Apollo Lunar Surface Experiments Package

Apollo 17 ALSEP (ARRAY E) Familiarization Course Handout

For Training Purposes Only

BSR 3270
1 September 1972

Contract NAS 9-5829

Prepared for
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

by

Bendix Aerospace Systems Division
Apollo Lunar Surface Experiments Package

Apollo 17 ALSEP (ARRAY E) Familiarization Course Handout
For Training Purposes Only
BSR 3270
1 September 1972
Contract NAS 9-5829

Prepared for
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

by
Bendix Aerospace Systems Division
TABLE OF CONTENTS

LESSON

1. BACKGROUND AND OVERVIEW

2. POWER AND DATA SUBSYSTEMS

3. LUNAR SURFACE GRAVIMETER

4. LUNAR MASS SPECTROMETER

5. LUNAR SEISMIC PROFILING EXPERIMENT

6. LUNAR EJECTA AND METEORITES

7. HEAT FLOW EXPERIMENT
APOLLO LUNAR SURFACE EXPERIMENTS PACKAGE

ALSEP

- A package of scientific instruments and supporting subsystems for use on the lunar surface
- Carried on Apollo, deployed by astronaut
- Two-year continuous operation (5-year goal) for Apollo 17. Previous ALSEP's had one-year design life.

FEB 72 3270.1.1
MISSION ASSIGNMENTS

<table>
<thead>
<tr>
<th>ALSEP EXPERIMENT</th>
<th>LOCATION</th>
<th>APOLLO 11</th>
<th>APOLLO 12</th>
<th>APOLLO 13</th>
<th>APOLLO 14</th>
<th>APOLLO 15</th>
<th>APOLLO 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASSIVE SEISMIC EXPERIMENT</td>
<td>23.4°E 0.7°N</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>ACTIVE SEISMIC EXPERIMENT</td>
<td>23.5°W 3.0°S</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>SUPRATHERMAL ION DETECTOR</td>
<td>17.5°W 3.7°S</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>COLD-CATHODE ION GAGE</td>
<td>3.7°E 26.1°N</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>SOLAR WIND SPECTROMETER</td>
<td>15.5°E 8.9°S</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CHARGED-PARTICLE EXPERIMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNAR SURFACE MAGNETOMETER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEAT FLOW EXPERIMENT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LASER-RANGING RETRO-REFLECTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APOLLO 17 (ARRAY E) MISSION ASSIGNMENTS

• SECOND GENERATION OF LUNAR SCIENTIFIC MEASUREMENTS:
 - LUNAR SURFACE GRAVIMETER FOR INVESTIGATION OF GRAVITY FIELDS
 (PI: JOSEPH WEBER, UNIVERSITY OF MARYLAND)
 - LUNAR MASS SPECTROMETER FOR ATMOSPHERIC SPECTRUM ANALYSIS
 (PI: JOHN H. HOFFMAN, UNIVERSITY OF TEXAS)
 - LUNAR SEISMIC PROFILING EXPERIMENT FOR DETERMINATION OF SUBSURFACE PROPERTIES TO SUBSTANTIAL DEPTHS
 (PI: ROBERT KOVACH, STANDFORD UNIVERSITY)
 - LUNAR EJECTA AND METEORITES EXPERIMENT TO DETERMINE LONG-TERM COSMIC INFLUX EFFECTS
 (PI: OTTO BERG, GODDARD SPACE FLIGHT CENTER)
 - HEAT FLOW EXPERIMENT TO COMPLEMENT AND SUPPLEMENT PREVIOUS ONES
 (PI: MARK LANGSETH, LAMONT DOHERTY GEOLOGICAL OBSERVATORY)
EARTH-MOON COMMUNICATIONS

Earth-Moon Communications System Diagram:
- Moon
- UpLink (Commands)
- DownLink (Data)
- Earth
- MSFN Station
- Manned Spacecraft Center
- Computation and Analysis (Off-Line)
- Mission Control Center
- PI Tapes
- NASA Publications
- Scientific Literature
- Network Operations Center
- Data Bank
- Goddard Space Flight Center
ANTENNA POINTING CONSTRAINTS

LUNAR LIBRATION: AN APPARENT WOBBLING MOTION AS VIEWED FROM THE EARTH; CAUSES EQUIVALENT EARTH MOTION IN LUNAR COORDINATES

PRINCIPAL EFFECTS:

± 7.5° LUNAR LONGITUDE DUE TO:
- CONSTANT ANGULAR RATE OF MOON ABOUT ITS AXIS
- VARIABLE ANGULAR RATE IN ELLIPTICAL ORBIT AROUND EARTH

± 6.5° LUNAR LATITUDE DUE TO:
- INCLINATION OF MOON'S ROTATION AXIS TO ITS ORBITAL PLANE

SECONDARY EFFECTS:
- NON-SPHERICAL EARTH & MOON
- SOLAR PERTURBATIONS
- GYROSCOPE & PENDULUM COUPLING

COMBINED EFFECTS: PATTERN CHANGES
- MONTHLY & YEARLY

ALSEP ANTENNA: 22° BEAM WIDTH DOWN
- 4.2 db AIMED AT MEAN CENTER OF PATTERN
ANTENNA AND AIMING MECHANISM

LEVELING ADJUSTMENTS

TUBULAR BUBBLE LEVELS

LATITUDE ADJUSTMENT

LATITUDE GIMBAL 0° - 45°

LONGITUDE GIMBAL + 60°

LONGITUDE ADJUSTMENT

LOCK

TWO WAY Gnomon

SHADOW ADJUSTMENT

LOCK

LEVELING ADJUSTMENTS

LATITUDE ADJUSTMENT

LATITUDE GIMBAL 0° - 45°
ASTRONAUT SWITCHES

ASTRO SW-1 (BACKUP ONLY)
PURPOSE: TO ENABLE CREW TO SELECT REDUNDANT POWER CONDITIONER DELIVERED TO THE MOON IN CCW POSITION UPON REQUEST, THE ASTRONAUT ROTATES SW-1 FIRST CW THEN CCW (AS FAST AS HE WANTS TO).
CW ROTATION SIMULTANEOUSLY OPENS RTG POWER LINE AND SIMULATES A COMMAND TO SELECT PCU 2.
CCW ROTATION CLOSES RTG LINE (APPLYING RTG PWR TO PCU 2).

ASTRO SW-2 (LSP SAFETY SWITCH)
DELIVERED TO THE MOON IN CCW POSITION CLOCKWISE ROTATION OF SW-2 ENABLES LSP OPER PWR LINE (29 VDC) COUNTER-CLOCKWISE ROTATION INHIBITS LSP OPERATION
ARRAY E SUBPACKAGE NO. 2

HFE

ASTRO-MATE CONNECTOR (HFE)

LEAM

ASTRO-MATE CONNECTOR (LEAM)
SUBPACKAGE NO. 2
STRUCTURE AND TOOLS

STRUCTURE, SUBPACKAGE NO. 2

- SUBPALLETT
- PALLET

ALSEP HANDLING TOOLS

- CARRY BAR
- DOME REMOVAL TOOL
- FUEL TRANSFER TOOL
- UNIVERSAL HANDLING TOOLS (2)

FEB 72 3270.1.12
GENERAL DEPLOYMENT CONFIGURATION
(At Taurus Littrow)

EXPLOSIVE PACKAGES
DEPLOYED DURING EVA 1

CENTRAL STATION
(NOT TO SCALE)

EXPLOSIVE PACKAGES
DEPLOYED DURING EVA 3

GEOPHONES

EVA 3
APPROX. SUNLINE

JUNE 72 3270.1.14
RTG FUELING

- Thermal Shield
- Release Latch (Lanyard Operated)
- Mounting & Structure
- LM Interface Fittings (Grumman)
- Rotation Mechanism (Lanyard Operated)
- Cask in Flight Position
- Removal Position (Adjustable by Astronaut)

FEB 72 3270.1.16
RTG CUTAWAY

END PLATE OF FUEL CAPSULE
HERMETIC SEAL
THERMOELECTRIC COUPLE ASSEMBLY
HEAT REJECTION FINS
MOUNTING LUG

HOT FRAME
FUEL CAPSULE ASSEMBLY
OUTER CASE (COLD FRAME) ASSEMBLY
POWER GENERATING FUNCTION

- **RAD 10 ISOTOPE ENERGY SOURCE**
- **RADIATIVE HEAT TRANSFER**
- **THERMAL RADIATION TO SPACE**
- **THERMOELECTRIC HOT FRAME**
- **CONDUCTIVE HEADER HEAT TRANSFER**
- **OUTER CASE & FINNS**
- **THERMAL RADIATION TO SPACE**
- **POWER GENERATING FUNCTION**

- **FUEL CAPSULE**
- **HOT FRAME**
- **COLD FRAME**
- **INSULATION**
- **HEAT REJECTION FINS**
- **THERMOELECTRIC COUPLE ASSEMBLY**
- **COUPLE (LEAD TELLURIDE)**
- **FOLLOWER COMPRESSION SPRING**
- **COLD FRAME**
- **BORON NITRIDE INSERT**
- **POWER HEADER**
- **+ 16 VDC**
- **PCU**

System Diagram:

- **TFMP TM TO DSS**
- **RADIATIVE HEAT TRANSFER**
- **THERMAL ENERGY TRANSFER**
- **COLD FRAME**
- **CONDUCTIVE HEAT TRANSFER**
- **OUTER CASE & FINNS**
- **THERMAL RADIATION TO SPACE**
- **RADIOISOTOPE ENERGY SOURCE**

Date:

- **FEB 72 3270.1.18**
RTG WARM-UP CYCLE

- Capsule
- Hot Frame
- Operating Differential (ΔT)
- Cold Frame
- Fins
- Lunar Surface Temperature

Temperature (Deg F)

Time from Fueling (HR)

FEB 72 3270.1.21
CENTRAL STATION DEPLOYED CONFIGURATION
EFFECT OF SURFACE SLOPE ON ELECTRONICS TEMPERATURES

INCREASE IN THERMAL PLATE AVERAGE TEMPERATURE AT LUNAR NOON - °F vs CRATER SLOPE AND LUNAR SURFACE SLOPE (θ) - DEGREES

REAR CURTAIN C/S LUNAR SURFACE HORIZONTAL
THREE YEARS OF ALSEP OPERATION

<table>
<thead>
<tr>
<th>Deployment Data</th>
<th>Apollo 11</th>
<th>Apollo 12</th>
<th>Apollo 14</th>
<th>Apollo 15</th>
<th>Apollo 16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>JULY '69</td>
<td>NOV '69</td>
<td>FEB '71</td>
<td>JULY '71</td>
<td>APRIL '72</td>
</tr>
<tr>
<td>No. of Experiments</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Presently Operating</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Design Life (Days)</td>
<td>14</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>365</td>
</tr>
<tr>
<td>Operation to Date*</td>
<td>71</td>
<td>985</td>
<td>542</td>
<td>366</td>
<td>101</td>
</tr>
<tr>
<td>- Days</td>
<td>5</td>
<td>34</td>
<td>19</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>- Lunations</td>
<td>0.2</td>
<td>2.7</td>
<td>1.5</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>- Years</td>
<td>1531</td>
<td>14,137</td>
<td>6783</td>
<td>9822</td>
<td>1731</td>
</tr>
</tbody>
</table>

NOTE: EACH ALSEP PROVIDES 9 MILLION MEASUREMENTS PER DAY

*AS OF 1 AUGUST 1972

FEB 72 3270.1.25
SCIENTIFIC ACHIEVEMENTS (PSE)

- PASSIVE SEISMIC EXPERIMENT (PSE)
 - LUNAR OUTER STRUCTURE IS ROCK CLUMPS, BUT THERE IS A CRUST AND MANTLE (LIKE EARTH) WITH CRUST THICKNESS OF 55 TO 70 KM
 - 2-5 MOONQUAKES PER MONTH — USUALLY NEAR PERIGEE — AT DEPTHS OF 800 KM (DEEPER THAN MOST EARTHQUAKES)
 - DAILY METEOROID IMPACTS
 - UNEXPECTED STRONG "RINGING" FROM MAN-MADE IMPACTS
MOONQUAKE AND METEOROID IMPACT

FEB 72 3270.1.28
SCIENTIFIC ACHIEVEMENTS (SIDE AND CCIG)

- SUPRATHERMAL ION DETECTOR EXPERIMENT (SIDE)
 - DETECTS SOLAR STORMS AND MAN-MADE IMPACTS, AS EXPECTED
 - ONE GAS CLOUD, BELIEVED TO BE CORRELATED WITH MOONQUAKE ON 7 MARCH 1971, SHOWS EVIDENCE OF WATER
 - UNEXPECTED ION CONCENTRATIONS AT LUNAR SUNRISE AND SUNSET, AND IN GEOMAGNETIC TAIL TRANSITION REGION (FLOWING DOWNSTREAM WITH SOLAR WIND)

- COLD CATHODE ION GAGE (CCIG)
 - NEUTRAL PARTICLE CONCENTRATION VARIES FROM 10^7 ATOMS/CC DURING DAY TO 2×10^5 ATOMS/CC AT NIGHT
 - FREQUENT TRANSIENT INCREASES
 - TRANSIENTS UP TO 2×10^7 WITHIN TWO MINUTES OF SUNRISE

FEB 72 3270.1.29
SCIENTIFIC ACHIEVEMENTS (SWS AND LSM)

• SOLAR WIND SPECTROMETER (SWS)
 • BASIC BEHAVIOR OF SOLAR WIND
 SAME AS FREE-SPACE OUTSIDE EARTH'S MAGNETIC TAIL
 SLIGHTLY PERTURBED IN GEOMAGNETIC TRANSITION REGION
 DOES NOT PENETRATE TO CENTER OF TAIL
 • SWS UNEXPECTEDLY DETECTED GAS CLOUD FROM APOLLO 13 S-IVB IMPACT

• LUNAR SURFACE MAGNETOMETER (LSM)
 • 38 GAMMA STEADY FIELD AT APOLLO 12 SITE; 6 GAMMA AT APOLLO 15 SITE
 • TEMPORAL CORRELATION WITH MAGNETOMETER ON EXPLORER 35 ORBITER
 INDICATES ELECTRICAL CURRENTS DEEP WITHIN MOON
 • CORRESPONDING TEMPERATURE PROFILE ESTIMATES:
 810^0K IN SHELL AT 0.6 LUNAR RADIUS
 1240^0K AT CORE (3000^0 TO 5000^0K AT CORE OF EARTH)
SCIENTIFIC ACHIEVEMENTS (ASE AND CPLEE)

• **ACTIVE SEISMIC EXPERIMENT (ASE)**
 - 104 METER/SEC SEISMIC VELOCITY AGREES WITH PSE DATA
 - 8.5 METER SURFACE LAYER (REGOLITH) AT APOLLO 14 SITE

• **CHARGED PARTICLE LUNAR ENVIRONMENT EXPERIMENT (CPLEE)**
 - DETECTS LARGE CHANGES IN SOLAR WIND FLUX
 - LOW ENERGY PHOTO-ELECTRONS DETECTED DURING LUNAR DAY
 - UNEXPECTED DETECTION OF ELECTRONS WITH TERRESTRIAL AURORAE BAND ENERGIES IN MAGNETOSPHERIC TAIL
SEISMIC SIGNALS PRODUCED BY APOLLO 14 THUMPER FIRINGS

Shot 20

Geophone 1 5 m

Geophone 2 41 m

Geophone 3 87 m

Shot 18

Geophone 1 14 m

Geophone 2 32 m

Geophone 3 78 m

2.4 V

1 sec

APR. 72 3270.1.32
SCIENTIFIC ACHIEVEMENTS (HFE AND LRRR)

- HEAT FLOW EXPERIMENT (HFE)
 - LIMITED PENETRATION HAS NOT COMPROMISED ACHIEVEMENT OF SCIENTIFIC OBJECTIVES
 - PROBE DATA INDICATE SURFACE LAYER IS IDEAL THERMAL BLANKET
 - NIGHT SURFACE TEMP: 76^0K (-320°F)
 - DAY SURFACE TEMP: 358^0K (+185°F)
 - SUBSURFACE AT 1.5 M VIRTUALLY CONSTANT AT 253^0K (-4°F)
 - HEAT FLOW APPROX 3.3×10^{-6} WATT/CM2 (1/2 THAT OF EARTH)
 - CONDUCTIVITY AT 1.0 TO 1.5M DEPTH IS BETWEEN 1.4 AND 2.5×10^{-4} WATT/CM^{-0}K (7 TO 10 TIMES GREATER THAN AT SURFACE)
 - DATA SUPPORT MAGNETOMETER FINDINGS

- LASER-RANGING RETRO-REFLECTOR (LRRR)
 - PRELIMINARY RESULTS FROM THREE REFLECTORS INDICATE LARGE-SCALE LUNAR SURFACE "WARPING"
HFE Probe Emplacement on Apollo 15

Diagram:
- **Thermocouples:** Approx. 10° to N E
- **Surface:**
- **Obstruction:**
- **First Stem Joint:**
- **Probe 2**
- **Probe Stop:**
- **Probe 1**

Depth

<table>
<thead>
<tr>
<th>CM</th>
<th>Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Range</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>-320°F to +185°F</td>
<td>505°F</td>
</tr>
<tr>
<td>-9°F to -4°F</td>
<td>5°F</td>
</tr>
<tr>
<td>Constant Temp. (-4°F)</td>
<td>0</td>
</tr>
</tbody>
</table>

FEB 72 3270.1.34
POWER AND DATA SUBSYSTEMS

(CENTRAL STATION FUNCTIONS)
POWER AND DATA COMPONENTS

RADIOISOTOPE THERMOELECTRIC GENERATOR (RTG)
- Supplies all electrical power for ALSEP

POWER CONDITIONING UNIT (PCU) AND POWER DISTRIBUTION UNIT (PDU)
- Converts, regulates, and distributes power for ALSEP components and experiments with switching as commanded by MSFN
- Provides automatic power management (APM) and divides surplus power between internal heaters and external power dissipation resistors (PDR) for central station thermal control

ANTENNA
- Receives and radiates uplink/downlink signals
- Mounted on antenna aiming mechanism for pointing toward the Earth

DIPLEXER FILTER
- Connects receiver and transmitter to antenna with required isolation

COMMAND RECEIVER (RCVR)
- Accepts and demodulates Earth-to-Moon uplink signal

COMMAND DECODER
- Processes received signals and issues commands to ALSEP equipment

DATA PROCESSOR
- Collects and processes scientific and engineering data in suitable format for downlink transmission; uses analog data processor (ADP) to multiplex and convert analog signals to digital; digital data processor (DDP) collects and formats the total data output
- Supplies signal conditioning to analog lines, as required

TRANSMITTER (XMTR)
- Generates Moon-to-Earth downlink signal

DIPLEXER SWITCH
- Connects one of the two redundant transmitters to the antenna
A COMMAND FROM THE MSFN CONSISTS OF THE FOLLOWING:

- UPLINK FREQUENCY 2119 MHz
- A 2 KHz SUBCARRIER PHASE MODULATED WITH A 1 KHz SUBCARRIER TO PRODUCE 61 SERIAL BITS (1000 BITS PER SECOND)

<table>
<thead>
<tr>
<th>20 BITS</th>
<th>7 BITS</th>
<th>7 BITS</th>
<th>7 BITS</th>
<th>20 BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

1. PREAMBE: ALL ONES
2. ADDRESS: 1101001 (OCTAL 151)*
3. COMMAND COMPLEMENT
4. TRUE COMMAND
5. TIMING (EXECUTION): ALL ONES

* NOTE SINGLE ADDRESS FOR ARRAY E
 (OTHER ALSEP'S EACH HAVE TWO ADDRESSES)

OF THE 128 POSSIBLE COMBINATIONS (7 BITS) ONLY 79 ARE USED AS FUNCTIONAL COMMANDS ON ARRAY E
Command Inventory Apollo 17 ALSEP (Array E)

Notes:
- (N/INV) - Not in inventory.
- (*) - Used on other ALSEP's.
- (CRIT) - Critical.
- A - Decoder A
- B - Decoder B
- C - Common Decoder

<table>
<thead>
<tr>
<th>Command ID</th>
<th>Command Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>NO CMD (N/INV)</td>
</tr>
<tr>
<td>001</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>002</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>003</td>
<td>LSP FMT ON</td>
</tr>
<tr>
<td>004</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>005</td>
<td>DP FMT ON</td>
</tr>
<tr>
<td>006</td>
<td>NBR</td>
</tr>
<tr>
<td>007</td>
<td>LBR</td>
</tr>
<tr>
<td>010</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>011</td>
<td>IN/INV (*)</td>
</tr>
<tr>
<td>012</td>
<td>XMTR A ON</td>
</tr>
<tr>
<td>013</td>
<td>XMTR A OFF</td>
</tr>
<tr>
<td>014</td>
<td>XMTR B OFF</td>
</tr>
<tr>
<td>015</td>
<td>XMTR B ON</td>
</tr>
<tr>
<td>016</td>
<td>ADDRESS 11/15 B (N/INV)</td>
</tr>
<tr>
<td>017</td>
<td>PDR 1 ON</td>
</tr>
<tr>
<td>020</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>021</td>
<td>PDR 1 OFF</td>
</tr>
<tr>
<td>022</td>
<td>PDR 2 ON</td>
</tr>
<tr>
<td>023</td>
<td>PDR 2 OFF</td>
</tr>
<tr>
<td>024</td>
<td>ADP X SEL</td>
</tr>
<tr>
<td>025</td>
<td>ADP Y SEL (ADD 14 A)</td>
</tr>
<tr>
<td>026</td>
<td>COMP 17 C (N/INV)</td>
</tr>
<tr>
<td>027</td>
<td>APM 1 ON</td>
</tr>
<tr>
<td>030</td>
<td>ADDRESS 12 B (N/INV)</td>
</tr>
<tr>
<td>031</td>
<td>APM 1 OFF</td>
</tr>
<tr>
<td>032</td>
<td>RIPPLE-OFF RST (CRIT)</td>
</tr>
<tr>
<td>033</td>
<td>COMP 16 B (N/INV) (*)</td>
</tr>
<tr>
<td>034</td>
<td>DDP X SEL</td>
</tr>
<tr>
<td>035</td>
<td>DDP Y SEL</td>
</tr>
<tr>
<td>036</td>
<td>LMS ON</td>
</tr>
<tr>
<td>037</td>
<td>LMS STBY</td>
</tr>
<tr>
<td>040</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>041</td>
<td>LMS OFF</td>
</tr>
<tr>
<td>042</td>
<td>LEAM ON</td>
</tr>
<tr>
<td>043</td>
<td>LEAM STBY</td>
</tr>
<tr>
<td>044</td>
<td>LEAM OFF</td>
</tr>
<tr>
<td>045</td>
<td>HFE ON</td>
</tr>
<tr>
<td>046</td>
<td>HFE STBY</td>
</tr>
<tr>
<td>047</td>
<td>COMP 12 A (N/INV)</td>
</tr>
<tr>
<td>050</td>
<td>HFE OFF</td>
</tr>
<tr>
<td>051</td>
<td>ADDRESS 13 B (N/INV)</td>
</tr>
<tr>
<td>052</td>
<td>LSG ON</td>
</tr>
<tr>
<td>053</td>
<td>LSG STBY</td>
</tr>
<tr>
<td>054</td>
<td>LSG OFF</td>
</tr>
<tr>
<td>055</td>
<td>LSP ON</td>
</tr>
<tr>
<td>056</td>
<td>LSP STBY</td>
</tr>
<tr>
<td>057</td>
<td>LSP OFF</td>
</tr>
<tr>
<td>060</td>
<td>PCU 1 SEL</td>
</tr>
<tr>
<td>061</td>
<td>COMP 11/15 A (N/INV)</td>
</tr>
<tr>
<td>062</td>
<td>PCU 2 SEL (ADD 16 A)</td>
</tr>
<tr>
<td>063</td>
<td>LSG HTR ON</td>
</tr>
<tr>
<td>064</td>
<td>LSG HTR OFF</td>
</tr>
<tr>
<td>065</td>
<td>ADDRESS 14 B (N/INV) (*)</td>
</tr>
<tr>
<td>066</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>067</td>
<td>LSG CMD EX</td>
</tr>
<tr>
<td>070</td>
<td>LSG DECODER ON</td>
</tr>
<tr>
<td>071</td>
<td>LSG DECODER OFF</td>
</tr>
<tr>
<td>072</td>
<td>LSG STEP UP</td>
</tr>
<tr>
<td>073</td>
<td>LSG STEP DN</td>
</tr>
<tr>
<td>074</td>
<td>LSG CMD EX</td>
</tr>
<tr>
<td>075</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>076</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>077</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>100</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>101</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>102</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>103</td>
<td>PER CMDs ON</td>
</tr>
<tr>
<td>104</td>
<td>PER CMDs INH</td>
</tr>
<tr>
<td>105</td>
<td>HFE STBY</td>
</tr>
<tr>
<td>106</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>107</td>
<td>ADP RPR BKUP</td>
</tr>
<tr>
<td>110</td>
<td>ADPU/LK RPR PRI</td>
</tr>
<tr>
<td>111</td>
<td>LEAM CAL</td>
</tr>
<tr>
<td>112</td>
<td>LEAM MIR CVR GO (N/INV)</td>
</tr>
<tr>
<td>113</td>
<td>APm 2 OFF</td>
</tr>
<tr>
<td>114</td>
<td>LEAM SER CVR GO</td>
</tr>
<tr>
<td>115</td>
<td>APm 2 ON (ADD 16 A)</td>
</tr>
<tr>
<td>116</td>
<td>ADDRESS 11/15 A (N/INV)</td>
</tr>
<tr>
<td>117</td>
<td>LEAM HTR STEP</td>
</tr>
<tr>
<td>120</td>
<td>PCU AUTO 1 SW</td>
</tr>
<tr>
<td>121</td>
<td>PCU AUTO 2 SW</td>
</tr>
<tr>
<td>122</td>
<td>RCVR/DEC SW</td>
</tr>
<tr>
<td>123</td>
<td>LMS LOAD 1</td>
</tr>
<tr>
<td>124</td>
<td>LMS LOAD 2</td>
</tr>
<tr>
<td>125</td>
<td>LMS LOAD 3</td>
</tr>
<tr>
<td>126</td>
<td>COMP 13 B (N/INV)</td>
</tr>
<tr>
<td>127</td>
<td>LMS LOAD 4</td>
</tr>
<tr>
<td>130</td>
<td>ADDRESS 12 A (N/INV)</td>
</tr>
<tr>
<td>131</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>132</td>
<td>LMS LOAD 5</td>
</tr>
<tr>
<td>133</td>
<td>LMS LOAD 6</td>
</tr>
<tr>
<td>134</td>
<td>LMS CMD EX</td>
</tr>
<tr>
<td>135</td>
<td>HFE MOD/GEN SEL</td>
</tr>
<tr>
<td>136</td>
<td>HFE MOD/LK SEL</td>
</tr>
<tr>
<td>137</td>
<td>TEST (N/INV)</td>
</tr>
<tr>
<td>140</td>
<td>HFE MODE/HK SEL</td>
</tr>
<tr>
<td>141</td>
<td>HFE SEQ/FUL SEL</td>
</tr>
<tr>
<td>142</td>
<td>HFE SEQ/P1 SEL</td>
</tr>
<tr>
<td>143</td>
<td>HFE SEQ/P2 SEL</td>
</tr>
<tr>
<td>144</td>
<td>HFE LOAD 1 (ADD 16 B)</td>
</tr>
<tr>
<td>145</td>
<td>HFE LOAD 2</td>
</tr>
<tr>
<td>146</td>
<td>HFE LOAD 3</td>
</tr>
<tr>
<td>147</td>
<td>COMP 12 B (N/INV)</td>
</tr>
<tr>
<td>150</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>151</td>
<td>ADDRESS 17 C (N/INV)</td>
</tr>
<tr>
<td>152</td>
<td>HFE HTR STEP</td>
</tr>
<tr>
<td>153</td>
<td>SPARE 2 (*)</td>
</tr>
<tr>
<td>154</td>
<td>SPARE 3</td>
</tr>
<tr>
<td>155</td>
<td>SPARE 4</td>
</tr>
<tr>
<td>156</td>
<td>LSP PULSES ON</td>
</tr>
<tr>
<td>157</td>
<td>TEST/SPARE (N/INV)</td>
</tr>
<tr>
<td>160</td>
<td>SPARE 5</td>
</tr>
<tr>
<td>161</td>
<td>COMP 15 B (N/INV)</td>
</tr>
<tr>
<td>162</td>
<td>LSP PULSES OFF</td>
</tr>
<tr>
<td>163</td>
<td>LSP GAIN NORM</td>
</tr>
<tr>
<td>164</td>
<td>LSP GAIN LOW</td>
</tr>
<tr>
<td>165</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>166</td>
<td>(N/INV) (*)</td>
</tr>
<tr>
<td>167</td>
<td>TEST/SPARE (N/INV)</td>
</tr>
<tr>
<td>170</td>
<td>LSP GEO CAL</td>
</tr>
<tr>
<td>171</td>
<td>LSP GEO CAL</td>
</tr>
<tr>
<td>172</td>
<td>SPARE 7</td>
</tr>
<tr>
<td>173</td>
<td>TEST/SPARE (N/INV)</td>
</tr>
<tr>
<td>174</td>
<td>RCVR/DEC SW INH</td>
</tr>
<tr>
<td>175</td>
<td>TEST/SPARE (N/INV)</td>
</tr>
<tr>
<td>176</td>
<td>TEST/SPARE (N/INV)</td>
</tr>
<tr>
<td>177</td>
<td>NO CMD (N/INV)</td>
</tr>
</tbody>
</table>

May 72 3270.2.5
DOWNLINK DATA FORMAT

- **DOWNLINK FREQUENCY 2275.5 MHz**
- **NORMAL OPERATION:** DATA PROCESSOR (DP) FORMAT AT 1060 BITS PER SECOND
 IS 64-WORD FRAME OF 10-BIT WORDS (640 BITS PER FRAME)
- **THE SAME DP FORMAT AT 530 BITS PER SECOND CAN BE SELECTED BY COMMAND**
- **LSP FORMAT, SELECTED BY COMMAND, IS COMPLETELY DIFFERENT (1800 BITS PER FRAME)**
 AT EITHER 3533.3 BITS PER SECOND (NORMAL) OR 1060 BITS PER SECOND (LOW)
- **ALL DATA TRANSMITTED WITH MOST SIGNIFICANT BIT (MSB) FIRST**
- **DATA PROCESSOR FORMAT:**

```
  1  2  3  4  5  6  7  8
  X  X  X  X  X  X  X  X
  9 10 11 12 13 14 15 16
  B  G  B  G  B  G  B  G
17 18 19 20 21 22 23 24
  A  G  A  G  A  G  HF  G
25 26 27 28 29 30 31 32
  G  G  G  G  G  G  J  G
33 34 35 36 37 38 39 40
  H  K  G  G  G  G  G  J
41 42 43 44 45 46 47 48
  B  G  B  G  B  G  B  G
49 50 51 52 53 54 55 56
  B  G  B  G  B  G  B  G
57 58 59 60 61 62 63 64
  B  G  B  G  B  G  RP  G
```

LEGEND:

- X CONTROL WORD
- A LUNAR MASS SPECTROMETER EXPERIMENT
- CV COMMAND VERIFICATION WORD
- G LUNAR SURFACE GRAVIMETER EXPERIMENT
- HF HEAT FLOW EXPERIMENT
- J LUNAR EJECTA AND METEORITE EXPERIMENT
- HK HOUSEKEEPING (ENGINEERING) DATA
- RP RESERVE POWER
- B BLANK

MAY 72 3270.2.6
CONTROL WORDS AND COMMAND VERIFICATION

CONTROL WORDS
(ALSEP WORDS 1, 2, AND 3)

CMD VERIFICATION
(ALSEP WORD 7)

FILLER BITS (SAME AS BIT 3)

DA-01 ALSEP FRAME SYNC

DA-02 ALSEP FRAME CNTR
(1, 2...89, 0)

MODE BIT, DEFINED AS FOLLOWS:

<table>
<thead>
<tr>
<th>FRAME</th>
<th>MODE BIT</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NORMAL BIT RATE</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>LOW BIT RATE</td>
</tr>
<tr>
<td>3</td>
<td>X MSB</td>
<td>DATA PROC</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>ID NO.</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NONE</td>
<td>NONE</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>NONE</td>
<td>NONE</td>
</tr>
</tbody>
</table>

DA-03 ALSEP BIT RT ID

DA-04 ALSEP ID

DA-05 ALSEP CMD AS RCVD

DA-06 ALSEP CMD MAP

ONE WORD SAMPLE AS EACH COMMAND IS RECEIVED AT ALSEP, AT OTHER TIMES THE SAMPLE IS ALL ZEROS

MAY 72 3270.2.7
ANALOG DATA COMMUTATION

- ALSEP WORD 33 CONTAINS 90-CHANNEL COMMUTATED DATA, PRIMARILY ENGINEERING (HOUSEKEEPING) PARAMETERS, PROCESSED BY THE ADP

