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Summary

In this report, an analysis is presented of the acoustic field which

is generated by a circular jet in a weak crossflow. The main portion of this

report contains the analysis for the acoustic intensity which would be meas-

ured from the jet flow in an ideal wind tunnel (i.e., a wind tunnel with no

reflecting walls). For this situation, the movement of the acoustic medium

results in the acoustic intensity being greater upstream of the jet flow than

at ah equal distance downstream: The Appendix of this report contains a

summary of the analysis of the acoustic intensity of a crossflow jet in

motion such as would be generated by-the lift jet of a V/STOL aircraft under

take-off5conditions. The result of this work is a comparison of the direc-

tional distribution of acoustic intensity for ah ideal wind tunnel test of

a jet and a corresponding flight test.
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SYMBOLS

a speed of sound in the acoustic medium

d° = Cx^ + x/J*

d diameter of jet aperture

f (A) function of separation distance

I acoustic intensity

i acoustic intensity per unit volume of turbulence

L characteristic length in the turbulence

M convection Mach number (a M is the corresponding velocity vector)
o —

VjM. = — J — Jet Mach number
3 o

V2N = -- crossflow Mach number or aircraft Mach number (a N is
o the corresponding velocity vector)

P. ;, 1 (̂ ,Â ,x) stress correlation function

P thermodynamic pressure

3u.

R. .kl(y_,z^f) stress correlation function

[(1 - N2)|x - vj2 + N2(x - y,,)2!5 - N(x -R = 2 ,, 2

1-N 2

Ra ' ra - N (X2 -

R3 = rg - N (x2 -

u (y_)u (y_ + X) second-order velocity correlation function
X X ~

r = |x|

r = ill
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V

- z

r* = C(l - N2)|x - y_|2 + N2 (x2 - yj

t time (in different coordinate systems - t, t, t)
I* - 2.1

t t --

x -
t -

ao

U. mean velocity component

u. = U + u. - velocity component in turbulent flow

4\

u. turbulent velocity component

Uixiu = -- component of velocity in the direction of the observer
X - i

. = u.+V.6._- total velocity component

V. jet exit velocity

V« crossflow velocity

x. spatial coordinate (in different coordinate systems - x ,
1 ^* -$• \ Xxi» xi)

jc position vector of the observer

y. spatial coordinate in the turbulent flow

y_ position vector in the turbulent flow

z . spatial coordinate in the turbulent flow

z_ position vector in the turbulent flow

fb
6(x.) Dirac Delta function (,6(x.) = o,x.̂ o; I 6(x.)dxjL = 1, a<o<b)

* £)
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. _ .
<S. . = {Q _ ̂  j •! - the Kronecker Delta function

A^ = z_ - y_ ~ separation vector

e distance between elements of the quadrupole source

n_ position vector in the turbulent flow (in a moving coordinate
system)

6 polar angle between the observer and the x..-axis

* - .111

X^ = A^ - a MT ~ separation vector

y dynamic viscosity

5. position vector in the turbulent flow (in a moving coordinate
system)

p total density

P equilibrium density

a parameter related to eddy size

T = (TO - T ) or (t0 - t ) - separation timep c t p a

T' = t-^-
ao

T = t - R /a - time of emission of signal

TQ = t - RQ/a - time of emission of signalP P o

<(> polar angle between the crossflow direction and the direction
of the observer

<|> . . function related to p such that p - p = — — r^-ij o ox. ox .

to. characteristic frequency in the turbulence

Subscripts

i,j,k,£ indices taking on values of 1,2,3



I. Introduction

The acoustic performance of aircraft components has become an important

consideration. Recently, the wind tunnel has been used as a test facility to

evaluate the acoustic properties of aircraft components under simulated flight

conditions (ref. 1). In particular, lift fans for use in V/STOL (vertical/

short take-off and landing) aircraft have been tested in the 12.3 meter by

24.6 meter (40 feet by 80 feet) wind tunnel of the Ames Research Center of the

National Aeronautics and Space Administration. The lift fan is placed so that

it exhausts in a direction perpendicular to the direction of flow in the wind

tunnel. This arrangement simulates the take-off or landing configuration of

a V/STOL aircraft in flight. The acoustic measurements are made from micro-

phones which are placed at various positions around the lift fan.

While tests in a wind tunnel of aerodynamic properties can be used

directly to infer the properties under flight conditions, the acoustic data

gathered in wind tunnel tests do not completely simulate the acoustic con-

ditions obtained in flight tests. One source of noise from the lift fan

may be considered to be the turbulent exhaust flow. When the noise from this

source is measured in the wind tunnel, both the source and the observer (i.e.,

the microphone) are at rest, but the acoustic medium (i.e., the flow in the

wind tunnel) is in motion. Signals which are emitted by the source must

propagate through a uniformly moving acoustic medium in order to reach the

observer. On the other hand, the type of acoustic data which is normally

wanted from flight tests is the noise level from an aircraft in flight which

is measured by an observer at rest on the ground. In this case, signals

which are emitted by the turbulent flow from the engines of a moving air-

craft propagate to the observer through an acoustic medium at rest (assuming

calm atmospheric conditions). This is a different acoustic configuration

than that of the wind tunnel test.

In this report an analysis is presented of the sound field which is

generated by the turbulent flow from a lift fan in a wind tunnel with no

reflecting walls (i.e., an "ideal" wind tunnel). The flow from the lift fan

is modeled by a cold jet flow from a circular aperture. The jet exit vel-

ocity is subsonic, and the jet exhausts into a uniform crossflow. The



directional distribution (or directivity) of the acoustic intensity which is

calculated is compared with the corresponding directivity for a flight test.

The results provide a comparison between the acoustic data taken in a wind

tunnel and the corresponding data taken in a flight test.

Characteristics of a Circular Jet in a Crossflow

The model for the actual flow from a V/STOL lift fan is the turbulent

jet flow from a circular aperture. In order to simulate take-off conditions,

the jet will be considered to exhaust into a uniformly moving crossflow with

velocity V- in the positive x_- direction (fig. 1). The exit velocity from

the jet, V., is subsonic, and the jet flow is considered to have the same

density as the crossflow. The resulting flow differs in several respects from

that of the circular jet with no crossflow. There are three differences which

influence the acoustic analysis.

The most obvious feature of the crossflow jet is the deflection of the

turbulent flow in the direction of the crossflow. The severity of the deflec-

tion is related to the ratio of the jet velocity to the crossflow velocity.

The position of the centerline of the jet, as determined by measurements of

the maximum velocity in the jet, is indicated on fig. 2 for several values

of V./V (ref. 2). It should be noticed that for V./V- as low as 8, the

centerline of the jet is only deflected two jet diameters in the first eight

jet diameters downstream from the aperture. In the following, a crossflow

for which V./V_ ̂ 8 is referred to as a weak crossflow.

Another prominent feature of the crossflow jet is the distortion of

the initial circular cross-section of the jet as the flow proceeds downstream.

The shear produced by the crossflow initially distorts the circular flow into

one with a cross-section of "kidney" shape (see fig. 1). As the flow proceeds

further downstream, a typical cross-section contains two counter-rotating

vortex-like structures (see ref. 3).

