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Abstract

A property of polynomial complete languages is extended in order to
better compare various classes of formal languages. We consider pairs
(&?1,5?2) of classes of languages such that there is a language L ¢ £,

with the property that L ¢ &%, 4if and only if 2, €%,.
! 2 1 =2



Certain longstanding open questions in automata-based complexity-
" have resurfaced recently due to the.work on efficient reducibilities
» amoné combinatorial ﬁroblems [5,8]. 1In pafticular, questions regarding
time-tape tradeoffs and the deterministic simulation of nondeterministic
machines have received renewed attention. The éurpose of this paper is
to extend a technique used in [5,8] in order to bettefvcompare various
classes of formal languages defined by time~ or tape-bounded Turing
machines,

Lee- P :(NP) be the.clase of languaéesAeccepted by deterministie:

(nondeterministic) Turing machines which operate in polynomial time. A

lenguage L is ﬁélynomial complete if L e NP ‘end if the question of
the satisfiability of a-statement in conjunctive normal form is poly-
nomially reducible to L [8]. It is shown in [8] that for any polynomial
'_complete language L, L € P if and only if P = NP. What is shown here
is that for many pailrs (5?1,;93) of éle8ses of formal languages, there
exist languages L ¢ 5?1 such tha; L e sfé 1f and only if 5?1 E‘Qa.
Let T (NT) be the class of languages accepted by deterministic
(nondeterministic) Turing machines which operate in polynomial space.
By results in [9], NI = T  so we refer to this class simply as T. Let
DLBA (CS) be the class of languages accepted'By deterministic (non;
deterministic) linear bounded automata. Let DEXP (NEXP) be the class
of languages_accepted by deterministic (nondeterministic) Turing machines
which opefate_in exponential time, i.e., time bound kK® for any k > 1.

. (In each case the bound is a function on the length of the 1nputﬂ)



In [4] DEXP was characterized as the class of languages accepted
by deterministic or nondetermnistlc auxiliary pushdown machines which
operate in space bound £(n) = ﬁ. In [7] NEXP was characterized as the
‘class»of- spectra of formﬁlée of vfirst-order iogic (the spectrum of a

formula is the set of cardinalities of its models).

Theorem.
A. There exists a language L e NEXP sﬁch ‘t:hat:
(i) L € DLBA if and only if NEXP <DLBA so that NEXP = DEX? = ,CS"?
DLBA and NP.QDLBA; | | |
b(ii) L € CS 1if and only if NEXP<SCS so that NEXP = DEXP = CS andr
| NP S CS; S |
(111) L € T if and only if NEXPST so that NEXP&T;
(iv) L € DEXP if 'and only if NEXP_éDEXP so that NEXP = DEXP and

NP & DEXP.

B. There is a language L e DﬁXP such that.:
“ (v) L € DLBA if and only if DEXPSDLBA so that DEXP = CS = DLBA
and PéDL_BA; - L
'(vi) L ¢ CS if and only if DEXP S CS so' that DEXP = CS and P &CS;
(vii) L € T if and only if DEXPST so that DEXPST; .
(viii) Le NP if and on1§ {f DEXPSN¢ so that DEXP & NP & NEXP,
NP =T, and NP is equal to the class of languages accepted

by deterministic Turing machines which operate in time bound

ak
2’ for all k > 1).



C. There exists a language 'L €CS such that:
(ix) L €¢ NP if and only if CSSNP so that NP =T and CS SNP;.
(x) L € DLBA 1if and only if CSSDLBA so that . CS = DLBA.

D. There exists a language L e DLBA such that:

“(x1i) L € NP if and only if DLBASNP so that NP =T and CS ENP.

. There is a simple idea behind the pfoof of the.theorem. Let Ql
and Qz be tx';o families of languages. Let ¥ be some collection of
operations on languages. Suppose £, and- "sz are .Eoth closed under
the operatioﬁs in @. Further, suppose_bthat Le gl "is a language

such that:- L. 1s t:hé smallest family of “languages which contains L-

‘1
_é.nd- is clpsed.under the operations in €. 'I'hen. Le Qz if énd only
if & 1 < Ly | ,

In this case all of the classes- NP, DEXP, NEXP, DLBA, CS, and T
are gbstract families of languages (AFLs), so we choose ¥ to be the
collection of defining'operations for AFI.;s: union, concatenation,
Kleene +, intersection with regulér sets, inverse homomorphism, and
honerasi:ng_ homomorphism. An AFL % is princ‘ipavll if there is a language
L e% such that £ is the smallest AFL containing L A [6]; in this
case L 1is a principal generator of %. 1In [1] it is shéwn that DEXP
and NEXP are principal AFLs; in [10] it is shown that DLBA and CS
are principal AFLs; in [3] it is shown that NP is an AFL which is not
principal, and the sameA type of argument shows that T 1is an AFL which

1is not principal.



To-prove part A.;fleﬁ L Be a principal generator for NEXP. By
definition, DLBASCS, DEXP CNEXP, and NPSNEXP. In [4] it is shown
that CS EDEXP. In [3] it is shown that NP # DLBA, NP # CS,

NP # NEXP, and NP # DEXP. Since NEXP 1is a principal AFL and T is
nbt, NEXP # T; Thus (1)-(iv) hold.

~To prove part B., let L be a principal geperato;,of DEXP. As:
noted above, DLBA £CS SDEXP. By definition, PCSDEXP. "In [3] it is
shown that P # DLBA _and P # CS. Since DEXP 1is a principai AFL and
T is hot, DEXP # T. Thus (v)-(vii) hold. Since DEXP and NEXP are
both principal AFLs and NP 1is not, DEXP # NP and NEXP # NP. By
definition, NPSNEXP. In [3] 1t is shown ’that if DEXPSNP, then
NP = T and NP is equal to the class of languages accepted by deter-
ministic Turing machines which operate in time bound 2 k (for k > 1).
Thus (viii) holds. o | |

To prove part C., let L 'bg a principal generator for CS. ‘In (31
it is shown that CS<SNP implies NP = T, and that CS.# NP. By
definition, DLBA<CS. Thus (ix) and (x) hold.

To prove part D., let L be a principal generator for DLBA. 1In
[3] it is shown that DLBACNP implies that NP = T and CS&NP. Thus
(xi) holds.

‘Thus the -theorem is established.



7.

The general principleé used to prove the theorem has been frequently
uséd in the stﬁdy of algebraic systems.as well as tﬁe study of sub-
recursive hierarchies. It is simply a matter of finding the appropriate
notion of "universal" witﬁ fespe§t to the cl#ss being investigated.v
However this'principle has not been extensivéiy used in the studyvof
complexity clasées of functions or languages. To investigate classes
of languages, the concept of a principal AFL (or other related concept)
appears to be uéeful, at least for subrecursive classes.

The classes studied in the theorem were chosen because of their‘
éossiblg relationshiﬁs ﬁo problems concerning P vs. NP or DLBA vs.
Lcs}‘ Other classes could be investigated in this way, e.g., classes
defined by stack automata or by tabe-ﬁounded Turing machines [1,2]--" <* 7
indeed, extensiqné of the theorem to such classes can be obtained ﬁsing
the principle behind the proof of the theorem'and results in [1-3].
Clearly such extensions will be made, andbit is assumed.that there willl
be an investigation of pairs (é?i,‘ga) of .classes such that there
exis.ts L € Ql with the propérty that L ¢ 192 if and only if ;581992.

Finally, let us note that Albert Meyer has found a language L ¢ CS
~ which dbes not aépear to be a principal generator for . CS. _but which has.

the property that L e DLBA if and-only if CS = DLBA. -
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