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FOREWORD

The study described in this report was prepared by the

Biotechnology and Power Department of the Advance Systems

and Technology Directorate, McDonnell Douglas Astronautics

Company - Western Division, Huntington Beach, California.

J. R. Jaax, Crew Systems Division, National Aeronautics and

Space Administration, Manned Spacecraft Center (MSC) was

the contract technical monitor. B. N. Taylor was the

principal investigator for McDonnell Douglas. A. V. Loscutoff

assisted in the preparation of the computer subroutines and

simulation models. Volume I of this report is a summary of

the work performed. Volume II contains detailed information

concerning the preparation and usage of the analytical models.

iii



TABLE OF CONTENTS

LIST OF FIGURES • • vii

SUMMARY ix

SECTION 1.0 INTRODUCTION 1

SECTION 2.0 SIMULATION MODELS FOR CO CONCENTRATION CONCEPTS

2.1 Steam Desorbed Resins 5
2.2 Vacuum Desorbed Solid Amines 13
2.3 Carbonation Cell 18
2.it Hydrogen Depolarized Cell 25
2.5 Solid Electrolyte 30
2.6 Liquid Absorption 37
2.7 Electrodialysis **2
2.8 Molten Carbonate 51
2.9 Membrane Diffusion 58
2.10 Mechanical Freezeout 66

SECTION 3.0 CONCLUSIONS 73

REFERENCES • 8l

APPENDIX A G-189A ETC/LSS SYSTEM ANALYSIS PROGRAM DESCRIPTION



FIGURES

Page

2.1-1 NASA/MDAC 90-Day Manned Test Amine Resin - CO
Concentrator/System 7

2.1-2 NASA/MDAC 90-Day Test Amine Resin CO Concentrator
Performance Q

2.1-3 G-189A Simulation of a Typical Steam Desorbed Solid
Amine C0? Concentrator 12

2.2-1 Flow Diagram of Bench Scale Gat-0-Sorb Process lU

2.2-2 G-189A Simulation of Vacuum Desorbed Amine Bed l6

2.2-3 Vacuum Pump Characteristics 17

2.3-1 Carbonation Cell CO Collector 19

2.3-2 Carbonation Cell Stage I - Schematic Representation 20

2.3-3 Carbonation Cell Stage II - Schematic Representation 21

2.3-1+ G189A Carbonation Cell Connection and Definition 2U

2.U-1 Hydrogen Depolarized Cell 26

2.U-2 HDC Schematic 27

2.U-3 G-189A Simulation Hydrogen Depolarized Cell Concentrator 29

2.5-1 Solid Electrolyte Cell Reactions 31

2.5-2 Solid Electrolyte Schematic 32

2.5-3 G189A Simulation of Solid Electrolyte Subsystem . . . . . . . 36

2.6-1 Liquid Absorption C0? Concentrator 39

2.6-2 G-189A Simulation of Liquid Absorption CO Concentrator . . . Ul

2.7-1 Electrodialysis C02 Management System . . - U3

2.7-2 Electrodialysis Cell Reactions M

2.7-3 G-189A Simulation of Electrodialysis Concentrator U9

VII



FIGURES

Page

2.8-1 Molten Carbonate Cell * .... 53

2.8-2 Schematic of Cell Reactions for Molten Carbonate Cell ... 53

2.8-3 G-189A Simulation of Molten Carbonate Concept 56

2.9-1 Membrane Module 59

2.9-2 Membrane Diffusion Module 60

2.9-3 G189A Simulation of Membrane Diffusion Concept 65

2.10-1 Mechanical Freezeout System, Non-Recoverable CO 6?

2.10-2 Mechanical Freezeout System, Recoverable CO 68

2.10-3 G-189A Simulation of Mechanical Freezeout 72

viii



SUMMARY

Computer simulations have "been prepared for the concepts of CO concen-

tration which have the potential for maintaining a C02 partial pressure

of 3.0 mmHg, or less, in a spacecraft environment. The simulations were

performed using the G-189A Generalized Environmental Control computer

program. In preparing the simulations, new subroutines to model the

principal functional components for each concept were prepared and inte-

grated into the existing program. Sample problems were run to demonstrate

the methods of simulation and performance characteristics of the individual

concepts. Comparison runs for each concept can be made for parametric

values of cabin pressure, crew size, cabin air dry and wet bulb temperatures,

and mission duration.

The computer simulations have pointed out that, for many of the concepts,

additional laboratory testing is required to determine better data for

certain subsystems parameters or physical properties. Specific recommen-

dations for each concept are contained in section 3.0 of this report.

The analytical models provide a means of determining subsystem performance

for the concepts for a wide range of operating conditions. This should

aid in an evaluation of the relative merits of each concept to satisfy

various mission requirements.
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1.0 INTRODUCTION

The maximum allowable CO partial pressure for .future manned space programs

has been set at 3.0 mm Hg. This has required an evaluation of all CO

management concepts capable of meeting the 3.0 mm Hg or less constraint.

Ten concepts which have potential for meeting this requirement are listed

below:

o steam desorbed solid amines

o vacuum desorbed solid amines

o carbonation cell

o hydrogen depolarized cell ..

o , solid electrolyte

. o liquid absorption

•• o electrodialysis ...

o molten carbonate

o membrane diffusion

o '.mechanical freezout

The above-mentioned concepts are in various stages of development. The steam

desorbed reins concept has been tested in the 90-day manned simulator run.

Extensive development work has been performed on the hydrogen depolarized

cell concept for use in the Space Station Prototype (SSP) EC/LS being de-

veloped for NASA Manned Spacecraft Center (MSC). The molten carbonate concept

is an example of a concept for which many design problems must be solved before

a viable design is evolved.

In order to assist in the evaluation of the relative merits of each concept,

computer subroutines have been developed for simulating the performance

characteristics of the concepts.

The subroutines have been integrated into the G-189A Generalized Environmental

Control computer program. A brief description of this computer program is

contained in Appendix A of this report. Using the program, each concept can

thus be evaluated for a wide variety of operational design conditions. The

following conditions have been specified as design parameters:



o cabin total pressure 10 - lU.7 psia

o crew size 2-12

o dry "bulb temperature 65 - 75°F

o wet bulb temperature U6 - 57°F

o 0 partial pressure 3.1 to 3-5 psia

o cabin diluent gas nitrogen

o gravity conditions 0 - 1.0 g

o CO production rate 1.9 to 3.0 Ib/man-day

o mission time 0.5 to 10 years

A generalized rather than specific approach has been used in preparing the

simulation of the concepts. A typical concept was modeled by breaking up

the subsystem into a series of functional components. These functional

components might be an absorbing or desorbing bed, several heat exchangers

or dehumidifiers, control valves, fans, etc. Existing G189A subroutines

are available for simulating many of the functional components. New sub-

routines were prepared when required. For those components which have a

common function in more than one concept, a single routine was prepared

which could be used in simulating both concepts. For example, the same

routine is used for simulating the absorption phase of operation for both

the steam desorbed and vacuum desorbed resin concepts.

The subroutines used, order in which they are solved, sources of flow to a

component are specified as input data to the G189A program. Any arbitrary

arrangement can be simulated. The program has a considerable amount of

flexibility for reflecting subsystem design or operating changes.

The simulation of a CO concentrator using the G189A may require incorporation

of additional coding to simulate interfaces between components. This results

from the cyclical operation of many of the concepts. Time sequencing valves

may change the direction of flow from one component to another. For instance,

when absorbing a bed received its flow (air) from one source, but while

desorbing the same bed receives its flow (steam) from another source. Thus

coding may be necessary to interpolate tables specifying the cyclical operation



of the bed, alter the order of component solution, and change the source

of flow. This coding may be incorporated into G189A subroutine GP0LY

or into a special purpose subroutine to simulate the interface function.

The body of this report contains descriptions of the concepts and the

methods used in simulating each concept. Sample problems which illustrate

the simulations are discussed in Volume II of this report. Descriptions of

the new subroutines prepared and a listing of program data input require-

ments for the sample problems are contained in the appendices of Volume II.

The methods of simulation described and the new subroutines prepared will

allow comparative evaluation of the performance of each concept. In parti-

cular the capacity of a particular design for maintaining a 3^0 mm Hg CO

partial pressure may be evaluated. Parametric runs for specified conditions

of cabin pressure, crew size, or C0p production rate, cabin air dry and

wet bulb temperatures, gravity, and mission duration may be made. The impact

of interfaces with other subsystems such as oxygen regeneration or water

recovery can be determined.. This should aid in selection of the optimum

subsystem and suitable alternatives for a. particular space mission.



2.1 STEAM DESORBED RESINS

2.1.1 Process Description

In this CO concentration process, cabin air passes through a granular bed

of solid amine particles such as amberlite IR-U5 resin. Since amines are

weak bases, carbon dioxide (an acid gas) undergoes a weak chemical reaction

with the sorbent and is therefore removed from the cabin air .

As more and more carbon dioxide absorbs in the resin, a point will finally

be reached when the CO in the gas stream comes to equilibrium with the C02

absorbed in the resin. At this time, the resin will have picked up all the

C02 it is capable of holding and must then be regenerated.

In the steam desorb resin concept, regenration is accomplished by passing

superheated steam through the bed. Trapped air in the void space between

particles is first pushed out. After elution of the air, carbon dioxide

is the main effluent. When the CO is essentially depleted, steam-breakthrough

occurs. Regeneration is then completed.

, MSA Research Corporation, References 1 and 2, conducted fundamental studies

on CO sorbents for NASA Langely Research Center. An ion-exchange resin,

amberlite IR-U5, manufactured by the Rohm and Haas Company proved to be

durable and suitable for practical CO removal processes.

Hamilton Standard utilized surplus flight hardware from the MOL program to

fabricate a solid-amine carbon dioxide concentrator. The performance of

the unit was demonstrated in the 90-day manned test of MDAC, Reference 3.

2.1.2 Process Operational Details

COx is removed from cabin air by means of cyclic absorption/desorption in

suitable granular amine resins . The chemical nature of the bonding between

CO and these resins provides a CO- removal method which is feasible for cabin



P__. levels of 3 mm Hg or less. Dynamic CO absorption and desorption pro-
«Up C. •

cesses, as well as equilibrium CO. bed loading conditions, are extremely

sensitive to the amount of water present. For example, for IR-U5 resin,

increases in bed water content up to as high as kO% weight result in

corresponding increased absorption efficiencies (Reference l). However^

water vapor contents higher than 2555 have been shown to cause excessive

pressure drop and flooding. With the bed cooler than approximately lUo°F

the absorption process takes place according to the following relationship:

R * NH2 + C02 + H20 •»• RNH
 + + HCO ~

For steam desorbed resins, desorption is accomplished by flowing superheated

steam into the bed in the axial direction. The steam condenses on the resin,

heats the resin and displaces the CO and air. The process occurs in "chroma-

tographic" fashion. That is, steam, C0_, and air are found in individual

zones which travel along the length of the bed. See Reference 1. The dis-

placed C0_ is reabsorbed immediately ahead of the steam zone and the air is

displaced ahead of the CO -rich zone. This chromatographic feature of the

absorption process facilitates separation of CO from air and steam. Flows

of the separate quantities of gas in each of the zones have associated physical

properties which can be sensed and used in control schemes for diverting the

CO -rich flow to the C0_ accumulator and also for diverting the air and steam

flows back to the cabin via a condensing heat exchanger. Two of these properties

which have been used in the steam desorbed resin CO concentrator for the LaRC/

MDAC 90-day manned test are gas temperature and flow rate. See Figure 2.1-1.

