ACKNOWLEDGEMENTS

The participation and assistance of the following Biospherics personnel is gratefully acknowledged:

Patricia Ann Straat, Ph.D.

Mrs. Margaret Federline

Mrs. Cynthia Nelson
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Summary</td>
<td>3</td>
</tr>
<tr>
<td>1. Labeled Release</td>
<td></td>
</tr>
<tr>
<td>A. Introduction</td>
<td>11</td>
</tr>
<tr>
<td>B. Multiple Addition Preliminary Studies</td>
<td>13</td>
</tr>
<tr>
<td>C. Substrate Specificity</td>
<td>27</td>
</tr>
<tr>
<td>1. Single Addition</td>
<td>29</td>
</tr>
<tr>
<td>2. Combined Substrate Addition</td>
<td>51</td>
</tr>
<tr>
<td>3. Multiple Addition</td>
<td>52</td>
</tr>
<tr>
<td>D. Inhibitor Study</td>
<td>70</td>
</tr>
<tr>
<td>2. Nitrogen Fixation</td>
<td>88</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>88</td>
</tr>
<tr>
<td>1. Biochemistry of Nitrogen Fixation</td>
<td>89</td>
</tr>
<tr>
<td>2. Microorganisms Conducting Nitrogen Fixation</td>
<td>91</td>
</tr>
<tr>
<td>3. Sensitivity, Inhibition and False Positives</td>
<td>92</td>
</tr>
<tr>
<td>4. Method for In Situ Acetylene Reduction Studies</td>
<td>94</td>
</tr>
<tr>
<td>B. Experimental Biology</td>
<td>95</td>
</tr>
<tr>
<td>1. Quantitation of Ethylene</td>
<td>95</td>
</tr>
<tr>
<td>2. Methods of Soil Analysis</td>
<td>96</td>
</tr>
<tr>
<td>3. Results</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

(continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. BIOPOLYMERS</td>
<td></td>
</tr>
<tr>
<td>A. Introduction</td>
<td>111</td>
</tr>
<tr>
<td>B. Experimental</td>
<td></td>
</tr>
<tr>
<td>1. Soil Extraction</td>
<td>114</td>
</tr>
<tr>
<td>2. Concentration of the Soil Extract</td>
<td>123</td>
</tr>
<tr>
<td>3. Molecular Sieve Chromatography of Concentrated Soil Extract</td>
<td>124</td>
</tr>
<tr>
<td>4. Stability of Sephadex G-25 and Bio-Gel P-10 to Heat Sterilization</td>
<td>132</td>
</tr>
<tr>
<td>IV. MARS RETURN SAMPLE STRATEGY</td>
<td>137</td>
</tr>
<tr>
<td>A. Introduction</td>
<td>137</td>
</tr>
<tr>
<td>B. Sample Acquisition</td>
<td>139</td>
</tr>
<tr>
<td>1. Representative Sampling</td>
<td>139</td>
</tr>
<tr>
<td>2. Sampling Zone</td>
<td>140</td>
</tr>
<tr>
<td>3. Sample Cleanliness</td>
<td>140</td>
</tr>
<tr>
<td>4. Sampling Strategy</td>
<td>140</td>
</tr>
<tr>
<td>5. In Situ Conditions</td>
<td>141</td>
</tr>
<tr>
<td>6. Sample Containers</td>
<td>141</td>
</tr>
<tr>
<td>C. Sample Return</td>
<td></td>
</tr>
<tr>
<td>1. Acquisition of Sample Containers</td>
<td>141</td>
</tr>
<tr>
<td>2. Intermediate Receiving Station</td>
<td>142</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(continued)

3. Permanent Receiving Station 142

D. Sample Analysis 143

1. Objectives 143

2. Methods 144

E. Hazard Assessment 146

REFERENCES 148

APPENDIX TO SECTION I - LABELED RELEASE
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Evolution of 14CO$_2$ by Pseudomonas aeruginosa</td>
<td>15</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>Evolution of 14CO$_2$ by Bacillus subtilis</td>
<td>17</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Evolution of 14CO$_2$ and Optical Density of a Liquid Culture of E. coli</td>
<td>18</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>Evolution of 14CO$_2$ and Cell Density of a Moist Culture of E. coli</td>
<td>19</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>Culture Systems Which Were Compared to Determine the Effect of Head Space</td>
<td>20</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>Multiple Addition of Viable Soil and Labeled Medium</td>
<td>23</td>
</tr>
<tr>
<td>FIGURE 7</td>
<td>Effect of Adding H$_2$O or Unlabeled Medium to a Soil Culture Which has Reached a Plateau in the Evolution of 14CO$_2$ from Labeled Medium</td>
<td>24</td>
</tr>
<tr>
<td>FIGURE 8</td>
<td>Effect of the Order of Addition of Medium and Soil</td>
<td>25</td>
</tr>
<tr>
<td>FIGURE 9</td>
<td>Evolution of 14CO$_2$ from 1 14C D-Glucose and 1 14C L-Glucose</td>
<td>30</td>
</tr>
<tr>
<td>FIGURE 10</td>
<td>Evolution of 14CO$_2$ from 1 14C L-Glucose During Extended Incubation</td>
<td>31</td>
</tr>
<tr>
<td>FIGURE 11</td>
<td>Distribution of Radioactivity on Chromatogram of 14C L-Glucose</td>
<td>33</td>
</tr>
<tr>
<td>FIGURE 12</td>
<td>Evolution of 14CO$_2$ from UL 14C Sucrose</td>
<td>36</td>
</tr>
<tr>
<td>FIGURE 13</td>
<td>Evolution of 14CO$_2$ from 1 14C Lactose</td>
<td>37</td>
</tr>
<tr>
<td>FIGURE 14</td>
<td>Evolution of 14CO$_2$ from UL 14C D-Xylose</td>
<td>38</td>
</tr>
<tr>
<td>FIGURE 15</td>
<td>Evolution of 14CO$_2$ from UL 14C Cellulose</td>
<td>39</td>
</tr>
<tr>
<td>FIGURE 16</td>
<td>Evolution of 14CO$_2$ from Ring 1 14C DL-Phenylalanine</td>
<td>40</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (continued)

FIGURE 17 Evolution of 14CO$_2$ from 1 14C L-Valine and 1 14C DL-valine

Page 42

FIGURE 18 Evolution of 14CO$_2$ from 1 14C DL-Methionine

Page 43

FIGURE 19 Evolution of 14CO$_2$ from UL 14C Glycine

Page 44

FIGURE 20 Evolution of 14CO$_2$ from UL 14C D-Alanine and UL 14C L-Alanine

Page 45

FIGURE 21 Evolution of 14CO$_2$ from 1 14C Citrate

Page 47

FIGURE 22 Evolution of 14CO$_2$ from UL 14C Alpha-ketoglutarate

Page 48

FIGURE 23 Evolution of 14CO$_2$ from Medium Containing 14C Labeled Carbohydrates

Page 53

FIGURE 24 Evolution of 14CO$_2$ from Medium Containing 14C Labeled Amino Acids

Page 54

FIGURE 25 Evolution of 14CO$_2$ from Medium Containing 14C Labeled Citrate and Alpha-ketoglutarate

Page 55

FIGURE 26 Evolution of 14CO$_2$ from 14C D-Glucose and 14C L-Glucose, Multiple Addition Mode

Page 57

FIGURE 27 Evolution of 14CO$_2$ from 14C D-Xylose, Multiple Addition Mode

Page 58

FIGURE 28 Evolution of 14CO$_2$ from 14C Sucrose, Multiple Addition Mode

Page 59

FIGURE 29 Evolution of 14CO$_2$ from 14C Lactose, Multiple Addition Mode

Page 60

FIGURE 30 Evolution of 14CO$_2$ from 14C L-Alanine, Multiple Addition Mode

Page 61
LIST OF FIGURES
(continued)

FIGURE 31 Evolution of 14CO$_2$ from 14C D-Alanine, Multiple
Addition Mode ... 62
FIGURE 32 Evolution of 14CO$_2$ from 14C Glycine, Multiple
Addition Mode .. 63
FIGURE 33 Evolution of 14CO$_2$ from 14C L-Valine, Multiple
Addition Mode .. 64
FIGURE 34 Evolution of 14CO$_2$ from 14C DL-Valine, Multiple
Addition Mode .. 65
FIGURE 35 Evolution of 14CO$_2$ from 14C Methionine, Multiple
Addition Mode .. 66
FIGURE 36 Evolution of 14CO$_2$ from 14C DL-Phenylalanine,
Multiple Addition Mode 67
FIGURE 37 Evolution of 14CO$_2$ from 14C Citrate and 14C Alpha-
Ketoglutarate, Multiple Addition Mode 68
FIGURE 38a Inhibition by Iodoacetic Acid (IAA), Multiple Addition
Mode, Concentration Decreasing 72
FIGURE 38b Inhibition by Iodoacetic Acid (IAA), Multiple Addition
Mode, Concentration Increasing 73
FIGURE 39 Inhibition by Iodoacetic Acid (IAA), Multiple Addition
Mode, Increasing Concentration 75
FIGURE 40 Inhibition by Iodoacetic Acid (IAA), Multiple Addition
Mode, Increasing Concentration 76
FIGURE 41 Inhibition by Iodoacetic Acid (IAA), Multiple Addition
Mode, Increasing Concentration 77
FIGURE 42 Inhibition by Iodoacetic Acid (IAA), Multiple Addition
Mode, Increasing Concentration 78
LIST OF FIGURES
(continued)

FIGURE 43 Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration 79

FIGURE 44 Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration 80

FIGURE 45a Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration 81

FIGURE 45b Inhibition of Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration 81

FIGURE 46 Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration 82

FIGURE 47 Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration 83

FIGURE 48 Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration 84

FIGURE 49 Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration 85

FIGURE 50 Inhibition by Iodoacetic Acid (IAA), Single Addition Mode 87

FIGURE 51 Ethylene Standard Curve Showing Effect of Syringe Contamination at Low C₂H₄ Concentrations 97

FIGURE 52 Ethylene Standard Curve 98

FIGURE 53 Acetylene Reduction by Azotobacter vinelandii 108

FIGURE 54 Acetylene Reduction by Azotobacter vinelandii 109

FIGURE 55 Soil Extraction Procedure 122

FIGURE 56 Molecular Sieve Chromatography of Blue Dextran and ATP 126
<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 57</td>
<td>Molecular Sieve Chromatography of Concentrated Soil Extract</td>
<td>129</td>
</tr>
<tr>
<td>FIGURE 58</td>
<td>Molecular Sieve Chromatography of Concentrated Soil Extract</td>
<td>130</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Labeled Release Conducted in 2 ml Planchet and 17 ml Vial</td>
<td>21</td>
</tr>
<tr>
<td>2</td>
<td>Substrates Which Were Used in Specificity Study</td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td>Response Ratios (Viable/Sterile) Obtained for Various Substrates with B. subtilis Inoculated soil</td>
<td>49</td>
</tr>
<tr>
<td>4</td>
<td>A Comparison of Single Addition, Combination and Multiple Addition of Substrates</td>
<td>69</td>
</tr>
<tr>
<td>5</td>
<td>Substrates Reduced by Nitrogenase</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>Concentrations of Ethylene Used for Standard Curve</td>
<td>95</td>
</tr>
<tr>
<td>7</td>
<td>Detection of Nitrogen Fixation by Soil and Clover Root Nodules</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>Effect of Glass vs. Quartz Vials and Natural vs. Artificial Light on Nonbiological Acetylene Reduction</td>
<td>101</td>
</tr>
<tr>
<td>9</td>
<td>Effect of Glass vs. Quartz Vials and Natural vs. Artificial Light on Acetylene Reduction by Natural Rock Creek Mud</td>
<td>102</td>
</tr>
<tr>
<td>10</td>
<td>Effect of Glass vs. Quartz Vials and Natural vs. Artificial Light on Acetylene Reduction by Natural Field Soil</td>
<td>103</td>
</tr>
<tr>
<td>11</td>
<td>Nitrogen Fixation by Rock Creek Mud</td>
<td>104</td>
</tr>
<tr>
<td>12</td>
<td>Attempt to Detect Nitrogen Fixation in Wyaconda Soil</td>
<td>105</td>
</tr>
<tr>
<td>13a</td>
<td>Attempts to Detect Nitrogen Fixation in Laboratory Stored Soils</td>
<td>106</td>
</tr>
<tr>
<td>13b</td>
<td>Detection of Nitrogen Fixation in Fresh Soils</td>
<td>107</td>
</tr>
<tr>
<td>14</td>
<td>Extraction of Folin-Reacting Material from Soil</td>
<td>116</td>
</tr>
</tbody>
</table>
LIST OF TABLES

(continued)

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 15</td>
<td>Extraction of TCA-Precipitable, Folin-Reacting Material From Soil Under Various Conditions</td>
<td>120</td>
</tr>
<tr>
<td>TABLE 16</td>
<td>Elution Behavior of Blue Dextran and Methyl Red Before and After Heat Treatment of Sephadex G-25 and Bio-Gel P-10</td>
<td>134</td>
</tr>
<tr>
<td>TABLE 17</td>
<td>Mars Return Sample Analysis</td>
<td>145</td>
</tr>
</tbody>
</table>
The Automated Microbial Metabolism Laboratory (AMML) 1971-1972 program involved the investigation of three separate life detection schemes. The first was a continued further development of the labeled release experiment. The possibility of chamber reuse without "inbetween" sterilization, to provide comparative biochemical information was tested. Findings show that individual substrates or concentrations of antimetabolites may be sequentially added to a single test chamber. This would allow for relatively extensive biochemical testing with a minimum of engineering changes from the current viking design.

The second detection system which was investigated for possible inclusion in the (AMML) package of assays, was nitrogen fixation as detected by acetylene reduction. The assay appeared to be sample and sensitive and could easily be automated. One gram samples of mud produced a response which was partially light sensitive and four orders of magnitude greater than sterile controls. The possibility of using this assay as a test for photobiology was indicated.

Thirdly, a series of preliminary steps were taken to investigate the feasibility of detecting biopolymers in soil. The most effective extraction of high molecular weight materials was found with methods utilizing sonication and a solvent of 0.2 N NaOH + 0.01 M EDTA. Soil extracts were concentrated by lyophilization and the high molecular weight material obtained by molecular sieve chromatography was determined by optical
density at 260 m\textmu. The high molecular weight fraction has been found to contain protein and polysaccharide.

A strategy for the safe return to Earth of a Mars sample prior to manned landings on Mars is outlined. The program assumes that the probability of indigenous life on Mars is unity and then broadly presents the procedures for acquisition and analysis of the Mars sample in a manner to satisfy the scientific community and the public that adequate safeguards are being taken.
Labeled Release

Work on the Automated Microbial Metabolism Laboratory (AMML) was conducted to further develop the labeled release experiment. A series of preliminary steps were taken to test the feasibility of using multiple addition test chambers and to lay groundwork for definitive biochemical determinations. Methods for preparing pure culture soil systems were developed and tested.

Experiments were performed to show the relationship between growth and 14CO$_2$ evolution in liquid culture and pure culture soils. In liquid cultures the evolution of radioactivity paralleled the growth of *E. coli* as measured by turbidity. On the other hand, 0.5 g of soil inoculated with *E. coli* and charged with 0.1 ml of 14C labeled medium evolved radioactivity, but plate counts failed to show an increase in cell numbers.

Experiments designed to show the feasibility of multiple addition studies showed no difference in the kinetics of 14CO$_2$ evolution using a Ba(OH)$_2$ collection system when either a 2 ml or 17 ml headspace existed. Carryover effects in multiple addition systems showed little interference from preceding and underlying soil cultures. However, the order of addition of soil and medium did effect the results of a second addition.

A series of 14C labeled substrates was tested on natural, sterile and *B. subtilis* inoculated Wyaconda soil. They were D-glucose, L-glucose,
BIOSPHERICS INCORPORATED

sucrose, lactose, xylose, cellulose, phenylalanine, L-valine, DL-valine, methionine, glycine, L-alanine, D-alanine, citrate and alpha-ketoglutarate. The natural soil produced positive responses from all substrates tested whereas the B. subtilus amended test soil showed a selective pattern of substrate utilization.

Selected compounds from the same series of substrates were combined to form a carbohydrate medium, an amino acid medium and a Krebs cycle medium. Each of these media was tested with natural Wyconda soil. In addition, media composed of the individual substrates listed above, were sequentially added along with natural Wyconda soil, to a single growth chamber (one chamber for each substrate group). No "inbetween" sterilization was done but sufficient time was allowed between additions, for the evolution of radioactivity to reach a plateau.

A comparison between experiments performed in the single addition mode vs. the multiple addition mode showed surprisingly good correlation. The feasibility of using multiple additions to perform a series of individual biochemical tests was demonstrated. However, a carryover effect due to contact of new medium and prior aclimated cells was observed. Further testing should be performed to attempt to minimize or eliminate this effect.

An inhibitor study was conducted in the same fashion as the substrate study, in which various concentrations of iodoacetic acid were mixed with RM9 medium and added to natural Wyconda soil. In the multiple addition experiment, the order of addition of the inhibitor, i.e., high concentration to low concentration and visa versa, influenced the results.
When the order of addition was from a high to low concentration, the results most closely approximated results obtained in a single addition mode. As with the substrate study, the multiple addition inhibitor study showed great promise. However, steps need to be taken to minimize the effect of carryover.

Nitrogen Fixation

Preliminary experiments to detect nitrogen fixation in soil by the acetylene reduction method have been performed and the results are highly encouraging. The technique is operationally simple and suitable for automation.

Several soil samples and incubation procedures were investigated and it was found initially that incubation in the light magnified the response from some soils by as much as two orders of magnitude. The use of this assay as a possible monitor for phototrophic activity became obvious.

Incubation in quartz vials in natural light produced the greatest response; however, since temperature, intensity of exposure, etc., were difficult to control, artificial illumination of samples in quartz vials was selected. None of the conditions tested, i.e., quartz, glass, or type of illumination affected the nonbiological response which remained near the level of \(\text{C}_2\text{H}_4 \) contamination in \(\text{C}_2\text{H}_2 \). One gram samples of Rock Creek Mud showed responses which were as much as four orders of magnitude above sterile controls. Incubation in light produced a 100-fold greater response than incubation in the dark, thus, indicating phototrophic activity.
Not all samples tested showed acetylene reduction. Soils which had been stored for some time failed to give any response. Freshly collected soils showed a range of responses which was soil dependent and presumably related to the number of nitrogen fixing microorganisms present. No attempt was made to identify and/or enumerate the organisms in soil which were responsible for the response.

