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1. INTRODUCTION -

-—————uﬂ——~4——-—nDuring~Ehe—past—7"1%2"yeé£s—{Nbvembef—l{4l964~tbﬂApr11—30;~1972-;——{'
we have received a grant from NASA Eo-perfo:m research on the surface
prépetties of thermionic electrodes.‘ The objéctive of our work was to
obtain analyticél and experimental results that may contribute towards
improving the performance of thermionic energy conversion devices. Thé

" results are summarized in this final report. |

Althqugh the value of a research program Eannot be measured solely
in terms of the number of publications or theses, these figures are worth
mentioning. (Lists of buﬁlicétions and theses are given in the:Appendix.)

Publications and Conference Presentations:

Journal Articles.;.....;,........ 15
Conference Presentations........._10
Totai....... 25
Theses
BaCheloTS.:ieeereecoansascansnsans 3
Masters.......;........;.....;.... 3
DOCEOrSeeessososesoscancocrcocanss b
Total 10
It is my personal belief that, aside from the educatiénal benefits of
- our work, the most significant acﬁievementsvwere: (1) the development of
é quasiequilibrium model which provides semiquantitative predictions of
the reaction of oxygen with refractory mefals'ac high temperatureiand low
pressufelns; (2) the extensive experimental data's—.17 obtained on the

" adsorption and work function properties for a wide variety of adsorbates -



(Cs, K, Na, I, Br, Cl, O) on several refractory metals (W, Ta, Mo, and Re).
We are quite éeftain that the §a1ue of the qdasiequilibrium'model and our

experimg&gal data on oxyggg—métal reactions will not be limited to thermionic

energy conversion, but will extend to a wide range of other technolqgical
devices and prd;esses? such as high temperafure nuclear reactors, iﬁcan—
descent and arc lampsls, chéﬁical vapor deposition, and vacuum pressure
measurementss. The potential technblogical'value of our data on alkali
- metal adsorption appears to be far more limited; however, theée.data are
.Of some'vaiué to science, particularly to the récent surge of idﬁerest in
developing a detailed quantum mechanical description of adsorption.

Ve have very much enjoyed our relation with the people at the NASA
Lewis Center, and we are especially gtateful to Roland Breitwieser for

his guidance and his belief in research at‘écademic institutions.



2. EXPERIMENTAL STUDIES

_______;_2Janum&mumyxmmﬂém_Q;__;____M—m__~“W~__ﬁ____fm;__;_m_;—___
Throughout this research progrémlwe have concentrated primarily on

obﬁaining dgﬁailed experimental data on the influence of cesium on the
work functions of various refractory metals that were being considered

for possible use as electrodes (i.e., thermionic emitters and/or collectors)
in thermionic energy converters. Data of this nature are neede& both by
fesearchers attempting to develop a‘theoretical description of ghetmionic
converters and by engineers attempting to build converters having im-
proved performance, Sincé the developmeqt of a theoretical model of
~cesium adsorption would benefit from Lhe availability of comparative data
for other alkali metals, we also pegformed:some experiments with Na.and K.
Single crystéls were used in many of our studies because an objective

was to determine the influence of surface cr?stallographic structure on
the cesium adsorption properties [i.e., on the dipoie moment (work
function change) and on the binding energy (heat of adsorption) of the
cesium-metal system]. These experimental étudigs of alkali metél ad-
sorption are summarized in Section 2.2,

As this research program proceeded, we began to concentrate more on

the adsorption of oxygen and of halogen gases on refractory metals.

These studies were motivated by evidence that the presence of small
amounts of oxygen (and possibly halogens) in thermionic converters result
in substantial increases in powver output.' Addi;i&nal data on ;he:ad-

sorption properties of these electronegative gases were needed to develop



a clearer understanding of the phenomena so that the~highest possible

increases could be achieved. We measured the work function change and

desorption energy of oxygen and of halogens on various refractory metals,
and, very recently, we have used Auger electron spectroscopy to obtain
approximate meésurements of the coverage of oxygen on tunésteﬁ as a
function of oxygen pressure and tungsten temberature. These results

for oxygen and halogeﬁ adsorption are summarized in Séctioﬁ 2.3. The
model we have devéloped for the reaction of oxygen wiﬁh refractory metals

at high temperatures and low pressures is summarized in Section 3.