- ALSEP WORD 63 CONTAINS RESERVE POWER, ALSO PROCESSED BY THE ADP, BUT NOT COMMUTATED

- ADP OUTPUTS ARE 8-BIT BINARY (MSB FIRST) WITH TWO FILLER ZEROS AHEAD OF THE OUTPUT IN THE 10-BIT ALSEP WORD

<table>
<thead>
<tr>
<th>HK Code</th>
<th>Description</th>
<th>HK Code</th>
<th>Description</th>
<th>HK Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AB-18</td>
<td>31</td>
<td>AT-25</td>
<td>61</td>
<td>AT-41</td>
</tr>
<tr>
<td></td>
<td>UPLINK SW STA</td>
<td></td>
<td>XMTR B PA TEMP</td>
<td></td>
<td>APM 1 TEMP</td>
</tr>
<tr>
<td>2</td>
<td>AE-01</td>
<td>32</td>
<td>AT-26</td>
<td>62</td>
<td>AT-34</td>
</tr>
<tr>
<td></td>
<td>ADC 0.25 CAL</td>
<td></td>
<td>XMTR B CASE TEMP</td>
<td></td>
<td>PDU 1 TEMP</td>
</tr>
<tr>
<td>3</td>
<td>AE-02</td>
<td>33</td>
<td>AT-27</td>
<td>63</td>
<td>AT-35</td>
</tr>
<tr>
<td></td>
<td>ADC 4.75 CAL</td>
<td></td>
<td>DP BASE TEMP</td>
<td></td>
<td>PDU 2 TEMP</td>
</tr>
<tr>
<td>4</td>
<td>AT-03</td>
<td>34</td>
<td>AT-28</td>
<td>64</td>
<td>AT-42</td>
</tr>
<tr>
<td></td>
<td>PLATE TEMP 1</td>
<td></td>
<td>DP INT TEMP</td>
<td></td>
<td>APM 2 TEMP</td>
</tr>
<tr>
<td>5</td>
<td>AE-04</td>
<td>35</td>
<td>AE-21</td>
<td>65</td>
<td>AE-10</td>
</tr>
<tr>
<td></td>
<td>PCU IN AMPS</td>
<td></td>
<td>APM 1 AMPS</td>
<td></td>
<td>+5 VOLTS</td>
</tr>
<tr>
<td>6</td>
<td>AR-01</td>
<td>36</td>
<td>AE-20</td>
<td>66</td>
<td>AE-16</td>
</tr>
<tr>
<td></td>
<td>HOT FRAME 1</td>
<td></td>
<td>RCVR B IN DSM</td>
<td></td>
<td>XMTR B REG AMPS</td>
</tr>
<tr>
<td>7</td>
<td>AR-04</td>
<td>37</td>
<td>AR-02</td>
<td>67</td>
<td>AR-05</td>
</tr>
<tr>
<td></td>
<td>COLD FRAME 1</td>
<td></td>
<td>HOT FRAME 2</td>
<td></td>
<td>COLD FRAME 2</td>
</tr>
<tr>
<td>8</td>
<td>AE-03</td>
<td>38</td>
<td>AG-08</td>
<td>68</td>
<td>AG-04</td>
</tr>
<tr>
<td></td>
<td>PCU 1 VOLTS</td>
<td></td>
<td>LSG +15 VOLTS</td>
<td></td>
<td>LSG HTX TEMP</td>
</tr>
<tr>
<td>9</td>
<td>AB-08</td>
<td>39</td>
<td>AG-01</td>
<td>69</td>
<td>AG-10</td>
</tr>
<tr>
<td></td>
<td>RCVR A 1 KC</td>
<td></td>
<td>LSG SEISMIC</td>
<td></td>
<td>LSG +5 VOLTS</td>
</tr>
<tr>
<td>10</td>
<td>AG-02</td>
<td>40</td>
<td>AM-0086</td>
<td>70</td>
<td>AB-10</td>
</tr>
<tr>
<td></td>
<td>LSG TIDE</td>
<td></td>
<td>LMS 16 CHANNEL</td>
<td></td>
<td>DDP STA</td>
</tr>
<tr>
<td>11</td>
<td>AE-23</td>
<td>41</td>
<td>AM-41</td>
<td>71</td>
<td>AT-07</td>
</tr>
<tr>
<td></td>
<td>PCU 2 VOLTS</td>
<td></td>
<td>LMS ELECT TEMP</td>
<td></td>
<td>PLATE TEMP 5</td>
</tr>
<tr>
<td>12</td>
<td>AB-04</td>
<td>42</td>
<td>AT-02</td>
<td>72</td>
<td>AT-13</td>
</tr>
<tr>
<td></td>
<td>EXP 1/2 STA</td>
<td></td>
<td>SUNSHIELD TEMP 2</td>
<td></td>
<td>INSUL EXT TEMP</td>
</tr>
<tr>
<td>13</td>
<td>AB-16</td>
<td>43</td>
<td>AT-05</td>
<td>73</td>
<td>AB-11</td>
</tr>
<tr>
<td></td>
<td>PC AUTO SW STA</td>
<td></td>
<td>PLATE TEMP 3</td>
<td></td>
<td>EXP 5 STA</td>
</tr>
<tr>
<td>14</td>
<td>AB-05</td>
<td>44</td>
<td>AM-44</td>
<td>74</td>
<td>AH-04</td>
</tr>
<tr>
<td></td>
<td>EXP 3/4 STA</td>
<td></td>
<td>LMS SWEEP VOLTS</td>
<td></td>
<td>HFE -15 VOLTS</td>
</tr>
<tr>
<td>15</td>
<td>AT-10</td>
<td>45</td>
<td>AH-02</td>
<td>75</td>
<td>AH-07</td>
</tr>
<tr>
<td></td>
<td>PRI/ST 81 TEMP</td>
<td></td>
<td>HFE +5 VOLTS</td>
<td></td>
<td>HFE HTR/LK STA</td>
</tr>
<tr>
<td>16</td>
<td>AT-40</td>
<td>46</td>
<td>AT-14</td>
<td>76</td>
<td>AB-13</td>
</tr>
<tr>
<td></td>
<td>RCVR A CASE TEMP</td>
<td></td>
<td>FRONT/ST TEMP</td>
<td></td>
<td>APM STA</td>
</tr>
<tr>
<td>17</td>
<td>AB-09</td>
<td>47</td>
<td>AT-15</td>
<td>77</td>
<td>AT-38</td>
</tr>
<tr>
<td></td>
<td>RCVR B 1 KC</td>
<td></td>
<td>REAR/ST TEMP</td>
<td></td>
<td>PCU 1 REG TEMP</td>
</tr>
<tr>
<td>18</td>
<td>AT-23</td>
<td>48</td>
<td>AT-31</td>
<td>78</td>
<td>AT-39</td>
</tr>
<tr>
<td></td>
<td>XMTR A PA TEMP</td>
<td></td>
<td>DEMOD B TEMP</td>
<td></td>
<td>PCU 2 REG TEMP</td>
</tr>
<tr>
<td>19</td>
<td>AT-24</td>
<td>49</td>
<td>AT-32</td>
<td>79</td>
<td>AE-11</td>
</tr>
<tr>
<td></td>
<td>XMTR A CASE TEMP</td>
<td></td>
<td>DEMOD A TEMP</td>
<td></td>
<td>-12 VOLTS</td>
</tr>
<tr>
<td>20</td>
<td>AE-07</td>
<td>50</td>
<td>AE-09</td>
<td>80</td>
<td>AB-14</td>
</tr>
<tr>
<td></td>
<td>+29 VOLTS</td>
<td></td>
<td>+12 VOLTS</td>
<td></td>
<td>PDR STA</td>
</tr>
<tr>
<td>21</td>
<td>AE-19</td>
<td>51</td>
<td>AE-15</td>
<td>81</td>
<td>AE-17</td>
</tr>
<tr>
<td></td>
<td>RCVR A IN DSM</td>
<td></td>
<td>XMTR A REG AMPS</td>
<td></td>
<td>XMTR A +23 VOLTS</td>
</tr>
<tr>
<td>22</td>
<td>AE-18</td>
<td>52</td>
<td>AR-03</td>
<td>82</td>
<td>AR-06</td>
</tr>
<tr>
<td></td>
<td>XMTR B +23 VOLTS</td>
<td></td>
<td>HOT FRAME 3</td>
<td></td>
<td>COLD FRAME 3</td>
</tr>
<tr>
<td>23</td>
<td>AG-03</td>
<td>53</td>
<td>AG-09</td>
<td>83</td>
<td>AJ-O305</td>
</tr>
<tr>
<td></td>
<td>LSG FREE MODE</td>
<td></td>
<td>LSG -15 VOLTS</td>
<td></td>
<td>LEAM 1-5 CHANNEL</td>
</tr>
<tr>
<td>24</td>
<td>AG-07</td>
<td>54</td>
<td>AG-06</td>
<td>84</td>
<td>AJ-0610</td>
</tr>
<tr>
<td></td>
<td>LSG OSC AMP</td>
<td></td>
<td>LSG MASS CHANGE</td>
<td></td>
<td>LEAM 6-10 CHANNEL</td>
</tr>
<tr>
<td>25</td>
<td>AP-01</td>
<td>55</td>
<td>AH-03</td>
<td>85</td>
<td>AJ-11</td>
</tr>
<tr>
<td></td>
<td>LSP ELECT TEMP</td>
<td></td>
<td>HFE +15 VOLTS</td>
<td></td>
<td>LEAM SURVIVAL TEMP</td>
</tr>
<tr>
<td>26</td>
<td>AB-06</td>
<td>56</td>
<td>AE-22</td>
<td>86</td>
<td>AB-15</td>
</tr>
<tr>
<td></td>
<td>UPLINK STA</td>
<td></td>
<td>APM 2 AMPS</td>
<td></td>
<td>PER CMD EN/INH</td>
</tr>
<tr>
<td>27</td>
<td>AT-01</td>
<td>57</td>
<td>AH-06</td>
<td>87</td>
<td>AT-09</td>
</tr>
<tr>
<td></td>
<td>SUNSHIELD TEMP 1</td>
<td></td>
<td>HFE HTX/HTK STA</td>
<td></td>
<td>PRIST W2 TEMP</td>
</tr>
<tr>
<td>28</td>
<td>AT-04</td>
<td>58</td>
<td>AT-06</td>
<td>88</td>
<td>AT-11</td>
</tr>
<tr>
<td></td>
<td>PLATE TEMP 2</td>
<td></td>
<td>PLATE TEMP 4</td>
<td></td>
<td>PWR DUMP TEMP</td>
</tr>
<tr>
<td>29</td>
<td>AH-01</td>
<td>59</td>
<td>AT-08</td>
<td>89</td>
<td>AG-06</td>
</tr>
<tr>
<td></td>
<td>HFE +5 VOLTS</td>
<td></td>
<td>PRI/ST W1 TEMP</td>
<td></td>
<td>LSG PRESSURE</td>
</tr>
<tr>
<td>30</td>
<td>AE-24</td>
<td>60</td>
<td>AT-12</td>
<td>90</td>
<td>AB-17</td>
</tr>
<tr>
<td></td>
<td>RESERVE AMPS</td>
<td></td>
<td>INSUL INT TEMP</td>
<td></td>
<td>ADP STA</td>
</tr>
</tbody>
</table>

MAY 72 3270.2.8
ELECTRONICS COMPARTMENT

THERMAL PLATE TEMP SENSORS (TM)

USED IN LSP MODE

XMTR A

XMTR B

DIPLEXER SWITCH

DIPLEXER FILTER

RCVR

LSP CENTRAL ELECTRONICS

DATA PROCESSOR

PCU - PDU

CMD DEC

TERMINAL BOARD

CONNECTOR PANEL
PCU/APM FUNCTIONS

PCU 1
(SEE APM 2 AND REG 2, BELOW, FOR DETAILS)

PCU 2

MAY 72 3270.2.11

65-WATT REGULATOR RESISTANCES
(HEATERS ON THERMAL PLATE)
NOTE: TWO SETS OF RESISTORS,
ONE FOR EACH PCU
PCU COMMANDS

OCTAL CMD NUMBER

• D60 PCU 1 SEL

 THIS CMD ACTUATES A LATCHING RELAY IN THE PCU TO THE POSITION THAT APPLIES 16.3 ± 0.5 VDC FROM THE RTG TO PCU 1 AND DISCONNECTS PCU 2 FROM THE RTG. IN THIS POSITION, PCU 1 PROVIDES POWER FOR THE ALSEP SYSTEM VIA PDU 1. REPEATED APPLICATION OF CMD D60 HAS NO FURTHER EFFECT. IN NORMAL OPERATION, CMD D21 SHOULD BE TRANSMITTED BEFORE CMD D60, UNLESS PC AUTO 2 SWITCH IS ALREADY SELECTED. PCU 1 IS PRESET TO BE ENERGIZED AT INITIAL LUNAR ACTIVATION.

• D62 PCU 2 SEL

 THIS CMD ACTUATES A LATCHING RELAY IN THE PCU TO THE POSITION THAT APPLIES 16.3 ± 0.5 VDC FROM THE RTG TO PCU 2 AND DISCONNECTS PCU 1 FROM THE RTG. IN THIS POSITION, PCU 2 PROVIDES POWER FOR THE ALSEP SYSTEM VIA PDU 2. IN NORMAL OPERATION, CMD D20 SHOULD BE TRANSMITTED BEFORE CMD D62, UNLESS PC AUTO 1 SWITCH IS ALREADY SELECTED. REPEATED APPLICATION OF CMD D62 HAS NO FURTHER EFFECT.

• D20 PC AUTO 1 SW SEL

 THIS CMD ACTIVATES A RELAY IN THE PCU TO THE POSITION THAT ENABLES AUTOMATIC SWITCHOVER FROM PCU 2 TO PCU 1, IF ANY ONE OF THE +12 VDC, +5 VDC, OR -12 VDC LINES GOES OVERVOLTAGE LONGER THAN 5 MS OR UNDERVOLTAGE LONGER THAN 300 MS. IN THIS POSITION, AUTOMATIC SWITCHOVER FROM PCU 1 TO PCU 2 IS INHIBITED. PC AUTO 1 SW SEL IS PRESET TO BE ENERGIZED AT INITIAL LUNAR ACTIVATION; HENCE, IF NORMAL START-UP OCCURS, CMD D21 SHOULD BE TRANSMITTED AS EARLY AS POSSIBLE. REPEATED APPLICATION OF CMD D20 HAS NO FURTHER EFFECT. IN NORMAL OPERATION, CMD D20 SHOULD BE TRANSMITTED BEFORE CMD D62, UNLESS PC AUTO 1 SW IS ALREADY SELECTED. AN INTERNALLY GENERATED PCU SWITCHOVER IS AN ABNORMAL CONDITION REQUIRING CAUTION IN THE SUBSEQUENT USE OF CMD D20.

• D21 PC AUTO 2 SW SEL

 THIS CMD ACTIVATES A RELAY IN THE PCU TO THE POSITION THAT ENABLES AUTOMATIC SWITCHOVER FROM PCU 1 TO PCU 2, IF ANY ONE OF THE -12 VDC, +5 VDC, OR -12 VDC LINES GOES OVERVOLTAGE LONGER THAN 5 MS OR UNDERVOLTAGE LONGER THAN 300 MS. IN THIS POSITION, AUTOMATIC SWITCHOVER FROM PCU 2 TO PCU 1 IS INHIBITED. REPEATED APPLICATION OF CMD D21 HAS NO FURTHER EFFECT. IN NORMAL OPERATION, CMD D21 SHOULD BE TRANSMITTED BEFORE CMD D60, UNLESS PC AUTO 2 SW IS ALREADY SELECTED. AN INTERNALLY GENERATED PCU SWITCHOVER IS AN ABNORMAL CONDITION REQUIRING CAUTION IN THE SUBSEQUENT USE OF CMD D21.

MAY 72 3270.2.12
APM COMMANDS

OCTAL CMD NUMBER

- 027 APM 1 ON

This CMD actuates a flip-flop in the PCU to the position that allows RTG input power to be diverted to a 30-watt, maximum, power dissipation resistor if (1) there is more than (2 to 4, TBD) watts of reserve power on PCU 1, and (2) the thermal plate temp is above the temp switch 1 value: 60°F close, 80°F open. The application of power to PCU 1 causes initialization in the APM 1 ON configuration. Repeated application of CMD 027 has no further effect.

- 031 APM 1 OFF

This CMD actuates a flip-flop in the PCU to the position that inhibits APM 1 from dissipating RTG power. Repeated application of CMD 031 has no further effect.

- 115 APM 2 ON

This CMD actuates a flip-flop in the PCU, to the position that allows RTG input power to be diverted to a 30-watt, maximum power dissipation resistor if (1) there is more than (2 to 4, TBD) watts of reserve power on PCU 2, and (2) the thermal plate temp is above the temp switch 2 value: 60°F close, 80°F open. The application of power to PCU 2 causes initialization in the APM 2 ON configuration. Repeated application of CMD 115 has no further effect.

- 113 APM 2 OFF

This CMD actuates a flip-flop in the PCU to the position that inhibits APM 2 from dissipating RTG power. Repeated application of CMD 113 has no further effect.
RTG/PCU/APM TELEMETRY

THE FOLLOWING PARAMETERS ARE SENSED IN THE RTG, WITH SIGNAL CONDITIONING IN THE DATA PROCESSOR:

AR-01 HOT FRAME 1 TEMP, DEG F
AR-02 HOT FRAME 2 TEMP, DEG F
AR-03 HOT FRAME 3 TEMP, DEG F
AR-04 COLD FRAME 1 TEMP, DEG F
AR-05 COLD FRAME 2 TEMP, DEG F
AR-06 COLD FRAME 3 TEMP, DEG F

THE FOLLOWING PARAMETERS ARE SENSED IN THE PCU/APM, WITH SIGNAL CONDITIONING IN THE DATA PROCESSOR (MEASUREMENT IS ABSENT IF PCU/APM IS OFF):

AT-38 REG 1 TEMP, DEG F (NEAR THE PCU 1 REGULATOR TRANSISTOR)
AT-39 REG 2 TEMP, DEG F (NEAR THE PCU 2 REGULATOR TRANSISTOR)
AT-41 APM 1 TEMP, DEG F (NEAR TEMP SWITCH 1)
AT-42 APM 2 TEMP, DEG F (NEAR TEMP SWITCH 2)

THE FOLLOWING ELECTRICAL PARAMETERS ARE SENSED IN THE PCU/APM:

AE-03 PCU 1 INPUT VOLTS (ESSENTIALLY RTG OUTPUT VOLTS, AT PCU 1)
AE-04 PCU INPUT CURRENT, AMPS (OR'D FROM THE SWITCHED RTG OUTPUT)
AE-21 APM 1 CURRENT, AMPS (MEASURES CURRENT TO PDR OF APM 1)
AE-22 APM 2 CURRENT, AMPS (MEASURES CURRENT TO PDR OF APM 2)
AE-23 PCU 2 INPUT VOLTS (ESSENTIALLY RTG OUTPUT VOLTS, AT PCU 2)
DA-08 RESERVE CURRENT, AMPS (OR'D FROM THE TWO PCU/APM SHUNTS)
AE-24

THE FOLLOWING ELECTRICAL PARAMETERS ARE SENSED IN THE PDU OR ADP (AFTER COMBINING OUTPUTS OF PCU 1 AND PCU 2) BUT ARE CALIBRATED TO REFLECT VALUES AT THE PCU POWER OUTPUT MONITOR:

AE-07 +29 VDC OUTPUT
AE-09 +12 VDC OUTPUT
AE-10 +5 VDC OUTPUT
AE-11 -12VDC OUTPUT

THE FOLLOWING SWITCH STATUS PARAMETERS ARE SENSED IN THE PCU:

AB-13 APM STATUS (INDICATES WHETHER THE APM OF THE ACTIVE PCU IS ENABLED OR IS INHIBITED BY CMD)
AB-16 PC AUTO SW STATUS (INDICATES WHETHER OR NOT THE INACTIVE PCU IS SELECTED FOR AUTOMATIC BACKUP)
CIRCUIT PROTECTION

• PCU AUTO SWITCH
 In case of overvoltage/undervoltage in the PCU output, automatic switchover from the active PCU to the alternate PCU will occur if voltage, time, and switch setting conditions are satisfied.
 - Voltages (as sensed by the power output monitor in the PCU)
 +12 V increases to +13.2 ± 0.25 V or decreases to +10.8 ± 0.25 V
 +5 V decreases to 0.9 V
 -12 V decreases numerically to -4.7 V
 - Time
 An increase (overvoltage) on one of these lines indicates a probable regulator failure and if it continues for 5 ms, a switchover signal is generated.
 A decrease (undervoltage) on one of these lines could be due to an overload in some component. Fuses, circuit breakers, and ripple-off are provided in switched lines to most components.
 To allow action of these protection features, the switchover signal is generated after 300 ± 50 ms of continuous undervoltage.
 - Switch setting
 Auto switchover can occur in either direction (PCU 1-to-2 or PCU 2-to-1) under the control of a command-selectable relay. Incorrect setting of the relay inhibits automatic switchover.

• Ripple-off
 In case of system overload, as sensed by marginal reserve power (nominal 0.8 W), an automatic sequencer in the command decoder waits 121 ms (for fuses and circuit breakers to relieve the overload), then switches commandable loads to off (or standby, for experiments), at ≈ 8 ms intervals.

• Fuses and circuit breakers
 All non-essential switchable loads are on fused lines. Other switchable loads have circuit breakers which are reset by application of the normal on cmd. There are unswitched loads (usually small) with no circuit protection.
PDU FUNCTIONS

EXPER
ON
STBY
OFF

DDP X & Y XMTR A & B

PCU 1

PCU 2

COMBINED

NON-REDUNDANT ELEMENTS

PDU 2

PDU 1

ADP X & Y

ADP X & Y

+12 VDC

-12 VDC

+5 VDC

+5 VDC

+29 VDC

+29 VDC

-32 VDC

-32 VDC

TM

TM

TM

TM

TM

TM

TM

TM

EXPER

EXPER
PDU TRACKING

- WITH THE REDUNDANT PCU-PDU DESIGN, THERE ARE PROVISIONS FOR THE REDUNDANT POWER SWITCHING RELAYS TO "TRACK"; THAT IS, COMMANDS ACTUATE PDU 1 AND PDU 2 IN PARALLEL. WITH THIS TRACKING, A PCU SWITCHOVER SHOULD CAUSE NO OTHER CHANGE IN THE ALSEP OPERATIONAL CONFIGURATION.

- EXCEPTIONS MAY OCCUR WHEN POWER SWITCHING RESULTS FROM INTERNAL CAUSES INSTEAD OF UPLINK COMMANDS. THE INTERNAL CAUSES AND THEIR EFFECT ON TRACKING ARE AS FOLLOWS:
 - RIPPLE-OFF AND UPLINK SWITCH SEQUENCER OPERATE THROUGH GATES ON NORMAL COMMAND LINES; HENCE, TRACKING IS MAINTAINED.
 - CIRCUIT BREAKERS SENSE OVERLOAD ON AN ACTIVE LINE AND ACTUATE POWER SWITCHING RELAYS TO EITHER SELECT THE ALTERNATE COMPONENT OR TURN OFF THE ACTIVE COMPONENT. TRACKING DEPENDS ON THE LOCATION OF THE CIRCUIT BREAKER:
 1. IF THE CIRCUIT BREAKER OPERATES ON A "COMBINED" POWER LINE, THE SYSTEM WILL TRACK (UPLINK AND ADP)
 2. IF THE CIRCUIT BREAKER OPERATES ON AN INDIVIDUAL POWER LINE, PCU 1 OR PCU 2, THE SYSTEM WILL NOT TRACK (DDP, XMTR, AND EXPERIMENT OPERATIONAL OVERLOAD)
 - FUSES ARE SIMILAR, IN THAT "COMBINED" LINES TRACK (PDR 1 AND PDR 2) WHILE INDIVIDUAL LINES WILL NOT TRACK (EXPERIMENT STANDBY OVERLOAD)

- NOTE THAT THE APM FOR EACH PCU IS INITIALIZED TO THE ON STATE WHEN THE PCU IS SELECTED; HENCE, THE APM OFF COMMAND DOES NOT TRACK, IN TERMS OF MAINTAINING STATUS THROUGH A PCU SWITCHOVER

- THE ABNORMAL CONDITION OF "RIPPLE-OFF SEQUENCER LOCK-OUT" MAY POSSIBLY BE CLEARED BY PCU SWITCHOVER (UNPREDICTABLE TRACKING)
PDR POWER CONTROL
(NON-REDUNDANT PDU RELAYS)

NOTE: FUSES AHEAD OF TM

RIPPLE-OFF SEQ*

*NOTE: RIPPLE-OFF SEQUENCER SELECTS
PDR 1, PDR 2, LMS, LEAM, HFE, LSG, LSP
(128 MS DELAY, THEN ≈ 8 MS INTERVALS)
PDR COMMANDS

OCTAL CMD NUMBER

- 017 PDR 1 ON

This cmd actuates two latching relays (in series) in the non-redundant section of the PDU, to the position that applies +29 VDC to a 7-WATT power dissipation resistor, and is used as a backup means of PWR/Thermal control if the APM cannot cope with the load. Repeated application of cmd 017 has no further effect.

- 021 PDR 1 OFF

This cmd actuates two latching relays (in series) in the non-redundant section of the PDU, to the position that removes +29 VDC from the 7-WATT power dissipation resistor. PDR 1 is preset to be in the off condition at initial lunar activation. Repeated application of cmd 021 has no further effect.

- 022 PDR 2 ON

This cmd actuates two latching relays (in series) in the non-redundant section of the PDU, to the position that applies +29 VDC to a 14-WATT power dissipation resistor, and is used as a backup means of PWR/Thermal control if the APM cannot cope with the load. Repeated application of cmd 022 has no further effect.

- 023 PDR 2 OFF

This cmd actuates two latching relays (in series) in the non-redundant section of the PDU, to the position that removes +29 VDC from the 14-WATT power dissipation resistor. PDR 2 is preset to be in the off condition at initial lunar activation. Repeated application of cmd 023 has no further effect.
PDR TELEMETRY

AT-11 PDM TEMP, DEG F (SENSED ON THE POWER DISSIPATION MODULE WITH SIGNAL CONDITIONING IN THE DATA PROCESSOR)

AB-14 PDR 1/2 STATUS (INDICATES THE ON/OFF STATUS OF BOTH PDR 1 AND PDR 2, WITH AN OFF INDICATION IN THE CASE OF A BLOWN FUSE)
DIPLEXER FILTER AND SWITCH FUNCTIONS

- **Antenna**
 - Low Pass Filter

- **Receiver Band Pass Filter**
 - TO RCVR
 - Activated for XMTR B

- **Transmitter Band Pass Filter**
 - +12 VDC
 - Reversible Circulator

- **Diplexer Filter**
 - Provides XMTR/RCVR isolation with a common antenna
 - Uses tuneable cavity bandpass filters

- **Diplexer Switch**
 - Used to couple the selected transmitter through the diplexer filter to the antenna
 - Two circulators are used to provide transmitter isolation and protection (against opens or shorts), and the third circulator is reversible to serve as a switch
 - +12 VDC application selects XMTR B; absence of +12 VDC selects XMTR A
 - If both XMTR's are operating, the one not selected is applied to a load.

MAY 72 3270.2.21
UPLINK POWER CONTROL

- FIF initializes in state A CIRCUIT BREAKERS C/B ACTUALLY GROUND RELAY CO (NOT DRIVER) +5 VDC 330 MA +12 VDC 330 MA -12 VDC 150 MA
- DRIVER
- COMMAND DECODER A
- COMMAND DECODER B
- PCU 1
- PCU 2
- UPLINK SWITCH PULSE 7 + 60 X 60 HR
- UPLINK POWER RELAYS
- ONLY +12 VDC USED IN RCVR'S RCVR A DECODER A RCVR B DECODER B PCU 1 PCU 2
- MAY 72 3270.2.22
RECEIVER FUNCTIONS

RF CONVERTER

3-POLE PRESELECTOR

BALANCED MIXER

IF PREAMP AND FILTER

SECOND MIXER

CRYSTAL OSC

X9 X2

5-POLE FILTER

AMPLIFIER

LIMITER

AGC

FIRST DISCRIM

AUDIO AMPLIFIER

TO DECODER A

TO DECODER B

AT-40 RCVR A

CASE DEG E

+11 VDC

+11 VDC

FROM DIPLEXER FILTER

HYBRID COUPLER

RCVR A

+12 VDC

RCVR B

POWER LINE ISOLATOR

FORMAT CONTROL

AB-09 RCVR A

IN DBM

AB-09 RCVR B

IN DBM

AB-09 RCVR B

1 KC

SIGNAL PRESENCE DETECTOR

NOTE: NO CASE TEMP TM WHEN RCVR A IS OFF

MAY 72 3270.2.23
COMMAND DECODER FUNCTIONS

DATA DEMODULATOR

CONVERTS THE MESSAGE INTO DIGITAL FORMAT USING A PHASE LOCK LOOP AND CLOCK GENERATOR, A DATA DETECTOR, AND THRESHOLD CIRCUITS

- THE PHASE LOCK LOOP USES A FREE-RUNNING VOLTAGE CONTROLLED OSCILLATOR (VCO) AT 8 KHz WITH A DIVIDE-BY-4 RING COUNTER TO GENERATE FOUR PHASES OF A 1 KHz SQUARE WAVE. ONE OF THESE IS USED TO CONTROL THE VCO. THE PHASES OF THE 1 KHz ARE ALSO GATED TOGETHER FOR THE CONTROL LOGIC CLOCKS AND DATA DETECTOR.

- THE DATA DETECTOR HAS TWO DETECTION CHAINS, FOR ZEROS AND ONES, WITH "INTEGRATE AND DUMP CIRCUITS". THE OUTPUTS ARE USED IN THE THRESHOLD CIRCUITS AND, IF ACCEPTABLE, ARE CLOCKED INTO THE CONTROL LOGIC COMMAND REGISTER.

- THE THRESHOLD CIRCUITS REQUIRE AT LEAST FOUR CONSECUTIVE VALID DATA BITS BEFORE ACCEPTING INPUTS FOR THE COMMAND REGISTER. IN THE EVENT OF SUBSEQUENT DATA DROPOUT, INPUT TO THE REGISTER IS INHIBITED AND THE CONTROL LOGIC IS RESET.

MAY 72 3270.2.24
COMMAND DECODER FUNCTIONS (CONT’D)

- **CONTROL LOGIC**

 The control logic consists of an 8-bit shift register, two counters, and reset circuitry. Operation is as follows:

 1. Data passes through the register (1000 bits per second) and the first 7 bits are checked for the address (1101001).

 2. Recognition of address starts a timing sequence. The first counter counts 7 pulses which shift the command complement into the register. As the next 7 bits (true command) are shifted into the register, an "exclusive or" gate checks bits 1 and 8 of the register for command/complement "parity". Failure of this test sets a parity memory.

 3. After the second 7 pulses, during which the true command has been shifted into the register, there is a period of 21 pulses (21 ms) for command execution with the following logic:
 - A latch is set to time the execute gate and a second latch inhibits new data into the register (the received command is in the last 7 bits of the register).
 - The command line is selected in the decoding gates.
 - The parity bit is entered in the first bit of the register and, if parity is valid, the command is executed.

 4. At the end of the 21 timing pulses, a signal is sent to the data processor, indicating data availability, called verification word enable (VWE). The data processor reads out the command verification word at the proper time in the next telemetry data frame.

 5. At the end of the data processor demand pulse, the command decoder automatically returns to the address search mode (reset). In LSP mode of operation, reset occurs at execution bit 21.

- **DECODE GATES**

 Output decoding uses two-input gates, so that each individual command line is dependent on (1) the state of all 7 command bits and (2) the presence of the command execute pulse.

- **PERIODIC COMMAND AND RIPPLE-OFF SEQUENCER**

 To be described later.
OCTAL CMD NUMBER

- 110 ADP/UPLINK REDUNDANT POWER ROUTING, PRIMARY SELECT

This CMD actuates a pair of latching relays in the non-redundant section of the PDU, to the position that provides the basic, redundant, routing of +5 VDC from PCU 1 and PCU 2 to the ADP/UPLINK selection relays. This CMD has the opposite effect of CMD 107 for ADP PWR ROUTING and of a 61-HR PULSE for UPLINK PWR ROUTING. This CMD would serve to clear a malfunction in either the decoder or the ADP selection relay, if one should occur in the backup routing. The primary routing is preset to be energized at initial lunar activation. Repeated application of CMD 110 has no further effect.

- 122 RCVR/DECODER SWITCH

This CMD, through the UPLINK SWITCH FLIP-FLOP in the CMD DECODER, actuates latching relays in the non-redundant section of the PCU to remove power from whichever set of UPLINK components is in use and apply power to the alternate, redundant, components. Three voltages (+5, +12 and -12) are switched for the CMD DECODERS and +12 VDC for RCVR'S. Repeated application of CMD 122 causes repeated selection, alternating between RCVR/DECORDER A and B. TRANSMISSION OF CMD 122 DOES NOT ACTUATE THE BACKUP POWER ROUTING OF +5 VDC TO THE DECODER AS DOES AUTOMATIC SWITCHOVER. AFTER A PCU SWITCHOVER, CMD 122 MAY BE REQUIRED TWICE FOR THE NEXT SWITCHOVER (IF IT IS FROM UPLINK B TO UPLINK A). NOTE THAT CMD 122 AND CMD 174 HAVE NO EFFECT ON EACH OTHER. CMD 122 ALSO ENABLES PERIODIC CMD'S.

- 174 RCVR/DECODER SWITCH DELAY

This CMD sets a one-time inhibit circuit in the CMD DECODER such that the next 61-HR PULSE does not cause switchover to the opposite RCVR/DECORDER. Repeated application of CMD 174, prior to arrival of a 61-HR PULSE, has no further effects; only one pulse is inhibited. Resetting to the NO-DELAY condition occurs 3.5 minutes after the 61-HR AUTOSWITCH pulse is generated, whether or not the switchover is actually inhibited or enabled. The application of power to ALSEP causes initialization in the NO-DELAY configuration. NOTE THAT CMD 174 AND CMD 122 HAVE NO EFFECT ON EACH OTHER.
UPLINK TELEMETRY

The following temperatures are sensed in the uplink components, with signal conditioning in the data processor (measurement is absent if receiver/decoder unit is off):

AT-31 DECODER B TEMP, DEG F (sensed in the data demodulator)
AT-32 DECODER A TEMP, DEG F (sensed in the data demodulator)
AT-40 RCVR A CASE TEMP, DEG F (not when RCVR B is operating)

The following electrical parameters are sensed in the receivers:

AE-19 RCVR A INPUT SIGNAL LEVEL, DBM (sensed in AGC)
AE-20 RCVR B INPUT SIGNAL LEVEL, DBM (sensed in AGC)

The following status parameters are sensed in the uplink components:

AB-06 UPLINK STATUS (A or B components plus primary or backup routing)
AB-08 RCVR A 1 KC (present or absent)
AB-09 RCVR B 1 KC (present or absent)
AB-18 UPLINK SWITCH STATUS (accept or delay the 61-HR switchover signal)

The command verification word (CVW) is read out in word 7 of the ALSEP telemetry frame:

DA-05 ALSEP COMMAND, AS RECEIVED (bits 3 through 9 of word 7)
DA-06 ALSEP CMD MAP (message acceptance pulse, in bit 10, indicates "one" if command/complement agreed)

Bits 1 and 2 are filler and will be the same as bit 3. The CVW appears only once, in the frame following command receipt, otherwise word 7 is all zeros. When switching by command between redundant data subsystem components, the CVW may be unavailable.

Note that component temperatures and electrical parameters are off-scale when the component is not in use.
UPLINK CONFIGURATION SWITCHING

LEGEND

- POWER OFF
- POWER ON

- UPLINK A/B : STATUS OF CHANGEOVER RELAY
- R/I F : STATUS OF REC/DECOD. FLIP-FLOP
- WIX : POWER ROUTING RELAY STATUS

CHANGE EVENTS:
- CHANGE FROM I to NUMBERS
- OCTAL COMMANDS
- CIRCUIT BREAKER
- AUTO. SW. : AUTO. UPLINK CHANGEOVER
 (EACH 61 HOURS)

MAY 72 3270.2.28
ADP POWER SWITCHING
(NON-REDUNDANT PDU RELAYS)

- CIRCUIT BREAKERS (C/B) ACTUALLY GROUND RELAY COIL (NOT DRIVER)
- CIRCUIT BREAKER RATINGS:
 - +5 VDC, 330 MA
 - +12 VDC, 150 MA
 - -12 VDC, 150 MA

ADP X SEL
ADP Y SEL
ADP RLP BKUP
ADP UPLINK

PCU 1
+5 VDC

PCU 2

MAY 72 3270.2.29
ADP FUNCTIONS

- THE MULTIPLEXER CONTAINS A SELF-RESETTING COUNTER (1 TO 90 AND A 90-INPUT MATRIX SWITCH FOR ROUTING THE ANALOG SIGNALS SEQUENTIALLY TO THE ANALOG-TO-DIGITAL CONVERTER (ADC).

- AT THE START OF THE 64TH (FINAL WORD OF EACH ALSEP TELEMETRY FRAME, AN "ADVANCE" PULSE FROM THE DDP SETS THE SWITCHING MATRIX TO THE NEXT POSITION, AND ONE WORD LATER THE DDP "FRAME MARK" PULSE APPLIES THE ANALOG SIGNAL TO THE ADC.

- AT ALSEP WORD 33, THE ANALOG-TO-DIGITAL CONVERSION IS PERFORMED DURING ALSEP WORD 63.

ADP FUNCTIONS (CONT.)

- **ANALOG TO DIGITAL CONVERTER (ADC)**
 The ADC accepts analog signals from the multiplexer and converts them into 10-bit digital data (including two filler bits) to be forwarded in serial format to the DDP.
 - The ADC uses a ramp generator-comparator technique for conversion, in which the input analog signal (voltage) is compared to a linear ramp voltage while a counter advances one bit per unit voltage increment. The counter is stopped when the ramp voltage exceeds the input voltage. The number in the counter is then read out to a buffer storage register as the binary equivalent of the magnitude of the input analog voltage. The 8-bit binary scale has a decimal range of zero-to-255, with one-to-254 representing a voltage between zero and +5 VDC. Zero output represents negative voltage input and 255 represents greater than +5 VDC.
 - The conversion starts at the trailing edge of a "start conversion" signal from the ADC control logic section and is completed within 140 micro-seconds, maximum. Readout to the buffer register clears the counter and resets the ramp generator.
 - Timing pulses for the counter advance are supplied by the DDP at 2.035 MHz (+ 0.005%).

- **SIGNAL CONDITIONING AND CALIBRATION**
 Temperature measurements of the central station structure, the RTG, and one each from LMS, LSP, and LEAM, are conditioned in the non-redundant section of the ADP to provide zero to +5 VDC signals for input to the analog multiplexers/converters. Precision signals at 0.25 and 4.75 VDC are generated for ADC calibration, and PCU output voltages are monitored/conditioned in the ADC. (PCU 1 and PCU 2 outputs are combined into one measurement for each of the four voltage levels.)

