables are the Doppler shift residuals
so that the theory used in seismology must be modified so that the refractivity or index-
of-refraction profiles are obtained by operations on the Doppler shift residuals. The
important aspect of the Herglotz-Wiechert approach is that the straight-line ray approxi-
mation is not required.

The geometry of the occultation is shown in figure 2. The index of refraction n is
assumed to be a radially dependent function, and from Fermat's principle, the first vari-
ation of the phase-path length should be zero,

i dZ = 0 (14)

where d£2 = dr2 + r2 d#2. The Euler-Lagrange equation which yields a minimum for
equation (14) is

= Constant (15)



and from the boundary conditions at the minimum radius, Snell's law in spherical geom-
etry is determined, that is,

p = nr sin i = nprp = Impact parameter (16)

The impact parameter is a constant for a given ray.

Define the variable 77 as

From the definition of the path length

~|l/2
dr (18)

and the application of equations (15) to (17), the integral function for the path length is
found to be

-.r

>*„L . ,yJi
The phase (angular measure) along the ray path is

0 = | f n dl (20)

and by using equations (17) and (19),

0<p)= 2 | - p d r (21)
rP

By applying the operator L to equation (21) where

L(f) = f^ fp(p2 - V)-1/2 dp (22)
J

and where T?Q = 771 = T] by integrating over p, by interchanging the order of integration,
by integrating by parts repeatedly, and by performing a final integration over the appro-
priate regions, the phase function (eq. (21)) can be shown to be inverted (see appendix) to



rp = r0 exp cosh -1
Pfo) P dp (23)

Thus, the refractivity is found as

Np = 106

By following Phinney and Anderson (ref. 11), if a ray residual <£„ is defined as

(24)

(25)

where is a geometric term, then

Np = 106 exp (26)

where x is a dummy variable such as time to occultation or satellite position.

Thus, if the impact parameter p (eq. (16)) can be determined, the minimum
probing radius and the refractivity at that radius are determined for each radio-wave ray
as a function of the known differential phase path by equations (23) and (26), respectively.

Determination of Impact Parameter

In order to evaluate the impact parameter, a ray-optical treatment is considered
from an Earth-centered coordinate system. The spacecraft is thought of as sampling
phase along an arc through a family of constant phase surfaces and the radio waves are
emitted orthogonally to these surfaces.

Then the equation for the directional derivative (ref. 14) is

dlr
dS dS

(27)

where d"r is the tangent line to the projection of the spacecraft trajectory in the plane
of the spacecraft, planet, and Earth at any point S along the trajectory, d?/dS is a
unit vector, and V<£ is the direction of propagation.
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Therefore, the angle between the radio ray and trajectory becomes (see fig. 3)

1 (28)

In order to evaluate the radio-ray emission angle i^ from the directional deriva-
tive, the gradient of the phase V$ or the eiconal equation must be determined. To
determine this equation, assume a nonconducting isotropic medium where the inductive
capacity e is a function of position. Then the wave equation for the electric field vector
becomes

V2E + K2E = -V(E • ̂ - = V2E + Ko2n2E (29)

where KQ = f/c is the propagation constant measured in cycles. If it is assumed that
the spatial change of e is small compared with a wavelength

:< I (30)

then the wave equation reduces to its homogeneous form

V2E + K0
2n2E = 0 (31)

Assume that the form of the solution is

E = Ae"iK°G (32)

where G = Gr + iG^ so that surfaces of Gr = Constant are surfaces of constant phase
and surfaces of Gj = Constant, are surfaces of constant amplitude. Substitution of equa-
tion (32) into equation (31) yields

V2A + K^AJn2 - (VG)2] - iKoCw2G + 2(vA) • (VG) = 0 (33)

If KO is large in the sense that

V2A « I^2 (34)

and

AV2G + 2(vA) • (VG) « KQ (35)

11



(therefore regions of diffraction, focal points, caustics, and sources are excluded), then

(VG)2 = n2 (36)

Now KQG = 0 + f t for a real 77 so that

(V0)2 = (1 n)2 (37)

which is the eiconal equation.

Since n is a function of position if the spacecraft shown in figure 3 is inside the
planetary atmosphere, the profile of the atmosphere must be known before equation (37)
can be solved for | V</>| .

