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EFFECT OF VERTICAL ACTIVE VIBRATION ISOLATION

ON

TRACKING PERFORMANCE AND ON RIDE QUALITIES

By Frank P. DiMasi, Rush E. Allen, and Peter C. Calcaterra
BARRY, Division of Barry Wright Corporation

Watertown, Mass.

SUMMARY

This report presents the design of a two-axis tracking task and the
results of a human factors test program to evaluate the effect vertical vibration
isolation has on performance of the task.

Various body isolation configurations consisting of combinations of
torso, hand and foot isolation were tested. An active system was used to
isolate a subject seated on a standard DC-8 seat from vertical random vibra-
tions typical of those experienced at the cockpit of commercial transports
during turbulent flight. A column and wheel (un-isolated from the vibratory
motions) and side-arm controller (attached to the isolated seat) were used by
the subject for control inputs to a two-axis (pitch and roll) tracking task using
a cathode ray tube (CRT) to simulate an aircraft flight director.

Tracking error measurements in roll and pitch were made for fixed base,
vibration, isolated seat and simulated total (seat and display) isolation
configurations. Combinations of column and wheel, side-arm controller, fixed
rudder pedals (un-isolated from the vibratory motions) and footrest (attached
to the isolated seat) were used during the tests.

Results from error measurements showed that only minimal changes in
control capability occurred from the addition of active seat isolation for the
two-minute test period. Subjective response indicated that the seat isolation
system provided a dramatic improvement in comfort over that afforded by the
standard seat. However, large relative deflections between the subject and
displays which occurred for low frequency vibration inputs made it difficult for
the subject to analyze and interpret the error in terms of displacement, rate and
acceleration. It is postulated that long-time duration testing will show an
improvement in tracking ability relative to that of the standard seat as a result
of an anticipated decrease in fatigue. Consequently, it is recommended that
such a long-time duration test program be conducted to validate this assumption.

Results also showed that the best combination of improved ride comfort
and tracking performance can be expected from a system which has the capability
of isolating the displays, seat, and controls. It is recommended that a feasibil-
ity study be made to determine if such a "total isolation system" is practical
to build.



LIST OF SYMBOLS

wheel displacement in roll (degrees)

displayed error in roll (degrees)

K^p subject displacement feedback gain for single
integral dynamics (degrees/degree)

Vor, subject feedback voltage (volts)
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VTD roll input voltage (volts)IK

VD_ roll error voltage (volts)
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r K
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SECTION 1: INTRODUCTION

Under a previous development contract, NAS1-8060, an Active Vibration

Isolation System (AVIS) prototype was developed to provide maximum protection

to pilots from dynamic environments equivalent to that experienced at the

cockpit of commercial jet transports during turbulent air penetration. Part of

the investigation dealt with an evaluation of the nature of the response of jet

transports to severe turbulence. A review of the technical literature on the

tolerance and performance characteristics of seated human subjects exposed

to whole body sinusoidal and random vibration was also conducted [Ref. l] .

Based on results of that evaluation, it was concluded that vibration

isolation was not required in the fore/aft and transverse directions, but better

than 70 percent vertical isolation was required between 4 and 5 Hz (fuselage

first flexible bending mode resonant frequency) and greater than 85 percent

isolation for excitation frequencies between 20 and 50 Hz. In addition, it

was undesirable to provide vibration isolation at excitation frequencies less

than 1.3 Hz (fundamental wing bending frequency for commercial jet transports)

since this would remove the pilot's "seat-of-the-pants" buffeting stall alarm.

Thus, based on reducing the levels of acceleration to tolerable levels, it was

necessary to" devise a combination notch plus broad-band type isolation system

which would provide a nominally 2 Hz resonant frequency and the desired isola-

tion characteristics at nominally 4.5 Hz and above 20 Hz. Details of the AVIS

design are given in Reference 1.

Results of laboratory tests conducted during the same investigation

indicated that:

1. The active vibration isolation system reliably met all design goals

including: degree of vibration isolation; control of relative deflec-

tion between the pilot and cockpit to ± 1 inch during turbulence

penetration, with peak relative deflection of ± 1.5 inches only

allowable during severe transients such as buffeting; active

repositioning of the seat to its equilibrium position and vibration

isolation during sustained acceleration conditions of ± 3 g; and

performance independent of variations in pilot weight.



2. The vertical resonant frequency of a conventional jet transport

seat cushion is nominally 4 Hz, thus augmenting the primary

excitation of the aircraft at a frequency coincidental with human

body resonances.

3. Preliminary subjective evaluation tests, demonstrated that the

electrohydraulic pilot seat isolation system offers the potential

for providing a substantial improvement in subject performance

during severe dynamic environments.

It was surmised that this apparent improvement in performance was due

primarily to the reduction in dynamic excitation imposed on the subject's torso

at 4.5 Hz .attained with the active isolation system. However, results also

indicated that the vibration which is transmitted directly to the isolated

subject's legs via the rudder pedals and that induced in the arms through the

controls (where both pedals and controls are coupled directly to the source of

vibration), may play a significant role in the overall degradation of subject

performance.

Based on these results, an investigation was initiated to: (a) design

a task performance experiment incorporating the active vibration isolation

system; and (b) conduct cursory tests to evaluate the effect single axis

(vertical) vibrations have on a seated subject's ability to perform a two-axis

(pitch and roll) compensatory task under various isolation control configurations,

This report, therefore, deals with the design of a two-axis compensatory track-

ing task and with the results of the evaluation tests.

Realization of the many elements which influence human performance

dictated a simplification in the number of variables to be considered in the

design of the two-axis tracking task. The primary goal was to approximate as

much as possible: (1) the physical layout, constraints and mechanisms found
i

in the cabins of typical jet transports; and (2) the human factors relationships
involved in a piloting task. However, limitations in the scope of the investiga-

tion negated a "total" simulation of the complex dynamics associated with

pilot-aircraft interactions during actual flight through turbulence.



A single vertical random vibration input was selected as representative

of that experienced at the cockpit of a commercial jet transport flying through

moderate turbulence. An electrohydraulic shaker was employed to generate the
selected random input. A two-axis (pitch and roll) compensatory task was
designed utilizing a cathode ray tube (CRT) to represent an aircraft gyro

horizon attitude display. Pitch and roll forcing functions were selected to be
representative of the changes in pitch and roll attitude of a commercial trans-

port flying through moderate turbulence. The experimental task requires the
test subject to "fly the aircraft level" by introducing control inputs through

either a column and wheel or a two-axis side-arm controller to offset the forcing

functions and attempt to keep the horizon display at a level attitude. Simpli-
fied but representative dynamics are introduced between both the column and
wheel and the side-arm controller and the displays to approximate aircraft

dynamics [Ref. 2], Therefore, the control task is closed loop with respect to

the tracking task but open loop with respect to the vibration input. That is,
the subject's control inputs do not affect the dynamic input and are not required
to maintain a stable system.