Diagram Description

- Analog data processor X
- 90-channel analog multiplexer
- Analog to digital converter
- Clock pulses
- 10-bit serial data
- 90-frame (reset) signal
- Frame mark and data demand from DDP
- 88 analog inputs
- AT-27 DP BASE DEG F
- AT-28 DP INIT DEG F
- AE-01 ADC 0.25 VDC CAL
- AE-02 ADC 4.75 VDC CAL
- ADP Y (redundant unit)
- TO DDP

MAY 72 3270.2.31
ADP COMMANDS

OCTAL CMD NUMBER

• 024 ADP X SEL

THIS CMD ACTUATES LATCHING RELAYS IN THE NON-REDUNDANT SECTION OF THE PDU TO THE POSITION THAT APPLIES +5 VDC, +12 VDC, AND -12 VDC TO THE X UNIT OF THE ANALOG DATA PROCESSOR AND REMOVES +5 VDC, +12 VDC AND -12 VDC FROM THE X UNIT. ADP X IS PRESET TO BE ENERGIZED AT INITIAL LUNAR ACTIVATION. REPEATED APPLICATION OF CMD 024 HAS NO FURTHER EFFECT.

• 025 ADP Y SEL

THIS CMD ACTUATES LATCHING RELAYS IN THE NON-REDUNDANT SECTION OF THE PDU TO THE POSITION THAT APPLIES +5 VDC, +12 VDC AND -12 VDC TO THE Y UNIT OF THE ANALOG DATA PROCESSOR AND REMOVES +5 VDC, +12 VDC AND -12 VDC FROM THE X UNIT. REPEATED APPLICATION OF CMD 025 HAS NO FURTHER EFFECT.

• 107 ADP REDUNDANT POWER ROUTING, BACKUP SELECT

THIS CMD ACTUATES A LATCHING RELAY IN THE NON-REDUNDANT SECTION OF THE PDU TO THE POSITION THAT PROVIDES AN ALTERNATE, REDUNDANT ROUTING OF +5 VDC FROM PCU 1 AND PCU 2 TO THE ADP SELECTION RELAYS. THIS CMD WOULD BE APPLIED IF IT APPEARED THAT BOTH ADP'S WERE OPERATING SIMULTANEOUSLY. AN ALTERNATIVE WOULD BE TO SWITCH PCU'S. THE 61-HR PULSE DOES NOT SWITCH ADP ROUTING. REPEATED APPLICATION OF CMD 107 HAS NO FURTHER EFFECT.

MAY 72 3270.2.32
ADP TELEMETRY

THE FOLLOWING TEMPERATURES ARE SENSED AND CONDITIONED IN THE ADP:
- AT-27 DP BASE TEMP, DEG F (REPRESENTS THE MOUNTING PLATE TEMP FOR BOTH THE ADP AND DDP)
- AT-28 DP INT TEMP, DEG F (SENSED IN THE ADP TO MONITOR INTERNAL ELECTRONICS TEMP OF THE DATA PROCESSOR)

THE FOLLOWING ELECTRICAL PARAMETERS ARE SENSED IN THE ADP:
- AE-Ol ADC 0.25 VDC CAL (A PRECISION SOURCE OF 0.25 VDC IN THE ADP TO VERIFY ACCURATE FUNCTIONING OF THE ANALOG-TO-DIGITAL CONVERSION)
- AE-02 ADC 4.75 VDC CAL (A PRECISION SOURCE OF 4.75 VDC IN THE ADP TO VERIFY ACCURATE FUNCTIONING OF THE ANALOG-TO-DIGITAL CONVERSION)

THE FOLLOWING STATUS PARAMETER IS GENERATED IN THE UPLINK POWER CIRCUITS:
- AB-17 ADP STATUS (X OR Y COMPONENT PLUS PRIMARY OR BACKUP ROUTING)

THE 90-CHANNEL ANALOG OUTPUT, WITH VARIOUS DESIGNATIONS, APPEARS IN WORD 33 OF THE ALSEP TELEMETRY FRAME AND RESERVE CURRENT (PROCESSED BY THE ADP) APPEARS AS PARAMETER DA-08 IN ALSEP WORD 63. IN BOTH CASES, THE 10-BIT DATA WORD IS PRESENTED AS FOLLOWS:

<table>
<thead>
<tr>
<th>BIT NUMBER</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FILLER BITS (ZEROS)</td>
<td>MOST SIGNIFICANT BIT</td>
<td>LEAST SIGNIFICANT BIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-BIT OUTPUT OF ADC
DDP POWER COMMANDS

OCTAL CMD NUMBER

• 034 DDP X SEL

THIS CMD ACTUATES TWO LATCHING RELAYS, ONE IN EACH PDU, TO THE POSITION THAT APPLIES +5 VDC TO THE X UNIT OF THE DIGITAL DATA PROCESSOR AND REMOVES +5 VDC FROM THE Y UNIT. DDP X IS PRESET TO BE ENERGIZED AT INITIAL LUNAR ACTIVATION. REPEATED APPLICATION OF CMD 034 HAS NO FURTHER EFFECT. SWITCHING DDP'S IN EITHER THE DP OR LSP FORMAT, NORMAL OR SLOW DATA RATE, RESULTS IN NORMAL DATA RATE IN THE SAME FORMAT.

• 035 DDP Y SEL

THIS CMD ACTUATES TWO LATCHING RELAYS, ONE IN EACH PDU, TO THE POSITION THAT APPLIES +5 VDC TO THE Y UNIT OF THE DIGITAL DATA PROCESSOR AND REMOVES +5 VDC FROM THE X UNIT. REPEATED APPLICATION OF CMD 035 HAS NO FURTHER EFFECT. SWITCHING DDP'S IN EITHER THE DP OR LSP FORMAT, NORMAL OR SLOW DATA RATE, RESULTS IN NORMAL DATA RATE IN THE SAME FORMAT.
DDP MODE AND BIT RATE COMMANDS

OCTAL CMD NUMBER

- **006** NORMAL BIT RATE SEL

 This cmd selects the DDP timing configuration such that in the DP format mode the downlink data rate is 1060 BPS. In the LSP format mode the downlink data rate is 3533.3 BPS. The application of PWR to ALSEP causes initialization in the normal bit rate configuration. When a change from low bit rate to normal bit rate is commanded, in either DP or LSP format, the change takes effect at the end of the 64-word data frame, following receipt of CMD 006, for whichever DDP is operational. Repeated application of CMD 006 has no further effect.

- **007** LOW BIT RATE SEL

 This cmd selects the DDP timing configuration such that in the DP format mode the downlink data rate is 530 BPS. In the LSP format mode the downlink data rate is 1060 BPS. When a change from normal bit rate to low bit rate is commanded, in either DP or LSP format, the change takes effect at the end of the 64-word data frame, following receipt of CMD 007, for whichever DDP is operational. Repeated application of CMD 007 has no further effect.

- **005** DP FORMAT ON

 This cmd selects the DDP configuration that inhibits inputs from the LSP to the modulator, enables inputs from the digital mux and the other experiments, and enables data demands to those experiments. When switching from LSP format to DP format by CMD 005, in either LSP normal data rate (3533.3 BPS) or LSP low data rate (1060 BPS) the resulting DP data rate will be normal (1060 BPS). CMD 005 takes effect at the end of the 64-word data frame, following receipt, for whichever DDP is operational but is not outputting data. The application of PWR to ALSEP causes initialization in the DP format configuration. Repeated application of CMD 005 has no further effect.

- **003** LSP FORMAT ON

 This cmd selects the DDP configuration that enables inputs from the LSP to the modulator, inhibits inputs from the digital mux and other experiments, and inhibits data demands to the experiments. When switching from DP format to LSP format by CMD 003, the resulting LSP data rate will be normal or low (3533.3 BPS or 1060 BPS) depending on whether the DP data rate was normal or low (1060 BPS or 530 BPS). CMD 003 takes effect at the end of the 64-word data frame, following receipt, for the DDP in operation at that time. Repeated application of CMD 003 has no further effect.
MODE AND BIT RATE CONFIGURATION SWITCHING

INITIAL POWER APPLICATION

MAY ALSO OCCUR AT PCU SWITTOVER UNDER CERTAIN CONDITIONS

DDP CHANGE

LEGEND:
- BOXES INDICATE MODE AND BIT RATE CONFIGURATIONS
- LINES INDICATE SWITCHING PATHS (NUMBERS ON LINES ARE OCTAL COMMANDS)

MAY 72 3270.2.38
DDP TELEMETRY

THE DDP COLLECTS AND FORMATS THE DATA OUTPUT OF ALL EXPERIMENTS (EXCEPT THE LSP), THE ADP OUTPUT, AND THE CVW (WHEN PRESENT), AND PROVIDES A MODULATION SIGNAL FOR DOWNLINK TRANSMISSION. IN THE DATA PROCESSOR FORMAT, THE OUTPUT IS A 640-BIT DATA FRAME (64 10-BIT DATA WORDS) AT TWO RATES:

- 1060 BITS PER SECOND: NORMAL BIT RATE
- 530 BITS PER SECOND: LOW BIT RATE

IDENTICAL FORMATS

IN THE LSP FORMAT, THE DATA COLLECTION AND FORMATTING IS PERFORMED BY THE LSP WITH ONLY TIMING AND MODULATION PERFORMED BY THE DDP. THE OUTPUT IS AN 1800-BIT MAIN DATA FRAME (60 30-BIT DATA WORDS) AT TWO DATA RATES:

- 3533.3 BITS PER SECOND: NORMAL BIT RATE
- 1060 BITS PER SECOND: LOW BIT RATE

IDENTICAL FORMATS

IN THE DATA PROCESSOR FORMAT, THE DDP GENERATES THE CONTROL WORDS (WORDS 1, 2, AND 3 IN EACH FRAME) WHICH CONTAIN:

- DA-01 ALSEP FRAME SYNC (22 BITS: BARKER CODE AND COMPLEMENT)
- DA-02 ALSEP FRAME CNTR (7 BITS: IDENTIFYING 90 SEQUENTIAL FRAMES)
- DA-03 ALSEP BIT RATE ID (30TH BIT IN THE FIRST AND SECOND FRAME)
- DA-04 ALSEP ID (30TH BIT IN FRAMES 3, 4, AND 5; BINARY 100 FOR APOLLO 17 ALSEP)

THE FOLLOWING STATUS PARAMETER IS SENSED IN THE DDP:
- AB-10 DDP STATUS (X OR Y)
DDP BASIC CLOCK LOGIC

ADP (X OR Y)

CLOCK PULSES

2.0352 MHz

169.6 kHz: BASIC CLOCK FREQUENCY

84.8 kHz

28.266 kHz LSP SUB-BIT TIMING

LSP

2.2 kHz CMD DECODER (RIPPLE-OFF)

DDP TIMING

1060 BPS: DP NORMAL

530 BPS: DP LOW

353.3 BPS: LSP NORMAL

1060 BPS: LSP LOW

-format

MULTIFORMAT COMMUTATOR

INITIALIZE

NORMAL BIT RATE

LOW BIT RATE

000

007

END OF FRAME

IN ITLALIZE LOW BIT RATE,
DATA PROCESSOR TIMING/CONTROL SIGNALS

90TH FRAME MARK

FRAME MARK

EVEN FRAME MARK

SHIFT PULSE

DATA DEMAND

DATA GATE

N = 1 FOR NORMAL MODE OF 1060 bps
N = 2 FOR SLOW MODE OF 530 bps

LOGIC LEVELS: "ONE", + 4.0 ± 1.5 Volts; "ZERO", + 0.2 ± 0.2 Volts

*32 sec = 640 BITS PER FRAME

ALL OTHER TIMES ARE ACCURATE ONLY TO THE SIGNIFICANT FIGURE SHOWN.

MAY 72 3270.2.41
TRANSMITTER FUNCTIONS

SPECIFICATIONS:
OUTPUT: 1 WATT INTO A 50-Ohm LOAD
FREQUENCY: +0.000, -0.0005% ON INITIAL SETTING
+0.0005%, -0.0000 DRIFT OVER TWO-YEAR PERIOD
+ 0.002% DUE TO ENVIRONMENTAL EFFECTS
MODULATION INDEX: + 1.25 RADIANS ± 5%

SPLIT PHASE DIGITAL DATA

DDP (X OR Y)

95 MHz OSCILLATOR → PSK MODULATOR → AMPLIFIER → BANDPASS FILTER → X4 MULT → 380 MHz BANDPASS FILTER

AMPLIFIER → BANDPASS FILTER → X2 MULT → 760 MHz AMPLIFIER → POWER AMPLIFIER

AT-23 XMT A PA DEG F

AT-24 XMT A CASE DEG F

POWER SUPPLY REGULATOR

+29 VDC

+23 VDC

+17 VDC

X3 MULT → ISOLATOR → BANDPASS FILTER

AT-25 XMT B PA DEG F

AT-26 XMT B CASE DEG F

AE-15 XMT A REG AMPS

AE-17 XMT A REG AMPS

AE-16 XMT B REG AMPS

AE-18 XMT B REG AMPS

MAY 72 3270.2.42
TRANSMITTER POWER CONTROL

NOTES:

- CIRCUIT BREAKERS (C/B) ISSUE OFF SIGNALS AT 760 MA FOR +29 VDC AND 150 MA FOR +12 VDC
- CIRCUIT BREAKERS ACTUALLY GROUND RELAY COIL (NOT DRIVER)
- UNLIKE PREVIOUS ALSEP'S, THERE ARE NO BACKUP HEATERS PLACED ON-LINE WHEN BOTH XMTR'S ARE OFF; ALSO, THERE IS NO AUTOMATIC SWITCHOVER FROM ONE XMTR TO THE OTHER (XMTR'S ARE CONTROLLED INDEPENDENTLY)
XMTR POWER COMMANDS

OCTAL CMD NUMBERS

• 012 XMTR A ON

 THIS CMD ACTUATES A PAIR OF LATCHING RELAYS, ONE IN EACH PDU, TO THE POSITION THAT APPLIES +29 VDC TO XMTR A. XMTR A IS PRESET TO BE ENERGIZED AT INITIAL LUNAR ACTIVATION. REPEATED APPLICATION OF CMD 012 HAS NO FURTHER EFFECT.

• 013 XMTR A OFF

 THIS CMD ACTUATES A PAIR OF LATCHING RELAYS, ONE IN EACH PDU, TO THE POSITION THAT REMOVES +29 VDC FROM XMTR A. NOTE THAT THERE IS NO XMTR HEATER TO REPLACE THE LOAD IN THE CENTRAL STATION WHEN BOTH XMTR'S ARE OFF, BUT APM COMPENSATION WILL OCCUR IF NECESSARY. REPEATED APPLICATION OF CMD 013 HAS NO FURTHER EFFECT.

• 014 XMTR B OFF

 THIS CMD ACTUATES A PAIR OF LATCHING RELAYS, ONE IN EACH PDU, TO THE POSITION THAT REMOVES +29 VDC FROM XMTR B AND +12 VDC FROM THE DIPLEXER SWITCH. NOTE THAT THERE IS NO XMTR HEATER TO REPLACE THE LOAD IN THE CENTRAL STATION WHEN BOTH XMTR'S ARE OFF BUT APM COMPENSATION WILL OCCUR IF NECESSARY. XMTR B IS PRESET TO BE DEENERGIZED AT INITIAL LUNAR ACTIVATION. REPEATED APPLICATION OF CMD 014 HAS NO FURTHER EFFECT.

• 015 XMTR B ON

 THIS CMD ACTUATES A PAIR OF LATCHING RELAYS, ONE IN EACH PDU, TO THE POSITION THAT APPLIES +29 VDC TO XMTR B AND +12 VDC TO THE DIPLEXER SWITCH. IN THE ENERGIZED STATE, THE DIPLEXER SWITCH CONNECTS XMTR B TO THE ANTENNA; HENCE, IF BOTH XMTR'S ARE COMMANDED ON SIMULTANEOUSLY, THE OUTPUT OF XMTR B WILL BE RADIATED DOWNLINK. THE OUTPUT OF XMTR A WILL BE DISSIPATED IN A DUMMY LOAD IN THE DIPLEXER SWITCH. REPEATED APPLICATION OF CMD 015 HAS NO FURTHER EFFECT.
TRANSMITTER TELEMETRY

THE FOLLOWING TEMPERATURES ARE SENSED IN THE TRANSMITTERS WITH POWER SUPPLIED IN THE XMTR AND SIGNAL CONDITIONING IN THE ADP (MEASUREMENTS ABSENT IF XMTR IS OFF):

AT-23 XMTR A POWER AMPLIFIER TEMP, DEG F
AT-24 XMTR A CASE TEMP, DEG F
AT-25 XMTR B POWER AMPLIFIER TEMP, DEG F
AT-26 XMTR B CASE TEMP, DEG F

THE FOLLOWING ELECTRICAL PARAMETERS ARE SENSED IN THE TRANSMITTERS (MEASUREMENTS ABSENT WHEN XMTR IS OFF):

AE-15 XMTR A REGULATOR CURRENT, AMPS (SENSED IN THE +17 VDC LINE)
AE-16 XMTR B REGULATOR CURRENT, AMPS (SENSED IN THE +17 VDC LINE)
AE-17 XMTR A +23 VDC OUTPUT, VOLTS (SENSED AT THE POWER SUPPLY REGULATOR)
AE-18 XMTR B +23 VDC OUTPUT, VOLTS (SENSED AT THE POWER SUPPLY REGULATOR)
EXPERIMENT POWER CONTROL

(ONE OF FIVE)

NOTE: ASTRO SW IS DOWNSTREAM OF TM

OPER SEL

CIRCUIT BREAKER (C/B) SELECTS STANDBY VIA RELAY (AT 560 + 50 MA)

STBY SEL

OFF SEL

RIPPLE-OFF SEQ*

+29 VDC
PCU 1

+29 VDC RTN

+29 VDC STANDBY PWR (NOT CONNECTED TO LSP)

EXPER

PDU 2 (RENDANT UNIT)

* RIPPLE-OFF SEQUENCE: PDR 1, PDR 2, LMS, LEAM, HFE, LSG, LSP

MAY 72 3270.2.46
EXPERIMENT POWER CONTROL (CONT’D)

- SELECTION COMMANDS (OCTAL):

<table>
<thead>
<tr>
<th></th>
<th>A OPER</th>
<th>B STBY</th>
<th>C OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1, LMS</td>
<td>036</td>
<td>037</td>
<td>041</td>
</tr>
<tr>
<td>#2, LEAM</td>
<td>042</td>
<td>043</td>
<td>044</td>
</tr>
<tr>
<td>#3, HFE</td>
<td>045</td>
<td>046</td>
<td>050</td>
</tr>
<tr>
<td>#4, LSG</td>
<td>052</td>
<td>063</td>
<td>054</td>
</tr>
<tr>
<td>#5, LSP</td>
<td>055</td>
<td>056</td>
<td>057</td>
</tr>
</tbody>
</table>

- POWER SWITCHING FROM OFF TO STBY IS INHIBITED:

- NORMAL OPERATING SEQUENCES:

| SEQUENCE | RELAY CONTACT POSITION
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF TO OPER</td>
<td>1 UP 2 UP 3 DOWN</td>
</tr>
<tr>
<td>OPER TO STBY</td>
<td>1 DOWN 2 UP 3 DOWN</td>
</tr>
<tr>
<td>STBY TO OFF</td>
<td>1 DOWN 2 DOWN 3 DOWN</td>
</tr>
<tr>
<td>OPER TO OFF</td>
<td>1 DOWN 2 DOWN 3 DOWN</td>
</tr>
</tbody>
</table>

- OVERLOAD (CIRCUIT BREAKER) SEQUENCE:

<table>
<thead>
<tr>
<th>SEQUENCE</th>
<th>RELAY CONTACT POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPER (INITIAL)</td>
<td>1 UP 2 UP 3 DOWN</td>
</tr>
<tr>
<td>OPER TO OVERLOAD 1</td>
<td>1 UP 2 UP 3 UP</td>
</tr>
<tr>
<td>OVERLOAD 1 TO OVERLOAD 2</td>
<td>1 DOWN 2 UP 3 UP</td>
</tr>
<tr>
<td>OVERLOAD 2 TO STBY</td>
<td>1 DOWN 2 DOWN 3 DOWN</td>
</tr>
</tbody>
</table>
EXPERIMENT POWER SWITCHING

OCTAL CMD NUMBERS

- 036 EXPER 1 OPER (LMS)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU'S, TO THE
 POSITION THAT APPLIES +29 VDC TO THE OPERATING LINE OF THE LMS. REPEATED
 APPLICATION OF CMD 036 HAS NO FURTHER EFFECT.

- 037 EXPER 1 STBY (LMS)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU'S, TO THE POSITION
 THAT REMOVES +29 VDC OPERATIONAL POWER FROM THE LMS, IF IT WAS IN THE
 OPERATE MODE, AND APPLIES +29 VDC TO THE STANDBY LINE. IN THE OFF MODE,
 CMD 037 DOES NOT CONTROL PWR AND THE EXPERIMENT REMAINS OFF. REPEATED
 APPLICATION OF CMD 037 HAS NO FURTHER EFFECT.

- 041 EXPER 1 OFF (LMS)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU'S, TO THE POSITION
 THAT REMOVES ALL +29 VDC PWR FROM THE LMS, WHETHER IT WAS PREVIOUSLY
 IN THE OPERATE MODE OR THE STANDBY MODE. THE EXPERIMENT RELAYS ARE
 PRESET TO BE IN THE OFF MODE AT INITIAL LUNAR ACTIVATION. REPEATED
 APPLICATION OF CMD 041 HAS NO FURTHER EFFECT.

MAY 72 3270.2.48
EXPERIMENT POWER SWITCHING (CONT’D)

OCTAL CMD NUMBERS

• 042 EXPER 2 OPER (LEAM)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION
 THAT APPLIES +29 VDC TO THE OPERATING LINE OF THE LEAM. REPEATED APPLICATION
 OF CMD 042 HAS NO FURTHER EFFECT.

• 043 EXPER 2 STBY (LEAM)

 THIS DMC ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION
 THAT REMOVES +29 VDC OPERATIONAL POWER FROM THE LEAM, IF IT WAS IN THE
 OPERATE MODE, AND APPLIES +29 VDC TO THE STANDBY LINE. IN THE OFF MODE,
 CMD 043 DOES NOT CONTROL PWR AND THE EXPERIMENT REMAINS OFF. REPEATED
 APPLICATION OF CMD 043 HAS NO FURTHER EFFECT.

• 044 EXPER 2 OFF (LEAM)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION
 THAT REMOVES ALL +29 VDC PWR FROM THE LEAM, WHETHER IT WAS PREVIOUSLY
 IN THE OPERATE MODE OR THE STANDBY MODE. THE EXPERIMENT RELAYS ARE
 PRESET TO BE IN THE OFF MODE AT INITIAL LUNAR ACTIVATION. REPEATED APPLI-
 CATION OF CMD 044 HAS NO FURTHER EFFECT.
EXPERIMENT POWER SWITCHING (CONT’D)

OCTAL CMD NUMBERS

• 045 EXPER 3 OPER (HFE)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION THAT
 APPLIES +29 VDC TO THE OPERATING LINE OF THE HFE. REPEATED APPLICATION
 OF CMD 045 HAS NO FURTHER EFFECT.

• 046 EXPER 3 STBY (HFE)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION THAT
 REMOVES +29 VDC OPERATIONAL POWER FROM THE HFE, IF IT WAS IN THE OPERATE
 MODE, AND APPLIES +29 VDC TO THE STANDBY LINE. IN THE OFF MODE, CMD 046
 DOES NOT CONTROL PWR AND THE EXPERIMENT REMAINS OFF. REPEATED APPLICATION
 OF CMD 046 HAS NO FURTHER EFFECT.

• 050 EXPER 3 OFF (HFE)

 THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION THAT
 REMOVES ALL +29 VDC PWR FROM THE HFE, WHETHER IT WAS PREVIOUSLY IN THE
 OPERATE MODE OR THE STANDBY MODE. THE EXPERIMENT RELAYS ARE PRESET TO
 BE IN THE OFF MODE AT INITIAL LUNAR ACTIVATION. REPEATED APPLICATION OF
 CMD 050 HAS NO FURTHER EFFECT.
EXPERIMENT POWER SWITCHING (CONT'D)

OCTAL CMD NUMBERS

• 052 EXPER 4 OPER (LSG)

This cmd actuates latching relays, in both PDU's, to the position that applies +29 VDC to the operating line of the LSG. Repeated application of cmd 052 has no further effect.

• 053 EXPER 4 STBY (LSG)

This cmd actuates latching relays, in both PDU's, to the position that removes +29 VDC operational power from the LSG, if it was in the operate mode, and applies +29 VDC to the standby line. In the off mode, cmd 053 does not control PWR and the experiment remains off. Repeated application of cmd 053 has no further effect.

• 054 EXPER 4 OFF (LSG)

This cmd actuates latching relays, in both PDU's, to the position that removes all +29 VDC PWR from the LSG, whether it was previously in the operate mode or the standby mode. The experiment relays are preset to be in the off mode at initial lunar activation. Repeated application of cmd 054 has no further effect.
EXPERIMENT POWER SWITCHING (CONT’D)

OCTAL CMD NUMBERS

• 055 EXPER 5 OPER (LSP)

THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION THAT APPLIES +29 VDC TO THE OPERATING LINE OF THE LSP. ASTRO SW 2 IS ALSO IN THIS LINE AND TM WILL SHOW OPER MODE REGARDLESS OF THE STATE OF ASTRO SW 2. REPEATED APPLICATION OF CMD 055 HAS NO FURTHER EFFECT.

• 056 EXPER 5 STBY (LSP)

THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION THAT REMOVES +29 VDC OPERATIONAL POWER FROM THE LSP, IF IT WAS IN THE OPERATE MODE, AND APPLIES +29 VDC TO THE STANDBY LINE. THE LSP HAS NO STANDBY MODE. IN THE OFF MODE, CMD 056 DOES NOT CONTROL PWR AND THE EXPERIMENT REMAINS OFF. THE EXPERIMENT RELAYS ARE PRESET TO BE IN THE STBY MODE AT INITIAL LUNAR ACTIVATION. REPEATED APPLICATION OF CMD 056 HAS NO FURTHER EFFECT.

• 057 EXPER 5 OFF (LSP)

THIS CMD ACTUATES LATCHING RELAYS, IN BOTH PDU’S, TO THE POSITION THAT REMOVES ALL +29 VDC PWR FROM THE LSP, WHETHER IT WAS PREVIOUSLY IN THE OPERATE MODE OR THE STANDBY MODE. REPEATED APPLICATION OF CMD 057 HAS NO FURTHER EFFECT.
EXPERIMENT POWER TELEMETRY

THE FOLLOWING STATUS PARAMETERS ARE GENERATED IN THE EXPERIMENT POWER CIRCUITS:

AB-04 EXPER 1/2 STATUS (INDICATES THE OPER, STANDBY, OR OFF STATUS OF EXPERIMENT #1, LMS, AND EXPERIMENT #2, LEAM. IF THE STANDBY FUSE IS BLOWN, WILL INDICATE OFF WHEN COMMANDED TO STANDBY)

AB-05 EXPER 3/4 STATUS (INDICATES THE OPER, STANDBY, OR OFF STATUS OF EXPERIMENT #3, HFE, AND EXPERIMENT #4, LSG. IF THE STANDBY FUSE IS BLOWN, WILL INDICATE OFF WHEN COMMANDED TO STANDBY)

AB-11 EXPER 5 STATUS (INDICATES OPER, STANDBY, OR OFF FOR EXPERIMENT #5, LSP. THE STANDBY POWER CIRCUIT IS NOT CONNECTED TO THE LSP; FUNCTIONALLY, THE LSP IS OFF FOR BOTH OF THESE RELAY SETTINGS. FOR THE LSP TO RECEIVE OPERATIONAL POWER, THE RELAYS MUST BE IN THE OPERATE SETTING AS INDICATED BY AB-11, AND ASTRO SWITCH 2 MUST BE IN THE CW, CLOSED, POSITION)
UPLINK AND PERIODIC CMD FUNCTIONS
(NOT REDUNDANT)

- **DDP (X OR Y)**
 - 90-FRAME PULSE (118 MICRO SEC) EVERY 54.3396 SEC AT NORMAL BIT RATE

- **UPLINK SWITTOVER (AUTO OR 122)**
 - CAUSES RESET TO PER 100 IC CMD ENABLE

- **SEL BACKUP PWR ROUTING**

- **FIRST SET OF PULSES IS ISSUED**
 - A 7 HR, 38 MIN, 43 SEC
 - INTERVAL BETWEEN FIRST AND SECOND 111 IS 3 MIN, 37 SEC
 - INTERVAL BETWEEN CORRESPONDING LEAM CMD IS 15 HR, 27 MIN, 24 SEC
 - INTERVAL BETWEEN UPLINK SWITCH PULSES IS 61 HR, 49 MIN, 35 SEC

- **WORD 3 PULSE FROM DDP**
 - EVERY 603.77 MS, BUT 18.87 MS AFTER 90%

- **PER CMD ENABLE**
 - INITIALIZE

- **PER CMD INHIBIT**
 - INITIALIZE

- **RCVR/DEC SW INH**
 - UPLINK SWITCHOVER (AUTO OR 122) CAUSES RESET TO PERIODIC CMD ENABLE

- **MAY 72 3270.2.54**
UPLINK AND PERIODIC CMD TIMING

START: T = 0 AT SHORTING SWITCH ACTUATION

7 HR, 38 MIN, 43 SEC TO FIRST PULSE
UPLINK SWITCH PULSE AND CMD 111
CMD 111 AND UPLINK SWITCH ENABLE
3 MIN, 37 SEC

ONE REVOLUTION
EVERY 61 HR, 49 MIN, 35 SEC

MAY 72 3270.2.55
PERIODIC CMD ENABLE AND INHIBIT

OCTAL CMD NUMBER

• 104 PER CMD ENABLE

 This cmd actuates circuitry in the cmd decoder to enable output of periodic cmds every 15.46 hr except for the first output which is at 7.65 hr. Two outputs occur with a 3.55-minute interval, the first being both cmd 065 (not used) and cmd 111, the second being command 111. The application of PWR to Alsep causes initialization in the enable configuration. Repeated application of cmd 104 has no further effect.

• 105 PER CMD INHIBIT

 This cmd actuates circuitry in the cmd decoder to inhibit output of periodic cmds. Repeated application of cmd 105 has no further effect. A sequence of commands 104 and 105, alternating enable/inhibit, does not produce spurious per cmd pulses.

TELEMETRY

The following status parameter is generated in the periodic command circuit:

 AB-15 PER CMD EN/INH (indicates whether output pulses from the 12-stage counter will be applied to the command line gates)
RIPPLE-OFF SEQUENCER FUNCTION

- INITIALIZE
- RIPPLE-OFF RESET
- RESERVE PWR SENSOR (REF (+5 VDC))
- COMPARATOR 0.7 + 0.3 WATTS
- RESERVE PWR SENSOR (REF (+5 VDC))
- COMPARATOR 0.7 + 0.3 WATTS
- PCU 1
- PCU 2
- COUNTER RUNNING
- COUNTER CONTROL
- CLEAR & RESET
- COMPARATOR
- RESERVE PWR SENSOR
- 8-STAGE COUNTER
- ADVANCE PULSES
- LOCK-OUT (INHIBIT)
- PULSE GATE
- 1.06 kHz CLOCK
- AT NORMAL DATA RATE
- ENABLE
- START & STOP
- GATING LOGIC
- GATED ON CMD LINES TO PDU
- RIPPLE-OFF CMDs
- NOT REDUNDANT
- REDUNDANT

- RESERVE PWR SENSOR
- 0.7 + 0.3 WATTS

- PCU 1
- PCU 2

- START COUNTER
- NOTE: LMS POWER DELTA IS TOO SMALL TO AFFECT SEQUENCE; HENCE, IF LMS RIPPLES, LEAM WILL ALSO (8MS LATER)

- DELAY
- 121 + 1 MS

- PDR 1
- PDR 2
- LMS
- LEAM
- HFE
- LSG
- LSP

- START LOCK-OUT AT 192 (NO RESET)

- IF OVERLOAD EXISTS FOR 121 + 1 MS, THEN PDR OFF AND EXPER STBY CMDs ARE ISSUED SEQUENTIALLY FOR 8 COUNTS EACH UNTIL OVERLOAD NO LONGER EXISTS
- WHEN OVERLOAD IS CLEARED, THE COUNTER IS RESET TO 7 AUTOMATICALLY AND NO FURTHER RIPPLE-OFF CMDs ARE ISSUED
- NOTE THAT EXPERIMENTS CAN NOT SWITCH FROM OFF TO STBY; IF THEY ARE OFF, THEY REMAIN OFF
- IF COUNTER RUNS TO 192, IT MAY BE A RIPPLE-OFF MALFUNCTION; THEREFORE, A LOCK-OUT FEATURE IS PROVIDED TO INHIBIT FURTHER COUNTER ACTION. EXPER/PDR SHOULD BE RESET BY CMD AND THEN ISSUE CMD 032 TO CHECK PERFORMANCE.
- PCU SWITCHOVER MAY CAUSE INITIALIZATION AND CLEAR LOCK-OUT IF IT EXISTS

MAY 72 3270.2.57
RIPPLE-OFF RESET COMMAND

OCTAL CMD NUMBER

• 032 RIPPLE-OFF RESET
 This cmd resets the counter in the ripple-off sequencer, thus restoring the ripple-off capability after the counter has run to the end and locked itself out. The lock-out feature is provided in case a malfunction in the ripple-off circuitry causes erroneous ripple-off. If a reset by cmd 032 is followed by a second (erroneous) ripple-off, cmd 032 should be flagged as critical. When no malfunction exists in the ripple-off circuitry, repeated application of cmd 032 has no further effect. In normal alsep start-up, the ripple-off counter is reset by the turn-on pwr transient.
ASTRONAUT SWITCH FUNCTIONS

ASTRO SW-1 (FOR CONTINGENCY USE ONLY)

- Normally in CCW position, at launch
- Double-pole, double-throw switch (redundant contacts)
- If ALSEP fails to start up normally, astronaut rotates SW-1 back and forth (from CCW to CW and back to CCW) as fast as he wants to. It is spring-loaded CCW, but deliberate rotation is recommended.
- CW rotation opens RTG line to PCU and simultaneously applies RTG power to PCU 2 SEL relay coil causing transfer to PCU 2 setting
- CCW rotation removes RTG power from relay coil and applies RTG to PCU 2

ASTRO SW-2 (USED OPERATIONALLY)

- Normally in CCW position, at launch, which opens line and prevents +29 VDC from being applied to LSP during deployment
- After deployment of LSP explosive packages, astronaut rotates SW-2 CW to enable command application of +29 VDC operational power to the LSP

NOTE: Direction of rotation for enable/inhibit is the reverse of SW-5 on earlier ALSEP's with ASE
LUNAR SURFACE GRAVIMETER
(LSG)
LSG OBJECTIVES AND MEASUREMENTS

OBJECTIVES:

• SEARCH FOR GRAVITATIONAL RADIATION FROM COSMIC SOURCES, WHICH MAY EXCITE LOW-FREQUENCY FREE OSCILLATIONS OF THE MOON, IN THE FREQUENCY RANGE UPWARD FROM ONE CYCLE EVERY 15 MINUTES

• OBTAIN INFORMATION ON THE INTERNAL STRUCTURE OF THE MOON BY OBSERVATION OF LUNAR TIDES

• OBTAIN VERTICAL AXIS SEISMIC DATA UP TO FREQUENCIES OF 16 HZ

• DETERMINE THE RATIO OF LUNAR GRAVITATIONAL FORCE TO EARTH GRAVITY WITH A PRECISION OF 1 PART IN 10^5

MEASUREMENTS:

• USE THE LACOSTE-ROMBERG TYPE OF SPRING-MASS SUSPENSION TO SENSE CHANGES IN THE VERTICAL COMPONENT OF LOCAL GRAVITY

• BASIC INSTRUMENT SENSITIVITY TO CHANGES IN THE LUNAR GRAVITATIONAL FORCE IS 1 PART IN 10^{10}

• SHORT-PERIOD CHANGES (FREQUENCIES UP TO 16 HZ) ARERecorded AS SEISMIC DATA WHILE LONG-PERIOD CHANGES MEASURE TIDAL EFFECTS

• THE LOWEST FREQUENCIES (LONGEST PERIODS) ARE ASSOCIATED WITH FREE OSCILLATIONS OF THE MOON

JUNE 72 3270.3.3
LSG OPERATIONS SUMMARY

DEPLOYMENT

- Locate 25 ft from central station
- Raise and tilt sunshade
- Set instrument on firm surface with approximate orientation
- Level ± 3° wrt bubble and align ± 3° wrt shadow
- Perform initial uncaging