2.2 Experimental Studies of the Adsorption of Alkali Metals on

‘Refractory Metals

We have used three different experimental techniques in our studies of
the adsorption properties of alkali metals on refractory metals:

1. Cylindrical Thermionic Emission Microscope. This technique,

illustrated in Eig. 1, was employed to measure the thermionic
current emitted in different crystailographi; directions ffomAA
a single~crystal tungsten f;lament which was covered to varying
degrees with adsorbed cesiumg. The advantage of this technique
was thaﬁ it eﬁabled us to observe the influence of crystallo-
graphic structure,rcesium pressure, and filaﬁent temperature

on the thermionic emission from tungsten (Figs, 2-4). The

disadvantage was that quantitatiﬁe interpretation of the data

wag complicated by the fact that the cesium coverag
- measured in this apparatus and we suspect that the coVerage on
a particular crystallographic region of the filament surface was

influenced to some degree'by surface diffusion to (or from)

adjacent regions having different crystallographic orientation.

2. Contact Potential Technique. We utilized the electron beam
. - retarding potential technique to measure the dependence of the

work function of a metal surface on the coverage (concentration)

8, 12-15

of adsorbed alkali metal .atoms . This technique was an

excellent complement to the thermionic emission microscope
because it enabled us to determine the coverage and to work with.

single crystals that were sufficiently large, and at sufficiently



low temperature, to minimize the possible influence of surface

—migraeion~between—regi6n5~o£~di££erent—eryétallographic—structpre.— —_——
' On the other hand, the confact potential technique forced us to
work at temperatures below the range of thermionic c;nverters,
and it did not allow us to determine the dependence of coverage
on alkali metal pressure and eleCtrqde temperature. The
apparatus is shown in Fig. 5, and the principal experimental .
results are presented in Figs. 6-10,
3. Molecular Beam Technique. This technique was uséd to determine

the binding energy of cesium on tungsten single crystalslz’ 16.

The apparatus 1is shown in Fié. 11, and the characteristic de-
sorption times measured for cesium én (110) and (100) .tungsten
crystals are given in Fig. 12. On the basis of these data, fhe
desorptién energy of cesium ions from tungsten is 2.05 eV for the
(100) face and 1.77 eV for the (110) face. These results con-
stitute a uéeful complement to the contact potenfial data, since
the combined results provide a more complete description of the
nature of the cesium—tungsten'bond and its dependence on crystal
structurele. |

In Section 4.1 we comment on our attempts to interpret our experimental

results in terms of various theoretical models.

-



2.3 Expéfiméntal Studies of the Interaction of Oxygen and Halogens

x'twith Refractory Metals

We have used four different experimental techniques in our studies of

the interaction of oxygen and halogens with refractory metalsé

l.

Cylindrical Thermionic Emission Microscope. This technique,

which was described in the preceding section, was utilized to
measure the thermionicAcurrent emitted in different crystallo~
graphic directions from a single~crystal tungsten filament which
was covered to varying degree with adsorbed oxygeﬁlo. The
objective was to determine the dependence of the thermionic
emiséion from tungsten on cr;stallographic structure, oxygen 
pressure, and filament temperature (Figs. 13 and 14). - By
assuming that the Qork function change was directly proportional
to the oxygen coverage, we were able to estimate the effective
desorption energy for oxygen on tungsten (Fig. 15) from
measurements of the rate of change of the emission current when
the oxygen pressure is suddenly decreased.. As 1in the case of
cesium, quantitative interpretation of these data was prevented
by the fact that the oxygen coverage could not.be.measured in
this apparatus and we suspect that the coverage on a particular
crystallographic region of the filament surface was influenced
substantially by surface aiffusion of oxygen to- (or from)adjacent