Finally, in the immediate vicinity of the jet flow, the crossflow is

deflected by the jet. In this regard, the jet flow has been likened to a

porous cylinder which acts as an obstacle to the crossflow (see ref. 3).



Acoustic Analysis

The conventional use of a wind tunnel is to conduct tests which simu-

late flight conditions. In order to do this, the air in the wind tunnel is

moved uniformly past a test model. When acoustic measurements are made in a

wind tunnel, signals which are emitted from a source must propagate through

the moving medium to reach an observer (e.g., a microphone). Acoustic tests

performed outdoors, however, generally involve measurements made on the

ground of the noise generated by the engines of an aircraft either in flight

or on the ground. A fundamental difference between acoustic measurements

made in a wind tunnel and outdoors is that in the wind tunnel the acoustic

medium is in motion relative to the observer while outdoors the medium can

normally be considered to be at rest.

The analysis of acoustic propagation in a moving medium begins from a

consideration of the continuity and momentum equations. The acoustic medium

is assumed to be uniformly moving with a velocity of V. in the positive

x~- direction (see fig. 1). The total velocity V. "at any point in the

medium is the resultant of the convection velocity V« and other velocities

u. which might result from an acoustic disturbance, turbulence, etc.; thus,

V± = u± + V2 6±2 where 6±2 is the Kronecker Delta (6i2 = * ° ̂  f 2 ̂  '

The continuity equation is written

an 9p7-r

H + Bf - • •«•

since V~ is uniform. The momentum equation is written

where, for a Newtonian fluid,



Upon substitution for V. and use of the continuity equation, the momentum

equation is obtained in the following form:

3P..
3.J o\

3t 3x. 2 3x ~ ~ 3x. ' V '

The continuity and momentum equations are combined by taking the partial

derivative with respect to time of eq. 1 and subtracting from it the deriv-

ative with respect of x. of eq. 2. Use of the continuity equation and
1 2

9 In n
subtraction of the term a — ^y from both sides of the resulting equation

9x.

gives the following governing equation:

2V
3 n 3

+ v^2PV2 9 2 «cx2

2 92p

' 8xi2

9 2T..

9x.9x.
i J

2 99x
dt i

2
where T.. = P.. + pu.u. - a p&.. . The left-hand side of eq. 3 describes

the propagation of acoustic waves in the uniformly moving medium. The right-

hand side is a quadrupole source involving the stress T. . which results

from pressure, viscous stresses, and momentum flux. In classical acoustics

this stress is negligible. In a region of turbulence, however, T.. is non-

negligible primarily because of the momentum flux contribution.

The solution of eq. 3 is obtained by using a method of coordinate

transformations. This technique consists of finding a system of coordinates

in which both the medium and the source are at rest with respect to the

observer. In order to begin, a new function <j> . . is defined which is related

to the density as follows: „

where p is the undisturbed density of ̂ _the acoustic medium. When eq. 4

is substituted into eq. 3, the following equation for <j> . . is obtained:

(5)V '



In general, the stress T.. is a function of position in a region of

turbulence, y_, and of time, t. The stress can be expressed using the

Dirac Delta function as T..(t)<S(x _ y )6(x7 - y.)6(x - y ) where

6(x1 - y-.)6(x,, - y»)6(x, - y,) is equal to zero at all values of position

(x. , x_, x_) except at the location of the stress (y,, y_, y~). A solution

to eq. 5 is first obtained for a stress located at the position (y., y», y_),

The equation to be solved is the following:

2 2 2 2
9

Ti.(t)6(x1 - y1)6(x2 - y2)6(x3 - y3) . (6)

The left-hand side of this equation can be transformed into the normal wave

operator on <j>. . by the following Galilean coordinate transformation:

* *. • /\ *>
V = V — V * V — V — V — V t" * V — V — V " t~ = t"A-i A-i y -I ) A9 A9 jo 9 » T Q "T
^ ^ . J - £ * £ * £ * £ . J - J - J

The relationship between derivatives is the following:

3 _ 3 , 3 = 3 , 3 = 3 _3_ _ 3 3

The above relationship between coordinates is used to transform eq. 6 into

the following equation:

= T. . (t)6(S )«(i +V?t)6( ) . (7)1 J 1 2 2 3

This transformation has a simple interpretation. In the new coordinate

system moving with velocity V~ in the positive x_-direction, an observer

finds the acoustic medium to be stationary. Relative to the observer,

however, the source moves with a velocity V_ in the negative x_-direction.

The series of coordinate transformations by which eq. 7 may be solved

is outlined in Morse and Ingard (ref. 4). The first of these, a Lorentz-

type of coordinate transformation, has the property of leaving the left-hand



side of eq. 7 in the same form; however, the source term on the right-hand

side becomes stationary. This coordinate transformation is given as follows:

where

Thus,

TT t\ . Ol _ £ . "ft _ v/p . £!_ v •) .V21) , «3 x3 , t YU + x2J ,
o

(1-N2) "* and N = V0/a/ o

9 _ 3 3 _ 9 . N 3 . 3 3 3 / 3 , 3_ , . . _ _ / , T 7

3iL 3^ 9x ~ Y("3x7 + ^~ ?PJ 9x7 * 9x7J "3T ~ Y(3¥ + V2
i 1 2 2 o 3 3

In terms of the new coordinates , eq . 7 becomes

2 2
3 4 > . . ~ 9 < j> . .
- il - a/ - ^- = YT..(Y^)6(^)6(x )6(xJ . (8)

9%2 ° 3x.2 • U 1 2 3

The above form of the equation results from use of the property of the Dirac

Delta function that 6(x2/y) = Y«S(x2) .

One final coordinate transformation is needed to put the governing

equation into a form for which the solution is immediate. This transforma-

tion is the following:

- * - n , - * - ' \ j - » - f \ , - * ' n ,
Xl = Y 1 ' X2 = YX2 ' X3 = YX3 ' = Y '

In terms of these coordinates, eq. 8 becomes

ii 2 i 2 -> -* + •*
— ̂ - - a^ -^L = Y Tij(t)6(x1)6(x2)6(x3) . (9)
9t 3x .

This equation represents wave propagation in three dimensions through a

stationary uniform acoustic medium resulting from a stationary source of

strength

following :

, ,;.

strength Y T..(t) located at the origin. The solution to eq. 9 is the

r
o



where

r =

It should be noted that in order to determine the function <j>. . at any

position r and time t, _^T.. must be evaluated at the time of emission of
->• r

the acoustic signal, t .
o

The independent variables (x., t) in the final system of coordinates

are related through the coordinate transformations to the independent vari-

ables (x., y., t) in the original coordinate system; thus

C(l-N2)|x-vJ2

r
1 - N

and -*-

- —~ ao

where

R = ^̂  -*-̂  -̂ . (11)
C(l-N2)|x-Z|

2 + N2(x7-y,)
2J* - N(x -y

In terms of the original coordinates the solution for (j> . . is the following:

T '(t - f-)
(12)

This equation determines the value of <(> . . which results from a single

source T.. located at the position (y1 , y», y_) . When a region of turbu

lence is present, the solution for $.. is generalized by integrating the

result from each source in the region. Thus, for a distributed source,

C(l-N2)|x-y_|

3
d

where y_ is the position in the region of turbulent flow, and the integral

extends over the entire region of turbulence.