Soils were tested under aerobic conditions only. Anaerobic incubation may prove to be a more sensitive determinant of soil activity. However, comparison of the magnitudes of responses under anaerobic and aerobic conditions could provide additional information on the populations present.

A simple experiment to determine the time course of acetylene reduction by Azotobacter vinelandii was performed. Near maximum response occurred after 50 hours. The heat sterilized control showed an initial activity which might be caused by heat stable enzymes. Further studies obviously need to be performed. However, this initial work indicates; the ease with which the technique is performed, the high level of sensitivity, the lack of interference, the ability to detect photobiology, and the low background.

Biopolymers

A pilot study to determine the feasibility of detecting high molecular weight polymers (10,000) in soil has been performed. The following results have been demonstrated by these studies:
1. Soil extracts contain large amounts of material which reacts with the Folin protein reagent. Protein is found in the high molecular weight fractions. However, proteins represent only a small percent (1 - 10%) of the total Folin-reacting material. The remainder consists of low molecular weight compounds.

2. Polysaccharide material is also found in the high molecular weight fractions.

3. Sonication provides the highest yields of Folin-reacting material. Grinding of the soil is most effective as an extraction technique when the soil/solvent mixture forms an abrasive paste. However, grinding has never been more than 75% as effective as sonication.

4. The most successful solvent used for extraction has been 0.2 N NaOH + 0.01 M EDTA which provided yields of 2 μg protein/g soil. Milder extraction methods (0.1 M Tris buffer pH 7.0) were not as successful and provided yields of only 0.2 μg protein/g soil.

5. Considerable variability in yield was seen on a daily basis. Protein yields were higher from fresh soil than from soil stored for one day.

6. Soil extracts are best concentrated by lyophilization.

7. Lyophilized soil extracts may be dissolved or suspended in aqueous solution and placed on molecular sieve columns.
BIOSPHERICS INCORPORATED

a. The presence of high molecular weight material has been detected by observing the optical density of the eluted material at 260 μm.

b. The high molecular weight fraction has been shown to contain protein and polysaccharide material.

c. Bio-Gel P-10 is superior to Sephadex G-25 in resolution of high from intermediate molecular weight material.

8. As determined by separation properties, molecular sieve resins are stable to dry heat treatment for one hour at 125°C. Since Sephadex G-25 may undergo small pH changes during this heat treatment, Bio-Gel P-10 is the preferred resin.

In summary of these experiments, we have demonstrated in a pilot study, the feasibility of extracting biopolymers from soil which are at least 10,000 in molecular weight. These biopolymers can be concentrated by lyophilization to enable their subsequent detection after separation from smaller compounds by molecular sieve chromatography. The methodology described is readily adaptable to automated planetary landers because extraction can be performed by grinding, molecular sieve resins can be sterilized by dry heat treatment, and suitable column technology has already been developed. An important additional advantage is that the biopolymeric fraction separated by chromatography is the first fraction
eluted from the column. We conclude that biopolymer detection in soil according to the described techniques is feasible and provides a new non-geocentric life detection scheme for planetary probes.

Prior to risking manned landings on Mars, a program of examining samples of Mars soil returned to Earth by automated landers should be carried out to determine if Mars soil imposes any hazard to astronauts or to terrestrial life. It is proposed that a representative variety of discrete samples be obtained from Mars for examination on Earth or, preliminarily, on an intermediate station on the Moon or aboard an Earth orbiting satellite. The Mars environment should be maintained during the return flight. The containers should be designed to permit key examinations to be conducted without opening the seal. The experiments should be conducted behind a biological barrier as should the subsequent analyses after the sample containers are opened. Depending on the test results, decisions on further distribution and examination of the samples should be made.

A table is presented which presents the types of tests recommended for determining the hazards posed by the Mars samples. The use of unicellular organisms as potential hosts is emphasized in the bioassay portion of the testing. The tests should incorporate, to the extent feasible, existing NASA life detection instrumentation and, in any event, must be remotely performed behind the biological barrier. For the purposes of this important
aspect of the NASA planetary exploration program, it is recommended that the probability of indigenous life on Mars be taken as unity.
I. LABELED RELEASE

A. Introduction

Of all experiments which are included in the AMML package, the labeled release is the most sensitive and versatile from the standpoint of pathway differentiation. An almost unlimited array of 14C labeled organics may be utilized to establish a profile of specific metabolic capabilities for organisms contained in a soil sample. In addition, an established medium may be used under an array of test environmental conditions to determine growth or metabolism as affected by those conditions. Some of the conditions which may be imposed are the control of temperature, light, water and the addition of inhibitors, including various gases. In fact, the possibilities for different specific experiments to establish metabolic characteristics are almost limitless. While several "most likely" candidates may be suggested on the basis of previous experience and current work, a comprehensive theoretical and experimental examination of possibilities should be made in achieving a selection. The present approach is to develop methodology to allow successive experiments to be conducted in a single chamber. This technology could then be applied in comprehensive experiments designed to perform a sequence of individual experiments.

In order to demonstrate the feasibility of establishing a metabolic profile which characterizes the unknown organism, pure culture test
organisms must be utilized. Natural soils contain mixed populations of microorganisms which represent a spectrum of trophic levels, environmental tolerances and metabolic activities. Each organism species occupies a specific niche in the ecology of soil such that few potential sources of energy or carbon go untapped once they percolate into the soil. For this reason, natural soil displays a rather nonselective response to a broad array of 14C labeled naturally occurring organic substrates. However, individual species of the population, when tested separately, do display very selective and sometimes characteristic biochemical and physiological capabilities. It is this highly evolved selectivity which maintains the integrity of the species.

If Martian soils contain mixed populations of organisms with metabolisms similar to that of organisms on Earth, then a relatively nonspecific response from an array of substrates and environmental conditions would be expected. On the other hand, if Martian organisms differ in biochemical capabilities, then a selective pattern of substrate utilization would occur.

Preliminary testing of this approach was performed in a series of steps. Initially it was necessary to prepare pure culture soil systems which would simulate the natural soil. These inoculated soils were tested for bacterial growth and 14CO$_2$ evolution in comparison with the liquid culture system. A prerequisite to performing sequential addition
experiments was the determination of possible carryover interference and the effects of a changing head space. Several experiments designed specifically to test these effects were conducted. In addition, a series of 14C labeled substrates were individually tested. These were to provide a comparison for results of sequential addition systems and to demonstrate the selectivity of a pure culture soil as opposed to natural mixed population soils.

B. Multiple Addition Preliminary Studies

As a preliminary to feasibility testing of the multiple addition mode of comparative biochemical tests, a series of experiments were necessary. These included preparation and testing of pure culture soils, the relationship of CO$_2$ evolution to growth in soils, the effect of a varying headspace volume and the carryover effect of sequential additions.

Two methods of preparing pure culture tests soils were:

1.) inoculation of heat-sterilized soil followed by drying and screening,

2.) inoculation of heat-sterilized soil just prior to addition of 14C labeled medium.

The former method was used with B. subtilis since only hardy and/or spore-forming organisms would survive drying and subsequent storage. Although this technique is limited to few organism species, the resulting soil may be handled in similar fashion to natural viable soil. The prepared soil is stable and a series of experiments may be conducted using inoculated soil from a single batch preparation.
The inoculation of soil just prior to testing may be used with a greater variety of organisms since long-term survival in the soil is not necessary. However, it appeared that survival of some cells may be better in soil than without it. Figure 1 shows that the initial evolution of radioactivity by *Pseudomonas aeruginosa* was greater when only 14C medium and cells were mixed than when 14C medium, cells and soil were mixed. However, after approximately 24 hours of incubation, the system with soil began a rapid evolution of radioactivity not seen after 56 hours in the system without soil. This likely indicates that the *P. aeruginosa* adapted to the soil environment and was able to metabolize and, perhaps, grow whereas the medium without soil failed to support this level of activity. This type test system would, therefore, be suitable for pure culture studies.

Soils inoculated with *Bacillus subtilis* were prepared in the following way: A quantity of Wyaconda soil was weighed and sterilized by heat. A suspension of *B. subtilis* in H_2O was then added to the sterile soil and stirred to make a homogeneous slurry. Afterwards the slurry was allowed to air dry under sterile conditions and was sieved and stored in sterile bottles. The calculated cell density, based upon microscopic cell count of the initial pure cell suspension, was 5×10^5 cells per gram of soil. An experiment using 0.5 g of this inoculated soil, performed approximately one month after preparation of the soil, is shown in
FIGURE 1

Evolution of 14CO$_2$ by \textit{Pseudomonas aeruginosa}

Soil: 1 g heat sterilized Wyaconda soil
Medium: 0.1 ml modified RM9 or VM1 without glycolate (15 μCi/ml)
Inoculum: 0.1 ml of \textit{P. aeruginosa} 5×10^6 cells/ml
in normal saline, added just prior to medium.

Legend
- \square & \circ - RM9
- \square & \bigcirc - VM1

Cumulative Evolved Radioactivity (cpm $\times 10^{-3}$)

Time (hr.)

Control (Medium Alone)
Figure 2. In this experiment the medium consisted of only UL 14C-D-glucose (10 μCi/ml, 10^{-3}M). This inoculated soil provides a pure culture system which most closely approximates a natural dry soil having relatively low numbers of cells.

Experiments which are shown in Figures 3 and 4 were conducted to determine the relationship of 14CO$_2$ evolution and growth in the moist inoculated soil as compared with liquid cultures. In the liquid culture, *E. coli* evolved radioactivity and this evolution was paralleled by an increase in optical density. Clearly the metabolism of 14C labeled substrates was accompanied by growth of the organism. On the other hand, 14C labeled medium added to soil and *E. coli* resulted in the evolution of radioactivity, but not an increase in cells.

In view of the fact that multiple additions of soil and medium would result in a changing headspace volume, it was deemed necessary to determine if this change would alter the rate or efficiency of 14CO$_2$ production and collection with Ba(OH)$_2$. Two test culture systems, as shown in Figure 5, were compared. One-half gram portions of Wyaconda soil were placed in the 17 ml vials and 2 ml planchets. Control soils from each were sterilized by dry heat (30 min., 212°C) prior to medium addition. VM1 medium (without glycolic acid, total radioactivity 15 μCi/ml) was added to each system and the evolved 14CO$_2$ was collected. Results of viable soil in the 17 ml vial and 2 ml planchet were very similar (Table 1),
Soil: 0.5 g of Wyaconda soil which was inoculated with 2.5×10^5 cells of B. subtilis dried and stored one month prior to use.

Medium: 0.1 ml of distilled H$_2$O containing Ul14C D-glucose (1 mM, 10μCi/ml).
FIGURE 3

Evolution of $^{14}\text{CO}_2$ and Optical Density
of a Liquid Culture of E. coli

- **Medium**: 10 ml of RM9 (total radioactivity 2.2 μCi/ml)
- **Inoculum**: 0.2 ml of nutrient broth containing approximately 10^8 cells/ml
- **Incubation**: Room temperature in stirred tubes

Legend
- □ - cell density (O.D.)
- ○ - evolved radioactivity
FIGURE 4

Evolution of $^{14}\text{CO}_2$ and Cell Density of A Moist Culture of E. coli

Medium: 0.1 ml of VM1 without glycolate (total radioactivity 15 uCi/ml)

Inoculum: 0.1 ml of E. coli 6×10^7 cells/ml.

Incubation: Room temperature in stirred tubes.
FIGURE 5

Culture Systems Which Were Compared to Determine the Effect of Head Space

Filter Pad with \(\text{Ba(OH}_2\)

Aluminum Planchet

Aluminum Planchet Adapted to Tube

Glass Vial (H. 80 mm, I. D. 13 mm, Total Volume 17 ml)

Soil and Medium

Aluminum Planchet Total Volume 2 ml
TABLE 1
Labeled Release Conducted in 2 ml Planchet and 17 ml Vial

<table>
<thead>
<tr>
<th>Time (hr.)</th>
<th>Cumulative Evolved Radioactivity (cpm)</th>
<th>2 ml Planchet</th>
<th>17 ml Vial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viable</td>
<td>Sterile</td>
<td>Viable</td>
</tr>
<tr>
<td>1</td>
<td>474</td>
<td>73</td>
<td>597</td>
</tr>
<tr>
<td>3</td>
<td>1977</td>
<td>298</td>
<td>2210</td>
</tr>
<tr>
<td>5</td>
<td>3639</td>
<td>511</td>
<td>4347</td>
</tr>
<tr>
<td>8</td>
<td>8997</td>
<td>916</td>
<td>8371</td>
</tr>
</tbody>
</table>

Soil: 1 g Wyaconda

Medium: 0.1 ml VM1 without glycolate total radioactivity 15 uCi/ml

Incubation: room temperature
thus indicating that the diffusion time and efficiency of the $^{14}\text{CO}_2$ collection were not significantly different in the two systems.

The possible influence of earlier and underlying soil and medium on the response obtained from subsequent additions was tested. It had been shown in earlier experiments (Figure 6) that the addition of ^{14}C labeled medium and soil to a ^{14}C labeled medium soil system which had reached a plateau produced an immediate and rapid evolution of radioactivity.

Since a large percent of the metabolized ^{14}C organic material is incorporated into cell material and not evolved as $^{14}\text{CO}_2$, the possibility existed that cells might evolve this fixed ^{14}C at a later time, especially as the result of renewed activity which occurs after a second dose of a usable substrate. Such a latent evolution of radioactivity could confuse the results of a subsequent addition. To test the possible stimulation of a latent release, soils were dosed with ^{14}C labeled VM1 medium and the evolved $^{14}\text{CO}_2$ collected until a plateau in evolution had occurred. A second addition of soil and VM1 (unlabeled) or soil and H_2O was then made. As shown in Figure 7, no significant evolution of radioactivity occurred.

A second experiment was conducted in which the order of addition of soil and medium were varied. This experiment is shown in Figure 8. There was no difference in the response obtained during the first addition.
FIGURE 6

Multiple Addition of Viable Soil and Labeled Medium *

First addition (zero time)
0.1 g viable soil and
0.2 ml RM9 medium

Second Addition
0.1 g viable soil and
0.2 ml RM9 medium

Cumulative Evolved Radioactivity (cpm x 10^-4)

Time (hr.)

Taken From:
FIGURE 7

Effect of Adding H_2O or Unlabeled Medium to a Soil Culture Which has Reached a Plateau in the Evolution of $^{14}CO_2$ from Labeled Medium

Second Addition
- $0.5 \text{ g Viable Wyaconda soil and } 0.1 \text{ ml VM1* unlabeled}$
- $0.5 \text{ g Viable Wyaconda soil and } 0.1 \text{ ml H}_2\text{O}$

First Addition (zero time)
$0.5 \text{ g Viable Wyaconda soil and } 0.1 \text{ ml VM1* labeled medium}$

*VM1 contains no glycolate
Total radioactivity $15 \mu\text{Ci/ml}$
FIGURE 8

Effect of the Order of Addition of Medium and Soil

Legend (second addition)

- 0.1 ml labeled VM1 with 3 g of viable Wyaconda soil added on top.
- 1 g viable Wyaconda soil with 0.1 ml labeled VM1 added on top.
- 1 g viable Wyaconda soil with 0.1 ml nonlabeled VM1 added.

(first addition - zero time)

- 1 g viable Wyaconda soil with 0.1 ml labeled VM1* added on top.
- 0.1 ml labeled VM1* with 1 g viable Wyaconda soil added on top.

*VM1 contains no glycolate.
Total radioactivity 15 μCi/ml

Cumulative Evolved Radioactivity (cpm x 10^-3)

Time (hr.)

Controls (sterile soil and medium)
when 0.1 ml of VM1 medium was added to the top of a 1.0 g sample of soil
or when the additions were made in the inverse order. It appears that
metabolically produced 14CO$_2$ passes quickly up through the overlaying
soil with no significant effect on gas collection.

The response obtained after the second addition of soil and medium
was influenced by the order of addition. Labeled medium placed directly
on the previously charged soil then overlayed with soil, resulted in a
rapid evolution of radioactivity. But when the second addition was made
by placing fresh soil on the previously charged soil and dosing this with
14C labeled medium, the response was much slower. This latter technique
produced a cumulative response which approximated that achieved during
the first addition. Making the second addition, medium then soil, resulted in
a much greater cumulative evolution. The relatively small quantity of
medium (0.1 ml) resulted in only a partial wetting of the 1.0 g of soil.
Since the second addition of soil topped by medium produced a non-lag
response, indicating that it came from previously conditioned organisms,
it must be assumed that some of the medium percolated down to the level
of contact between the new and old soil. Enough previously acclimated
organisms were reached to elicit the non-lag response seen; however,
most of the contact between organisms and medium appeared to be in the
newly added soil. This was not the case when medium was added directly to
the previously charged soil. Organisms there were well acclimated to the
medium and a more rapid and greater quantitative evolution of radioactivity occurred.

Also shown in Figure 8, is that a second addition of soil and non-labeled medium does not result in the evolution of previously incorporated ^{14}C substrates, even though a metabolism as seen when labeled medium is added must be assumed.

Completion of this series of preliminary experiments supported the feasibility of an approach, whereby successive specific tests of substrates and inhibitors could be tested in a single growth chamber without "in between" sterilization of the chamber. It appeared that underlying and completed test soil did not seriously affect later experiments, changes in headspace and chamber configuration due to soil addition did not affect $^{14}\text{CO}_2$ evolution and collection, and the preparation of pure culture soils was possible for simulated comparative biochemical studies.

C. Substrate Specificity

Experiments were conducted in which a series of ^{14}C labeled substrates were tested on natural soil, sterile soil inoculated with *Bacillus subtilus*, and sterile soil. A list of substrates which were tested is shown in Table 2. In addition to the substrates shown in that list, two fatty acids were also tested. These were ^{14}C N-butyric acid and ^{14}C oleic acid. Problems of solubility and high background rendered these substrates unsuitable. All substrates were individually placed on the above soils as
TABLE 2

Substrates Which Were Used in Specificity Study

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Concentration</th>
<th>Added Radioactivity</th>
<th>Measured Radioactivity</th>
<th>Volume of Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14^C \text{D-glucose})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>98,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(14^C \text{L-glucose})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>98,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{sucrose})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>125,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(14^C \text{lactose})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>101,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{D-xylose})</td>
<td>(3.3 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>104,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{cellulose})</td>
<td>1.8 mg (dry)</td>
<td>10 (\mu \text{Ci/1.8 mg})</td>
<td>0.1 ml ((\text{H}_2\text{O}))</td>
<td></td>
</tr>
</tbody>
</table>

Ring 1 14C

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Concentration</th>
<th>Added Radioactivity</th>
<th>Measured Radioactivity</th>
<th>Volume of Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14^C \text{DL-phenylalanine})</td>
<td>(4.7 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>104,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(14^C \text{L-valine})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>85,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(14^C \text{DL-valine})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>89,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(14^C \text{DL-methionine})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>97,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{glycine})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>107,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{D-alanine})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>99,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{L-alanine})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>103,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(14^C \text{citric acid})</td>
<td>(1.0 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>202,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>(UL 14^C \text{e-keto-glutaric acid})</td>
<td>(1 \times 10^{-3} \text{M})</td>
<td>10 (\mu \text{Ci/ml})</td>
<td>113,000 (cpm)</td>
<td>0.1 ml</td>
</tr>
</tbody>
</table>

Since the cellulose was not \(\text{H}_2\text{O} \) soluble, a 1.8 mg portion was sprinkled onto the test soil and 0.1 ml of sterile \(\text{H}_2\text{O} \) added.