_ Lo 10
regions having different crystallographic orientations™ ',

Cylindrical Thermionic Diodes. °‘The preceding technique was

simplified by replacing the single-crystal tungsten filament

with polycrystalline filaments of molybdenum, tantalum, rhenium,

- 7'_



"and tungsten, thereby enabling us to obtain data of the influence

of oxygen on the work function of a variety of fefractory

metals11 (Fig. 16). We also obtained estimates of the effective
11

desorption energy for oxygen on these metals; 5.75t‘0.25 eV for

0-Mo; S.StO.lS eV for 0O-Re; 6.05i0.l eV for O-W.

Contact Potential Technique. The apparatus described in Section

2.2 and illustrated in Fig. 5vwas also used ;o measure the work
function change resulting from thé adsorption of oxygen on a
tantalum (110) crystal7 and of iodine, bromine, and chlorine on a
tungsteﬁ (100) crystal%3 (Figs. 17-20). By heatiﬁg the crystal
we were able to observe the stages of desorpfion of the haiogehs

from tungsten13.

Auger electron spectroscopy. We have recently used this technique

to determine the oxyvgen coverage on tungsten as a function of .the
oiygen pressure and the tungsten temperaturel7. As shown in Fig. 21
the Auger peak corresponding to oxygen decreases with.increasing
temperature of the tungsten sample. ' Data for a range of pressures
and temperatures are included in Fig. 22, and, if we assume that
the peak-to-peak height of the oxygen Auger peak is directly pro~
portional to the-oxygen coverage on the tungsten surfécé, then
these data correspond to ads&rption isobars. These results lead
to a simple ﬁodei which grovides a consistert description of the
data in the low coverage rangel7, We believe that this work is
the first demonstration that chemical analysis of solid surfaces

by Auger electron spectroscopy may be performed for samples at



"extremely high temperatures ( 2500°K in the present case).

A summary of our analytical studies of thé reaction of oxygen with

refractory metals is presented in Section 3.




&

2.4 Expérimeﬁ;al Studies of the Adsorption of Cesium-Oxygen Mixtures'

on Refractory Metals

These studies were motivated by evidence that the power output of a
thermionic energy'convértér increases significantly when a small amount

of oxygen 1is added. We performed a number of experimental measurements

. of the influence of mixtures of cesium and éither‘qugen8 or halogens

on the work function of tantaluﬁ‘and tungsten, but the results generally -

~were not reproducible as a result of side effects (e.g.; contamination
. * - . .
of the surface by unidentified impurities displaced from the chamber
walls by cesium or oxygen). Our most reliable data are displayed in

Figs. 23-25, and we observe that oxygen and hélogens do have a very

marked effect on the work function of césium—metal systems.

* At the time of these experiments, we did not have an Auger electron

spectrometer to identify the impurities.

- 10 -.




" 3. ANALYTICAL STUDIES

When gaséqus oxygen reacts.with refractory metals at high temperature,

‘the metal oxide_ﬁalecﬁles_fa;ﬁga_afiEHE—EGEfEEEmevaporate so readily that

a surfaté oxide film doés not form, Theée reactions have been studied -
quife extensively becaﬁsg they are encountered in a Qariety of technologi-
cal problems, iﬁcluding ;hermionic energy conversion, high~temperature | |
power and propulsion systems, and high-speed flight. To obtain a consistent
description of the existing expérimental data, we have developed a quasi—'-

