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PREFACE

The work described in this report was performed by the Space Sciences

Division of the Jet Propulsion Laboratory,
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ABSTRACT

This report describes an instrument that provides both radar and
radiometer data at the same time. The antenna and receiver are time shared
for the two sensor functions, The antenna polarization can be electronically
scanned at rates up to 5000 changes/s for both the transmit and receive sig-
nal paths, The purpose of the equipment is to investigate target signatures
for remote sensing applications. The function of the equipment is described
and the results for observations of asphalt, grass, and gravel surfaces are

presented,
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I. INTRODUCTION

A, Objectives

Both radar and radiometer instruments are employed for remote sens-
ing applications at microwave frequencies, The interpretation of these
sensor outputs for users in agriculture, hydrology, and forestry is currently
being pursued in many research centers. This report describes an instru-
ment that provides both radar and radiometer data at the same time. This
is expected to aid in the comparison and interpretation of the active and
passive sensor data (Ref. 1). There are other advantages of the equipment
design and operation., Many components are shared by the combined instru-
ment, The single antenna will assure that both the radar and radiometer
are observing the same terrain or target under the same environmental con-

ditions.

The signal parameters of amplitude, phase, polarization angle, and
antenna beam incidence angle are the variables of the radar-radiometer
through which the targets are to be characterized., The X-band radar stable
oscillator permits coherent detection and observation of phase variations
from targets with coherent echoes. With this capability it may be possible
to determine the degree of partial cohe‘rency as a means of target discrimi-
nation even for complex natural targets, The radar could produce images by
the coherent synthetic aperture technique' if the app:r_'opri'ate recording device
and antenna are mounted on an aircraff. However,' the initial function of the
instrument is to investigate the signature of appropria.te targets from the

aerial platform shown in Fig. 1,

Another unique feature of this radar-.radﬂiometer in addition to the time
sharing of the radar and radiometer funcfioﬁs is the variable polarization
capability. The linear polarization states can be sc,éLnned at rates up to

5000 char}ges/s for both the transmit and receive signal paths. How the
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scanning is accomplished in 11-1/4° increments is presented in the antenna
description. This dynamic polarization sensing capability is expected to pro-
vide an improved characterization of complex targets such as windblown
vegetation, Each polarization state of the antenna has a corresponding data
filter for obtaining the average radar amplitude and radiometric temperature

per polarization state,

B. Related Investigations

The Committee on Remote Sensing for Agricultural Purposes was
formed by the National Research Council in 1962, The Committee investi-
gated not only aerial photography but also active (radar) and passive micro-
wave techniques, Their report on remote sensing (Ref., 2) provides a sum-
mary of the state-of-the-art to 1970, Two quotations from that report are

particularly applicable. From page 85,

Radar return from vegetation is more complicated
than radar return from surfaces, and return from
surfaces is not yet fully understood. Nevertheless,
empirical determination of differences in return from
vegetation as a function of wavelength, polarization,
incident angle, and moisture indicates the sensitivity
of radar to many significant plant-differences. More
research is needed to catalog this sensitivity ade-

quately.
From page 108,

Some objects exhibit a time dependent (temporal)
change in their effective temperatures. These
changes can be seasonal or diurnal and can result
from fluctuations in the actual object temperature,
changes in sky temperature, or changes in the reflec-

tion and emittance properties of the object.

The Ohio State University Electrical Engineering Department has been
investigating the design of radars and radiometers for determining terrain -
properties (Ref, 1). Their backscattering measurements with a continuous
wave radar are a well known reference (Ref, 3), A more recent report

(Ref. 4) describes the design and construction of the equipment, which
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includes CW doppler radar systems and radiometer systems. The linear -
polarization can be changed by unbolting and mechanically rotating the antenna
horn. The results reported therein are consistent with the preliminary

observations of the radar-radiometer.