The acoustic density disturbance at a position x and time t is

t<

equation:

related to <j>.. by eq. 4 and is therefore determined by the following

Tij (^fc - i~)
p(x,t) - pn - —^ ~^- | — ,9 , OT d-y_. (14)

4ira i jo t. f.

In this equation the retarded time (i.e. the time at which the signal is
T>

emitted) is t where R is defined in eq. 11. The quantity R

represents the distance that the signal propagates with speed a through

the moving medium from the source to the observer. This interpretation can

be demonstrated with the aid of fig. 3. The plane indicated in fig. 3

contains both the observer located at position (x.. , x2, x~) and the source

located at the origin. The direction of the observer from the direction of

the crossflow is given by angle <j> . In order for a signal to be received

by an observer, it must propagate through distance R = a At where At is

the time interval between emission and reception of the signal. During the

time interval At, the signal is convected a distance V~At = NR by the

acoustic medium. These relationships allow R to be evaluated in terms

of r = Ixl and <j> as follows:

R2 = (rsinij))2 + (rcosij) - NR)2 ,

and therefore,

-N rcosj) '* C(l-N2)r2 + N2r2

2
1-N

When N is less than unity, the positive sign is taken, and the relationship

rcos<j> = x- is used to obtain the value of R in eq. 11 for a source located

at the origin.

Equation 14 provides the formal solution for the acoustic density dis-

turbance when the acoustic medium is moving uniformly with velocity V_ in

the positive x9-direction. When the Mach number of the medium is such that
2

N «1, the denominator of eq. 14 is approximately equal to the distance

between the source and the observer. In this limit, however, the retarded
I x~2 1time is not given by t - J - L as is the case for a stationary acoustic



medium. At small Mach numbers, the primary effect of the movement of the

acoustic medium is therefore the alteration of the time between emission and

reception of acoustic signals. The net acoustic signal which is received at

a point from sources located near to each other is strongly dependent upon

the time interval between emission and reception of the signal from each

source. The alteration in the retarded time by the movement of the acoustic

medium therefore influences the acoustic field generated by nearby sources

(e.g., the acoustic field which is generated by a region of turbulent flow).

This effect can be put in a quantitative form by carrying out the differ-

entiation of the integrand of eq. 14 as follows:

3x.
!!?
3x. a

-iJ »

where

- N2)|x-y_|2

and

Therefore,

,2 :

a

3x.3x.' ax'

3R

.. 3x, 3x,3x/ 'ij

When the solution is restricted to the acoustic far field (i.e., to distances

from the source which are large compared to (2ir) times a typical acoustic

wavelength) , the dominant term0of the integrand is the one that decays most
3 Tii -1

slowly. The coefficient of - r*- is of order r^
3Tii 3T' -2

of — r3t

therefore,

and T. can be shown to be of order r.

while the coefficients

-3

3x.3x .
J

and respectively;

3T
,2



The derivatives of R are easily calculated with the result that

3R 1 (x.-y,) (1-N2) + (x^X^ ^ .
•5— = - 2" L --- r -- N6i2] *3xi (1-N2) r* l2

The density disturbance in the acoustic far field is therefore given as follows:

2 2
4iraQ- (1-irr

(15)

(x -y )(1-N2) + (x -y )6 32T. (y_,T')
- N6- . _ .

r* J ST'

A somewhat unintuitive result is contained in eq. 15. When the source

is a quadrupole with either axis in the direction of the crossflow (i.e.,

with either i or j equal to 2), a greater density disturbance is calculated

upstream of the source than at an equal distance downstream for all observer

positions except along the x2-axis. This result can be demonstrated by con-

sidering the source to be a single lateral quadrupole TI _ located at the

origin. This type of source represents a shear-stress on the x, -plane in

the x_-direction or vice versa. For this example the square of the crossflow
2

Mach number is considered to be small compared to unity (i.e., N «1) . The

density disturbance is given by eq. 15 to be the following:

2
- x x, 8 T-,

P(r,t) - p - - ±v- (-̂ -H-r ~ N) - ^f , where r = |x| . (16)
° 4TO r r r 3T'^

o

A stress is thought of as resulting from two equal and opposite forces acting

on a fluid element. Each force can be represented by a dipole (i.e., an

adjacent source and sink of equal strengths which emit simultaneously). There-

fore, the quadrupole source T..» is represented as shown on fig. 4 where the

+ indicates a source and the - indicates a sink of equal strength. In the

absence of a crossflow (i.e., with N = 0), the directional distribution of

the density disturbance at a fixed distance r which is generated by the
X. Xy

source is ( — )( — ). This pattern is the symmetric "rose" shown on fig. 4a.

10



The reason that an observer along the x..- and x_- axes finds zero density

disturbance is the interference of the signals which are simultaneously

emitted from the sources and sinks comprising the quadrupole. The observer

on either axis is equidistant from source-sink pairs of the same strength;

thus, the signals which are simultaneously emitted from each source-sink

pair of the quadrupole propagate through the medium with velocity a and

arrive at the observer position simultaneously. The result of a signal from

a source arriving in phase with a signal from a corresponding sink is complete

destructive interference and zero net density disturbance. For the observer

located off-axis, however, the corresponding source-sink elements of the

quadrupole are not equidistant from the observer and the interference is not

complete. When the acoustic medium is moving with a velocity a N, signals

which propagate in any direction are simultaneously convected with the medium

as they propagate. Convection by the acoustic medium has the effect of alter-

ing the time required for the signals from each element of the quadrupole to

reach the observer. This gives rise to a distorted distribution of the acoustic

density disturbance. This directional dependence is given by eq. 16 to be

x x2
(r }(r ~ N) '

Figure 4b gives the directional dependence of the density disturbance for the

lateral quadrupole T.. _ which results when the medium is moving in the posi-

tive x~-direction with a Mach number of N = 0.25. Two features distinquish

this pattern from the symmetric pattern of fig. 4a. First, zero net signal

is found not along the x..-axis but rather along a ray downstream of the

x..-axis. This is explained directly by considering the effect of convection

of the medium on the propagating signals. The signals which would have

destructively interfered with each other along the x.. -axis when there was no

movement of the medium are now convected downstream. The second feature of

the distorted "rose" pattern is the enhanced signal received upstream of the

source compared to that received at corresponding positions downstream. This

feature can be obtained by considering the propagation of signals from each

element of the quadrupole to an observer located at an angle 6 from the

x,-axis (measured counter-clockwise) and distance r from the origin. The

separation distance between adjacent sources and sinks in the quadrupole is

11



e, where e is small such that (—)«!. Each element of the quadrupole (i.e.,

each source or sink) is then located a distance £ from the observer, where

the index i refers to the quadrant on which the element is located (e.g., the

source on the first quadrant is located a distance £.. from the observer at

position (r,8). The observer distance from the source elements of the quad-

rupole can be calculated to be the following: JL_ = r [l +• — (sin6 + cos6)] .