The variables in the system are: type of control (column and wheel or
side-arm controller) and isolation configuration. The vibration isolation con-

figurations included:

(a) no isolation (AVIS off; control using either column and wheel or

side-arm controller);

(b) torso isolation only (AVIS on; and control using column and wheel);

(c) torso and feet isolated (AVIS on; control using column and wheel;
and isolated footrest);

(d) torso and hands isolated (AVIS on; control using side-arm controller)";

and

(e) torso, hands and feet isolated(AVIS on; control using side-arm
controller and isolated footrest).

In all these conditions, the display was not isolated. A limited number of tests
were also conducted under conditions simulating vibration isolation of both the
seated subject and the displays.



The effect of each isolation configuration on performance was evaluated
in terms of total mean squared error in pitch and roll measured over a two-
minute test period. The error signal was generated by comparing the compen-
sated control input signals to the forcing function signals in both pitch and
roll. In addition special questionnaires were designed to measure the relative
subjective effect each of the various isolation and control configurations have
on vision, body motions and ability to track. The length and sequence of test
and rest periods were designed to avoid fatigue and allow time for learning
effects to be eliminated. A total of 211 two-minute runs were made with one
subject, Mr. Robert A. Champine, NASA/LRC test pilot.

Section 2 of this report shows the mechanical and electrical design of
the two-axis tracking task. Details of the experimental procedure are
discussed in Section 3. Section 4 presents the results of the human factors
test program. Conclusions and recommendations are given in Section 5.



SECTION 2: SYSTEM DESCRIPTION

This section describes the design of the two-axis compensatory task
developed during the investigation reported on herein, and its use in conjunc-
tion with the Active Vibration Isolation System (AVIS) previously developed
under NAS1-8060.

The goal of the investigation was to design an experiment for evaluating
the effect vertical vibrations have on the performance of a two-axis task by a
seated subject under various vibration isolation and control configurations.
In establishing specifications for the design of the two-axis task, considera-
tion was given to approximating, whenever possible, conditions associated
with a typical piloting task aboard a jet transport cockpit, while maintaining
simplicity of design. In addition, man-rating and safety requirements
compatible with human factors testing played a primary role in the design of
the experiment and test facility.

General Description

Figure 1 identifies the various components of the AVIS and the two-axis
task, their location in the area where human factors tests were conducted,
and the ancillary, equipment used for input and data acquisition. Figure 2
shows a schematic representation of the isolated seat, the controls and
displays. Overall views of the test area and controls are shown in Figure 3.

Active Vibration Isolation System (AVIS)

The AVIS is a DC-8 Pilot Seat with modifications to include a hydraulic
actuator and servo control to actively reduce the transmitted acceleration from
the seat attachment point to the test subject. Figure 4 shows the signal flow
diagram for the active vibration isolation system. By means of a multi-loop
automatic feedback control system the AVIS can simultaneously provide:
(a) broad-band vertical vibration isolation; and (b) a high isolation efficiency
notch centered about a frequency corresponding to the first fuselage flexible
bending mode of commercial jet transport aircraft. The gains associated with
the various feedback loops are controlled from the seat servoamplifier console.



The AVIS control system has two modes of operation: the flight or "on"

mode; and the landing/takeoff or "off" mode. In the on mode, the control

system can provide broad-band and notch isolation characteristics. In the

off mode, the control system is employed in a tight relative position feedback

loop such that isolation is only provided by the seat cushion. This latter

case is representative of the passive type of vibration protection presently

afforded with the existing seats. In addition to the power and mode controls,

all the system feedback gains and compensation network time constants are

controllable by potentiometers mounted on the front panel of the console.

Both the notch frequency and the broad-band isolation characteristics of the

AVIS can be varied compatible with system stability requirements.

As part of the modifications to the AVIS prior to its use with the two-

axis task, special failsafe circuits were designed to shutdown the electro-

hydraulic shaker whenever the acceleration levels transmitted to the test

subject exceeded preset values. The level of acceleration at which the

failsafe circuits were activated are discussed in Section 3.

Two-Axis Compensatory Task Simulator

The two-axis task equipment includes: the simulated cabin floor

with either footrests or rudder pedals; the horizon display console; the

column and wheel and side-arm controller assemblies; an electronic task

director console; a horizon display computer; a dynamic shaker; hydraulic

supply; input tape recorder; and output recording devices.

Pitch and roll control inputs to the two-axis tracking task are made by

the test subject by means of a simulated jet transport column and wheel. A

two-axis antenna control stick was modified to simulate a side-arm controller

and positioned forward of the right arm rest of the DC-8 seat, as an alternate

means of control. With the AVIS on,the side-arm controller provides a means

of decoupling hand control motions from the vibration input motions. These

motions are coupled when the column and wheel is used, since the column and

wheel is mounted directly to the cabin floor. When the rudder pedals are

used, vibrations from the cabin superstructure can reach the subject directly

via the legs (Figure 5). The footrest assembly attaches directly to the seat
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frame (Figure 5). Therefore, with the AVIS on, the subject's feet as well as
torso are isolated, hence use of either the column and wheel or side-arm
controller, and rudder pedals or footrest allows the following variations in
body isolation configurations:

1. Non-isolated hand motion inputs to the column and wheel.

2. Isolated hand motion inputs to the side-arm controller.

3. Non-isolated foot motion inputs when using rudder pedals.

4. Isolated foot motion inputs when using the footrest assembly.

In all the above configurations the subject's torso is isolated from the vibra-
tory input by the AVIS, while the displays are subjected to the full level of
vibration transmitted from the shaker.

Two other configurations are possible. One involves the AVIS off and
is equivalent to the vibration isolation provided by existing passive seats.
The second one involves the AVIS in the off mode and modifying the
shaker output in such a manner so that both the seat and displays are
subjected to motions equivalent to that provided by the AVIS in the on mode.

Location and Characteristics of Manual Controls

Figure 6 shows the approximate dimensional relationship between the
seat, column and wheel, and displays. The column and wheel provides means
for varying the following parameters in both pitch and roll: (a) force-
deflection gradient; (b) friction damping over the travel of the column and
wheel; and (c) viscous damping over the travel of the column and wheel.
Figures 7 and 8 show the attainable force gradients of the column and wheel
in pitch and roll, respectively.