The University of Kansas Remote Sensing Laboratory is also investi-
gating properties of various targets, A progress report for 1971 reports on
the scattering properties of agricultural targets in the 4 to 8 GHz region
(Ref, 5), The radar is operated CW-FM, It is continuously tunable from
4,2 to 7.8 GHz and can be switched between horizontal and vertical polari-
zations, This research is looking for spectral differences for crop condition
identification, Although the techniques are different, the investigation has an

objective similar to the radar-radiometer application objective,

The concept of combining a radar and a radiometer for improved target
discrimination is being evaluated by the military (Ref, 6). A CW-FM radar
at a 3, 2-mm wavelength is combined with a Dicke-switched radiometer. The
equipment shares a single receiving antenna, mixer, and RF power source.
Preliminary results locate various cultural targets on a space defined by the

radiometric temperature differences and the radar return power,

Another application of radar and radiometer sensors is to explore
planetary surfaces. Research on the nature of the signals from various sur-
faces is required to prepare for the design of sensors with improved capabil-
ities. Examples of the application of radar and radiometers to planetary
exploration are indicated in Refs, 7 and 8. The polarization signatures ob-
tained by the radar-radiometer offer a means of identifying planetary surface

conditions,

C. Polarization Effects

The polarizing effect of reflection of light from a plane surface has
been observed by everyone who has rotated a polarized pair of sunglasses to
see the light intensity vary with the angle of rotation, Radio communication
antennas and radar antennas are oriented to take advantage of the signal dis-
crimination due to the antenna polarization., The laws governing polarization
effects of electromagnetic waves interacting with matter have been derived
by many investigators and are readily available in references. The change

in polarization is called depolarization in a recent book devoted to that

JPL Technical Memorandum 33-570



subject (Ref, 9). As will be found in the later sections of this report, the
polarization effects observed with the radar-radiometer are qualitatively
consistent with the theory. The problem of analytically deriving the depolar-

ization by a rough surface is not a part of this report,.
II. FUNCTIONAL DESCRIPTION

The combined radar-radiometer design features are summarized in the
functional diagram, Fig. 2. The performance parameters are summarized
in Table 1. The following sections will describe the function of the experi-

mental equipment,

A, Modes of Operation

There are five modes of radar-radiometer operation that provide
operator control of the time sharing between the sensor functions., The

modes are:

(1) The radar transmits one pulse and receives target information
during part of each radiometric switching cycle. This mode ié
applicable for studying nearby objects with dynamic polarization
changes since the polarization can be selected to change at the

pulse repetition frequency (PRF),

(2) The instrument operates as a radar for 500 transmitter pulses,
then as a radiometer for an equivalent time. The PRF can be

selected between 312 and 5000 pulses/s.

(3) A mode similar to the second except that the time is 8000 PRF

‘pulse intervals.

(4) Radar-only mode; the Dicke ferrite switch stays in the antenna

position and the PRF increases by a factor of two,
(%) Radiometer-only mode; the radar pulses are inhibited.

The data has been taken in Mode 1 to evaluate this rapid time-share
feature, The other modes have been used to verify correct operation of the

equipment,

JPL Technical Memorandum 33-570



B, Variable Polarization-Antenna

Polarization depends on the relative magnitude and direction of the
electric vector at any instant of time, The electric vector can be resolved

. - + i -
into two orthogonal components, E = E x + E e1¢ y, for a plane wave propa-

gating in the z direction. The complex polarization factor is defined by

For reflection from a surface, the plane of incidence is defined by the
direction of propagation and the normal to the surface. E  is perpendicular
to the plane of incidence (horizontal component), E+ is parallel to the plane
of incidence (vertical component) and ¢ is the phase difference between E+
and E~ in spatial coordinates. Elliptic, circular, and linear polarizations
are uniquely described by this complex polarization factor, Linear pblari-
zation is represented by the real axis of the complex P plane, right elliptical
is the positive half-plane, and left elliptical is the negative half-plane., The
radar-radiometer measures the relative amplitude or modulus of the elec-
tric vector in its sine and cosine detectors. The polarization angle is deter-
mined by scanning the states of the antenna polarizer, which is analogous to
rotating an optical polarizer, The radar transmitted signal polarization also
can be rotated with an independent polarizer. In general, there will be more
than one reflecting source so the resultant echo is a superposition of many
vector components, By means of the coherent radar detectors, the resultant
amplitude is measured with the phase referenced to the transmitted phase,
For example, if only a simple, plane, linearly polarized wave were received,
the amplitude would vary as the sine function with an arbitrary phase depend-
ing on the d.isfance to the target, However, for complex targets, waves of
different amplitude, phase, and polarization will be superimposed. The
resultant polarization is sensed by scanning through the antenna polarization
states, There is an ambiguity of 180° since the angle of polarization is
controlled and not the vector direction. In summary, the radar echo elec-
tric fieid amplitudes are measured for known antenna polarization states.
The phase is compared to a constant frequency reference and thus the mean