†(0.02 ml medium + 0.2 ml \(\text{Ba(OH)}_2 \) + 0.4 ml \(\text{H}_2 \)) dried under infra-red lamp in concentric stainless steel planches and counted.
single addition experiments, as well as multiple additions. Also, media containing several substrates which belonged to a single class of compounds were prepared and tested, i.e., carbohydrates, amino acids, Krebs cycle intermediates.

1. Single Addition

The single addition experiments were all conducted in aluminum planchets. (soil 0.5 g) was weighed into the planchets and medium (0.1 ml) was added. Incubation was at room temperature and evolved $^{14}\text{CO}_2$ was collected with Ba(OH)_2. Sterile controls were heat treated (212°C, 30 minutes). All experiments were conducted in duplicate and the results shown are the average of these duplicates.

$^{1^{14}}\text{C D-glucose (Figure 9)}$

$^{1^{14}}\text{C L-glucose (Figures 9 and 10)}$

$^{1^{14}}\text{C D-glucose}$ produced the greatest viable to sterile response ratio of the 15 substrates tested. The sterile control was low, and both the inoculated and untreated soils produced rapid rates of evolution. Unexpected results were obtained with L-glucose. It was thought that a biological response would not be obtained with L-glucose since the biological metabolism of this compound has not been previously reported. The cumulative response was not as great as that from D-glucose (100,000 cpn in 160 hours); however, the viable to sterile ratio was 44 fold, and an extended incubation (see Figure 10) resulted in a
FIGURE 9

Evolution of $^{14}\text{CO}_2$ from ^{14}C D-Glucose and ^{14}C L-Glucose

Soil: 0.5 g of:
- • or o natural Wyaconda
- ○ or □ sterile Wyaconda
- △ or ▽ sterile Wyaconda inoculated with *B. subtilis*

Medium: 0.1 ml of H$_2$O containing:
- • o and △ ^{14}C D-glucose
- □ and ◀ ^{14}C L-glucose

Incubation: (both at 10 μCi/ml, 10$^{-3}$ M)

Room Temperature

<table>
<thead>
<tr>
<th>Cumulative Evolved Radioactivity (cpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time (hr.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>
FIGURE 10

Evolution of 14CO$_2$ from 14C L-Glucose During Extended Incubation

Soil: 0.5 g of \bullet \circ \triangle \Box natural Wyaconda
Δ \Box sterile Wyaconda

Medium: 0.1 ml of H$_2$O containing:
\bullet and \triangle 114C D-glucose, 10 μCi/ml, 10$^{-3}$ M
\circ and \Box 114C L-glucose, 10 μCi/ml, 10$^{-3}$ M
\circ 114C D-glucose, 2 μCi/ml, 2 x 10$^{-4}$ M

Incubation: Room Temperature
BIOSPHERICS INCORPORATED

a cumulative evolution of 20,000 cpm after 160 hours. A comparison of
the L and D responses would mean that the material purchased as 14C
L-glucose would have had to contain approximately 20% impurities if the
L-glucose were not metabolized. The supplier (New England Nuclear)
was contacted and questioned concerning the purity of the material. They
insisted that the 14C L-glucose was radiochemically 99% pure as determined
by thin layer chromatography.

Thin layer chromatography was also performed by Biospherics.
Samples of the 14C L-glucose (0.02 µCi and 0.04 µCi) were spotted along
with unlabeled L-glucose (5.63 µg). An n-Butanol:acetone:H$_2$O (30:50:20)
solvent system and development with aniline phthalate spray was used.
Only one spot having an Rf of (0.39) which corresponded to the Rf for
L-glucose (0.38) was observed. The chromatogram was cut into strips
and each strip cut into 28 five millimeter wide sections. Each section was
placed into a liquid scintillation vial containing 2, 5 - Diphenyloxazole (16.5 g),
1, 4 - bis - 2 (5-phenyloxazolyl) benzene (0.5 g), Toluene (1.3 liters) and
Triton X (0.67 liters).

The distribution of radioactivity on the chromatogram was as shown
in Figure 11. Ninety-seven percent of all radioactivity on the chromatogram
was found in the single peak. The 14C glucose appeared to be free of other
14C labeled organics. The possibility exists, however, that the 14C
glucose (listed as 14C L-glucose by the manufacturer) actually contained
FIGURE 11

Distribution of Radioactivity on Chromatogram of 14C L-Glucose
substantial quantities of 14C D-glucose. Although specific proof for the absence of 14C D-glucose in the 14C L-glucose is lacking, the curve for 2μCi/ml, 2×10^{-4} M 14C D-glucose, also shown in Figure 10, provides evidence that the metabolized substrate in the 14C L-glucose is not 14C D-glucose.

The reduced concentration of 14C D-glucose produced approximately the same cumulative amount of evolved radioactivity after 140 hours as the 14C L-glucose; however, the kinetics of evolution were obviously different for the two substrates. The 14C D-glucose (2μCi/ml, 2×10^{-4} M) produced over 1,000 cpm in the first two hours and evolution had plateaued after 25 hours. The 14C L-glucose produced less than 100 cpm in the first two hours and evolution did not plateau after more than 50 hours. It would appear that two different substrates are being metabolized. The possibility of inhibition of D-glucose by L-glucose exists, however.

Another possible explanation might have been that soil catalyzed the breakdown of L-glucose to some other assimilable substrate and that the slow kinetics of 14CO$_2$ evolution were controlled by this chemical breakdown. To test this possibility, natural Wyacoda soil was added to the preparation of sterile soil plus 14C L-glucose which had previously been used for control in Figure 10.

Kinetics of the response obtained after this inoculation were similar to those obtained when the 14C L-glucose was added to the viable
soil. If the sterile soil caused a breakdown of L-glucose into biologically active compounds then one would presume an accumulation of these compounds, after 160 hours, that would produce a rapid response upon inoculation. No rapid response occurred; therefore, it is assumed that chemical breakdown of the L-glucose in the soil did not occur.

As shown in Figure 9, \textit{B. subtilis} inoculated soil appeared to show a slight positive response to the L-glucose.

\textbf{UL}^{14}\text{C Sucrose} (Figure 12)

An excellent response ratio was obtained with natural soil; however, the \textit{B. subtilis} inoculated soil showed no response. This was the only carbohydrate tested to which \textit{B. subtilis} did not show a response.

\textbf{UL}^{14}\text{C Lactose} (Figure 13)
\textbf{UL}^{14}\text{C D-xylose} (Figure 14)
\textbf{UL}^{14}\text{C Cellulose} (Figure 15)

All three of these carbohydrates produced a good viable to sterile ratio of response in the natural soil and the \textit{B. subtilis} inoculated soil. Cellulose is not soluble in water; therefore, a weighted portion was merely added to the soil surface which was then wet with 0.1 ml of sterile H$_2$O.

\textbf{Ring 1}^{14}\text{C Phenylalanine} (Figure 16)

The natural Wyaconda soil showed a response ratio of 100; however, the \textit{B. subtilis} inoculated soil showed no response.
FIGURE 12

Evolution of 14CO$_2$ from UL 14C Sucrose

Soil: 0.5 g of
- natural Wyacconda
- sterile Wyacconda
- sterile Wyacconda inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing UL 14C sucrose (10 μCi/ml, 10$^{-3}$M)

Incubation: Room Temperature
FIGURE 13

Evolution of 14CO$_2$ from 14C Lactose

Cumulative Evolved Radioactivity (cpm)

Soil: 0.5 g of
- natural Wyacenda
- sterile Wyacenda
- sterile Wyacenda inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing 14C lactose (10 μCi/ml, 10^{-3}M)

Incubation: Room Temperature

Time (hr.)
FIGURE 14

Evolution of 14CO$_2$ from UL14C D-Xylose

Cumulative Evolved Radioactivity (cpm)

Time (hr.)

Soil: 0.5 g of
- natural Wyconda
- sterile Wyconda
- sterile Wyconda inoculated with B. subtilis

Medium: 0.1 ml of H$_2$O containing UL14C D-xylose (10 µCi/ml, 3.3 x 10$^{-3}$M)

Incubation: Room Temperature
FIGURE 15

Evolution of $^{14}\text{CO}_2$ from UL14C Cellulose

Soil: 0.5 g of
- natural Wyacconda
- sterile Wyacconda
- sterile Wyacconda inoculated with B. subtilus

Medium: 0.1 ml H_2O with UL14C Cellulose
(10 μCi/1.8 mg, 1.8 mg total)

Incubation: Room Temperature

Time (hr.)
Evolution of $^{14}\text{CO}_2$ from Ring 1 ^{14}C DL-Phenylalanine

Soil: 0.5 g of
- natural Wyaconda
- sterile Wyaconda

Medium: 0.1 ml of H_2O containing Ring 1 ^{14}C DL-phenylalanine ($10 \mu\text{Ci/ml}$, $4.7 \times 10^{-3}\text{M}$)

Incubation: Room Temperature
Both isomers of valine produced a similar response to natural Wyaconda soil. Soil inoculated with \textit{B. subtilis} showed similar results to both L-valine and DL-valine, but these responses were not nearly as great as those from the natural soil. The DL-valine sterile control was higher than the L-valine control and it appears to be this control level which produced a difference in the response ratios.

The relatively high sterile control reduced the response ratio for this compound.

The natural Wyaconda soil produced a strong response to glycine; however, the \textit{B. subtilis} inoculated soil evolved only slightly more radioactivity than the sterile control.

Natural Wyacunda soil evolved similar total cumulative radioactivities from these isomers although it appeared that L-alanine produced a more rapid response. Sterilized controls for both D- and L-alanine displayed approximately the same level of nonbiological activity. There was considerable difference in the response obtained from the soil inoculated with \textit{B. subtilis}. The L-alanine appeared to be utilized
FIGURE 17

Evolution of $^{14}\text{CO}_2$ from $^{14}\text{C}\text{L-Valine}$
and $^{14}\text{C}\text{DL-valine}$

Cumulative Evolved Radioactivity (cpm)

Soil: 0.5 g of ○ or □ natural Wyconda
○ or □ sterile Wyconda
△ or ▽ sterile Wyconda inoculated with
B. subtilus

Medium: 0.1 ml of H_2O containing:
○ ○ and △ $1^{14}\text{C}\text{L-valine}$
△ △ and ▽ $1^{14}\text{C}\text{DL-valine}$
(both at 10 μCi/ml, 10^{-3}M)

Incubation: Room Temperature

Time (hr.)
FIGURE 18

Evolution of $^{14}\text{CO}_2$ from ^{14}C DL-Methionine

Soil: 0.5 g of
- natural Wyaconda
- sterile Wyaconda
- sterile Wyaconda inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing ^{14}C DL-methionine (10 nCi/ml, 10^{-3}M)

Incubation: Room Temperature
FIGURE 19

Evolution of 14CO$_2$ from UL 14C Glycine

Cumulative Evolved Radioactivity (cpm)

Soil: 0.5 g of
- natural Wyaconda
- sterile Wyaconda
- sterile Wyaconda inoculated with B. subtilis

Medium: 0.1 ml of H$_2$O containing UL 14C glycine (10 µCi/ml, 10$^{-3}$ M)

Incubation: Room Temperature
FIGURE 20

Evolution of 14CO$_2$ from UL 14C D-Alanine and UL 14C L-alanine

Cumulative Evolved Radioactivity (cpm)

Soil: 0.5 g of natural Wyacconda
○ or □ sterile Wyacconda
△ or ▽ sterile Wyacconda inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing:
○ ○ and △ UL 14C D-alanine
□ □ and ▽ UL 14C L-alanine
(both at 10 μCi/ml, 10^{-3}M)

Incubation: Room Temperature

Time (hr.)
much more rapidly than the D-alanine with a higher resultant evolution of $^{14}\text{CO}_2$. The response ratios for these two compounds were 18 and 4, respectively.

^{14}C Citric Acid (Figure 21)

A good response ratio for natural Wyaconda soil was obtained; however, the *B. subtilus* inoculated soil showed no response.

UL ^{14}C α-ketoglutaric Acid (Figure 22)

A high sterile control caused this compound to show the lowest response ratio to natural Wyaconda soil, of all the substrates tested. The *B. subtilus* inoculated soil produced a response considerably less than the sterile soil except after approximately 40 hours of incubation. This phenomenon, where the *B. subtilus* soil was less than the sterile control during the early stages of incubation was observed for studies on DL-valine, and a possible explanation may lie in the treatment of the soil. Chemical reactions may occur during heat sterilization of the soil which later cause degradation of some substrates. However, the wetting and subsequent air drying of this sterile soil may act to lessen the destructive effect.

The response ratio (viable/sterile) for the *B. subtilus* soils was calculated for each substrate tested. These ratios, along with an arbitrary designation of activity against that substrate, are presented in Table 3.
FIGURE 21

Evolution of 14CO$_2$ from 14C Citrate

Soil: 0.5 g of
- natural Wyaconda
- sterile Wyaconda

Medium: 0.1 ml of H$_2$O containing 14C citrate (10 μCi/ml, 10$^{-3}$M)

Incubation: Room Temperature
FIGURE 22

Evolution of 14CO$_2$ from UL 14C Alpha-ketoglutarate

Soil: 0.5g of
- natural Wyaconda soil
- sterile Wyaconda soil
- sterile Wyaconda soil inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing UL 14C α-ketoglutarate (10 μCi/ml, 10$^{-3}$ M)

Incubation: Room Temperature
TABLE 3
Response Ratios (Viable/Sterile) Obtained for Various Substrates with *B. subtilus* Inoculated Soil

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Sterile Wyconda Soil Inoculated with B. subtilus</th>
<th>Metabolic Pattern for B. subtilus Inoculated Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sugars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(^{14})C D-glucose</td>
<td>300</td>
<td>+</td>
</tr>
<tr>
<td>1(^{14})C L-glucose</td>
<td>5</td>
<td>sI</td>
</tr>
<tr>
<td>U(^{14})C sucrose</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1(^{14})C lactose</td>
<td>23</td>
<td>+</td>
</tr>
<tr>
<td>U(^{14})C D-xylose</td>
<td>10</td>
<td>+</td>
</tr>
<tr>
<td>U(^{14})C cellulose</td>
<td>40</td>
<td>+</td>
</tr>
<tr>
<td>Amino Acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring 1(^{14})C D-phenylalanine</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1(^{14})C L-valine</td>
<td>3</td>
<td>sI</td>
</tr>
<tr>
<td>1(^{14})C DL-valine</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>1(^{14})C DL-methionine</td>
<td>2</td>
<td>sI</td>
</tr>
<tr>
<td>U(^{14})C Glycine</td>
<td>2</td>
<td>sI</td>
</tr>
<tr>
<td>U(^{14})C D-alanine</td>
<td>4</td>
<td>sI</td>
</tr>
<tr>
<td>U(^{14})C L-alanine</td>
<td>18</td>
<td>+</td>
</tr>
<tr>
<td>Krebs Cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(^{14})C citrate</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>U(^{14})C alpha-ketoglutarate</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
A response ratio of greater than five was considered positive, a ratio of two - five was considered slight and a ratio of < 2 was considered negative. The result produced a profile for the B. subtilus soil as shown in Table 3. Although the list of test substrates is far from complete, the principal of the approach is illustrated. If sufficient substrates from each group had been tested, the following predictions concerning the physiology of the unknown organism(s) might be made:

- The carbohydrates tested are readily metabolized except for sucrose.
- The amino acids tested are not actively metabolized with the exception of L-alanine.
- The Krebs cycle intermediates tested are not metabolized.

A library of activities by various organisms whose physiology is well known needs to be established. Such data on Martian organisms, along with temperature and inhibitor studies, which could follow the same methodological line as for the substrate study, would provide a considerable description and a basis for comparison with terrestrial biochemistry. A great deal of information may be extracted from the results of each test. For example, the above series shows that the organism is capable of metabolizing 5-carbon and 6-carbon monosaccharides, breaking down lactose but not sucrose (indication of a specific enzyme activity) and degrading cellulose. In addition, the optical isomer preference indicates whether or not an evolutionary choice had been made and what it was. But caution must
be exercised in attempting to draw conclusions concerning the pathways of metabolism which may exist. Several factors other than the presence or absence of specific pathways may strongly affect results. Cell permability, active transport and, perhaps, the existence of extracellular enzymes may determine whether a specific substrate may actually be available for disassembly by the cell "machinery". Alternate routes of metabolism may exist which are influenced by environmental conditions and the physiological state of the organisms. Some of these alternate routes may produce CO$_2$ while others do not. Some amino acids may be fermented with the production of CO$_2$ or they may be incorporated into stable cellular protein. Oxidation as opposed to fermentation may also occur. The mere fact that 14CO$_2$ is evolved from 14C labeled citrate does not constitute evidence for the citric acid cycle. The production of 14CO$_2$ from labeled substrates in conjunction with inhibitor blocked pathways may contribute more specific information. In addition, the 14C-organic uptake experiment may clarify interpretation.

2. Combined Substrate Addition

Three media were prepared which contained all the substrates in a chemical category, which had been tested individually. The media contained the following:

Carbohydrate Medium

- 1 14C D-glucose, 1 14C L-glucose
- UL 14C sucrose, 1 14C lactose all 2×10^{-4}M, 2 µCi/ml
- UL 14C D-xylose, 6.6×10^{-4}M, 2 µCi/ml
Amino Acid Medium

1 14C L-valine, 1 14C D-valine, 1 14C DL-methionine,
UL 14C glycine, UL 14C D-alanine, UL 14C L-alanine
all 1.43×10^{-4} M, 1.43 µCi/ml.
Ring 1 14C DL-phenylalanine 6.72×10^{-4}M, 1.43 µCi/ml.

Krebs Cycle Medium

1 14C citrate, UL 14C alpha-ketoglutarate both 5×10^{-4}M,
5 µCi/ml.