CO has a higher mass flow rate out of the bed than air does due in part to

its higher molecular weight and, therefore, higher density. The increase in

mass flow rate which occurs as the air zone is depleted and the C02 zone elutes

from the bed is sensed and a controller actuates a valve which diverts the

C0? to the CO- accumulator. As the CO zone is depleted, an increase in gas

temperature at the bed exit plane occurs as steam commences to leave the bed.

This temperature is sensed and the control valve is actuated to divert the

flow back to the cabin return line. The effluent steam is condensed in the
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condensing heat exchanger in this line and the resulting condensate is

returned to the water boiler. With steam desorbed resins the desorption

phase of the process generally occurs at total gas. pressures in the vicinity

of cabin pressure. The pressure of the CO -rich gas leaving the bed is

raised in a compressor to a pressure slightly in excess of CCL accumulator

pressure. Since accumulator pressures are often in the order of 50 psia

or less, the required compressor pressure ratio and associated power are

considerably less than they are for CO concentrator methods which utilize

vacuum desorption.

Following desorption, the beds are hot and moist. Cabin atmosphere entering

a bed during the absorption phase of the process is maintained at a suitable

inlet temperature (65°F - 85°F) and the inlet humidity is maintained above

a lower limit (^ 35% RH). Initially this entering air is heated by the

hot moist bed. Heat is removed from the air in evaporating moisture from

the bed. When desirable operating conditions are achieved, the amount of

water condensed and partially absorbed in the bed during the desorption

phase is exactly balanced by that evaporated during the absorption phase

and the water content in the bed during absorption remains high enough to

enhance CO absorption.

Figure 2.1-2 shows representative performance data for the steam desorbed

resin CO concentator used in the LaRC/MDAC 90-day manned test. These data

were recorded during "two-bed operation". That is, two of the three available

absorption beds are operating and the adsorption and desorption cycles were of

equal duration. The lower curve shows the mixed Prn downstream of the two
2absorption beds. As shown, the effluent P drops rapidly at the start of

Pthe absorption phase, reaches a minimum value, and then rises with a plateau

characteristic observed partway through the P rise. This plateau character-
2istic was also reported in Reference 1. Again, the Figure 2.1-2 it is seen

that most of the absorption occurs early in the absorption phase. The

latter portion of the absorption phase was mainly used in drying the bed

prior to the next desorption phase.
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The upper curve on Figure 2.1-2 shows the P in the accumulator. The negative
COp

slope portions of the curve are due to CO 'removal for supply to the Sabatier

reactor. The positive slope portions are due to C0_ concentrator desorption.

As shown in Figure 2.1-2 when Bed No. 2 is absorbing, Bed No. 3 is desorbing.

From the earlier discussion concerning steam desorption, it is apparent that

during the initial portion of the desorption phase air in the bed is eluted

and flows "back to the cabin. The CO zone is subsequently eluted and during

this portion of the desorption phase flow is directed to the C02 accumulator.

This results in the positive slopes shown for accumulator pressure changes in

Figure 2.1-2. Following elution of C02, steam flows out of the bed and the

effluent is again diverted back to the cabin via the condensing heat exchanger.

During this portion of the desorption phase, the Ppn in the accumulator again
LU2

decreases due to the demand of the Sabatier reactor.

2.1.3 Simulation of Concept

The simulation of this concept is performed by dividing the subsystem into

functional components, suitably connecting the components, and incorporating

interface and control logic into GP0LY. Figure 2.1-3 is a schematic for the

G-189A components required for simulation of a typical subsystem. The sub-

routines used are shown in parenthesis on the figure.

Gas from the cabin is supplied to the subsystem by component IU (ALTC0M).

This flow is circulated by FAN component ^ to bypass valve 5 (SPLIT). The

flow not bypassing goes to absorbing bed component 6 (C0S0RP). This component

simulates a solid ainine's bed which removes C0p from the cabin airstream. Since

the bed is relatively wet with respect to the cabin air, moisture is picked

up by the airstream. This moisture is removed by condensing heat exchanger

component 7 (ANYHX). The coolant flow to this component is supplied by

component 17 (ALTC0M). The dehumidified air then passes through a charcoal

trap, component 8, which removes odors picked up in the amine's bed. The

charcoal trap is simulated by subroutine ADS0RB.

10



While component 6 is removing CO- from the cabin airstream, component 16

(C0S0RP) is being purged with superheated steam to drive off C02 absorbed

previously. Components 6 and 16 operate in a cyclic manner. While 6 is

absorbing, 16 is desorbing. Steam to the bed is supplied by steam generator

component 15. This component is simulated by a newly prepared subroutine

SMGM. Feed water to this component is pumped by metering pump 19 (PUMP)

from water accumulator component 10 (TANKG). Condensate from heat exchanger

components 7 and 12 is recirculated to this accumulator tank. Component 20

uses a new subroutine H20SUM to sum up the flows from these two sources.

Makeup water to the accumulator is supplied by feed water tank component 9

(TANKG).

The CO -steam mixture from the desorbing resin bed 16 is pumped by compressor 11

(PAN) through condensing heat exchanger component 12 (ANYHX). Coolant for.this

heat exchanger is supplied by component 18. De-humidified CO. from the heat

exchanger is pumped to accumulator component 13 (TANKG).

11
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2.2 VACUUM DESORBED SOLID AMINES

2.2.1 Process Description

This concept uses a solid amine resin bed to absorb CO^ from a spacecraft

atmosphere. The bed is regenerated at suitable time intervals by the

combined effects of heat and vacuum. The C0_ driven off in the bed is

pumped to an accumulator for storage or usage by another subsystem. The

accumulated gas may be dumped overboard or fed to an oxygen regeneration

or propulsion system.

A prototype system using a proprietary resin designated as Gat-0-Sorb is

described in Reference U. The reported advantages of this system are that

no predrying of the gas is necessary prior to carbon dioxide absorption

and only moderate regenerative conditions (l80°F and Uo mm Hg) are necessary.

One possible disadvantage of this system is that a considerable amount of

water is also carried off by the vacuum pumping system during desorption

cycle. Reference U reported a veight ratio of between 0.1 and 0.5 lb HO/

Ib CO collected during desorption. In reference 2 it was reported that

for vacuum desorbed IR-^5 solid amine resin, water is desorbed ahead of CO .

Here a 20$ bed water content was necessary to obtain a 2% value of C02 bed

loading. Thus, up to 10 lb HO may be desorbed/lb CO . This could pose a

significant water removal problem.

Figure 2.2-1 shows a schematic of a prototype Gat-0-Sorb process. The unit

was found to remove O.Ul lb CO /hr with a total resin weight of 30 Ibs. The

unit was tested through 91 different operating cycles without indication of

absorbent deterioration.

The process shown in Figure 2.2-1 may be described as follows: CO is removed

from the process gas in one bed while absorbed C0? is being removed in the -

other bed. Two positions, four port valves are used to alternately reverse

the bed functions. A centrifugal blower drives process gas through the

absorbing bed, and a vacuum pump purges the desorbing bed. The beds are

heated or cooled by tube-and-fin heat exchangers inside each canister and

13
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in direct contact with the adsorbent particles. When absorbing, cool

water is circulated through a bed. When desorbing, hot fluid is used.

Below inlet relative humidities of 50$, the absorbent was found to gradually

dehydrate and lose its capacity for CO absorption. RH above 50$ was

found not be harmful to the process. RH below 50$ could be tolerated for

exposure times of several hours.

2.2.2 Simulation of Concept

The thermal/vacuum desorbed amines concept for CQ removal will be simulated

by suitably connecting G-189A components which simulate individual components

or functions of the concentrator. Figure 2.2-2 illustrates the G-189A

components required for a typical subsystem. The subroutines used for each

component are given in parenthesis.

Gas from the cabin is supplied by component 1 (ALTC0M). The gas is circulated

to the subsystem by blower component 2 (FAN). The gas flows to component 3

(SPLIT) which controls the amount of gas bypassing thesubsystem. Flow then

passes through a solid amines resin bed component 6 (C0S0RP) where CO is

removed by absorption. Cooling fluid (water) flows from component 5 (ALTC0M)

through the bed's integral heat exchanger. The coolant is required for

removing the heat of absorption and the thermal energy stored in the bed

during the thermal/vacuum desorption cycle. CO^ free gas flows from the

bed to charcoal trap component 7 (ADSORB) and back into the cabin.

While component 6 is absorbing C0p, component 8 (COSORP) is being desorbed

of CO collected previously. Desorption is affected by the combined effects

of heat and vacuum. The heat is supplied by hot water from component U.

Desorbed CO plus water vapor is transferred by vacuum pump component 9

(VACPMP) through condensing heat exchanger component 10 (AWYHX). Water

vapor picked up during desorption is removed in this component. The

dehumidified gas then flows to accumulator tank component 12 (TANKG) for

storage or use by an oxygen regeneration subsystem.

15
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2.3 CARBONATION CELL

2.3.1 Process Descritpion

The carbonation cell concentrator is an electrochemical device for collecting

CO from a cabin atmosphere. The process operates in a continuous rather

than cyclic manner. The CO collected is free of diluent gas contamination.

Figure 2.3-1 illustrates the major components of a typical carbonation cell

collector. Moist air is circulated into the cathode compartment of Stage I.

An impressed voltage creates electrolytic reactions at the cell's two

electrodes which are separated by an aqueous carbonate electrolyte held

within an asbestos matrix. The net effect of the reactions is to liberate

0 and CO^ at the cell's anode compartment. Purity ranges between 50 and

TO mole percent. Air depleted in oxygen and with negligible amounts of CO-

flows from the outlet of the cathode back to the cabin.

The gas freed at the anode is then transferred to Stage II which employs an

aqueous acid electrolyte. An impressed voltage and accompanying electrolytic

reactions create a liberation of only 0 at the anode of this stage. CO- is

concentrated at the cathode of this cell.

