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TECHNICAL MEMORANDUM X-64707 . -

FAST DIGITAL NOISE FILTER CAPABLE OF LOCATING
SPECTRAL PEAKS AND SHOULDERS

INTRODUCTION

Much valuable information from an experiment may be lost because of
a poor signal-to-noise ratio. The source of this unwanted noise is. usually a
combination of ground loops, transient currents, reading errors, using equip-
ment near the limits of its range, etc. In most experiments, one can assume,
that the noise is a random event distributed normally about the true signal. =
This is a Gaussian-shaped distributiori, with most of the deviations .caused by
noise occurring within one standard deviation of the signal. It is-normally
assumed that the standard deviation of the noise is independent of the signal
value and is also constant throughout the experiment.

Under such assumptions, it is possible to utilize several techniques
for enhancing the signal-to-noise ratio. An example is the simple RC filter
used to remove the high-frequency noise component from an analog signal.
In recent years, however, more and more experimentalists have turned to
computers for analyzing results, and somewhere in the course of the experi-
ment it is necessary to digitize the stream of analog data. Unfortunately,
the noise present in the analog .signal carries over into the digital signal.

Thus, the need arises for a digital filter which is capable of enhancing
the digitized signal. Several of these filters exist [ 1-4], and this report will
describe one based upon the principle of least squares. The idea behind this
filter was presented by Savitsky and Golay [ 5] and has been expanded and
programmed by the authors to handle spectral data. This type filter has been
found advantageous because of its high speed and because it not only "smooths"
the data, but simultaneously finds the peaks and shoulders present in the
spectrum. The following sections will describe the principles of the filter and
its implementation in spectral analysis.



THE THEORY OF CONVOLUTING INTEGERS

The object of this digital filter is to rem^vb-as mucn noise as possible
without degrading the signal. The filter operates by modifying a given point
to be some function of itself and nearby points. An RC filter can use only
past information, and this introduces a unidirectional distortion into the data;
i. e., phase shift. A digital filter, however, can take advantage of the stored
array of data to utilize both past and future points, thus providing a better
smooth than an analog filter.

Two as sumptions, concerning the data must be met if the filter is to be
effective: : (l) the data must occur at equally spaced intervals along the
abscissa, and (2) the curve formed by the data in the filter must be reasonably
smooth t 5]. The first of,these assumptions is always met in computer work
because the abscissa is actually die time interval at which the data are sampled,
and this is equal interval and stable to 0.01-percent accuracy or better. This
report will deal primarily with the filtering of the intensity since it is the
signal of main interest. ,

A simple digital filter is a moving weighted average. The j point
modified by the 2 m-fl points of which it is the center:

- V
. -1 i = -m •. •

The coefficients c. are integers which are chosen to give the desired

weighting, and N is the normalization factor (in this case, N is equal to
2 m+l). By allowing j to run through the index of the array, the data are
smoothed using only simple arithmetic operations. It is clear that m can
be set to any value, giving a 2 m+l point filter.

The c. coefficients are called convoluting integers for the following

reason. The filter can be considered an operator which forms the smoothed
data y*(t) by integrating the raw data y(t) with a weighting function w(t) .
Since the weighting at a point depends upon the time difference between the
weighted point"and the point being smoothed, the filterihg°operati6n can be
written [6]



y*(t) = / w ( T ) y ( t - T ) d T . (2)

This integral is defined as the convolution of y(t) with w(t)i In a.digital
filter the weighting function is of the form

m
W(T) = c. 6(r + i ) / N

i = -m l
(3)

where 6( t ) is the Dirac-delta function representing the discrete sampling
of the data. Using this in equation (2) at time t = j gives

y*0) =
m

i = -m
y(j- T) dr

(4)

m v(3 + i) /N •
1= -m

By equating y(j + i) with y. ., this is seen to be identical to equation (l).

Thus, the c.'s are known as convoluting integers.