The experiments were conducted in aluminum planchets using 0.5 g of
natural Wyaconda, sterile Wyaconda and B. subtilus inoculated Wyaconda
soil and 0.1 ml of medium.

Results are shown in Figures 23, 24 and 25. It appears that
the combination of citrate and alpha-ketoglutarate produced a stronger
response from natural Wyaconda soil than the other two groups-carbohydrates
and amino acids. On the other hand, only carbohydrates produced a significant
response from the B. subtilus inoculated soil.

3. Multiple Addition

The same series of substrates which were tested individually
and combined were also tested in the multiple addition mode. The procedure
was to add single labeled substrate to natural Wyaconda soil and monitor
the evolution of radioactivity. When this evolution reached an apparent
plateau, a second addition of soil and medium was made. The concentra-
tion and specific activity of the substrates was as given in Table 2. The soil
FIGURE 23

Evolution of $^{14}\text{CO}_2$ from Medium Containing ^{14}C Labeled Carbohydrates

Soil: 0.5 g of
- natural Wyconda
- sterile Wyconda
- sterile Wyconda inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing:
- 14C D-glucose (2 uCi/ml, 2 x 10$^{-4}$M)
- 14C L-glucose (2 uCi/ml, 2 x 10$^{-4}$M)
- UL 14C sucrose (2 uCi/ml, 2 x 10$^{-4}$M)
- 14C lactose (2 uCi/ml, 2 x 10$^{-4}$M)
- UL 14C D-xylose (2 uCi/ml, 2 x 10$^{-4}$M)
FIGURE 24

Evolution of $^{14}\text{CO}_2$ from Medium Containing ^{14}C Labeled Amino Acids

Soil: 0.5 g of ⊗ - natural Wyconda
○ - sterile Wyconda
△ - sterile Wyconda inoculated with B. subtilis

Medium: 0.1 ml of H_2O containing:

- Ring 1^{14}C DL-phenylalanine (1.43 μCi/ml, 6.7 x 10^{-4} M)
- 1^{14}C L-valine (1.43 μCi/ml, 1.43 x 10^{-4} M)
- 1^{14}C D-valine (1.43 μCi/ml, 1.43 x 10^{-4} M)
- 1^{14}C DL-methionine (1.43 μCi/ml, 1.43 x 10^{-4} M)
- UL 1^{14}C glycine (1.43 μCi/ml, 1.43 x 10^{-4} M)
- UL 1^{14}C D-alanine (1.43 μCi/ml, 1.43 x 10^{-4} M)
- UL 1^{14}C L-alanine (1.43 μCi/ml, 1.43 x 10^{-4} M)
FIGURE 25

Evolution of 14CO$_2$ from Medium Containing 14C Labeled Citrate and Alpha-ketoglutarate

Soil: 0.5 g of
- natural Wyacconda
- sterile Wyacconda
- sterile Wyacconda inoculated with B. subtilus

Medium: 0.1 ml of H$_2$O containing:
- 1C citrate (5 uCi/ml, 5×10^{-4}M)
- UL 14C α-ketoglutarate (5 uCi/ml, 5×10^{-4}M)
to liquid ratio was 0.5 g/0.1 ml in all cases. The course of $^{14}\text{CO}_2$ evolution and substrate and soil addition was as given in Figures 26 to 37. A separate culture tube was used for each category of substrates.

Figures 26-29 show successive additions of 14C carbohydrates to a single vial. Incubation time and cumulative radioactive evolution are progressive and continuous in these figures. The plateau in $^{14}\text{CO}_2$ evolution from preceding soil medium additions is shown for each subsequent addition. Figures 30-36 show successive additions of 14C amino acids made to a single vial.

The cumulative evolved radioactivity and maximum viable/sterile response ratio was determined for each substrate addition to natural Wyaconda soil. These calculated values are given in Table 4. Correlation of results obtained with the single and multiple addition modes is good. Both techniques showed a strong response to all substrates tested. There were also indications of a correlation in the magnitude of the response ratio which was obtained. The average response ratio from carbohydrates: Amino Acids:Krebs Cycle was:

- **Single Addition**: 150:47:10
- **Multiple Addition**: 145:25:25
- **Combination Single Addition**: 65:20:20

In both the single addition mode and the multiple addition mode, D-glucose produced the highest response ratio and alpha-ketoglutarate produced the lowest response ratio. The cumulative evolved radioactivity was similar.
FIGURE 26

Evolution of 14CO$_2$ from 14C D-Glucose and 14C L-Glucose
Multiple Addition Mode

- 14C L-glucose
- 14C D-glucose
- Cumulative control (heat sterilized soil)

Arrow (↑) indicates addition of 0.1 ml L-glucose and 0.5 g Natural Wyaconda Soil

Cumulative Evolved Radioactivity (cpm x 10$^{-3}$)

Time (hr.)
FIGURE 27

Evolution of $^{14}\text{CO}_2$ from $^{14}\text{C D-Xylose}$
Multiple Addition Mode

- \bullet - Evolution from $^{14}\text{C D-xylose}$
- Δ - Evolution from $^{14}\text{C L-glucose}$
- \circ - Cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml $^{14}\text{C D-xylose}$ and 0.5 g Natural Wyacorda Soil

Cumulative Evolved Radioactivity (cpm x 10^-3)

Time (hr.)
FIGURE 28

Evolution of $^{14}\text{CO}_2$ from 14C Sucrose
Multiple Addition Mode

- evolution from 14C sucrose
- evolution from 14D-xylose
- cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml 14C Sucrose
0.5 g Natural Wyaconda Soil
FIGURE 29

Evolution of $^{14}\text{CO}_2$ from ^{14}C Lactose
Multiple Addition Mode

- Θ - evolution from ^{14}C lactose
- Δ - evolution from ^{14}C sucrose
- \bigcirc - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml ^{14}C sucrose
and 0.5 g Natural Wyaconda Soil

Cumulative Evolved Radioactivity (cpm x 10^-3)

Time (hr.)

(2800 cpm)
FIGURE 30
Evolution of 14CO$_2$ from 14C L-Alanine
Multiple Addition Mode

Cumulative Evolved Radioactivity (cpm x 10^-3)

○ Evolution from 14C L-alanine
○ - cumulative control (heat sterilized soil)

Time (hr.)

(1200 cpm)
FIGURE 31
Evolution of \(^{14}\)CO\(_2\) from \(^{14}\)C D-Alanine
Multiple Addition Mode

- \(\circ\) - evolution from \(^{14}\)C D-alanine
- \(\triangle\) - evolution from \(^{14}\)C L-alanine
- \(\bigcirc\) - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml \(^{14}\)C D-alanine and 0.5 g Natural Wyconda Soil

Cumulative Evolved Radioactivity (cpm x 10\(^{-3}\))

Time (hr.)

(2500 cpm)
FIGURE 32

Evolution of 14CO$_2$ from 14C Glycine
Multiple Addition Mode

- evolution from 14C glycine
- evolution from 14C D-alanine
- cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml 14C glycine and 0.5 g Natural Wyaconda soil

Cumulative Evolved Radioactivity (cpm x 10$^{-3}$)

Time (hr.)

(4500 cpm)
FIGURE 33
Evolution of $^{14}\text{CO}_2$ from $^{14}\text{C L-Valine}$
Multiple Addition Mode

- \bullet - evolution from $^{14}\text{C L-Valine}$
- \triangle - evolution from $^{14}\text{C glycine}$
- \circ - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml $^{14}\text{C L-Valine}$ and 0.5 g Natural Wyaconda Soil

Cumulative Evolved Radioactivity (cpm x 10^{-3})

Time (hr.)

260 280 300 320 340 360

240 260 280 300 320 340 360 380

(7,000 cpm)
FIGURE 34
Evolution of $^{14}\text{C} \text{CO}_2$ from $^{14}\text{C} \text{DL-Valine}$
Multiple Addition Mode

- \bullet - evolution from $^{14}\text{C} \text{DL-Valine}$
- Δ - evolution from $^{14}\text{C} \text{L-Valine}$
- \circ - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml $^{14}\text{C} \text{DL-Valine}$ and 0.5 g Natural Wyaconda Soil
FIGURE 35

Evolution of 14CO$_2$ from 14C Methionine
Multiple Addition Mode

○ - evolution from 14C methionine
△ - evolution from 14C DL-valine
○ - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml 14C Methionine and 0.5 g Natural Wyaconda Soil

Cumulative Evolved Radioactivity (cpm x 10^-3)

Time (hr.)

520 540 560 580 600 620 640 660

470 490 510 530 550

(18,000 cpm)
FIGURE 36
Evolution of $^{14}\text{CO}_2$ from $^{14}\text{C DL-Phenylalanine}$
Multiple Addition Mode

- o - evolution from Ring 1 $^{14}\text{C DL-phenylalanine}$
- △ - evolution from $^{14}\text{C DL-methionine}$
- o - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml Ring 1 $^{14}\text{C DL-phenylalanine}$ and 0.5 g Natural Wyaconda Soil

Cumulative Evolved Radioactivity (cpm x 10^-3)

Time (hr.)
FIGURE 37

Evolution of 14CO$_2$ from 14C Citrate and 14C Alpha-Ketoglutarate
Multiple Addition Mode

- • - evolution from UL 14C alpha ketoglutarate
- △ - evolution from 1 14C citrate
- ○ - cumulative control (heat sterilized soil)

Arrow (↓) indicates addition of 0.1 ml UL 14C α-Ketoglutarate and 0.5 g Natural Wyaconda Soil.
<table>
<thead>
<tr>
<th>Substrate</th>
<th>Single Addition</th>
<th>Multiple Addition</th>
<th>Combination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-glucose</td>
<td>70,000</td>
<td>1,200</td>
<td>73,000</td>
</tr>
<tr>
<td>L-glucose</td>
<td>20,000</td>
<td>44</td>
<td>30,000</td>
</tr>
<tr>
<td>Sucrose</td>
<td>100,000</td>
<td>370</td>
<td>95,000</td>
</tr>
<tr>
<td>Lactose</td>
<td>90,000</td>
<td>250</td>
<td>105,000</td>
</tr>
<tr>
<td>Xylose</td>
<td>50,000</td>
<td>62</td>
<td>80,000</td>
</tr>
<tr>
<td>Cellulose</td>
<td>50,000</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>63,000</td>
<td>150</td>
<td>76,000</td>
</tr>
<tr>
<td>Amino Acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL-Phenylalanine</td>
<td>60,000</td>
<td>100</td>
<td>105,000</td>
</tr>
<tr>
<td>L-valine</td>
<td>60,000</td>
<td>33</td>
<td>140,000</td>
</tr>
<tr>
<td>DL-valine</td>
<td>60,000</td>
<td>18</td>
<td>115,000</td>
</tr>
<tr>
<td>Methionine</td>
<td>40,000</td>
<td>12</td>
<td>140,000</td>
</tr>
<tr>
<td>Glycine</td>
<td>100,000</td>
<td>40</td>
<td>105,000</td>
</tr>
<tr>
<td>D-alanine</td>
<td>60,000</td>
<td>100</td>
<td>60,000</td>
</tr>
<tr>
<td>L-alanine</td>
<td>60,000</td>
<td>100</td>
<td>83,000</td>
</tr>
<tr>
<td>Avg.</td>
<td>63,000</td>
<td>47</td>
<td>93,000</td>
</tr>
<tr>
<td>Krebs Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Citrate</td>
<td>120,000</td>
<td>110</td>
<td>170,000</td>
</tr>
<tr>
<td>Alpha-Ketoglutarate</td>
<td>80,000</td>
<td>10</td>
<td>85,000</td>
</tr>
<tr>
<td>Avg.</td>
<td>100,000</td>
<td>10</td>
<td>127,000</td>
</tr>
</tbody>
</table>

*Cumulative viable/cumulative sterile
for both addition modes during carbohydrate additions. However, the multiple additions of amino acids resulted in a greater cumulative evolved radioactivity than the single additions. It may be that organisms which were conditioned to amino acids by prior additions produced CO₂ more rapidly and efficiently from later additions. Precautions to avoid contact of medium with cells stimulated by an earlier medium addition should be taken. Nevertheless, this experiment demonstrated the feasibility of testing many different substrates with relatively simple equipment, similar to that currently planned for Viking 1975.

D. Inhibitor Study

A series of experiments were conducted to test the feasibility of the multiple addition mode as a means of determining critical inhibitory concentrations of various antimetabolites. The experimental design was to add an inhibitor at a given concentration to ¹⁴C-labeled growth medium which was added in turn to natural soil in a culture chamber. Evolved radioactivity was used as the criterion for growth and/or metabolism. Sequential additions of soil medium and a range of inhibitor concentrations were added to a single growth chamber to test the possibility of establishing a soil medium inhibitory concentration with a single culture chamber. The procedure used in these experiments was as follows:

1. Natural Wyaconda and heat-sterilized Wyaconda soil (0.5 g) in duplicate were added to four sterile culture tubes.
2. RM9 medium containing UL 14C D-glucose 6 μCi/ml, 2.5×10^{-4}M; 14C formate 1 μCi/ml, 2.5×10^{-4}M; UL 14C glycine, 2 μCi/ml, 2.5×10^{-4}M; and UL 14C-lactate 3 μCi/ml, 2.5×10^{-4}M was mixed with a given concentration of iodoacetic acid (IAA) in the ratio of 0.1 ml RM9:0.05 ml (IAA).

3. This mixture (0.15 ml) was added to each of the soils in the culture tubes.

4. Evolved radioactivity was collected with Ba(OH)$_2$ impregnated filter pads which were changed at intervals.

5. After the evolution of radioactivity had reached an apparent plateau, the addition of soil, medium and a different concentration of IAA was added to the same culture tubes used in the preceding experiment. Control soil (heat sterilized) was always added to the same culture tubes used previously for control soils.

It was expected that the order of addition, i.e., higher to lower concentrations or visa versa, might affect results. The experiment was, therefore, conducted with subsequent additions proceeding both toward a higher concentration of IAA from zero concentration and toward zero concentration from an initial concentration of 10^{-1}M. The results of this experiment are shown in Figures 38a and 38b.
FIGURE 38a

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Concentration Decreasing

Each Addition Included
Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml of IAA mixed with medium

- 3×10^{-1} M
- 3×10^{-2} M
- 3×10^{-3} M
- 3×10^{-4} M
- 3×10^{-5} M
- 3×10^{-6} M

Control soils (heat sterilized - not shown) produced no more than a cumulative of 500 cpm throughout an individual experiment.
FIGURE 38b

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Concentration Increasing

Each Addition Included:

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml of IAA mixed with medium

Cumulative Evolved Radioactivity (cpm x 10^{-3})

Control soils (heat sterilized - not shown) produced no more than a cumulative of 500 cpm throughout an individual experiment.
Figures 39-44 show the $^{14}\text{CO}_2$ evolution which resulted from successive increasing concentrations of IAA in ^{14}C labeled medium and soil to a single vial. Incubation time and cumulative radioactive evolution are progressive and continuous in these figures. The plateau in $^{14}\text{CO}_2$ evolution from proceeding soil-medium-inhibitor additions is shown for each subsequent addition. Figures 45a-49 show the results of adding successive decreasing concentrations of inhibitor.

Sequential additions of IAA from a high of 10^{-1}M to lower concentrations, as shown in Figure 38a, gave good inhibition at concentrations of 10^{-1}, 10^{-2} and 10^{-3}M. The 10^{-4}M concentration showed only slight inhibition. There may have been stimulation at the 10^{-5}M concentration.

Sequential additions of IAA from zero to higher concentrations produced the results as shown in Figure 38b. The initial addition, containing no IAA produced an "S" shaped curve which differed from all other curves by showing a lag in evolution. These results are in agreement with those shown in Figure 6, which were obtained earlier. These results mean that sufficient liquid was present to percolate down through the soil and contact acclimated cells produced by the previous and underlying soil and medium. The gradual increase in concentrations of IAA probably resulted in the growth of restant types or mutants since even the highest concentration of IAA tested (10^{-1}M) failed to produce much more than 50% inhibition of the cumulative response obtained when no IAA was present. As in the
FIGURE 39

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

\[\Delta - 0 \text{ concentration of IAA} \]
\[\bullet - 10^{-6} \text{ M IAA} \]

Arrow (↑) indicates addition of 10^{-6} M IAA, 0.1 ml medium, and 0.5 g soil
FIGURE 40

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration

Soil: 0.5 g Wyacunda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

Arrow (↑) indicates addition of 10^{-5}M IAA, 0.1 ml medium, and 0.5 g soil

- 10^{-6}M IAA
- 10^{-5}M IAA
FIGURE 41

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

\(\Delta - 10^{-5} \text{M IAA} \)
\(\bullet - 10^{-4} \text{M IAA} \)

Arrow (↓) indicates addition of 10^{-4}M IAA, 0.1 ml medium, and 0.5 g soil
FIGURE 42

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

$\Delta - 10^{-4} \text{M IAA}$
$\circ - 10^{-3} \text{M IAA}$

Arrow (↓) indicates addition of 10^{-3} IAA, 0.1 ml medium, and 0.5 g soil

Cumulative Evolved Radioactivity (cpm x 10⁻³)

Time (hr.)
FIGURE 43

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration

Soil: 0.5 g Wyconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

△ - 10^-3 M IAA
○ - 10^-2 M IAA

Arrow (↑) indicates addition of 10^-2 M IAA, 0.1 ml medium, and 0.5 g soil
FIGURE 44

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Increasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

△ - 10^{-2} M IAA
○ - 10^{-1} M IAA

Arrow (↑) indicates addition of 10^{-1} M IAA, 0.1 ml medium, and 0.5 g soil
FIGURE 45a
Inhibition by Iodoacetic Acid (IAA) Multiple Addition Mode, Decreasing Concentration

Soil: 0.5 g Wyconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

FIGURE 45b
Inhibition of Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration

Soil: 0.5 g Wyconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium
FIGURE 46

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

$\begin{align*}
\Delta &- 10^{-3}M \text{ IAA} \\
\circ &- 10^{-4}M \text{ IAA}
\end{align*}$

Arrow (↓) indicates addition of $10^{-4}M$ IAA, 0.1 ml medium, and 0.5 g soil
FIGURE 47

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration

Soil: 0.5 g Wyaccona
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

Arrow (↑) indicates addition of 10^{-5}M IAA, 0.1 ml medium, and 0.5 g soil

- 10^{-4}M IAA
- 10^{-5}M IAA
FIGURE 48

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

Arrow (↓) indicates addition of \(10^{-6}\)M IAA
0.1 ml medium, and 0.5 g soil

\(\Delta\) - \(10^{-5}\)M IAA
\(\circ\) - \(10^{-6}\)M IAA
FIGURE 49

Inhibition by Iodoacetic Acid (IAA), Multiple Addition Mode, Decreasing Concentration

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM 9
Inhibitor: 0.05 ml IAA mixed with medium

△ - 10^{-6} M IAA
○ - 0 concentration of IAA

Arrow (↓) indicates addition of 0 concentration IAA, 0.1 ml medium, and 0.5 g soil

Cumulative Evolved Radioactivity (cpm x 10^{-3})

Time (hr.)
previous experiment, there appeared to be stimulation of 14C evolution by low concentrations of IAA.

