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SUMMARY

The effectiveness of fluid containment near an interior stagnation point and
within a self-confined stagnation region is determined by numerically solving the
species conservation equation for a bi-component mixture. The flow geometry is
that of a swirling fluid stream containing a stationary eddy on the axis of
rotation. The base flow is axisymmetric and the Reynolds number is equal to 50.
Schmidt numbers range from 0.1 to 10.

INTRODUCTION

Containment of one fluid by a suitably-directed stream (or streams) of
another fluid is a problem of considerable practical interest, particularly for
the generation of power from chemical and nuclear fuels. Several containment
schemes have been suggested which focus on the establishment of some sort of
closed recirculation zone [1,2]. Mass exchange by diffusion eventually depletes
any fluid initially contained in the zone, however, and replenishment of criti-
cal species is required. The present report examines diffusional loss from a
particular containment zone and the feasibility of using a small supply stream
to replenish critical species to the zone. These will be referred to as
Problem I - Depletion and Problem II - Filling, respectively.

FLOW FIELD

The containment geometry considered is that of an axisymmetric eddy
situated on the axis of rotation of a swirling, translating fluid stream. The
initiation and structure of such eddies has been reported previously [3]. That
study provides additional details and is used as a basis for the work presented
here. Axisymmetric, incompressible flow through a cylindrical streamtube is
considered with axial and radial co-ordinates denoted by x and r. Appropriate
scaling parameters are the tube radius, rQ, the mean through-flow velocity in
the tube, U, and the angular velocity of the tube wall, too. Fluid enters the
tube at x = 0 with axial, radial, and azimuthal velocity components given by
u = 1, v = 0, and w = r~^ [1 - exp(-Br̂ )]. All variables are dimensionless
and B is a constant in the exponential vortex velocity profile. The tube wall
is impermeable, frictionless, and five radius units in length. The partial
differential equations governing the flow field were solved by a finite differ-
ence scheme in reference [3].' The governing parameters appear as a Reynolds
number, Re = UrQ/v, and a swirl ratio, F = rocoo/U, where V is the kinematic
viscosity. Note that Re is based on tube radius.

Streamlines for a flow with a vortex breakdown eddy present are shown in
Fig. 3(a) for the case Re = 50, T = 1 and B = 8. The cited flow is the flow
field used for study in the present report. The external stream flows from
left to right over the eddy (which is stationary in space) forming two stagna-
tion points along the axis. The boundary of the eddy is denoted by fy = 0.
The dotted line in Fig. 3(a) is the finite difference representation of the
boundary. Since there is no net mass flow across a streamline, the eddy



represents a fluid region totally confined by the external stream. As Re or
F is increased, the circulation and physical size of the eddy increases [3].
During this process, the forward stagnation point moves upstream slightly,
while the rearward stagnation point moves downstream rapidly.

Some remarks about the base flow are in order at this point. They take
the form of three qualifications.

a. The base flow assumes axisymmetry. The flow is intended to simulate
the phenomenon of vortex breakdown, but recent experimental work has shown
that this phenomenon displays a number of non-axisymmetric features [4]. One
form of breakdown is, however, referred to as axisymmetric and its bubble-like
forebody is similar in appearance to the forebody of the eddy shown in Fig. 3(a).
It now appears that the axisymmetric form is observed only at very high Reynolds
numbers (Re > 500). Its downstream wake is not axisymmetric and does not
appear to contain a stagnation point. The wake also provides a mechanism for
bulk exchange of fluid between the eddy and the support stream. It is not yet
possible to numerically simulate such a three dimensional flow field and the
base flow is perhaps the best that can be done at present.

b. All of the present results pertain to parameter values of Re = 50,
F = 1 and B = 8. As noted above, computed axisymmetric flows vary with these
parameters in a complex way. Since the present results do not vary the base
flow systematically they must in that sense be viewed as preliminary.

c. An inviscid, rotating stream is known to be dispersive to waves [5].
The effect of viscosity or the imposed boundary conditions on damping out such
dispersion is not known. Thus, some aspects of the flowfield boundary conditions
may actually serve to keep the breakdown stationary.