APPROX TIME, 3 MIN

POST DEPLOYMENT

- Uncage and activate by CMD
- Perform initial set-up/check-out CMD sequence
- Make subsequent adjustments by CMD as required

REPORT LEVEL AND ALIGNMENT

APPROX TIME, 3 MIN
LSG COMMUNICATIONS SUMMARY

COMMANDS

• POWER OPER/STBY/OFF

• 7 SPECIAL CMDS FOR:
 - INSTRUMENT HOUSING HEATER ON/OFF (2)
 - LSG CMD DECODER ON/OFF (2)
 - LSG CMD REGISTER UP/DOWN (2)
 - LSG CMD REGISTER EXECUTE (1)

• THE LSG CMD REGISTER PROVIDES
 FOR 30 ENCODED CMDS WHICH
 PERFORM VARIOUS INTERNAL
 ADJUSTMENTS AND FUNCTIONAL
 CHANGES IN LSG OPERATION

DATA

• 36 TEN-BIT DIGITAL WORDS
 IN EACH 64-WORD ALSEP
 DATA FRAME, WITH TWO
 DIFFERENT WORD ASSIGNMENTS
 SELECTABLE BY CMD:
 - NORMAL SCIENTIFIC DATA
 - SHAFT ENCODER DATA

• DIGITAL DATA RATE, 60 BITS PER
 SEC (AVERAGE AT NORMAL BIT RATE)

• ONE COMPLETE UPDATE OF
 SCIENTIFIC DATA IN EACH
 ALSEP FRAME (0.6-SEC REP RATE
 AT ALSEP NORMAL BIT RATE)

• SHAFT ENCODER DATA ARE READ
 OUT AS OFTEN AS 12 TIMES IN
 EACH ALSEP FRAME AND REPEATED
 FOR 90 FRAMES (NO CHANGE IN
 READINGS)

• 10 ANALOG ENGINEERING
 PARAMETERS EACH SAMPLED
 ONCE EVERY 90 ALSEP DATA
 FRAMES (54 SEC AT NORMAL
 BIT RATE)

JUNE 72 3270.3.7
LSG DESIGN PARAMETERS

MECHANICAL

SENSITIVITY: DEVIATIONS IN LUNAR SURFACE ACCELERATION OF ONE PART IN 10^{10} OR BETTER

ACCURACY: LUNAR TIDES, 0.1% OR BETTER
RESOLUTION FOR INDIVIDUAL MEASUREMENTS, 2 MICROGALS
RATIO OF LUNAR G TO EARTH G, 1 PART IN 10^3

THERMAL

SHORT TERM STABILITY: $\pm 0.001^\circ C$ (FOR PERIODS UP TO 30 MIN.) AT AN INVERSION TEMPERATURE NEAR 50°C

LONG TERM DRIFT: 0.1°C PER MONTH

ABSOLUTE TEMPERATURE: 0.001°C

ELECTRICAL

PREAMP GAIN: 40
POSTAMP GAIN: 1 TO 90 IN STEPS OF 6
SEISMIC AMPLIFIER GAIN WITH SOFT LIMITING: 500
FREE MODES AMP GAIN: 500
INTEGRATOR TIME CONSTANT: 50 SEC
BIAS VOLTAGE: 13V ± 1V
ANALOG STATUS DATA: 0 TO 5V TO CENTRAL STATION
SCIENCE DATA: 10 BINARY BITES PER WORD

JUNE 72 3270.3.8
LSG SENSOR DETAILS

NOTE:
SCALE MODIFIED FOR CLARITY

SENSOR BEAM (CAGING MECHANISM NOT SHOWN)

CROSS SECTION OF MASS ADDING MECHANISM

CONDITIONS:
- PAN \(\square \) AND BEAM MAKE UP EARTH MASS
- TO CAGE, FINGERS CLAMP ON MASS \(\oplus \) AND PAN, RAISING PAN (SLACK IN WIRE)
- FULL ROTATION OF SCREW INTO CUP PLACES ALL 3 MASSES ON PAN

OPPOSITE ROTATION OF SCREW LIFTS MASS \(\bigcirc \) OFF PAN, THEN MASS \(\square \), FOR FINE TRIM OF LUNAR MASS

NOTE:
- CUP \(\bigcirc \) HAS GUIDE TO PREVENT ROTATION WHEN SCREW TURNS

JUNE 72 3270.3.9
CAGING FEATURES:

1. HOUSING, HANGING ON UNIVERSAL JOINT, IS CAGED BY DOWNWARD RESTRAINT AND RELEASED BY ASTRONAUT (LANYARD). DIFFICULT TO RECAGE.
2. MASS CHANGING MECHANISM IS CAGED BY CALIPER-TYPE FINGERS CLAMPING ON MASS 1 AND PAN, RAISING PAN. RELEASED AND RECAGED BY COMMAND.
3. SENSOR BEAM IS CAGED BY CLAMPING BEAM AGAINST STOP. RELEASED AND RECAGED BY COMMAND.
LSG PHYSICAL PARAMETERS

SIZE, WEIGHT, AND POWER

STOWED

10.9 LENGTH

10.0 WIDTH

15.1 HEIGHT

PLUS 3 X 3 (DIAM) CABLE REEL

EARTH WT. LB: 28

POWER, W: 9.3 (APPROX, MAX)
NOTE:
IDENTIFIES ENCODED CMD WITH BINARY CODE IN PARENTHESES

(0001) BIAS IN SEL
(0010) BIAS OUT SEL
(1110) POST AMP GAIN STEP
(1110) POST AMP GAIN RESET

DIGITAL GAIN CONTROL (15 STEPS)
POST GAIN AMPLIFIER (0 TO 39 DB)

PHASE SENSITIVE DEMODULATOR
REF INPUT

AMPLITUDE STABILIZED OSCILLATOR

INTEGRATOR
SEISMIC BUFFER
SEISMIC AMPLIFIER AND FILTER

FIXED PREAMP (40 DB)
DC BRIDGE AND AC COUPLING

AG-07 LSG OSC AMP
AG-01 LSG SEISMIC
AG-02 LSG TIDE
AG-03 LSG FREE MODE

TIDE FREE MODE
LSG ANALOG LINE BUFFERS

ELECTROSTATIC FEEDBACK SIGNAL

FREE MODE
LSG DIGITAL DATA PROCESSING

JUNE 72 3270.3.15
LSG BEAM CAGING CONTROL

NOTE:

Identifies encoded cmd with binary code in parentheses

+29 VDC OPER PWR AND RTN

DC MOTOR

BEAM CAGING MECHANISM

SENSOR
LSG MASS CHANGING CONTROL

NOTE:
< indicates encoded cmd with binary code in parentheses

E INDICATES ENCODED CMD WITH BINARY CODE IN PARENTHESES

JUNE 72 3270.3.17
LSG SCREW SERVO CONTROL

NOTE:

1) INDICATES ENCODED CMD
 WITH BINARY CODE IN PARENTHESES
LSG SHAFT ENCODERS

NOTE:
- INDICATES ENCODED CMD WITH BINARY CODE IN PARENTHESES

LSG POWER CONVERTER (0000) READ SHAFT ENCODERS
+5 VDC
- POWER ON/OFF CONTROL
- TRANSISTOR SWITCH
- SWITCHED +5 VDC
- TO DIGITAL MULTIPLEXER CONTROL
- TO SHAFT ENCODER LOGIC

LSG TIMING AND CONTROL
- 90-FRAME MARK
- DATA DEMAND
- FRAME MARK
- COUNTER
- ENCODER SELECTOR

COARSE SCREW SHAFT ENCODER
- COARSE ENCODER ENABLE
- RETARD BRUSHES 1-10
- ADVANCE BRUSHES 1-10
- RETARD BRUSHES 11-19
- ADVANCE BRUSHES 11-19

FINE SCREW SHAFT ENCODER
- FINE ENCODER ENABLE
- RETARD BRUSHES 1-10
- ADVANCE BRUSHES 1-10
- RETARD BRUSHES 11-19
- ADVANCE BRUSHES 11-19

LSG DIGITAL MULTIPLEXER
- 10-BIT (PARALLEL) DATA; APPEARS IN ALL LSG WORDS IN ALSEP DATA FRAME

BRUSH SELECTION
- LOGIC
- BITS 1-10

BRUSH SELECTION
- LOGIC
- BITS 11-19

NOTE:
- ENERGY ON AT FIRST 90-FRAME MARK AFTER CMD AND OFF AT NEXT 90-FRAME MARK

JUNE 72 3270.3.19
NOTE:

Indicates encoded CMD with binary code in parentheses.

(10100) NORTH/SOUTH TILT SERVO ON

(10001) EAST/WEST TILT SERVO ON

TILT, MASS CHANGE, AND TILT SERVO.

Screw Servo OFF

Power Switcheed PWR and RTN

Switched PWR and RTN

Tilt Selector

Tilt Clock + 2

Tilt Clock + 16

Inhibit

Motor

Gate

Pulse and Timeout Generator

Tilt Servo Power Switches

Motor Selection Relays

Stepping Motor

North/South

East/West

LGS Timing and Control

Data Gate Pulses (Clock Input)
LSG TEMPERATURE AND PRESSURE MONITOR

Diagram:

- LSG TEMPERATURE AND PRESSURE MONITOR
- LSG DIGITAL MULTIPLEXER
- AG-04 LSG SNSR TEMP
- AG-05 LSG PRESS
- (01101) PRESSURE TRANSUDER ON
- (01100) TILT, MASS CHANGE, AND SCREW SERVO OFF
- TO TILT SERVO MASS CHANGE SCREW SERVO
- HEATER BOX
- INSTRUMENT HOUSING
- PRESSURE TRANSUDER

Note:

- INDICATES ENCODED CMD WITH BINARY CODE IN PARENTHESES

JUNE 72 3270.3.21
LSG DIGITAL DATA PROCESSING

[Diagram showing the flow of data and signal processing components.]

- **Seismic Sensor**: Input for seismic data.
- **Tide**: Input for tidal data.
- **Free Mode**: Input for free mode data.
- **Temperature Sensor**: Input for temperature data.
- **Sequence Counter Control**: Controls the sequence of operations.
- **Analog Multiplexer Control Logic**: Routes analog signals.
- **Analog Signal Multiplexer**: Multiplexes analog signals.
- **Sample and Hold**: Captures signals for holding.
- **Buffer Amplifier**: Amplifies buffer signals.
- **Comparator**: Compares signals.
- **D/A Converter**: Converts digital to analog signals.
- **A/D Converter**: Converts analog to digital signals.
- **Digital Multiplexer Control**: Controls digital multiplexing.
- **Digital Multiplexer**: Routes digital signals.
- **10-Bit A/D Register**: Stores 10-bit A/D conversion data.
- **Shift Register**: Stores shifted data.
- **10-Bit D/A Register**: Stores 10-bit D/A conversion data.
- **Clear/Store**: Stores data.
- **Shaft Encoder Status**: Indicates shaft encoder status.
- **CMD Register Status**: Indicates command register status.
- **Operational Status**: Indicates operational status.
- **Digital Data Demand**: Sends digital data demands.
- **Frame Mark**: Sends frame marks.
- **Data Gate**: Sends data gates.
- **Data Demand**: Sends data demands.
- **Data Shift (Clock)**: Sends data shifts.
- **Control**: Sends control signals.
- **NRZ Digital Data Output**: Outputs NRZ digital data.
LSG TEMPERATURE CONTROL

- Thermostat opens at 105°F, closes at 95°F (100°F range, but ±5°F tolerance).
- Survival heater.
- Heater latching relay.
- Heater power supply.
- Switching amplifier.
- Linear amplifier.
- Bridge circuit.
- Power driver.
- Coarse heater.
- Fine heater.

Notes:
- Indicates encoded cmd with binary code in parentheses.
- (10110) Temperature increment load 1.
- (10111) Temperature increment load 2.
- (11000) Temperature increment load 3.
- (11001) Temperature increment load 4.
- (11010) Temperature increment load 5.
- (11011) Temperature increment load 6.
- (11100) Temperature reset.

June 72 3270.3.23
LSG Power Summary

<table>
<thead>
<tr>
<th>ITEM</th>
<th>POWER, WATTS</th>
<th></th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>INCREMENT</td>
<td>TOTAL</td>
<td></td>
</tr>
<tr>
<td>BASIC SYSTEM</td>
<td>2.09</td>
<td>2.09</td>
<td>INCLUDES 0.5 W HEATER BOX HTR</td>
</tr>
<tr>
<td>COMMANDDECODER</td>
<td>0.41</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>TILT SERVO ELECTRONICS</td>
<td>0.09</td>
<td>2.59</td>
<td></td>
</tr>
<tr>
<td>TILT MOTOR</td>
<td>1.00</td>
<td>3.59</td>
<td>WITH MOTOR RUNNING</td>
</tr>
<tr>
<td>SCREW SERVO ELECTRONICS</td>
<td>0.15</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>SCREW MOTOR</td>
<td>1.00</td>
<td>3.65</td>
<td>WITH MOTOR RUNNING</td>
</tr>
<tr>
<td>MASS CHANGE MOTOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAXIMUM</td>
<td>4.00</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>MINIMUM</td>
<td>1.70</td>
<td>4.20</td>
<td></td>
</tr>
<tr>
<td>SHAFT ENCODER ELECTRONICS</td>
<td>0.21</td>
<td>2.30</td>
<td>CMD DECODER NOT ON</td>
</tr>
<tr>
<td>UNCAGE/RECAGE MOTOR</td>
<td>2.00</td>
<td>4.50</td>
<td>WITH MOTOR RUNNING</td>
</tr>
<tr>
<td>INSTRUMENT HOUSING HEATER</td>
<td>6.70</td>
<td>8.79</td>
<td>CMD DECODER NOT ON</td>
</tr>
<tr>
<td>MAXIMUM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SURVIVAL HEATER (STANDBY PWR) is 4.20 WATTS WITH ON/OFF THERMOSTAT CONTROL

JUNE 72 3270.3.24
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>REQUIREMENT</th>
<th>PRIORITY</th>
<th>INDICATOR</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from Central Station</td>
<td>25 ± 5 FT</td>
<td></td>
<td>PACING AND CABLE LENGTH</td>
<td>CABLE LENGTH 30 ± 1 FT</td>
</tr>
<tr>
<td>Direction from Central Station</td>
<td>WEST</td>
<td></td>
<td>VISUAL</td>
<td></td>
</tr>
<tr>
<td>Site Selection</td>
<td>LEVEL, WITH A FIRM SURFACE</td>
<td></td>
<td>VISUAL</td>
<td>SLOPE LESS THAN 5°, AVOID CRATERS & RUBBLE</td>
</tr>
<tr>
<td>Rough Alignment</td>
<td>SUNSHADE MUST TILT TOWARD EQUATOR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sunshade Tilt Setting</td>
<td>LATITUDE ANGLE</td>
<td></td>
<td>CIRCULAR DIAL</td>
<td>DIAL MARKED IN DEGREES OF LATITUDE</td>
</tr>
<tr>
<td>Level, WRT Indicator</td>
<td>WITHIN ± 3°</td>
<td></td>
<td>BUBBLE LEVEL</td>
<td>OFF-LEVEL CONDITION DEGRADATION ALIGNMENT ACCURACY</td>
</tr>
<tr>
<td>Align, WRT Shadow</td>
<td>WITHIN ± 3°</td>
<td></td>
<td>MARKING ON SUNSHADE PANEL</td>
<td>SHADOW OF UPPER EAST PANEL ON INSIDE OF LOWER WEST PANEL</td>
</tr>
</tbody>
</table>

Notes
- Stable on 15° slope with sunshade deployed and fully tilted
- Recheck level and alignment after lanyard release of instrument housing caging restraint
LSG ALIGNMENT MARKINGS

1. SUNSHADE TILT DIAL
 - Marked in degrees of latitude

2. BUBBLE LEVEL
 - Within ±3° when bubble is free of case

3. SHADOW ALIGNMENT
 - Limits of ±3° are marked on inside of lower sunshade panels
LSG Command Summary

Octal Commands

<table>
<thead>
<tr>
<th>Octal Code</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>063</td>
<td>LSG HTR ON</td>
</tr>
<tr>
<td>064</td>
<td>LSG HTR OFF</td>
</tr>
<tr>
<td>067</td>
<td>LSG CMD EX</td>
</tr>
<tr>
<td>070</td>
<td>LSG DECODER ON</td>
</tr>
<tr>
<td>071</td>
<td>LSG DECODER OFF</td>
</tr>
<tr>
<td>072</td>
<td>LSG STEP UP</td>
</tr>
<tr>
<td>074</td>
<td>LSG STEP DN</td>
</tr>
</tbody>
</table>

Encoded Commands (Binary)

<table>
<thead>
<tr>
<th>Binary Code</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>READ SHAFT ENCODERS</td>
</tr>
<tr>
<td>00010</td>
<td>MASS CHANGE MOTOR ON</td>
</tr>
<tr>
<td>00011</td>
<td>BIAS IN SELECT</td>
</tr>
<tr>
<td>00100</td>
<td>BIAS OUT SELECT</td>
</tr>
<tr>
<td>00101</td>
<td>INTEGRATOR NORMAL MODE SELECT</td>
</tr>
<tr>
<td>00110</td>
<td>INTEGRATOR SHORT MODE SELECT</td>
</tr>
<tr>
<td>00111</td>
<td>SEISMIC LOW GAIN SELECT</td>
</tr>
<tr>
<td>01000</td>
<td>SEISMIC HIGH GAIN SELECT</td>
</tr>
<tr>
<td>01001</td>
<td>SENSOR BEAM CAGE</td>
</tr>
<tr>
<td>01010</td>
<td>SENSOR BEAM Uncage</td>
</tr>
<tr>
<td>01011</td>
<td>COARSE SCREW SERVO ON</td>
</tr>
<tr>
<td>01100</td>
<td>TILT, MASS CHANGE, AND SCREW SERVO OFF</td>
</tr>
<tr>
<td>01101</td>
<td>PRESSURE TRANSDUCER ON</td>
</tr>
<tr>
<td>01110</td>
<td>MASS CHANGE INCREMENT</td>
</tr>
<tr>
<td>01111</td>
<td>GROSS SLEW UP/TILT INCREMENT UP</td>
</tr>
<tr>
<td>10000</td>
<td>GROSS SCREW DOWN/TILT INCREMENT DOWN</td>
</tr>
<tr>
<td>10001</td>
<td>VERNIER SLEW UP</td>
</tr>
<tr>
<td>10010</td>
<td>VERNIER SLEW DOWN</td>
</tr>
<tr>
<td>10011</td>
<td>FINE SCREW SERVO ON</td>
</tr>
<tr>
<td>10100</td>
<td>NORTH/SOUTH TILT SERVO ON</td>
</tr>
<tr>
<td>10101</td>
<td>EAST/WEST TILT SERVO ON</td>
</tr>
<tr>
<td>10110</td>
<td>TEMPERATURE INCREMENT LOAD 1</td>
</tr>
<tr>
<td>10111</td>
<td>TEMPERATURE INCREMENT LOAD 2</td>
</tr>
<tr>
<td>11000</td>
<td>TEMPERATURE INCREMENT LOAD 3</td>
</tr>
<tr>
<td>11001</td>
<td>TEMPERATURE INCREMENT LOAD 4</td>
</tr>
<tr>
<td>11010</td>
<td>TEMPERATURE INCREMENT LOAD 5</td>
</tr>
<tr>
<td>11011</td>
<td>TEMPERATURE INCREMENT LOAD 6</td>
</tr>
<tr>
<td>11100</td>
<td>TEMPERATURE RESET</td>
</tr>
<tr>
<td>11101</td>
<td>POST AMP GAIN STEP</td>
</tr>
<tr>
<td>11110</td>
<td>POST AMP GAIN RESET</td>
</tr>
</tbody>
</table>

JUNE 72 3270.3.28
LSG COMMANDS

OCTAL CMD NUMBER

- **063** LSG HTR ON

 This CMD actuates a latching relay in the LSG to the position that applies +29 VDC slave heater power to the LSG instrument housing. This heater is slaved to the temperature of the heater box by two sensors, one on the instrument housing, using a differential output by means of a bridge circuit. Repeated application of CMD 063 has no further effect. The slave heater is preset to be in the (TBD) condition at initial lunar activation.

- **064** LSG HTR OFF

 This CMD actuates a latching relay in the LSG to the position that removes +29 VDC slave heater power from the LSG instrument housing. Repeated application of CMD 064 has no further effect. The slave heater is preset to be in the (TBD) condition at initial lunar activation.

- **067** LSG CMD EX

 This CMD causes execution of one of the 30 encoded LSG CMDs as contained in its 5-stage CMD register which is shifted up/down by OCTAL CMDs 072/074. Execution does not clear the register. Repeated application of CMD 067 will cause repeated execution of the selected encoded CMD.

- **070** LSG DECODER ON

 This CMD actuates a latching relay in the LSG to the position that applies +5 VDC power to the CMD counter and the associated CMD decoding circuitry within the LSG, allowing the 5-stage CMD register counter to be stepped up/down and enabling the LSG encoded CMD execution function. Application of CMD 070 always resets the register counter to 00000. Repeated application of CMD 070 has no further effect. The command decoder is preset to be in the off condition at initial lunar activation.

- **071** LSG DECODER OFF

 This CMD actuates a latching relay in the LSG to the position that removes +5 VDC power from the CMD decoder within the LSG. Repeated applications of CMD 071 has no further effect. The CMD decoder is preset to be in the off condition at initial lunar activation.

- **072** LSG STEP UP

 This CMD advances the 5-stage CMD register counter of the LSG to the next higher binary value, thus representing a new encoded CMD function, if executed. Of the 32 possible states, 30 are used (excluding 00000 and 11111), and the register state is read out in the TM. Repeated application of CMD 072 advances the counter setting until it reaches 11111, after which CMD 072 sets the counter to 00000, etc.

- **074** LSG STEP DOWN

 This CMD reduces the value in the 5-stage CMD register counter of the LSG to the next lower binary value, thus representing a new encoded CMD function, if executed. Of the 32 possible states, 30 are used (excluding 00000 and 11111), and the register state is read out in the TM. Repeated application of CMD 074 reduces the counter setting until it reaches 00000, after which CMD 074 sets the counter to 11111, etc.
LSG ENCODED COMMANDS

BINARY COUNT

00000 AND 11111 HAVE NO FUNCTIONAL EFFECT

00001 READ SHAFT ENCODERS

This command inhibits all other signals to the LSG digital multiplexer and activates continuous readout of the shaft encoders on the coarse and fine screw servo shafts. These two encoders are read out in the ASEPS data words assigned to LSG as 19-bit readings, alternating in the following manner, starting at the ASEPS frame mark:

1ST WORD COARSE ENCODER LAST 10 BITS (LSB)
2ND WORD COARSE ENCODER FIRST 9 BITS (MSB)
3RD WORD FINE ENCODER LAST 10 BITS (LSB)
4TH WORD FINE ENCODER FIRST 9 BITS (MSB)
5TH WORD COARSE ENCODER LAST 10 BITS (LSB)

Etc.

In the MSB words a filler bit (binary one) is inserted as the first bit of the 10-bit ASEPS word. There are two brushes (advance/retard) on each encoder. These brushes also alternate in the data readout. The shaft encoder data readout starts at the first ASEPS 90-frame mark following receipt of CMD 00000 (binary) and continues until the next ASEPS 90-frame mark after which normal LSG scientific data readout is reactivated. Repeated applications of CMD 00000 (binary) will cause shaft encoder data readout for additional blocks of 90 frames provided that the sequential CMD applications occur before and after an ASEPS 90-frame mark. Application of operational power to the LSG causes initialization in the normal data mode.

00010 MASS CHANGE MOTOR ON

This command activates the LSG mass changing servo control and, at turn-on, resets the 5-bit mass change increment counter to zero so that subsequent increment CMDs can step the counter up to the desired functional state. Additional mass change features are:

- Mass changing is inhibited when the instrument housing heater is on but the status TM responds to execution of CMD 00010 (binary), indicating servo control on when it is not on.

00010 MASS CHANGE MOTOR ON (CONT'D)

- There are 10 functional states controlled by the increment CMD, 01110 (binary).
- The counter status is read out in the TM as an analog voltage value and the zero counter setting is defined as state 1.
- At turn-on, the mechanism always drives to state 1 which is against the stop.
- State 2 of the increment counter is provided to cage the mass changing mechanism during transportation and state 10 is used on earth for calibration.
- The mass change motor uses servo feedback and, when activated, only operates until the state called for by the counter is achieved.
- Turn-off of the control, by CMD 01100 (binary) causes the mechanism state to be retained until the next turn-on.
- Since turn-on clears the register, repeated application of CMD 00010 (binary) causes no further change provided that no increment CMDs are executed between turn-on CMDs.

00011 BIAS IN SEL

This command actuates a latching relay to the position that applies +13 VDC fixed bias to the sensor bridge drive circuit of the LSG sensor electronics. Repeated application of CMD 00011 (binary) has no further effect. The bias relay is preset to be in the TBD condition at initial lunar activation.

00100 BIAS OUT SEL

This command actuates a latching relay to the position that removes the +13 VDC fixed bias from the sensor bridge drive circuit of the LSG sensor electronics. Repeated application of CMD 00100 (binary) has no further effect. The bias relay is preset to be in the TBD condition at initial lunar activation.

JUNE 72 3270.3.30
LSG ENCODED COMMANDS (CONT'D)

BINARY COUNT

0010 **INTEGRATOR NORMAL MODE SEL**

This CMD CAUSES CLOSED-LOOP OPERATION OF THE LSG SENSOR ELECTROSTATIC SYSTEM IN WHICH THE OUTPUT OF THE INTEGRATOR IS FED BACK TO CONTROL THE PLATE DRIVE TO THE SENSOR. REPEATED APPLICATION OF CMD 0010 (BINARY) HAS NO FURTHER EFFECT. THE INTEGRATOR IS PRESET TO BE IN THE (TB) MODE AT INITIAL LUNAR ACTIVATION.

0011 **INTEGRATOR SHORT MODE SEL**

This CMD CAUSES THE LSG INTEGRATOR OUTPUT TO BE SHORT CIRCUITED WHICH PUTS THE ELECTROSTATIC SYSTEM IN AN OPEN LOOP CONFIGURATION. REPEATED APPLICATION OF CMD 0011 (BINARY) HAS NO FURTHER EFFECT. THE INTEGRATOR IS PRESET TO BE IN THE (TB) MODE AT INITIAL LUNAR ACTIVATION.

0011 **SEISMIC LOW GAIN SEL**

This CMD SELECTS THE LOW GAIN CONFIGURATION OF THE SEISMIC OUTPUT CIRCUIT OF THE LSG SENSOR. REPEATED APPLICATION OF CMD 0011 (BINARY) HAS NO FURTHER EFFECT. THE SEISMIC GAIN IS PRESET TO BE IN THE (TB) CONDITION AT INITIAL LUNAR ACTIVATION.

0100 **SEISMIC HIGH GAIN SEL**

This CMD SELECTS THE HIGH GAIN CONFIGURATION OF THE SEISMIC OUTPUT CIRCUIT OF THE LSG SENSOR WHICH INSERTS AN ADDITIONAL AMPLIFIER AND FILTER INTO THE CIRCUIT. REPEATED APPLICATION OF CMD 0100 (BINARY) HAS NO FURTHER EFFECT. THE SEISMIC GAIN IS PRESET TO BE IN THE (TB) CONDITION AT INITIAL LUNAR ACTIVATION.

0101 **SENSOR BEAM UNCAGE**

This CMD ACTIVATES A CIRCUIT TO PERFORM THE LSG SENSOR BEAM UNCAGING OPERATION. INITIATION OF THE CMD CAUSES CHARGING OF A CAPACITOR WHICH TURNS ON AN FET WHICH SUPPLIES DRIVE CURRENT TO THE CAGING MOTOR UNTIL THE RC TIME CONSTANT TURNS OFF THE FET. THIS TIME CONSTANT IS APPROXIMATELY 7.5 SEC. THE INITIATION OF CMD 0101 (BINARY) ALSO SELECTS THE STATE OF A DOUBLE-POLE RELAY WHICH CONTROLS THE DIRECTION OF MOTOR DRIVE, CAUSING THE RELAY TO MOVE TO THE POSITION WHERE THE MOTOR OPERATES IN THE DIRECTION TO UNCAGE THE SENSOR BEAM. REPEATED APPLICATION OF CMD 0101 (BINARY) RESULTS IN CLUTCH ACTION TO PREVENT FURTHER DRIVING OF THE GEARS IN THE UNCEDED DIRECTION.

0101 **COARSE SCREW SERVO ON**

This CMD ACTIVATES LS RC SCREW SERVO CIRCUITS TO ENABLE ACCEPTANCE OF UP AND DOWN SLEW CMDs, EITHER GROSS OR VERNIER. SCREW SERVO ACTIVATION IS INHIBITED IF THE TILT SERVO CONTROL IS ON, AND REPEATED APPLICATION OF CMD 0101 (BINARY) ALSO SELECTS A RELAY POSITION SUCH THAT THE DRIVE POWER, WHEN APPLIED, WILL BE FEED TO THE MOTOR OF THE COARSE SCREW OF THE LSG SENSOR. REPEATED APPLICATION OF CMD 0101 (BINARY) HAS NO FURTHER EFFECT. TURN-OFF OF THE SCREW SERVO CIRCUITS IS ACCOMPLISHED BY CMD 0100 (BINARY). THE SERVO POWER CONTROL IS PRESET TO BE IN THE OFF CONDITION AT INITIAL LUNAR ACTIVATION.

0100 **TILT, MASS CHANGE, AND SCREW SERVO OFF**

This CMD DEACTIVATES LS CRC\Ns WHICH ARE ACTIVATED BY INDIVIDUAL BINARY CMDs AS FOLLOWS:

- **TILT**: 10100 OR 10001
- **MASS CHANGE**: 00010
- **SCREW SERVO**: 01011 OR 00111
- **PRESSURE TRANSDUCER**: 01101

REPEATED APPLICATION OF CMD 0100 (BINARY) HAS NO FURTHER EFFECT. THE POWER CONTROLS ARE PRESET TO BE IN THE OFF CONDITION AT INITIAL LUNAR ACTIVATION.
LSG ENCODED COMMANDS (CONT'D)

01111 GROSS SLEW UP/TILT INCREMENT UP

This CMD causes operation in the up direction of one of the two LSG screw servo motors or one of the two tilt motors, if they have been previously enabled by one of the individual binary CMDs as follows:

- **Coarse Screw Servo on**: 01011
- **Fine Screw Servo on**: 10011
- **North/South Tilt Servo on**: 10100
- **East/West Tilt Servo on**: 10101

For the screw servos, execution of CMD 01111 (binary) sets a 15-bit counter to a count of 32,768 after which data gate pulses step the counter down to zero; a period of 308 seconds corresponding to 16,384 steps of the stepping motor, in the down direction. A relay which controls the direction of motor drive is actuated by execution of the CMD.

For the tilt servos, execution of CMD 10000 (binary) sets a 15-bit counter to a count of 32,768 after which data gate pulses step the counter down to zero; a period of 308 seconds corresponding to 16,384 steps of the stepping motor, in the down direction. A relay which controls the direction of motor drive is actuated by execution of the CMD.

Repeated application of CMD 10000 (binary) causes repeated increments of gross slew down or tilt down; however, the proper time interval between CMDs must be observed.
LSG ENCODED COMMANDS (CONT'D)

BINARY COUNT

10001 VERNIER SLEW UP

This command causes operation in the up direction of one of the two LSG screw servo motors, if they have been previously enabled by one of the individual binary commands as follows:

COARSE SCREW SERVO ON: 01011
FINE SCREW SERVO ON: 10011

Execution of CMD 10001 (BINARY) sets a 15-bit counter to 256 after which data gate pulses step the counter down to zero; a period of 2.5 seconds corresponding to 128 steps of the stepper motor, in the up direction. A relay which controls the direction of motor drive is actuated by execution of the command.

Repeated application of CMD 10001 (BINARY) causes repeated vernier slew up of whichever screw servo motor has been enabled.

10010 VERNIER SLEW DOWN

This command causes operation in the down direction of one of the two LSG screw servo motors, if they have been previously enabled by one of the individual binary commands as follows:

COARSE SCREW SERVO ON: 01011
FINE SCREW SERVO ON: 10011

Execution of CMD 10010 (BINARY) sets a 15-bit counter to 256 after which data gate pulses step the counter down to zero; a period of 2.5 seconds corresponding to 128 steps of the stepper motor, in the down direction. A relay which controls the direction of motor drive is actuated by execution of the command.

Repeated application of CMD 10010 (BINARY) causes repeated vernier slew down of whichever screw servo motor has been enabled.

10011 FINE SCREW SERVO ON

This command activates LSG screw servo circuits to enable acceptance of up and down slew commands, either gross or vernier. Screw servo activation is inhibited when the tilt servo control is on and vice versa. Initiation of CMD 10011 (BINARY) also selects a relay position such that the drive power, when applied, will be fed to the fine screw of the LSG sensor. Repeated application of CMD 10011 (BINARY) has no further effect. Turn-off of the screw servo circuits is accomplished by CMD 01100 (BINARY). The servo power control is preset to be in the off condition at initial lunar activation.

10100 NORTH/SOUTH TILT SERVO ON

This command activates LSG tilt servo circuits to enable acceptance of an up or down tilt increment command. Tilt servo activation is inhibited when the screw servo control is on and vice versa. Initiation of CMD 10100 (BINARY) also selects a relay position such that the drive power, when applied, will be fed to the north/south tilt motor. Repeated application of CMD 10100 (BINARY) has no further effect. Turn-off of the tilt servo circuits is accomplished by CMD 01100 (BINARY). The servo power control is preset to be in the off condition at initial lunar activation.

10101 EAST/WEST TILT SERVO ON

This command activates LSG tilt servo circuits to enable acceptance of an up or down tilt increment command. Tilt servo activation is inhibited when the screw servo is on and vice versa. Initiation of CMD 10101 (BINARY) also selects a relay position such that the drive power, when applied, will be fed to the east/west tilt motor. Repeated application of CMD 10101 (BINARY) has no further effect. Turn-off of the tilt servo circuits is accomplished by CMD 01100 (BINARY). The servo power control is preset to be in the off condition at initial lunar activation.

JUNE 72 3270.3.33
LSG ENCODED COMMANDS (CONT’D)

10110 TEMPERATURE INCREMENT LOAD 1

This CMD is one of six used by the LSG to load a register consisting of six relays. The state of the register is read out in the TM and each of the 64 states, through a thermistor bridge circuit. Controls the temperature of the heater box around the LSG sensor through 64 steps of 0.05°C. Thus, the temperature can be adjusted within a range of ± 1.6°C around the nominal operating point to find the sensor inversion point on the lunar surface and maintain operation at this point. Repeat application of CMD 10110 (binary) has no further effect until the register is cleared by the reset CMD 11000 (binary). The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

10111 TEMPERATURE INCREMENT LOAD 2

This CMD is one of six used by the LSG to load a register consisting of six relays. The state of the register is read out in the TM and each of the 64 states, through a thermistor bridge circuit. Controls the temperature of the heater box around the LSG sensor through 64 steps of 0.05°C. Thus, the temperature can be adjusted within a range of ± 1.6°C around the nominal operating point to find the sensor inversion point on the lunar surface and maintain operation at this point. Repeat application of CMD 10111 (binary) has no further effect until the register is cleared by the reset CMD 11000 (binary). The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

11000 TEMPERATURE INCREMENT LOAD 3

This CMD is one of six used by the LSG to load a register consisting of six relays. The state of the register is read out in the TM and each of the 64 states, through a thermistor bridge circuit. Controls the temperature of the heater box around the LSG sensor through 64 steps of 0.05°C. Thus, the temperature can be adjusted within a range of ± 1.6°C around the nominal operating point to find the sensor inversion point on the lunar surface and maintain operation at this point. Repeat application of CMD 11000 (binary) has no further effect until the register is cleared by the reset CMD 11100 (binary). The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

11001 TEMPERATURE INCREMENT LOAD 4

This CMD is one of six used by the LSG to load a register consisting of six relays. The state of the register is read out in the TM and each of the 64 states, through a thermistor bridge circuit. Controls the temperature of the heater box around the LSG sensor through 64 steps of 0.05°C. Thus, the temperature can be adjusted within a range of ± 1.6°C around the nominal operating point to find the sensor inversion point on the lunar surface and maintain operation at this point. Repeat application of CMD 11001 (binary) has no further effect until the register is cleared by the reset CMD 11100 (binary). The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

11010 TEMPERATURE INCREMENT LOAD 5

This CMD is one of six used by the LSG to load a register consisting of six relays. The state of the register is read out in the TM and each of the 64 states, through a thermistor bridge circuit. Controls the temperature of the heater box around the LSG sensor through 64 steps of 0.05°C. Thus, the temperature can be adjusted within a range of ± 1.6°C around the nominal operating point to find the sensor inversion point on the lunar surface and maintain operation at this point. Repeat application of CMD 11010 (binary) has no further effect until the register is cleared by the reset CMD 11100 (binary). The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

11011 TEMPERATURE INCREMENT LOAD 6

This CMD is one of six used by the LSG to load a register consisting of six relays. The state of the register is read out in the TM and each of the 64 states, through a thermistor bridge circuit. Controls the temperature of the heater box around the LSG sensor through 64 steps of 0.05°C. Thus, the temperature can be adjusted within a range of ± 1.6°C around the nominal operating point to find the sensor inversion point on the lunar surface and maintain operation at this point. Repeat application of CMD 11011 (binary) has no further effect until the register is cleared by the reset CMD 11100 (binary). The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

June 72 3270.3.34
LSG ENCODED COMMANDS (CONT’D)

BINARY COUNT

11100 TEMPERATURE RESET

This cmd resets the six relays used in the register of the LSG heater box temperature control circuit. Repeated application of cmd 11100 has no further effect. The temperature register relays are preset to be in the (TBD) condition at initial lunar activation. These relays may reset when LSG operational power is removed and reapplied.