1-3 of the reaction of gases with metals at high tempera-

equilibrium modél
ture where the oxide products are volatile. The principal attribute of
this model is that it provides semiquantitative predictions of the‘:até of
attack (érdsion) of a fefractory metal as a fuﬁction of pressure and-
temperature, . |

| The quasiequilibrium model ié basgd on the assumption that a

fraction (C) of the 02 molecules striking a metal surface will be adsorbed
and undergo chemical réaction, whereas the remainder (1L - Z) will rebound
from the surface without undergoing chemical reaction. furthermore, it is
assumed that the fraction that adsorbs and reacts can-be considered to
attain local thetmodynamic equilibrium wiﬁh the metal, with the consequence
being fhat the rates of evaporétion of the various reaction products

(o, 0

WO, WO WO3, etc.) correspond to the rates at which these species

2‘ 2’
would effuse from the orifice of a Knudsen (equilibrium) cell at the same
temperature as the metal. As shown in detail.in references 1 and 3, these

assumptions enable us to compute these rates if the free energies of forma-

tion are available for each product, and if we determine the adsorption

- 11 -



fraction, I, by a semiempirical scheme which is consistent with the

N .
model . The results agree satisfactorily with existing mass spectrometric

measurements of the rates of evaﬁoration of.products from tungsten (Fig. 26)
and from molybdenuml. In addition, the results pfqvide a reasonably
accurate description of experimental data on the rate of volaﬁilization
(e.g., erosion) of tungsten by oxidation for a wide range of temperature
and pressure3 (Fig. 27); The model has algo‘been‘appiied to the reactiqn"

of fluorine with tungsten19 (Fig. 28) and the reaction of oxygen with

rheniuma.

* To obtain a more quantitative description of T for 02 on tungsten, we
utilized Auger electron spectroscopy to obtain data on the oxygeh

coverage as a function of pressure and temperature (Section 2.3 and ref. 17).

-12 -



4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Alkali Metal Adsorption

Although the adsorption of alkali metals on metal-surfaces’h;s been
studied by many investigators using a variety of techniques, ﬁhe results
do not yet provide a description which is coﬁsistent, detailed, and
reliéble. We believe that very small Aegrees of surf;ce contamination
may be responsible for some diécrepancies between the daﬁa obtained by
differént investigatorsl4. Furthermore, we believe that adsorption data
obtained by field emission techniques do not provide an accurate repre-
sentation of adsorption on large, planar crystalsls. -Our biased conclusion

is that the contact—potential-data obtained in the present program are the

most reliable data now available on the adsofption of alkali metals on

S APLIR NPLE 5.5 0.5 4 P = I 4

tantalum (110) and tungsten (100) crvstals. However, additional data for
ofhér crystal faces are necessary to provide a more.complete picture of
alkali metal adsorption and thereby guide the development of adsorption
theory. - Future studles should incorporate a Qide variety of modern
surface science techniques, such as Auger electron spectroscopy, electron
diffraction, flash desorption mass spectrometry, and modulated molecular -
beam techniques.

We were disappointed in our attempts to compare our experimental data
with the predictions of éxisting theoretical modelsvdf alkali metél ad-
éorption. (For detailed discussions of our comparisons, see references

15, 16, and 20). We found that some theoretical models could not be applied

- 13 -



because they required extensive computation, while other models did not

yield predictions that agreed satisfactorily with our dafa (except possibly

- in the 1limit of loy coverage). Many of the theoretical models involve
"adjustable parameters which prevent us from performing a rigorous.test'of
the model until reliable experimental data are available for ; wider range
of materials. Although it is clear that moré theoretical work is needed,
we bélieve that it is edually important to obtain additional experimental
data on the adsorption properties (work function change, binding energy;
etc.) of various alkali metals on different crystal faces of tungsten,
molybdenum, fhenium, etc. The particular systems should be carefully

~ chosen to provide the experimental data that will be ﬁost useful in
testing the present theoretical models and guiding future developments.
In reference 16 we point out that a more stringent test of theéretical

models ig obtained by measurin

g different properties of the sdsorption
bond, such as the dipole moment (work function change) and the binding

energy (desorption energy).