Similarly, the observer distances from the sink elements of the quadrupole are

&2 L = r [l + 73— (sinG - cos0)]. Since the velocity of the medium is a N on

the x» -direct ion, the resultant propagation velocity in any direction 6 is

a (1 + N sin6). The time required for a signal to traverse a distance 8,.
a± 1

is therefore given approximately by t. = — . — . • . . (Note, the approx-
i ^rt ̂  ^ in v /

imation is that the signal from each element propagates on the direction 6.)

The source elements of the quadrupole may be considered to fluctuate with a

frequency co as sin cot while the sink elements fluctuate as -sin cot. A

signal which is emitted by any element of the quadrupole at time t arrives

at the observer at a later time t + t.; for instance, the signal which is

received by the observer from the sink located on the second quadrant is

- sin [co(t + t»)]. The net signal received (NSR) by the observer is then

calculated by summing the contributions from each element of the quadrupole

as follows :

NSR = sin [co(t + t1>] - sin [co(t + tp]

+ sin [co(t + t_)] - sin [co(t + t,)] .

This calculation for NSR is simplified by using the smallness of (— ) with

the result that

sinQ cos 6 ,coe,.2iar.™
= n + » •(1 + N sine) o o

The amplitude of NSR is given by the factor — sine cos6 ^2 which

(1 + N sine) ao

provides the approximate directional properties of the quadrupole source. The

symmetric "rose" pattern (i.e., sine cos6) is modified by the convection
_2

factor (1 + N sin8) to provide an enhanced upstream NSR compared with

that at corresponding downstream positions. This modification occurs because

the destructive interference of the signals from each element of the quadrupole

source is less complete for observer positions upstream of the source owing to

the reduced propagation velocity in that direction. As a result, the upstream

12



"petals" of the distorted "rose" pattern are larger than the downstream "petals".

It should be noted that the greater effectiveness of quadrupole sources upstream

than downstream also applies to simple sources (monopoles) and to dipoles when

the axis of the dipole is aligned with the x» -direction.

Human response to a sound field is determined more by the acoustic

intensity than by the acoustic density disturbance. In the acoustic far field,

the intensity is defined to be the average rate of flow of acoustic energy

through a unit area normal to the direction of wave propagation. When the

intensity is integrated over a large surface which encloses an acoustic source,

the total power output of the source is obtained. The relationship between the

acoustic density distrubance and the acoustic intensity is given as follows:

(P(x,t)-po)
2

where the overbar indicates the time-average of the quantity underneath. (This

is an approximate relationship for the acoustic intensity for small crossflow

Mach numbers. It is a reasonable form for the example calculations which are

included in this report. The exact expression for the intensity is given in

ref. 14.) The acoustic intensity in the far field is determined by substituting

eq. 15 into the above relationship. In order to simplify the results that

follow, it will be assumed that the square of the crossflow Mach number is small
2

compared to unity (i.e., N «1). With this assumption, the acoustic intensity

is given as follows:

I = -̂z—if 2 „ 5 i I r r_ r it~ r j^loir u. p ' v a p ct ct
0 ° (17)

-z x -zZl Xn z
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where y_ an^ .£ are the positions in the turbulent flow, r = |ic - y_| »
R R a

re = |x - z|, Ta = t - f , Tg - t - J- . Ra = ra - N(x2-y2), and Rg = rg

-N(x2-z2).

The integrand of eq. 17 contains the product of direction factors and a

time-averaged quantity which depends on the properties of the turbulence at

different points in the flow field. It is useful to recast the integrand into

a form which recognizes the eddy structure of the turbulence. This procedure

is developed by Ffowcs Williams (ref. 6). First, a separation time T is

defined such that T = T - T . The turbulence is specified to be a station-
p a

ary function of time which allows the following relationship to be proven:

*R

where the correlation function R . ., (V_,£,T) = T, . (y_>T )T, (Ẑ ,T +T) .
1JK.J6 Xj Ot K.X/ 01

The above correlation function is determined by taking the time-average of the

stress in the turbulence at two positions y_ and z_ and at corresponding times

T and T + T . It is expected that the correlation function will have a
a a

maximum for positions y_ and z_ which are close together and zero for positions

which are widely separated. The region of high correlation corresponds to a

turbulent eddy.

The independent variable z_ is eliminated in favor of a separation
3 3

vector A^ which is related to v_ and z_ as follows: A^ = £-y_; d z_ = d ,A_.

A new correlation function is defined by expressing R . ., g (V_,Z_,T) in terms
1 J ICXf "~

of the variables y_, A_, and T ; thus, R. ., (V_,A^T) = R . (y.».z_> T) . The
XJ1CJ6 1J1CJ6

separation time T is dependent on the observer position x. anc^ the positions
Ra_Rfi

in the turbulence. This relationship is T = Tg-T = - . The distance

Ra is a function of x_ and y_ while Rg is a function of x and z_. The

definition of the separation vector A allows R0 to be expressed as a
~ p

function of x_, y_, and A . Since the correlation function R. ., (y_,Â  T)

is expected to be non-negligible only for positions in the turbulence which

are relatively close to each other, the expression for T need only be

14



determined for values of A which are small compared to (x - y_). Thus, for

an observer far from the turbulent field, there is only a small difference in

(jc - y_) and (x - z) over the dimension of a turbulent eddy, and these dif-

ferences can be neglected in the calculation of the acoustic intensity. The
A.. (x-y)_NA2

expression for T is then T = ̂ —i—=T . This expression gives the time

difference between the emission of signals from points located a small distance

A apart.

In a turbulent flow there is, in general, a velocity associated with the

convection of a turbulent eddy in the flow. For instance, in the mixing region

of a cold subsonic jet, the convection velocity of a turbulent eddy is approx-

imately 0.65 times the jet exit velocity (see ref. 7, pp. 355-357). In order

to estimate accurately the acoustic intensity, it is important to minimize the

changes in R. ., n(y»A,T) with respect to T which result merely from eddyij tcJo
convection. This is possible by defining a new separation vector \_ in a

coordinate system which moves with the convection velocity a M. The relation-

ship between A and A is A = A + a MT . The separation time T is then

determined as a function of X_ . In order to facilitate this transformation

and the following results, it will be assumed that the convection velocity is

of magnitude a MI in the positive x..-direction only. This corresponds to

the assumption of a weak crossflow. The resulting expression for T is then

X_. (x-y_)~ NA_|x-y_|
*£ _ fH I __ * -^-\ •

<V|x-yJ - M1(x1-y1)>

A new correlation function P. ., (£,A»T) ^s defined by expressing A ^n

terms of X^ and T ; therefore, P. ., (y_»A>T) = R. .-.,. (y_,A»T) • Finally, the

relationships between X^, A> an^ T are used to calculate the changes with

respect to T of R. ., (y_,A»T) and P. ..» (V_,A_,T) . As shown by Ffowcs Williams

(ref. 6) these two derivatives are not simply related because of the dependence

of T on X. and A • T*16 relationship can be shown to be given by the

following:

^j 1_ _ a M -9- ] - * , - x
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When integrated over A_, the second term on the right-hand side can be shown

to give a negligible contribution, and it is therefore neglected. The differ
3

ential volumes d A_ and c

transformation as follows:

3 3
ential volumes d A_ and d ̂  are related by the Jacobian of the coordinate

~ , M (x -y )
d3A - d\ D. - ^j1 ] •

The acoustic intensity (eq. 17) can now be expressed in terms of the

correlation function P. .. (V_,A^T) as follows:

r -- 1 - 1 -a |x-yj
(19)

-y 4

This integral is simplified by restricting the observer position x to be

far from the turbulent field compared to the dimensions of the flow field.