11101 POST AMP GAIN INCREMENT

This cmd advances the count of a 4-stage register controlling the gain of the post-amplifier of the LSG sensor. The status of this register is not read out in the TM. Repeated application of cmd 11101 (binary) causes the counter setting to advance in repeated increments until it reaches 15, after which it resets to zero and continues in the same sequence. When operational power is applied to the LSG, the initial gain setting is unpredictable.

11110 POST AMP GAIN RESET

This cmd resets the counter of the 4-stage register controlling the gain of the post-amplifier of the LSG sensor, resulting in the lowest gain setting. Repeated application of cmd 11110 (binary) has no further effect.
LSG Digital Data Formats

Normal Mode

<table>
<thead>
<tr>
<th>1</th>
<th>C</th>
<th>2</th>
<th>C</th>
<th>3</th>
<th>C</th>
<th>4</th>
<th>G</th>
<th>5</th>
<th>6</th>
<th>G</th>
<th>7</th>
<th>8</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>10</td>
<td>G</td>
<td>11</td>
<td>12</td>
<td>G</td>
<td>13</td>
<td>14</td>
<td>G</td>
<td>15</td>
<td>16</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>G</td>
<td>19</td>
<td>20</td>
<td>G</td>
<td>21</td>
<td>22</td>
<td>G</td>
<td>23</td>
<td>24</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>TIDE</td>
<td>26</td>
<td>G</td>
<td>27</td>
<td>FREE MODE</td>
<td>28</td>
<td>G</td>
<td>29</td>
<td>TEMP</td>
<td>30</td>
<td>G</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>H. K.</td>
<td>34</td>
<td>G</td>
<td>35</td>
<td>STATUS 1</td>
<td>36</td>
<td>G</td>
<td>37</td>
<td>STATUS 2</td>
<td>38</td>
<td>G</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>G</td>
<td>43</td>
<td>44</td>
<td>G</td>
<td>45</td>
<td>46</td>
<td>G</td>
<td>47</td>
<td>48</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>G</td>
<td>51</td>
<td>52</td>
<td>G</td>
<td>53</td>
<td>54</td>
<td>G</td>
<td>55</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>G</td>
<td>59</td>
<td>60</td>
<td>G</td>
<td>61</td>
<td>62</td>
<td>G</td>
<td>63</td>
<td>64</td>
<td>G</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaft Encoder Mode

<table>
<thead>
<tr>
<th>C</th>
<th>C</th>
<th>C</th>
<th>COARSE ENCODER MSB</th>
<th>COARSE ENCODER LSB</th>
<th>FINE ENCODER MSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. K.</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>COARSE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE ENCODER LSB</td>
<td>COARSE ENCODER MSB</td>
<td>COARSE ENCODER LSB</td>
<td>FINE ENCODER LSB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Alsep Data Frame Contains 64 10-Bit Data Words

C = Alsep Control Words (3 per Frame)

G = LSG Seismic Data (31 Words Per Frame)

H. K. = Housekeeping (Including 10 LSG Parameters)

Commutated Once Every 90 Alsep Frames

June 72 3270.3.36
Housekeeping Parameters are Read Out Once Every 90 ALSEP Frames (Once Every 54 Seconds at Normal Data Rate)

<table>
<thead>
<tr>
<th>Frame No.</th>
<th>Code</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>AG-02</td>
<td>LSG Tide *</td>
</tr>
<tr>
<td>23</td>
<td>AG-03</td>
<td>LSG Free Mode *</td>
</tr>
<tr>
<td>24</td>
<td>AG-07</td>
<td>LSG Oscillator Amplitude</td>
</tr>
<tr>
<td>30</td>
<td>AG-08</td>
<td>LSG +15 Volts</td>
</tr>
<tr>
<td>39</td>
<td>AG-01</td>
<td>LSG Seismic *</td>
</tr>
<tr>
<td>38</td>
<td>AG-09</td>
<td>LSG Mass Change Position</td>
</tr>
<tr>
<td>68</td>
<td>AG-06</td>
<td>LSG +5 Volts</td>
</tr>
<tr>
<td>69</td>
<td>AG-04</td>
<td>LSG Pressure</td>
</tr>
<tr>
<td>89</td>
<td>AG-05</td>
<td>LSG Change Position</td>
</tr>
</tbody>
</table>

Science data read out in analog housekeeping channels
LSG Initial Lunar Operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Instrument Turn-On</td>
<td>Application of LSG operational power</td>
</tr>
<tr>
<td>2. Initial Temperature Set Up</td>
<td>Reset register to lowest increment</td>
</tr>
<tr>
<td>3. Pressure Transducer Check</td>
<td>1.5 minutes for stabilization, then turn off</td>
</tr>
<tr>
<td>4. Initialize Electrostatic Loop</td>
<td>Set bias out, integrator short mode, and minimum gain</td>
</tr>
<tr>
<td>5. Uncage Mass Change Mechanism</td>
<td></td>
</tr>
<tr>
<td>6. Uncage Sensor Beam</td>
<td></td>
</tr>
<tr>
<td>7. Initial Mass Adjustment</td>
<td>Actuate mass change motor</td>
</tr>
<tr>
<td>8. Initial Beam Adjustment</td>
<td>Operate screw motors, read shaft encoders</td>
</tr>
<tr>
<td>9. Temperature Stabilization</td>
<td>May take several hours</td>
</tr>
<tr>
<td>10. NJLL Sensor Beam</td>
<td></td>
</tr>
<tr>
<td>11. Adjust Tilt</td>
<td>Actuate tilt motors</td>
</tr>
<tr>
<td>12. Obtain Spring Inversion Temp</td>
<td>Adjust temp in increments, stabilizing each time</td>
</tr>
<tr>
<td>13. Re-Null Sensor Beam</td>
<td>Actuate screw motors</td>
</tr>
<tr>
<td>14. Adjust Electrostatic Loop</td>
<td>Set bias in, integrator normal, and increase gain</td>
</tr>
<tr>
<td>15. Stability Check</td>
<td>Re-adjust as necessary</td>
</tr>
<tr>
<td>16. Operational Mode</td>
<td>Follows completion of the operations above</td>
</tr>
</tbody>
</table>

June 72 3270.3.38
LUNAR MASS SPECTROMETER (LMS)
LMS CONFIGURATION

DEPLOYED
SECOND SURFACE MIRRORS
BREAKSEAL
BUBBLE LEVEL
REEL HOLDER
VENT VALVE
DUST COVER
UHT SOCKET
VENT VALVE PULL RING

STOWED

JUNE 72 3270.4.2
LMS SCIENCE SUMMARY

OBJECTIVES

• TO IDENTIFY AND DETERMINE THE DENSITY OF CONSTITUENTS OF THE LUNAR ATMOSPHERE
• TO DETERMINE THE TEMPORAL VARIATIONS OF THE ATMOSPHERIC CONSTITUENTS

METHODS

• DETECT AND COLLECT IONS IN MASS RANGE 1 THROUGH 4 AMU AND 12 THROUGH 110 AMU

RESULTS

• STRUCTURE AND COMPOSITION OF LUNAR ATMOSPHERE
 • GLOBAL DISTRIBUTION
 • DIURNAL VARIATIONS
 • GAS RELEASE AT DAWN TERMINATOR
 • TEST THEORIES OF PLANETARY EXOSPHERE DYNAMICS
• ORIGIN OF ATMOSPHERE
 • SOLAR WIND ACCRETION
 • NEON DISTRIBUTION
 • VOLCANISM
• TRANSIENT PHENOMENA
 • LOCATION OF GAS VENTING
 • PHYSICAL PROCESSES CAUSING GAS RELEASE
• RESIDUAL CONTAMINATION
 • DIFFUSION RATES OF GAS CLOUDS
 • OUTGASSING RATE OF SURFACE
LMS COMPONENTS AND INTERFACE

ALSEP CENTRAL STATION

CMD LINES (7)
DATA DEMAND
DATA SHIFT PULSES
FRAME MARK
90-FRAME MARK
+12 VDC (TEMP SENSOR)
DIGITAL DATA
ANALOG DATA LINES (3)
+29 VDC OPER PWR
+29 VDC RTN
+29 VDC STANDBY PWR

LMS ELECTRONICS

DUST COVER

STRUCTURE/ THERMAL

ANALYZER
3 SENSORS
1 TO 4 AMU
12 TO 48 AMU
27 TO 110 AMU

SIZE, WEIGHT, AND POWER

SIZE, IN.: 13.25 X 6.5 X 12.5
WEIGHT, LB: 20.0
POWER, WATTS:
11.4 OPERATIONAL
6.7 STANDBY
10.6 BAKEOUT HTR

JUNE 72 3270.4.4
LMS OPERATIONS SUMMARY

DEPLOYMENT
- OPEN VENT VALVE
- REMOVE 3 TIE-DOWN FASTENERS
- ROTATE 90° TO UPRIGHT POSITION
- PLACE 45 FT NORTHWEST OF CENTRAL STATION
- LEVEL
- BREAK HERMETIC SEAL ON SENSOR
- RECHECK LEVEL

POST DEPLOYMENT
- CMD OPERATIONAL POWER FOR LOW VOLTAGES
- REMOVE DUST COVER AFTER LM ASCENT
- PERFORM BAKEOUT
- TURN ON ION PUMP, READ PRESSURE
- APPLY HIGH VOLTAGES FOR FULL OPERATION

CONSIDERATIONS
- HERMETICALLY SEALED ON EARTH
- REQUIRES UNOBSERVED UPWARD HEMISPHERE VIEW
- PLACE AS FAR AS POSSIBLE FROM EQUIPMENT THAT MIGHT OUTGAS
- CONTAINS PERMANENT MAGNETS
- USES HIGH VOLTAGES
- USES SECOND SURFACE MIRRORS ON TOP THERMAL CONTROL SURFACE

JUNE 72 3270.4.5
LMS COMMUNICATIONS SUMMARY

COMMANDS

- POWER ON/STANDBY/OFF
- 7 CMD LINES TO PROVIDE 15 ENCODED CMDS (2 LOAD AND 1 EXECUTE, EACH) INCLUDING:
 - DUST COVER REMOVAL
 - HIGH VOLTAGES ON/OFF
 - ION PUMP ON/OFF
 - FILAMENT 1 OR 2 SELECT/OFF
 - HIGH VOLTAGE STEPS
 - SWEEP LOCK/STEP MODE SELECT
 - BAKEOUT MODE SELECT
 - ELECTRON MULTIPLIER VOLTAGE SELECT
 - DISCRIMINATOR LEVEL SELECT

DATA

- 4 DIGITAL 10-BIT WORDS PER ALSEP FRAME
 - 1 INSTRUMENT/CMD STATUS DATA
 - 3 SCIENCE DATA (3 SENSORS SAMPLED ONCE PER FRAME)
- 3 ANALOG CHANNELS IN ALSEP WORD 33, READ OUT ONCE EVERY 90 ALSEP FRAMES (ONCE EVERY 54 SECONDS AT NORMAL DATA RATE)
 - 1 MULTIPLEXED 16-CHANNEL HOUSEKEEPING DATA
 - 1 SWEEP VOLTAGE
 - 1 ELECTRONICS TEMPERATURE
(READS OUT IN OPERATIONAL, STANDBY, AND OFF CONDITIONS)

JUNE 72 3270.4.6
LMS PERFORMANCE CHARACTERISTICS

- MODE OF OPERATION: AUTOMATIC CONTINUOUS SWEEP WITH COMMANDABLE LOCK AT ANY AMU
- SCAN TECHNIQUE: VARY ACCELERATING VOLTAGE FROM 320 TO 1420 VOLTS IN A SERIES OF 1350 STEPS
- MEASUREMENT: THREE DETECTORS DETERMINE THE DENSITY (ABUNDANCE) OF EACH CONSTITUENT IN THE LUNAR ATMOSPHERE BY COUNTING PARTICLES AT EACH STEP FOR A PERIOD OF 0.6 SECONDS
- RESOLUTION: 10%
- SENSITIVITY: 1.0×10^{-5} TORR
- DYNAMIC RANGE: 1×10^5
- TYPICAL RECORD FOR ONE SWEEP IS SHOWN BELOW

![Graph showing mass range and scale of relative abundance]

- MASS RANGE (DETECTOR)
- NUMBERS INDICATE MASS PEAKS (AMU)
- SCALE OF RELATIVE ABUNDANCE

JUNE 72 3270.4.7
LMS EXPLODED ASSEMBLY

SECOND SURFACE MIRROR
(IN MOUNTING PLATE)

ELECTRONICS

THERMAL INSULATION BAG

ANALYZER

COVER

DUST COVER (OPEN)

ELECTRONICS

ANALYZER COVER
LMS DETECTION SYSTEM

MAGNET POLE

ION SOURCE BAKEOUT HEATERS

GAS IONIZATION AND ACCELERATION (ION SOURCE)

ION SOURCE

H1 MASS

DRIFT TUBE

MID MASS

LO MASS

AM-06 ION SOURCE TEMP

GAS MOLECULE INLET

ELECTRON MULTIPLIERS

SENSOR TYPE
- 90° MAGNETIC SECTOR FIELD MASS ANALYZER
- NIER-TYPE THERMIONIC ELECTRON BOMBARDMENT ION SOURCE

HI MASS
LMS LOW VOLTAGE POWER SUPPLY
(LVPS)

-20 VDC
-12 VDC
+12 VDC

+5 VDC
-12 VDC

REGULATOR
REGULATOR
RECTIFIER BRIDGE
TRANSFORMER
DC TO AC INVERTER
CURRENT MONITOR
BACKUP HEATER

+29 VDC OPER PWR
+29 VDC RTN
+29 VDC
+29 VDC RTN

AM-02
LMS AMPS

AM-08
+5 VOLTS

AM-07
+12 VOLTS

AM-09
-12 VOLTS

AM-10
-15 VOLTS

+12 VDC
-12 VDC
-15 VDC

AM-15
LVPS TEMP

+5 VDC
+12 VDC
-20 VDC
-15 VDC

JUNE 72 3270.4.11
LMS DECODER AND DATA PROCESSOR

PURPOSE
- Receives individual cmds from ALSEP. Decodes the multiplexed combinations, conditions them and routes them to the proper circuits.
- Provides tm on cmds received from ALSEP.
- Gates scientific digital data and LMS operating status digital data to ALSEP DDP in the proper sequence.

INPUTS
- Digital cmd and timing from ALSEP.
- Digital housekeeping status data from LMS analog multiplexer.
- Digital scientific data from the three sensors via the LMS counting and data compression.

OUTPUTS
- CMDS to LMS circuits.
- Timing to LMS data and sweep control.
- Digital scientific and status data to the ALSEP digital data processor.

JUNE 72 3270.4.12
LMS DIGITAL SWEEP CONTROL

NOTE:
F INDICATES ENCODED CMDS WITH TWO LOAD CMDS (OCTAL) IN PARENTHESES; FOLLOWED BY 134 (OCTAL) FOR EXECUTION

JUNE 72 3270.4.14
LMS SWEEP HVPS
(HIGH VOLTAGE POWER SUPPLY)

SWITCHED POWER (+27.5 VDC NOM.)

LMS LVPS

POWER RTN

REFERENCED TO ALSEP PWR RTN

POWER RTN

REFERENCED TO SIGNAL GROUND

ALSEP ADP

HV MONITOR BUFFER

AM-44 SWEEP VOLTS

SWEEP HIGH VOLTAGE OUTPUT (320 TO 1420 VDC)

VOLTAGE MULTIPLIER (QUADRUPLER)

BLEEDER RESISTOR CHAIN

OPERATIONAL AMPLIFIER

DIGITAL SWEEP CONTROL

CONTROL VOLTAGE (REFERENCE)

PEDESTAL VOLTAGE

JUNE 72 3270.4.15
LMS ELECTRON MULTIPLIER HVPS
(HIGH VOLTAGE POWER SUPPLY)

OUTPUT RANGE
-2200 TO -3000 VDC
WITH 600 VDC INCREMENT BETWEEN HIGH AND LOW

NOTE:
INDICATES ENCODED CMDS WITH TWO LOAD CMDS (OCTAL) IN PARENTHESES; FOLLOWED BY 134 (OCTAL) FOR EXECUTION

JUNE 72 3270.4.16
LMS PREAMPS AND DISCRIMINATORS

DIGITAL SWEEP CONTROL

LMS CMD DECODER

DM-13 DISCRIMINATOR

2 MHz CALIBRATION OSCILLATOR

INHIBIT

ENABLE

J-PLATE SEQUENCER

NOTE:

INDICATES ENCODED CMDS
WITH TWO LOAD CMDS (OCTAL)
IN PARENTHESES; FOLLOWED
BY 134 (OCTAL) FOR EXECUTION

COUNTING AND
DATA

COMPRESSION

OUTPUT A

OUTPUT B

OUTPUT C

DM-03 LO MASS A COUNTS

DM-04 MID MASS B COUNTS

DM-05 HI MASS C COUNTS

JUNE 72 3270.4.17
LMS COUNTING AND DATA COMPRESSION

IONS ARE DETECTED IN EACH OF THE THREE ELECTRON MULTIPLIERS AND COUNTED IN A 21-BIT BINARY COUNTER (12,097,152 CAPACITY) FOR ONE FRAME MARK INTERVAL; 0.604 SEC AT NORMAL DATA RATE.

THE COUNTS ARE TRANSFERRED (AND COUNTER CLEARED) TO A 21-BIT SHIFT REGISTER.

THE COUNTS ARE SHIFTED TOWARD THE MSB END OF THE REGISTER AND EACH BIT-SHIFT IS RECORDED IN A 4-BIT SHIFT COUNTER.

THE SHIFTING STOPS WHEN A LOGICAL ONE IS DETECTED IN THE 21ST BIT OR WHEN 14 SHIFTS HAVE OCCURRED.

IF 14 SHIFTS HAVE OCCURRED AND THE 21ST BIT IS STILL A LOGICAL ZERO, THE 4-BIT SHIFT COUNTER IS advanced to 15 WITH NO CHANGE IN THE 21-BIT REGISTER.

SIX REGISTER BITS (20 THROUGH 15) ARE TRANSFERRED TO THE 10-BIT OUTPUT REGISTER PLUS THE FOUR BITS FROM THE SHIFT COUNTER.

JUNE 72 3270.4.18
LMS ION PUMP HVPS
(HIGH VOLTAGE POWER SUPPLY)

OPERATION

- ION PUMP SERVES TO MONITOR THE INSTRUMENT PRESSURE AND DETERMINE WHETHER IT HAS OUTGASSED SUFFICIENTLY TO ALLOW TURN-ON OF HIGH-VOLTAGE CIRCUITS (PROBABLY FIRST LUNAR NIGHT)

NOTES:
- **E** INDICATES ENCODED CMD WITH TWO LOAD CMD'S (OCTAL) IN PARENTHESES; FOLLOWED BY 134 (OCTAL) FOR EXECUTION
- **A** INHIBIT ACTUALLY OCCURS IN CMD DECODER

JUNE 72 3270.4.19
LMS HOUSEKEEPING MULTIPLEXER

LMS HOUSEKEEPING FORMAT GENERATOR

16-CHANNEL ANALOG MULTIPLEXER

MARKER GENERATOR

AM-01 MARKER ID

90-FRAME MARK

0 TO 5 VDC

15 SIGNALS INCLUDING ONE SPARE

SIGNAL CONDITIONER

INVERTER

90-FRAME MARK (INVERTED)

LMS DIGITAL SWEEP CONTROL

EXPERIMENT CURRENT

ION PUMP CURRENT

ION PUMP VOLTS

BASEPLATE TEMP

ION SOURCE TEMP

LVPS OUTPUT (4)

EMISSION CURRENT

FIL. #1 CURRENT

FIL. #2 CURRENT

MULT HIGH VOLTAGE

LVPS TEMP

ALSEP DDP

DATA SHIFT PULSES

LMS COUNTING AND DATA COMPRESSION

ALSEP DDP

ANALOG SIGNAL (CHANNEL 40)

0 TO 5 VDC

ALSEP ADP

ANALOG SIGNAL (CHANNEL 41)

0 TO 5 VDC

ALSEP ADP

ANALOG SIGNAL (CHANNEL 44)

0 TO 5 VDC

ALSEP DDP

90-FRAME MARK

FRAME MARK

ODD/EVEN MARKER GENERATOR

DM-11 FRAME ID

LMS DATA SH 1FT PULSES

ION PUMP CURRENT

ION PUMP VOLTS

BASEPLATE TEMP

ION SOURCE TEMP

LVPS OUTPUT (4)

EMISSION CURRENT

FIL. #1 CURRENT

FIL. #2 CURRENT

MULT HIGH VOLTAGE

LVPS TEMP

ALSEP DDP

DATA SHIFT PULSES

LMS DIGITAL DATA PROCESSOR

DATA DEMAND (ALSEP WORD 5, ODD AND EVEN)

DIGITAL OUTPUT

15 SIGNALS (ONE BIT EACH)

LMS ELECTRONICS TEMP

Sweep HIGH VOLTAGE

* LMS ELECTRONICS TEMP READ OUT IN OPERATE, STANDBY, AND OFF MODES

JUNE 72 3270.4.20
LMS DUST COVER AND THERMAL CONTROL

DUST COVER RELEASE LOGIC - D

+12 VDC

+5 VDC

SWITCHED

COVER

RELEASE

BURN-WIRE

DUST COVER REMOVAL

LMS ELECTRONICS

SURVIVAL HEATER

RTN

BAC KUP HEATER

BACKUP HEATER

HEATER RTN

HTR OFF

MULT HI HVPS ON

Bakeout Enable

Bakeout Bypass

24 VDC

RTN

EXECUTION

ANALYZER SIGNAL

BASEPLATE

LMS HOUSEKEEPING MULTIPLIER

NOTE:

INDICATES ENCODED CMDS WITH TWO LOAD CMDS (OCTAL) IN PARENTHESES; FOLLOWED BY 134 (OCTAL) FOR EXECUTION

LMS CMD DECODER

LMS LVPS

ALSEP PDU

LMS

AM-4 ELECT TEMP

JUNE 72 3270.4.21
LMS DUST COVER AND THERMAL DESIGN

DUST COVER DESIGN

- Dust cover in open position
- Hinges and torsion spring
- Nichrome burn wire
- Guide pin
- Tie down cord
- Housing
- Dust cover
- Thermal shield

THERMAL DESIGN

- Radiator with second surface mirrors
- Thermal isolator
- Masking
- Thermal bag
- Fiberglass liner
- Aluminized surfaces
- Nylon ties
- Lunar surface
- Electronics
- Manganin inserts
- External structure painted white
- Analyzer
- Flat ribbon cable

JUNE 72 3270.4.22
LMS DEPLOYMENT

1. ENGAGE UHT HANDLE IN LMS VENT PULL RING.
2. RELEASE LMS VENT PULL RING.
3. OPEN LMS VENT (PULL LMS VENT LANYARD UPWARD).
4. RELEASE 3 BOYDBOLTS SECURING LMS TO SUBPACKAGE #1.
5. ENGAGE UHT IN LMS SWIVEL SOCKET.
6. REMOVE LMS FROM SUBPACKAGE #1 AND TRANSFER TO DEPLOYMENT SITE (45 FEET NORTHEAST OF CENTRAL STATION) USING UHT.
7. ROTATE LMS 90° USING SWIVEL SOCKET AND INSURE THAT SWIVEL SOCKET IS LOCKED.
8. EMPLACE LMS ON LUNAR SURFACE USING UHT (SITE SHOULD BE RELATIVELY FLAT, I.E. WITHIN ±15°).
9. VERIFY THAT LMS IS LEVEL WITHIN ±15°. IF LMS IS NOT LEVEL WITHIN ±15° DO NOT EMBED THE EXPERIMENT; REPOSITION IT ON A MORE LEVEL SPOT.
10. REMOVE UHT FROM LMS SWIVEL SOCKET.
11. ENGAGE UHT IN LMS BREAKSEAL SOCKET.
12. BREAK BREAKSEAL USING UHT (LEVER UHT IN DIRECTION OF ARROW TO SNAP BREAKSEAL).
13. REMOVE BREAKSEAL, USING UHT, AND DISCARD.
14. VERIFY THAT LMS IS LEVEL WITHIN ±15° AND IS NOT EMBEDED IN LUNAR SURFACE.
15. VERIFY THAT ION SOURCE DUST COVER IS COVERING THE INLET.
LMS Emplacement Criteria

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Priority</th>
<th>Indicator</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from Subpackage 1</td>
<td>45 (\pm) 5 FT from Central Station</td>
<td></td>
<td>Racing, Cable Length</td>
<td>Cable Length 50 FT</td>
</tr>
<tr>
<td>Direction from Subpackage 1</td>
<td>Northeast of Central Station</td>
<td></td>
<td>Visual</td>
<td></td>
</tr>
<tr>
<td>Site Selection</td>
<td>Horizontal</td>
<td></td>
<td>Visual</td>
<td>Avoid slopes, out-croppings, and rubble</td>
</tr>
<tr>
<td>Level, WRT Indicator</td>
<td>(+ 15^\circ)</td>
<td></td>
<td>Bubble Level</td>
<td>(+ 15^\circ) is obtained when bubble is free from case</td>
</tr>
<tr>
<td>Alignment</td>
<td>See Note</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The flat cable shall go directly to the central station (not wrapped around the LMS)

JUNE 72 3270.4.25
LMS COMMAND SUMMARY

OCTAL COMMAND
COMMAND NOMENCLATURE
123 LMS LOAD COMMAND #1
124 LMS LOAD COMMAND #2
125 LMS LOAD COMMAND #3
127 LMS LOAD COMMAND #4
132 LMS LOAD COMMAND #5
133 LMS LOAD COMMAND #6
134 LMS EXECUTE AND CLEAR

OCTAL COMMANDS 123, 124, 125, 127, 132, 133, AND 134 ARE ENCODED IN SPECIFIC SEQUENCES TO PROVIDE 15 DISCRETE COMMANDS FOR THE LMS AS LISTED BELOW

<table>
<thead>
<tr>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>123 124 125 127 132 133 134</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>STEP, MULT, SWEEP HV ON & BACKUP HTR OFF</td>
</tr>
<tr>
<td>LOCK (SWEEP HOLD), J-PLATE VOLTAGE STEP, & FIXED MODE SELECT</td>
</tr>
<tr>
<td>ONE-STEP (SWEP ADVANCE) & MODE SELECT ENABLE</td>
</tr>
<tr>
<td>FILAMENT #1 ON & MODE SELECT INHIBIT</td>
</tr>
<tr>
<td>FILAMENT #2 ON & MODE SELECT INHIBIT</td>
</tr>
<tr>
<td>MULT HIGH & BACKUP HTR ON</td>
</tr>
<tr>
<td>*MULT LOW</td>
</tr>
<tr>
<td>DISC HIGH, J-PLATE VOLTAGE STEP ENABLE, & CYCLIC MODE SELECT</td>
</tr>
<tr>
<td>*DISC LOW & J-PLATE VOLTAGE STEP INHIBIT</td>
</tr>
<tr>
<td>BAKEOUT ENABLE(2)</td>
</tr>
<tr>
<td>*BAKEOUT BYPASS</td>
</tr>
<tr>
<td>DUST COVER REMOVAL</td>
</tr>
<tr>
<td>ION PUMP ON(1)</td>
</tr>
<tr>
<td>*ION PUMP, MULT, AND SWEEP HV OFF</td>
</tr>
</tbody>
</table>

NOTES

- PRESET TURN-ON OPERATING MODE; ALL ARE LATCHING RELAYS EXCEPT DISCRIMINATOR (FLIP-FLOP) BUT INITIALIZING PULSE ALSO DRIVES RELAYS
- (1) THIS CMD IS INHIBITED IF HIGH VOLTAGES ARE ON; THE OPPOSITE IS NOT INHIBITED
- (2) AFTER THIS CMD, THE LMS MUST BE COMMANDED TO STANDBY TO PERFORM BAKEOUT

JUNE 72 3270.4.27
LMS COMMANDS

OCTAL CMD NUMBER

- 123 LMS LOAD 1
 This cmd is one of six used by the LMS to load a 6-stage cmd register in the LMS and provide 15 encoded CMOSs. Each encoded cmd consists of two loads in the register and is executed by receipt of cmd 134 which also clears the register. Repeated application of cmd 123 has no further effect prior to execution.

- 124 LMS LOAD 2
 This cmd is one of six used by the LMS to load a 6-stage cmd register in the LMS and provide 15 encoded CMOSs. Each encoded cmd consists of two loads in the register and is executed by receipt of cmd 134 which also clears the register. Repeated application of cmd 124 has no further effect prior to execution.

- 125 LMS LOAD 3
 This cmd is one of six used by the LMS to load a 6-stage cmd register in the LMS and provide 15 encoded CMOSs. Each encoded cmd consists of two loads in the register and is executed by receipt of cmd 134 which also clears the register. Repeated application of cmd 125 has no further effect prior to execution.

- 127 LMS LOAD 4
 This cmd is one of six used by the LMS to load a 6-stage cmd register in the LMS and provide 15 encoded CMOSs. Each encoded cmd consists of two loads in the register and is executed by receipt of cmd 134 which also clears the register. Repeated application of cmd 127 has no further effect prior to execution.

- 132 LMS LOAD 5
 This cmd is one of six used by the LMS to load a 6-stage cmd register in the LMS and provide 15 encoded CMOSs. Each encoded cmd consists of two loads in the register and is executed by receipt of cmd 134 which also clears the register. Repeated application of cmd 132 has no further effect prior to execution.

- 133 LMS LOAD 6
 This cmd is one of six used by the LMS to load a 6-stage cmd register in the LMS and provide 15 encoded CMOSs. Each encoded cmd consists of two loads in the register and is executed by receipt of cmd 134 which also clears the register. Repeated application of cmd 133 has no further effect prior to execution.

- 134 LMS CMD EX
 This cmd causes execution of one of the 15 encoded LMS CMOSs as contained in its 6-stage cmd register which is loaded by receipt of two of the six cmdos 123, 124, 125, 127, 132, and 133. Execution also clears the register. Repeated application of cmd 134 has no further effect.

 - Application of operational power to the LMS causes initialization of the 6-stage cmd register in the clear state (000 000).
 - If an incorrect cmd load is received by the register, it will not affect the instrument unless executed by cmd octal 134. Incorrect loads may be cleared by sending additional CMOSs to fill the register (111 111) and then executing by sending cmd 134.
 - If an incorrect load consisting of three CMOSs (for example) is inadvertently executed by cmd 134, there are three combinations of load pairs, each corresponding to an encoded LMS cmd. The response of the LMS to this invalid input is unpredictable, depending on switching times (signal race) and whether or not some of the three encoded CMOSs are mutually exclusive.
LMS ENCODED COMMANDS

OCTAL CMD LOADS

- **123 & 124 STEP, MULT, SWEEP HV ON & BACKUP HEATER OFF**
 -This combination of CMDs, when followed by the execute CMD (OCTAL 134):
 - Applies power to the electron multiplier HV power supply
 - Enables the digital sweep control and sweep HV power supply
 - Enables the digital sweep control circuit
 - Enables turn-on of the ion pump HV power supply
 - Note that the ion pump interlock is a one-way inhibit; operation of CMD 123/124/134 is never inhibited.

 The digital sweep control is locked (sweep hold) by the CMD combination 123/125; the two HV power supplies are commanded off by 132/133; and the backup heater is energized by 124/127 (each combination executed by CMD 134).

 Repeated execution of 123/124/134 has no further effect. Application of operational power to the LMS causes initialization in the lock mode and with the HV power supplies off. The initial state of the backup heater may be on or off (unpredictable).

- **123 & 127 ONE STEP (SWEEP ADVANCE)**
 -This combination of CMDs, when followed by the execute CMD (OCTAL 134), causes the LMS digital sweep control to advance one step if it has been previously locked by 123/125/134. Repeated application of 123/127/134 causes repeated stepping of the digital sweep control through its 1350 steps, or more if desired.

- **123 & 132 EMISS ION/FILAMENTS OFF, & MODE SELECT ENABLE**
 -This combination of CMDs, when followed by the execute CMD (OCTAL 134), deactivates a portion of the LMS emission control power supply to remove power from the LMS ion source filaments. It also enables the mode select portion of the emission control circuit. After sending 123/132/134, either the fixed mode emission or cyclic mode emission may be selected as follows:
 - **Fixed Mode**: 123/125/134
 - **Cyclic Mode**: 124/133/134

 Repeated application of CMD 123/132/134 has no further effect. Application of operational power to the LMS causes initialization in the filament-off mode corresponding to CMD 123/132/134. Turn-on of the filaments (including emission control) is accomplished by one of the two CMDs:
 - Filament #1 On: 123/133/134
 - Filament #2 On: 124/125/134

- **123 & 135 FILAMENT #1 ON & MODE SELECT INHIBIT**
 -This combination of CMDs, when followed by the execute CMD (OCTAL 134), causes power to be applied to filament #1 of the LMS ion source and selects relay positions such that the filament bias voltages are applied to the correct filaments. This CMD combination 123/135/134 has no effect unless the emission/tint filaments are off by prior execution of CMDs 123/132/134 specifically. Filament #1 cannot be turned on if filament #2 is on. Also, this CMD combination inhibits the mode select circuitry; specifically, the mode of emission not being used cannot be selected without first going to the filament-off and mode select state (CMD 123/132/134). Repeated application of CMD 123/135/134 has no further effect. Application of operational power to the LMS causes initialization in the filament-off and mode select enable state.

<table>
<thead>
<tr>
<th>PLATE</th>
<th>STATE 1</th>
<th>STATE 2</th>
<th>STATE 3</th>
<th>STATE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-1</td>
<td>1092V</td>
<td>1076V</td>
<td>1070V</td>
<td>1088V</td>
</tr>
<tr>
<td>J-2</td>
<td>1060V</td>
<td>1093V</td>
<td>1032V</td>
<td>1059V</td>
</tr>
</tbody>
</table>

JUNE 72 3270.4.29
LMS ENCODED COMMANDS (CONT’D)

OCTAL CMD LOADS

- 124 & 125 FILAMENT #2 ON & MODE SELECT INHIBIT

 THIS COMBINATION OF CMDS, WHEN FOLLOWED BY THE EXECUTE CMD (OCTAL 134), CAUSES POWER TO BE APPLIED TO FILAMENT #2 OF THE LMS ION SOURCE AND SELECTS RELAY POSITIONS SUCH THAT THE FILAMENT BIAS VOLTAGES ARE APPLIED TO THE CORRECT FILAMENTS. THIS CMD COMBINATION (124/125/134) HAS NO EFFECT UNLESS THE EMISSION/FILAMENTS ARE OFF BY PRIOR EXECUTION OF CMDS 123/132/134. SPECIFICALLY, FILAMENT #2 CANNOT BE TURNED ON IF FILAMENT #1 IS ON. ALSO, THIS CMD COMBINATION INHIBITS THE MODE SELECT CIRCUITRY; SPECIFICALLY, THE MODE OF EMISSION NOT BEING USED CANNOT BE SELECTED WITHOUT FIRST GOING TO THE FILAMENT OFF AND MODE SELECT STATE (CMD 123/132/134). REPEATED APPLICATION OF CMD 124/125/134 HAS NO FURTHER EFFECT. APPLICATION OF OPERATIONAL POWER TO THE LMS CAUSES INITIALIZATION IN THE FILAMENT-OFF AND MODE SELECT ENABLE STATE.