Task Display, Error Generation, and Test Control

Both column and wheel and side-arm controller are equipped with
electrical transducers which generate a signal proportional to angular
deflection in pitch and roll. The electrical signals are fed to the Task
Director Console shown in Figure 9 as pitch and roll commands. At the Task



Director Console the command signals are compensated according to pre-

selected conditions. The separate compensations for each channel consist

of integral ( /s), or double integral ( /s2) and gain control. The compensa-

tion of the command signal provides a means to approximate the effects of

aircraft control dynamics -. The compensated command signals in pitch and

roll are then compared to the random pitch and roll forcing function signals

to produce an error signal. The error signal is displayed on the CRT at the

Display Console, Figure 10, as a horizon line which the test subject must

null out, thus closing the loop on the control task. The horizontal line

translates or rotates in proportion to: (a) the compensated pitch and roll

deflection signals from either the side-arm controller or column and wheel

controller; and (b) a random signal (forcing function) input which is used to

simulate the aircraft's pitch and roll orientation. The sum of these two

signals (i.e. , the pilot's compensated input via controls and the random

disturbance input) are displayed on the CRT. Because the test subject's

objective is to bring the "horizon" back to its null position, the task is

defined to be compensatory. A function block diagram of the compensatory

task is shown and discussed in Section 3.

The error signal is therefore manipulated to achieve a measure which

is of statistical significance in determining performance. First the error

signal is squared. This instantaneous squared signal is then integrated.

The integrated squared error signal can be divided manually by the integration

time to determine a mean squared error level. This mean squared error level

represents the level of error the pilot was operating at for a given test.

Comparison of the mean squared error levels for different test configurations

gives a quantitative means by which to evaluate the performance effect on

pilots.

The Task Director Console is equipped with readout jacks for all

important data signals. These readout jacks are intended to interface the

signal and recording devices. There are input jacks for the input pitch and

roll disturbance signals and the shaker acceleration commmand signal.

Figure 11 shows the Task Director Console, AVIS control console and

shaker controls. As previously indicated,provisions for failsafe operation are

10



incorporated in the AVIS and the task electronics. The AVIS has two accel-
erometers which sense input and output acceleration at the seat. If either
accelerometer exceeds a predetermined level the seat and/or shaker servo-
valve(s) will be nulled, and the actuator(s) will gradually lower to their
bottomed positions thus removing the dynamic input. The column and wheel,
the side-arm controller and the display console all have switches which can
be used to activate the failsafe circuits by the test subject. Switches were
provided on the Task Director Console and shaker console for use as
emergency shutdown provisions by the test operator.

Figure 12 shows the recording equipment used for data acquisition. A
six-channel strip chart recorder was used to record error, error squared and
integrated error squared in both pitch and roll. Another tape recorder was used
to drive the shaker and generate the pitch and roll forcing function signals on
the CRT. All output error signals and the vertical vibration input were
recorded on the second tape recorder.

11



SECTION 3: SELECTION OF PARAMETERS AND EXPERIMENTAL PROCEDURE

This section deals with the selection of vertical vibratory inputs used
during the human factors test program; the characteristics of the vibratory

motions transmitted to the subject and displays for the various isolation con-

figurations; the calibration of the task and associated error measurement; and
the questionnaire developed to evaluate subjective responses.

Vertical Vibratory Input Motions

The purpose of the investigations reported on herein is to evaluate the

effect various vibration isolation and control configurations have on task

performance. Selection of the random vertical vibration inputs was based on

measurements of the vertical accelerations experienced in the pilot cabin of
commercial jet transports during flight through turbulence. The overall spec-

trum of motion transmitted to the pilot is a function of the dynamic response

of the aircraft to: (1) atmospheric turbulence; (2) buffeting resulting from
unsteady aerodynamics flow conditions; and (3) its internal mechanical
components (i .e. , engines, compressors, etc.).

Figure 13 illustrates the power spectral densities of the normal (i.e. ,
vertical) vibrations measured at the pilot's cabin of representative jet trans-
ports during turbulent flight, for various degrees of turbulence [Ref. 1 and 3].

The composite spectrum of aircraft excitation during turbulent air penetration

is primarily a function of the response of its rigid body and flexible bending
modes. The excitation of the latter modes can result in large vertical accel-
eration in the frequency range from 2 to 6 Hz, a range in which the human

body is most sensitive to mechanical vibration. The peak at 20 Hz is

representative of steady state excitations measured at the pilot's cabin due to
internal mechanical components [Ref. 1].

The spectrum of vertical vibration for the tests was selected based on

the limitations of the dynamic shaker (stroke, velocity, and force) shown in
Figure 14, and on the overall frequency characteristics of typical aircraft
response shown in Figure 13. As indicated in Figure 13 the test input levels

fall between those levels associated with aircraft's responses to moderate

and light turbulence.

12



Pitch and Roll Angle Input Signals

Figure 15 shows the spectrum of pitch and roll forcing function signals

used as inputs to the horizon display. The frequency description of both

signals are based on: (a) the measured changes in pitch and roll attitude of

an NC-135 tanker due to flight through moderate turbulence [Ref. 4]; and

(b) capabilities of the analog computer used to reproduce the spectra. Various

gains were used in conjunction with final shaping of the signal levels com-

patible with the horizontal and vertical scales of the display area of the CRT.

Accelerations Transmitted to Subject During Testing

In order to meet the requirements of the human factors test program

reported on herein it was necessary: first, to insure that the vibration levels

reaching the subject are not expected to cause distress, pain, impairment of

health or injury; and secondly, that the frequency characteristics of the motion

reaching the subject be known in order to compare results to those from other

experimental investigations.

The AVIS can be operated in two modes. In the off mode the vertical

vibratory input motions from the shaker are modified by the dynamic character-

istics of the DC-8 seat cushions. Figure 16 indicates the vertical transmis-

sibility between the input and buttocks of a seated subject with the AVIS in

the off mode. As shown, the vertical resonant frequency of the seat cushion

occurs at approximately 5 Hz thus augmenting the primary excitation of the

aircraft at a frequency coincidental with human body resonances.

In the on mode, the AVIS can simultaneously provide: (a) broad-band

vertical vibration isolation, and (b) a high isolation frequency notch about a

critical frequency. Figure 17 shows the vertical transmissibility between

input and output of the AVIS in the on mode. The gains associated with the

two active isolation configurations used in testing are shown in Table I.

Active isolation configuration 2 results in a higher value of resonant frequency

and lower transmissibility at resonance than active isolation configuration 1,

while providing a lower degree of isolation above 5 Hz. The significance of

the effect this difference in resonance transmissibility has on performance is

discussed in the next section.