Under this limitation, |x-yj = l2ll = r an<i x.-y.=x. , and direction factors

become independent of the integration. Equation 19 is made consistent with
2

the assumption that N « 1 by expanding the four direction factors appear-

ing in the equation to give the following terms :

(20)
X . X . X . X

- - "

The final expression for the acoustic intensity is in the following very

useful form:

~Tl — MT 5 1 1 {^^ ~
a 5

Pr2[l - ^]
4 (21)

^ 7T ^^'0 ^ d^ '
oT
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MX -5
The effect of eddy convection is given by the Doppler factor Cl H

while the influence of the medium velocity a. N appears in the numerator

of eq. 21.

Even with the assumptions made to date to simplify the calculation,

the solution depends upon the knowledge of the correlation function

P. ., * (£,A_,T) at each point in the turbulence. This implies knowing the

stress at one spatial point and one time in the turbulence and at all other

points at the proper separation time. In order to proceed beyond this point,

it is necessary to use very simplified models of the jet turbulence.

MODELING THE TURBULENCE

In principle, the acoustic intensity can be calculated from eq. 21 if

the correlation function P ,,. (y_,A_,T) is known in the turbulent jet flow.

At best, this function is very difficult to determine either experimentally

or analytically for any turbulent flow. As a result, a very simplified model

for the correlation function is used to calculate the qualitative aspects of

the acoustic intensity which is generated by the crossflow jet. The method

which is followed is given by Ribner (ref. 8) who calculates the acoustic

intensity which results from a turbulent jet with no crossflow.

For turbulent flows of low Mach number, the stress T.. is approx-

imated as follows: T..=p u.u. where p is the density of the surround-
ij o i j, o

ing acoustic medium. This approximation is reasonable for those flows in

which heating or cooling is caused only by compression or expansion of the

flow (see ref. 5). In this approximation, viscous effects have been

neglected; the only contribution of viscosity would be a slight damping of

the acoustic field outside the turbulent flow and a small contribution to

the stress inside the turbulent flow. The correlation function in eq. 21

is then given by the following:

. (22)

This correlation function is substituted into eq. 21 to give the following

17



equation for the acoustic intensity:

po a4 f
, , M x 5 4 j

i f , , . -i - c\ ...... ^ ^16 IT a i v.1 - )

(
Tu u u ' u '

J x x x x
I(r) = - n - r — r Cu u u 'u ' - 2N {u0u u 'u' l- 2xx

(23)

Li U U/x

x x 2
3 3A_ d y_ ,

u.x.
where u = is the component of fluid velocity in the direction of the

observer, u« is the velocity in the positive x.-direction and the prime

indicates the velocity evaluated at (y_ + A_, T + T) while the unprimed

velocities indicate evaluation at (y_,T ). The velocity u represents the
CC X

total velocity in the turbulent flow and can therefore be expressed as the

sum of the mean velocity and the fluctuating component as follows:

u = U + u where U is the mean velocity and u is the fluctuating
x x x x J x
component which is defined such that u~ = 0. This and similar expressions

x
for u' , u~ and u'9 are substituted into the terms such as u u u 'u '

X Z* £• X X X X

which appear in eq. 23, and the indicated multiplication is performed.

Several terms in the resulting expression can be neglected. Since the cor-

relation function is to be operated on by the derivative with respect to T,

those terms which contain no dependence on T are disregarded. Also, terms

involving triple velocity correlations (e.g., u u u ' ) are neglected
X X X

because they are either zero or small depending on how the turbulence is

modeled (see ref. 8). The result of these simplifications is given as

follows:

u u u ' u ' = ._ _ _ _
x x x x x x x x

When the other terms in eq. 23 are similarly considered, the integrand

becomes the following:

u u u ' u ' + 4 U U ' u u ' - 2N[2(U0U ' + U U 0 ' ) u u 'x x x x x x x x 2 x x 2 x x

(24)

+ 2U u ' (G0u ' + u u ') + {LG G 'G ' + G G G 'G ' ] .x x 2 x x 2 2 x x x x x x 2
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At this point, the assumption is introduced that the turbulence in the

jet is isotropic. For this assumption to be strictly valid, the intensity of
72*5

the turbulence (i.e., Cu D ) at every point in the flow must be the same in

all directions. This state of affairs is not found in the circular jet with

no crossflow (see ref. 9), and there is no reason to believe that the assump-

tion will be strictly valid for the circular jet in the presence of a cross-

flow. The assumption however, does allow the calculation of acoustic inten-

sity to be greatly facilitated, and it is expected that the result will pro-

vide a reasonable first approximation.

In isotropic turbulence, it can be shown (see ref. 10) that the second-

order two-point correlations of the velocity in the same direction

(e.g., u..u ' ) are non-zero while the correlations of a velocity at one

point with a velocity directed perpendicularly at another point (e.g., iLu ')

are equal to zero. Therefore, when the direction of the observer is the

x0-direction, the terms u0u ' and u u ' are equal to u u '. When theZ, 2. X X £ XX

observer is in the x..- or x_-directions, however, the terms u9u ' and
—^— ^ Xu u ' are identically equal to zero. Thus, for any observer position,
X Z-

I A ^ fl

' =
,

U~U = U U ' = U U COSA
2 x x 2 xx V

where <J> is the polar angle between the crossflow direction (x.-axis) and

the observer direction (see fig. 5). Substitution of these relationships

into eq. 24 gives the following expression:

u u ' u ' + A U U ' u - u ' - 2N[2(U U ' + U U ' + 2U U ' COSA) u u 'x x x x x x x x 2 x x 2 x x y x x
(25)

+ G9u u 'u ' + u u u 'u1 ] .2 x x x x x 2 x

The expression given by eq. 25 contains terms which are second-order

velocity correlations and fourth-order velocity correlations. While much

is known about the behavior of the second-order velocity correlation in

isotropic turbulence, little information is avilable concerning the fourth-

order correlation. As a result, the assumption is made that the joint-

probability distribution of u and u ' is normal. This distribution gives
X X
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the probability of finding a particular velocity u at one point along with
X

a particular velocity u ' at another point. While this assumption is known
X

not to be strictly accurate (see ref. 11) it does allow a relationship to be

made between the fourth-order velocity correlation u u u 'u ' and the
x x x x

second-order correlation u u ' . This relationship is the following (see
X X

ref. 11):

