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Abstract

A property of polynomial complete languages is extended in order to

better compare various classes of formal languages. We consider pairs

(̂ ,,̂ 2̂  °̂  classes of languages such that there is a language L e 5?,

with the property that L e ^- if and onl/ if &-\



Certain longstanding open questions in automata-based complexity

have resurfaced recently due to the work on efficient reducibilities

among combinatorial problems [5,8]. In particular, questions regarding

time-tape tradeoffs and the deterministic simulation of nondeterministic

machines have received renewed attention. The purpose of this paper is

to extend a technique used in [5,8] in order to better compare various

classes of formal languages defined by time- or tape-bounded Turing

machines.

Let P (NP) be the class of languages accepted by deterministic

(nondeterministic) Turing machines which operate in polynomial time. A

language L is polynomial complete if L e NP and if the question of

the satisfiability of a statement in conjunctive normal form is poly-

nomlally reducible to L [8]. It is shown in [8] that for any polynomial

complete language L, L e P if and only if P = NP. What is shown here

is that for many pairs (5?.., 3?~) of classes of formal languages, there

exist languages L e 32, such that L e <£~ if and only if SB', <i g^*

Let T (NT) be the class of languages accepted by deterministic

(nondeterministic) Turing machines which operate in polynomial space.

By results in [9], NT = T so we refer to this class simply as T. Let

DLBA (CS) be the class of languages accepted by deterministic (non-

deterministic) linear bounded automata. Let DEXP (NEXP) be the class

of languages accepted by deterministic (nondeterministic) Turing machines

which operate in exponential time, i.e., time bound k for any k > 1.

(In each case the bound is a function on the length of the input.)
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In [4] DEXP was characterized as the class of languages accepted

by deterministic or nondeterministic auxiliary pushdown machines which

operate in space bound f(n) = n. In [7] NEXP was characterized as the

class of spectra of formulae of first-order logic (the spectrum of a

formula is the set of cardinalities of its models).

Theorem.

A. There exists a language L e NEXP such that:

(i) L e DLBA if and only if NEXP £DLBA so that NEXP - DEXP = CS »

DLBA and NP £DLBA;

(ii) L e CS if and only.if NEXP £ CS so that NEXP = DEXP = CS and

HPSCS; . . - • . - , . .

(iii) L e T if and only if NEXP £T so that NEXP£T;

(iv) L e DEXP if and only if NEXP £DEXP so that NEXP » DEXP and

NP£DEXP.

B. There is a language L e DEXP such that:

(v) L e DLBA if and only if DEXP£DLBA so that DEXP - CS = DLBA

and P ̂ DLBA;

(vi) L e CS if and only if DEXPSCS so that DEXP » CS and P £CS;

(vii) L e T if and only if DEXPET so that DEXP^T;

(viii) L e NP if and only if DEXPSNi' so that DEXP £ NP ̂ NEXP,

NP - T, and NP is equal to the class of languages accepted

by deterministic Turing machines which operate in time bound
nk
2n (for all k > 1).
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C. There exists a language L £ CS such that:

(ix) L e NP if and only if CS £NP so that NP = T and CS $NP;

(x) L e DLBA if and only if CS^DLBA so that CS = DLBA.

D. There exists a language L e DLBA such that:

(xi) L e NP if and only if DLBA £NP so that NP = T and CS

There is a simple idea behind the proof of the theorem. Let SB,

and SB ̂ be two families of languages. Let ^ be some collection of

operations on languages. Suppose SS^ and «2?. are both closed under

the operations in £?. Further, suppose that L e SS. is a language

such that' ,̂-c is the smallest family of 'languages which contains L

and is closed. under the operations in *& . Then L e SB~ if and only

if g^£r

In this case all of the classes NP, DEXP, NEXP, DLBA, CS, and T

are abstract families of languages (AFLs) , so we choose ^ to be the

collection of defining operations for AFLs: union, concatenation,

Kleene +, intersection with regular sets, inverse homomorphism, and

nonerasing homomorphism. An AFL 32 is principal if there is a language

L e SP such that SB is the smallest Al'L containing L [6]; in this

case L is a principal generator of 32. In [1] it is shown that DEXP

and NEXP are principal AFLs; in [10] it is shown that DLBA and CS

are principal AFLs; in [3] it is shown that NP is an AFL which is not

principal, and the same type of argument shows that T is an AFL which

is not principal.
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To prove part A., let L be a principal generator for NEXT. By

definition, DLBASCS, DEXP^NEXP, and NPSNEXP. In [4] it is shown

that CS £DEXP. In [3] it is shown that NP J DLBA, NP f CS,

NP ̂  NEXP, and NP j DEXP. Since NEXP is a principal AFL and T is

not, NEXP j T. Thus (i)-(iv) hold.

To prove part B., let L be a principal generator of DEXP. As

noted above, DLBA £ CS £ DEXP. By definition, P&DEXP. In [3] it is

shown that P ?* DLBA and P 5* CS. Since DEXP is a principal AFL and

T is not, DEXP <t T. Thus (v)-(vii) hold. Since DEXP and NEXP are

both principal AFLs and NP is not, DEXP f NP and NEXP ?« NP. By

definition, NPCNEXP. In [3] it is shown that if DEXPCNP, then

NP = T and NP is equal to the class of languages accepted by deter-

nkministic Turing machines which operate in time bound 2 (for k > 1).

Thus (viii) holds.

To prove part C., let L be a principal generator for CS. In [3]

it is shown that CS^NP implies NP = T, and that CS j* NP. By

definition, DLBA^CS. Thus (ix) and (x) hold.

To prove part D., let L be a principal generator for DLBA. In

[3] it is shown that DLBA9NP implies that NP = T and CS^NP. Thus

(xi) holds.

Thus the theorem is established.
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The general principle used to prove the theorem has been frequently

used in the study of algebraic systems as well as the study of sub-

recursive hierarchies. It is simply a matter of finding the appropriate

notion of "universal" with respect to the class being investigated.

However this principle has not been extensively used in the study of

complexity classes of functions or languages. To investigate classes

of languages, the concept of a principal AFL (or other related concept)

appears to be useful, at least for subrecursive classes.

The classes studied in the theorem were chosen because of their

possible relationships to problems concerning P vs. NP or DLBA vs.

CS. Other classes could be investigated in this way, e.g., classes

defined by stack automata or by tape-bounded Turing machines [1,2]—

indeed, extensions of the theorem to such classes can be obtained using

the principle behind the proof of the theorem and results in [1-3].

Clearly such extensions will be made, and it is assumed that there will

be an investigation of pairs (££-. , S?^ of. classes such that there

exists L e SS, with the property that L e <£^ if and only if 3!<^3>

Finally, let us note that Albert Meyer has found a language L e CS

which does not appear to be a principal generator for . CS. _but which has

the property that L e DLBA if and only if CS » DLBA. '
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