13



The overall transmissibility between the buttocks of a seated subject

with the AVIS on is shown in Figure 18. Comparison to Figure 17 indicates

that the seat cushion does not effect the transmissibility at low frequencies.

The only change occurs in the range above 5 Hz.

Figure 19 summarizes the spectrums of acceleration transmitted to the

DC-8 seat and to the displays for all body isolation configurations tested

during the investigation. Configuration V represents the case where the AVIS

is in the off mode; both the seat and displays are subjected to the same level

of vibration and the pilot's torso is isolated by the seat cushion only. Con-

figurations Ii and fc represent the two actively isolated configurations.

In these cases the seat is subjected to the spectrum indicated by curves Ii

or Is while the display experiences the vibration spectrum indicated by

curve V. Configurations Isi and IS2 are similar to configuration V in that

both the seat and displays are subjected to the same vibration levels. How-

ever, an analog computer was used to filter the taped vibration input signal

such that the output spectrum of the shaker would approximate the frequency

characteristics of the "AVIS on" output configuration (i.e. , Ii or ^ mode).

Configurations Isi and I& represent "simulated total isolation" since they

approximate the case where the display, controls and seat would be isolated

by an active system having the characteristics of the "AVIS on" mode.

As a means of insuring that the maximum level of acceleration transmit-

ted to the test subject were within safe exposure levels, acceleration limiting

circuits were designed capable of sensing over-acceleration and manual

failure conditions. Figure 20 shows the envelope of maximum possible accel-

eration levels based on the maximum shaker capabilities and the automatic

acceleration failure circuits set at 1.5g. As can be seen the levels trans-

mitted to the test subject during either the no isolation or isolation tests are

below those associated with the one-minute tolerance levels given in

Reference 5. In the event that malfunction occurs, the automatic failsafe

circuits limit the maximum transmitted accelerations to levels below the

envelopes shown.

14



Task and Error Calibration

Figure 21 shows the function block diagram of the compensatory two-

axis task developed during the investigation. The pitch and roll axis param-

eters and associated dimensions are identified in Table II. The pilot input

gains are fixed. For each test configuration the dynamic gains, input gains,

and error integrator gains were determined empirically and are dependent on

the selected type of pitch or roll dynamics (1/s or 1/s2).. Table III shows a

summary of parameters for converting input angular deflections and input-

output voltages to horizon display angular deflections.

The experimental procedure incorporates means to insure that the

average level of the error squared voltage neither saturates the integrators

under the worst conditions nor is too small under the best conditions. The

calibration of the error monitoring integrators is dependent on the difficulty of

the performance task. The error monitoring circuits use the error signal which

is sent to the horizon display and error recording devices. The average voltage

level of this signal may be quite low if the test subject is performing well.

Yet when he is performing poorly the voltage level will be ten to fifty times

greater. After squaring, the voltage change will be one hundred to twenty

five hundred between good and poor performance. In the extreme case if one

is to incorporate the whole range, the average level of the error squared

voltage will be only four millivolts with a ten-volt voltage limit. Proper

selection of gains insured error signals of appropriate levels.

The electronics used for integration are subject to bias offset changes

due to temperature instability of nearly one millivolt. This could possibly

mean a twenty-five percent error in the integrated error squared signal. The

integrator bias or residual drift rate was reduced to insignificant levels by

proper scaling and periodic null test procedures.

The integrated squared error was recorded on a strip chart recorder

during each test. In all cases the test duration was two minutes. Therefore,

the integrated squared error at the end of two minutes represented a figure of

merit used to evaluate the relative performance of the subject between

different isolation and control configurations.

15



Significance of Pitch and Roll Dynamics on Work Load

As indicated in Figure 21 two types of pitch and roll dynamics were

available; namely, simple integral (1/s) and double integral (1/s2). The

following analysis of the roll signal loop can serve to evaluate the effect of

both types of dynamics on subject work load.

For the case of simple integral dynamics, the subject chooses to move

the controls in the appropriate direction to reduce the displayed angular error

at a rate proportional to displacement of the controller from null. Assume 'that

the effect of introducing the subject in the roll signal loop can be represented

as follows:

ROLL FORCING

FUNCTION

VIR
+

VRE

VSF

ROLL DISPLAY
KRHD

ROLL DYNAMICS

KVVR KPR /TPR S

'RHD
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The maximum roll angle that the subject can generate at the wheel ((/XA7.D)
W K IT19X

is 90°, while the maximum roll angle error displayed on the CRT for a typical

control situation ((P^TT^) is approximately 20°. Assuming the subject canmax
maintain a linear displacement gain over the maximum travel of the wheel, the

subject displacement feedback gain Kcp is given by
or

K = max
SF

o = 4.5 deg/deg (1)

VSF
The no-input open loop gain -r, — is given by

VRE

KPR
VR£ RHD SF TpR

Substituting Equation (1) and the values of gains given in Table II in

Equation (2) with T,^ = 4 yields
r K

deg/deg
VR£

Equation (3) describes a stable configuration with a bandpass frequency of

approximately 1 Hz. Preliminary test results indicated that the relatively high

value of bandpass frequency using the simple integral dynamics resulted in an

insufficient work load for the subject.

During preliminary tests with double integral dynamics, it was found

that the test subject chose to minimize the angular rate of deflection of the

displayed signals as the primary goal. After minimizing the angular rate he

would attempt to reduce the angular deflections of the horizon line. The

closed loop double integral dynamics can be represented as follows:

17



ROLL FORCING
FUNCTION

VIR
+

VRE

VSF

ROLL DISPLAY
KRHD

ROLL DYNAMICS

RHD

Since the subject attempts to first minimize the angular rate of deflection, the
subject displacement feedback gain for this case, identified as K,,™, will

or D

be less than the gain KgF given in Equation (1) for the simple integral
dynamics. For the purposes of the double integral analysis assume an order
of magnitude reduction in conscious displacement feedback gain; namely

KSFD KSF

= 0.45 deg/deg (4)

Assume that the subject can apply a linear rate gain such that a maximum roll
control is applied for a maximum displayed roll signal rate. Let the maximum
angular displayed rate be „max differentiated at the mean frequency of
the roll input signal fR. From Figure 15, fR

subject rate feedback gain Kcr,D is given by
or K

0.3 Hz. Therefore, the
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„ max
K

^SFR feW max

= 90°
20° (277 x 0.3)

= 2.4 deg-sec/deg (5)

The no-input open loop gain T-.— for the double integral dynamics is then
REgiven by

VSF , . KWR KPR
VDr, ^RHD^SFD S SFR; T™ 1F~

KIJ i K

Substituting previously used values of gains and Equations (4) and (5) in
Equation (6)

vqp l 9
-TT*- = - îr- (0.45 + 2.4s)
VRE s

0.74 3
 { 2.88

s s

277(0.119) 2 277(0.46) (7)
s s

Equation (7) again describes a stable configuration since at the unity gain
cross-over frequency near 0 .46 Hz, the rate term (—) dominates the deflectior.