The fourth-order velocity correlations in eq. 25 are written, using this

relationship, as follows:

,2•^ ^ ^ » ̂  I f\ / ** ** I \ *uuu u =2(uu )x x x x xx

and

u,u u 'u ' » u u u,'u ' = 2(u G ') cos<j> . (26)2 x x x x x 2 x xx

The terms which have no dependence on T have been neglected in the

above relationships. The second-order velocity correlation u u ' is a
x x

function not only of the separation distance X_ but also of the separation

time T. It is reasonable to expect that the dependence on T is exponen-

tial so that the correlation can be written as u u '(X_,T) = R (A)exP(~li)fT) (27)
X X ' ™ ~ XX ~~ i

where R (X) = u (y_) u (yĵ X) is the simultaneous second-order velocity
XX *~~ X X *"~

correlation, and w_ is a characteristic frequency of the turbulence. Then

eqs. 23, 26 and 27 combine to give the following equation for acoustic inten-

sity: 4

{2R
XX
2 (1 ~ 4Ncos<f))Xx2 52,.

ir a r (1 -- — )
0 r (28)

Kx

In this equation, T has been equated to zero under the argument that the

separation time T is negligible over the volume of a turbulent eddy. For

this argument to be reasonable, the convection Mach number K. should be

small (see ref. 12, p. 9). The acoustic intensity is seen to consist of
2

two primary contributions. The first involves R which gives the inten-
XX

sity which results from the interaction of turbulence with turbulence.
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This contribution is identified as "self-noise". The second contribution

results from the interaction of mean shear (i.e., spatial variation in the

mean velocity) and turbulence. This contribution is called "shear-noise"

and can be shown to be non-negligible only in the presence of mean shear.

The functional behavior of the second-order velocity correlation

is known from the kinematics of isotropic turbulence (see ref . 10) to be

the following:

Rxx - tf (A) H- -~- : (29)

where X = ) A_| is the distance between point P (where the turbulent

velocity in the x-direction is u (yj and point P'1 (where the turbulent
X

velocity in the x-direction is u (y_ + A) , A is the component of A_ in
X X

the x-direction (see fig. 6), and f ( A ) is a spherically symmetric function

which vanishes for large values of A. A simple function which has the

required properties for f (A) is the following ( see ref. 8):

f (A) = exp (-7rA2/L2) (30)

where L is a characteristic length for the turbulence. With this form for

f(A), the velocity correlation is given by

R = u2 [1 - \ (A2 - A 2)]eXp (- ^2) . (31)
XX T £• X -.- £•

Li Li

The acoustic intensity in eq. 28 depends on the integral of functions

of R over all values of the separation vector ^. This integration isxx
easily performed using spherical coordinates. The self-noise contribution

to the intensity from a unit volume of turbulence is calculated using

eq. 31 to be
_ 2

8(1 - 4Ncos<J>) [ R 2(A_)d3A. = 2%(u2) L3(l - 4Ncos<f>) . (32)
J XX ~*~

In order to calculate the shear-noise contribution to the acoustic
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intensity, the variation of the mean velocity in the jet must be known. For

weak crossflows the mean velocity is directed primarily in the direction of

the jet at the exit plane (i.e., in a direction normal to that of the cross-

flow) for the first eight jet diameters downstream. It is therefore assumed

that the mean velocity is directed in the x..-direction only. It should be

noted that this assumption has previously been made in conjunction with the

eddy convection velocity. In its present context the assumption implies

the neglect of the mean shear which results from the mean velocity in the

crossflow direction. It is this mean shear which is responsible for rolling

the edges of the jet into vortex-like structures. With this assumption, the

mean velocity in the direction of the observer can be expressed in terms of

the mean velocity in the x.-direction (i.e., U-) as follows:

U = ILcose-x 1

where 9 is the polar angle between the observer and the x -axis (see

fig. 5). This assumption implies the neglect of the terms involving

U U,' and U,U' in eq. 28. The data of Patrick (ref. 13) indicates that
X fL £, • X

the mean velocity in the crossflow jet, as in the jet with no crossflow,

varies rapidly across the jet but slowly along the jet. Ribner's model

(see ref. 8) for the variation of mean velocity in the jet with no cross-

flow can therefore be used for the crossflow jet. In this model the mean

velocity is considered to vary rapidly across the jet but no variation is

included along the jet. The specific form for the mean velocity variation

is the following: _

2 Oirx2uiV = ui exp(~"—H
where a is a parameter which is related to the eddy size of the turbulence.

This approximation is only expected to be valid over the dimension of a

typical turbulent eddy. The above model for the mean shear gives the follow-

ing shear-noise contribution to the acoustic intensity from a unit volume of

turbulence:

2 f „ 0. u L a ,
(1 - 2Ncos<j>)cos 6 R U..U..'d A. = — 57^ (1 - 2Ncos<|>) cos 8 . (33)

-1 L 2(1 + a)'
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This contribution to the acoustic intensity is equal to zero when CT equals

zero which corresponds to the case of a uniform flow; therefore, this con-

tribution is closely associated with the presence of mean shear.

The results given in eqs. 32 and 33 combine in eq. 28 to give the

intensity per unit volume of turbulence as follows:

.^2.T3 2
(U } L

 r ....... .
 Ul CT

J-v-,">s'/ ~ 3 /2 252 5
2 '\ a r (1-R.cose) 03/2,^ ,o L 2 (1+a)

4
(l-2Ncos<f>)cos ej

where M.. cos8 has replaced M.. x,/r. The factor multiplying the shear-

noise contribution contains a which is related to the eddy size. As stated

by Ribner, this factor is difficult to determine but is estimated to be equal

to unity in the mixing region of the jet. With this estimate, the acoustic

intensity per unit volume of turbulence is given by

4 , 7 2 * 3 ,
P- Wjr ^U ' C(1~4N cosifr) + (1-2N cosf )cos 9j f ,.

5 . U4;
ir a r (1 - K.cos6)

o 1

This equation is the desired result for acoustic intensity in the wind

tunnel configuration.

RESULTS

The acoustic intensity in a moving medium from a unit volume of

turbulence in a jet flow is given by eq. 34. The medium has a velocity

a N in the positive x_-direction, and the convection velocity of a turbu-

lent eddy is a M.. in the positive x--direction. The directional distribu

tion of the acoustic intensity at a constant distance from the jet is given

by the following expression:

(1 + cos46) - 2Ncos<|)(2 + cos 9)

(1 - M cos6)5
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where <j» is the polar angle between the wind direction and the observer,

and 0 is the polar angle between the jet exit direction and the observer

(see fig. 5). This pattern is plotted on fig. 7 for an observer in the

plane of the jet where <|> = j- - 6. The reference intensity is the pattern
4

given by (1 + cos 6) which is referred to by Ribner as the "basic jet

directivity". The curve of zero dB therefore indicates the intensity pattern

which would be emitted by a "jet" with VL = N = 0. The intensity patterns

from a jet with M. = 0.54 are presented on fig. 7 for two values of N.