The concentrated C0p stream from the Stage II cathode passes through a con-

denser/separator to remove water vapor gained through evaporation in the

cells. A compressor is used to force the C09 into a storage tank. Details

on the operation of the I and II stages of the concentrator, which were

abstracted from Reference 6 are given below:

First Stage (Carbonation Cell) Operation -

Process air flows into the cell cathode compartment where 0^ and C02 are

absorbed by the cell electrolyte. Oxygen combines with water to form

hydroxyl ions while CO reacts with hydroxyl ions to form carbonate (CO ~)

or bicarbonate (HCO ~) ions. The OH, CO ~ and HCO ~ ions diffuse through

the electrolyte to the anode compartment. These ions react at the anode to

liberate CO and HO. Figure 2.3-2 illustrates the electrochemical reactions

at the anode and cathodes.

18
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The electrochemical reactions vary significantly with carbon dioxide

partial pressure in the cathode gas. For very low CO concentrations,

only OH ions are formed and thus only 0_ is liberated at the anode. At

very high CO partial pressures, a large number of bicarbonate ions are

formed to favor a high CO. to oxygen ratio at the anode. At normal operating

levels of 0.03 to 1.0/5 CO , most of the carbon dioxide is liberated through
2transference by the carbonate ions. At a current density of ^0 amps/ft

and a cell temperature of lUO°, the C0p transfer rate is approximately 5cc

per amp-min. The anode gas concentration is over 55$ C0_.

Second Stage Operation -

CO level could be boosted to a maximum amount of 80% through use of a

second carbonate stage. However, a second stage employing an acid electro-

lyte was found effective in achieving a CO^ concentration of almost 100$.

Here the active species is the hydrogen ion. Oxygen reacts with this ion

at the cell cathode to form water which migrates to the anode. Here the

water is decomposed to oxygen and hydrogen ions. Thus no C02 is transferred

in this stage and a high separation efficiency is achieved. Details on

the cell reactions are shown in Figure 2.3-3. Using a design value of 50
2 •'amps/ft oxygen was found to be tr<

value of 3.5 cc (STP) per amp-min.

2 • •'amps/ft oxygen was found to be transferred at a rate close to the theoretical

2.3.2 Simulation of Concept

The simulation of the carbonation cell CO concentration subsystem is per-

formed by dividing the subsystem into major functional components which

are modeled by G-189A component subroutines. Figure 2.3-1+ represents a

typical subsystem. Process gas flow from the cabin is supplied by component

1 (ALTC0M).

A blower (FAN), component 2, forces process gas through the subsystem. Prior

to entering the concentrator, the process gas flows through a humidifier

(HUMID), component 3, where water vapor exchange takes place with the process

gas leaving the first stage of the concentrator. The humidified process gas
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then flows to the cathode compartment of the first stage, component k

(CARCLl), of the subsystem. Process gas leaves the cathode compartment

essentially free of CO . An 0 /CO mixture leaves the anode compartment.

The purified process gas leaving the first stage flows back through

compartment 3 (HUMIDT) to condenser/separator component 6. (ANYHX) prior to

returning to the cabin.

The CO /O mixture from the anode compartment of the first stage flows to

the cathode side of component 8 (CARCL2) which is the second stage of the

concentrator. CO is obtained from the cathode side of this stage while

0 is-obtained at the anode side. CO from the cathode side flows to

condenser/water separator component 9 (ANYHX). The dehumidified. C0_ is

pumped by component 20 (FAN) to a C0? reservoir component 21 (TANKG). 0_

collected at the anode side of the second stage flows to condenser/water

separator component 10 (ANYHX). The dehumidified 0 is pumped by component 22

(FAN) to accumulator component 23 (TANKG).

The condensate flows from condenser/water separator components 6, 9, and 10

are summed up by component 16 (H20SUM). The total condensate flow is pumped

by component 17 (PUMP) to water storage tank component 18 (TANKG). This

tank provides makeup feed for the two carbonation cell stages, components U

and 8. The amount of makeup water required is calculated by GP0LY logic.

This water is added to the subsystem at component 5 (GASMIX).
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2.1+ HYDROGEN DEPOLARIZED CELL

2. U.I Concept Description

The hydrogen .depolarized cell is an electrolytic process for CO concen-

tration. The concept evolved from the carbonation cell concept. The

process differs in that only one stage is required, and that hydrogen is

introduced at the anode of the cell. The hydrogen serves to depolarize

the cell to shift the chemical equilibrium in the direction of CO forma-

tion. The cell acts similar to a fuel cell since hydrogen and oxygen are

consumed and electricity is generated. The electricity generated provides

the energy required to create the electrolytic reactions which cause the

separation of CO from 0?. A considerable amount of design effort and

development testing have been conducted for the concept over the past

seven years (1965-1972). .

The process has a considerable amount of flexibility in the range of C02

partial pressures over which it can operate. The removal rate can be

moduleated if desired. The unit operates continuously requiring no re-

generation. In addition the unit is reported to have a low equivalent

weight compared to the other concepts for C0,j removal (Reference 7).

Figure 2.1+-1 illustrates the reactions occurring in the cell. CS2CO electro

lyte is used rather than the K pCO used in the carbonation cell. Moist

cabin air is fed to the cathode where oxygen reacts to form OH ion. These

ions react with CO to form carbonate ions. The air leaving the cathode

compartment thus is depleted in both 0 and CO . The CO ~ ions migrate in

the electrolyte to the anode where they react with water to generate CO .

Hydrogen introduced at the anode reacts with OH ions to shift the anode

reactions in the direction favoring formation of CO.

The CO liberated at the anode is free of 0 but mixed with H . The cell

can operate effectively with percentages of H varying from 20 to 90$. This

mixture can be controlled to achieve the mix ratio desired for feed to a

Sabatier CO reduction process.
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The concept incorporates an integral dehumidifier/humidifier to prevent

dry out of the cells. Figure 2.U-2 shows a cross section of a typical

cell. Further details on the operation of the cell are given in reference

7. Other information is provided in references 8, 9, and 10. A detailed

analytical model for the cell reactions is described in reference 11.

Thermal control of the cell temperature is accomplished through evaporation

of water into the product streams.

2.U.2 Simulation of Concept

Figure 2.it.3 illustrates the functional components required for simulating

the SSP Concentrator (Reference 12). The functions of each component are

described as follows:

Air from the cabin is drawn through a dehumidifier component 2 (ANYHX). The

dehumidifier is necessary to control air relative humidity within specified

bounds. This control is necessary to prevent flooding or drying out of the

cell electrolyte. The air then is drawn by blower component 3 (FAN) into

the cathode compartment of hydrogen depolarized cell component 5 (H2DP0L).

Here the CO is scrubbed out by electrochemical reactions. The purified

gas leaves the cell, flows through filter component 7 (ADSORB) which removes

trace contaminants and returns to the cabin.

Hydrogen flow to the anode compartment is supplied by storage tank component 8

(TANKG). The hydrogen passes through filter component 9 (ADSORB) prior to

entering the cell. In the anode compartment, hydrogen reacts with 5"B to

generate water. The water reacts with CO ~ ions to regenerate C02« C02
and unreacted Hp flow out of this compartment into storage tank component 10

(TANKG). This tank serves as a source of flow to a Sabatier reactor oxygen

regeneration subsystem.
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2.5 SOLID ELECTROLYTE

2.5-1 Process Description

Although the solid electrolyte process is conventionally categorized as

a COp reduction scheme, and therefore not in the same functional category

as the previous CO

warrant discussion.

as the previous CO management concepts, it has some unique features that

The solid electrolyte process (see References 13 and lU) in conjunction with

a CO disproportionation reactor results in the reduction of CO to carbon

and oxygen. A small amount of water vapor in the CO feed, which enhances

the main reaction, is simultaneously electrolyzed to hydrogen and oxygen.

Reference 15 points out that close coupling of this system with a carbon

dioxide concentrator which generates humidified carbon dioxide continuously

would have operational advantages. All of the previous writeups on the

various CO management concepts implicitly assumed that "dry" CO was the

desired product, mainly because the Sabatier or Bosch reactions were envisioned

as the next step. The reason for discussing the solid electrolyte proce'ss,

therefore, is to emphasize that humidified CO might be the desired product

from a CO concentrator in some trade-off studies.

The system is composed of cells consisting of a solid electrolyte mixture of

91.25 mole percent zirconia (ZrO ) and 8.75 mole percent yttria (Y_0_). This

solid electrolyte is situated between two platinum electrodes to which the

electrolyzing potential is applied. The basic electrochemical separation

process which occurs is illustrated in Figure 2.5-1. For a gas stream

including carbon dioxide and water vapor the following reactions occur at

the anode:

+ Ue~ -*• 2CO + 2 0=

2e~ -»• H + 0=
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At a temperature of 525-700°C (1000-1300°F), the 0= ions wiirbe transported

across the oxide film by the influence of the potential gradient. The

reactions are enhanced by the presence of HO in the gas stream. The

oxygen ion then migrates under the influence of a potential field through

vacancies in the crystal lattice of the solid electrolyte material to the

anode, where the oxygen ion is converted to an oxygen atom. The solid

electrolyte is essentially impermeable to non-ionic species (in particular

it is impermeable to CO) so that pure 0 is formed at the anode and may be

sent to the cabin with no further processing other than cooling. The power

consumption in the cell is split between energy required to decompose the

CO and the resistance heating of the solid electrolyte material. As the

predicted cell efficiency is thought to be good and the operating temperature

high, this unit must be well insulated to prevent heat leakage which would

decrease unit performance. An auxiliary heater in the cell tube is designed

to bring the tube to operating temperature.

The free energy change involved in the decomposition of C0? to carbon monoxide

and to oxygen is 123 kcal/gram-mole of oxygen. This corresponds to a

.theoretical power requirement for a cell of 68.8 watts/kg of CO per day.

The mixture of CO and C0? from the cell cathode is passed through a catalytic

reactor which converts CO to CO (returned to the electrolytic cell) and

to solid carbon. The free energy change in this reaction is 29 kcal/gram-

mole of carbon. This corresponds to a heat dissipation requirement of 1*5 watts/

kg of CO per day.

A flow diagram of a solid electrolyte system is given in Figure 2.5-2 which

shows that after leaving the electrolyte cell, a separator is used to remove

hydrogen from the gas stream. Also, a regenerative heat exchanger- is used

to cool the gas products to approximately 950°F, which is the operating

temperature of the catalytic reactor. In the catalytic reactor, the carbon

monoxide is dissociated to form carbon and carbon dioxide over a nickel or

stainless steel catalyst. When the resultant carbon has built up to a high
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level, a pressure switch will sense the increasing differential pressure

and signal for a change of catalyst bed. The catalytic reaction is exo-

thermic and no heating of this unit is necessary once the system has

reached operating temperature. A heat exchanger is used to remove the

excess heat of reaction from the gas stream. A blower draws the recycle

and process gases through the regenerative heat exchanger and humidifier

before returning them to the electrolytic reactor.