1 2 S

term (—) .

If the subject applies only displacement feedback (i.e. , does not

attempt to minimize the angular rate of deflection of the displayed signals),

the task with double integral dynamics will be unstable. In such a case,

from Equation (3)
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V SF = 1.2
VRE

3 (0.45)

_ 5.4 _ C(2ff)(0.37)1
~ s2 I s J

This condition is unstable, with a unity cross-over frequency near 0.37 Hz

and a slope of minus two (phase of 180 degrees). The instability arising

from improper rate control was noticed when novice subjects attempted to

perform the task with double integral dynamics. Within a short time, however,

most subjects realized the necessity for rate control.

With double integral dynamics the subject must perform the two

mental functions of deflection and rate feedback, and meet the physical

requirements to accomplish proper rate feedback. The result is a near ten-

fold increase in the subject's work load. In order to detect differences in

performance between various test configurations it is desirable that the

subject's work load be as high as possible. Therefore, all tests were

conducted with double integral dynamics.

Subjective Evaluation

The integrated squared error provided the means to compare quantita-

tively the effect each isolation configuration and type of control had on the

performance of the two-axis task. In addition, it was desired to categorize

the subject's own evaluation of the errors and comparison between the various

configurations. Figure 22 shows the questionnaire which was developed to

qualitatively measure the subject's evaluation of the error and configurations.

The test subject was asked to complete one questionnaire after each test.

The pitch and roll error ratings refer to displacements (or rotation) of

the horizon line within the ranges shown in the display panel (Figure 10). The

remaining questions compared the effects of the particular test to a fixed base

condition, and how vision and ̂ advertent control motions were affected by the

isolation or control configuration. It should be emphasized that the question-

naire was not intended as a means of relating the subjective evaluation to any

.20



scaled task difficulty rating such as the Cooper Pilot Opinion Rating System

for Universal Use. Rather, answers to the questionnaire served as a rough

indicator of subjective responses to be compared to the measured values of

the average integrated squared error.
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SECTION 4: RESULTS OF HUMAN FACTORS TEST PROGRAM

This section describes the sequence and number of tests that were
conducted during the investigation and the manner in which average values of
error were calculated for each test. The effect various isolation and control
configurations have on performance of a two-axis task is evaluated based on a
comparison of roll, pitch and total tracking errors for the fixed base, vibration
and isolation cases. A summary of subjective responses is presented in terms
of the test subject's answers to questions regarding relative comfort and effects
on vision and control motion interference between the various configurations.

Sequence of Tests

The final sequence, number and type of tests conducted during the
investigation were evolved based on: (a) the number of body isolation configu-
rations to be evaluated; and (b) providing a large enough number of tests to
eliminate effects of sequencing due to fatigue and learning. Initially the
following parameters were considered:

Manual Control: The subject's control inputs to the tracking task in
pitch and roll could be introduced by one of two means: colum and wheel or
side-arm controller.

Foot Support: Two methods of foot support were used: fixed rudder
pedals and footrest.

Vibration Configuration: The original plan included only three
configurations; namely:

Fixed Base (F): this configuration served as the control case
(i.e., the basis of comparison) without vertical
vibratory motion inputs.

Vibration (V): in this configuration the active vibration isolation
system was in the off mode. The vertical motion
of the shaker is described by curve V of Figure 19.
The only vibration isolation afforded the subject
was that provided by the seat cushions.
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Isolation (Ix): In this configuration the active vibration isolation
system was activated. The same vertical motion
of the shaker as in (V) above was used. The
vertical motion transmitted to the seat is described
by curve Ii of Figure 19.

Test configurations consisting of one of the types of manual control(column and
wheel or side-arm controller) and foot support (rudder pedals or footrest) were
set up with the various vibration inputs listed above. Error measurements from
these tests allowed a comparison of the effect various combinations of body
isolation had on tracking ability.

The scope of the investigation warranted only a limited number of
tests with one subject. Therefore, the number and order in which tests were
conducted, shown in Table IV, were selected to allow comparison between the
various parameters with the minimum number of tests. A run contains an equal
number of each body isolation configuration with each of the vibration inputs
described above. .A battery consists of a particular body isolation configuration
with each of the vibration inputs described above.

Run 1 was divided into twelve batteries of six tests each. Within
each battery the first and last tests were null tests (N) to check the drift in the
integrators and allow for null calibration, if necessary. The second and fifth
tests in each battery were identical. Error measurements from these two tests
were averaged and considered as one data point. This was done in an effort
to reduce the effects of learning and fatigue when comparing tests with and
without isolation but with identical control and foot support configurations.
In order to keep the total number of tests for each isolation and vibration
configuration equal, there were three batteries in each run for a particular
isolation configuration.

The duration of each test was two minutes and all tests in a battery
were conducted without interruption. Required hardware changes provided
normal rest periods between batteries. In order to insure that the time
description of the vibratory input motion was identical in all tests, the same
two-minute segment of random signal having the spectrum described by curve V
in Figure 19 was used.
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As will be shown later, error measurements indicated that at the end

of Run 1, the subject had not reached a leveling on his learning curve.

Therefore, an identical series of tests, identified as Run 2 on Table IV, was

conducted. Based on error measurements from tests in Run 2 and on comments

by the subject regarding the adverse effect of low frequency motions which

caused large relative deflections between the subject and the display during

the isolation tests, two additional vibration configurations were included:

Isolation ( fc) : This configuration is identical to Ij. , except that the

vertical motion transmitted to the seat is described by

curve IB of Figure 18. For this configuration the

relative motion problem is reduced.

Simulated Total Isolation (Isi): In configuration Ii and Is there is

relative motion between the subject and display since

the seat is isolated from the vibratory input but the

display is not. In configuration Isl , the vertical

motion transmitted to both the seat and display is

described by curve I$i of Figure 19.

Simulated Total Isolation (Iss): Similar to Isi except that the motion

is described by curve IS2 of Figure 19.

The sequence of tests for configuration Is is shown as Run 3 on

Table IV. As will be discussed later, comparison with earlier tests indicated

that the subject's learning curve was leveling off at the end of Run 3 and that

no difference was detected in error between footrest and rudder pedals.

Therefore, the sequence of tests for Runs 4 and 5, which incorporated configura-

tions Is2 and Isl , respectively, did not include repeating tests of the same

configuration at the beginning and end of each battery, and used only the foot-

rest. Also, only one null test was conducted at the beginning of each battery.