In an attempt to verify the results of the multiple addition experiment, a single addition experiment was performed in which each concentration of IAA was added to soil in separate planchets. The results of this experiment, which are shown in Figure 50, support the multiple addition experiment when addition was in order of decreasing concentration. However, less inhibition at 10^{-3} M IAA was observed in the single addition experiment. The actual concentration in the multiple addition experiments was probably much higher due to the movement upward of IAA from underlying experiments conducted with 10^{-2} and 10^{-1} M concentrations.

The values graphed in Figure 50 are the averages of duplicates which showed considerable spread at the low and zero concentrations of IAA. Nevertheless, it appears that 10^{-6} M IAA may have been stimulatory.

This series of experiments demonstrates the possible utility of the multiple addition mode. However, the influence of an underlying soil culture was observed. Further tests should minimize this influence by either using a larger soil sample so that the new addition of medium does not reach the underlying acclimated cells or using a barrier of inert material.
FIGURE 50

Inhibition by Iodoacetic Acid (IAA), Single Addition Mode

Experimental Conditions

Soil: 0.5 g Wyaconda
Medium: 0.1 ml RM9
Inhibitor: 0.05 ml IAA mixed with medium

- 3×10^{-1} M
- 3×10^{-2} M
- 3×10^{-3} M
- 3×10^{-4} M
- 3×10^{-5} M
- 3×10^{-6} M

Control soils (heat sterilized - not shown) produced no more than a cumulative of 2500 cpm.
II. NITROGEN FIXATION

A. Introduction

Considerable progress in the understanding of nitrogen fixing systems has been made in recent years. In 1966, Scholhorn and Burris(21), and Dilworth, J. J. (2) demonstrated that the nitrogen fixing complex reduces acetylene to ethylene. This finding led the way to the development of simplified techniques for cell free studies (2, 4, 5) and in situ analysis of natural soil and water populations (6, 7, 3, 5).

The possibility of developing the ethylene reduction assay for incorporation into the complement of independent life detection experiments currently being developed in the AMML program appears attractive from several standpoints: 1.) No life detection system, thus far considered, would monitor nitrogen metabolism. Any finding concerning the presence or absence of nitrogen fixation would provide a significant contribution in knowledge. 2.) The technique is highly sensitive (two to three cells produce sufficient C$_2$H$_4$ for detection (3). 3.) There is no evidence of nonbiological ethylene production. Production of ethylene by non-N$_2$-fixing organisms is less than 0.1% of that obtained from N$_2$-grown cultures of Azotobacter vinelandii or Clostridium pasteurianum. 4.) Proven in situ capabilities of the assay indicate the test is well suited for soil
analysis. 5.) Soil samples analyzed during our study show much enhanced ethylene production in the light. The possibility of this procedure doubling as a sensitive monitor of phototrophic activity as well as nitrogen fixation makes it especially desirable for the AMML. 6.) Instrumentation technology has already been established. The basic technique is very simple.

1. **Biochemistry of Nitrogen Fixation**

Since 1960, the understanding of nitrogen fixation has advanced tremendously. For reviews of the present state of knowledge, the reader is referred to Fottrell, 1968 (4), Postgage, 1970 (9), and Hardy, et al., 1970 (3).

Two protein fractions of the nitrogenase system in both anaerobic and aerobic organisms have been identified and named molybdoferredoxin and azoferredoxin. The former contains molybdenum and nonhaem iron and is reasonably stable to air. The azoferredoxin possesses two iron and two labile sulphide groups and is irreversibly damaged by oxygen even if isolated from an aerobic microbe. Both fractions are required for nitrogen fixation or acetylene reduction.

Also required for N$_2$ reduction is ATP and an electron donor. Pyruvate has been shown to function as both electron donor and energy source wherein the phosphoroclastic reaction forms acetyl phosphate which gives rise to ATP. Inorganic electron donors such as dithionite and potassium borohydride have also been used in the presence of an ATP
BIOSPHERICS INCORPORATED

generating system. The system also has a requirement for a divalent-
cation. Mg, $^{++}$, Mn $^{++}$, Co $^{++}$, Fe $^{++}$ and Ni $^{++}$ have all been shown to function
in that order of effectiveness. N_2 is the electron acceptor in the nitrogen
fixing scheme. Therefore, the reduction of N_2 by the nitrogenase system
is shown by the following reaction:

$$N_2 + 6e + n\,(ATP + H_2) \rightarrow 2NH_3 + n\,(ADP + Pi + H^+)$$

In addition, H^+ is reduced to H_2. This reaction occurs even in the absence
of N_2 reduction. Carbon monoxide competitively inhibits N_2 reduction, but
not the hydrolysis of ATP and reduction of H^+. Of specific interest is the
fact that several other electron acceptors can function with the N_2ase
system. These compounds and their reduction products are shown in
Table 5.

TABLE 5

Substrates Reduced by Nitrogenase

$$\begin{align*}
C_2H_2 & \rightarrow C_2H_4 \\
HGN & \rightarrow CH_4 + NH_3 (+ some CH_3 NH_2) \\
CH_3 CN & \rightarrow CH_3 NH_2 + CH_4 (+ some C_2H_4 + C_2H_6) \\
N_2O & \rightarrow N_2 + H_2O \\
HN_3 & \rightarrow N_2 + NH_3
\end{align*}$$

Aside from the interesting fact that nitrogenase can couple with these
various substrates, the reduction of ethylene has provided a convenient,
simple and highly sensitive method of monitoring the rate of nitrogen
fixing metabolism. Results of the method have been compared favorably to other conventional techniques of measuring \(N_2 \) fixation. However, the sensitivity and precision of ethylene measurement by gas chromatography greatly exceeds that achieved in Kjeldahl determinations, and is much easier to perform and less expensive than \(^{15}\!N\) procedures. Techniques for in situ studies of soil microbes and symbiotic associations based on acetylene reduction have greatly expanded knowledge concerning the significance and distribution of nitrogen fixing organisms.

2. **Microorganisms Conducting Nitrogen Fixation**

Within aerobic microbes, the phenomenon of nitrogen fixation is somewhat restricted. Blue-green algae, members of the family *Azotobacteriaceae* and *Mycobacterium flavium*, are the only known aerobic organisms which fix nitrogen. However, the process is relatively widespread among facultative and obligate anaerobes. Findings concerning the inhibitory effects of oxygen on *Azotobacter* \(N_2 \)ase systems (11) and the specialized compartmentation which has developed in blue-green algae (heterocysts appear to be the site of \(N_2 \)ase activity) tends to indicate that the process is largely anaerobic. Thus, our terrestrial knowledge supports the use of the method as a life detection test on Mars.

Nitrogen fixation of agronomic importance appears to be limited to symbiotic associations (3); however, these systems are not fully understood. At least some cases of \(N_2 \) fixation in root modules have been found to be localized in the associated bacteroids.
3. **Sensitivity, Inhibition and False Positives**

Measurement of ethylene is possible at levels as low as approximately 10^{-12} moles in a 200 µl sample. Hardy, et al., have determined that *Azotobacter* produces approximately 10^{-12} moles C$_2$H$_4$/hr./cell (3). Therefore, the sensitivity of the assay is in the order of only a few cells. Stewart, et al. (12) have tested various pure cultures of blue-green algae and find that acetylene reduction in some cultures occurs at the rate of 2.5×10^{-10} moles/µg of protein/hr. Drozd and Postgate (11) studying conditions of optimum PO$_2$ in cultures of *Azotobacter*, have found acetylene reduction rates of 2.4×10^{-9} moles/µg of protein/hr. This means that approximately ten nonproliferating cells of *Azotobacter* could be detected in about ten hours.

The stoichiometry of C$_2$H$_2$ reduction shows that the number of moles of C$_2$H$_2$ reduced is equal to the number of moles of C$_2$H$_4$ formed. For each C$_2$H$_2$ reduction, two electrons are required:

$$2H^+ + 2e \rightarrow C_2H_4$$

On the other hand, reduction of N$_2$ to NH$_3$ requires the transfer of six electrons. This means that a similar rate of nitrogen fixation would produce one-third more measurable C$_2$H$_4$ than NH$_3$.

The reduction of C$_2$H$_2$ competitively inhibits N$_2$ reduction, however, in the absence of N$_2$, C$_2$H$_4$ is the only product. No detectable amounts of C$_2$H$_6$ or CH$_4$ are formed. The rate of N$_2$ase activity is similar in the
presence of either C_2H_2 or N_2. However, the ATP dependent H_2-evolving activity of N_2ase is reduced somewhat in the presence of C_2H_2. Carbon monoxide which (competitively) inhibits both C_2H_2 or N_2 reduction does not inhibit the evolution of H_2. The hypothesis of a two-site reduction, one for H^+ and one for all other electron acceptors has, therefore, been proposed. Both of these sites would compete for electrons.

Nitrogenase activity is not displayed by organisms which have been grown on a medium containing fixed nitrogen. The enzyme is either induced or a repressor is removed in the absence of fixed nitrogen. It has also been found that oxygen has an inhibitory effect on ethylene production by whole cells of Azotobacter. Partial pressures of oxygen, considerably below atmospheric, caused significant increases in activity unless the cells were acclimatized by prior culturing techniques.

The saturation constant (Km) of acetylene for both Clostridium and Azotobacter N_2ase systems is approximately 0.025 to 0.1 atmosphere (3). Even 0.5 atmosphere is not inhibitory and may be stimulatory to N_2-grown Azotobacter. However, Rice and Paul, 1971 (7) have recently found that incubation of C. pasteurianum in the presence of 0.005 atm of C_2H_2 resulted in a much greater production of cells than 0.1 atm. They also noted the cells had become pleomorphic and larger than normal under conditions of 0.1 atm C_2H_2 incubation. This problem would only occur under conditions where growth in connection with acetylene reduction was being measured.
Likewise, cautions concerning the significance of long-term incubation periods have been raised by Hardy* because the release of NH$_3$ into the medium by growing cells may cause repression of the nitrogenase enzyme.

The possibilities of false positives; i.e., nonbiological reduction of acetylene by soils has been investigated indirectly. Most in situ studies measuring ethylene have included controls to determine the increase in Kjeldahl nitrogen and 14N incorporation. Although the acetylene reduction method is more sensitive, production of ethylene is supported by N$_2$ fixation measured by the other techniques. Furthermore, ethylene is not produced in the absence of acetylene.

The high degree of sensitivity of the method has also determined that several organisms, which were previously thought to be nitrogen fixers, do not fix nitrogen.

In the present study, heat killed cultures of Azotobacter showed an initial level of N$_2$ase activity as measured by acetylene reduction. Further studies are necessary to confirm and characterize this phenomenon.

4. Method for In Situ Acetylene Reduction Studies

Methods for studying the rate of N$_2$ase activity or determining the level of nitrogen fixing biomass in natural soils and waters have been developed (3, 7, 6, 12, 13). They consist, quite simply, of

* Personnel Communication
BIOSPHERICS INCORPORATED

placing a soil sample in a container which is then flushed with 80% Ar:
20% O₂ (100% Ar or He for anaerobic systems). A quantity of C₂H₂ is
injected into the container. After incubation, a sample of gas is removed
and assayed by gas chromatography using a flame ionization detector.
Quantitation is determined by comparison of the ethylene peak height with
a standard curve.

B. Experimental Biology

A series of preliminary experiments have been performed.
The results are highly encouraging and demonstrate that the technique is
operationally simple, highly sensitive and suitable for automation.

1. Quantitation of Ethylene

An ethylene standard curve was prepared using a series
of 68.7 ml serum bottles which were cleaned, dried and capped with
rubber serum stoppers. The bottles were then serially diluted, as shown
in Table 6, using a 10 ml Hamilton gas-tight syringe.

TABLE 6

<table>
<thead>
<tr>
<th>Bottle No.</th>
<th>Moles of Ethylene/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.06 x 10⁻⁶</td>
</tr>
<tr>
<td>2</td>
<td>3.69 x 10⁻⁷</td>
</tr>
<tr>
<td>3</td>
<td>3.35 x 10⁻⁸</td>
</tr>
<tr>
<td>4</td>
<td>3.05 x 10⁻⁹</td>
</tr>
<tr>
<td>5</td>
<td>2.77 x 10⁻¹⁰</td>
</tr>
<tr>
<td>6</td>
<td>2.52 x 10⁻¹¹</td>
</tr>
<tr>
<td>7</td>
<td>2.29 x 10⁻¹²</td>
</tr>
</tbody>
</table>
BIOSPHERICS INCORPORATED

One-half ml samples of the ethylene dilutions shown in Table 6 were injected into a Hewlett Packard 7620A Research Chromatograph (flame ionization detector) fitted with a 9 ft. long, 1/8 in. diameter column containing Porapak-R. Temperature settings were: oven 55°C, injector 80°C, and detector 65°C. The carrier gas was N₂, set at a flow rate of 25 cc/min. A graph of the peak height vs. the moles of ethylene injected is shown in Figure 51. The loss of linearity at low concentrations of ethylene led to the finding that ethylene is retained by the gas-tight syringe. The standard curve was repeated using disposable plastic syringes to make the ethylene dilutions (a separate syringe for each transfer). This second curve, shown in Figure 52, was linear down to the limits of sensitivity of the instrument.

2. Methods of Soil Analysis

Weighed quantities of soil were placed in 3.5 ml serum capped vials which were twice evacuated and flushed for 1.5 min. with a flush gas containing 20.2% O₂ and 475 ppm CO₂ in argon. Afterwards, acetylene was injected into the vials and they were incubated as described in the various experiments. After incubation, 0.5 ml samples of gas were withdrawn from the test vials and injected into the chromatographic apparatus (column and temperature as described for ethylene standard curve).
FIGURE 51

Ethylene Standard Curve Showing Effect of Syringe Contamination at Low C$_2$H$_4$ Concentrations

C$_2$H$_4$ analysis made with Model 7620A Hewlett Packard Gas Chromatograph column-porapak-R, 9 ft. x 1/8 in. diameter flame ionization detector set at 65°C N$_2$ carrier gas 25 ml/min., column temperature 55°C, injection temperature 80°C

Ethylene (Moles)
FIGURE 52

Ethylene Standard Curve

C\textsubscript{2}H\textsubscript{4} analysis made with Model 7620A
Hewlett Packard Gas Chromatograph
column—porapak-R, 9 ft. x 1/8 in. diameter
flame ionization detector set at 65°C
N\textsubscript{2} carrier gas 25 ml/min., column
temperature 55°C, Injection temperature 80°C
The experiment shown in Table 7, although preliminary in nature, pointed up the potential possibilities of the method as a life detection test. A test sample of Rock Creek mud gave a 10-fold production of ethylene as compared to an empty vial containing acetylene or samples of Wyaconda soil incubated under identical conditions. Also interest was the fact that 2 g samples of Wyaconda soil produced an average of three fold more ethylene in sunlight than under conditions of normal laboratory light. The contamination of ethylene in acetylene was found to be approximately that found in the negative controls. A more highly purified acetylene (Matheson) was obtained for future studies.

On the basis of the above results, a series of control experiments was conducted to determine the effect of light on biological and non-biological ethylene production. Glass and quartz incubation vials of approximately equal volume and configuration were used. Artificial illumination was provided by a light table containing 25 watt tungsten and power groove light bulbs (total illumination of approximately 400 foot candles. Temperature was maintained at approximately 26°C. No attempt was made to maintain temperature of the vials incubated in natural light. These vials were also subject to normal daily periodicity of light.

As shown in Tables 8 and 10, the vial type and source of illumination had no appreciable effect on nonbiological production of ethylene. The Gaithersburg field soil gave essentially the same response under all
3. Results

TABLE 7

Detection of Nitrogen Fixation by Soil and Clover Root Nodules

<table>
<thead>
<tr>
<th>Experimental Conditions</th>
<th>Moles of Ethylene Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Negative Control)</td>
<td></td>
</tr>
<tr>
<td>Empty Vial</td>
<td></td>
</tr>
<tr>
<td>0.1 atm Acetylene in Flush Gas</td>
<td>1.3×10^{-9}</td>
</tr>
<tr>
<td>Incubation = 25°C, 96 hrs.</td>
<td>1.2×10^{-9}</td>
</tr>
<tr>
<td>Glass Vials, Fluorescent Room Light</td>
<td>1.2×10^{-9}</td>
</tr>
<tr>
<td>Avg.</td>
<td>1.2×10^{-9}</td>
</tr>
</tbody>
</table>

(Positive Control)	
300 mg Clover Root Nodules	
0.1 atm Acetylene in Flush Gas	6.4×10^{-7}
Incubation = 25°C, 96 hrs.	5.6×10^{-7}
Glass Vials, Fluorescent Room Light	6.9×10^{-7}
Avg.	6.3×10^{-7}

Approx. 1 g Wet Rock Creek Mud	
0.1 atm Acetylene in Flush Gas	1.6×10^{-8}
Incubation = 25°C, 96 hrs.	4.2×10^{-8}
Glass Vials, Natural Sunlight	**Avg. 2.9 \times 10^{-8}**

2 g Wyaconda Soil (Fresh)	6.6×10^{-9}
0.1 atm Acetylene in Flush Gas	2.4×10^{-9}
Incubation = 25°C, 96 hrs.	9.7×10^{-9}
Glass Vials, Natural Sunlight	**Avg. 7.1 \times 10^{-9}**

2 g Wyaconda Soil (Fresh)	1.2×10^{-9}
0.1 atm Acetylene in Flush Gas	1.2×10^{-9}
Glass Vials, Fluorescent Room Light	**Avg. 1.2 \times 10^{-9}**

0.05 g Wyaconda Soil (Fresh)	1.2×10^{-9}
2 ml RM9 without Fixed Nitrogen	1.4×10^{-9}
0.1 atm Acetylene in Flush Gas	1.3×10^{-9}
Incubation = 25°C, 96 hrs.	3.5×10^{-9}
Glass Vials, Fluorescent Room Light	**Avg. 2.0 \times 10^{-9}**
TABLE 8

Effect of Glass vs. Quartz Vials and Natural vs. Artificial Light on Nonbiological Acetylene Reduction

<table>
<thead>
<tr>
<th>Vial Type</th>
<th>Dark</th>
<th>Natural Light</th>
<th>Artificial Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>3.0 x 10^{-11} 7.5 x 10^{-11} Avg. 5.2 x 10^{-11}</td>
<td>2.8 x 10^{-11}</td>
<td>1.7 x 10^{-11} 2.1 x 10^{-11} 3.6 x 10^{-11} Avg. 2.5 x 10^{-11}</td>
</tr>
<tr>
<td>Glass</td>
<td>2.8 x 10^{-11} 5.3 x 10^{-11} 4.5 x 10^{-11}</td>
<td>3.0 x 10^{-11} 7.5 x 10^{-11} Avg. 5.2 x 10^{-11}</td>
<td>5.3 x 10^{-11} 4.5 x 10^{-11}</td>
</tr>
</tbody>
</table>

Experimental Conditions

No soil Added
0.1 atm Acetylene in Flush Gas
Incubation = 26°C, 69 hours.
TABLE 9

Effect of Glass vs. Quartz Vials and Natural vs. Artificial Light on Acetylene Reduction by Natural Rock Creek Mud

<table>
<thead>
<tr>
<th>Vial Type</th>
<th>Natural Light</th>
<th>Artificial Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>2.9 x 10^{-8} *</td>
<td>5.3 x 10^{-9}</td>
</tr>
<tr>
<td></td>
<td>7.2 x 10^{-10}</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>1.4 x 10^{-8}</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>2.0 x 10^{-11}</td>
<td>9.8 x 10^{-9}</td>
</tr>
<tr>
<td></td>
<td>7.0 x 10^{-12}</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>1.4 x 10^{-11}</td>
<td></td>
</tr>
</tbody>
</table>

Experimental Conditions

1 g Rock Creek Mud
0.1 atm Acetylene in Flush Gas
Incubation = 26°C, 69 hrs.