- 124 & 127 MULTIPLIER HIGH & BACKUP HEATER ON

 THIS COMBINATION OF CMDS, WHEN FOLLOWED BY THE EXECUTE CMD (OCTAL 134), STEPS THE LMS ELECTRON MULTIPLIER HV POWER SUPPLY FROM ITS NORMAL (LOW) VALUE TO ITS HIGH VALUE, A STEP OF 600 VDC (TWO OPERATIONAL VALUES IN THE OUTPUT RANGE OF -2200 TO -3000 VDC). THIS VOLTAGE IS SUPPLIED TO ALL THREE ELECTRON MULTIPLIER TUBES. CMD 124/127/134 ALSO APPLIES POWER TO THE LMS BACKUP HEATER. SELECTION OF THE ALTERNATE CONDITIONS BY CMD IS AS FOLLOWS:

 MULTIPLIER LOW: 124/132/134
 BACKUP HEATER OFF: 123/120/134

 REPEATED APPLICATION OF CMD 124/127/134 HAS NO FURTHER EFFECT. APPLICATION OF OPERATIONAL POWER TO THE LMS CAUSES INITIALIZATION IN THE MULTIPLIER-LOW STATE. THE INITIAL STATE OF THE BACKUP HEATER MAY BE ON OR OFF (UNPREDICTABLE).

- 124 & 132 MULTIPLIER LOW

 THIS COMBINATION OF CMDS, WHEN FOLLOWED BY THE EXECUTE CMD (OCTAL 134), STEPS THE LMS ELECTRON MULTIPLIER HV POWER SUPPLY FROM ITS HIGH VALUE (IF PREVIOUSLY COMMAND HIGH BY 124/127/134) TO ITS NORMAL LOW VALUE, A STEP OF 600 VDC (TWO OPERATIONAL VALUES IN THE OUTPUT RANGE OF -2200 TO -3000 VDC). THIS VOLTAGE IS SUPPLIED TO ALL THREE ELECTRON MULTIPLIER TUBES. REPEATED APPLICATION OF CMD 124/132/134 HAS NO FURTHER EFFECT. APPLICATION OF OPERATIONAL POWER TO THE LMS CAUSES INITIALIZATION IN THE MULTIPLIER-LOW STATE.

- 124 & 133 DISCRIMINATOR HIGH, J-PLATE VOLTAGE STEP ENABLE, & CYCLIC MODE SELECT

 THIS COMBINATION OF CMDS, WHEN FOLLOWED BY THE EXECUTE CMD (OCTAL 134), CAUSES THE FOLLOWING CHANGES IN LMS:

 - SELECTS THE HIGHER OF THE TWO LEVELS FOR THE PREAMP DISCRIMINATOR THRESHOLD CONTROL
 - ENABLES THE J-PLATE VOLTAGE SEQUENCER OF THE ION SOURCE EMISSION CONTROL SO THAT IT CAN ACCEPT THE STEP CMD (123/125/134)

 REPEATED APPLICATION OF CMD COMBINATION 124/133/134 HAS NO FURTHER EFFECT. THE HIGHER OF THE TWO LEVELS FOR THE PREAMP DISCRIMINATOR THRESHOLD CONTROL IS SELECTED, AND J-PLATE VOLTAGE STEP IS INHIBITED. CMD 124/127/134 APPLIES OPERATIONAL POWER TO THE LMS CAUSES INITIALIZATION IN THE LOW INHIBIT MODE.

- 125 & 127 DISCRIMINATOR LOW & J-PLATE VOLTAGE STEP INHIBIT

 THIS COMBINATION OF CMDS, WHEN FOLLOWED BY THE EXECUTE CMD (OCTAL 134), CAUSES THE FOLLOWING CHANGES IN LMS:

 - SELECTS THE LOWER OF THE TWO LEVELS FOR THE PREAMP DISCRIMINATOR THRESHOLD CONTROL
 - INHIBITS THE J-PLATE VOLTAGE SEQUENCER OF THE ION SOURCE EMISSION CONTROL SO THAT IT CANNOT ACCEPT THE STEP CMD (123/125/134)

 REPEATED APPLICATION OF CMD COMBINATION 125/127/134 HAS NO FURTHER EFFECT. THE LOWER OF THE TWO LEVELS FOR THE PREAMP DISCRIMINATOR THRESHOLD CONTROL IS SELECTED, AND J-PLATE VOLTAGE STEP IS ENABLED. CMD 124/133/134 APPLIES OPERATIONAL POWER TO THE LMS CAUSES INITIALIZATION IN THE LOW INHIBIT MODE CORRESPONDING TO CMD 125/127/134.

JUNE 72 3270.4.30
LMS ENCODED COMMANDS (CONT’D)

OCTAL CMD LOADS

- **125 & 132 BAKEOUT ENABLE**

 This combination of CMDs, when followed by the execute CMD (OCTAL 134), selects a relay position such that a subsequent command of the LMS to standby power will perform bakeout of the LMS sensor and by-pass the LMS survival heater. To discontinue bakeout after it is in process, the LMS must be commanded either to operational power or off. Prior to an LMS standby CMD, repeated execution of CMDs 125/132/134 has no further effect. To cancel this command, prior to LMS standby, the bakeout bypass command (125/133/134) must be executed. When operational power is applied to the LMS, from either standby or off, it is possible for the relay to receive signals driving it to the opposite position. At LMS turn-on, the bypass state is assured by transmitting CMD 134 with no load in the LMS register; that is, a binary reading of 00000.

- **125 & 133 BAKEOUT BYPASS**

 This combination of CMDs, when followed by the execute CMD (OCTAL 134), selects a relay position such that a subsequent command of the LMS to standby power will not perform bakeout of the LMS sensor and will operate the survival heater. Repeated application of CMD 125/132/134 has no further effect. If there has been no bakeout enable CMD in between, when operational power is applied to the LMS, from either standby or off, it is possible for the relay to receive signals driving it to the opposite position. At LMS turn-on, the bypass state is assured by transmitting CMD 134 with no load in the LMS register; that is, a binary reading of 00000.

- **127 & 132 OUST COVER REMOVAL**

 This combination of CMDs, when followed by the execute CMD (OCTAL 134), activates the circuits of a burn-wire device for a period of 12 to 20 seconds to release the dust cover which protects the LMS thermal control mirror. This burn-wire sever's a cord causing minimum release of gas which could contaminate the LMS science measurements. Repeated execution of CMDs 127/132/134 causes repeated activation of the burn-wire. Removal of the mirror cover is scheduled after LMS ascent. Prior to removal, the extent of LMS operations is constrained by thermal control limitations.

- **127 & 133 ION PUMP ON**

 This combination of CMDs, when followed by the execute CMD (OCTAL 134), energizes the LMS ion pump which applies a high-vacuum pumping action to the LMS gas analyzer (sensor). Repeated application of CMDs 127/133/134 has no further effect. If the HV power supplies are on CMDs 123/124/134, the ion pump on CMD, 127/133/134, is inhibited and, to turn on the pump, the HV power supply off CMD, 132/133/134, must be executed first. Turn-off of the ion pump is accomplished by CMDs 132/133/134. Application of operational power to the LMS causes initialization in the pump-off mode.

- **132 & 133 ION PUMP, MULTIPLIER, AND SWEEP HV OFF**

 This combination of CMDs, when followed by the execute CMD (OCTAL 134), removes power from the following LMS circuits:

 - Ion Pump
 - Electron Multiplier HV Power Supply
 - Sweep HV Power Supply

 The ion pump is turned on by 127/133, and the two HV power supplies are turned on by 123/124 (each combination executed by CMD 134).

 Repeated application of 123/133/134 has no further effect. Application of operational power to the LMS causes initialization in the pump and HV off mode corresponding to CMDs 120/133/134.

 SEQUENCE OF LMS CMDs

 - 123/132/134
 - 124/133/134
 - 125/127/134
 - 129/133/134
 - 123/133/134
 - 124/125/134
 - 123/124/134
 - 123/133/134

 *Required only if a filament is on.

 This sequence of LMS CMDs activates a cyclic mode operation of the emission control circuit in which the 1350 sweep steps are programmed to occur with four different values, in succession, of the filament bias, as follows:

<table>
<thead>
<tr>
<th>Filament Bias</th>
<th>Sweep Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>-70 VDC</td>
<td>First</td>
</tr>
<tr>
<td>-18 VDC</td>
<td>Second</td>
</tr>
<tr>
<td>-25 VDC</td>
<td>Third</td>
</tr>
<tr>
<td>-20 VDC</td>
<td>Fourth</td>
</tr>
<tr>
<td>-70 VDC</td>
<td>Fifth</td>
</tr>
</tbody>
</table>

 ... etc.

 The sequence can start at any of the bias voltages depending on prior operation of the LMS. To return to the fixed mode of operation of the emission control circuit requires the following sequence of CMDs: 123/132/134, 123/125/134, 129/133/134 (or 124/125/134), and 123/124/134.

 SEQUENCE OF LMS CMDs

 - 123/132/134
 - 124/133/134
 - 125/127/134
 - 129/133/134
 - 123/133/134
 - 124/125/134
 - 123/124/134
 - 123/133/134

 *Required only if a filament is on.

 This sequence of LMS CMDs activates a cyclic mode operation of the emission control circuit in which the 1350 sweep steps are programmed to occur with four different values, in succession, of the filament bias, as follows:

<table>
<thead>
<tr>
<th>Filament Bias</th>
<th>Sweep Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>-70 VDC</td>
<td>First</td>
</tr>
<tr>
<td>-18 VDC</td>
<td>Second</td>
</tr>
<tr>
<td>-25 VDC</td>
<td>Third</td>
</tr>
<tr>
<td>-20 VDC</td>
<td>Fourth</td>
</tr>
<tr>
<td>-70 VDC</td>
<td>Fifth</td>
</tr>
</tbody>
</table>

 ... etc.

 The sequence can start at any of the bias voltages depending on prior operation of the LMS. To return to the fixed mode of operation of the emission control circuit requires the following sequence of CMDs: 123/132/134, 123/125/134, 129/133/134 (or 124/125/134), and 123/124/134.

 SEQUENCE OF LMS CMDs

 - 123/132/134
 - 124/133/134
 - 125/127/134
 - 129/133/134
 - 123/133/134
 - 124/125/134
 - 123/124/134
 - 123/133/134

 *Required only if a filament is on.

 This sequence of LMS CMDs activates a cyclic mode operation of the emission control circuit in which the 1350 sweep steps are programmed to occur with four different values, in succession, of the filament bias, as follows:

<table>
<thead>
<tr>
<th>Filament Bias</th>
<th>Sweep Steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>-70 VDC</td>
<td>First</td>
</tr>
<tr>
<td>-18 VDC</td>
<td>Second</td>
</tr>
<tr>
<td>-25 VDC</td>
<td>Third</td>
</tr>
<tr>
<td>-20 VDC</td>
<td>Fourth</td>
</tr>
<tr>
<td>-70 VDC</td>
<td>Fifth</td>
</tr>
</tbody>
</table>

 ... etc.

 The sequence can start at any of the bias voltages depending on prior operation of the LMS. To return to the fixed mode of operation of the emission control circuit requires the following sequence of CMDs: 123/132/134, 123/125/134, 129/133/134 (or 124/125/134), and 123/124/134.
LMS DIGITAL DATA

ALSEP WORD ASSIGNMENT

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>LMS</td>
<td>C</td>
<td>CV</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>LMS</td>
<td>CH. A</td>
<td>LMS</td>
<td>CH. B</td>
<td>LMS</td>
<td>CH. C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>HK</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
</tr>
<tr>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
</tr>
</tbody>
</table>

EACH BOX REPRESENTS ONE 10-BIT WORD IN THE 640-BIT ALSEP FRAME

C - ALSEP CONTROL WORDS
CV - ALSEP COMMAND VERIFICATION
LMS FLAG & CV - STATUS FLAGS & CMD REG STATUS
LMS CH. A - LOW MASS RANGE COUNT
LMS CH. B - INTERMEDIATE MASS RANGE COUNT
LMS CH. C - HIGH MASS RANGE COUNT
HK - ALSEP AND EXPERIMENTS HOUSEKEEPING
MULTIPLEXED TO SAMPLE EACH SOURCE ONCE EVERY 90 ALSEP FRAMES (EVERY 54 SECONDS AT NORMAL DATA RATE)

ALSEP WORD 5, EVEN FRAME

1 2 3 4 5 6 7 8 9 10
DM-20 FIL ON/OFF
DM-19 HVPS ON/OFF
DM-18 BAKEOUT HTR ENABLE/BYPASS
DM-17 DUST COVER STA
DM-16 ION PUMP ON/OFF
DM-15 AUTO/LOCK STA
DM-14 BKGICAL OR SWEEP
DM-13 DISCRIM HI/LOW
DM-12 MULT HI/LOW STA
DM-11 FRAME ID (1 INDICATES EVEN FRAME)

ALSEP WORD 5, ODD FRAME

1 2 3 4 5 6 7 8 9 10
DM-01 CMD REG STA
DM-11 FRAME ID (0 INDICATES ODD FRAME)
NOT USED (FILLER ZEROS)

ALSEP WORDS 17 (DM-03), 19 (DM-04), AND 21 (DM-05)

1 2 3 4 5 6 7 8 9 10
DM-01 CMD REG STA
4-BIT SHIFT COUNTER
6-BIT SCIENCE REGISTER DATA

JUNE 72 3270.4.32
LMS ANALOG DATA

In the ALSEP housekeeping word (Word 33 of the ALSEP frame) three channels are assigned to the LMS. They are Channels 40, 41, and 44, read out during those three frames of the ALSEP 90-frame sequence (once every 54 seconds at the normal data rate).

Channel 40 (this channel is multiplexed to present 16 parameters):

<table>
<thead>
<tr>
<th>MULTIPLEXED SEQUENCE</th>
<th>CODE</th>
<th>PARAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AM-01</td>
<td>MARKER ID (EIGHT ONES)</td>
</tr>
<tr>
<td>2</td>
<td>AM-02</td>
<td>EXPERIMENT CURRENT</td>
</tr>
<tr>
<td>3</td>
<td>AM-03</td>
<td>ION PUMP CURRENT</td>
</tr>
<tr>
<td>4</td>
<td>AM-04</td>
<td>BASEPLATE TEMP</td>
</tr>
<tr>
<td>5</td>
<td>AM-05</td>
<td>ION SOURCE TEMP</td>
</tr>
<tr>
<td>6</td>
<td>AM-06</td>
<td>+12 VDC LVPS</td>
</tr>
<tr>
<td>7</td>
<td>AM-07</td>
<td>+5 VDC LVPS</td>
</tr>
<tr>
<td>8</td>
<td>AM-08</td>
<td>-15 VDC LVPS</td>
</tr>
<tr>
<td>9</td>
<td>AM-09</td>
<td>-12 VDC LVPS</td>
</tr>
<tr>
<td>10</td>
<td>AM-10</td>
<td>EMISSION CURRENT</td>
</tr>
<tr>
<td>11</td>
<td>AM-11</td>
<td>FIL #1 CURRENT</td>
</tr>
<tr>
<td>12</td>
<td>AM-12</td>
<td>FIL #2 CURRENT</td>
</tr>
<tr>
<td>13</td>
<td>AM-13</td>
<td>MULT. HIGH VOLTAGE</td>
</tr>
<tr>
<td>14</td>
<td>AM-14</td>
<td>LVPS TEMP</td>
</tr>
<tr>
<td>15</td>
<td>AM-15</td>
<td>SPARE (APPROX. ZERO)</td>
</tr>
<tr>
<td>16</td>
<td>AM-16</td>
<td></td>
</tr>
</tbody>
</table>

Channel 41 reads AM-41, ELECTRONICS TEMP. Not only when the LMS is operational but also in standby and off.

Channel 44 reads AM-44, LMS sweep high voltage.
LMS INITIAL LUNAR SETUP

<table>
<thead>
<tr>
<th>FUNCTIONS</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INSTRUMENT TURN-ON</td>
<td>CMD OPERATIONAL PWR WITH PRESET HIGH VOLTAGES OFF, MONITOR TM</td>
</tr>
<tr>
<td>DUST COVER REMOVAL</td>
<td>CMD DUST COVER REMOVAL AFTER LM ASCENT; MAY BE DELAYED UNTIL AFTER LSP DETONATION</td>
</tr>
<tr>
<td>BAKEOUT OPERATION</td>
<td>EXECUTE BAKEOUT ENABLE CMD AND SWITCH LMS TO STANDBY (SUBSEQUENT TURN-ON FOR TM CHECK); WILL BE REPEATED FOR TOTAL OF 12 HOURS</td>
</tr>
<tr>
<td>ION PUMP OPERATION</td>
<td>CMD ION PUMP ON TO DETERMINE WHEN PRESSURE IS ACCEPTABLE FOR HIGH-VOLTAGE OPERATION</td>
</tr>
<tr>
<td>FILAMENT #1 ON</td>
<td>CMD FILAMENT ON AND MONITOR FILAMENT CURRENT</td>
</tr>
<tr>
<td>STEP, MULT, AND SWEEP ON</td>
<td>CMD FULL OPERATION AND MONITOR SCIENCE/TM DATA (MAKE ADJUSTMENTS AS NECESSARY)</td>
</tr>
<tr>
<td>FULL INSTRUMENT OPERATION</td>
<td>FOLLOWS ANY ADJUSTMENTS, ABOVE</td>
</tr>
</tbody>
</table>
LUNAR SEISMIC PROFILING EXPERIMENT (LSP)
LSP EQUIPMENT

- Receiving Antenna (8)
- Transport Modules (2) carried in LM and on LRV

Remote Transmitting Antenna - Mounted on Subpackage 1

Central Electronics - Mounted inside Subpackage 1

Explosive Packages (8) - Mounted four on each Transport Module

Transport Modules (2)
LSP SCIENTIFIC SUMMARY

OBJECTIVES

DETERMINE LUNAR SURFACE AND NEAR-SURFACE RESPONSE TO ARTIFICIALLY INDUCED SEISMIC ENERGY AND NATURAL SEISMIC PHENOMENA

ENERGY SOURCES
- ARTIFICIAL EXPLOSIVE PACKAGES
- NATURAL METEORITES, ETC.

METHOD

SEISMIC DETECTION
- GEOPHONES AND AMPLIFIERS

DATA OUTPUT
- SPECIAL ALSEP FORMAT

ANALYSIS

SEISMIC WAVE TRAIN DATA IN TERMS OF VELOCITY, FREQUENCY SPECTRA, AND ATTENUATION

RESULTS

- DEGREE OF INDURATION AND BEARING STRENGTH OF LUNAR SURFACE
- TYPE AND CHARACTER OF SURFACE AND NEAR-SURFACE ROCKS
- RELATIONSHIP BETWEEN MARE AND HIGHLAND AREAS
- UNDERSTANDING OF ORIGIN OF PRIMORDIAL LUNAR SURFACE
- METEORITE IMPACT DATA
- MICROQUAKE DATA

DATA REDUCTION FOR SEISMIC ENERGY VELOCITY CALCULATIONS

TIME

TRANSmitter
EXPLOSIVE PACKAGE
EXPLOSIVE PACKAGE
POWER SUPPLY OUTPUT
IMAX VELOCITY
MIN RANGE
IMIN VELOCITY
MAX RANGE

VELOCITY = \(\frac{\Delta T}{R} \)

\(\Delta T \) TIME DIFFERENCE BETWEEN GEOPHONE ARRIVAL SIGNAL AND LAST PREVIOUS TRANSMITTED PULSE

R DISTANCE BETWEEN GEOPHONE AND EXPLOSIVE PACKAGE

JULY 72 3270.5.3
LSP OPERATIONS SUMMARY

DEPLOYMENT

- PLACE EXPLOSIVE TRANSPORT MODULES IN SUN
- PLACE GEOPHONE MODULE 30 FT SOUTH OF CENTRAL STATION
- DEPLOY FOUR GEOPHONES, ONE AT A TIME, FROM GEOPHONE MODULE; TWO ALONG SUN LINE AND TWO PERPENDICULAR TO SUN LINE
- ERECT LSP TRANSMITTING ANTENNA 37 FT NW OF CENTRAL STATION
- PLACE TRANSPORT MODULE #1 ON LRV
- AT EACH OF FOUR PRESCRIBED LOCATIONS, PLACE APPROPRIATE EXPLOSIVE PACKAGE ON LUNAR SURFACE WITH RECEIVING ANTENNA EXTENDED AND PULL (FOUR PINS) THREE PULL-RINGS
- REPEAT STEPS OF EVA 2 FOR TRANSPORT MODULE #2 USING APPROPRIATE PACKAGES/LOCATIONS

PRELIMINARY CONCEPT

EVA 1

EVA 2

EVA 3

POST-DEPLOYMENT

- COMMAND LSP OPERATIONAL POWER AND DATA FORMAT
- INITIATE LSP FIRING SIGNALS (TRANSMITTER PULSES) BY COMMAND AT TIME DEPENDING ON DEPLOYMENT HISTORY
- TRANSMIT COMMANDS FOR GEOPHONE CALIBRATION
- OTHER COMMANDS AS NECESSARY

JULY 72 3270.5.4
LSP COMMUNICATIONS SUMMARY

COMMANDS

- POWER ON/STANDBY/OFF (STANDBY IS EFFECTIVELY OFF FOR LSP)
- LSP DATA FORMAT
 - DATA RATE (3533.3 BITS PER SEC IS NORMAL FOR LSP; LOW RATE OF 1060 BITS PER SEC USED ONLY FOR LISTENING MODE BECAUSE PROPER FIRE PULSES CANNOT BE GENERATED - NETWORK HAS NO PROVISION FOR THROUGHPUT OF LOW RATE TO MCC)
- 5 SPECIAL LSP CONTROL COMMANDS USED FOR:
 - LSP XMTR PULSES ON
 - LSP XMTR PULSES OFF
 - AMPLIFIER GAIN NORMAL
 - AMPLIFIER GAIN LOW
 - GEOPHONE CALIBRATE
- WHENEVER LSP IS ACTIVATED BY POWER ON CMD, XMTR FIRE AND AGC PULSES INITIALIZE OFF AND AMPLIFIER GAIN INITIALIZES NORMAL

DATA

- IN THE ALSEP DATA PROCESSOR FORMAT, LSP ELECTRONICS TEMPERATURE (PARAMETER AP-O1) IS OBTAINED ONCE EVERY 90 ALSEP FRAMES, REGARDLESS OF LSP ON/STANDBY/OFF STATUS
- IN THE LSP FORMAT, ALL SCIENCE DATA FROM OTHER EXPERIMENTS IS BY-PASSED, AND A SPECIAL DOWNLINK FORMAT IS GENERATED BY THE LSP
- THIS FORMAT CONSISTS OF AN 1800-BIT MAIN FRAME MADE UP OF THREE 600-BIT SUBFRAMES, EACH HAVING TWENTY 30-BIT WORDS
- IN EACH LSP MAIN FRAME, THERE ARE SIX CRITICAL ALSEP HOUSEKEEPING PARAMETERS (8 BITS EACH), THE REMAINDER IS EITHER LSP DATA (SCIENCE AND HOUSEKEEPING) OR SYNCHRONIZATION
- AT THE NORMAL LSP DATA RATE, EACH SEISMIC DATA CHANNEL IS SAMPLED 118 TIMES PER SECOND
LSP PHYSICAL PARAMETERS

SIZE

- CENTRAL ELECTRONICS: 6.755 X 6.505 X 2.8 IN.
- GEOPHONE MODULE: 9.84 X 8.665 X 6.85 IN.
- EXPLOSIVE PACKAGES (ON TRANSPORT FRAME): 18.39 X 11.12 X 10.88 IN.
- TRANSMITTING ANTENNA LENGTH: 13 IN. STOWED, 62 IN. DEPLOYED

WEIGHT

- TRANSPORT MODULE NO. 1: 20.10 LB
- TRANSPORT MODULE NO. 2: 18.66 LB
- CENTRAL ELECTRONICS: 3.70 LB
- ANTENNA AND CABLE: 5.00 LB
- GEOPHONE MODULE: 8.95 LB
- ANCHOR, FLAGS, ETC.: 2.90 LB
- TOTAL: 59.31 LB

OPERATIONAL POWER: 6.8 W
SURVIVAL POWER: ZERO
LSP PERFORMANCE CHARACTERISTICS

EXPLOSIVE PACKAGES
- Placed at ranges of 500 ft to 3.5 km
- Larger explosive charges at long-range locations

GEOPHONES (SENSORS)
- Electromagnetic type

LOGARITHMIC COMPRESSION AMPLIFIERS
- Dynamic range: 64 dB to 78 dB

GEOPHONE/AMPLIFIER
- Sensitivity: The RMS value of a 6 millimicron (μm) peak-to-peak signal at 10 Hz will be a minimum of 18 dB above the RMS noise
- Bandwidth: 3 to 20 Hz with respect to velocity (Geophones sense rate of change in vertical position)
- Dynamic range: 64 to 78 dB

BASIC DATA WORD
- 7-bit readout from each of four seismic data channels (Geophone/Amplifier)
- 1.28-Db resolution per bit

SHOT TIME
- Determined by correlating seismic response from detonation of explosive package with time of fire pulse sets; timing of each fire pulse set is synchronized in data format as well as detected for verification in TM

NOTES:
1. Accurate determination of shot time and range is fundamental in the analysis of geophone data
2. The variety of ranges and explosive charges allows investigation of seismic wave penetration through several layers of subsurface material down to depths of 3 or 4 km
LSP EXPLOSIVE PACKAGE TIME SEQUENCE

LUNAR ELAPSED TIME HOURS

EXPLOSIVE PACKAGE NO. 6 (1-LB CHARGE)

EXPLOSIVE PACKAGE NO. 5 (3-LB CHARGE)

EXPLOSIVE PACKAGE NO. 7 (1/2-LB CHARGE)

EXPLOSIVE PACKAGE NO. 4 (1/8-LB CHARGE)

EXPLOSIVE PACKAGE NO. 1 (6-LB CHARGE)

EXPLOSIVE PACKAGE NO. 8 (1/4-LB CHARGE)

EXPLOSIVE PACKAGE NO. 2 (1/4-LB CHARGE)

EXPLOSIVE PACKAGE NO. 3 (1/8-LB CHARGE)

TIME RUNOUT PERIOD

T_1

91 HR FIRE
92 HR DISARM

93 HR ARM
94 HR DISARM

17 HR (NOM)

T_2

92 HR ARM
93 HR FIRE
94 HR DISARM

93 HR ARM
94 HR FIRE
95 HR DISARM

90 HR ARM
91 HR FIRE
92 HR DISARM

15 HR (NOM)

T_4

90 HR ARM
91 HR FIRE
92 HR DISARM

92 HR ARM
93 HR FIRE
94 HR DISARM

93 HR ARM
94 HR FIRE
95 HR DISARM

T_6

90 HR ARM
91 HR FIRE
92 HR DISARM

91 HR ARM
92 HR FIRE
93 HR DISARM

JULY 72 3270.5.8
LSP EXPLOSIVE PACKAGE FUNCTIONS

- **SAFE/ARM TIMER**
 - ARMS EXPLOSIVE PACKAGE = 90 HOURS AFTER DEPLOYMENT
- **THERMAL-BATTERY**
 - TIMER ACTIVATES BATTERY TO SUPPLY PWR TO RECEIVER, SIGNAL PROCESSING, AND FIRING CIRCUIT ≈ 91 HOURS AFTER DEPLOYMENT
- **EXPLOSIVE PACKAGE**
 - DETONATES UPON RECEIVING CODED RF SIGNAL FROM LSP CENTRAL ELECTRONICS IF SAFE/ARM SLIDE PLATE IS IN POSITION AND THERMAL BATTERY IS ACTIVATED
 - SHORTING SWITCH ON END DETONATING CARTRIDGE IS OPENED BY ROLLER ENGAGEMENT WITH SAFE/ARM SLIDE PLATE

Tₙ = PRESET TIME (90, 91, 92, OR 93 HOURS)

RF FIRE SIGNAL
- PULSE SETS AND AGC PULSES FROM LSP TRANSMITTER

ASTRONAUT PULL RING NO. 3

ASTRONAUT PULL RING NO. 1

ASTRONAUT PULL RING NO. 2

TIMING MECHANISM

FIRING-PULSE GENERATOR

THERMAL BATTERY (W/PRIMER)

RECEIVER

SIGNAL PROCESSOR

FIRING-PULSE GENERATOR

TENSION SPRING

EXPLOSIVE CHARGE

EXPLOSIVE LEAD

SAFE/ARM PLATE

JULY 72 3270.5.10
LSP EXPLOSIVE PACKAGE SAFETY FEATURES

• THREE INDEPENDENT EVENTS OCCUR FOR DETONATION
 • RUN-OUT OF SAFE/ARM SLIDE TIMER
 • RUN-OUT OF BATTERY TIMER
 • RADIO RECEPTION OF CODED FIRING SIGNAL (PROPERLY GENERATED ONLY AT 3533.3-BPS DATA RATE)

• TIMER PULL PINS WILL PERMANENTLY LOCK IN PLACE IF TIMER STARTS PREMATURELY

• FIRING PIN SAFING PULL PIN WILL PERMANENTLY LOCK IN PLACE, PREVENTING THERMAL BATTERY INITIATION, IF THE BATTERY FIRING PIN RELEASES PRIOR TO DEPLOYMENT

• SAFE/ARM SLIDE PULL PIN WILL PERMANENTLY LOCK IN PLACE, PREVENTING THE SLIDE FROM MOVING TO THE ARM POSITION, IF THE SAFE/ARM SLIDE PLATE RELEASES PRIOR TO DEPLOYMENT

• SAFE/ARM SLIDE IN SAFE POSITION
 • PREVENTS PROPAGATION OF EXPLOSIVE TRAIN DETONATION
 • SHORTS END DETONATING CARTRIDGE

• BATTERY TIMER, PRIOR TO RUN-OUT, OPEN CIRCUITS THE SIGNAL PROCESSOR AND FIRING PULSE GENERATOR POWER LINE

• THERMAL BATTERY HAS A ONE-TIME OPERATIONAL LIFETIME OF THREE MINUTES MAXIMUM

• TIMEOUT OF TimERS MUST COINCIDE WITHIN LIMITS SUCH THAT THE SAFE/ARM SLIDE PLATE IS IN THE ARM POSITION WHEN THE THERMAL BATTERY IS ACTIVATED

• FIRING CAPACITORS DISCHARGE THROUGH LEAK RESISTORS IF FIRING SIGNAL IS NOT RECEIVED WITHIN THREE MINUTES OF THERMAL BATTERY ACTIVATION

• IF EXPLOSIVE PACKAGE IS NOT DETONATED WITHIN THE TWO-HOUR SAFE/ARM SLIDE FIRING WINDOW, THE SLIDE WILL MOVE TO THE RESAFE POSITION (VISUAL INDICATOR SHOWS STATUS)
LSP SAFE/ARM SLIDE PULL PIN

- Pull Ring
- Unlocked Position
- Pull Ring Retainer
- Explosive Package
- EDC Housing
- Pull Ring Stem (Rotated 180°)
- Pull Ring Spring
- Base Plate
- Safe/Arm Slide
LSP EXPLOSIVE TRAIN SAFE POSITION

EDC

EDC HOUSING

BASE PLATE

SAFE/ARM SLIDE

LEAD

EXPLOSIVE CHARGE 6 POUNDS (MAXIMUM)

JULY 72 3270.5.13
LSP TRANSMITTER PULSE TIMING

START OF FRAME

SUBFRAME 3

SUBFRAME 1 (600T)

MAIN FRAME (1800T)

SUBFRAME 2 (600T)

SUBFRAME 3 (600T)

END OF FRAME

FIRE PULSE SET (FIG. A)

AGC PULSE (FIG. A)

AGC PULSE (FIG. B)

AGC PULSE

AGC PULSE

AGC PULSE

AGC PULSE

NOTES:

1. FIRE PULSE SETS OCCUR ONCE EVERY 58 FRAMES (174 SUBFRAMES)
 (58 FRAMES = 29.55 SEC)

2. AGC PULSE OCCURS ONCE PER SUBFRAME (169.8-MILLISEC INTERVALS)

3. TIMING SHOWN APPLIES ONLY TO 3333.3 BPS CLOCK RATE

T = 0.283 MILLISEC = 1 CLOCK PULSE WIDTH

2T = 0.566 MILLISEC
3T = 0.849 MILLISEC
12T = 3.40 MILLISEC
83T = 23.49 MILLISEC
359T = 101.6 MILLISEC
600T = 169.8 MILLISEC
1800T = 504.4 MILLISEC

FIG. A
FIGURE PULSE SET

FIG. B
AGC PULSE

JULY 72 3270.5.17
LSP EXPLOSIVE PACKAGE ELECTRONICS CONFIGURATION

- Receiver
- Signal processor
- Firing pulse generator
- Battery
- Battery timer switch
- Battery timer
- EDC
- EDC shorting switch
- Receiving antenna
- Shorting connector
- Test connector
LSP POWER CONVERTER

ALSEP PDU

+29 VDC OPER PWR
+29 VDC RTN

VOLTAGE REGULATOR

POWER OSCILLATOR

POWER TRANSFORMER

RECTIFIERS AND FILTERS

+28 VDC
+12 VDC
+5 VDC
-12 VDC

ADC CAL 1.25 VOLTS (DP-02)
LSP +12 VDC (DP-03)
ADC CAL 3.75 VOLTS (DP-05)
LSP INTERNAL TEMP (DP-14)

SENSOR CIRCUITS

LSP 16-CHANNEL MULTIPLEXER AND A/D CONVERTER

JULY 72 3270.5.22
LSP TRANSMITTER

Control and Digital Data Processor

- LSP Remote Antenna
- RF Output
- Final Ampl.
- PIN Diode SW
- PIN Diode SW
- Crystal Osc.