electrical phase of the scattered wave can be determined.
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The radiometer measures the thermal radiation emitted and scattered
from the target surface., Although thermal emission is usually not polarized,
the reflected radiation is polarized by the different reflection coefficients for
the vertical and horizontal components, Thus, when observing near the
Brewster angle, the radiometric temperature will vary with the polarization

scan,

The polarization control is achieved by adding equal amplitude right
and left circularly polarized waves in the feed horn, resulting in a linear
polarized wave, The phase shift in one of the paths can be digitally selected
by actuating latching ferrite shifters of 22,5, 45, 90, or 180 electrical de-
grees, thus varying the angular orientation of the resultant linearly polarized
wave, DBecause the ferrite phase shifters are nonreciprocal, separate signal
paths are provided for the transmit and receive functions, The antenna polar-
ization network is shown schematically in Fig. 3 and in the photograph,
Fig. 4. The change of state can be selected at the PRF or once in 8000 radar

pulse intervals,

The ferrite phase shifters provide greater than 20-dB isolation between
orthogonal polarization states with the phase shift maintained within 4° over
an ambient temperature range of 0 to 55°C, The gain in the two transmission
paths is equalized within #2 dB. These factors limit the dynamic range over

which the amount of depolarization can be determined.

An antenna positioner and control unit provides a means of selecting
the antenna beam .angle of incidence. The antenna can be pointed to any ele-
vation angle with the positioner. The azimuth angle pointing is controlled by
the aerial platform on the field vehicle. The aerial platform can be extended

10 m above the surface and rotated 360° in azimuth.

The antenna is a parabola 1.2 m in diameter with a Cassegrain feed.
It has low sidelobes to minimize spurious polarization components and to
simplify the interpretation of the radiometer data, The antenna patterns

obtained for the vertical and horizontal plénésiare shown in Figs. 5 and 6,

C. Timing Control

The coherent radar pulses and frequencies are synchronized with the
5-MHz stable local oscillator (STALO), The timing control functional dia-

gram is shown in Fig, 7. The pulse repetition frequency is selected by
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programming a counter with a 16-position switch., The synchronous delay
and pulse generators provide a precise start and stop time for each pulse.
In Mode 1, the radar receiver is connected for 2 ps in each radiometer
switching cycle., Transmitted pulse width can be selected to be a nominal
50 ns or 100 ns. The radar and radiometer functions have equal on and off
times in Modes 2 and 3. At 1-kHz PRF this time is 0.5 s in Mode 2 and 8 s
in Mode 3, The timing diagram for 1-kHz PRF is shown in Fig. 8, The var-
ious delays were adjusted to account for inherent device delays in the ferrite
switches and DC modulator, The sample and hold pulse shows the range of
time delay at which a 50-ns sample of the radar echo amplitude is taken.
The functional diagram, Fig. 3, shows where the timing pulses are applied

in the equipment,

D, Radar Transmitter

The 5-MHz STALO is frequency multiplied by 243 to produce the 1215-
MHz coherent local oscillator signal. The 1215 MHz is multiplied by 6 to
give the 7290-MHz local oscillator frequency and by 7 to produce the 8505-
MHz radar center frequency. Two diode switches in series modulate the CW
signal to produce the 1-mW output pulse, This is sufficient power for nearby
targets. For more distant ones, a TWT amplifier provides 57-dB gain for