* The large difference between viable responses is thought to have resulted from the nonhomogeneous nature of the Rock Creek Mud. No attempt was made to homogenize the sample which had noticeable pockets of green growth.
TABLE 10

Effect of Glass vs. Quartz Vials and Natural vs. Artificial Light on Acetylene Reduction by Natural Field Soil

<table>
<thead>
<tr>
<th>Vial Type</th>
<th>Moles C$_2$H$_4$/0.5 ml Sample</th>
<th>Natural Light</th>
<th>Artificial Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartz</td>
<td>5.7 x 10$^{-11}$</td>
<td>4.9 x 10$^{-11}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.9 x 10$^{-11}$</td>
<td>5.8 x 10$^{-11}$</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>4.3 x 10$^{-11}$</td>
<td>5.4 x 10$^{-11}$</td>
<td></td>
</tr>
<tr>
<td>Glass</td>
<td>5.7 x 10$^{-11}$</td>
<td>5.0 x 10$^{-11}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.4 x 10$^{-11}$</td>
<td>3.6 x 10$^{-11}$</td>
<td></td>
</tr>
<tr>
<td>Avg.</td>
<td>5.0 x 10$^{-11}$</td>
<td>4.7 x 10$^{-11}$</td>
<td></td>
</tr>
</tbody>
</table>

Experimental Conditions

1 g Field Soil (Gaithersburg)
0.1 atm Acetylene in Flush Gas
Incubation = 26°C, 69 hrs.
incubation conditions, and that level was essentially the same as that obtained from incubation of acetylene in an empty vial.

Rock Creek mud (Table 9) did give a positive response. In natural sunlight, quartz vials showed a greater response than glass vials. However, the responses from the two vial types differed less under artificial light. Natural light appeared to produce more activity than artificial light when quartz vials were used; however, the quantitation and duplication of experiments exposed to natural light was difficult. The decision was made to use artificial illumination in quartz vials for further testing.

To test the response obtained from nonviable soils, samples were heated at 215°C for 30 minutes prior to testing by the acetylene reduction technique.

TABLE 11
Nitrogen Fixation by Rock Creek Mud

<table>
<thead>
<tr>
<th>Moles C₂H₄/0.5 ml Sample</th>
<th>Viable Soil</th>
<th>Nonviable Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dark</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>2.5 x 10⁻⁹</td>
<td>2.3 x 10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>3.9 x 10⁻¹⁰</td>
<td>2.5 x 10⁻⁷</td>
</tr>
<tr>
<td>Avg. 1.5 x 10⁻⁹</td>
<td>Avg. 2.4 x 10⁻⁷</td>
<td>Avg. 1.8 x 10⁻¹¹</td>
</tr>
</tbody>
</table>

Experimental Conditions

1 g Rock Creek Mud
0.1 atm Acetylene in Flush Gas
Incubation = 26°C, 64 hrs.
TABLE 12

Attempt to Detect Nitrogen Fixation in Wyaconda Soil

<table>
<thead>
<tr>
<th>Moles C₂H₄/0.5 ml Sample</th>
<th>Viable Soil</th>
<th>Nonviable Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dark</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>8.8 x 10⁻¹²</td>
<td>9.6 x 10⁻¹²</td>
</tr>
<tr>
<td></td>
<td>8.0 x 10⁻¹²</td>
<td>8.1 x 10⁻¹²</td>
</tr>
</tbody>
</table>

Experimental Conditions

1 g Wyaconda Soil
0.1 atm Acetylene in Flush Gas
Incubation = 26°C, 64 hrs.

Rock Creek mud (viable) again produced an excellent response. The production of ethylene incubated in the dark was two orders of magnitude greater than the heat sterilized control. The production of ethylene by mud in the light was two orders of magnitude greater than that incubated in the dark. Therefore, the overall viable response from 1 g of Rock Creek mud (light incubation of viable vs. sterile control) was four orders of magnitude.

The Wyaconda soil sample showed no viable response. These results indicate that the population of nitrogen fixing aerobic microbes in this latter soil, if present at all, is below the limits of detection.

Also interesting in this experiment is the fact that heat treated Rock Creek mud showed approximately 2-3 fold more ethylene than the heat treated Wyaconda Soil. There are three possible explanations:
1. The soil itself is capable of catalyzing acetylene reduction.
2. Heat treatment did not kill all the soil microorganisms.
3. Heat treatment killed all organisms but did not completely deactivate the nitrogenase.

Evidence provided by a later experiment supports the third explanation. A time course experiment involving viable and heat sterilized cultures of *Azotobacter* showed an initial rate of N$_2$ase activity that was comparable to the viable cultures. This activity was relatively short lived and reached a plateau much below the viable response plateau. The existence of heat stable nitrogenase enzyme would explain the fact Rock Creek mud gave the higher fixing biomass.

A number of freshly collected and laboratory stored soil samples were tested by the acetylene reduction method. The concentration of acetylene was reduced in these experiments, as shown in Tables 13A and 13b.

TABLE 13a

Attempts to Detect Nitrogen Fixation in Laboratory Stored Soils

<table>
<thead>
<tr>
<th>Sample</th>
<th>Moles C$_2$H$_4$/0.5 ml Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viable</td>
</tr>
<tr>
<td>C$_2$H$_2$ alone</td>
<td>3.2×10^{-11}</td>
</tr>
<tr>
<td>1 g Creek Bed Soil</td>
<td>5.6×10^{-11}</td>
</tr>
<tr>
<td>1 g Woody Soil</td>
<td>6.6×10^{-11}</td>
</tr>
<tr>
<td>1 g Victoria Valley Soil</td>
<td>1.2×10^{-11}</td>
</tr>
<tr>
<td>1 g Mojave Soil</td>
<td>3.8×10^{-11}</td>
</tr>
<tr>
<td></td>
<td>7.6×10^{-11}</td>
</tr>
<tr>
<td></td>
<td>7.0×10^{-11}</td>
</tr>
<tr>
<td></td>
<td>5.5×10^{-11}</td>
</tr>
</tbody>
</table>

Experimental Conditions

0.04 atm C$_2$H$_4$ in Flush Gas
Incubation = 26°C, 7 days

N.B. All soils had been air dried and stored in the Biospherics soil collection at least one year prior to testing.
TABLE 13b
Detection of Nitrogen Fixation in Fresh Soils

<table>
<thead>
<tr>
<th>Test Sample</th>
<th>Viable</th>
<th>Sterile</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_2H_2 alone</td>
<td>5.8×10^{-11} 6.1×10^{-11}</td>
<td>--------</td>
</tr>
<tr>
<td>1 g Wyconda Mud (fresh)</td>
<td>9.5×10^{-10} 2.4×10^{-9}</td>
<td>7.6×10^{-11} 8.1×10^{-11}</td>
</tr>
<tr>
<td>1 g Rock Creek Mud (fresh)</td>
<td>1.6×10^{-9} 1.9×10^{-9}</td>
<td>7.0×10^{-11} 8.5×10^{-11}</td>
</tr>
</tbody>
</table>

Experimental Conditions

0.05 atm C_2H_2 in Flush Gas
Incubation = 26°C, 3.5 days

Nitrogen fixing activity was not demonstrated in soils which had been dried and stored for some time. The two freshly collected samples of mud from separate sources did show 20 to 30 fold increases in ethylene after incubation.

An experiment was performed to determine the time course of acetylene reduction from a pure culture of *Azotobacter vinelandii*. Two separate culturing systems were used. One involved 68.7 ml bottles in which 0.5 ml samples of gas were removed repeatedly from the sample bottle. The second experiment consisted of a series of 3.5 ml vials each of which was sampled one or two times. Figures 53 and 54 show the results.
Acetylene Reduction by *Azotobacter vinelandii*

![Graph showing acetylene reduction over time with different incubation vessels and initial acetylene pressures.](image-url)
Acetylene Reduction by **Azotobacter vinelandii**

- **0.05 atm Acetylene**
- **Incubation at 25°C**
- **1 ml of culture @ 5.6 x 10⁴ cells/ml**

Graph:
- **67.8 ml Incubation Bottles**
- **3.5 ml Incubation Vials**
- **Heat Sterilized Control**

Time (hr): 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120
Maximum reduction of acetylene was achieved in both systems within approximately 50 hours. As shown in Figure 53, the measurable concentration of C_2H_4 was reached at a more rapid rate in the smaller vial. But a determination of actual C_2H_4 produced (Figure 54) showed that the initial rate of reduction was greater in the larger bottle and may have been a reflection of the larger surface area and shallow depth of sample which would allow a greater diffusion rate of acetylene to the cells.

The greater dilution factor resulting from the larger incubation vessel decreased the sensitivity of the method, but may have stimulated greater acetylene reduction. Both of these factors should be considered and tested in the design of an incubation chamber that would give maximum sensitivity.

The heat sterilized control (Figure 54) showed an initial increase in C_2H_2 reduction which stopped between one to three hours. The sterility of this sample was not tested; however, the failure of acetylene reduction to continue indicates that nitrogen fixing processes had stopped. It may be that the nitrogenase was heat stable and remained active until available ATP had been utilized.
III. BIOPOLYMERS

A. Introduction

Development of a new non-geocentric life detection scheme based on the assumption that the presence of high molecular weight biopolymers (10,000) is indicative of live processes has been initiated. The rationale for this scheme is that biopolymers are a necessary constituent of terrestrial life required to code the complex and varied functions of life. Terrestrial examples include informational biopolymers such as nucleic acids, with a wide range of molecular weights up to several million, and proteins with an average molecular range from 10,000 to 500,000 (14). Even ferrodoxin, which may be the most primitive protein known, ranges in molecular weight from 6,000 to 12,000 depending on the specific organism (15). Other high molecular weight biopolymers include the polysaccharides such as cellulose (mol. wt. range of 50,000 - 400,000), starch (mol. wt. range of 50,000 - several million), and glycogen (mol. wt. range of 270,000 - 100,000,000) and the complex lipids such as lipoproteins and lipopolysaccharides (14). While it is unlikely that Martian life would contain identical biopolymers, it is quite probable that extraterrestrial life would contain analogous complex informational biopolymers. It is the purpose of this life detection scheme to search for these biopolymers in soil. Since we know of no known natural processes whereby such high molecular weight polymers are produced nonbiologically, the detection of such material would be indicative of living systems. It is of
note, however, that amino acids can abiotically condense on clay surfaces to form polypeptides ranging in molecular weight up to 2,000 and it has been suggested that similar processes may have played a catalytic part in the evolution of polypeptides (16). Further, high molecular weight "protenoids" have been artificially produced under simulated primitive reaction conditions although the evidence that similar processes occurred abiogenically in nature is inconclusive.

The search for biopolymers in soil assumes that if Martian life exists, it will exist in microbial form in soil. Thus, soil extraction coupled with grinding techniques designed to disrupt microbes should yield biopolymers along with a variety of smaller molecules which may or may not be of biological origin. It is recognized, however, that not all biopolymers are necessarily contained within microbes and some may be extracted from soil even without disrupting cellular membranes. For example, many terrestrial soil organisms produce exoenzymes such as nucleases, proteases, and phosphatases which aid digestive processes and which reside extracellularly in soil (18, 19). Once these biopolymers are obtained by extraction, the extract may be concentrated and passed through a molecular sieve column selected such that all material above a given molecular weight (for example, above 10,000) will pass directly through and be collected in a pre-selected fraction. Compounds of smaller molecular size will remain behind on the column. The isolated biopolymer fraction can be examined
for presence or absence of specific high molecular weight components or groups of components.

The advantages of such a life detection scheme are numerous. Most important is its independence from specific metabolic pathways. Thus, it is a valid and reasonable test even if Viking '75 fails to provide a positive signal. Further, tests on the isolated polymers could also yield additional important information regarding biopolymeric structure(s) and possibly aid the design of future metabolic experiments. Other possible modifications include electrophoretic separation and examination for incorporation of a radioactively labeled precursor into the biopolymeric fraction thereby providing insight into Martian metabolism. All necessary operations are compatible with the AMML instrument concept.

One possible problem with this test is that the biopolymer concentration present in soil may be quite small and detection may require extremely sensitive techniques. For example, one report (18, 20) states that the amount of soil protein is very small relative to the amount of soil amino acids. In view of the many advantages, however, we have during this quarter examined the feasibility of detecting soil biopolymers. Our results indicate that the test is indeed feasible and that biopolymer fraction can be isolated from soil by molecular sieve chromatography. Details are presented in the following section.
B. Experimental

1. Soil Extraction

For purposes of developing methodology for our new life detection scheme, we have examined protein as a model biopolymer and concentrated our efforts on its extraction from soil. Protein analyses have been determined using the Folin procedure of Lowry (21) and bovine serum albumin (BSA) as standard. This colorimetric analysis was chosen because of its ease of performance and its ability to detect as little as 10 μg protein. The Folin test for protein depends upon the reaction of tyrosine and tryptophan with Folin reagent. The test is not absolutely specific for these aromatic acids since other low molecular weight compounds such as guanosine and uric acid and cysteine also react to produce color. However, by combining the test with preliminary trichloroacetic acid (TCA) precipitation, all acid-insoluble high molecular weight protein can be removed from all acid-soluble low molecular weight material, including free amino acids. Detection of Folin reacting material in the TCA precipitate is then indicative of protein. This combined procedure is simple, sensitive, and specific for protein material.

Our experiments were conducted with fresh Wyaconda (Rockville, Maryland) soil and were initially designed to optimize the extraction of all Folin reacting material from soil. In an initial experiment, we
compared four procedures. In each of four separate vessels, 10 grams of soil were mixed with 10 ml of sterile distilled water. During the following 20 minutes, one portion was occasionally stirred, another was vigorously shaken, the third was ground with mortar and pestal, and the remaining portion was sonicated for three minutes. All procedures were conducted at 4°C. Following these operations, the extract was removed from the soil by centrifugation in a Sorvall refrigerated centrifuge at 3000 x g for five minutes followed by centrifugation at 7700 x g for five minutes. The results of this experiment are shown in Table 14. As shown, the extract obtained from sonication yielded the highest amount of Folin reacting material, indicating that such material can be extracted from soil. The other procedures (mixing, shaking, grinding) are not as effective but provide the control that the water used for the extraction procedures contributes little, if any, to the Folin reacting material extracted from soil by sonication.

Knowing the optimal sonication efficiency for this water extraction, we next attempted to improve the grinding procedure to match that of sonication. This was considered important because grinding is more adaptable to space instrumentation. The method used to improve grinding efficiency was reduction of the amount of solvent per gram of soil such that the resulting mixture formed an abrasive paste. After grinding this paste for 15 minutes at 4°C, additional liquid was added to increase the volume such that centrifugation would yield a liquid supernatant. Our experiments
TABLE 14

Extraction of Folin-Reacting Material from Soil

<table>
<thead>
<tr>
<th>Method of Extraction</th>
<th>Total µg Extracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonication (3 minutes), then Mixing</td>
<td>930</td>
</tr>
<tr>
<td>Grinding (Mortar and Pestal)</td>
<td>300</td>
</tr>
<tr>
<td>Vigorous Shaking</td>
<td>160</td>
</tr>
<tr>
<td>Mild Mixing</td>
<td>95</td>
</tr>
</tbody>
</table>

To each of four beakers was added 10 grams of fresh Wyaconda soil and 10 ml of sterile distilled water. During the following 15 minutes, the samples were treated as indicated. The supernatant was then clarified by centrifugation for 5 minutes at 3000 x g followed by centrifugation for 10 minutes at 7700 x g. All operations were performed at 4°C. Folin-reacting material present in the resulting extracts was determined by the method of Lowry (8) using BSA as standard.
showed that this procedure successfully extracted approximately 75% of the total material obtained by sonication. Since the pH of the extract was 5.8, we compared sonication and grinding in Tris buffer (a mild chelating agent as well as a buffer). Utilization of 0.1 M Tris pH 7.0 improved the yield by perhaps 10-20% for both techniques although sonication was still superior to grinding. Thus, in one experiment comparing extraction of 20 g soil with 10 ml of 0.1 M Tris pH 7.0, sonication yielded 1.1 mg of Folin reacting material whereas grinding yielded 0.77 mg. Nonetheless, abrasive grinding was chosen as the standard technique and used for subsequent experiments. This technique had the additional advantage over sonication of better temperature control during extraction.