While tiie moving weighted average works well for a quasi-dc signal,
it tends to drastically distort a curve of large curvature, such as a peak.
Thus, one would like to retain the simplicity of equation (l) but find a set of
convoluting integers which does not alter the shape of the data. The most
commonly used method for smoothly fitting a curve to a group of data points

is the method of least squares; therefore; we are led to try fitting an n degree
polynomial to 2 m+1 points such that the sum of the squares of the residuals
is minimized. Our goal is to express the polynomial value at the center point
in terms of the 2 m+1 unsmoothed points, and we will then regard this as the
smoothed value of the center point. This method will be 'seen to provide not
only a set of convoluting integers for smoothing, but also sets for finding the
first n derivatives.



The problem is to fit a polynomial to 2 m+1 points and then replace
the center point by its polynomial, or smoothed, value. Since the data points
are assumed to be uniformly spaced and odd in number, they can be normalized
and centralized to be integer values centered at zero [ 7]; i. e., t. = i. The

f V» ' ' ' ; ''
n degree polynomial is then of the form

nf- = 21 k=o k

.

. . . , , . . ._ . - . ' . . . . ' , , (5 )
n •= b + bti+ ... + b io l n

But we only require the value at i = 0, so clearly y* = f = b . We find that

the smoothed value at a point is merely the first coefficient of the best-fit
polynomial centered at the point. By further taking derivatives of the poly-
nomial, one can show

* = f = b
o o

jo

dy* _ dy* di _ JL o bj
dt ' ~ di dt " At di ~ At (6)

. - -.
• •& -Jf . - ' • • ' - & ' - i° os * ,s ^ - ,. \ , d f

d:.y* _ . d y /di \ _ 1,, ; o
ji.s ,.s, Vdt/ v x ^ x 8 j.sdt di v ' (At) di

where At is the constant step size between:abscissa points;.!.e.j the analog-
to-digital conversion .time. Thus, the smoothed value at the first; n deriva-
tives at the center point can be found by solving for tlie prioper regression
coefficients; ; • \ • • • . • ' • : . - . • •



The solution for the regression coefficients b can be found in
s

numerous texts on regression analysis and will not be given here.' One can
show that the solution is of the form

m
sib = ), c y. /N

s . u 11i = -m

This is identical to equation (l), with j = 0 , since the points here are
centralized. Thus, each b and, hence, each derivative can be evaluated

• . - . . • • • s . •
by a set of c. of convoluting integers. These integers depend on the order

of derivatives (0 to n), the number of points (2 m+l), and the order of the
polynomial (n < 2 m+l). Large tables of these convoluting integers with
their corresponding normalization factors can be found in Reference 5.

It is also possible to convolve two of these sets of integers together,
resulting in a single set of integers which performs the operations of the two
original filters simultaneously. This is. decidedly advantageous for program-

' ; • ' " fH • "
ming. Thus, if we convolve a 2 m+l point n order smooth with a 2 p+1
,-•. .. . th .,- th . ' ' ' .

point k order s derivative, we obtain

c.
a '" , y i,sN (At) i = - p

m

NoNg(At) i = -p }=-m

1_
N h = -(m+p)



1, S i,Ol,j J)

i+j = h

where

N = N N (At)S

o s

th -The. c. are the convoluting integers of the k -order derivatives, the
* f*Vi ' .

c-. are those of the n order smooth, and the d, are those for theJ,o Ti
combined operation. The resulting filter has 2(m+p)+l points.

APPLICATION TO SPECTRAL ANALYSIS

This technique is easily adapted to a program which smooths data and
also finds peaks and shoulders. The resulting filter can accept roughly 2500
points per second on a computer such as the Univac 1108. Figure 1 is a flow
chart of the filter,' and this section will discuss the various operations.

In addition to smoothing spectral data, one wishes to know the locations
and intensities of the spectral peaks. When a small peak occurs very close to
a larger peak, the smaller one appears not as a separate peak but as a
shoulder; i. e., an unresolved peak. The problem of determining if shoulders
are present and, if so, their precise location is a difficult task. However,
utilization of the above approach has resulted in an accurate algorithm for
finding peaks and shoulders.