2.5.2 Simulation of Concept

Two distinct cell designs have been fabricated and successfully tested.

The first as reported in Reference 16 uses solid electrolyte discs between

which the electrical potential is applied. The second which is reported

in Reference 17 and 18 uses solid electrolyte tubes. Here the potential

is applied at electrodes located on the inside and outside surfaces of

the tubes. The second cell design differs from the first in that it incor-

porates a semipermeable palladium membrane for separating hydrogen from the

exit products.

Relatively low concentations of hydrogen in the inlet to the reactor have

been found to increase the rate of carbon formation. Higher concentrations

will shift the chemical equilibrium away from carbon formation. The semi-

permeable membrane provides a means for regulating the concentration of

hydrogen and thus carbon formation.

Figure 2.5-3 illustrates the G-189A components required to simulate the

system for the 180 day life test reported in Reference 17.

CO flow to the subsystem is supplied from CO accumulator component 1

(TANKG). The C0p stored in this tank is assumed to have been collected by

a C0? concentration subsystem. The steam desorbed solid amines, hydrogen

depolarized cell, or carbonation cell concepts are then potentially suitable

for this purpose. CO flow is moved by component 2 (FAN) to humidifier

component 3 (GASMIX). Here the C0_ is saturated with water prior to entering



the solid electrolyte cells. The saturated CO joins with recycle flow

at component U (GASMIX) and then passes into the solid electrolyte cell

component 5 (S0LELC).

Component 5 represents several parallel modules of solid electrolyte cells.

Each module is composed of a number of parallel stacks of electrolysis cells.

CO is electrolytically decomposed into 0? and CO in the cells. Water also

is electrolyzed into hydrogen and oxygen. Oxygen collected at the anode

of the cells flows to oxygen accumulator tank component 6 (TANKG).

CO and H products and unreacted C0? and HO reactants flow to hydrogen gas

separator component 7 (MEMOD). Hydrogen is separated by selective diffusion

through a semi-permeable membrane. Hydrogen separated in this component is

moved by vacuum pump component 9 (VACPMP) to hydrogen accumulator component 9

(TANKG).

The primary side gas stream from the hydrogen separator flows to carbon

deposition reactor component 10 (CARDP). Here CO is reconverted back into

.CO for cycling to the solid electrolyte cells. In a secondary reaction,

H reacts with COp to form H20 and CO. The effluent of this component is

circulated by component 11 (FAN) back to combine with the subsystem C0?

feed gas.
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2.6 LIQUID ABSORPTION

2.6.1 Process Description

This process uses a liquid solution of potassium or sodium carbonate,

or a mixture of both, to absorb CO from the cabin air. When carbon

dioxide is absorbed in an aqueous solution of potassium carbonate, the

following reversible reaction occurs:

K2 CO + C02 + HO •*-» 2KHCO

Heating the bicarbonate solution and reducing the partial pressure of

carbon dioxide in the gas stream causes bicarbonate to be reconverted to

carbonate and CO .

The amount of carbon dioxide absorbed depends on several factors. These

include the fraction of base that is bicarbonate, the normality of the base,

and the partial pressure of carbon dioxide in the gas. The relationship

between these variables at equilibrium conditions is given by the following

equation (Reference 19).

for K2C03/KHC03

l*5f 2 N1'29
P
CO. ~ S(l-f ) (302-t)

• O

for Na2CO /NaHC03

2 1 2Q
137f X *_ _ _____

'CO- * S(l-f ) (365-t)2 o

where:

P = partial pressure of CO (mm Hg)
LU tL

H = normality of base (f
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S = solubility of CO in HO at one

atmosphere S ffioles C02
*liter H20 '

T = temperature (°F)

f = fraction of total base that is bicarbonateo

A schematic of a CO concentrator subsystem using the liquid absorption

concept is shown in Figure 2.6-1. CO laden cabin air is introduced into

a contactor where the air stream is mixed with an aqueous carbonate solution

to promote absorption of CO . The absorption reaction is favored when the

solution is approximately at room temperature. In industrial gas/liquid

absorption processes, counter current flow is commonly used. However, it

is difficult to envision a counter flow contactor for zero-g operation.

Since a suitable zero-g design has not been yet defined, the contactor has

been assumed to operate with co-current or parallel flow. A device for

gas/liquid separation is located immediately downstream of the contactor

to achieve separation of the cabin air stream from the carbonate solution.

A regenerative heat exchanger and external heat source is used to heat the

carbonate solution prior to entering a liquid flash vaporizer. Here, CO

is desorbed and a portion of the water in the solution is vaporized. The

liquid and gas phases leaving the vaporizer are assumed to be in thermo-

dynamic and chemical equilibrium. The liquid phase is recirculated back

to the liquid contactor and the gas phase is pumped to a condenser/

separator where CO is separated from water vapor. The CO is then trans-

ferred to a CO storage tank.

2.6,2 Simulation of Concept

A simulation model of the liquid absorption CO concentrator subsystem

was prepared to facilitate evaluation of the concept and to define the

subsystem's critical components and parameters such as solution flow,

temperature, and pressures. Figure 2.6-2 shows the G-189A components
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required for a typical subsystem. Inlet air, defined "by component 1

(ALTC0M) is forced into the liquid contactor by blower component 2

simulated by subroutine FAN. The liquid contactor, component 3, is

simulated by subroutine LIQC0N. This subroutine determines the amount

of CO absorbed in a parallel flow contactor with the gas and liquid

phases leaving in thermal and chemical equilibrium. The effluent from

the contactor flows to component k (SPLIT) where the CO free cabin air

is separated from the carbonate/bicarbonate solution. The air stream is

dehumidified in component 5 (ANYHX) prior to being returned to the cabin.

The carbonate/bicarbonate solution flows through regenerative heat

exchanger component 7 (ANYHX) and heater component 8 (ALTC0M) to raise

the solution temperature to approximately l80°F. The solution then is

partially vaporized in flash evaporator component 9 (LQFLSH). C02 is

desorbed into the gas phase as a result of the partial vaporization. The

gas phase which evolves contains CO plus H.O vapor. The liquid phase,

which is in equilibrium with.the gas phase, is a mixture of H?0, carbonate,

and bicarbonate.

The gas phase generated in the flash vaporizer is separated from the liquid

phase and pumped by compressor component 16 (FAN) to condensing heat ex-

changer component 10 (ANYHX). Here, H?0 vapor is separated from the CO,,.

The CO then flows to CO reservoir component 12 (TANKG). The liquid phase

from the flash vaporizer (component 9) is recirculated by pump component 19

(PUMP) back through the regenerative heat exchanger (component 7). The

solution then is chilled in heat exchanger component 15 (ANYHX) prior to

returning to the liquid contactor (component 3).

Water vapor condensed and separated in components 5 and 10 is collected by

component 13 (H20SUM) and transferred to storage tank component 1^ (TANKG).

Makeup water to the carbonate/bicarbonate loop is supplied by this component,

This water enters the loop at component 17 (LIQMIX).
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2.7 ELECTRODIALYSIS

2.7.1 Process Description

A sketch of a typical Electrodialysis CO Management System is given in

Figure 2.7-1. The most important components are the electrodialysis stacks

since it is here that carbon dioxide is removed from air and oxygen is

generated from water"simultaneously. In general, cabin air is humidified

and fed to absorber compartments where the carbon dioxide in the air is

electrochemically converted to carbonate ions. Under the influence of an

electrochemical potential, the carbonate ions are transferred out of the

absorber into concentrator compartments where they react further to reform

carbon dioxide gas. At the electrodes (anodes and cathodes) water is

electrolyzed to form oxygen and hydrogen. Thus, if the system were treated

as a black box, there are two inlet streams: water and cabin air containing

carbon dioxide, and four effluent streams: oxygen, hydrogen, air with a

reduced carbon dioxide content, and carbon dioxide (of greater than 99%

purity). The basic principles involved in the electrochemical operations

are electrodialysis and electrolysis. The description which follows was

abstracted from References 20 and 21.

Electrodialysis is a process in which ionized molecules or atoms are trans-

ferred through highly selective ion-transfer membranes under the influence

of a direct current. If a solution containing positively and negatively

charged ions is fed to an electrodialysis cell, the positively charged ions

(cations) will be attracted to the positively charged anode. The nature

of the ion-transfer membrane between the solution 'and electrode (anode or

cathode) determines whether or not an ion can migrate through it or be

retained in the solution.

Anion-transfer membranes will allow anions to pass through them but exclude

cations, while cation transfer membranes will allow the passage of cations

but not anions. These membranes are highly selective for either anion or

cation'transfer. It is the selective porperties of the anion and cation

membranes which allow C0? to be removed from the process air in one compartment
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while CO is concentrated in an adjacent compartment. The two adjacent

compartments are termed a cell pair. It is possible in this sort of

arrangement to place as many as 500 cell pairs between a single pair of

electrodes. The combination of cell pairs and electrodes is referred to

as an electrodialysis stack.

The C02 removal unit is comprised of repeating units consisting of four

compartments: a carbon dioxide absorber, or scrubber; a concentrator

compartment; an anode; and a cathode. The absorber and concentrator compart-

ments can be termed a cell pair, while the anode and cathode compartments

represent an electrode pair. The reactions which occur in the various

compartments of this configuration are summarized in Figure 2.7-2.

The operation of the CO removal unit is as follows:

Liquid demineralized water is fed to the cathode compartment at a rate

at least sufficient to provide for the water lost by electrolysis at the

cathode,

H2° + 6" = 2 H2 + °H~

and by electroendosmosis through the anion membrane into the absorber compart-

ment. In any electrodialysis process as ions migrate across the membranes,

water is transferred in the same direction. This water is apparently

transferred due to the hydration of the ions as well as the electrical

potential created by the movement of the ions through the pores of the

membranes. The total water transfer is referred to as endosmotic water.

The liquid flow rate will be in excess of the electrochemical requirements

to provide cooling of the stack and a sweep stream for the evolved hydrogen

gas. A flow rate of about 8 gallons per hour is recommended in Reference 20

for a six-man unit at a cabin pressure of 1 psia.



Cabin air containing carbon dioxide is humidified and fed to the absorber

compartment. In this compartment, which contains anion-exchange materials

in the OH~ form, carbon dioxide is scrubbed from the air according to the

following reaction,

C02 + OH" -

The anion-exchanger material is continually regenerated by the migration

of hydroxyl ions from the cathode into the absorber compartment .

Carbonate ions, excess hyeroxyl ions and endosmotic water are transferred

from the absorber into the concentrator compartment which contains cation-

exchange material in the H form. The following reactions occur:

C0= «• H+ = C0 + H0

OH~ + H = H 0

The reformed carbon dioxide gas, along with the endosmotic water, passes

out of the compartment under its own pressure.