Having successfully extracted Folin-reacting material from soil, we next determined the percentage of this material attributable to high molecular weight protein. This was accomplished by precipitation of proteins with 7% TCA and subsequent removal of protein material from free amino acids and other low molecular weight compounds by centrifugation at 1,100 x g for 20 minutes at 4°C. The BSA standards used to quantitate the colorimetric assay were similarly treated with TCA. Our first experiment indicated that most of the Folin-reacting material extracted from soil was low molecular weight acid-soluble material. Thus, the extract obtained from 20 g of soil contained approximately 590 ug of Folin-reacting material whereas the pellet derived from TCA
precipitation of this extract contained no more than 8 ug protein.
this amount approaches the lower limit of detectability, it may be
concluded that no more than 1% of the extracted material is proteinaceous.
These results agree with those reported by McLaren and Peterson (18)
who have shown a significant amount of amino acids present in soil.
Proteins on the other hand, are "...almost nil" in quantity although
activities of individual enzymes can be detected.

To obtain a better quantitative estimate of the amount of protein
actually extractable by these techniques, we then conducted an experiment
using 1000 g of fresh soil. The yield of TCA precipitable protein obtained
from this experiment was approximately 200 ug or 0.2 ug/g soil. This
clearly establishes that high molecular weight protein material can be
extracted from soil. Of the total Folin-reacting material extracted from
this soil (about 15 mg), however, only 1.3% of it was precipitable protein.
Since our experiments with molecular sieve chromatography will require
at least 1 or 2 mg of protein, it is consequently necessary either to
increase the yield per gram soil. Further experiments have examined
additional methods to increase the yield.

In considering ways to improve the yield, we noted considerable
daily variability (± 50%) in the amount of material extracted. While at
least part of this variation results from differences in grinding technique,
other factors must also be operative. In an attempt to delineate this
variability, we have compared extractions from fresh soil and from soil
stored in-house for one day (both soils obtained from the same location).

The results are shown in Table 15. As shown, the total Folin-reacting material extracted from each soil is similar (the 10% difference in amount extracted is within the range of observed experimental variation). However, the total precipitable protein is 5-fold higher from the fresh soil than from the stored soil. This may reflect hydrolysis of soil proteins and emphasizes the necessity of utilizing fresh soil daily.

Classical methods of extracting soil organic matter require the use of strong alkali (usually 0.5 N NaOH) which will usually dissolve more than half of the total organic matter (20). Such treatment has thus far been avoided in our investigations because of the possibility of hydrolysing biopolymers. However, a recent paper (22) has reported the extraction of 9.8 mg of an active enzyme preparation from 240 g of clay loam using 0.2 N NaOH as the extracting solvent. This yield (40 ug/g soil) is considerably greater than any so far obtained in our experiments. Consequently, we have performed a similar experiment whereby 200 g of fresh soil was extracted by grinding with 90 ml of 0.2 N NaOH. After separating the extract by centrifugation as previously described, the extract was immediately neutralized with HCl and examined for Folin-reacting material. It was found to contain a total of 3 mg of Folin-reacting material of which 250 ug were TCA precipitable protein. While the total Folin-reacting material is similar to our previous results, this protein yield (1.25 ug/g)
TABLE 15

Extraction of TCA-Precipitable, Folin-Reacting Material From Soil Under Various Conditions

<table>
<thead>
<tr>
<th>Expt. #</th>
<th>Soil Sample</th>
<th>Solvent</th>
<th>Folin-Reacting Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total µg Extracted</td>
</tr>
<tr>
<td>1</td>
<td>Fresh</td>
<td>0.1 M Tris pH 7.0</td>
<td>1900</td>
</tr>
<tr>
<td></td>
<td>Stored 1 Day</td>
<td>0.1 M Tris pH 7.0</td>
<td>2100</td>
</tr>
<tr>
<td>2</td>
<td>Fresh</td>
<td>0.2 N NaOH</td>
<td>1700</td>
</tr>
<tr>
<td></td>
<td>Fresh</td>
<td>0.2 N NaOH + 0.01 M EDTA</td>
<td>2400</td>
</tr>
</tbody>
</table>

To samples of 200 grams of Wyaconda soil was added 80 ml of the indicated extracting solvent. Each sample was extracted at 4°C by grinding with mortar and pestal for 15 minutes. After centrifugation, the 7700 x g supernatant was tested for Folin-reacting material (8). TCA was then added to a final concentration of 7% and the precipitated material removed by centrifugation and tested for Folin-reacting material.
soil) shows considerable improvement (6-fold) over the average yield obtained with 0.1 M Tris buffer as the extracting solvent.

In an attempt to increase this yield still further, it was noted that organic soil constituents may be complexed with polyvalent metals (20). Consequently, extraction with 0.2 N NaOH was compared in the presence and absence of the chelator ethylenediamine tetraacetic acid (EDTA). The results (Table 15) showed that EDTA enhanced the yield of TCA precipitable material by approximately 10% and provided the highest yield so far obtained (2 ug protein/g soil). Thus, the solvent finally selected for optimal extraction of protein is 0.2 N NaOH + 0.01 M EDTA. The final extraction procedure is given in Figure 55.

Since the extracting solvent must also remove other biopolymers from soil, a brief examination was made of the initial neutralized soil extract for polysaccharides which have been reported present in soil (23). Examination of the soil extract with anthrone reagent (24) gave a strong positive reaction indicated the successful removal of carbohydrate material from the soil. Experiments with molecular sieve chromatography (see later) indicated that a significant amount of this material was of high molecular weight.

It is concluded from these experiments that extraction of fresh soil with NaOH and EDTA successfully removes both protein and polysaccharide material. The following sections describe concentration of
FIGURE 55

Soil Extraction Procedure

Fresh Soil (1000 grams)

0.16 N NaOH + 0.02 N EDTA (250 ml)

Grind with Mortar & Pestal for 15 minutes at 4°C

Spin 5 minutes at 3000 x g (4°C)

Discard Pellet

Supernatant

Spin 5 minutes at 7700 x g (4°C)

Discard Pellet

Supernatant

Neutralize with HCl

Soil Extract
these biopolymers and their subsequent isolation and detection via molecular sieve chromatography.

2. Concentration of the Soil Extract

Before applying the soil extract to a molecular sieve column, it is first necessary to concentrate it. This concentration can be accomplished either by specific precipitation of the extract constituents or by removal of water.

In considering specific precipitation methods, it has already been demonstrated that TCA can precipitate proteins from the extract. We have on several occasions also attempted to concentrate protein from the extract by precipitation with 80% saturated ammonium sulfate but these attempts were unsuccessful. Since these techniques are generally less desirable because they may fractionate biopolymers rather than concentrate them, further efforts to concentrate by specific precipitation have been abandoned.

Extract concentration by removal of water can be accomplished either by lyophilization or by flash evaporation. With flash evaporation, however, possible degradation may occur to biopolymers during the required mild heating. Consequently, we have selected lyophilization as the best method for concentration of our extracted biopolymers. One other possibility which we have not yet explored is concentration by the addition of solid Sephadex, a known method (25) for the concentration of high molecular weight material.
3. Molecular Sieve Chromatography of Concentrated Soil Extract

Molecular sieve chromatography, or gel filtration, allows separation of molecules according to their molecular size (26). Two molecular sieve resins in common usage are Sephadex G (Pharmacia), consisting of a cross-linked polysaccharide dextran, and Bio-Gel P (CalBiochem), consisting of a cross-linked polyacrylamide. These resins exclude solutes of high molecular size, thereby allowing them to pass directly through the column, and retain smaller molecules which diffuse into the pores of the gel resin. Although it is generally assumed that elution patterns reflect molecular weight, it has been demonstrated (27, 28) that they actually show excellent correlation with the molecular radius or Stokes radius of the compound. A wide variety of these molecular sieve resins are available which are graded primarily according to their exclusion limit (lowest molecular weight compound that will pass directly through the resin bed without retention). For purposes of our experiments, we have arbitrarily selected 10,000 as a desirable exclusion limit and have consequently chosen Sephadex G-25 and Bio-Gel P-10 for study. Both resins are expected to exclude all compounds with molecular weights above 10,000 and to retain all molecules of smaller size.

In preparation of the molecular sieve columns to be used with concentrated soil extract, resin material of Sephadex G-25 and of Bio-Gel
P-10 was equilibrated overnight in distilled water and then packed into a column with approximate bed dimensions of 1.5 x 20 cm. Each column was then calibrated by placing 0.3 ml of a mixture containing 2 O.D. units at 600 μm of blue dextran (Pharmacia; mol. wt. = 2,000,000) and 7 O.D. units at 259 μm of adenosine triphosphate (ATP; mol. wt. of disodium salt = 632). Flow rates were adjusted to approximately 30 ml/hour. Fractions were collected in 1.0 ml volumes with a Buchler Automatic Fraction Collector (Fractomat) and the optical density of each fraction determined in a Beckman DU spectrophotometer. Since blue dextran is completely excluded from each resin, its elution position indicates the elution position for all compounds with molecular weights above 10,000. This volume, known as the void volume (V_0), is characteristic of each resin and is dependent only upon the bed dimensions of the column. The determination of the elution volume (V_e) of ATP indicates the extent of separation of excluded compounds from those which are partially retained.

In a second calibration run, a solution of 7 O.D. units at 600 μm of methylene blue (mol. wt. = 375) was also placed on each column to determine the elution position of a small molecular weight compound which would be completely retained.

Figure 56 shows the results of these calibration experiments for both Sephadex G-25 and Bio-Gel P-10. As shown, the exclusion limits (V_0) for these columns are 19 ml and 14 ml, respectively, and both
FIGURE 56

Molecular Sieve Chromatography of Blue Dextran and ATP. A 0.3 ml mixture of blue dextran (2 O.D. units at 600 mu) and ATP (7 O.D. units at 259 mu) was placed on columns containing Sephadex G-25 (A) and Bio-Gel P-10 equilibrated in distilled water. Fractions were collected in 1.0 ml volumes at an approximate flow rate of 30 ml/hr. The optical density of each fraction established the elution position of blue dextran \(V_o \) and of ATP \(V_e \). The elution position of methylene blue from each column was determined separately.
columns retain methylene blue for approximately 1500 ml*. Thus, both columns readily discriminate high molecular weight material from smaller compounds (less than 400 molecular weight). Further, the high molecular weight fraction is collected within the first few milliliters eluted from the column. The elution volume for ATP on Bio-Gel P-10 is 33 ml which indicates excellent separation from high molecular weight polymers. However, ATP elutes from Sephadex G-25 at 21 ml and is separated from blue dextran by only 2 ml. Thus, because of better separation between high molecular weight material and compounds of intermediate molecular weight, Bio-Gel P-10 is better suited for our purposes.

The soil extract to be placed on each of these columns was obtained from 5000 g of fresh Wyaconda soil according to the procedure outlined in Figure 1. The final extract, which measured 340 ml, was separated into 75 ml portions and lyophilized over a three-day period. The lyophilized material originally from 75 ml of extract was then dissolved (or suspended) in 2.0 ml of distilled water and 0.5 ml of this mixture was placed on each column. This amount represents the extracted material from approximately 250 g of soil. The sample contained a considerable amount of brown material which remained near the top of each resin bed as elution proceeded. Fractions were collected in 1.0 ml volumes and

* Methylene blue may interact ionically with both columns since its retention time is considerably longer than anticipated. Further, methyl red (mol. wt. = 269) elutes from these columns at approximately 90 ml.
the O.D. at 260 μm determined in a Beckman DU spectrophotometer. Following the optical density measurements, 0.5 ml was removed from each fraction and tested for protein content by the method of Lowry (21). With fractions from Bio-Gel P-10, consecutive fractions were next combined (i.e., tubes 1 and 2, 3 and 4, 5 and 6, etc) and 0.5 ml removed from each combination for determination of carbohydrate content by the anthrone reaction (24). Since the gel filtration had removed all low molecular weight material from these fractions, any positive reaction in the tube(s) representing the void volume is indicative of high molecular weight protein (Lowry) or polysaccharide (anthrone).

The results obtained from molecular sieve chromatography of concentrated soil extract are shown in Figure 57 and 58. The elution pattern as shown by optical density readings at 260 μm is indicated for each column. Both columns indicate that most of the eluted material is of low molecular weight, below 10,000. The elution pattern from the Sephadex G-25 column (Figure 4) shows a peak of material appearing at 21.5 ml, the approximate elution position of ATP (mol. wt. = 632). However, a leading shoulder also appears on this peak at 19 ml. Since this position is identical with that of the void volume for this column (Figure 2), the shoulder is indicative of high molecular weight material. That some high molecular weight material is indeed present is shown by the elution pattern from the Bio-Gel P-10 column. Here, a small but
Soil extract from approximately 250 g of soil was lyophilized, concentrated into 0.5 ml, and placed on a column of Sephadex G-25 equilibrated in distilled water. Fractions were collected in 1.0 ml volumes and the optical density of each determined at 260 mp (o-o-o). Each fraction was then tested for the presence of Folin-reacting material (o-o-o) by the method of Lowry (8). The position of the void volume is indicated by an arrow and was determined with blue dextran (Figure 2).
Soil extract (0.5 ml) was placed on a column of Bio-Gel P-10 and fractions collected as described in "Figure 4". The optical density of each fraction was determined at 260 nm (---). Each was then tested for Folin-reacting material (o---o) and for anthrone-reacting material (□---□). The position of the void volume is indicated by an arrow and was determined with blue dextran (Figure 2).
distinct peak appears at the precise position established for the void volume of this column. Because of the degree of resolution between high molecular weight material and material of intermediate size, the Bio-Gel P-10 column thus provides evidence for the successful elution of polymeric material.

Figures 57 and 58 also indicate the amount of Folin-reacting material present in each fraction eluted from each column. Most of the Folin-reacting material is in the low molecular weight range, probably indicative of amino acids. However, Folin-reacting material also appears at the position of the void volume for both columns, indicating that at least some of the high molecular weight material is protein. It is of interest to note the size heterogeneity of Folin-reacting material eluted from Bio-Gel P-10 where material intermediate between 600 and 10,000 is present, possibly indicating peptides of varying lengths. That no fraction represents pure Folin-reacting material, however, is indicated by the fact that the 280/260 ratio throughout the elution profile remains approximately 0.890. Pure protein usually has a ratio of approximately 1.7 (21).

For the Bio-Gel P-10 column, the distribution of anthrone-reacting material was also determined and is indicated in Figure 58. As shown, most of this material is low in molecular weight, and, as anticipated, smaller than the average size of the low molecular weight Folin-reacting material. However, the sharp, pronounced shoulder appearing at the
elution position of the void volume shows that some high molecular weight polysaccharide material is present.

It may be concluded from these experiments that high molecular weight material can be detected in concentrated soil extracts and separated by molecular sieve chromatography from low molecular weight material also present in soil. This high molecular weight material represents a small percentage of the total material present and consists of at least some protein and some polysaccharide material. These experiments thus demonstrate the feasibility of detecting biopolymers which are present in soil.

4. Stability of Sephadex G-25 and Bio-Gel P-10 to Heat Sterilization

Since utilization of the preceding biopolymer experiment in planetary exploration would require sterilization of the molecular sieve resins, we have undertaken an examination of the heat stability of Sephadex G-25 and Bio-Gel P-10. That these resins are probably quite heat stable is suggested in a report whereby Sephadex G-25 and Bio-Gel P-300 were treated at 135°C for 36 hours (29). Although the resins were not examined per se, no changes in their properties were noted during these experiments. Further, Pharmacia claims that "...Sephadex may be sterilized in the wet state by autoclaving for 40 minutes at 110°C, without changes in properties or notable loss of material..." (30).

To test the heat stability of Sephadex G-25 and Bio-Gel P-10, samples of each resin were autoclaved both in the dry state and in the wet
state for one hour at 120°C. When autoclaved wet, the gel was first equilibrated overnight in distilled water. After sterilization, the general appearance of the wet heat-treated resins was unchanged. However, when dry heat-treated, Bio-Gel P-10 formed a cohesive cake and Sephadex G-25 stuck somewhat to the flask. The resins were cooled overnight and those autoclaved in the dry state were then equilibrated in distilled water. Each heat-treated resin was next packed into a column 1.5 cm in diameter and approximately 20.0 cm in height for comparison to similar columns packed with resin material which had not been heat treated. Each column then received 0.3 ml of mixture of blue dextran (mol. wt. = 2,000,000) and methyl red (mol. wt. = 269). Methyl red is an indicator dye appearing yellow above pH 5.2 and red or pink at pH 4.2. Fractions were automatically collected and the optical densities determined at 600 μm (blue dextran) and at 450 μm (methyl red) to determine the elution pattern of each column.

Table 16 summarizes the results of this experiment. As shown, the elution or void volume (V_0) of blue dextran is not significantly affected by wet or dry heat treatment of either Sephadex G-25 or Bio-Gel P-10. Differences in the position of V_0 for the most part reflect small differences in the volume of each column bed. However, the behavior of methyl red does appear to be affected by the heat treatment of the resins. Thus, when all six columns were first equilibrated in distilled water, methyl
TABLE 16

Elution Behavior of Blue Dextran and Methyl Red Before and After
Heat Treatment of Sephadex G-25 and Bio-Gel P-10

<table>
<thead>
<tr>
<th>Resin</th>
<th>Heat Treatment</th>
<th>Comment on Appearance After Treat</th>
<th>Columns in d. H₂O</th>
<th>Columns in Na acetate, pH 6.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>V₀ (BD)</td>
<td>Vₑ (MR)</td>
</tr>
<tr>
<td>Sephadex G-25</td>
<td>None</td>
<td></td>
<td>24</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Wet Heat</td>
<td>Sticks to Flask</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Dry Heat</td>
<td></td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Bio-Gel P-10</td>
<td>None</td>
<td></td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Wet Heat</td>
<td></td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Dry Heat</td>
<td>Forms Cake</td>
<td>17</td>
<td>43</td>
</tr>
</tbody>
</table>

Samples of Sephadex G-25 and Bio-Gel P-10 were autoclaved for 1 hour at 125°C in both the dry and the wet (distilled water) state. Following cooling, each resin was packed into a column 1.5 cm in diameter and approximately 20 cm in height and compared to similar columns containing unheated resin. Columns were equilibrated either in distilled water or in sodium acetate buffer, pH 6.0, as indicated; prior to receiving 0.3 ml of a mixture of blue dextran (BD) and methyl red (MR). The elution position (in milliliters) of blue dextran (V₀) and methyl red (Vₑ) was determined by optical density measurements at 600 μm and 450 μm, respectively.
red eluted faster (relative to blue dextran) from heat-treated resins than from the unheated resins. For both resins, this effect is most pronounced after wet heat treatment and is small after dry heat treatment. Further, although methyl red appears red in color on both untreated resins, it now appears yellow in three of the four heat-treated resins, indicating a pH change of the resin. The resin least affected in elution pattern is Bio-Gel P-10 heated in the dry state. This column also shows no change in pH as a result of heating.