the transmitted pulse.
E, Receiver

The receiver is shared by the radar and radiometer. The radiometer
is the Dicke type with a ferrite switch at the input (Fig. 3). A low noise
traveling wave amplifier (TWTA) is mounted on the antenna to obtain a low
noise figure for the system. The TWTA and the waveguide switching for the
radiometer are shown in Fig, 9, The signal is converted to the intermediate
frequency 1215 MHz for amplification and switching to either the radar or
radiometer detectors, The radar has two coherent detectors that are phased
to give sine and cosine bipolar signals. Figure 10 shows the radar coherent-
detector-amplifier package. The radiometer signal is mixed in a balanced
mixer-amplifier that translates the 1215 *160-MHz band to a 1- to 130-MHz
band. The radar center-frequency is filtered out of the radiometer by this
technique, A video detector recovers the Dicke-switched signal, which is

amplified and synchronously detected at the pulse repetition frequency.
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F. Signal Processors

The radar bipolar video signal is observed on an oscilloscope and the
time delay of the 50-ns-wide sampling gate adjusted to sample the echo. The
time-delay range is shown on Fig, 8, This echo émplitude is read into a 16-
ché.nnel gated filter. The average echo of each polarization state is read out
sequentially and recorded dufing a polarization scan, Similarly, the radiom-
eter voltage is filtered with another 16-channel processor, Figure 11 is a
functional diagram of both of the 16-channel processors. The radiometer
voltage is read out sequentially and recorded at the same timé as the radar

voltage.

III, CALIBRATION

The antenna polarization network was designed and verified in the
laboratbry of the vendor to have less than 3° phase error for each of the
polarization states, Ideally the feed, the parabola, and the radar system
should not contribute additional phase error that would appear as polarization

error.

A calibration of the antenna polarization was performed with the instru-
ment mounted on the aerial platform, Transmit polarization calibration was
performed by inserting a precision phase.shifter (Hewlett-Packard Model X
885A) in the transmit coaxial cable leading to the antenna. The signal re-
turned k;y a Luneberg reflector (Emerson Cumming Model 2B-118) was ob-
served at the radar video output with an oscilloscope. The amplitude was
changed from a positive to a negative peak by rotating the phase shifter.

The most sensitive and easiest to determine point occurs as the amplitude
goes through zéro. The measured phase shifts are plotted with the laboratory
data on Figs, 12 and 13. The receive polarization was also checked with a
standard gain horn (Scientific Atlanta Model SCH 8, 2) illuminating the antenna
with the phase shifter in the line to the horn. The data obtained with the horn
vertically polarized is a closer fit to the laboratory data than is the horizontal
data. rI“his is probably due to multi-path since the fit is better around the
cross-polarized state, The relative power as a function of polarization state
is plotted in Fig, 14. The transmit polarization data was obtained with the

standard gain horn and spectrum analyzer as a receiver. The receive
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data was obtained with the radar transmitter radiating through the standard

gain horn,

The radar cross-section calibration is obtained with two sizes of corner
reflector and a Luneberg lens reflector. The corner reflectors are 30 and
10 cm on an edge and provide cross-sectional areas of -12,7 and -22.1
d.B(m)Z, respectively. The Luneberg lens reflector cross section is +24,3

2
dB(m)".

pattern so the antenna gain is constant to a good approximation, The radar

The reflectors are smaller than the principal lobe of the antenna
cross section is

(meters)2

where Pr is received power, P _ is transmitted power, R is range, \ is

t
wavelength, and G is antenna gain, The received power with the reflectors

at 10-m range and 1-mW radiated power will be -50. 8, -41.4, and -4.4 dBm,
respectively, with each reflector successively placed in the beam. The nor-

mal cross-sectional area of the antenna beam at 10 m is

R%(26)% = 0.385 (m)% or -4.1 dB(m)?

The radar cross section is commonly normalized by the area illuminated
when studying the backscatter characteristic of terrain or similar large tar-

gets,

o cos 0

g
R%(a0)%

0

where 0 is the angle of incidence., The terrain scattering parameter (y) of

Ref. 3 is related to the radar cross section Ty = Y cos 0.