If, however, the spacecraft is above the atmosphere, then n becomes unity and
equation (37) becomes

(V0)2 = (|) (38)

Substituting equation (38) into equation (37) yields

- (39)

By letting time be the independent variable and D signify an instantaneous
Doppler shift,

^ = I^ = D
dS s * S

Then D can be thought of as being composed of two parts

D = De + Datm (41)

where De is the expected geometric Doppler shift from the predicted trajectory and
Datm is the residual normally attributed to the atmosphere. Therefore,

(42)

If there is no atmosphere

(43)

12



where i//e is the angle between the trajectory tangent and the unperturbed ray or
straight-line distance between the spacecraft and Earth.

Algebraic manipulation of equations (42) and (43) yields the deviation angle 6
(fig. 3)

or

where

D

D

6 =
Datm

Datm + 2De

6 = 2 tan'1
- (D*

D + D

observed Doppler shift

Doppler residual due to atmosphere

Doppler shift of unperturbed ray

(44)

(45)

Thus, the impact parameter for a ray is

p = rs sin (ae - 6)

where

(46)

a

distance of spacecraft from planet center of mass

a known geometric angle (fig. 3)

Implied in equation (46) is the dependency of each ray impact parameter on either of the
related variables of spacecraft position or time.

13



RESULTS AND DISCUSSION

A comparison is made of the recovered refractivity profiles obtained by using the
straight-line Abel and Herglotz-Wiechert transforms. Three types of atmospheres have
been used to compare the two forms of transforms: Venus (where the radio rays are bent
positively inward by the neutral atmosphere); Mars (where ray bending is negligible); and
the solar corona (where the rays are bent negatively outward by the electron plasma).

For this study it was assumed that the Earth-planet distance was sufficiently large
to insure that the radio rays emerging from the atmosphere can be considered parallel.
Therefore, all the observable atmospheric frequency shifts can be considered to arise
from effects that have occurred between the spacecraft and an imaginary reference plane
located between the Earth and the planet and beyond the sensible atmosphere. The phase
data for the three models were generated, for a frequency of 2000 MHz, by a ray-tracing
program; this program was a modified version of a program reported in reference 15.

The assumed Venus atmospheric model has a relatively small ionosphere component
compared with the neutral layer. For this model, ray bending in the lower atmosphere is
significant and the differences in the recovered parameters between the straight-line Abel
and the seismic Herglotz-Wiechert approach are clearly noticeable. The recovered
refractivity from the straight-line Abel (Abel), the seismic Herglotz-Wiechert (Seismic),
and the model refractivity (Model) against the appropriate planetocentric radial position
from Venus are plotted in figure 4 for the measured phase function.

In table I is a listing of the differences in the recovered refractivity and minimum
probing radii of the two transform methods from the respective actual refractivity and
minimum probing radius. From table I and figure 4, it can be seen that as the radio
rays probe lower into the atmosphere and ray bending increases, the divergence of the
recovered values increases, the seismic Herglotz-Wiechert method giving consistently
better recovered values.

The Martian atmosphere model is similar to the one developed from the Mariner IV
results. For this example, ray bending is small and the straight-line Abel transform has
been shown in the past to be a fully adequate approximation. The recovered refractivity
from the straight-line Abel transform (Abel), the seismic Herglotz-Wiechert transform
(Seismic), and the model refractivity (Model) against geocentric radius of Mars are
plotted in figure 5 for the measured phase function.

Table II is a listing of the differences in recovered refractivity and minimum
probing radius of the two transform methods from the respective actual refractivity and
minimum probing radius for Mars. From figure 5 or table II, it can be seen that the
errors in the recovered refractivity of the two transforms are about the same. Also, the

14



minimum probing radius found by each transform is very close to the actual minimum
probing radius because of the small amount of ray bending.

A Baumbach electron density model was used for the solar corona. For this case
ray bending is again very large and the deviations between the classical straight-line
Abel transform and the seismic Herglotz-Wiechert transform are clearly noticeable.
The recovered refractivity from the straight-line Abel (Abel), the seismic Herglotz-
Wiechert (Seismic), and the solar model refractivity (Model) against their respective
heliocentric radial position are plotted in figure 6.