RF Link Parameters (Worst Case)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency, MHz</td>
<td>41.2</td>
</tr>
<tr>
<td>Peak Xmir Power, Watts</td>
<td>10</td>
</tr>
<tr>
<td>Xmir Firing Pulse, Millisecond</td>
<td>0.566</td>
</tr>
<tr>
<td>RXR AGC Pulse, Millisecond</td>
<td>0.283</td>
</tr>
<tr>
<td>RCVR Bandwidth, MHz</td>
<td>15</td>
</tr>
<tr>
<td>RXR Antenna Gain, DB</td>
<td>0</td>
</tr>
<tr>
<td>RXR Antenna Gain, GAIN, DB</td>
<td>0</td>
</tr>
<tr>
<td>RXR Antenna Height, IN.</td>
<td>60</td>
</tr>
<tr>
<td>RXR Antenna Height, IN.</td>
<td>5</td>
</tr>
<tr>
<td>RXR Antenna Gain, GAIN, DB</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Operation

- Uses a pulsed carrier-wave (CW) type transmission.
- Whenever operational power is applied to the LSP, the crystal oscillator is on but output is not modulated until commanded to RF pulses mode.
- Execution of the "pulses on" command causes a continuous series of trigger signals, until the "pulses off" command is received with the following timing:
 - One pulse for 0.283 millisecond, coinciding with the 359th bit in every LSP subframe (every 169.3 milliseconds).
 - A fire pulse set consisting of three pulses of 0.566 millisecond each spaced 0.849 millisecond apart, coinciding with the following bit pairs in the LSP frame (at 58-frame intervals): 84-85, 89-90, and 94-95.
- The one-bit pulse is set receiver AGC threshold.
- Transmission of fire pulse sets are indicated in RXR DP-20.
- Detonation occurs on the leading edge of the third pulse.
LSP SEISMIC AMPLIFIERS

16-CHANNEL MULTIPLEXER AND AID CONVERTER

LOGARITHMIC COMPRESSOR

FILTER

CALIBRATION AND AMPLIFIER

SEISMIC SIGNAL 1

GEOPHONES (BALANCED INPUTS)

SEISMIC SIGNAL 2

SEISMIC SIGNAL 3

SEISMIC SIGNAL 4

GAIN CONTROL

-9.5 VDC

+9.5 VDC

SEISMIC SIGNAL 4

CAL ENABLE SIGNAL

NORMAL SEL SIGNAL

LOW SEL SIGNAL

CONTROL AND DIGITAL DATA PROCESSOR

LSP POWER CONVERTER

+12 VDC

-12 VDC

VOLTAGE REGULATOR

+9.5 VDC

-9.5 VDC

LOGARITHMIC OUTPUT 1

LOGARITHMIC OUTPUT 2

LOGARITHMIC OUTPUT 3

LOGARITHMIC OUTPUT 4

FILTER

CALIBRATION AND AMPLIFIER

DP-01 GEO 1 SCI

DP-02 GEO 2 SCI

DP-03 GEO 3 SCI

DP-04 GEO 4 SCI

DP-15 GEO 1 SCI

DP-16 GEO 2 SCI

DP-17 GEO 3 SCI

DP-18 GEO 4 SCI

TYPICAL GEOPHONE

JULY 72 3270.5.24
LSP GEOPHONE/AMPLIFIER RESPONSE

FREQUENCY, Hz

RESPONSE, DB

+2 DB
0 DB
-4 DB

+6 DB
-40 DB

EXPECTED RESPONSE

JULY 72 3270.5.25
LSP ANALOG MULTIPLEXER/CONVERTER

ANALOG GATES 2, 3, AND 4 ARE IDENTICAL TO 1 AND 5

16-CHANNEL ANALOG MULTIPLEXER

ANALOG TO DIGITAL CONVERTER

8-BIT DIGITAL OUTPUT

DIGITAL DATA PROCESSOR

JULY 72 3270.5.26
LSP CONTROL AND DIGITAL DATA PROCESSING

CLOCK 1
(OUTPUT DATA RATE)
3533.3 OR 1060 BPS

CLOCK 2
(SUB-BIT TIMING)
28.266 KHz

ALSEP
DDP

BIT
WORD
SUBFRAME
FRAME
COUNTERS

DECODERS

DATA
ROUTING
LOGIC

CONTROL SIGNALS

TRANSmitter
DATA
REGISTER

GATE
REGISTER

LSP
TRANSMITTER

CMD
LOGIC

TRIGGER SIGNAL

NORMAL GAIN SEL SIGNAL

LOW GAIN SEL SIGNAL

CAL ENABLE SIGNAL

LSP
SEISMIC
AMPLIFIERS

A/D START SIGNAL

A/D READ SIGNAL

MUX ADDRESS SIGNALS (16)

SYNC WORD
GENERATOR

SUBFRAME ID
GENERATOR

STATUS SIGNALS (FLAGS)

CHANNEL GENERATOR

GATING MUX ADDRESS SIGNALS

8-BIT DIGITAL DATA

MULTIPLEXER CHANNEL
ADDRESS LOGIC

MUX ADDRESS

DATA ROUTING
LOGIC

ENGINEERING
DATA REGISTER

GEOPHONE
DATA REGISTER

DATA HOLD
REGISTER

8-BIT DIGITAL DATA

ALSEP
DDP

LSP PULSES ON

LSP PULSES OFF

LSP GAIN NORMAL SEL

LSP GAIN LOW SEL

LSP GEOPHONE CALIBRATE

CMD
LOGIC

JULY 72 3270.5.27
LSP REMOTE ANTENNA

GRIP RING

PLUNGER

RF CONNECTOR

INTERFACE WITH SUNSHIELD MOUNT AND HFE SUBPALLE

FULLY DEPLOYED

HFE SUBPALLE

RF CABLE

JULY 72 3270.5.28
LSP Power Summary

<table>
<thead>
<tr>
<th>Function</th>
<th>Power, Watts</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Experiment</td>
<td>5.3</td>
<td>STARTUP TRANSIENT OF LESS THAN 13 WATTS FOR LESS THAN 2 MILLISEC</td>
</tr>
<tr>
<td>Passive Listening Mode</td>
<td>0</td>
<td>SAME AS BASIC EXPERIMENT</td>
</tr>
<tr>
<td>Geophone Calibration Pulse</td>
<td>0.8</td>
<td>CAL PULSE OPERATES FOR APPROX 1.5 SEC FOLLOWING EXECUTION OF COMMAND</td>
</tr>
<tr>
<td>Transmitter Fire Pulses</td>
<td>0.7</td>
<td>ENERGY STORAGE (CAPACITORS) REQUIRE 0.6 TO 0.8 WATT</td>
</tr>
<tr>
<td>Transmitter Fire Pulses</td>
<td>0.8</td>
<td>APPROX 1.5 SEC EACH TIME</td>
</tr>
</tbody>
</table>

Note: THERE IS NO STANDBY POWER (SURVIVAL HEATER) FOR THE LSP

JULY 72 3270.5.30
LSP ANTENNA AND GEOPHONE DEPLOYMENT

ANTENNA
- Release antenna and cable reel from subpackage 1
- Carry 37 ft northwest of central station
- Extend antenna to full length
- Attach to heat flow subpallet to provide baseplate
- Align vertical and check stability (press on subpallet with boot if necessary)

GEOPHONES
- Release geophone module from subpackage 1 and engage UHT with carry socket
- Carry 30 ft south of central station, place on surface, and engage UHT handle with cover pull ring
- Remove cover, retain stake/flags, and discard cover
- Secure module with stake/flag, retain one flag (insert UHT through flag ring), and engage UHT with geophone no. 1 reel
- Carry 150 ft east, insert geophone in surface, discard reel, and install flag securing geophone
- Repeat geophone/flag installation for geophone no. 2 150 ft west of module
- Repeat geophone/flag installation for geophone no. 3 88 ft south of module
- Repeat geophone/flag installation for geophone no. 4 260 ft south of module

Photograph array
LSP Emplacement Criteria

<table>
<thead>
<tr>
<th>COMPONENT</th>
<th>PARAMETER</th>
<th>REQUIREMENT</th>
<th>PRIORITY</th>
<th>INDICATOR</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Antenna</td>
<td>Location and Site</td>
<td>37 + 7 ft northwest of central station on horizontal surface</td>
<td>Cable length and visual</td>
<td>45-ft cable surface may be packed or smoothed with boot</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>Stability</td>
<td>Visual</td>
<td>On HFE subpallet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Align</td>
<td>None</td>
<td></td>
<td>Omnidirectional</td>
<td></td>
</tr>
<tr>
<td>Geophone Module</td>
<td>Location and Site</td>
<td>30 + 5 ft south of central station on horizontal surface</td>
<td>Pacing, cable length, and visual</td>
<td>Middle of baseline for geophone triangle, pack surface, avoid craters, slopes, and rocky material</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>Stability</td>
<td>Visual</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Align</td>
<td>Along sun line arrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophones</td>
<td>Location WRT Geophone Module</td>
<td>1 150 ft east 2 150 ft east 3 88 ft south 4 260 ft south</td>
<td>Cable length and visual</td>
<td>Place a flag with each geophone; makes 300-ft triangular array with one geophone in center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Site</td>
<td>AVOID CRATERS, SLOPES, AND ROCKY MATERIAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>Vertical + 7°</td>
<td>Visual</td>
<td>Pack surface for stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Align</td>
<td>None</td>
<td></td>
<td>Photograph array</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Separate criteria for explosive packages
2. Geophone cable and LSP antenna cable should not be deployed parallel to each other or touch
LSP EXPLOSIVE PACKAGE INTERIM STOWAGE

• LM WILL LAND WITH SUN AT AN ANGLE BETWEEN 15° AND 75° FROM THE NORMAL TO QUAD III

NOTE

LM RIGHTHAND PALLET AND LSP TRANSPORT FRAMES CAN NOT BE EXPOSED TO DIRECT SUNLIGHT WHILE REMAINING IN QUAD III BECAUSE

- WITH THE SUN 15° FROM THE NORMAL, THE LSP TRANSPORT FRAMES WILL REACH A TEMPERATURE 267°F OR GREATER. AT 75°, THE TEMPERATURE WILL BE 121°F OR GREATER

- IF THE RIGHTHAND PALLET WERE TO BE SHADED BY QUAD III SIDE CURTAIN, THE TEMPERATURE OF THE LSP TRANSPORT FRAMES WOULD RANGE BETWEEN 32°F AND 21°F BETWEEN EVA 1 AND EVA 2

• THE RIGHTHAND PALLET MUST BE REMOVED FROM QUAD III AND PLACED ON THE LUNAR SURFACE IN THE SUN, WITH LSP PACKAGES FACING THE SUN, AT LEAST 10 HOURS PRIOR TO THE LRV STOWAGE

• THE LSP TRANSPORT FRAME REMAINING FOR DEPLOYMENT DURING EVA 3 MUST REMAIN ON THE LUNAR SURFACE IN DIRECT SUNLIGHT UNTIL ITS STOWAGE ABOARD LRV

JULY 72 3270.5.33
LSP THERMAL CONSTRAINTS ON LRV

- The safe-arm and thermal-battery timers must be +40°F when timers are activated.

- Since timer activation may occur any time during LRV mission, high-explosive baseplate temperatures must never drop below +40°F during an EVA.

- Because LSP transport frames are conductively isolated from the tool pallet, transport frame equilibrium temperatures tend to be independent of tool pallet temperatures.

- The LSP high-explosive baseplate interfaces with LSP transport frame through stainless steel spring pins which resist heat leak to transport frame. This design allows 45 minutes of LRV shade exposure with no additional means of high-explosive package isolation.

- LSP transport frame assembly temperatures must be between +90°F and +185°F at the time of stowage aboard LRV in order to meet the LRV shade requirement.
LSP EXPLOSIVE PACKAGE DEPLOYMENT

PREPARATION
- Remove explosive package transport module, on LM pallet, from LM and place in sun prior to deploying geophones and remote antenna
- Use UHT to rotate Astro SW-2 CW to operational position after deploying geophones

INSTALLATION ON LRV
- Release pull ring for transport frame
- Remove pull pin securing transport frame to LM pallet
- Remove transport frame, with four explosive packages, and transfer to LRV
- Engage latch to secure frame on LRV

PACKAGEEMPLACEMENT (TYPICAL)
- Traverse to explosive package deployment site (locations are 160 to 3500 meters from ALSEP central station)
- Remove camlock securing explosive package to transport frame by rotating camlock CW (discard camlock)
- Grasp explosive package handle and lift from frame
- Extend antenna, remove pull ring No. 1 (safe/arm timer), rotate and remove pull ring No. 2 (safe/arm slide), and remove pull ring No. 3 (battery timer and firing pin)
- Grasp antenna and lower explosive package to surface in stable position
- Avoid large rocks or slopes that would shadow package
- Repeat for other three packages on this transport frame and for the other transport frame during EVA 1, 2, and 3

JULY 72 3270.5.35
LSP COMMANDS

OCTAL CMD NUMBER

• 156 LSP PULSES ON
 This cmd is required to activate the pulse function of the 41.2-MHz LSP XMTR which transmits time-coded fire pulse sets (3 per set) at 29.55-sec intervals and AGC pulses once per LSP subframe (169.8 millisecond). One fire pulse set will trigger detonation of an explosive package provided that timer-controlled functions in the explosive package are in the proper configuration to accept, arm, and execute the firing input. AGC pulses desensitize the explosive package receiver to ambient noise and EMI. CMD 156 IS TO BE TRANSMITTED TO SWITCH THE LSP XMTR PULSE FUNCTION ON FROM A TIME 90 MINUTES BEFORE THE FIRST NORMAL ARM TIME THROUGH THE DETONATION OF THE LAST EXPLOSIVE PACKAGE IN EACH GROUP OF FOUR. PRESENCE OF LSP XMTR PULSE FUNCTION IS READ OUT IN THE LSP TM. REPEATED APPLICATION OF CMD 156 HAS NO FURTHER EFFECT.

• 162 LSP PULSES OFF
 This cmd deactivates the pulse function of the LSP XMTR if the function was activated by application of a CMD 156. Repeated application of CMD 162 has no further effect. When the LSP is activated by application of operational power, the LSP XMTR pulse function will be in the deactivated mode.

• 163 LSP GAIN NORM
 This cmd switches the four LSP geophone amplifier channels back to the normal, high-gain mode, if the amplifier had been switched to the low gain mode by application of a CMD 164. The ratio of normal to low gain is nominally 10 but may vary from 8 to 12.5 (20 ± 2 dB). Repeated application of CMD 163 has no further effect. When the LSP is activated by application of operational power, the LSP will be in the geophone amp normal gain mode.

• 164 LSP GAIN LOW
 This cmd is required to switch the four LSP geophone amplifier channels to the low-gain mode of operation. The ratio of normal to low gain is nominally 10 but may vary from 8 to 12.5 (20 ± 2 dB). Repeated application of CMD 164 has no further effect.

• 170 LSP GEO CAL
 This cmd causes the seismic detection system to switch to the calibration mode for approximately 1.5 sec. This produces a relative calibration of all four geophone channels for comparison to an absolute preflight calibration, to detect any changes in such parameters as geophone resonant frequency and system sensitivity. The calibration signal is fixed, showing lower response at low gain. Repeated application of CMD 170 causes repeated switchovers to the calibration mode.
LSP DIGITAL DATA FORMAT

<table>
<thead>
<tr>
<th>LSP WORD</th>
<th>LSP BIT POSITION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>DP-17</td>
</tr>
<tr>
<td>2</td>
<td>DP-01</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DP-17</td>
</tr>
<tr>
<td>2</td>
<td>DP-01</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

SUBFRAME 1

SUBFRAME 2

SUBFRAME 3

GEOPHONE 1 GEOPHONE 2 GEOPHONE 3 GEOPHONE 4 ENGINEERING DATA AND STATUS FLAGS

JULY 72 3270.5.37
LSP DIGITAL DATA

- Identical formats (1800 bits-per-main-frame) in either of two data rates:
 3533: 3-BPS (Normal) or 1060-BPS (Low); 1060 is not throughput by MSFN to Houston

- Each subframe (600 bits) contains the following parameters:
 DP-17; Frame Sync, (0000111011) Modified Barker Code in first 10 bits
 DP-01, DP-06, DP-11, and DP-15; Geophone data (truncated to 5 most significant
 bits in LSP word 1 of each subframe and to 7
 most significant bits in words 2 through 20)
 DP-18; Geophone calibration pulse on/off (in bit 59 of each subframe)
 DP-19; Geophone amplifier gain normal/low (in bit 60 of each subframe)
 DP-20; RF fire pulse status (1) in bits 89 and 90 of the first subframe if
 fire pulses are being transmitted, 00 if not,
 and always 00 in subframes 2 and 3
 Note: Fire pulses, and their timing, occur once
 in each 58 main frames (174 subframes)
 DP-21; Subframe identification (bits 599 and 600 of each subframe; coded 11
 for subframe 1, 01 for subframe 2, and 10 for
 subframe 3)

- Each main frame (1800 bits) contains the following 8-bit engineering parameters:
 DP-02; LSP 1.25-Volt ADC cal
 DP-03; LSP +12-Volt Output
 AE-24; Alsep reserve current
 DP-05; LSP 3.75-Volt ADC cal
 AE-03; Alsep PCU 1 input volts
 AT-16; Alsep thermal plate 6
 DP-10; LSP geo cal volts
 AE-04; Alsep PCU input amps
 AB-04; Alsep exper 1/2 sta
 DP-14; LSP elect temp
 AB-05; Alsep exper 3/4 sta

 These parameters, plus one spare channel, are allocated locations in the LSP format
 in pieces: that is, the last 2 bits of an LSP
 30-bit word for 4 consecutive words (most
 significant bits first)
THE FOLLOWING LSP ENGINEERING PARAMETER IS READ OUT VIA THE ALSEP ADP (ALSEP WORD 33, CHANNEL 25):

AP-01; LSP ELECTRONICS TEMPERATURE

THIS PARAMETER IS AVAILABLE IN THE ALSEP DATA PROCESSOR FORMAT REGARDLESS OF WHETHER THE LSP POWER IS ON OR OFF (NO STANDBY MODE)
LUNAR EJECTA AND METEORITES
(LEAM)
LEAM SCIENTIFIC SUMMARY

OBJECTIVES

• MEASURE LONG-TERM VARIATIONS IN COSMIC DUST INFUX RATES ON THE LUNAR SURFACE
• DETERMINE THE DIRECTIONS, FLUX DENSITY, AND SPEED OF PARTICLES IN METEOR STREAMS
• DETERMINE THE EXTENT AND NATURE OF LUNAR EJECTA PRODUCED BY METEORITE IMPACTS ON THE MOON
• PERFORM A CONTROLLED EXPERIMENT ON THE RELIABILITY OF THE ACOUSTICAL SENSOR AS A COSMIC DUST SENSOR
• CORRELATE THE ABOVE MEASUREMENTS IN AN EFFORT TO ANSWER CURRENT QUESTIONS ON THE ORIGIN AND NATURE OF LUNAR SOIL

METHODS

• METEORITE AND EJECTA IMPACT ON FILM/GGRID ASSEMBLIES CAUSES IONIZED PLASMA WHICH IS SENSED IN MAGNITUDE AND LOCATION
• DETERMINE VELOCITY FROM TIMING BETWEEN FRONT AND REAR FILM/GGRID RESPONSES
• PARTICLE MOMENTUM INDICATED BY RESPONSE OF PIEZOELECTRIC ELEMENT
LEAM OPERATIONS SUMMARY

DEPLOYMENT

- Connect cable to central station (Astromate connector) and remove instrument from subpallet
- Locate 25 ft southeast of central station
- Release LEAM legs and gnomon
- Place instrument on surface, level within $\pm 5^\circ$, and align gnomon shadow within $\pm 5^\circ$ of alignment index on sun dial

POST-DEPLOYMENT

- Turn on, by command, for initial checkout
- Remove dust cover from thermal control mirror by command after LM ascent
- Remove sensor covers by command after detonation of LSP explosive packages and at least two days of background data
- Other operational commands (including calibration) as required

JULY 72 3270.6.4
LEAM COMMUNICATIONS SUMMARY

COMMANDS

- POWER OPERATIONAL, STANDBY, AND OFF
- FOUR INDIVIDUAL COMMAND LINES FOR
 - DUST COVERS (2)
 - HEATER CONTROL
 - CALIBRATION

DATA

- TWO 10-BIT SCIENCE DATA WORDS IN EACH ALSEP DATA FRAME
 (TEN WORDS, IN FIVE FRAMES, MAKE UP ONE COMPLETE LEAM READOUT)
- THREE ANALOG LINES, PROCESSED IN THE ALSEP ADP (ALSEP WORD 33), ARE
 MULTIPLEXED TO PROVIDE READOUT OF 11 LEAM ENGINEERING PARAMETERS
 - EACH LINE IS SAMPLED ONCE EVERY 90 ALSEP DATA FRAMES
 (ONCE EVERY 54 SECONDS AT NORMAL DATA RATE)
 - TWO OF THE LINES ARE MULTIPLEXED FOR FIVE PARAMETERS EACH;
 HENCE, EACH PARAMETER IS SAMPLED ONCE EVERY 450 FRAMES
 - THE THIRD LINE IS LEAM TEMPERATURE, WHICH OPERATES REGARDLESS
 OF THE EXPERIMENT STATUS (ON, STANDBY, OR OFF)
LEAM PHYSICAL PARAMETERS

SIZE, WEIGHT, AND POWER

STOWED
SIZE: 12.7 X 12.0 X 7.8 IN.

EARTH
WEIGHT: 16.3 LB

POWER: 6.60 W

JULY 72 3270.6.6
LEAM SENSOR CHARACTERISTICS

- Dual sensors (East and Up) have two film/grid assemblies
- Single sensor (West) has one film/grid assembly
- Each film/grid assembly has collector and suppressor grids
- Each sensor has an impact plate with microphone (isolated microphone behind single West sensor to register noise effects)

MEASUREMENT PARAMETERS

- Particle velocity range: 1 to 75 km-per-second
- Particle energy range: 1 to 1000 ergs
- Particle momentum range: 2.5×10^{-5} to 7×10^{-4} dyne-second

FREQUENCY OF MEASUREMENT

- Primary particle: 10^{-4} impacts/square-meter/second
- Ejecta: 10^{-1} impacts/square-meter/second

ANGULAR RESOLUTION OF RADIANT: $\pm 26^\circ$ (function of grid/film design)
SENSE FIELD OF VIEW: $\pm 60^\circ$

GRID/FILM MATERIALS

- Grid: Beryllium Copper, 97% transparent, 0.006-inch thickness
- Film substrate: Paralene C, 2800- to 3300-angstrom units thickness
- Film deposition: Aluminum, 650- to 750-angstrom units thickness
- Film outer layer: Silicon oxide, 3000- to 3500-angstrom units thickness
LEAM SENSOR GEOMETRY

SOUTH REFERENCE

UP SENSOR

THERMAL RADIATOR MIRROR (HORIZONTAL REFERENCE)

WEST SENSOR

SHIELDS PRECLUDE HITS AND PROVIDE BACKGROUND DATA CHECK

EAST SENSOR

SHIELD

4 IN. (TYPICAL)

4 IN.
LEAM POWER SUPPLY

+29 VDC OPER PWR

HEATER CONTROL

SURGE LIMITER

+29 VDC OPER RTN

RECTIFIER AND FILTER

+24 VDC BIAS

+12 VDC

FEEDBACK CONTROL

SWITCHING PREREGULATOR

+25 VDC

10 KHZ OSCILLATOR

SQUARE WAVE

TRANSFORMERS

RECTIFIER AND FILTER

+5 VDC

-5 VDC

-7.5 VDC

3 VAC (ZERO-TO-PEAK) FOR SQUIB FIRING

NOTES:
- POWER SUPPLY MONITOR IS BASED ON A COMBINATION OF +12 VDC, +5 VDC AND -5 VDC
- BIAS VOLTAGES MONITOR IS BASED ON A COMBINATION OF +24 VDC AND -7.5 VDC
LEAM DUAL SENSOR ELECTRONICS

FROM DUAL SENSOR (UP OR EAST)

FRONT FILM SIGNALS
REAR FILM SIGNALS
MICROPHONE SIGNALS
FRONT COLLECTOR SIGNALS
REAR COLLECTOR SIGNALS
CALIBRATION OUTPUT

NOTE:
- CALIBRATION CHARACTERISTICS ALTERNATE BETWEEN TWO TYPES (CAL 1 AND CAL 2) ON SUCCESSIVE EXECUTIONS
- INITIAL STATUS IS UNPREDICTABLE
- CALIBRATION MODE SELECTS PAIRS OF FILM STRIPS (1-2 AND 3-4) ON SUCCESSIVE EXECUTIONS

JULY 72 3270.6.14
LEAM SINGLE SENSOR ELECTRONICS

- FILM SIGNALS
- MAIN MICROPHONE SIGNALS
- SECONDARY MICROPHONE SIGNALS
- COLLECTOR SIGNALS

BUFFER AMPS

SUMMATION CIRCUIT

AMPLIFIER THRESHOLD, AND PEAK DETECTOR

LOG A/D CONVERTER

CENTRAL ELECTRONICS AND DIGITAL DATA CONTROL

CAL SIGNAL

CAL MODE

CALIBRATION DRIVER

DJ-23
DJ-24
DJ-25
DJ-26
DJ-27
DJ-30
DJ-31
AJ-08

WF
WC
WF
WF
WMM
WMM
WMM

CODE:

UFF - UPPER FRONT FILM
URF - UPPER REAR FILM
URC - UPPER FRONT COLLECTOR
UMM - UPPER MAIN MICROPHONE
URC - UPPER REAR COLLECTOR
U - UPPER SENSOR
EFF - EAST FRONT FILM
ERF - EAST REAR FILM
EFC - EAST FRONT COLLECTOR
EMM - EAST MAIN MICROPHONE
ERC - EAST REAR COLLECTOR
E - EAST SENSOR

WF - WEST FILM
WC - WEST COLLECTOR
WSM - WEST SECONDARY MICROPHONE
WMM - WEST MAIN MICROPHONE
ID - IDENTIFICATION
PHA - PULSE HEIGHT ANALYSIS
ACC - ACCUMULATOR
ET - ELAPSED TIME
TEMP - TEMPERATURE

JULY 72 3270.6.15
LEAM DIGITAL DATA OPERATION

- SENSOR ELECTRONICS INTERFACE WITH EACH OF THE SENSOR ELEMENTS THROUGH CHANNELS
 OF DEDICATED CIRCUITRY ALLOWS ANY COMBINATION OF EVENTS TO OCCUR WITHOUT MUTUAL
 INTERFERENCE
- INTERNAL CROSS-CHECKS ENSURE THE VALIDITY OF AN EVENT BEFORE FINAL PROCESSING
- DATA INHIBITING IS USED TO ENSURE THAT AN EVENT IS PROCESSED WITHOUT ENSURING
 EVENTS ALTERING OR ERASING THE DATA
- THE PROCESSING OPERATION STARTS ON EITHER A FILM OR A MAIN MICROPHONE EVENT
 (ABOVE ZERO THRESHOLD); THUS, A COLLECTOR EVENT WITHOUT A FILM EVENT IS NOT
 RECORDED
- FILM EVENTS, IF VALID, WILL USUALLY PRODUCE CONFIRMING COLLECTOR EVENTS AND,
 IF LARGE ENOUGH, REAR FILM AND COLLECTOR EVENTS (FOR DUAL SENSORS), PLUS MICROPHONE
 EVENTS; IF THERE IS NO COLLECTOR EVENT, THE PI WILL SUBTRACT IT DURING DATA ANALYSIS
- THE COMBINED FILM AND COLLECTOR ID'S INDICATE THE AREA OF IMPACT, WHILE FRONT
 AND REAR DATA GIVE THE ANGLE OF IMPACT; THE ELAPSED TIME IS TRANSLATED INTO
 PARTICLE VELOCITY
- FILM PULSES RESULTING FROM A FRONT FILM EVENT ARE SUMMED AND THE SUM IS PEAK
 DETECTED FOR ENCODING ON A LOGARITHMIC SCALE; THE SAME IS TRUE FOR REAR FILM
 EVENTS
- MAIN MICROPHONE OUTPUTS ARE APPLIED TO NARROW BANDPASS FILTERS BECAUSE THE
 CRYSTAL MICROPHONES PRODUCE A 100-KHZ SINE WAVE IN THEIR PRIMARY MODE; THE
 OUTPUTS ARE INHIBITED AFTER APPROXIMATELY 75 MICROSECONDS (FOR A PERIOD OF
 30 MILLISECONDS) TO AVOID RECORDING REFLECTED WAVE MOTION IN THE QUARTZ PLATE
- FILM AND COLLECTOR ID CIRCUITS INCLUDE AN INHIBIT FUNCTION TO SUPPRESS CROSS-
 TALK SIGNALS; THIS INHIBIT IS BYPASSED DURING CALIBRATION
- THE SECONDARY (NOISE) MICROPHONE ON THE WEST SENSOR IS MECHANICALLY ISOLATED
 AND PROVIDES A CHECK AGAINST FALSE EVENTS
- DATA READOUT TO THE ALSEP DDP, ON DEMAND, CONSISTS OF TEN 10-BIT WORDS (TWO
 WORDS PER ALSEP FRAME) SYNCHRONIZED TO START AT AN ALSEP 90-FRAME MARK;
 HENCE, 18 COMPLETE SETS OF LEAM DIGITAL DATA IN 90 ALSEP FRAMES
- WHEN DATA FROM ONE SENSOR ARE BEING READ OUT (4 ALSEP WORDS IN TWO ALSEP FRAMES
 FOR A DUAL SENSOR), A TRANSFER INHIBIT CAUSES DATA FROM A NEW EVENT TO BE HELD IN
 THE BUFFER STORAGE; IT IS TRANSFERRED TO THE OUTPUT REGISTER WHEN THE EXISTING DATA
 HAVE BEEN READ OUT ONCE
- IF THERE ARE NO NEW EVENTS, SUCCESSIVE SETS OF LEAM DATA ARE IDENTICAL (REGISTER
 DO NOT CLEAR ON READOUT)
- INITIAL READINGS ARE RANDOM (MEANINGLESS) AND WILL BE REPEATED UNTIL THERE IS A
 VALID HIT OR A CALIBRATION

JULY 72 3270.6.17
LEAM ANALOG DATA MULTIPLEXER

NOTES:

- DJ-28 INDICATES A LOGICAL ONE IN THE LEAM DIGITAL DATA DURING THE 90 ALSEP FRAMES WHEN AJ-01 AND AJ-06 ARE INPUT TO THE ALSEP ADP; DURING THE INTERVENING 360 ALSEP FRAMES, IT INDICATES A LOGICAL ZERO (DIGITAL ENCODING PRODUCES THE LOGICAL ONE 18 TIMES IN 90 SUCCESSIVE ALSEP FRAMES)

- MULTIPLEXER INITIALIZES TO ANY ONE OF THE FIVE STEPS BUT BOTH 1 AND 2 WILL BE AT THE SAME STEP

- EACH LEAM PARAMETER APPEARS IN THE ALSEP DOWNLINK DATA ONCE EVERY 450 ALSEP FRAMES (EVERY 4.5 MINUTES AT NORMAL DATA RATE)
LEAM SQUIB AND TEMPERATURE CONTROL

LEAM COMMAND BUFFER
- MIRROR COVER RELEASE SIGNAL
- SENSOR COVER RELEASE SIGNAL
- HTR STEP SIGNAL

3-STATE COMMAND LOGIC
- INITIALIZED AUTOMATIC
- AUTOMATIC (NO SIGNAL)

POWER SWITCHING
- AUTO ON/OFF SIGNAL
- ON SIGNAL
- OFF SIGNAL

OVERRIDE RELAY
- ON BELOW 0°F
- OFF ABOVE 9°F
- AUTOMATIC CONTROL (BRIDGE)

ALSEP PDU
- +29 VDC OPER PWR
- +29 VDC STANDBY PWR
- +29 VDC RTN

+12 VDC EXCITATION
- ANALOG OUTPUT

AJ-11 IS READ OUT IN ALSEP WORD 53 (CHANNEL 85) REGARDLESS OF LEAM ON/STANDBY/OFF STATUS

DJ-29 LEAM HTR ON/OFF
- STRIP HEATERS
- 1.6W
- 3.2W

AMPLIFIER
- RELAY DRIVER
- RELAY DRIVER

AJ-02 SNSR CVR STA
- AJ-03 MIR CVR STA
- RELAY
- SQUIB

3 VAC (ZERO-TO-PEAK) FROM LEAM POWER SUPPLY

NOTES:
- FIRST RELAY DRIVER OPERATES FOR DURATION OF THE CMD (20 MILLISEC)
- WHEN THE CMD PULSE ENDS, THE FALLING EDGE TRIGGERS THE SECOND RELAY WHICH IS HELD ON FOR APPROXIMATELY 35 MILLISEC BY A CAPACITOR DISCHARGE CIRCUIT
- FIRING OF EITHER SQUIB RELEASES COVER
- TM MONITORS INTEGRITY OF EACH SQUIB PAIR BY +5 VDC VIA THE SQUIBS
- ONCE FIRED, TM GOES TO ZERO AND RELAY POWER IS INHIBITED
NOTE:
AFTER COMPLETION OF DUST COVER RELEASE, THESE COMMANDS WILL HAVE NO FURTHER EFFECT.

0.24 INCREASE FOR AUTOMATIC HEATER LOGIC

TYPICAL DUST COVER RELEASES

TYPICAL TURN-ON TRANSIENT

MIRROR SENSOR

LUNAR DAY

LUNAR NIGHT

STANDBY

POWER, WATTS

TIME

JULY 72 3270.6.20
LEAM EMPLACEMENT CRITERIA

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>REQUIREMENT</th>
<th>PRIORITY</th>
<th>INDICATOR</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCATION</td>
<td>25 ± 5 FT SOUTHEAST OF CENTRAL STATION ON A MOUND (LEVEL AREA ON TOP)</td>
<td></td>
<td>PACING, CABLE LENGTH, AND VISUAL</td>
<td>30-FT CABLE; AVOID CRATERS, SLOPES, AND ROCKY SURFACES (PACK SURFACE WITH BOOT).</td>
</tr>
<tr>
<td>LEVEL, WRT INDICATOR</td>
<td>WITHIN ± 5°</td>
<td></td>
<td>BUBBLE LEVEL</td>
<td>LEGS MAY PENETRATE SURFACE TO DIFFERENT DEPTHS TO ACHIEVE LEVELING</td>
</tr>
<tr>
<td>ALIGN, WRT INDICATOR</td>
<td>WITHIN ± 5° OF PRESCRIBED SETTING</td>
<td></td>
<td>GNOMON AND SUN COMPASS GRADUATIONS</td>
<td>REPORT FINAL INDICATION AND TAKE PHOTOGRAPHS</td>
</tr>
</tbody>
</table>

NOTE: LEVEL IS WITHIN ± 5° WHEN BUBBLE IS FREE FROM OUTER CASE EDGE.
LEAM DEPLOYMENT OPERATIONS

SUBPACKAGE 2 IN VERTICAL POSITION
• RELEASE AND REMOVE SUBPALLET PULL PIN

SUBPACKAGE 2 IN HORIZONTAL POSITION
• RELEASE 2 BOYDBOLTS TO FREE THE LEAM
 SUBPALLET FROM SUBPACKAGE 2
• ENGAGE UHT IN SUBPALLET CARRY SOCKET
 REMOVE SUBPALLET FROM SUBPACKAGE,
 AND RELOCATE 10 FT SOUTHEAST OF
 CENTRAL STATION
• RELEASE ASTROMATE CONNECTOR PULL RING
 AND REMOVE PULL PIN TO FREE THE
 CONNECTOR FROM THE SUBPALLET
• WHILE SUPPORTING SUBPALLET ON UHT,
 REMOVE ASTROMATE CONNECTOR
• RETAIN CONNECTOR, AND MATE CONNECTOR
 WITH CENTRAL STATION (ENGAGE LOCK)
• RETAIN CONNECTOR, SET SUBPALLET ON
 SURFACE, REMOVE CONNECTOR DUST
 CAP (DISCARD), AND MATE CONNECTOR
 WITH CENTRAL STATION (ENGAGE LOCK)
• RELEASE 4 BOYDBOLTS TO FREE LEAM
 FROM SUBPALLET
• ENGAGE UHT IN LEAM SWIVEL SOCKET,
 REMOVE LEAM FROM SUBPALLET
• GRASP PULL RING ON DUST COVER BAG
 AND REMOVE BAG FROM LEAM
• CARRY TO FINAL LOCATION

AT FINAL LOCATION
• RELEASE SWIVEL SOCKET PULL RING,
 REMOVE PULL PIN, AND ROTATE LEAM
 UNTIL SWIVEL SOCKET LOCKS
• RELEASE LEG/GNOMON PULL RING AND PULL
 IN THE DIRECTION INDICATED BY STRIPE
 ON THE SIDE OF LEAM TO SEQUENTIALLY
 RELEASE LEGS AND GNOMON (DISCARD
 RING AND LANYARDS)
• PLACE LEAM ON SURFACE (USING UHT),
 LEVEL AND ALIGN, AND REMOVE UHT
 FROM SWIVEL SOCKET

JULY 72 3270.6.23
LEAM COMMANDS

OCTAL CMD NUMBER

111 LEAM CAL

This is a two-state cmd to select alternately, upon successive transmission, the two LEAM calibration levels called mode one and mode two. Each activation of the calibration circuits produces a single input pulse to the LEAM sensor buffer amplifiers to calibrate the overall sensor electronics and data storage system. The response of LEAM to CMD 111 is delayed until previously recorded data has been transmitted to ALSEP. Mode one provides signal pulses to each:
- Front film amplifiers 3 and 4 (4)
- Main microphone amplifiers (3)
- Secondary microphone amplifier (1)
- Rear film and all collector amplifiers (28)**

Mode two provides signal pulses to each:
- Front film amplifiers 1 and 2 (4)
- Main microphone amplifiers (3)
- All rear film amplifiers (10)**

112 LEAM MIR CVR GO

This cmd activates the circuits of a redundant firing mechanism to release the dust cover which protects the LEAM thermal control mirror. After cover release, CMD 112 has no further effect. Removal of the mirror dust cover is scheduled after LM ascent. Prior to removal, the extent of LEAM operation is constrained by thermal control limitations.