Thus the three reference reflectors provide calibration for the radar

backscatter that may be expressed in terms of Ty O Y.

The radiometer is calibrated with hot and cold loads that are attached
for the calibration at the reference load port. The hot load is electrically
heated and thermostatically controlled., The cold load is a special wave-

guide termination immersed in liquid nitrogen. Dry nitrogen gas flows

JPL Technical Memorandum 33-570



within the waveguide to prevent frost from condensing on the load element,
There is a dc-offset-voltage difference for each PRF due to switching tran-
sients. The calibration data for the 312-, 1000-, and 5000-Hz operating
frequencies are shown on Fig, 15, A precision variable attenuator was in-
serted with the calibration load to obtain various effective temperatures and
to check the linearity., Figure 16 is a diagram of the radiometer calibration
configuration with the attenuation factors and temperatures identified, The
attenuation factor (Ai) is the ratio of the power out to the power in for each

device, and Ti is the kinetic temperature in Kelvin,

Attenuation of -20 dB coupler A.2 = 0.99

Attenuation of variable attenuation A3 = 1.00 to 0,001
Temperature T2 = T3 = Tr = 298 K

T1 = 323 K

TL: 77 K or 320 K

After establishing the apparent temi)e rature (Tappl) with the hot and
cold loads, the radiometer is switched to the antenna. The antenna is pointed
at the clear sky, which has a temperature of 5 K at 8.5 GHz. Assume the
back-lobes are looking at 300 K ambient, then Tan = 17 K and the attenuation

t

of the polarizer A1 = 0,76 or 1.2 dB loss. The apparent temperature with

the antenna and polarizer is

Tapp2 = AZ[AITant (- A1”71]1".2

The voltage response determined with the hot and cold loads is

Tapp1 = 201 K + 109.5 K/V(V)

The-apparent temperature with-the antenna connected is equated to the volt-
age response to obtain the antenna temperature calibration, which is shown

in Fig. 17.

T o = 144 K/V(V) + 167 K
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When rapid scanning the polarization there is a voltage offset for each polar-
ization that is found by comparison with the voltage offsets in the reference
load condition, .,

Iv. DATA REDUCTION AND RESULTS

To evaluate the operation of the equipment, observations have been
made of three different surfaces: asphalt, grass, and gravel. The asphalt
surface is the parking lot shown in Fig. 18, The truck was parked next to a
building and the radar-radiometer was pointed toward an unobstructed area,
The grass surface is part of a baseball playground. The grass is growing in
tufts that point in all directions as shown in Fig. 19, Bare ground is visible
in a few areas, The gravel surface is shown in Fig. 1 and is the naturally
mixed gravel in a dry wash, The incidence angle is the number of degrees
from the vertical to the center of the antenna beam. For each incidence
angle, the radar-radiometer is looking at a different part of the same general

surface.

The radar-radiometer was operated in the pulse-to-pulse time sharing
mode at 1-kHz pulse repetition frequency with 100-ns pulse width, The polar-
ization was electronically scanned at the slow rate. That is, data for each
polarization state was recorded for 8 s before switching to the next polariza-
tion state, The radar transmitter polarizer was scanned in the same polari-
zation state (direct) or at a 90° angle td the received polarization (cross) for
the asphalt and grass, The gravel was scanned over the received polarization
states with the transmitter polarization held at vertical or zero degrees.