Liquid (demineralized) water is fed to the anode compartment at a rate at

least sufficient to provide for the water lost by electrolysis at the anode.

I H2° ' ¥ °2 + H+ "* V

and by endosmosis through the cation membrane into the concentrator compart-

ment. The water flow rate will be substantially in excess of the electro-

chemical requirements to aid in heat removal from the anode and to provide

a sweep stream for the evolved oxygen gas. The hydrogen ions continually

migrate into the concentrator compartment, where they serve to regenerate

the cation-exchange material.



There is at least some liquid water present in all four streams effluent

from the concentrator. This leads to a gravity-independent gas-liquid

separation requirement which is readily provided (since no frothing or

foaming has been observed) by small state-of-the-art, passive, gas-liquid

separators having short holdup times.

The theoretical reactions shown in Figure 2.7-2 assume 100$ carbonate ion

transfer efficiency and electrode efficiencies. If 100$ efficiencies are

achieved in all operations in this type of stack, CO is absorbed in a

2:1 volumetric (or more) ratio to 0 production. The electrode reactions

operate with about 100$ efficiencies, while the membrane transfer process

actually has efficiencies greater than 100$ (under expected operating con-

ditions).

This is explained by the formation of some monovalent bicarbonate ion

(HCO ~) in the absorber, which (for the same current flow) would transfer
• SS

twice as much carbon dioxide as the divalent carbonate ion (CO ). Thus,

the actual volumetric ratio of CO absorption to 0 production is greater

than 2:1.

On the average a man expires 0.85 moles of carbon dioxide for every mole

of oxygen inhaled (or a CO /O ratio of 0.85:1). If a membrane transfer

efficiency of 120$ is assumed for normal concentrator operation, then a

CO /O ratio of 2.̂ :1 is attained. This means that this type of electro-

dialysis stack does not supply sufficient metabolic oxygen while removing

all the metabolic carbon dioxide. The remaining oxygen must be supplied

by some other oxygen generation equipment.

It should be mentioned that experimental work has been conducted on electro-

dialysis stacks containing only one anode and cathode compartment for a

multiple number of absorber/concentrator cell pairs. An additional compart-

ment or water cell is added to each absorber/concentrator cell pair to

provide the necessary H and OH. By eliminating the anode/cathode compartments



vith each cell pair, carbon idoxide can be removed from the atmosphere

with almost negligible amounts of oxygen generated. However, the power

requirements of these stacks have not been much lower than the power

requirements of the Carbon Dioxide Scrubber described previously. In

addition, between the cabin atmosphere leak rate and the metabolic loss

of available oxygen (respiratory quotient of 0.85), there will be a signi-

ficant oxygen supply requirement no matter what oxygen recovery subsystem

is included in the space vehicle design.

2.7.2 Simulation of Concept

Figure 2.7-3 shows the G-189A components required to simulate a typical C0?

electrodialysis subsystem.

Cabin air is circulated through the concentrator by blower component 10

(FAN). The flow then passes through humidifier component 11 (GASMIX) prior

to entering the electrodialysis cell module. Regulation of the humidity

level in the process gas is necessary to prevent drying out of cell membranes.

Process gas flows into the absorption compartment of the electrodialysis

cell component 12 (ELDIAL). Here, CO is removed by absorption and reaction

with OH ions. The purified process gas then returns to the cabin or the

humidity control subsystem (not shown). The CO removed in the absorption

compartment migrates under influence of the cells' electrical field to the

concentrator compartment. Here, C0? is recovered in a "sweep fluid" pro-

vided by component 2. For this sample problem, water is assumed to be the

"sweep fluid". The CO picked up by the sweep fluid is separated out in

heat exchanger/water separator components 2h and 30 (ANYHX). The CO is

compressed by 25 (FAN) and transferred to accumulator component 26 (TANKG).

The OH and H ions required for the chemical reactions occurring in the

absorption and concentrator compartments, respectively, are supplied by

water electrolysis reactions in the anode and cathode compartments. An

alternate component, 13, is required for storing the outlet flow data for

1*8
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the anode and cathode compartments. Liquid water is circulated to both

of these compartments by semi-closed loops. Makeup water is compensate

for electrolysis, chemical reaction, and electroendosmosis is provided to

those loops by water makeup tank component U (TANKG). Flow to this tank

is provided by water feed tank component 3 (TANKG).

Flow in the semi-closed cathode loop is circulated by pump component 18

(PUMP). Water entering the cathode compartment is electrolyzed to form

H and OH ions. The OH ions migrate across a semi-permeable membrane into

the absorber compartment. The effluent stream from the anode compartment

flows to heat exchanger/water separator components Ik and 31 (ANYHX).

Hydrogen separated from this stream is pumped by compressor component 15

(FAN) to accumulator component 16 (TANKG). The water separated is 'combined

with makeup water at component IT (LIQMIX) and recirculated. Cooling fluid

to the condenser/water separator is provided by component 9-

The semi-closed water loop for the anode compartment is similar to that

for the anode compartment. Water circulated by component 20 (PUMP) is

electrolyzed to form 0 and H ions. 0 is separated from the anode

effluent in heat exchanger/water separator components 21 and 29 (ANYHX).

Makeup water enters the loop at component 19 (LIQMIX). 0,, separated is

transferred by component 22 (FAN) to 0? accumulator component 23 (TANKG).
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2 . 8 MOLTEN CARBONATE - • . - • • .

2.8.1 Process Description

The molten carbonate process is an electrochemical process for reduction of

CO absorbed from cabin air. In the basic concept lithium is reduced at

the cathode of an electrochemical cell containing a molten lithium carbonate

electrolyte. The lithium reacts chemically vith carbon dioxide in solution

to deposit solid carbon on the cathode surface and to form lithium and

oxide ions in the electrolyte. At the anode, the oxide ions are oxidized

to gaseous oxygen. Experimental work at Hamilton Standard Division of

United Aircraft Corporation has indicated that the electrolysis of pure

molten carbonate gives satisfactory results (Reference 22). However, its

high melting point of 735°C (l,355°F), thus high operating temperatures,

requires high temperature materials and associated high heat losses. These

conditions also accelerate corrosion of the equipment. A lower melting

point composition with similar conversion performance was found to be a

eutectic mixture containing 60 percent by volume of lithium chloride and

1+0 percent Li CO . This eutectic mixture has a melting point of 507°C

(9l*3°F). The basic concept for the cell is illustrated in Figure 2.8-1.

The molten carbonate process, by accepting air directly from the cabin

and reducing its C0p to carbon and oxygen, does not require the CO con-

centration or water electrolysis units needed in other CO management

concepts. One of the main design problems of this process concerns the

phase separation between the gases and the molten salts, expecially in

null gravity conditions. Another problem is the removal of carbon deposited

on the cathode. Molten carbonate units may use disposable cells that are

discarded after a specified quantity of carbon has been deposited on the

cathode (Reference 23). A porous matrix, made of sintered magnesium oxide,

is used as the cathode. When wetted by the melt, a stable interface is

formed in the matrix because of capillary surface tensions. The matrix

should be dense enough to hold the electrolyte in place under all gravity

conditions, yet sufficiently porous to allow ion mobility and an efficient
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process. A screen (the anode) surrounds the electrolyte and the matrix.

The anode screen and cathode matrix are held together by a metal diaphragm

with deflects to accommodate the carbon deposited in the matrix.

2.8.2 Cell Details

Figure 2.8-1 is a schematic of a molten carbonate electrllyte cell. Electro-

lytic and chemical reactions at the electrodes are shown on the figure.

The net electrolytic reaction is:

U Li"1" + 20= -f k Li + O

The theoretical cell voltage including CO partial pressure gradient effects

is

RT Pc°2 c
E = 1'°25 - § ln

This voltage applies to a cell where water vapor reactions have been eliminated

by pre-drying the cabin air prior to entering the cell. Actual required cell

voltage will be higher due to Joule heating losses and electrode overvoltage.

The required electrolysis current assuming 100$ current efficiency is given

by Faraday ' s law

! = 1100 "°P-"°'lrs

Other reactions will occur in the cell under certain conditions. The cathode

region must be shielded to prevent CO- from reacting with deposited carbon

to form carbon monoxide (CO) since this gas is toxic if generated in signi-

ficant amounts. Another possible side reaction is the hyrolysis of LiCl to

form HC1. Experimental results indicate that this side reaction may be

ignored.
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The level of vater vapor in the gas feed can have a significant effect on

cell reactions. For feeds with high water vapor pressure, the oxide ion

(0 ) concentration is inversely proportioned to the water vapor pressure.

For a feed with little water vapor, the oxide ion concentration is inversely

proportional to the carbon dioxide partial pressure. Since the main function

of the cell is to decompose CO , water vapor partial pressure of the electro-

lyte must be made equal to the vapor in the process gas. .

Water vapor pressure level also has an effect on cell voltage. At a given

water vapor level, the potential between the cell electrodes will vary

linearly with the logarithm of CO pressure ratio between the electrode.

The slope of this relationship was found to change when the level of water

vapor in the feed goes from a relatively small amount to a relatively high

amount.

Methane and hydrogen contamination also have been detected at the cathode.

These gases may form due to side reactions involving water vapor and the

carbon deposited on the cathode. These reactions provide an additional

reason for cathode shielding to prevent intermixing of these contaminate

gases with the purified gas leaving the cell.

Contamination of oxygen generated at the anode with C02 may occur if there

is insufficient ionic diffusion to replenish oxide ions oxidized. Where

ionic diffusion is insufficient chemical equilibrium will be shifted to

generate CO and the required oxide ions form CO ~. This adverse reaction

may be eliminated by limiting the current density to a value which allows

sufficient ionic diffusion.

Several alternate compositions have been investigated for the melt (Reference

22). Melts using sodium, potassium or barrium salts in place of lithium,

and lithium fluoride in place of lithium chloride are examples of alternatives

studied. Generally, the alternatives yield inferior performance. However,

the optimum melt composition probably is not defined at this time.



2.8.3 Simulation of Concept

Figure 2.8-3 illustrates the components and subroutines required for simu-

lating a molten carbonate concept. The concept illustrated shows a silica

gel bed for predrying the process gas. While elimination of water is not

a requirement, some means is required to regulate inlet gas water vapor

partial pressure to match the electrolyte water vapor pressure. A

humidifier also could be used to achieve this control.

The cabin air process gas is circulated through the subsystem by blower

component 2 (FAN). Air then flows to valve component 8 (SPLIT) where a

portion is allowed to bypass the subsystem. Flow then passes through

silica gel bed component 3 (ADSORB). Cooling fluid from component 12 is

used to remove heat generated by absorption of water vapor. Component 3

and 7 operate in a cyclic fashion with one adsorbing while the other is

desorbing. The source of liquid flow to these components changes as the

components switch operating modes. After being dried in the silica gel

bed, air flows to valve component 13 (SPLIT) which regulates the amount

of air flowing to regenerative heat exchanger component U (ANYHX). The

heat exchanger serves the dual function of preheating process air above

the freezing point of the carbonate cell melt and of cooling outlet air

sufficiently before return to the cabin.