DIFFUSION

Confinement will be examined by watching the inter-diffusion of two
molecular species, A and B. We will denote the fluid we wish to contain or
supply by A, and the support stream by B. The governing nondimensional equation
for transport of species A, expressed as a mass fraction Y of the total mixture,
is

3Y 3(uY) 1 3(rvY) _ 1 T f3
2Y 1 9 9Y,,

3F + 8x + r 9r ~ ReSc ^ + 7 9r~ (r W *

assuming an equi-molar, constant property process. Equation (1) introduces
the Schmidt number, Sc = V/D, as a parameter where D is the mass diffusion
coefficient. Time is scaled with rQ/U. The molecular weights of A and B are
presumed equal in order to maintain density constant. With constant density,
incompressible flow fields determined previously may be used as base flows into
which diffusion may be introduced. The velocity or streamline field is un-
coupled from the diffusion problem and does not change as the process of equi-
molar, equi-mass diffusion takes place.

For Problem I the entire inlet flow is species B(Y=0). In Problem II a



stream of species A of radius r^ is bled in along the axis (Y=l for r j£ r̂ ).
The axial velocity at the inlet is uniform. In both problems no mass flow
crosses the tube wall or tube centerline (3Y/9r = 0), and no axial diffusion is
presumed to occur at the exit (3Y/8x = 0). The latter is a weak boundary
condition consistent with boundary layer behavior.

Initial data consists of filling the eddy with species A(Y=1) for Problem
I while the remaining region is species B(Y=0). For Problem II the entire
initial field was taken to be species B(Y=0).

NUMERICAL SOLUTION

With the aforementioned boundary conditions finite-difference solutions
to Eq. (1) have been obtained by the method described in [3]. The velocity
field is constant with time and was the previously obtained solution for
Re = 50, T = 1, and B = 8 which has already been discussed. The field of mass
fraction Y is explicitly advanced in time from the initial state to a steady
state. Finite difference approximations of Eq. (1) are applied to all interior
grid points, to the axis, .and to the tube wall. Conditions at the inlet were
held constant. An extra column of mesh points with field values equated to
those at the last computed column was added at the exit to satisfy the down-
stream boundary condition.

Concentration fields are printed out at various points in the transient
(which was always a smooth transition), together with various mass diffusion
rates. The transient for Problem I is complete when the initial contents of
the eddy completely diffuse into the support stream. For Problem II, the
transient is complete when a steady concentration field is established.

Mesh increments of Ax = 0.125 and Ar = 0.05 (41 x 21 grid) were employed.
This is a rather fine mesh but was necessary in order to faithfully describe
the boundary of the eddy and the transport processes there.

RESULTS

The present diffusion calculations are, by themselves, believed to be quite
reliable and thus can shed some light on diffusional processes in a flow field.
The calculations are performed for Re = 50 but may be thought of as simulating
an isotropic turbulent field with the molecular viscosity in the Reynolds number
replaced by a turbulent eddy viscosity. As mentioned earlier, the base flow
itself should be viewed with care and thus regarded only as a test case.

Problem I - Depletion

It is useful to regard this part of the study as a test of the effectiveness
of fluid containment in a given internal stagnation region. We assume that a
contained mass could be established and then follow the decay process as species
A diffuses out of the region and is replaced by species B.



Figure 1 illustrates the decay of species A as a function of time for
Sc = 0.1, 1, 10, and infinity. The ordinate is the normalized mass of A in
the eddy. The rate of decay decreases with larger values of Sc, thus leading
to more effective containment. Schmidt numbers near 1 are associated with
ordinary gases, and larger values up to about 10 are associated with liquids.
A unit of dimensionless time is equal to Ut'/ro and represents the time re-
quired for the mass flow to traverse a distance of one radius. Thus, depletion
is seen to be rapid in all cases of interest. The fluid residence time is
of course, expected to depend on Re and F, and on the density difference be-
tween species A and B. The assumption of constant density must be relaxed to
examine a wider range of containment problems.