Error Measurements

The procedure used to calculate the angular error in roll and pitch is

described below. Figures 23 through 26 show the records from Run 4, Battery 3

using the column and wheel for controls and the footrest. In each case the roll

and pitch error, error squared, and integrated error squared traces are shown,
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from the start to the end of the two-minute test period. The average gradient

of the integrated error squared trace for the test period was drawn in each case.

The two-minute average roll and pitch errors were calculated from the average

gradients as shown.

Tables V through VIII show the roll, pitch and total two-minute average

angular error for all tests.

Discussion of Results

It is recognized that use of only one test subject and the limited

number of tests warranted by the scope of the investigation negate placing

statistical significance on the results presented herein. Nevertheless, both

the quantitative and subjective measurements do provide an initial indication

of the relative advantages and disadvantages between the various control and

isolation configurations.

Error Measurements: Figure 27 shows the two-minute average roll and

pitch errors for the vibration and fixed base configuration using the.column

and wheel for control. The data indicates the learning curve effect previously

mentioned. For both the vibration and fixed base configurations the errors in

pitch are lower than in roll. This tendency to concentrate more on controlling

pitch rather than roll is to be expected from most pilots. When compared to

fixed base, the vibratory motions increase the error by approximately fifty

percent with the difference more pronounced in pitch. A comparison between

the total roll and pitch error for the vibratory and fixed base configurations

using the column and wheel is shown in Figure 28. For Runs 4 and 5 the total

error during vibration is approximately fifty percent greater than the fixed base

total error.

Figure 29 shows the comparison between vibration and fixed base errors

in roll and pitch using the side-arm controller. As in the case of the column

and wheel, the data indicates the learning curve effect and lower values of

error in pitch. Side-arm controllers have been found to offer improvements for

aircraft control [Ref. 6] . However, the side-arm controller used in this

investigation did not appear to greatly improve the tracking error when compared

to the column and wheel, with the biggest improvement in performance occurring
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in pitch for the fixed base configuration. This apparent lack of improvement in
control with the particular side-arm controller used may be due to the fact that
while the column was balanced and both the column and wheel had dampers,
the side-arm controller was not balanced and did not have dampers. Therefore,
in spite of the arm rest, the hand and wrist did vibrate considerably. Figure 30
shows a comparison between the total roll and pitch error for the vibratory and
fixed base configuration using the side-arm controller. The difference between
vibration and fixed base error is approximately the same as for the column and
wheel.

The effect of the various isolation configurations on tracking error can
be evaluated based on the results of Runs 4 and 5. These were the last two
runs conducted and the learning effect is no longer a consideration. In
addition each battery includes all configurations tested.

Figure 31 shows the measured roll, pitch and total errors using the
column and wheel for control. All of the configurations tested are shown;
namely, fixed base (F) , vibration (V), isolation (Iv or 1^) and simulated total
isolation (Isl or L^). The error for each active vibration isolation configura-
tion is compared to errors for the fixed base, simulated total isolation and
vibration configurations measured during tests of the same battery. Data from
Run 5 shows the comparison for errors measured with the AVIS in active isola-
tion configuration 1 (Ii ) and errors from corresponding vibration (V), fixed
base (F) and simulated total isolation (I31)tesU Data from Run 4 shows a
similar comparison for the errors measured with the AVIS in active isolation
configuration 2 (Is).

The tracking errors for the active isolation configurations (^ or fc )
are approximately the same as the errors for the corresponding vibration
configurations (V). Errors for configuration Is (Run 4) are generally equal to
or lower than the errors for the corresponding vibration tests, whereas for
configuration Ij. (Run 5) the opposite is true.

The tracking errors for the simulated total isolation configurations
(Isl and Iss) are lower than those measured for the isolation or vibration
configurations and in some cases approach those measured during fixed base
tests. In configurations Isl and I& the display, controls and seat are
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isolated from the vibratory motions in a manner that approximates the isola-
tion characteristics of the AVIS in active isolation configurations 1 and 2,
respectively. In the simulated total isolation configurations, there was
no relative motion between the subject and the display except for that arising
from the seat cushion dynamics which the subject, an experienced test pilot,
was quite accustomed to.

Comparison between curves (a) and (b) for both Runs 4 and 5 (Figure 31)
shows the previously mentioned tendency of the subject to concentrate more on
pitch rather, than roll for all configurations.

Figure 32 shows the measured roll, pitch and total errors using the
side-arm controller for control in all configurations tested during Runs 4 and 5.
The comments made regarding the comparison between tracking errors for the
isolated Oa or Is) and vibration (V) configurations using the column and wheel
also apply for the side-arm controller (i.e. , they are approximately equal).
However, with the side-arm controller a greater improvement in error is afforded
by isolation configuration Is than Ij., when compared to the error from corre-
sponding vibration tests.

A final comparison between vibration configurations and types of control
is shown in Figure 33. Average values of total error for all tests in Runs 4 and
5 are indicated for each condition. In all cases, (a) through (d), the average
error for the simulated total isolation configurations , Isl and IS2 , is lower
than the errors for the vibration configuration V. Errors for isolation configura-
tion Ii, are approximately equal or slightly greater than errors for vibration,
with both the column and wheel and side-arm controller. Errors for isolation
configuration Is are approximately equal or slightly lower than vibration errors
with both types of controls.

Subjective Comments: The test subject was asked to answer the
questionnaire shown in Figure 22 after each test. A summary of comments
regarding comfort and subjective tracking error evaluation between the various
conditions follows.

The comparative ride comfort between vibration (V) and isolation (Ij and
Is] was very dramatic. In addition to the isolation from low frequency motions
which eliminated the body resonance, the isolation system also eliminated the
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jerking motions associated with higher frequencies. When the column and
wheel and rudder pedals were used in the isolated configurations fa or fe)
the motions would be transmitted through the hands, wrists and forearms, and
also through the feet and lower legs. These vibrations would cause a slight
amount of discomfort in the form of muscle tingling and a numb feeling in the
hands and feet. When the side-arm controller and footrest were used these
effects were totally eliminated.