The pattern given by N = 0 represents the distribution of acoustic inten-

sity from a straight jet and is symmetric about the x1-axis. The Doppler
_5 L

factor (1 - tLcosG) increases the intensity by a large amount in front

of the jet and decreases the intensity behind the jet. The second pattern

shown on fig. 7 is the acoustic intensity from a jet in a weak crossflow

(V./V_ s 8). The crossflow Mach number of N = 0.07 produces an asymmetric

pattern with a greater intensity in the upstream direction and a reduced

intensity in the downstream direction. Even for this weak crossflow, the

difference in acoustic intensity measured at corresponding positions upstream

and downstream is as much as 1.5 dB (at 6 = 315° and = 45°). As discussed

previously, this upstream shift results from the convection of signals by the

acoustic medium.

Under the assumption of a weak crossflow, the acoustic field which

is generated by a crossflow jet in motion (i.e., the flight configuration)

can be calculated directly using the analyses of Lighthill, Ffowcs Williams,

and Ribner (refs. 5, 6, and 8, respectively). A summary of this calculation

is presented in the Appendix of this report. In the calculation the velocity

of the aircraft is a N in the negative x^-direction while the turbulent flow

is characterized by an eddy convection velocity of a M in the positive

x..-direction. The directional distribution of the acoustic intensity at a

constant distance from the aircraft is obtained from eq. A9 to be the

following:
4

(1 + cos 9)

Ncos<j>)(l - M cos9)

where 9 .is the polar angle between the jet axis and the observer position

and (j> is the polar angle between the positive x_-direction and the observer.
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The distribution of acoustic intensity for an observer in the plane of the

jet (i.e., the plane in which <J> = j- - 6) is presented on fig. 8. The

reference intensity is again taken to be the basic jet directivity
4

(1 + cos 0). With no aircraft velocity (i.e., N = 0), the intensity pattern

for the same jet as that on fig. 7 (i.e., M. = 0.54) is identical with that

described for the wind tunnel configuration with N = 0 . The aircraft Mach

number of 0.07 shifts the pattern slightly in the direction of motion of the

aircraft.

The difference in intensity between the two patterns shown on fig. 7

is greater than the corresponding difference on fig. 8. That is, a cross-

flow of small Mach number in the wind tunnel configuration produces a greater

change in acoustic intensity than an equal aircraft Mach number in the cor-

responding flight configuration. This can be demonstrated quantitatively

when N is small compared to unity (i.e., N« 1) by expanding the denom-

inator of eq. 36 to give the following:

(1 + cos49) - NcosiKl + cos46)

(1 - M1cos6)
5

The difference between eq. 37 and eq. 35 is the difference between the

directional distribution of intensity for the wind tunnel configuration

and the flight configuration. In the plane of the jet this difference is

N sine (3 + cos49)
- - jr - .

(1 -

This expression is zero for N = 0, 9 = 0, and 8 = ir •. ' For values of

0<9<iT the intensity in the wind tunnel is less than that for a flight test

while for ir<6<2ir the intensity is greater for the wind tunnel test. That

is, the asymmetry of the intensity pattern for a given value of N is greater

for the wind tunnel configuration than for the flight configuration. This

results provides a comparison between wind tunnel measurements and measure-

ments in a flight test for small values of N.
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CONCLUDING REMARKS

The result of the analysis for the directivity of the acoustic inten-

sity from a crossflow jet in the wind tunnel configuration is given by eq. 35.

This equation can be compared with the corresponding result for the flight

configuration given by eq. 36. It has been necessary to make several assump-

tions in deriving these equations which are known to be not strictly valid

for the crossflow jet. Equations 35 and 36 therefore must be considered to

provide only a qualitative prediction of the acoustic intensity. The values

of the constants and parameters which multiply the directional distribution

of the intensity in eqs. 34 and A9 give at best an order of magnitude estimate

for the acoustic intensity. It is felt that the directional factor gives a

reasonable prediction of the directivity from the crossflow jet in the absence

of reflecting surfaces. This belief in the basic correctness of the directiv-

ity patterns is based on Ribner's comparisons (see ref. 8, p. 130) of the

directivity of the straight jet (i.e., no crossflow) with experimental data.

In this comparison, the patterns of acoustic intensity which are calculated

using the directional distribution of eq. 35 with N = 0 give reasonable agree-

ment over most values of 9 with experimental data taken on straight jets.

For angles near the jet axis, however, the theoretical distribution predicts

much larger values for acoustic intensity than are observed. Ribner attributes

this discrepancy to refraction of sound by the mean flow of the jet. In this

report, refractive effects are not considered by the acoustic theory, and

similar discrepancies are expected to occur.

Improvement of this analysis is possible when a more complete picture

of the crossflow jet is available. One area for improvement is the possible

refraction of noise emitted by the jet which results from the deviation of

the crossflow around the jet. Since the jet flow acts as a partial obstacle

to1the crossflow, there exist gradients in the crossflow velocity near the

jet flow. This variation in the crossflow may result in a refraction of the

sound generated in the jet and provide another mechanism for the distortion

of the sound field.

It should be recalled that in the calculations of the results, curva-

ture of the jet by the wind has been neglected. This has been justified by

restricting the analysis to weak crossflows and postulating that the noisy
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regions of the jet should be the first eight jet diameters downstream of the

exit. Curvature of the jet flow, however, could interfere with the propaga-

tion of signals by shielding some observer positions from signals emitted

from the jet.

The results of this analysis for the directional distribution of

acoustic intensity from a jet in a weak crossflow provide a comparison-for

corresponding wind tunnel and flight measurements. As demonstrated on •

figs. 7 and 8 and eq. 38, the wind tunnel configuration is more "efficient"-

at shifting the intensity distribution than the flight configuration for a

given value of N. The effect of the convection of signals by the acoustic

medium in the wind tunnel is .therefore an important consideration in inter-

preting acoustic data taken in the wind tunnel tests.
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APPENDIX

Acoustic Analysis for the Flight Configuration

The acoustic analysis presented here is a summary of the contributions

of Lighthill, Ffowcs Williams, and Ribner. The observer (e.g., a microphone)

is at rest in a uniform acoustic medium which is also at rest. The source of

noise is a turbulent flow which can be thought of as being generated by an

engine of a moving aircraft. This source will be modeled by the flow from a

cold subsonic jet.

The analysis of the acoustic field generated by turbulent flows has

been formally developed by Lighthill (refs. 5, 6). In his development, the

continuity equation and the momentum equation are combined to give the

following governing equation:

3x.3x.
1' 3

where a is the speed, of sound in the acoustic medium, T.. = P.. + pu.u.
•J -J J

2
- a p6.. and for a Newtonian fluid,

3u.

The left-hand side of eq. Al represents the propagation of acoustic waves

through a stationary-uniform medium. The right-hand side has the form of

a quadrupole source which is at rest. The quantity T. . is a stress

produced by pressure, viscous shear stresses, and momentum flux.