These operations have been included by the authors in the form of a
computer subroutine. Input arguments are the x and y data points and a
cutoff level (usually ~ 0.1 percent of the maximum y) below which peaks
are not considered. The smoothed data and the locations and intensities of
all peaks and shoulders are returned to the main program. A description
of the flowchart is given in the following paragraphs.
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Smoothing

.A temporary 11-point array YS of smoothed points is used to ensure
that only raw data are in the smoothing filter while only smoothed data are in
the derivative filters. To get the filter started, the first 10 points of YS are
initialized with a 3-point linear average of the corresponding points of Y.
The main program loop does a 9-point cubic smooth of Y. and stores it in

th . -1

the 11 point of YS:

= /_YS.,, = - 21 Y. • + 14 Y. „ + 39 Y/» + 54 Y. •/+ '59 Y
11 V i-4 i-3 i-2 i-1 i

54 Y." + 39 Y.' -f 14 Y. 0 - 21 Y. \/231 .: (9)
i+l . 1+2 1+3 1+4 '' v '

Note the symmetry of the coefficients about Y., weighting past and future data

equally. If YS6, the center point YS array, is now greater than the cutoff
level, the YS array proceeds to the.next section. : If not, then YSj is. dropped
off as a smoothed point and stored in place of the corresponding value of Y,
transforming the raw data vector into a smoothed vector. The filter then
moves forward a point by shifting YS. to YS. and calculating a new value
of YSlt at the next point of Y. . • . . ' - .

Peak Finding

To use only smoothed data in the calculations, all derivatives are
found at YS6, the center of the YS array. The first derivative, DERI, is
found with a 5-point cubic fit:

DERI = YS4 - 8YS5 + 8 YS7 - YS8 . (10)

The normalization factor is not used since absolute magnitudes are not needed
for finding peak locations. This is because a peak is a relative maximum of
the intensity, and, thus, occurs at a zerp crossing; i.e., where the first
derivative changes sign. To distinguish peaks from valleys, one must also



require the change to be from positive to negative. Thus, if DERI and its
product with the derivative at the last point are negative, a peak has occurred
between the points and may be located by linear interpolation. To prevent
any remaining noise from appearing as a peak, the program requires the
intensity to have risen for at least four consecutive points preceding a peak.
Even the smallest, of true peaks should easily exceed this if the digital
convertor sampling rate is adequate for the analog frequencies in question.
Following the check for a peak, the YS array moves to the next section.

Shoulder Finding
The second derivative is now found at the same point as the first

derivative. Since the taking of higher-order derivatives greatly enhances
the noise level, compensation is obtained by further convolving the derivatives
with a linear smooth.. Thus, to find the second derivative, DER2, a 5-point
linear smooth is combined with a 7-point cubic second derivative:

DER2 = 5 YSt + 5 YS2 + 2 YS3 - 2 YS4 - 5 YS5 - 10 YS6

. - 5 YS7 - .2 YS8 +• 2 YS9 + 5 YS10 + 5 YSn . (ll)

This has the effect of smoothing the data twice without .altering the output YS
of smoothed data. A shoulder represents a zero crossing in the second
derivative, which can be distinguished from other inflection points because
the product of the first and third derivatives is positive at shoulders and
negative at other zero crossings. Thus, the second derivative is checked for
zero crossings in a manner similar to that used for finding peaks, and, if
one is found, a 5-ppint cubic third derivative combined with a 3-point linear
smooth is calculated:

DER3 = - YS3 + YS4 + YS5,.- YS7 - YS8 + YS9 . (12)

The product of equation (12). with the first derivative then determines whether
a shoulder has been found. The intensity at.this point is misleading because
of the influence of the larger peak nearby. Practice has shown that 90 percent
of the intensity is a reasonable guess as to the true peak height. With excep-
tionally poor data, even the doubly convoluted smoothing is often not enough

10



to offset the sensitiveness of the shoulder finder, and erroneous shoulders
may be located. To overcome this, it may be necessary to expand the number
of points in the filter and perform.an additional linear smooth before finding
the second derivative. -

Following the finding of a peak, a pre-set criterion is used to deter-
mine if the peak is reasonably distant from the preceding peak or if it is so
close that they should be combined into one peak. In case of shoulders, the
location and intensity are generally in error from the true values by a few
percent. This can be corrected by the use of an additional subroutine which
performs multiparameter optimization. The authors are presently preparing
a note on this subject. Having completed these operations, YSt is dropped
as a smoothed point, the array is shifted forward a point, and the loop is
started over by calculating a new YSjj.