Table III is a listing of the differences in recovered refractivity and minimum
probing radius of the two transform methods from the respective actual refractivity and
minimum probing radius for the sun. From figure 6 or table IK, it can be seen that the
divergence of the recovered refractivities and minimum probing radii compared with the
actual model values increases as the ray bending increases, the seismic Herglotz-
Wiechert transform yielding the parameter values closest to the model values.

CONCLUDING REMARKS

The work reported herein has shown that profile inversion of phase data collected
from strongly bent radio rays requires the use of techniques like the seismological
Herglotz-Wiechert transform which do not rely on the validity of the straight-line
approximation.

For highly refractive media like the solar corona or the lower Venus atmosphere,
the recovered refractivities by the Herglotz-Wiechert transform provide significant
improvement compared with the straight-line Abel transform (a reduction of refractivity
error at the lowest probed altitude from over 60 percent to less than 20 percent for the
solar corona and a reduction of error from 150 percent to 3 percent for the Venus lower
atmosphere).

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., October 20, 1972.
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APPENDIX

TRANSFORMATION OF PHASE EQUATION TO EQUATION

FOR MINIMUM PROBING RADIUS

This appendix gives an outline of the mathematical steps used to transform the
phase function (eq. (21)) to the equation for the value of the refractivity at the minimum
point of the probing ray.

If the phase function (from eq; (21))

is given, let rj be such that

/ 2 2V1/2

P(P2 - ri ^

T?Q = 77^ = 17̂ . Apply the kernelj g TJ S R, then

to equation (Al) and integrate over p from 77* to TJQ to yield

= 2 ^C rr - ii

(Al)

¥• dr?> (A2)dr?

Interchanging the order of integration results in

* - f f"°2?gd, , 2pdp

. p2)

(A3)

which reduces to

(A4)

Let 77 — /a. and integrate both sides of equation (A4) over ju from T/Q to t] to yield

16



APPENDIX - Continued

log.

dp

1/P2 - dn (A5)
^0 H'

Let t]i = ju. and then integrate equation (A5) by parts to yield

- 2
dp

p2 - /I2 '

Interchanging the order of integration and integrating with respect to jit result in

(A6)

rf
0 P

J

^O
P

1 cosh-lP\
2p

(A7)

which reduces to

log.
- «2

dp (A8)

The second term on the right-hand side of equation (A8) becomes, after integrating
by parts,

^71^ dp = -\
* J

dp- \ ±c08 - A ( ^ )^dp (A9)
77

The third term on the right-hand side of equation (A8) becomes, after integrating by

parts,

-j l l ? 04cosh-A(£]dp = - r ° u-i_r cosh
P dp

- ^i cos i-i )^- dp
/ dp

(A10)

Combining equations (A10) and (A9) in equation (A8) yields

17



APPENDIX - Continued

log. - = c 0 8^pVdp

NL \A\Lf i ~ I / M i X -~ I l ' I V »-*V-' V ir-j2- cosh A i-1 - £ cos AM -i > dp) dp \nj r] \pj dp !/ ^ (All)

Equation (All) reduces to

exp
77f

(A12)

and since r(r?) = rQ> the negative value of double-valued cosh'M^J must be taken.

At the "turning point" in the atmosphere (where sin i = 1)

= P = rO sin J0 = nPrP (A13)

Therefore, transforming equation (A12) to a dummy variable dependence and using
equation (A13)

rp = r0exp<;-^ cosh"
P(XL)

(A14)

Using equation (A13) again yields

V
cosh -1

P(XL) p(x) dx
dx (A15)

Now (f) = <p + <p so that if there is no atmosphere, <j) = $ and equation (A15)
becomes

C rL 11 = sin in exp<— \ cosh"1

\ \rfJxo p(x) dx
dxv (A16)

and therefore

18



APPENDIX - Concluded

X
Nn = 106 exp<^- \

P *
cosh'1 ~p(x) "

_P(XL)
1 ^a

p(x) dx
dx> - 1

which is equation (26).

(A17)
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Dec. 19, 1969. (Available as NASA CR-106808.)
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Figure 1.- Abel transform geometry.
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Figure 2.- Seismic transform geometry.
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Figure 3.- Impact parameter geometry.
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