4.2 Oxygen Adsorption

We believe that the quasi-equilibrium mo&el represents a significant
step forward in clarifying our understanding of the interaction of oxygen
(and halogens) with refractory metals. This model could berimbroved by
performing investigations that woqld lead to a more quantitative under-
standing of Z, the adsorption (or‘equilib;ation) probability. Experiments
utilizing molecular beam téchniques and Auger electron spectroscopy would

provide the data needed to guilde the forﬁulation of a model of the adsorption

- 14 -



- step. -

The quasi-equilibrium model does not provide information on the

dependence bf the work fﬁnction of a surfaée on oxygen coverage. This
important'problem is, most likely! an extremely difficult theqretical

task, and it may be best to concentrate first on obtaining ex;erimental
data. As indicated by tﬁe results of our reéent study described in
Section 2.3, Auger electron spectroscoby is an extremély useful technique A
for determining the cdverage of oxygen on é particular metal as a |
function of oxygen pressure and metal temperature. By measuriﬁg the
thermionic emission current from the same surface as a funétion of
pressure and temperature, we would be able to determihe the dependence of

work function on coverage.

4,3 Adsorption of Cesium~Oxygen Mixtures

The predictién or interpretation of the'performénce (e.g., current—;
voltage characferistics) of a thermionic energy converter containing
cesium + oxfgen requifes knowledge of fhe dependence of tﬁe emitter‘work
function on the cesium and oxygen pressures and on the emitter temberature.
This knowledge is incomplete at present because of the scarcity of experi-
mental data,.and our limited data for Cs + O on Ta(11l0) do no more than
illustrate.the cogplexity of the problem. Although our.data for the
separate adsorption of cesium and of oxygén are necessary auxiliary in-
formation, they do not satisfy th; nged for data on co—adsorptioﬁ of the
species. We suspect that this complex adéorption case will be understood

only if considerable effort is devoted te it using a variety of experimental

-15 -



- techniques. . Since the cost of such an effort may be too high to be

justified, we suspect that it may be necessary to settle for less

detailed information based on careful experiments performed in thermionic

diodeé.
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Fig. 4. Comparison of experimental results of the

present study with theoretical predictions of ¢p vs. T/Tcg.
Circles and triangles represent data for (110) and (112)
directions, respectively. (---) Rasor-Warner theory for
o = 4.62 eV; (——) Rasor-Warner theory for ¢ = 5.05 eV;
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Stickney?9]
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Fig. 13. Dependence of the effective work function, ¢, on oxygen pressure and
filament temperature, T, for the (100), (111), (112) and (110) crystallographic

directions of tungsten. [From Engelmaier and Sticknequ]
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Fig. 16. Dependence of the effective work functions
of polycrystalline W, Re, and Mo on T/TR%, where T
and Trx are defined in Fig. 14, [From Greaves and
Stickneyll,] '
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Fig. 21. Auger spectra for a polycrystalline tungsten surface exposed to 0p
at pg, = 1 x 10° Torr. Notice that the amplitude of the Auger pezk corres-
ponding to oxygen decrcases as. the temperature of the tungsten sample is
raised from 300°K to 2400°K. Also notice that the signal-to-noise ratio is
very good even when the sample is at 2400°K. [From Dabiri, Aramatil, and
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Fig, 23. Experimental results for the adsorption of Cs

- on oxygenated (110) Ta. Before adsorbing Cs on the
surface, the initial work function, ¢j, was varied by
adsorbing different amounts of oxygen. The experimental
results for Cs adsorption on clean (110) Ta (¢i = 4.73 eV)
have been included for purposes of comparison. {From
Fehrs and Stickney7 ]
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of Cs was applied to the surface prior to Is adsorptlon.
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Fig. 27. Comparison of the predictions of the quasiequilibrium model
with experimental data on the rate of oxidation of tungsten. The '
volatilization rate, Iy, is defined as the number of tungsten atoms
removed from the surface per cm? per sec by oxidation and by sublimation.
[From Batty and Sticknmey3.] :
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