. , . TEST CASE RESULTS :

Figure 2 shows the results of filtering a mass spectrum from a resid-r
ual gas analyzer, the authors' main application of the subroutine. The spec-
trum in this case is synthetic, made by combining Gaussian peaks with the
locations and intensities listed in the figure as Input. The values determined
by the filter are listed under Zero Crossing. The peaks range from intensities
of 0. 04 (not even visible) to 8. 0, a factor of 200. To make the spectrum more
realistic, Gaussian-distributed random noise with a standard deviation of 0. 01
was added.

Had the mass spectrum been real, it would have been necessary to :

smooth the mass values. An 11-point linear smooth operates well for a
quadrupole spectrometer with a linear sweep. For a cycloid spectrometer,
swept by an RC decay, a linear smooth of the logarithms of the mass values
followed by exponentiating the result gives satisfactory values. However,
for the synthetic spectrum, the mass values are generated accurately and
require no smoothing. Thus, only the intensity values, generated at 40 points
per AMU, were passed through the filter.

As Figure 2 will show, the filter correctly located the three peaks and
three shoulders that were present. The curve passing through the black
squares is the linear recombination of Gaussian waveforms using the deter-
mined values of the peaks. It follows the signal quite well except between
45. 6 and 46.0. The problem here is that the peaks are so close that they
overlap considerably, causing the signal at the 45. 5 peak to be greater than

11
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the true peak height. Also, at the 45. 8 peak (which, incidentally, would
probably not even be found by eye), the estimation of 90 percent of the signal
for the peak height was in error by 10 percent. The other four peaks are
quite accurate, with an average mass error of 0. 03 AMU and an average
intensity error of 0.01.

Figure 3 shows the result of passing the smoothed synthetic spectrum
through a subroutine which performs multiparameter optimization. The
positions and intensities of the peaks and shoulders found by digital filters
are used as initial parameters in the optimization. An iterative technique
then modifies these parameters so that the rms deviation between the smoothed
and the optimized signals is minimum. As the figure shows, the combination
of the filter with an optimization algorithm results in extremely accurate
values of the parameters.

Figures 4 and 5 show the results of filtering data from a cosmic ray
proportional counter associated with the High Energy Astronomy Observatory
experiment and represent a good example of applying the filter to actual
experimental results. The curve on the left of each figure is the raw data,
and the one on the right is smoothed, optimized data. The curves, recorded
on a multi-channel analyzer, were produced by radioactive decay of Fe-55.
The right peak is the photo peak resulting from ion-pair production in the argon
of the detector by 5. 9 KeV photons produced by K-capture in the source. There
is also a probability, although considerably less, that the same photons will
remove a K electron from the argon, causing the so-called escape peak on
the left. The presence of the two peaks is clearly seen in Figures 4 and 5.
The YMAX and XBAR columns are the peak intensities and locations after
using optimization subroutine. Note the success of the filter in removing
excessive noise.

CONCLUSION

Based on these and other results, the authors feel that this digital
filter, founded on the concept of convolving integers, is a reliable technique.
In addition to its fast-smoothing capability, it also possesses the ability to
easily and quickly determine derivatives and, hence, find peaks and shoulders.
This should prove to be of value in many forms of spectroscopy.

It should be mentioned that the particular sets of convoluting integers
used in the examples are not rigidly determined. They were chosen through

13
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experience because they appeared to work the best. Each individual experi-
ment should try different combinations of the number of points and the order
of the polynomial to decide which works best for the type of data involved.
As would be expected, increasing the number of points or decreasing the .
polynomial order causes less "bending" in the fit and, hence, better smoothing,
but when carried too far, it distorts the signal shape. The necessary compro-
mise must be determined on the basis of its merits in each individual experi-
ment. - •

Further efforts are being made to use this technique in conjunction
with Fast Fourier Transforms and other methods of data handling. Further-
more, the use of this filter in combination with optimization techniques
results in extremely accurate spectral values in which the effects of noise
have been almost entirely eliminated.

17
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