The nondimensional initial mass is equal to 0.392. This is also the
volume of the eddy as approximated in the Eulerian computing grid. In such a
grid there is a convective and diffusive mass flux between grid points and
across the boundary of the eddy. In theory, only a diffusive mass flux across
the eddy boundary exists. The exact treatment of this flux would necessitate
a Lagrangian grid in which grid lines follow streamlines (the eddy boundary
tp = 0 would then be a grid line). The present numerical scheme can only
approximate the requirement of no convection across streamlines. In order to
assess the effect of such transport velocities, calculations were undertaken
with the transport velocities across the Eulerian representation of the eddy
boundary set equal to zero. Results are shown as dashed lines in Fig. 1. The
solid lines represent results from the unmodified Eulerian calculation. For
Sc = 0.1 and 1.0, the dashed lines and solid lines coincide, that is, the
contribution of convective transport across the boundary to the depletion of
species A is negligible. However, around Sc = 10, it appears that depletion
is predominantly by diffusion, but that convection is becoming significant.
The solid line for Sc = °° coincides with the dashed line for Sc = 10 and is
not shown. The large difference between the solid and dashed lines for Sc = °°
indicates that the Eulerian grid representation is inappropriate, and suggests
that the range of physical validity of the results is restricted to Sc < 10.

Certain aspects of the concentration field during the mass diffusion trans-
ient are illustrated in Fig. 2. The three columns from left to right correspond
to Sc = 10, 1, and 0.1, in order of increasing mass diffusivity. The solid line
designates the 5 percent concentration line for species A(Y = 0.05), the dashed
line the eddy shape, and the small dot the point of maximum concentration. For
Sc = 10, the axial convection of species A away from the eddy is relatively
stronger than the radial diffusion. The shape of the 5 percent concentration
line becomes elongated, and an annular wake develops downstream. That is, the
concentration profile does not achieve a maximum on the axis, but intermediate
to the axis and wall. For Sc = 1, mass diffusion is enhanced relative to axial
convection. For Sc = 0.1 the process of mass diffusion away from the eddy is
more significant than axial convection, and an annular wake never develops.
Early in the transient for all Schmidt numbers the 5 percent concentration line
remains congruent with the eddy shape. This follows because the maximum concen-
tration gradient for species A is in a direction normal to the boundary of the
eddy.



Problem II - Filling

The replenishment of fluid to the eddy might be accomplished by any of
several injection mechanisms. Here, injection using a jet on the axis at the
inlet is considered. By examining steady state concentration contours the size
of regions maintained at high concentrations can be determined.

Concentration fields are shown in Figs. 3(b) to 3(e) for various inlet
radii r^ ranging from 0.025 to 0.425. A unit Schmidt number is assumed. Each
solid line corresponds to a particular value of mass fraction Y as indicated.
The dashed line is the eddy boundary. A region of high concentration is found
only near the forward stagnation point and is distorted and generally follows
the pattern of fluid flow around the eddy. A large region of nearly uniform
concentration is found near the downstream portion of the eddy (approximately
x = 0.5 to 1.7) and in the downstream wake (x = 1.7 to 4.5). Migration of a
given concentration line (such as Y = 0.1) downstream with increasing r^ illu-
strates the dependence of the concentration field on the radius of the inlet
stream.

Diffusion is a significant transport process at unit Schmidt number (the
product ReSc in the species transport equation, Eq. (1), is equal to
fifty) and the inlet stream o£ species A tends to diffuse rapidly into the
support stream of species B. This, coupled with the large surface area of the
eddy relative to that of the inlet stream, makes effective containment within
the eddy difficult. Rapid diffusion out of the eddy was also apparent in the
results of the previous section.