In these experiments, it was noted that, whenever methyl red eluted faster after heat treatment, it also appeared yellow on the column. Consequently, in separate experiments, unheated resins were equilibrated at several pH values and methyl red alone placed on each. The results showed that at pH 7.5, methyl red appeared yellow in color and moved considerably faster than at low pH where methyl red appeared red. Thus, the color changed from red to yellow is apparently accompanied by an increase in molecular size (dimerization?). It may be concluded that, while heat treatment appears to affect the pH of certain resins, the resulting changes in elution pattern could reflect secondary pH effects rather than the separation properties per se of the resin.

To distinguish these possibilities, and also whether or not the changes caused by heating are reversible, each of the six columns was next equilibrated with several hundred milliliters of sodium acetate buffer,
pH 6.0, and 0.3 ml of the mixture of blue dextran and methyl red placed on each. The resulting elution patterns (Table 16) confirm that the void volume is not significantly affected by heating. That the resin pH changes are reversible is indicated by the fact that methyl red now appears red on each column, indicating uniformity of pH. The elution patterns indicate little or no significant change in separation properties resulting from dry heat treatment of Bio-Gel P-10 or Sephadex G-25. However, both wet heat-treated resins show changed elution patterns. The change observed with Bio-Gel P-10 is relatively small whereas Sephadex G-25 shows large changes in separation properties as a result of wet heat treatment.

It may be concluded from these experiments that molecular sieve resins can undergo the heat sterilization prerequisite to planetary exploration. Thus, both Bio-Gel P-10 and Sephadex G-25 withstood dry heat treatment for one hour at 125°C without significant changes in separation properties. When heated in the wet state, however, both resins show small changes in separation properties. The resin of choice for dry heat treatment is Bio-Gel P-10.
IV. MARS RETURN SAMPLE STRATEGY

A. Introduction

Although no manned missions to Mars are part of the current NASA project schedule, such missions will probably take place before the end of the century. Prior to effecting manned missions to Mars and the development of the necessary life support technology, NASA will undoubtedly have the capability to return samples of Martian soil to Earth by automated landers. From the standpoint of the health of future astronauts landing on Mars and of the public health in general following the return of such astronauts, a definitive examination of Mars for life prior to manned landings is essential. Any living forms present on Mars may prove to be hostile to terrestrial life. The same situation existed with respect to the Moon prior to the Apollo missions. Hence, extensive precautionary measures were taken upon the return of the first three astronaut crews and their spacecrafts. The possibility of life existing on Mars is considerably greater than was the case for the Moon prior to the Apollo missions. Hence, more elaborate precautions are warranted with respect to Mars. The initial approach to the development of a suitable strategy to cope with this problem is one of the objectives of the AMML program.

Upon recognition of the hazards that might accompany the return of astronauts or samples from other planets, the National Academy of Sciences
in 1964 convened a conference on the potential hazards of back contamination from the planets. The lunar quarantine program was based on recommendations produced by the Conference. The same policy pertains to other planets. Some initial studies of the problem with respect to return samples from planets other than the Moon were conducted by the Jet Propulsion Laboratory as NASA Task No. 193-58-72-02 and were reported at the semi-annual NASA Planetary Quarantine Seminar held July 18 and 19, 1972 at San Francisco. At that meeting it was reported that the JPL effort specifically dedicated to this task had been terminated. However, further effort to define an acceptable level for the probability of Earth contamination will be continued under the Planetary Quarantine/Advanced Mission Task of JPL.

Biospherics plans to study this problem in more detail than heretofore in an attempt to devise a philosophy and a strategy which will be acceptable to the scientific community and to the public by way of assuring both groups that NASA can develop a workable and safe plan to permit Mars samples to be returned to Earth.

Much of the Planetary Quarantine Program centering upon means to prevent the contamination of Mars with terrestrial life has been devoted to determining probabilities of transport, survival, growth and dissemination of terrestrial life forms on Mars. While some probability and gaming may assist in the development of a program for the safe return of a Mars sample to Earth, it is recommended that the program be based on the assumption
that the probability of indigenous life on Mars is one. Too many unknowns exist concerning the history of Mars, the nature of chemical and biological evolution and the adaptation of possible life forms to permit a realistic mathematical approach to the subject. Certainly, the introduction of any hazard to Earth must be viewed as a paramount concern. Hence, the program must be designed as if the object from which it seeks to protect the Earth actually exists.

B. Sample Acquisition

The following strategy is offered with respect to sample acquisition:

1. Representative Sampling

 The samples should be representative of Mars. To accomplish this difficult task, return samples will be required from several landing sites which are determined to be typical of surface conditions and climates as determined by previous flybys, landers, orbiters, and by orbiters accompanying the landers designed to obtain return samples. This effort will constitute one of the most difficult portions of the planning in that no more than several return sample missions are probable because of the costs involved. Hence, careful examination of all available Mars data, life hypotheses, technological capabilities and limitations will have to be made by appropriate parties.
2. **Sampling Zone**

The samples of Mars surface material should be obtained from beyond the zone of influence of the lander. This will require the development of sampler ejection devices which can be deployed from the landed spacecraft or from the spacecraft while in the Mars descent mode.

3. **Sample Cleanliness**

Sample acquisition must be performed in aseptic fashion and in a manner that does not add chemical contamination. These requirements stem from the possible influence of living or nonliving contaminants on the viability of any indigenous organisms and on the validity of the data to be obtained from biochemical, organic chemical and inorganic analyses of samples.

4. **Sampling Strategy**

Multiple, discrete samples should be obtained on conjunction with each landing mission. In the event the samplers are deployed from the landed spacecraft, an initial "blind" sample should be obtained immediately upon landing as a "contingency" sample. The subsequent samples would be obtained after suitable inspection and analysis of the area within range of the samplers. The specific sites should be selected in conformance with a pre-designed landing and sample acquisition strategy.
5. **In Situ Conditions**

The acquisition and containment of the samples should be accomplished in a manner that will not disturb the major portion of the sample and, in effect, maintain in situ conditions.

6. **Sample Containers**

It is recommended that the samples be obtained and maintained as discrete, relatively small volumes. The sample containers should be designed such that, once sealed, they will preserve the native condition of the sample (perhaps supplying Martian gas headspace and providing a supply of Martian gas) for the duration of the return flight. In addition, the sample containers should be designed so that key analyses, including some for life detection, can be accomplished upon return of the sample without the necessity for breaking the sample container seal. Subsequent to such key analyses, the sample containers, maintained behind suitable biological barriers, should be opened under imposed Mars environmental conditions for completion of the total program analysis.

C. **Sample Return**

1. **Acquisition of Sample Containers**

The return of the samples must commence with the acquisition of the sample containers by the Earth return module of the spacecraft. In this module, the sample containers should be stored and maintained within the Mars ambient temperature range in the region from which they were
taken. Artificial light in a diurnal cycle should be provided to at least one surface of the sample.

2. **Intermediate Receiving Station**

The return module of the spacecraft might be targeted to an intermediate receiving station. Preliminary examinations of the type most likely to produce evidence for life would be conducted at the intermediate station prior to returning the sample to a permanent station for complete analysis. The use of an intermediate station offers the advantage of obtaining important preliminary information which might influence the manner in which the sample is returned, handled or even whether or not it should be returned to Earth. Such an intermediate station might be established in the Moon as a part of experimental laboratories which will probably be established there within the next decade or two. An alternative intermediate receiving station could be aboard a laboratory spacecraft orbiting the Earth such as those presently planned for the Skylab Project. In either case, the initial analyses should be conducted under the supervision of trained biologists who would be in radio communication with a suitable planetary quarantine panel on Earth so that important information could be exchanged for timely decisions.

3. **Permanent Receiving Station**

Alternatively, the samples might be returned directly to a permanent station for analysis. The permanent station could be established
on the Moon should our technology progress to that point prior to return Mars sample missions. It is more likely, however, that the permanent station would be established at a suitable location on Earth as was the Lunar Receiving Laboratory which served the Apollo missions. However, it is not believed that the present Lunar Receiving Laboratory can be readily adapted. Experience with the Lunar Receiving Laboratory indicate great difficulty in maintaining the biological barriers around the samples for the types of sample handling and analyses required. It is partly because of the difficulties experienced in the lunar programs that containment of the sample in its original container until key analyses have been performed is recommended. However, even this cautious approach will require means of assuring the prevention, removal or inactivation of any Mars surface particulates adhering to the external surface of the sample container as the result of its contact with or proximity to the Mars surface.

D. Sample Analyses

1. Objectives

Examination of the sample should have the following objectives:

a. Detection of any type of life.

b. Determination of infectivity of such life with respect to terrestrial life.

c. Determination of predation of such life on terrestrial forms.
d. Determination of competition of such life with terrestrial forms.

e. Determination of "environmental survival envelope" for any extraterrestrial organisms detected.

f. Determination of control measures to produce stasis or cidal effects on any life detected.

g. Determination of possible toxicity of Mars sample components for terrestrial life forms.

h. Ancillary important information concerning the quality and quantity of life forms or toxic materials found.

2. Methods

The object of Table 17 is to present the broad outline of the types of information required and the proposed methods for obtaining the information in a manner compatible with the foregoing discussion. The methodology for conducting the analyses has been selected from the standpoints of suitability for automation, compatibility with conducting many of the key tests while the sample is contained in the specially designed sample containers, with emphasis on minimizing the number of different analytical techniques required and using, wherever possible, techniques already fully or partially developed by NASA technology. The table is intended to serve as an outline from which a detailed program can be developed. The latter must include designs for specific adaptation of the analytical techniques.
TABLE 17

Mars Return Sample Analysis

<table>
<thead>
<tr>
<th>Determination</th>
<th>Method</th>
<th>Microorganisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Morphology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shapes</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>Size Distribution</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>Motility</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>Ticks</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>II. Abundance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horizontal</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging of sample fractions: VLR, GEX, Plating</td>
</tr>
<tr>
<td>Vertical</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging of sample fractions: VLR, GEX, Plating</td>
</tr>
<tr>
<td>III. Life Stages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forms</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>Life Span</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>Generation Period</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>Reproductive Methods</td>
<td>Direct Imaging</td>
<td>Microscopy Imaging</td>
</tr>
<tr>
<td>IV. Metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterotrophy</td>
<td>Offer substrates: direct imaging, VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>Autotrophy</td>
<td>Offer substrates: direct imaging, VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>Nutrients</td>
<td>Vary temperature: direct imaging, VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>Temp. Response</td>
<td>Vary pH: Microscopy Imaging, VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>pH Response</td>
<td>Very available water: Direct Imaging, VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>Water Response</td>
<td>Very substrates: VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>Permeability</td>
<td>Direct Imaging, VLR, GEX</td>
<td></td>
</tr>
<tr>
<td>Diurnal Effects</td>
<td>Direct Imaging, VLR, GEX</td>
<td></td>
</tr>
<tr>
<td>Seasonal Effects</td>
<td>Direct Imaging, VLR, GEX</td>
<td></td>
</tr>
<tr>
<td>Composition and Metabolites</td>
<td>Direct Imaging, VLR, GEX</td>
<td></td>
</tr>
<tr>
<td>Inorganic</td>
<td>Before and after incubation: Pyrolysis, GCMS</td>
<td></td>
</tr>
<tr>
<td>Organic</td>
<td>Pyrolysis, GCMS</td>
<td></td>
</tr>
<tr>
<td>Amino Acids</td>
<td>Amino Acid Analyses</td>
<td></td>
</tr>
<tr>
<td>Biopolymers</td>
<td>Biopolymer (AMML)</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Response</td>
<td>Direct Imaging, VLR, GEX, PRS</td>
<td></td>
</tr>
<tr>
<td>Intermediary Metabolism</td>
<td>ATP: Firefly bioluminescent assay</td>
<td></td>
</tr>
<tr>
<td>V. Infectivity & Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expose selected array of life forms: Direct Imaging</td>
<td></td>
</tr>
<tr>
<td>VI. Predation and Parasitism</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expose selected array of life forms: Direct Imaging</td>
<td></td>
</tr>
<tr>
<td>VII. Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stasis and Cidal</td>
<td>Impose heavy metals, chemicals, organics, gases, heat, ionizing and nonionizing rad: Direct Imaging, VLR</td>
<td></td>
</tr>
</tbody>
</table>

GEX = Gas exchange
GCMS = Gas chromatograph - mass spectrometer
PRS = Pyrolytic Release
VLR = Viking labeled release
ATP = Adenosine triphosphate
AMML = Automated Microbial Metabolism Laboratory
and instrumentation of the return Earth module of the lander, sample acquisition system, sample container, biological barrier, analytical instrumentation, information analysis and decision making program.

Among the key inputs required for the expansion of Table 17 are the types and forms of terrestrial life to be exposed to the Mars samples to determine infectivity, toxicity, predation and parasitism. Considerable emphasis was placed on such tests in the Lunar Receiving Laboratory where a very wide variety of plants and animals were exposed to the lunar soil. In selecting terrestrial life forms to be exposed to Martian soil, it is suggested that the number of life forms be reduced to representative forms utilizing the different key biochemical pathways and cycles, and that more emphasis be placed upon microbial forms for bioassays. They offer the most direct method for exposing terrestrial life forms and can be readily monitored by a variety of rapid techniques, many of which have been developed under the NASA Extraterrestrial Life Detection Program.

E. Hazard Assessment

Upon completion of the examination of the Mars samples, a complete assessment of their hazards to terrestrial life must be made in order to decide whether or not the samples might be disseminated to other laboratories for further studies of a scientific nature. The results of the study would be directed toward determining the means by which such samples could be shipped, the nature of requirements to be imposed on the receiving
BIOSPHERICS INCORPORATED

laboratory, the priority of types of experiments and any safety constraints
to be imposed upon laboratory personnel.

Respectfully submitted,

J. Rudolph Schrot, Ph.D.
Research Microbiologist

Approved by:

Gilbert V. Levin, Ph.D.
Principal Investigator
REFERENCES

APPENDIX

TO

SECTION I. LABELED RELEASE
BIOSPHERICS INCORPORATED

MEDIA COMPOSITION

RM9

Basal:
- Na$_2$HPO$_4$: 5.0 mg/l
- MgCl$_2$·6H$_2$O: 66 mg/l
- NH$_4$NO$_3$: 0.20 g/l
- NaCl: 0.10 g/l
- Soil Extract*: 100 ml/l
- Tris: 6.0 g/l
- pH 7.0

*Soil extract was prepared by suspending 500 g of air-dried Wyaconda soil in 1,300 ml of H$_2$O. The mixture was then autoclaved for one hour, filtered, and made up to one liter with sterile H$_2$O.

Radioisotopes:
- 14C formate: 1 µCi/ml 2.5 x 10^{-4} M
- UL14C D-glucose: 6 µCi/ml 2.5 x 10^{-4} M
- UL14C DL-lactate: 3 µCi/ml 2.5 x 10^{-4} M
- UL14C glycine: 2 µCi/ml 2.5 x 10^{-4} M

Modified RM9

Basal: Same as RM9

Radioisotopes:
- 14C formate: 1 µCi/ml 2.5 x 10^{-4} M
- UL14C DL-lactate: 6 µCi/ml 2.5 x 10^{-4} M
- UL14C glycine: 2 µCi/ml 2.5 x 10^{-4} M
- UL14C L-alanine: 3 µCi/ml 2.5 x 10^{-4} M
- UL14C D-alanine: 3 µCi/ml 2.5 x 10^{-4} M

VM1

Basal: Distilled H$_2$O

Radioisotopes:
- 14C formate: 2 uCi/ml 2.5 x 10^{-4} M
- UL14C DL-lactate: 12 uCi/ml 2.5 x 10^{-4} M
- UL14C glycine: 4 uCi/ml 2.5 x 10^{-4} M
- UL14C L-alanine: 6 uCi/ml 2.5 x 10^{-4} M
- UL14C D-alanine: 6 uCi/ml 2.5 x 10^{-4} M
- UL14C glycolic acid: 4 uCi/ml 2.5 x 10^{-4} M
Preparation of RM9 Medium

Step 1. Basal medium is made up in 1 liter batches, placed in 100 ml aliquots and autoclaved for 20 minutes, 15 psi, 121°C.

Step 2. Labeled substrate is added to obtain the required radioactivity level. The concentration is then brought to the prescribed level with unlabeled substrate. After addition of labeled substrate(s) the solution is filter sterilized through a 0.22 μ pore-size membrane filter.

Step 3. Freshly prepared medium generally shows a higher than background count when the sterile medium is gettered. This non-biological emission can be reduced by shaking the sterile medium in a horizontal water bath shaker at 35°C. Medium is shaken until 0.2 ml shows a count of 100 cpm or less for a one-hour gettering period.

Step 4. Radioactivity is measured before and after each experiment using the following procedure:

a. Three drops of saturated Ba(OH)₂ are placed in duplicate stainless steel concentric planchets.

b. To each of these planchets, 0.02 ml of medium and 0.04 ml of distilled water are added.

c. The planchets are dried under an infrared light for approximately 30 minutes.
d. Planchets are counted for one minute in a Nuclear Chicago D-47 Gas Flow Counting Apparatus.

Step 5. Media is stored at 3°C until used. It is filter sterilized again before use and measurement of radioactivity (as in Step 4) is performed prior to each experiment.

Procedure for Conducting the Labeled Release Experiment

Step 1. Sifted soil samples (14 mesh screen), ranging in size from 25 mg to 100 mg, are weighed into sterile, one-inch aluminum planchets or adapted tubes (see Figures 1 and 2). Planchets are precleaned by boiling in Sparkleen detergent until water wets the aluminum evenly. They are then thoroughly rinsed with tap and distilled water.

Step 2. Control soils (unless otherwise stated) are prepared by dry heat sterilization. Planchets containing a weighed quantity of soil are placed in glass petri dishes and placed in a hot air oven at 212°C for 30 minutes.

Step 3. Planchets are placed in a holding rack or in sterile petri dishes and set on a laminar flow bench. An experiment is initiated by the addition of labeled medium to soil. Immediately upon addition of the labeled medium, each soil containing planchet is capped with an inverted planchet lined with a filter pad moistened with three drops of saturated Ba(OH)$_2$.

-3-
FIGURE 1
Culture Planchets Used for Conducting Labeled Release
Step 4. After a timed interval, the gettering pads were replaced with planchets lined with freshly moistened Ba(OH)$_2$ pads. This regimen was followed throughout the entire experiment.

Step 5. The getter pads were dried under an infrared lamp for about 15 to 20 minutes and transferred to clean planchets. Radioactivity retained on each pad was determined in a Nuclear Chicago D-47 Gas Flow Counting Apparatus flushed with Q-gas.