Automatic controller component 10 (SERVO) is used to control cell temperature

by regulating the amount of process gas bypassing the regenerative heat

exchanger. Cell internal heat generation will vary with fluctuations in

cell current and voltage. These fluctuations arise from regulation of cell

operating conditions in response to cabin CO concentration. Another

automatic controller, component 9 (SERVO), is used to control cell current.

Since CO generation is a function of metabolic activity in the cabin,

precise current control is necessary to match CO decomposition with the

generative rate. Both controllers have "proportional position" controller

action. '" <
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Process gas passes into molten carbonate component 5 (MLCARB) where absorption

and reduction of CO occurs. The oxygen generated is collected in accumu-

lator component 6 (TANKG) for use by the atmospheric supply subsystem. The

purified process air passes back through regenerative heat exchanger

component U to desorbing silica gel component 7 (ADSORB). Water vapor

previously absorbed is driven off by heat supplied by heating fluid from

component 12. Having been re-humidified, the purified air stream then

returns back to the cabin.
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2.9 MEMBRANE DIFFUSION

2.9.1 Process Description

Concentration by membrane permeation is a mass transfer process accomplished

by a partial pressure difference and selective diffusion. The degree of

separation is dependent on the difference in transfer rates of the component

gases across the membrane. Membranes have been developed that yield a

separation of 99$ pure CO .

The membranes are packaged in multiple layers with intervening backing

screens. The supply gas or "feed" gas is forced laterally through every

other screen and "sweep" gas for removing outlet C0? flow is forced through

the alternate screens. The individual parallel passages for feed and sweep

gas streams in the multiple layer configuration are manifolded together.

Figure 2.9-1 from Reference 2k shows a representative multiple layer con-

figuration. Figure 2.9-2 is a schematic representation of the design of

a module.

Low pressure steam (15 mm Hg) is used as the sweep gas. The outlet CO

is absorbed in the steam. The C0? is removed from the water vapor in a

condensing heat exchanger and it is subsequently pumped into an accumulator

or is evacuated to space. The condensed water is revaporized for use as

sweep gas.

The critical parameter is the permeability which has units of:

, -, (volumetric flow (STP) )_ (thicknessj
1 rmj = '(time) (area) Tc02~pressure differential)

Increasing the CO pressure differential reduces the mass transfer area and

this, in turn, directly reduces the weight and volume of the packaged module.

In Reference 2k the CO inlet pressure was increased from f.6 mm Hg to

35.8 mm Hg through compressing the feed flow total pressure from 258 to

760 mm Hg. This procedure is feasible when the cabin pressure is much
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less than 1 atmosphere. The membranes tested in Reference 2h were subjected

to pressure differentials of 1. atmosphere or less. Some difficulties in

maintaining satisfactory seals, preventing pinholes leaks, and preventing

scoring of membranes by the backing screens, were experienced at pressure

differentials of 1 atmosphere. ,The bubble .point for the membranes was

over 30 psi so. 15 psi pressure differential was considered to be safely

below the maximum allowable pressure differential. When cabin pressures

are high the COp pressure could again be increased by compressing the

feed gas providing a membrane can be developed which would successfully

withstand the resulting pressure differential. This technique would require

that the membrane module be constructed as a pressure vessel. Preliminary

calculations have indicated that for total pressures up to 10 atmospheres

the weight of the pressure shell is only of the order of 10$ of the basic

membrane module.

2.9.2 Membrane Description and Cell. Details

The degree of separation (CO removal) is dependent on the difference of

transfer rates and pressure differential of the constituent gases across

the membrane. The rate controlling mechanism is a flow conduction process

involving the adsorption and solution of a constituent, diffusion of solute

through the barrier under a concentration potential (pressure differential),

and desorption and evaporation of solute from the surface. One well known

membrane is silicone rubber which combines high CO permeability and high

CO /O separation factor (ratio of CO permeability to 0 permeability)

of 5-5- However, for a practical CO removal system, this separation factor

is inadequate.

Highly effective, immobilized liquid membranes that yield a CO /O separation

of 99 + % were developed. Initially, an immobilized liquid film was made

by containing a 1 to 2 mil porous Dacron mat impregnated with saturated

CsHCO_ solution backed by silicone.rubber membranes. However, it was found

that the caustic CsHCO solution attacked the silicone rubber causing pinholes
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to develop, resulting in cross-membrane leaks and a low separation factor.

In place of the rubber membrane, a microporous, hydrophobic film manu-

factured under a trade name "Solvinert" by Milliport Corporation was

found to be effective in providing a method for immobilizing the liquid

film. The Solvinert film is unaffected by the aqueous salt solutions

used and the bubble point of liquid impregnated silicon (the presence

required to blow the liquid through the pores of the film) was in excess

of 30 psi.

Since the membrane consists of saturated CsHCO solution backed by the

Solvinert filters, it is desirable to operate the sweep side of the package

with a water vapor sweep stream at a total pressure equal to the equilibrium

vapor pressure of the aqueous solution. This enables recovery and reuse

of both constituents of CO -HO sweep stream, a necessity for long term

missions. In addition, the air at the feed side should be water saturated

to prevent the drying of the feed side of the membrane and pinhole leaks

developing.

.A CO scrubber using the Solvinert membranes with a projected packaging
2 "3density of kkO Ft /Ft was developed for the Air Force Flight Dynamics

Laboratory. The membranes were packaged in multiple layers with intervening

backing screens. The supply gas or "feed" gas is forced laterally every

other screen (Figure 2.9-1). A summary of membrane and screen details is

given below:

Membranes: Millipore Corporation "Solvinert" films

Microporus, hydrophobic film, pore size 20p

porosity 70%, thickness .005 in, impregnated

with aqueous CsHCO /NaAsO solution:

6.1* M CsHCO , 99.9$ pure

.25 M NaAsO'

1% to 2% by volume polyethylene glycol
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Feed Gas Screens: PE UOO polyester* monofilament screens, thickness

.013 in., 1+00 mesh openings, ^1% open area

Sweep Gas Screens: PE 1120 polyester monofilament screens, thickness

.02k in. , 120 mesh openings, 58$ open ara

2.9.3 Simulation of Concept: . - •

The G-189 simulation of the C0? removal system using the membrane diffusion

concept is shown schematically in Figure 2.9-3. Inlet air, defined by a

dummy component (component 1) is forced to a condensing heat exchanger for

humidity control (component 3) by a high pressure fan simulated by sub-

routine FAN, component 2, simulating a compressor. As the air passes

through the membrane module (component U), a portion of the CO permeates

the membrane to the "sweep" side of the module which is using steam as the

sweep gas. The purified air is returned to the cabin. The CO- that permeates

through the membranes is pumped along with the sweeping water vapor stream

to a condenser-separator, component 6, for H^O/CO separation. The CO^ is

then pumped by component 7, simulated by PUMP, to the C00 accumulator which

is simulated by subroutine TANKG, component 8.

The condensed water from both condensing heat exchangers , components 3 and

6, is removed and summed by the new subroutine, H20SUM, "The Water Summation

Subroutine". This subroutine sums condensate flow from up to 5 condensing

heat exchangers and determines the mix temperature of total flow.

A method for adding makeup water for this CO- removal system is provided by

component 10,. LIQMIX, by providing for H?0 flow from the water supply sub-

system. The makeup water from water supply will be added as required, to

the HO accumulator, component 11, to maintain a relatively constant H_0

level in the HO accumulator. The required rate of addition will be

determined by GPOLY logic. Component 12, simulating an HO pump, provides

constant water flow from the accumulator to the steam generator, component 13.
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The steam generator is simulated by a new subroutine SMGEN. SMGEN is

used to supply superheated steam for use in various EC/LS subsystems such

as the CO removal system utilizing the membrane module.

A new subroutine was written to simulate component U, membrane module.

This new subroutine, MEMOD, models the mass and thermal balance of a

membrane module which would have gases of different concentrations flowing

through the modules two sides.
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2.10 MECHANICAL FREEZOUT

2.10.1 Process Description

In this process CO is removed from cabin air by precipitation in suitably

designed channels of a heat exchanger device. The precipitation occurs

when the temperature of the gas is sufficiently levered through heat

exchange to a refrigerant or low temperature sink. In the range of CO

partial pressures encountered, carbon dioxide begins to precipitate at

-125°C (PPCO,, = 5.0 mm Hg, saturated) and its removal will practialiy be

total at -1UO°C (PPCO = O.U3 mm Hg, sat.). Water is assumed to be completely

removed using the silica gel bed upstream of the precipitation channel and

will not interfere with either the precipitation or sublimation of the

carbon dioxide.

Several carbon dioxide removal system utilizing the freezout concept have

been proposed; however, only the two more practicable systems will be pre-

sented here. The first system, shown in Figure ,2.10-1, uses precipitator/

sublimator coupled to a very cold space radiator to remove the CO ; the

second system, whown in Figure 2.10-2, requires the use of a refrigeration

system. The space radiator and the refrigeration system are necessary in

both cases for thermal energy removal to account for the inefficiencies

of the regenerative heat exchangers that are being utilized and the heat

flux from the surroundings into the system. Both systems use a water con-

denser for humidity control, and a silica gel bed for predrying the cabin

air before passing it through the regenerative heat exchanger. It is

imperative that the air be dried prior to its passage into the regenerative

heat exchanger to prevent the buildup of frost which would deteriorate

its performance.

The CO removal system which utilizes the precipitator sublimator, hereby

referred to as the P/S system, will be considered to be an open system. Its

operation predicates the simultaneous precipitation and sublimation of CO

frost. For sublimation to occur, the CO frost must be exposed to the
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vacuum of space. In the simultaneous precipitation and sublimation, the

heat of precipitation supplies the thermal energy required for the subli-

mation to space. Hovever, to account for the inefficiency of the regenera-

tive heat exchangers and the heat influx into the CO removal system due

to pipe connectors and supports, a method for removal of thermal energy

must be included. Two methods for the removal of thermal energy have been

proposed. The first method described in Reference 25 and 26 uses cryogenic

Op, N- or H to remove the heat to make the system operational. The

second method employs a low temperature radiator to reject the heat from

system to drive the precipitation sublimation process. This method, described

in References 27, 28, and 25, relies on the ability to design a radiator

that operates at -250°F which presently does not appear feasible.

The Mechanical Freezout System-Recoverable CO , shown in Figure 2.10-2,

uses a refrigerant to chill the cabin air flowing through the precipitation

channel. This type of system minimizes the total vehicle weight penalty

at the expense of an increase in required power input. For long-duration

space missions, studies have shown (Reference 26) that the reversed Brayton-

cycle system offers the most desirable method for heat removal. The

reversed Brayton cycle system offers the following advantages with respect

to the other systems:

Employs a single .phase fluid and thereby its operation is simpler

and more flexible than the Claude cycle.