Both the radar and the radiometer outputs were recorded simultaneously on a
Sanborn 297,

The average voltage for each polarization was read from the recording
and used for the computer data input, The radar cosine detector amplitude
was plotted as a function of polarization angle for each material and angle of
incidence. The radiometric antenna temperature was similarly plotted,
These graphs are in the Appendix. To show the characteristic pattern for
each surface, the normalized radar power as a function of polarization is
plotted in polar diagrams (Figs. 20 and 21). Vertical polarization with the

electric vector parallel to the plane of incidence is at zero degrees,
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The normalized radar echo power is obtained by taking the sum of the squares
of the sine and cosine detector outputs and dividing by the maximum value.
Because only one 16-channel filter is avaiiable, the relative power is approx-
im;ted by shifting the echo 90 electrical degrees or 4 polarization states to
obtain an equivalent sine detector output. The echo power at each incidence
angle is normalized to the maximum value to emphasize the polarization
pattern variations. These polarization signatures are compared in Figs. 20
and 21. Note that the patterns are different for the different materials. The
difference with incidence angle is not so great especially between 20° and 30°
for all these materials. The differences at 10° and 70° may be partly due to
reflections from the truck or other objects that could not be prevented from
intercepting the antenna sidelobes. Because no cross-polarized scan was
observed for the gravel, the direct and cross data are compared for grass.
The purpose of Fig, 20 and 21 is to demonstrate that different materials have
different polarization signatures. There are problems of establishing the
uniqueness and variance of the patterns that can be investigated with more
measurements, Development of the electromagnetic scattering theory is not
included in this report. In general, the theoretical solution is not needed for

successful application of the technique to remote sensing problems,

It may be noted, however, that the same electromagnetic boundary
value problem description is applicable to both the radar and the radiometer,
The sum of reflectivity and emissivity is equal to one if the transmittance is
zero and if the surface is in thermal equilibrium with its surroundings. For
the case of a plane wave incident on a plane surface, the emissivity and
reflectivity are known functions of the angle of incidence, the polarization,
and the material constants. The brightness temperature sensed by the
radiometer is the sum of the temperature radiated by the surface and re-
flected from the sky.

(8) = (8) +pT ) (0)

Thrightness Tequilibrium

where ¢ = emissivity and p = reflectivity.

The antenna behaves as a viewing aperture for the thermal radiation
that impinges the antenna from all directions. The antenna temperature is

the sum of all the radiation as weighted by the antenna pattern F(6,¢).
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f/. br1ghtness(e)F(e »¢) sin 6 d6 d¢

ant f/ (6, d) sin © dO dé

For antennas with a high beam efficiency, most of the power is in the main

beam and to a first approximation the measured antenna temperature equals

the brightness temperature,

\

The measuted antenna temperatures are presented in the Appendix,
All of the temperatures for asphalt are summarized on Fig, 22. As expected
for a smooth reflecting surface, the vertical polarized temperature is greater
than the horizontal polarized temperature, The antenna temperature is
plotted as a function of the incidence angle with the vertical (E ) and hori-
zontal (E”) polarization as parameters in Fig. 23. The temperature of the
grass does not change much with incidence angle whereas the asphalt clearly
separates into vertical and horizontal components as expected, There is an
anomolous rise in E~ at the k;igher incidence angles, which is probably due
to reflections from a building, The temperature of the building could be sub-
stituted for the sky temperature in deriving the radiometric brightness and

emissivity above 50° incidence angle.

The degree of polarization for the radar and radiometer observation
of the asphalt surface is plotted as a function of incidence angle in Fig, 24.
The degree of polarization (P) is a measure of the vectorial properties of
electromagnetic waves, A coherence matrix can be defined (Ref, 10) to

describe the measured wave properties,
7 3 & ED <EXE:;>
sk 3
J J <EyEX> <E'y E

The intensity (I) or power is a function of the polarization angle (a) in degrees
and the retardation (e¢) in radians, which is the phase delay of EY with respect
to E_.

X

a,e) = T cos a+J sinza+J e X cosasina+J e’ sin o cos @
XX vy xy yX
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For the radar, the transmit polarizer provides the retardation since the
cross-polarized field component is shifted 1T/Z radians from the direct

polarized field. Thus,

Jxx = I(0,0) = power measured vertically; « = 0 and directe = 0

J}.’Y = I(90,0) = power measured horizontally; ¢ = 90 and direct e = 0

Tay = %[1—(45,0) - 1(135,0)] ¥ %1[1(45, 2)- 1235, 1’2-)]

T = %[1(45,0) - 1(135,0)] - %1[1(45, %)- 1(135, %)]

The intensity varies from a maximum to a minimum as the polarization
is varied. The ratio of the polarized intensity to the total intensity can be

shown to be:

I -1 . 4[J J -J_J ]
P max min 1 - XX Yy XY yX
‘ 2

[T * 4]

When P = 1 the wave is completely polarized. When P = 0, the wave is
completely unpolarized, For the case of thermal radiation, the sources are

expected to be unpolarized except that part due to reflection.