The isolation characteristics of the AVIS in either configuration fa or
IB ) resulted in large relative deflections between the subject and the displays
for low frequency vibration inputs. Because of this relative motion it was
particularly difficult for the subject to analyze and interpret the error in terms
of displacement, rate and acceleration. This phenomenon was due to the
interrelation between the apparent error caused by the movement of the display
relative to the subject and the actual error presented on the display. Therefore,
the improvements in comfort afforded by the seat isolation configurations are
not reflected in reduced values of tracking error. The isolation provided by the
AVIS in configuration Is reduced the relative motions at low frequencies from
those experienced in configuration Ii (see Figure 19). Although this reduction
resulted in a more comfortable ride, for configuration fe compared to Ij., only
a minor improvement in error was realized between configurations Ts and Ii
when comparing the corresponding errors of each isolation configuration. During
the simulated total isolation tests (Isli • or IS3) the large relative deflections
between the subject and display were eliminated. Tests run using this total
isolation configuration resulted in the best tracking performance, and according
to the subject's comments, the most comfortable ride.

After about a day of testing (25 two-minute tests) there was some general
body fatigue which seemed to be located in the lower back muscles and spine.
After completing about ten two-minute runs there was considerable eye strain
and it was necessary to take about a thirty-minute break. This type of work-
rest cycle was typical throughout most of the program.

The task used in the investigation employs control inputs of the rate
command with no damping in the display motions. As a result, the subject
felt that this type of task caused a full work load requiring continuous
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concentration and control inputs to keep errors to a minimum.

During the vibration configuration tests, the arms and hands did shake
enough to cause inadvertent inputs to both the column and wheel and side-arm
controller. These motions or inputs were oscillatory in nature and thus did not
cause large tracking errors. However, it was difficult to make small and
precise control inputs with the proper timing.

Although the side-arm controller did not have the best of feel charac-
teristics, it was preferred over the wheel and column. The comparison between
rudder pedals and the isolated footrest was only an improvement in comfort.
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SECTION 5: CONCLUSIONS AND RECOMMENDATIONS

Conclusions made based on subjective comfort evaluation and objective

measurements of tracking errors employing an active vibration isolation system

for a commercial transport pilot seat are:

1. The active seat system providing broadband vertical vibration . ...

isolation and a high isolation efficiency notch centered about

the critical input (fuselage bending) frequency of 4.2 Hz can

provide dramatic improvement in comfort over that afforded by a

standard pilot seat.

2. The short term (two-minute) tracking accuracy attained with the

active seat isolation configurations 1^ and ^ is approximately

equal to that measured with the standard aircraft seat. The

subject's comments indicated that large relative deflections

between the subject and display occurred for low frequency

vibration inputs for the seat isolation configurations. Because

of this relative motion it was particularly difficult for the subject

to analyze and interpret the error in terms of displacement, rate,

and acceleration. This phenomenon was due to the interrelation

between the apparent error caused by the movement of the display

relative to the subject, and the actual error presented on the

display.

3. As expected, the best combination of comfort and improved tracking

performance (in some instances approaching that for fixed base

tests) was obtained by isolating both the seat and displays to the

levels provided by the active seat isolation system.

Recommendations

While the results of this investigation show that the best combination

of improved comfort and tracking performance can be expected from an active

system which has the capability of isolating the displays, seat and controls,

this system would be much more complicated and expensive when compared to

the active seat isolation system alone. It is recommended that a feasibility
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study be made on the problems involved with the design and implementation

of such a "total" active isolation package.

Also, while the results of this investigation showed no significant

change in the subject's control capabilities for the active seat isolation

configurations based on the two-minute test period, it is expected that an

improvement would be realized for long-time duration testing. It is postulated

that long-time duration tracking ability with active isolation of the seat only

will improve relative to that of the standard seat as a result of an anticipated

decrease in fatigue. This would be particularly significant considering the

severe dynamic environments associated with helicopter, LAHS or ASW missions.

Long-time duration testing was beyond the scope of the investigation

reported on herein. Therefore, it is recommended that such a test program be

conducted to validate this assumption. If results indicate that an improvement in

ride quality and tracking performance can be realized, it is recommended that

an actively isolated pilot seat be tested in actual flight conditions.
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LEGEND OF ABBREVIATIONS USED IN

TABLES I THROUGH VIII

C&W column and wheel

SAC side-arm controller

F. R. footrest

R. P. rudder pedals

N null test

F fixed base test

V vibration test; AVIS in off mode

Ii vibration test; AVIS in on mode, Configuration 1

Is vibration test; AVIS in on mode, Configuration 2

Isi simulated isolation of seat and display; AVIS in off mode

Iss simulated isolation of seat and display; AVIS in off mode
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TABLE I

AVIS FLIGHT MODE POTENTIOMETER GAINS

PARAMETER

Acceleration

Notch Flow

Wide-Band Flow

Position

Velocity

Notch Network

Acceleration
Time Constant

Velocity
Time Constant

Notch Frequency
Time Constant

GAIN

Configuration
1

5.0

1.0

2 .6

10.0

2 .75

1.0

10.0

5.0

3.55

Configuration
2

5.0

3.5

2 .6

10.0

5.0

1.0

10.0

5.0

3.55
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CABIN FLOOR PLATE
CABIN
SUPERSTRUCTURE

HYDRAULIC POWER SUPPLY UNIT
ENCLOSED IN SOUND PROOF ROOM

PLAN VIEW
SCALEII/Z^I'O"

SIDE-ARM CONTROLLER
CABIN
SUPERSTRUCTURE

SECTION-.A.-A.
SCALE: i/2"«i'o"

Figure 1. - Layout of Human Factors Test Area and Equipment
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CONSOLE

SIDE-ARM CONTROLLER

CABIN
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ADAPTER
FIXTURE
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DYNAMIC
SHAKER

Figure 2. - Schematic Representation of Isolated Seat, Controls and Display
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Figure 5. - Test Subject Using Rudder Pedals and Footrest
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COLUMN AND WHEEL

SIDE-ARM CONTROLLER

SEAT

/ CABIN
^-SUPERSTRUCTURE

NOT TO SCALE

Figure 6. - Location of Seat, Column and Wheel,
Side-Arm Controller and Displays
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MEDIUM

COLUMN DISPLACEMENT

(DEGREES)

Figure 7 . - Column Force Gradient in Pitch

52



TORQUE

(IN.-LB.)