The entire expansion occurs- in a turbine, thus allowing high

temperature operation which is more efficient.

In addition, the system has potential for long-duration maintenance-

free operation.

The use of the hotter compressed gas in the refrigerant system to sublime

the COp, as shown in Figure 2.10-2, affords a method for the recovery of

the precipitated CO without the use of deep space vacuum (thermal sub-

limination). In addition, more positive control of the precipitation and

submimation processes is provided.
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2.10.2 Simulation of Concept

The simulation of the mechanical freezout concept is performed by dividing
*

the subsystem into major functional components which may be mathematically

modeled by G-189A component subroutines.

Figure 2.10-3 shows the G-189 component connection and definition diagram

which was prepared for the analysis of the subsystem. Dummy component 1

(subroutine ALTCOM) is used to define the inlet conditions (flowrate, temp-

erature, humidity, C02 partial pressure, constituency, etc.) to the sub-

system .

A HO condenser, component 2 (ANYHX), is used in conjunction with a silica

gel bed, component 3 (ADS0RB), to dry the air sufficiently to prevent HO

freezeout in the CO precipitating heat exchanger, component 6. Dummy

component 12 (ALTCOM) provides the coolant to the condensing heat exchanger

at a specified temperature and flowrate. The condensate is pumped by

component IT (PUMP) to a water storage tank, simulated by component 18 (TANKG),

The dehumidified air from the silica gel bed passes through a switched off

heater, component k (ALTCOM), to regenerative heat exchanger, component 5

(ANYHX). Here the air is pre-cooled prior to entering the CO precipitator.

The secondary flow for this component is the effluent from the precipitator

heat exchanger.

The precipitator heat exchanger, component 6, is simulated by a modified

version of subroutine ANYHX. A new subroutine, C02CP, has been added to

the program to simulate the CO precipitation process in the heat exchanger

component. In addition to determining the amount of precipitation, this

subroutine determines the effective specific heat of the process air entering

and leaving the precipitator. Refrigerant flow to the precipitator is

supplied by dummy component 16 (ALTCOM).
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Air flow from the precipitator is circulated by fan component 7 (FAN) back

through the regenerative heat exchanger to heater component 8 (ALTC0M) and

desorbing silica gel bed component 9 (ADS0RB). The heater component pro-

vides the thermal energy required to force water vapor desorption in the

silica gel bed.

The sublimation of CO is simulated with component 10 (ANYHX). The rate of

sublimation is assumed to equal the rate of precipitation in component 6.

This rate, which is the difference between the flow of CO,, in and out of

the precipitator, is calculated by GPOLY logic. Dummy component 19 is

used to supply CO to the sublimator at a rate equal to the sublimation rate of

the solid CO . This energy is removed from heating fluid circulating through

the sublimator. The heating fluid, which is assumed to be gaseous nitrogen

is supplied by component 11. The CO sublimated is pumped by component Ik

(PUMP) to C0_ accumulator component 15 (TANKG).

Because of the cyclic operation of the system, components 3 and 9, h and 8,

and 6 and 10 alternately switch functions according to a pre-determined

time sequence. Logic is incorporated in GP0LY to change the order of

solution path, modify sources of flows, and perform other miscellaneous

operations when the switch of functions occurs.
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3.0 CONCLUSIONS AND RECOMMENDATIONS

The subroutines prepared should provide adequate representations of the

overall mass and energy balances for the parametric performance of the

concepts considered. In preparing the subroutines several areas vhere

additional effort may be varranted are as follows:

o Determining parametric scaling laws for weight, volume, and

power for the ten concepts.

o Performing laboratory testing of the concepts to fully define

subsystem parameters or physical properties.

o Performing system integration studies for the concepts when

coupled with various oxygen regeneration subsystems or complete

EC/LS systems.

o Determining the optimum concept by evaluating the parametric

performance of each concept for a wide range of mission,

environmental, or operating conditions.

o Performing reliability and cost analysis studies for the ten

concept.

The above recommendations cover a wide gambit of effort. It is probable

that some of the concepts may be eliminated from further consideration and

that the major emphasis should be placed on perhaps k or 5 of the concepts.

In selecting the optimum subsystem, certain other intangibles must be con-

sidered. For instance, the year in which space type hardware could be

expected to be available. Problems with contamination, corrosion, impacts

on the cabin thermal environment, and safety must be assessed. Also the

subsystems compatibility with the spacecraft power system.
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In general it can be stated that concurrently with laboratory testing of

the concepts, the computer subroutines should be used to model the test

conditions. In addition to providing a test of the adequacy of the computer

math models, this will allow a better understanding of the test results.

It can also be stated that having defined those system parameters which

are important to the mathematical models, additional laboratory testing

is necessary to verify the values of these parameters. Several specific

areas where improvements could be made in the simulation models are pre-

sented in the following subsections.

3-1 Steam Desorbed Resins

Additional laboratory testing is necessary to determine C0? and H?0

equilibrium data at temperatures between l80-220°F. This is the temp-

erature range in which CO is desorbed by steam stripping. The data is

required since the rate of mass transfer from the bed to gas is equal to

the mass transfer coefficient times the difference between the gas phase

partial pressure and the equilibrium partial pressure correspondingg to the

sorbate bed loading. CO- equilibrium data is required for CO bed loadings

from 0 to 3.5$ and HO bed loadings from 0 to Uo$. HO equilibrium data,

which is assumed to be independent of CO loading, is required for HO

bed loadings from 0 to 1+0$. An empirical correlation for overall mass

transfer coefficient as a function of operating conditions is also required.

Parametric computer runs then should be made to compare subroutine results

with test data. The relative importance of interparticle diffusion needs

to be assessed. More important, the mechanism for mass transfer should be

carefully re-evaluated. Can the mass transfer rate be predicted strictly

from the equilibrium data and mass transfer coefficient, or are the effects

of chemical reaction kinetics more important? Should the water vapor transfer

be calculated on a stoichiometric basis from the amount of CO desorbed'

Additional testing may be warranted to verify the heats of sorption for

CO and HO on the resin particles. Physical properties for the partid

such as bulk density, void fraction, superficial surface area, specific



heat, etc., must be carefully defined. Additional testing also is required

for determining the heat transfer characteristics of the bed. In particular,

the effective thermal conductivity of the resin material is required. If

the bed contains an integral heat exchanger, the overall thermal conductivity

between the heat exchanger/gas or heat exchanger/pellets should be evaluated.

3.2 Vacuum Desorbed Resins

At the present time no equilibrium data is available for Gat-0-Sorb resin

which is considered the most promising resin for this concept. Equilibrium

data is required for approximately the same set of temperature and bed

loadings as for the steam desorbed concept. Data on the physical properties

of the resin such as bulk density, superficial surface area, void fraction,

etc., also are lacking.

The same general comment made for the steam desorbed resin which called

for additional analysis of the mechanism for mass transfer also applies.

Additional data also is required for mass transfer coefficients, heat of

sorption, and heat transfer characteristics. Since, for this concept, the

bed contains an integral heat exchanger, the importance of a careful

definition of the heat transfer characteristics should be emphasized.

3.3 Carbonation Cell '

The math models for the subroutines used in simulating this concept are

relatively unsophisticated. However, additional complexity is most likely

not warranted since the concept is generally considered to have been super-

seded by the hydrogen depolarized cell. Assuming the math models to be

adequate, a better definition of cell design characteristics is required for

an adequate simulation of the concept. The heat transfer characteristics

of a typical cell should be determined. All parameters such as current

density and voltage should be correlated as a function of subsystem variables,
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Should more sophistication in the math models be desired, an example of

where improvements could be made is in the technique for establishing the

water transfer rate to the exit streams. Currently the rate is established

by fixed input data for relative humidity in the exit streams. A more

realistic model could be developed based on the actual transport phenomena

occurring. The math model for predicting water transport rates in the

component for humidifying process gas prior to entering the cells also

is an example where improvement might be warranted.

3.1* Hydrogen Depolarized Cell

The mathematical model for this subroutine was prepared by Hamilton Standard

in conjunction with subsystems development studies for the SSP program.

As such the routine should provide a good representation of the subsystem.

3.5 Solid Electrolyte Cell

A good comparison between subsystem results with test data was obrained

for this subsystem. This was possible to a great extent because of the

advanced state of development of the concept. Good documentation of sub-

system test results also was available (Reference 18).

It should be noted that the mathematical model for the solid electrolyte

cells is somewhat empirical in nature. That is, the model relies heavily

on the experimental data. Overall current efficiency, H or CO current

efficiency, cell voltage (or voltage efficiency) are a few of the parameters

which are based on experimental results. While theoretical relationships

could be developed, they would not be as accurate as the empirical data.

In order to insure accurate computer results over a wide range of operating

conditions, additional laboratory testing is required to determine correlations

for these critical parameters as a function of operating variables.



A more detailed mathematical model for the carbon deposition reactor could

be developed by treating the reactor as a classical tubular reactor. Addi-

tional experimentation would be required to determine the effects of reactor

geometry and catalyzing effects on the kinetics of the reaction. In parti-

cular, the catalyzing effects of the reactor steel wall and water vapor

in the inlet stream would have to be incorporated into the rate equations.

Alternatively correlations could be developed for CO and H conversion

efficiencies as a function of operating variables.

3.6 Liquid Absorption

The mathematical models prepared for the simulation of this concept should

be adequate for gross system analysis. More complex models are not warranted

at this time since the concept is only in a conceptual stage of development.

Many problems remain to be solved in designing zero-g hardware.

When the design concept becomes better defined, there are several areas

where improvements could be made in the mathematical models. For the

liquid contractor, a.subroutine could be prepared with a multiple number

of bed elements. Transient macroscopic mass and energy .balances could be

set-up taking into account mass transfer resistances in both the liquid and

g a s phases. . • • : . . . . • . . .

Another subroutine which might warrant future development would be an

air/liquid separator routine. The subroutine would be modeled after zero-g

separator devices currently in the state of development. The separation

achieved would be predicted from constituent equilibrium relationships and

efficiency factors.

The subroutine for the separation of CO from the liquid phase has been

modeled as an equilibrium or flash vaporization process. When the design

of this device is better defined, the subroutine would be modified to

better reflect the operating characteristics of the device.
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It is suggested that system analysis studies be performed leading to the

development of a space hardware prototype for this subsystem. Improvements

to the existing subroutines could be made concurrently with the prototype

development.

3.7 Electrodialysis Cells

The subroutine prepared for this concept should provide an adequate simu-

lation of the "E" stack cell configuration described in reference 21. For

this configuration a considerable amount of oxygen is generated along with

the removal of CO . One possible improvement in the routine might be to

provide an option for simulating the "F" configuration, which minimizes

02 production.