J -7 T -T .
P = XX yy | - _max min

J +7J T + T .

XX vy max min

There is an alternative description of the state of polarization by the Stokes
parameters, which are related to the elements of the coherency matrix as

follows:

0 XX Jyy
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The Stokes parameters are of historical interest for relating the microwave

measurements to optical investigations of polarization.

In summary, the preliminary observations have shown distinctive
peolarization signatures for different surfaces. The method of data reduction
was described. The polarization effects for both the radar and the radiom-
eter behave as expected for a smooth, reflecting surface, The problems of
establishing the variance and uniqueness of the polarization signatures and
of eliminating spurious reflections and antenna sidelobe effects were pointed
out, The degree of polarization was defined by the coherency matrix descrip-
tion and the results for the degree of polarization as a function of incidence

angle were plotted,
V. CONCLUSIONS

A general description of an instrument that rapidly time shares the
functions of a radar and a radiometer has been presented, The time sharing
of the antenna and receiver components has ensured that the target and geom-
etry are the same for the radar and the radiometer measurements. The
unique dynamic polarization capability adds a new dimension to remote sens-
ing for improved discrimination of surface conditions. The instrument is
mounted on an aerial platform on a truck and is ready to go to areas selected
for remote sensing study. Calibration techniques have been developed and
preliminary measurements made. Additional work is recommended to inves-
tigate various targets to show how the features of the instrument will contri-

bute to remote sensing,
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Table 1.

System parameters

Frequency

Wavelength

Pulse width

PRF (selectable)

Peak power

Antenna 3 dB beamwidth

Polarization

Rate of polarization scan
Antenna beam efficiency
Noise figure

Predetection bandwidth
Radar processor filter
Radiometer time constant
Oscillator stability

AT sensitivity

8.505 GHz

3.53 cm

50 or 100 ns

5000/(m + 1), m = 0, 1... 15 pulses/s
1 mW or 500 W

3.8°

Linear, variable orientation in 11-1/4° steps,
16 states total, both for transmit and receive

PRF or PRF/8000
96 %

8 dB

320 MHz

0.002 s

0.3 s

10-11

2 K
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.
hCIRCULATOR
RECE IVER

Fig. 3. Antenna polarization network,
functional diagram
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Fig. 4. Antenna polarization network, hardware .
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Fig. 8. Timing diagram for 1-kHz, PRF

Fig., 9. TWTA and waveguide switch assembly
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Fig. 10. Radar coherent detector-amplifier

READ IN READOUT
INPUT
1
51Q C RESET
= . =
2
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R ¢
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- RADIOMETER | 100 k& | 3.0 uF

Fig. 11. 16-channel processor functional diagram
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Asphalt surface observed

18.
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APPENDIX, COMPUTER PLOTS

The radar-radiometer made observations of asphalt, grass, and gravel
on April 17 and March 15, 1972, and December 9, 1971, respectively. For
all the surfaces, the eq-uipment was operated in Mode 1, 1 kHz PRF, 100 ns
pulse width, and slow polarization scan. For the grével surface, the trans-
mit polarization was vertical, i.e., parallel to the plane of incidence. For
the other two surfaces, the transmit polarization was scanned in synchronism .
with the receive polarization and both direct and cross-polarized states were
recorded sequentially, The computer was programmed to plot the radar data
in units of the detected voltage as a function of polarization angle with no
smoothing. The scales were selected to show the maximum amount of varia-
tion. The radiometer data were similarly plotted excepf the voltage units
were changed to antenna temperature by the calibration of Fig. 17, For a

summary of the antenna temperatures for asphalt, see Fig. 22,
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