20 -•

o F I I I I I I I II
0 20 40 60 60

WHEEL DISPLACEMENT (DEGREES)

Figure 8. - Wheel Force Gradient in Roll

r

Figure 9. - Task Director Console
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ROLL DISPLACEMENT REFERENCE CARD'

8 X 1 0 CENTIMETER CATHODE RAY TUBE-

PITCH DISPLACEMENT
REFERENCE CARD

(a) PHOTOGRAPH OF PANEL

ROLL
DISPLACEMENT

HORIZON
REFERENCE LINE

GYRO HORIZON LINE

PITCH
DISPLACEMENT

(b) SCHEMATIC SHOWING DETAILS OF DISPLAY

Figure 10. - Horizon Display and Panel
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TASK
DIRECTOR
CONTROL
CONSOLE

HORIZON
DISPLAY
COMPUTER

EMERGENCY
SHUTDOWN
SWITCH

DYNAMIC
SHAKER
CONTROL
CONSOLE

Figure 11. - Horizon Display Computer and Controls for
AVIS, Two-Axis Task and Dynamic Shaker
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Figure 12. - Recording Equipment
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Figure 13. - Spectral Density of Vertical Vibration Test
Input and Vertical Vibrations Expected at
Pilot1 s Cabin During Turbulent Flight
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Figure 14. - Envelope of Dynamic Shaker Capabilities
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Figure 15. - Power Spectral Density of Pitch and Roll Angle
Signals Used as Inputs to the Horizon Display
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Figure 16. - Vertical Transmissibility Between Input and
Buttocks with AVIS in Off Mode
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and Buttocks with AVIS in on Mode
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PILOTS QUALITATIVE QUESTIONNAIRE

Test No. Subject Date Time

CONFIGURATION - TASK SETUP

D Wheel/Column

D Side-Arm Controller

Q Normal Rudder Peda

D Isolated Footrests

•oiler

Pedals
ests

"I7'

s

P Pitch

P Roll

D Pitch

P Roll

Simulated
Isolatioft
Condition

in 2n

.1 Good

2 Fair
PITCH

3 Pool

ERROR 4 Impossible
RATING

1 Good

TOIL 2 Falr

3 Poor

4 Impossible

EFFECT OF VIBRATION
ON ERROR COMPARED NOne

WITH FIXED BASE Minor
(INCREASE OF ERROR ,
COMPARED TO FIXED Moderate
BASE) Excessive

«

DO BODY MOTIONS
INDUCE INADVERTENT One

TRACKING INPUTS Minor

Moderate

Excessive

EFFECT OF VIBRATION None
ON VISION

Minor

Moderate

Excessive

CONFIGURATION

None

(P)

High

No Isol
(v)

'

Isolated
(T)

Simulated
Is»latioxi

(*«}

Figure 22: Questionnaire for Subjective Evaluations of Error and Effects
of Test Configuration on Tracking Inputs and Vision
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ROLL AXIS PITCH AXIS

AVERAGE

= \/78

PERIOD

ROLL ERROR:
= 2.79deg

TEST PERIOD

AVERAGE PITCH ERROR:

\/P=\/3~6= l.90deg

Figure 23. - Roll and Pitch Error, Error Squared, and Integrated
Error Squared for: Column and Wheel, Fixed Base
and Footrest. (Run 4, Battery 3, Configuration F)
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ROLL AXIS PITCH AXIS

ERROR
(deg)

HILPi

r25

*4^ ^^M^^ îfta/

—i—i—i—i—i
*-l minute—H

! TfH-h-f—-{—- i —
L.LL._i „..!....,!.....„

.-Lj-rH (deg2 per division
at 2 minutes) 1

-TEST PERIOD-

.

3.9 3.6JT
lUl

AVERAGE ROLL ERROR:
L3= 3.36 deg

•* TEST PERIOD »-

AVERAGE PITCH ERROR:
N/T=\/6.48=2.55deg

Figure 24. - Roll and Pitch Error, Error Squared and Integrated Error Squared
for: Column and Wheel, Simulated Seat and Display Isolation,
and Footrest. (Run 4, Battery 3, Configuration Is3)
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ROLL AXIS PITCH AXIS

(deg2 per division
at 2 minutes)

AVERAGE ROLL ERROR:

= 3.59 deg

AVERAGE PITCH ERROR:

^ 793 = 2.88 deg

Figure 25. - Roll and Pitch Error, Error Squared and Integrated Error
Squared for: Column and Wheel, No Vibration Isolation
and Footrest (Run 4, Battery 3, Configuration V)
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ROLL AXIS PITCH AXIS

-t-—!—I
M- I minute -H

T:7] f at 2 minutes) 1

AVERAGE ROLL ERROR:
= V/l4.8 = 3.85deg

AVERAGE PITCH ERROR:
/P=VrO=2.88deg

Figure 26. - Roll and Pitch Error, Error Squared and Integrated Error Squared
for: Column and Wheel, Isolated Seat (AVIS On, Isolation
Configuration 2) and Footrest (Run 4, Battery 3, Configuration
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ROLL
ERROR

(deg)

TWO-MINUTE
AVERAGE
PITCH
ERROR

(deg)

COLUMN AND WHEEL

2 1 h——3

RUN NUMBER

VIBRATION (V) •-—• FIXED BASE (F)

COLUMN AND WHEEL

2 1 | 3

RUN NUMBER

I— 4 —I I—5H

Figure 27. - Two-Minute Average Roll and Pitch Errors for Vibration and
Fixed Base Configurations Using Column and Wheel for
Control

71



10

TOTAL a
TWO-MINUTE
AVERAGE 7

ERROR
(deg) 6

COLUMN AND WHEEL

RUN NUMBER

- •V IBRATION (V) •- -• FIXED BASE(F)

Figure 28. - Total Two-Minute Average Error for Vibration and Fixed
Base Configurations Using Column and Wheel for Control
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TWO-MINUTE
AVERAGE 4

ROLL
ERROR
(deg)

RUN NUMBER

VIBRATION (V)

TWO-MINUTE
AVERAGE 4

PITCH
ERROR 3

(deg)

•-—-•FIXED BASE (F)

SIDE-ARM CONTROLLER

•2 1 | 3

RUN NUMBER

Figure 29. - Two-Minute Average Roll and Pitch Errors for Vibration
and Fixed-Base Configurations Using Side-Arm Controller
for Control
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ERROR
(deg) e

SIDE-ARM CONTROLLER

-
TT

V *v \
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VIBRATJON(V) •- • FIXED BASE(F)

Figure 30. - Total Two-Minute Average Error for Vibrations and
Fixed Base Configurations Using Side-Arm Controller
for Control
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AVIS ISOLATION
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•
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ROLL ERROR

(deg)

TWO-MINUTE AVERAGE
PITCH ERROR

TWO-MINUTE AVERAGE
TOTAL ERROR

(deg)

-. ISOLATION
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Figure 31. - Comparison of Average Errors for Various Isolation
Configurations Using Column and Wheel for Control
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. d
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TWO- MINUTE AVERAGE
ROLL ERROR

(deg)
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2 4 6 8
BATTERY
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Figure 32. - Comparison of Average Errors for Various Isolation
Configurations Using Side-Arm Controller for Controls
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Figure 33.- Comparison Between Averages of Total Error for
Various Configurations with Column and Wheel
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