The region of high concentration near the forward stagnation point, on
the other hand, suggests the possibility of using that region for fluid con-
tainment. The reduced velocities and the pattern of flow near the stagnation
zone lead to effective confinement. Further support for the use of this region
for containment follows from the relative insensitivity of the location of
the forward stagnation point to changes in Re or F, at least for the conditions
specified for the base flow [3]. Although there is a steady flow through the
stagnation point region, that region still represents an internally-confined
fluid zone of high concentration.

The effectiveness of fluid confinement by a flow with an internal stagna-
tion point, as compared to one without, was assessed by undertaking a series
of calculations on jet diffusion. A uniform axial flow with no rotation was
employed (u=l, v = 0 , w=0 throughout the tube). The core of the inlet
stream, radius r _<_ r^, consisted of fluid A. There is no internal stagnation
zone and no shear associated with such a jet, and mixing is completely con-
trolled by molecular diffusion.

Concentration contours for jets with r^ = 0.025 and 0.425 are shown as
dotted lines in Figs. 3(b) and 3(e), respectively. For inlet streams larger
than about rA = 0.025 results are similar to those shown in Fig. 3(e). Under
such conditions the flow with a stagnation point has a much larger region of
high concentration of species A than does the jet flow. In Fig. 3(e), the
volumes enclosed by the Y = 0.5 and 0.2 concentration lines are about twice as
large with stagnation as compared with a pure jet. For inlet streams of about
rA = 0-025 or smaller the reverse is true. The latter is attributed to the



enhancement of diffusive mixing by the eddy, as the inlet stream of A forms
an annular jet with correspondingly greater surface area. For sufficiently
large r^, on the other hand, a flow with a stagnation zone is more effective
for fluid confinement than is the jet flow.

The use of an interior stagnation region to achieve fluid confinement
requires some estimate of the flow rate through, and mass contained in, a
particular volume of space. For the present, it is convenient to consider the
volume occupied by the eddy. The mass of species A inside the eddy relative
to the total mass of the eddy is illustrated in Fig. 4 (left hand ordinate)
as a function of the radius of the inlet stream, r^. As r^ increases the mass
of species A inside the eddy increases, yielding an s-shaped curve which
approaches unity as r^ ->• 1 (eddy filled 100%). For small values of r^. (less
than 0.3), the contained mass of species A varies as rj[. In other words, it
varies in direct proportion to the mass flow rate of A at the inlet.

The effectiveness of fluid capture can also be assessed by examining the
rate of diffusion of species A into (or out of) the eddy relative to the flow
rate of species A at the inlet. This is shown in Fig. 4 (right hand ordinate).
The efficiency of capture rises from about 32% to a maximum of 34% as r^
increases from near zero to 0.225. As r^ increases from 0.225 to 1.0, the
efficiency decreases to about 5%. Species A originating at large radii in the
inlet tends to flow around the eddy rather than diffusing into it. Clearly,
inlet radii less than about 0.3 are suggested if the eddy is to be used
efficiently for containment.

CONCLUSIONS

This preliminary study allows two conclusions to be drawn:

a. The fluid holding time within a recirculation zone is of the order of
several time units at best. (A time unit is ro/U.) The effects of Re,
F, and large density differences between contained and support flow on the
decay transient remain to be assessed.

b. An internal stagnation point, if it can be maintained, appears to offer
the best potential for fluid self-confinement. The confinement is relative,
of course, and requires a more complete assessment of the effects of Re,
T, and Sc.
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Fig. 3. Steady state concentration fields, Sc = 1. (a) Base flow stream-
lines (stream function values equal those shown x 10 ). (b) to
(e) Concentration lines for supply streams of various radii r .
Dotted lines are for jet diffusion.
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through an eddy at steady state using supply streams of various
radii, r.. Sc = 1.
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