The subroutine prepared relies on experimental data for stack voltage,

power and current efficiencies. It is suggested that correlations be

developed for these parameters as a function of operating variables.

A more sophisticated method for determining the amount of water lost by

electro-endosmosis probably is warranted. The current method is based on

fixed input values for the humidities in the exit streams. A model based

on the physical chemistry of the actual phenomena could be developed and

incorporated into the subroutine.

3.8 Molten Carbonate Cells

The subroutine prepared should allow good simulation of molten carbonate

cells in which the process air has been pre-dried to prevent water vapor

electrolysis and subsequent adverse side reactions. Should future sub-

system studies indicate the advisability of developing a cell for combined

CO removal and H electrolysis, additional logic would have to be incor-

porated to simulate the side reactions.
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The current subroutine relies on experimental-values for power efficiency.

Current efficiency is assumed to be 100$. Correlations should be developed

for these parameters over a range of operating conditions. While current

efficiency should approach 100$ for the expected operating conditions,

excessive current densities will cause degraded performance.

3.9 Membrane Diffusion

The mathematical model prepared for the diffusion separator should allow

a good simulation of this concept. In addition, the subroutine can be used

to simulate similar diffusion processes in other subsystems.

The most important parameters, which must be accurately defined, are the

permeabilities of the diffusing species. Correlations for permeabilities

as a function of system variables should be determined by additional

laboratory testing.

3.10 Mechanical Freezeout

No new component subroutines were parepared in. order to simulate this

concept. A modified version of the heat exchanger subroutine was used to

simulate the precipitator and sublimator. The partial pressure of CO

leaving the precipitator is predicted from the equilibrium sublimation

curve for CO and Dalton's law. Mass transfer rates are not considered.

The rate of CO leaving the sublimator is assumed to equal the rate of

precipitation. The heat exchanger subroutine calculates the required

outlet temperature for the heating fluid necessary to provide the heat of

sublimation.

The technique for simulating the precipitation process should provide an

adequate simulation. The transient simulation of this process could be

improved by preparing a multi-element model with the. rate of mass transfer

calculated from an overall mass transfer coefficient and the difference

between the gas phase partial pressure and the C0? equilibrium partial

pressure.
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The improvements suggested above are even more important for an adequate

transient simulation of the sublimator. In order to develop such a model,

the design geometry of the precipitator/sublimators must be fully defined.

In addition, experimental testing would be required to determine a correlation

for mass transfer coefficients as a function of system parameters.
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APPENDIX A

G-189A ETC/LS SYSTEM ANALYSIS PROGRAM DESCRIPTION



PROGRAM DESCRIPTION

The G-189A ETC/LS System Analysis Program provides a basic simulation tool

for studying the steady state and transient performance of an ETC/LSS. An

ETC/LS system is simulated with the program by describing the equipment in

terms of individual "components" vhich are connected by gaseous or liquid

flow streams. Each particular type of component is simulated by an individual

component subroutine contained within the G-189A program. A component

corresponds to all or part of a physical part; such as a tee, heat exchanger,

electronic coldplate, etc.; or to a complete subsystem or process; such as

CO^ concentration, 0? recovery, etc. The individual components of the simu-

lation are arbitrarily assigned successive integer numbers which are used to

define the component flow stream interconnections and to specify the computational
• ' •

sequence of the individual components. The interconnection and sequence data

are specified by the user and may be easily changed. The computational sequence

generally follows a path corresponding to the ETC/LS system flow stream paths.

The G-lSpA component subroutines perform heat transfer, chemical reaction,

and mass and energy balances for both steady state and transient operating

conditions. System pressure drop versus fan or pump pressure rise balances

can also be performed if desired. Examples of energy balances are: (l) the

summation of cabin gas heat rejection rates from individual sources within

the cabin balanced with the total heat load imposed on the cabin heat exchanger

and (2) the summation of individual coolant loop heat loads balanced with the

heat, rejected by the space radiators. Examples of mass balances include the

balancing of water vapor and CO generation rates from the crewmen against

the cabin leakage rates, gas supply rates, and system equipment removal rates.

The G-189A program is essentially comprised of seven sections: (l) a main

subroutine or Master Control Block (MCB); (2) an Input Editor; (3) two user

coded subroutines, GP0LY1 and GP0LY2, for implementing additional computational

logic; (M a set of ETC/LSS component subroutines; (5) a pressure drop analysis

subroutine; (6) a set of utility subroutines; and (7) a SD-k060 plotting

package.
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Figure A-l presents a block diagram of the G-189A program logic. The program

operations and their sequence are determined by the Master Control Block (MCB),

also known as subroutine ECLST. The operations performed by the MCB are

indicated in the center block of Figure A-l. The G-189A program sequence of .

operations, as shovn in Figure. A-l, is described belov:

1. . At the start of execution the MCB initiates a call to the Input Editor

to process a set of simulation data.

2. The Input Editor processes simulation data taken from cards, tape, and/or

disk; allocates the data storage; dynamically loads the integer and

floating point data into a large single array (K or V array); and prints

the edited card images.

3. The MCB prints out the solution path and component intial value data

as input. Component calculations are begun starting with the first

component in the specified solution path.

U. The component integer instruction data are retrieved and unpacked and

floating point data are retrieved and stored in smaller working arrays

(A, B, and R arrays) for use during component solution.

5- Theraophysical .property data (specific heat, molecular weight, thermal

conductivity, and viscosity) for the component source flow streams are

evaluated.

6. A transfer to the user coded subroutine GP0LY1 is made to allow data

modifications or logic changes to be incorporated prior to component

solution. Upon return an optional diagnostic printout of the working

arrays (A, B, and R array) is available.

7» A transfer to the proper component subroutine for component solution is

made. Following component solution a transfer to the user coded subroutine

GP0LY2 is made to allow data modifications or logic changes after component

solution. Upon return from GP0LY2 an optional printout of the working

arrays is available.

8. If a pressure drop model is being executed, a transfer to the pressure

drop analysis subroutine is made. Upon return an optional printout of

the working arrays is available.
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9. At the end of a component's solution and pressure drop analysis the

calculated component data are stored into the large data storage array

(K and V array) and, if specified, the component results stored in the

K and V array are printed. If the current component is the last one in

the system solution path and the end of steady state or transient has

occurred, a conplete printout of all components' integer and floating

point data is made.

10. Restart and/or plotting data are output to tape or disk; if specified,

at the end of steady state calculations and at the end of transient

system passes.

11. The completion of steady state, pressure drop/fan or pump balance, and

transient calculations are determined by the MCB. If the calculations

are not finished the next component to be solved is selected and cccpcnest

solution is re-initiated (items H-ll). (Pressure drop/fan or punp balance

iterations during transient allow only changes in the mass flow cal-

culations to occur within the component subroutines - thermal, chemical

reaction, and energy calculations are not made a::d system simulation

tine is held constant.) If the current case has been completed any

plot data stored during the case are processed and a transfer is made

to the Input Editor to process the next set of case data. Iterations

continue through items 1-11 until all case data have been processed or

until an unrecoverable program error occurs.
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Additional
Change •
Cases

/ K and V Continent Data ./•

ase Data
(Ir.cludin.or :;?_-?list Data)

Optional

Optional, include only those
KiV cards ar.d Tables as necessary
to Eake required perturbations
to reference case.

A. If "TAPE" control card does not indicate
use of an Input Data tape containirvj
a Basic Case, these data groups crust 'be
cc=3lete.

B. If "TAPE" card indicates the use or aa
Input Data Tape vhich contains Basic
Case card iiiâ es, these data groups
contain only those cards necessary to
naXe required codifications to Basic Case
on the tape.

DATA DECK SET-UP

FIGURE A-2 •-
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COMPONENT SUBROUTINE LIST

Component
Subroutine
Number

1

2

3

It

5
6

7
8

9
10

11

12

13

1U

15
16

17

18

19
20

21

22

23

•2U

25

26

27*

28*

29

30

Subroutine
Fortran
Name

CABIN

SUITS

CMAN

ANYHX

ELCELL

GASMIX

LIQMIX

ELC00L

RDIATR

SPLIT

ADS0RB

CATBRN

SERV0

DUCT

PIPE

ELPTRT

VAPC0M

AIRVAP

B0SCH

PUMP

FAN

CARCL1

CARCL2

HUMIDT

SMGEN

VACPMP

FL0MET

TANKG

Subroutine Description

Cabin or Compartment

Simplified Crevman Simulation

2-Node Metabolic Man

Heat Exchanger

Electrolysis Cell

Gas Mix

Liquid Mix

Electronic Coldplate

Space Radiator or Solar Absorber

Generalized Split

Adsorption Bed

Catalytic Burner

Automatic Controller

Gas Duct (Heat Loss to Surroundings)

Liquid Loop Pipe (Transport Lag & Heat Loss)

Electrolytic Pretreatment

Vapor Compression/Distillation

Air Evaporation

Bosch Reactor

Pump

Fan

Carbonation Cell - 1st Stage

Carbonation Cell - 2nd Stage

Humidifier/Dehumidifier

Steam Generator

Vacuum Pump

Averaging and Totalizing Flovmeter

Accumulator Tank

*New subroutine prepared for this contract
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COMPONENT SUBROUTINE LIST (continued)

Component
Subroutine
Number

31

32

33

31*

35

36*

37

38

39
Uo
in
1*2

U3

1*1*

1*5

1*6

U7
1*8

1*9

50*

51*

52*

53*

51**

55*
56*

Subroutine
Fortran
Name

SABAT

H2DP0L

HTSINK

HTCAPC

VERTHM

COS0RP

THERML

AGZNPB

DCDCRC

DCL0AD

EJN0DE

SPN0DE

GEL0AD

FCREAC

FCELT

ALTC0M

CARDP

S0LEL

LIQC0N

ELDIAL

MLCARB

MEM0D

LQFLSH

Subroutine_I3e8_crijaitio_n

Sabatier Reactor

Hydrogen Depolarized Cell

Heat Sink/Thermal Capacitor

Heat Sink/Thermal Capacitor

Wax Element Control Valve

Two Constituent Sorption Bed

Thermal Analyzer

Silver/Zinc Primary Battery

DC/DC Regulated Converter

DC Electrical Load Profiel

Electrical Junction (Ground)

Electrical Bus

Generalized Electrical Load (Motor, Relays, etc.)

Fuel Cell Cryogenic Reactant Rate Component

Fuel Cell Electrical Component

Dummy or Alternate Component

Carbon Deposition Reactor

Solid Electrolte Cells

Liquid Contactor

CO Electrodialysis

Molten Carbonate Cell

Membrane Module

Liquid Flash Vaporizer

* New subroutine prepared for this contract.
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