The solution to eq. Al is given as follows:

p(x_,t) _ PO . - (A2)

4ira i j
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where p is the undisturbed density of the medium, x. is tne position of

the observer, and v_ is the position in the turbulent region (see fig. 9).

The integral is evaluated over the entire region of turbulence.

The solution given by eq. A2 expresses the density disturbance at

point 2L and time t which results from a region of turbulence which is

at rest relative to the observer. If the turbulence is being generated by

the engines of an airplane which is in motion relative to the observer, the

solution must be altered. This situation is considered by Ffowcs Williams

(ref. 6). A new coordinate system is defined which moves with the aircraft

at velocity - a N_. In the new coordinate system, a point in the turbulence

which is moving along with the aircraft is identified by the position vector

n . The relationship between the coordinate systems is y_ = n_ - a Nt when

both specify the same position in the turbulence. Signals which are received

by the observer at time t were emitted at time t — L= — L . At this time,
o

the relationship between the coordinates is y_=.B_-<a:N.t+lJ |x~Y.| as

indicated on fig. 9. In terms of the new coordinate system, T. . becomes

a function of position n_ and the retarded time t — L= - L . The coordinate

transformation has the property of changing the volume element in the turbu-
3 3

lent region with the relationship between d y_ and d n_ given by the

Jacobian of the coordinate transformation as follows:

' ("}-j nd n_ = d y_ D.

The solution for the density disturbance which results from a turbulent

region of fluid moving with the aircraft is

p(x,t) - P = -~~ C|x-vJ +N.(x- d 1 1 ' (A3)

This solution can be given in a different form by carrying out the differentia-

tion of the integrand. If the observer position is restricted to the acoustic

far field of the source, the solution is given by the following:
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a ' r|x-y| + N-(x-y)
D , x t v D (A4)
" —' ' "r. ~~

4ira
O

lx~x| ,- N.(X-Y) -,-3
where t = t - J L . The Doppler factor Ll + ~i ~ i J representsa aQ

 vv > [x-v]

the influence of the movement of the sources of the sound field.

The expression for the acoustic intensity is obtained from eq. A4 to

be the following:

f ( Vk> <»£-'*>
3I6fr a P '' C|2E~z.l "*" lL'(2L~z)^ tlxr^-l ~*~ 5L-(x_-z_) 3~

(A5)

where tR = t - -
1——L and z_ and _g_ have the same relationship as y_ and

TT_. The equation for the acoustic intensity can be put into a more useful

form following the development of Ffowcs Williams. The procedure is identical

to that discussed previously in this report in conjunction with the wind

tunnel configuration. A time difference T = tD - t is defined and the
p o;

random turbulence variables are assumed to be stationary functions of time

in the r[ and Jj_ coordinates. A separation vector A^ is introduced which

is related to r^ and £ as follows: A=.£~H • ^e acoustic intensity is

then expressed in terms of the correlation function given by R. .. (1̂ ,̂ ,1) =

Tij (-' fca)Tk£ (jl+-' ta+T) as follows:

(x.-y.JCx.-ŷ ^̂ Xx̂ -zp g4_

x — = — -= -
r a p J J C|x-y| + N- (x-y)3 Clx-z I +N-(x-z)]J 3T

O O ~~ — — "™~ — "~"

(A6)

As pointed out by Ffowcs Williams, the solution in this form is

not suited for the calculation of the acoustic intensity generated by

turbulence which is convected relative to the aircraft. The effect of eddy

convection is included by defining a new separation vector \_ in terms of a
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coordinate system which moves relative to the aircraft at the velocity of

convection of a turbulent eddy, a M. A new correlation function

P. ., . (JI,X_,T) is defined by expressing A_ in terms of A_ and T with the

simplification that the separation A_ should be small compared to (x-y_).

The result of this calculation is given by Ffowcs Williams to be the follow-

ing equation for the acoustic intensity:

1 f f (-X±~yî x ~̂y^(-\~yk)^xa~y^ 34 33
I = T—5— — ~̂~s —Z" •^>>-iro ̂ H»A»T)^ H.d h.'• CA'7)

16ir a p ^ •* C|x~y_|+N* (jE~i.)X|2E.~il~M' (2L~z)̂  ^T

This equation is simplified further by restricting the observer position to

distances from the turbulence which are large compared to the dimensions of

the turbulent flow field. With this restriction, the acoustic intensity is

given by

x x x. x f f A

I(r) -=-ir LJ_L_£ 3_^ p (n̂ X.T) d3n d3X (A8)
-, ̂ r, J3 N.x M.x -> J J ^^4 1JKJ(' ~

where r = |x]. The acoustic intensity which is calculated from eq. A8 is then

applicable to the acoustic field generated by the turbulent flow from the

engines of an aircraft which is traveling at a velocity -a N through a

uniform stationary medium. The calculated intensity would be measured by an

observer at rest in the uniform medium.

In order to use Ribner's method of modeling the correlation function

P. .j. Ql»A»T) (ref. 8), the turbulence in the flow from the jet is assumed

to be convected with a velocity a M.. only in the x..-direction. Again, this

assumption implies that the curvature of the jet flow resulting from the

crossfloW is small (i.e., the crossflow is weak). The velocity of the air-

craft motion is given by a N in the negative x2-direction. With the

assumption of a weak crossflow, Ribner's model for the correlation function

is applicable to the crossflow jet. The arguments which lead to this model

have been outlined previously. The result is the following equation for the

acoustic intensity which would be emitted by a unit volume of turbulence in

the mixing region of the jet:
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cos49)
— r (A9)? n

ar (1 + Ncos<j))(l -

where <)> is the polar angle between the observer and the x.-axls and 9 is

the polar angle between the observer and the direction of the convection of

the turbulent flow (i.e., the x1~axis). This result provides the acoustic

intensity per unit volume of turbulence in a jet under flight conditions.

It provides the comparison to eq. 34 for the intensity from a jet in the

wind tunnel configuration.
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\ JET CENTERLINE

SECTION A-A

FIGURE 1. Diagram of a circular jet exhausting into a crossflow.
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FIGURE 2. Jet centerline as determined by measurements of maximum
velocity for several values of V./V2.

36



FIGURE 3. Relationship between R, r, and <J> for wave propagation
in a uniformly moving acoustic medium.
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(b)N=0.25

FIGURE 4. Distribution of acoustic density disturbance in the far
field for the lateral quadrupole T..- located at the origin.

(-: p - p >0; p - p <0)
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FIGURE 5. Velocity correlation in isotropic turbulence.

(GxG?2 - Vx - Vx C08*>
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FIGURE 7. Directional distribution of acoustic intensity in the plane of

a crossflow jet in a wind tunnel -

(M. = 0.54;

(l+cos46) - 2 Nsin6 (2+cos46)

(1 -
= 0.65M.)
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FIGURE 8. Directional distribution of acoustic intensity in the plane of

a crossflow jet under flight conditions -
(1 + cos 9)

(M. = 0.54;
(1+N

0.65 M.)
cos9)'
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FIGURE 9. Diagram showing the relationship between the coordinate
systems for y_ and n_ at the time when the signal which
arrives at the observer position x^ was emitted.
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