114 LEAM SEN CVR GO

This cmd activates the circuits of a redundant firing mechanism to release the dust covers which protect the LEAM sensors. After cover release, CMD 114 has no further effect. Removal of the sensor dust covers are scheduled after LM ascent and after detonation of the LSP explosive packages, and after at least two days of background data.

117 LEAM HTR STEP

This is a three-state cmd which, upon successive transmission, steps repetitively through three LEAM heater control modes: on, off, and automatic. In the automatic (normal) mode, a circuit controls the heater operation to maintain LEAM above a minimum temperature. The on and off modes bypass the automatic control circuit and cause the heater to remain on or off regardless of temperature. The heater on/off status is read out in the TM, along with temperature data. Application of operational power to the LEAM causes initialization in the automatic mode.

When standby (survival) power is applied to the LEAM:
- The automatic circuit is energized and controls operation of the 3.2-watt heater; there is an additional 1.6-watt constant standby heater
- CMD 117 has no effect
- Temperature is read out in the ALSEP central station TM.

NOTES:
- The calibration level of mode two is higher than mode one
- Rear film signals are delayed to verify elapsed-time circuitry; delay is longer in mode two,
LEAM DIGITAL DATA FORMAT

ALSEP WORD 31

ALSEP FRAME NUMBER

1, 6, 11 ETC.

DJ-03, UFF ACC

DJ-02, UFF PHA

DJ-01, UFF ID

DJ-09, UMM ACC

DJ-08, UMM PHA

DJ-07, UFC ID

DJ-14, EFF ACC

DJ-13, EFF PHA

DJ-12, EFF ID

DJ-20, EMM ACC

DJ-19, EMM PHA

DJ-18, EFC ID

DJ-26, WF ACC

DJ-24, WC ID

DJ-23, WF ID

BIT POSITION

DJ-06, URF ACC

DJ-05, URF PHA

DJ-04, URF ID

DJ-11, U ET

DJ-10, URC ID

DJ-17, ERF ACC

DJ-16, ERF, PHA

DJ-15, ERF ID

DJ-22, E ET

DJ-21, EFC ID

DJ-31, WMM ACC

DJ-30, WMM PHA

DJ-29, LEAM HTR ON/OFF

DJ-28, ANALOG SYNC

DJ-27, WSM ACC

JULY 72 3270.6.25
LEAM ANALOG DATA

ALSEP WORD 33, CHANNEL 83, MULTIPLEXED 5 TIMES IN THE FOLLOWING SEQUENCE:
AJ-01, LEAM +5 VOLTS (MEASURED AT OUTPUT OF LEAM POWER SUPPLY)
AJ-02, SNSR CVR STATUS (INDICATES THAT SQUIBS HAVE OR HAVE NOT FIRED)
AJ-03, MIR CVR STATUS (INDICATES THAT SQUIBS HAVE OR HAVE NOT FIRED)
AJ-04, POWER SUPPLY MON (BASED ON COMBINED +12 VDC +5 VDC AND -5 VDC OUTPUT)
AJ-05, BIAS VOLTAGES MON (BASED ON COMBINED +24 VDC AND -7.5 VDC OUTPUT)

ALSEP WORD 33, CHANNEL 84, MULTIPLEXED 5 TIMES IN THE FOLLOWING SEQUENCE:
AJ-06, UP MAIN MIC TEMP (MEASURES UP SENSOR TEMP NEAR MICROPHONE)
AJ-07, EAST MAIN MIC TEMP (MEASURES EAST SENSOR TEMP NEAR MICROPHONE)
AJ-08, WEST MAIN MIC TEMP (MEASURES WEST SENSOR TEMP NEAR MAIN MICROPHONE)
AJ-09, CENT ELECT TEMP (MEASURES TEMP IN SENSOR CENTRAL ELECTRONICS)
AJ-10, LEAM -5 VOLTS (MEASURED AT OUTPUT OF LEAM POWER SUPPLY)

ALSEP WORD 33, CHANNEL 85:
AJ-11, LEAM ELECT TEMP (MEASURES INTERNAL STRUCTURE TEMP NEAR THERMAL PLATE; POWERED FROM ALSEP CENTRAL STATION TO READ INDEPENDENT OF LEAM ON/STANDBY/OFF STATUS)
HEAT FLOW EXPERIMENT (HFE)
HEAT FLOW

NASA No. S037

OBJECTIVE: INTERNAL TEMPERATURE & COMPOSITION OF THE MOON.
FROM THIS, INFERENCES CAN BE MADE ON LUNAR EVOLUTION,
BULK COMPOSITION, CHEMICAL SORTING, INTERNAL ENERGY (INCLUDNG RADIOACTIVITY), & NEAR-SURFACE MATERIAL PROPERTIES.

MEASUREMENT: TEMPERATURE GRADIENT & THERMAL CONDUCTIVITY TO DETERMINE AVERAGE OUTWARD HEAT FLUX AT THE SURFACE.

EQUIPMENT: APOLLO LUNAR SURFACE DRILL; TWO PROBES, 1-IN. DIAM X 43 IN. LONG, WITH HEATING ELEMENTS & TEMPERATURE SENSORS;
PROBES PLACED AT BOTTOM OF 8-FT HOLES.
HEAT FLOW CHARACTERISTICS

KEY FEATURES
SENSOR CALIBRATION ON EARTH REQUIRES SPECIAL FACILITY
AVOID DISTURBING LUNAR SURFACE REFLECTIVE PROPERTIES AROUND PROBES
REQUIRES RADIATIVE THERMAL COUPLING BETWEEN PROBE & HOLE PLUS
NO THERMAL SHORT-CIRCUIT TO SURFACE
"THERMOSTATICALLY" CONTROLLED HEATER IN ELECTRONICS PACKAGE

PHYSICAL PARAMETERS
(ELECTRONICS 11x9.5x10)
SIZE, IN: PROBES 25.5 x 3.8 x 8.5 (IN PACKAGE)
EARTH WT, LB: 12.2 LB (TOTAL)
POWER, W: 3.9 TO 10.7

COMMUNICATIONS
COMMANDS:
• POWER OPER/STBY/OFF
• 10 SPECIAL CNDS FOR:
 • SELECT MEASUREMENT
 • SELECT & ACTIVATE CONDUCTIVITY HTRS (3)
DATA:
• 1 DIGITAL WORD PER ALSEP FRAME
 • 435 SEC REP RATE (FULL SEQUENCE)
 • 6 ANALOG ENG PARAMETERS SAMPLED ONCE PER 54 SEC ALSEP SEQUENCE

OPERATIONS
DEPLOYMENT
• LOCATE ELECTRONICS 25-30 FT FROM CENTRAL STATION
• LEVEL ± 5°
• ALIGN ±5° WRT SHADOW (THERMAL)
• DRILL HOLES (2) 2.5 METERS DEEP & PLACE PROBES IN BOTTOM OF HOLES USING TOOL
• HOLES 30 FT APART & 18 FT FROM ELECTRONICS
APPROX TIME, 9 MIN, PLUS 30 MIN FOR DRILLING

POST DEPLOYMENT
• TURN ON (OPER) PRE-ASCENT
• READ GRADIENT DATA CONTINUOUSLY EXCEPT DURING CONDUCTIVITY TESTS
• MAKE CONDUCTIVITY TESTS - TIMES FOR UP TO 48 HRS EACH TIME

FEB 72 3270.7.4
HEAT FLOW SENSORS

TEMP
NOTE: FOR ILLUSTRATION, NOT ACTUAL DATA

DIURNAL VARIATION
WITH SUPERIMPOSED
HI-ORDER EFFECTS

ANNUAL VARIATION
(DUE TO MOON'S ORBIT
AROUND THE SUN)

- SETS OF FOUR SENSORS
- TWO COMBINATIONS (DIFFERENCE & AMBIENT)
SELECTED BY INTERNAL LOGIC

DYNAMIC RANGE:
- TEMP DIFFERENCE (BRIDGE)
 HI SENSITIVITY ± 2°C (200°C TO 250°C)
 LO SENSITIVITY ± 20°C (200°C TO 250°C)
- AMBIENT TEMP (RESISTANCE)
 200°C TO 250°C
- CABLE THERMOCOUPLES (ALONG PROBE CABLES)
 -20°C TO +60°C (ACCURACY 0.3°C)
- THERMOCOUPLE REF JUNCTION (IN ELECTRONICS)
 -20°C TO +60°C (ACCURACY 0.1°C)
- CONDUCTIVITY RANGE: 5 x 10⁻⁶ TO 1 x 10⁻³
 CAL/CM-SEC-°C

SENSOR TYPE: PLATINUM RESISTOR
SENSOR CIRCUITS:
- SETS OF FOUR SENSORS
- TWO COMBINATIONS (DIFFERENCE & AMBIENT)
 SELECTED BY INTERNAL LOGIC

MODES OF OPERATION: MODE/G, MODE/LK,
& MODE/HK PLUS MANY MEASUREMENT
SEQUENCES

BASIC DATA WORD: 13-BIT OUTPUT OF ADC IN
2 ALSEP WORDS (PLUS ID)

TYPICAL BRIDGE
READING
(8 ALSEP WORDS)
{ (1) + EXCITATION
 (2) + OUTPUT
 (3) - EXCITATION
 (4) - OUTPUT

PROBLEM: TO FIND THE SMALL DC COMPONENT
IN A POSSIBLY LARGE AC WAVE

FEB 72 3270.7.6
HFE MODES OF OPERATION

<table>
<thead>
<tr>
<th>MEASUREMENT SEQUENCES</th>
<th>G, NORMAL GRADIENT (MODE 1)</th>
<th>LK, LOW CONDUCTIVITY (MODE 2)</th>
<th>HK, HIGH CONDUCTIVITY (MODE 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. FULL (ALL MEAS)</td>
<td>SAME AS GRADIENT</td>
<td>DIFFERENTIAL & AMBIENT TEMP FOR ONE BRIDGE (DEPENDING ON SELECTED HEATER)</td>
<td></td>
</tr>
<tr>
<td>B. PROBE 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROBE 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. DIFFERENTIAL TEMP (HI EXCITATION)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIFFERENTIAL TEMP (LO EXCITATION)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMBIENT TEMP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REF JUNCTION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEMP & CABLE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THERMOCOUPLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. COMBINATIONS OF B & C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRIDGE SENSORS</td>
<td>GRADIENT</td>
<td>GRADIENT</td>
<td>RING (OR "REMOTE")</td>
</tr>
<tr>
<td>HEATERS</td>
<td>NONE</td>
<td>0.002W</td>
<td>0.5W</td>
</tr>
</tbody>
</table>

*THese modes used primarily for tests

FEB 72 3270.7.9
HFE Command Summary

<table>
<thead>
<tr>
<th>CMD Numbers</th>
<th>HFE OCTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>135</td>
</tr>
<tr>
<td>C2</td>
<td>136</td>
</tr>
<tr>
<td>C3</td>
<td>140</td>
</tr>
<tr>
<td>C4</td>
<td>141</td>
</tr>
<tr>
<td>C5</td>
<td>142</td>
</tr>
<tr>
<td>C6</td>
<td>143</td>
</tr>
<tr>
<td>C7</td>
<td>144</td>
</tr>
<tr>
<td>C8</td>
<td>145</td>
</tr>
<tr>
<td>C9</td>
<td>146</td>
</tr>
<tr>
<td>C10</td>
<td>152</td>
</tr>
</tbody>
</table>

- **HFE MODE/G SEL**: Initialized to these conditions at power turn-on.
- **HFE MODE/LK SEL**.
- **HFE MODE/HK SEL**.
- **HFE SEQ/FUL SEL**.
- **HFE SEQ/P1 SEL**.
- **HFE SEQ/P2 SEL**.
- **HFE LOAD 1**: Measurement
- **HFE LOAD 2**: Select
- **HFE LOAD 3**: (Encoded)
- **HFE HTR STEPS**

Input buffer holds commands for execution at 90-frame mark.

FEB 72 3270.7.10
HFE DIGITAL DATA FORMAT

ALSEP FRAME 90,8

<table>
<thead>
<tr>
<th>R2</th>
<th>R1</th>
<th>0</th>
<th>P4</th>
<th>P3</th>
<th>P2</th>
<th>P1</th>
<th>2^12</th>
<th>2^11</th>
<th>2^10</th>
<th>2^9</th>
<th>2^8</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MEASUREMENT (SEQUENCE) REGISTER

<table>
<thead>
<tr>
<th>R2</th>
<th>R1</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>0</th>
<th>0</th>
<th>2^12</th>
<th>2^11</th>
<th>2^10</th>
<th>2^9</th>
<th>2^8</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

MODE REGISTER

<table>
<thead>
<tr>
<th>R2</th>
<th>R1</th>
<th>H4</th>
<th>H3</th>
<th>H2</th>
<th>H1</th>
<th>0</th>
<th>2^12</th>
<th>2^11</th>
<th>2^10</th>
<th>2^9</th>
<th>2^8</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

HFE SCIENCE DATA (TYPICAL)

<table>
<thead>
<tr>
<th>R2</th>
<th>R1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2^12</th>
<th>2^11</th>
<th>2^10</th>
<th>2^9</th>
<th>2^8</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

CONDUCTIVITY HEATER REGISTER

<table>
<thead>
<tr>
<th>R2</th>
<th>R1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2^12</th>
<th>2^11</th>
<th>2^10</th>
<th>2^9</th>
<th>2^8</th>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

SUBSEQUENCE REGISTER (WORD ID)

FEB 72 3270.7.11
HFE MODE REGISTER

THE MODE REGISTER IS PART OF THE HFE CMD DECODER AND RESPONDS TO CMDS 135, 136 AND 140. THE STATE OF THIS REGISTER IS READ OUT VIA TM

<table>
<thead>
<tr>
<th>OCTAL</th>
<th>ABBR</th>
<th>HFE</th>
<th>MODE</th>
<th>TM (M1M2M3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>MODE/G</td>
<td>MODE 1</td>
<td>NORMAL GRADIENT</td>
<td>100</td>
</tr>
<tr>
<td>136</td>
<td>MODE/LK</td>
<td>MODE 2</td>
<td>LOW CONDUCTIVITY</td>
<td>010</td>
</tr>
<tr>
<td>140</td>
<td>MODE/HK</td>
<td>MODE 3</td>
<td>HIGH CONDUCTIVITY</td>
<td>001</td>
</tr>
</tbody>
</table>

THE MODE SELECTED BY CMD AFFECTS THE DATA AS FOLLOWS:

MODE/G AND MODE/LK HAVE IDENTICAL TM (FORMATTED BY THE MEASUREMENT SEQUENCE PROGRAMMER AND SUBSEQUENCE PROGRAMMER) BUT IN MODE/LK THE PROBE HEATER CURRENT SUPPLY IS TURNED ON AND HEATERS RESPOND TO CMD 152.

MODE/HK BYPASSES THE MEASUREMENT SEQUENCE PROGRAMMER AND PRODUCES A SPECIAL TM OUTPUT FORMATTED BY THE SUBSEQUENCE PROGRAMMER AND HEATER SEQUENCE PROGRAMMER.

FEB 72 3270.7.12
HFE Gradient Measurement Options

<table>
<thead>
<tr>
<th>CMDs & ORDER (OCTAL)</th>
<th>135</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>141</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>143</td>
<td>143</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>144</td>
<td>144</td>
<td>-</td>
<td>144</td>
<td>144</td>
<td>144</td>
<td>-</td>
<td>144</td>
<td>-</td>
<td>144</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>145</td>
<td>145</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>145</td>
<td>145</td>
<td>-</td>
<td>145</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>146</td>
<td>146</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>146</td>
<td>146</td>
<td>-</td>
<td>146</td>
</tr>
</tbody>
</table>

- **GDT11H**: H only
- **GDT12H**: H only
- **GDT21H**: 180 frame rep rate
- **GDT22H**: HFE SEQ/P1
- **GDT11L**: H only
- **GDT12L**: H only
- **GDT21L**: 16 out of 90 frames
- **GDT22L**: AMB only
- **GT11**: HFE SEQ/P2
- **GT12**: 360 frame rep rate
- **GT21**: 90 frame rep rate
- **GT22**: 90 frame rep rate
- **REF T1**: 720 frame rep rate
- **TC1A, B, C, D**: TC & REF
- **REF T2**: TC & REF
- **TC2A, B, C, D**: TC & REF

Note: Gradient mode shown.

FEB 72 3270.7.13
HFE MEASUREMENT SEQUENCE PROGRAMMER

THE MEASUREMENT SEQUENCE PROGRAMMER (MSP) IS A 16-STATE BINARY COUNTER USING 4 FLIP-FLOPS. ITS OPERATION CAN BE MODIFIED BY CMD TO PERFORM 8-STATE, 4-STATE, AND 2-STATE PROGRAMS. THE FLIP-FLOPS HAVE DUAL FUNCTIONS:

- FORMAT HFE DATA BY CONTROLLING GATES TO THE OUTPUT REGISTER
- SUPPLY MSP STATUS DATA FOR TM (P-BITS)

NOTE THAT EXECUTION OF A MEASUREMENT CMD (141 THROUGH 146) DOES NOT RESET MSP. OPERATION CONTINUES FROM PREVIOUS STATE.

IN DIAGRAM, THE SET (S) AND CLEAR (C) POSITIONS OF THE FLIP-FLOPS CORRESPOND TO ONE AND ZERO IN THE TM.
HFE MSP DIAGRAM

NOTE
SET, S = 1
CLEAR, C = 0

0 = UPPER SECTION
1 = LOWER SECTION

0 = PROBE 1
1 = PROBE 2

00 DTH
01 DTL
10 I
11 TC

TM

OUTPUT

ADV

(Cl)

(C4)

(C6)

(C8)

(C9)

(C5)

(C7)

(C9)

(C5)

(C7)

(C9)
HFE SUBSEQUENCE PROGRAMMER

THE SUBSEQUENCE PROGRAMMER IS A 4-STATE COUNTER HAVING DUAL FUNCTIONS:

- CONTROLS GATING OF DATA, WITHIN A SUBSET, TO THE OUTPUT REGISTER (WHERE THE TYPE OF SUBSET IS CONTROLLED BY THE MSP)
- SUPPLIES SUBSEQUENCE REGISTER STATUS DATA FOR TM (R-BITS)

THE STATE OF R_2R_1 CHANGES EVERY OTHER ALSEP FRAME (ONE 10-BIT WORD OF HFE DATA IN EACH ALSEP FRAME)
STARTING WITH A RESET AT THE 90-FRAME MARK

THE TRANSITION FROM 11 TO 00 BETWEEN 7 AND 8 MARKS THE 90 + 8 FRAME. THIS ADVANCES P_1 FROM ZERO TO ONE

FROM ALSEP FRAME 16 TO 89 THERE IS NO HFE DATA AND REGISTER CHANGES ARE INHIBITED

<table>
<thead>
<tr>
<th>R_2R_1</th>
<th>ALSEP</th>
<th>FRAME NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>90, 1</td>
<td>8, 9</td>
</tr>
<tr>
<td>01</td>
<td>2, 3</td>
<td>10, 11</td>
</tr>
<tr>
<td>10</td>
<td>4, 5</td>
<td>12, 13</td>
</tr>
<tr>
<td>11</td>
<td>6, 7</td>
<td>14, 15</td>
</tr>
</tbody>
</table>

R_2R_1 READ OUT AS FIRST TWO BITS IN EVEN NUMBERED ALSEP FRAME

FEB 72 3270.7.16
HFE TIMING FUNCTIONS

MODE/G = GRADIENT
(HEAT FLOW FROM CENTER TO SURFACE)

MODE/G = GRADIENT

MODE/G = GRADIENT

NOTE: 4 HFE WORDS

HAVE DIFFERENT
DEFINITIONS FOR
0100 THROUGH
1111

TEMP GRADIENT
HI SENSITIVITY

(0000)

(0010)

(0100)

(0110)

(1000)

(1010)

(1100)

(1110)

GDT11H

GDT21H

GDT12H

GDT22H

TEMP GRADIENT
LOW SENSITIVITY

(0100) TO (0111)

PROBE AMBIENT
TEMP

(1000) TO (1011)

THERMOCOUPLES
& REF JUNCTIONS

(1100) TO (1111)

REP RATE =
720 ALSEP FRAMES
434.7 SEC
7.25 min

540-555, 630-645

360-375, 450-465

180-195, 270-285

90-105

8-15

NOTE: 4 HFE WORDS
HAVE DIFFERENT
DEFINITIONS FOR
0100 THROUGH 1111

FEB 72 3270.7.17
<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ABBR</th>
<th>P-BITS</th>
<th>DATA SOURCE</th>
<th>PROBE/BRIDGE</th>
<th>EXCITATION (SENSITIVITY)</th>
<th>((R_2 R_1)) SUBSET DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-01</td>
<td>GDT 11H</td>
<td>0000</td>
<td>DIFFERENTIAL</td>
<td>1/UPPER</td>
<td>HIGH VOLTAGE</td>
<td>(00) + BRIDGE EXCITATION</td>
</tr>
<tr>
<td></td>
<td>GDT 12H</td>
<td>0001</td>
<td></td>
<td>1/LOWER</td>
<td></td>
<td>(01) + BRIDGE OUTPUT</td>
</tr>
<tr>
<td>DH-03</td>
<td>GDT 21H</td>
<td>0010</td>
<td></td>
<td>2/UPPER</td>
<td></td>
<td>(10) - BRIDGE EXCITATION</td>
</tr>
<tr>
<td>DH-04</td>
<td>GDT 22H</td>
<td>0011</td>
<td></td>
<td>2/LOWER</td>
<td></td>
<td>(11) - BRIDGE OUTPUT</td>
</tr>
<tr>
<td>DH-05</td>
<td>GDT 11L</td>
<td>0100</td>
<td>BRIDGE</td>
<td>1/UPPER</td>
<td>LOW VOLTAGE</td>
<td>(00) + BRIDGE CURRENT</td>
</tr>
<tr>
<td>DH-06</td>
<td>GDT 12L</td>
<td>0101</td>
<td>(GRADIENT SENSORS)</td>
<td>1/LOWER</td>
<td></td>
<td>(01) + BRIDGE OUTPUT</td>
</tr>
<tr>
<td>DH-07</td>
<td>GDT 21L</td>
<td>0110</td>
<td></td>
<td>2/UPPER</td>
<td></td>
<td>(10) - BRIDGE CURRENT</td>
</tr>
<tr>
<td>DH-08</td>
<td>GDT 22L</td>
<td>0111</td>
<td></td>
<td>2/LOWER</td>
<td></td>
<td>(11) - BRIDGE CURRENT</td>
</tr>
<tr>
<td>DH-09</td>
<td>GT 11</td>
<td>1000</td>
<td>(RESISTANCE)</td>
<td>1/UPPER</td>
<td>HIGH VOLTAGE</td>
<td>(00) + BRIDGE EXCITATION</td>
</tr>
<tr>
<td>DH-10</td>
<td>GT 12</td>
<td>1001</td>
<td></td>
<td>1/LOWER</td>
<td></td>
<td>(01) + BRIDGE CURRENT</td>
</tr>
<tr>
<td>DH-11</td>
<td>GT 21</td>
<td>1010</td>
<td></td>
<td>2/UPPER</td>
<td></td>
<td>(10) - BRIDGE EXCITATION</td>
</tr>
<tr>
<td>DH-12</td>
<td>GT 22</td>
<td>1011</td>
<td></td>
<td>2/LOWER</td>
<td></td>
<td>(11) - BRIDGE CURRENT</td>
</tr>
<tr>
<td>DH-13</td>
<td>REF T1</td>
<td>1100</td>
<td>REF JUNCTION BR</td>
<td>HV</td>
<td>SAME AS DH-01 TO DH-04</td>
<td></td>
</tr>
<tr>
<td>DH-14</td>
<td>TCI GROUP</td>
<td>1101</td>
<td>THERMOCOUPLES IN CABLE OF PROBE</td>
<td>REF T1</td>
<td>(00) REF T1-TC1 (1)</td>
<td></td>
</tr>
<tr>
<td>DH-24</td>
<td>TCI GROUP</td>
<td>1102</td>
<td>THERMOCOUPLES IN</td>
<td>REF T1</td>
<td>(01) TCI (1)-TC1 (2)</td>
<td></td>
</tr>
<tr>
<td>DH-34</td>
<td>TCI GROUP</td>
<td>1103</td>
<td>THERMOCOUPLES IN</td>
<td>REF T1</td>
<td>(10) TCI (1)-TC1 (3)</td>
<td></td>
</tr>
<tr>
<td>DH-44</td>
<td>TCI GROUP</td>
<td>1104</td>
<td>THERMOCOUPLES IN</td>
<td>REF T1</td>
<td>(11) TCI (1)-TC1 (4)</td>
<td></td>
</tr>
<tr>
<td>DH-15</td>
<td>REF T2</td>
<td>1110</td>
<td>SAME AS DH-13</td>
<td>HV</td>
<td>SAME AS DH-01 TO DH-04</td>
<td></td>
</tr>
<tr>
<td>DH-16</td>
<td>TCI GROUP</td>
<td>1111</td>
<td>THERMOCOUPLES IN CABLE OF PROBE</td>
<td>REF T2</td>
<td>(00) REF T2-TC2 (1)</td>
<td></td>
</tr>
<tr>
<td>DH-26</td>
<td>TCI GROUP</td>
<td>1112</td>
<td>THERMOCOUPLES IN</td>
<td>REF T2</td>
<td>(01) TCI (1)-TC2 (2)</td>
<td></td>
</tr>
<tr>
<td>DH-36</td>
<td>TCI GROUP</td>
<td>1113</td>
<td>THERMOCOUPLES IN</td>
<td>REF T2</td>
<td>(10) TCI (1)-TC2 (3)</td>
<td></td>
</tr>
<tr>
<td>DH-46</td>
<td>TCI GROUP</td>
<td>1114</td>
<td>THERMOCOUPLES IN</td>
<td>REF T2</td>
<td>(11) TCI (1)-TC2 (4)</td>
<td></td>
</tr>
</tbody>
</table>
HFE HEATER SEQUENCE PROGRAMMER

CMD C10 HFE HTR STEPS

- **H4** ↔ **ADV** ↔ **H3** ↔ **ADV** ↔ **H2** ↔ **ADV** ↔ **H1**

- **16-STATE BINARY COUNTER USING 4 FLIP-FLOPS**
- **STATUS TRANSMITTED IN TM AS H-BITS (ALL 3 MODES)**
- **EFFECT ON OPERATION AND DATA:**
 - **MODE/G** – NO EFFECT (CAN BE ADVANCED VIA CMD 152 BUT PROBE HEATER CURRENT SUPPLY IS OFF)
 - **MODE/LK** – CONTROLS ON/OFF STATUS OF 8 HEATERS (4/PROBE) IN LOW MODE OF PROBE HEATER CURRENT SUPPLY
 - **MODE/HK** – CONTROLS DATA OUTPUT AND ON/OFF STATUS OF 8 HEATERS IN HIGH MODE OF PROBE HEATER CURRENT SUPPLY
- **PROBE HEATER ON/OFF STATUS IN ANALOG TM (ALSEP WORD 33)**

FEB 72 3270.7.19
HFE HEATER SELECT CODE

- **H4**: PROBE 1
- **H3**: PROBE 2
- **H2**: LOWER HEATER (IN PROBE SECTION)
- **H1**: UPPER HEATER (IN PROBE SECTION)
- **0**: HEATER OFF
- **1**: HEATER ON

Example: When H-Bits = 1011, heater H24 is on (where H24 indicates fourth heater in probe 2).

Note: This code applies to heater control in both MODE/LK and MODE/HK.

Table:

<table>
<thead>
<tr>
<th>H3</th>
<th>H2</th>
<th>HTR Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>2 (Bottom)</td>
</tr>
<tr>
<td>01</td>
<td></td>
<td>1 (Top)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>4 (Bottom)</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

FEB 72 3270.7.20
HFE Measurements in Mode/HK

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>ABBR</th>
<th>PROBE</th>
<th>BRIDGE</th>
<th>H4</th>
<th>H3</th>
<th>H2</th>
<th>H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DH-50</td>
<td>RDT 11</td>
<td>1</td>
<td>1</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-51</td>
<td>RT 11</td>
<td>1</td>
<td>1</td>
<td>0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-52</td>
<td>RDT 11</td>
<td>1</td>
<td>1</td>
<td>0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-53</td>
<td>RT 11</td>
<td>1</td>
<td>1</td>
<td>0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-54</td>
<td>RDT 11</td>
<td>1</td>
<td>2</td>
<td>0010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-55</td>
<td>RT 11</td>
<td>1</td>
<td>2</td>
<td>0010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-56</td>
<td>RDT 11</td>
<td>1</td>
<td>2</td>
<td>0011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-57</td>
<td>RT 11</td>
<td>1</td>
<td>2</td>
<td>0011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-58</td>
<td>RDT 11</td>
<td>1</td>
<td>2</td>
<td>0100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-59</td>
<td>RT 11</td>
<td>1</td>
<td>2</td>
<td>0100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-60</td>
<td>RDT 12</td>
<td>1</td>
<td>2</td>
<td>0101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-61</td>
<td>RT 12</td>
<td>1</td>
<td>2</td>
<td>0101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-62</td>
<td>RDT 12</td>
<td>1</td>
<td>2</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-63</td>
<td>RT 12</td>
<td>1</td>
<td>2</td>
<td>0110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-64</td>
<td>RDT 12</td>
<td>1</td>
<td>2</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DH-65</td>
<td>RT 12</td>
<td>1</td>
<td>2</td>
<td>0111</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **DATA ALTERNATES BETWEEN DIFFERENCE (BRIDGE) AND AMBIENT (RESISTANCE) MEASUREMENTS FOR THE SET OF RING SENSORS NEAREST THE SELECTED HEATER**

<table>
<thead>
<tr>
<th>ASEP FRAMES</th>
<th>P (a)</th>
<th>MEAS TYPE (b)</th>
<th>ABBR (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 TO 7</td>
<td>0</td>
<td>DIFFERENCE</td>
<td>RDTN</td>
</tr>
<tr>
<td>8 TO 15</td>
<td>1</td>
<td>AMBIENT</td>
<td>RTN</td>
</tr>
</tbody>
</table>

- **NOTES**
 - (a) P-BITS, OTHER THAN P1, ARE MEANINGLESS IN MODE/HK
 - (b) MEASUREMENT CONTENT:
 - **R2, R1**
 - **DIFFERENCE**
 - **AMBIENT**
 | 00 | BRIDGE EXCITATION VOLTS |
 | 01 | BRIDGE OUTPUT + BRIDGE CURRENT |
 | 10 | BRIDGE EXCITATION VOLTS |
 | 11 | BRIDGE OUTPUT - BRIDGE CURRENT |
 - (c) NN IDENTIFIES SENSOR (BRIDGE) LOCATION

FEB 72 3270.7.21
HFE COMMAND DETAILS

OCTAL CMD NUMBER

135 HFE MODE/G SEL

This CMD IC11 is a 1-state CMD. It places the HFE in the gradient, or normal, mode of operation in which measurements are obtained from the gradient sensors and cable thermocouples under the control of the MSP. CMD 135 also turns off the probe heater current supply. Different measurement sequences in MODE/G may be selected by transmitting subsequent CMDs. At power turn-on, the HFE initializes in MODE/G. If the HFE is in MODE/G, transmission of CMD 135 has no effect.

136 HFE MODE/LK SEL

This CMD IC10 is a 1-state CMD. It places the HFE in the low conductivity, or ring source, mode of operation in which measurements and sequences are identical to M0ODE/G. It also turns off the probe heater current supply in the low ring source mode allowing heaters to be activated by CMD 152. If the HFE is in MODE/LK, transmission of CMD 136 has no effect.

140 HFE MODE/HK SEL

This CMD IC91 is a 1-state CMD. It places the HFE in the high conductivity, or ring pulse, mode of operation in which measurements are obtained from the ring (or remote) sensors, under the control of the heater sequence programmer. Note that CMD 140 IC91 must also be transmitted before valid data will be obtained in MODE/HK. Either CMD may be transmitted first. CMD 140 also turns on the probe heater current supply in the high or heat pulse mode, allowing heaters to be activated by CMD 152. If the HFE is in MODE/HK, transmission of CMD 140 has no effect.

141 HFE SEQ/FULL SEL

This CMD IC81 is a 1-state CMD. It cancels the effect of CMD 142 through 146 causing the MSP to perform its full 16-state cycle of operation in MODE/G or MODE/LK. If transmitted during MODE/G operation, this CMD will cause invalid operation until CMD 144 is executed. At power turn-on, the HFE initializes in SEQ/FULL. If the HFE is in MODE/G or MODE/LK and in SEQ/FULL, transmission of CMD 141 has no effect.

142 HFE SEQ/PORT SEL

This CMD IC71 is a 1-state CMD and alternates with CMD 143 to select only one probe for measurement. In MODE/G, this CMD is meaningless. In MODE/LK, it causes the MSP to lock flip-flop P3 in the clear state and bypass P2. Thus the MSP acts as an H-state counter if CMD 141 was previously executed, or as a 2-state counter if CMD 141, 144, or 146 was previously executed. SEQ/PORT is cleared by subsequent execution of CMD 141.

143 HFE SEQ/PORT SEL

This CMD IC61 is a 1-state CMD and alternates with CMD 142 to select only one probe for measurement. It has the same characteristics as CMD 142 except that flip-flop P3 is located in the set state.

144 HFE LOAD 1

This CMD IC51 is a 1-state CMD and is used alone or in combination with CMD 145 or 146 to position and lock two flip-flops (I-PJ) of the MSP. CMD 144 places P2 P3 in the clear position 1001 and bypasses those steps. The MSP then acts as a 4-state counter if CMD 144 was previously executed and as a 2-state counter if CMD 142 or 143 was previously executed. This applies to MODE/G and MODE/LK. In MODE/G, CMD 144 must be executed to obtain valid data. CMD 145 or 146 may be used in MODE/G or MODE/LK following CMD 144. To lock P2 P3 in the 10 or 01 state respectively, the effect of CMD 144 is cleared by subsequent execution of CMD 141.

145 HFE LOAD 2

This CMD IC41 is a 1-state CMD and is used in combination with either CMD 144 preceding 145 or CMD 145 preceding or following 145 to position and lock P2 P3 (see CMD 144). CMD 145 positions flip-flop P2 in the set state. Therefore, 144-145 yields 0 (LOW excitation differential temperature data only) while 140-146 yields 1 (cable thermocouple data only). Execution of this CMD in MODE/G causes invalid data until CMD 144 is executed. The effect of CMD 144 is cleared by subsequent execution of CMD 141.

146 HFE LOAD 3

This CMD IC31 is a 1-state CMD operating essentially the same as CMD 145 except that it positions flip-flop P2 in the set state, when preceded by CMD 144. It yields 0 (low excitation differential temperature data only). Execution of this CMD in MODE/G causes invalid data until CMD 144 is executed.

152 HFE HTR STEPS

This CMD IC01 is a 16-state CMD which advances the heater excitation programmer Advanced bly there is another effect since the probe heater current supply is off. In MODE/G the execution of CMD 152 advances the heater status between on and off, simultaneously stepping through the heaters current supply is on full time and heater elements are switched in and out of circuit. In MODE/LK, the heater excitation programmer advances by CMD 152 also selects the data to be sampled.

FEB 72 3270.7.22
HFE ANALOG DATA

AH-01	HFE +5V SUPPLY
AH-02	HFE -5V SUPPLY
AH-03	HFE +15V SUPPLY
AH-04	HFE -15V SUPPLY
AH-05	(DELETED)
AH-06	HFE HTR/HK ON/OFF
AH-07	HFE HTR/LK ON/OFF

Each sampled once every 54 sec ALSEP sequence.
NOTE: ADDITIONAL THERMOSTAT TURNS A PORTION OF INSTRUMENT ELECTRONICS OFF DURING FRAMES 16 THROUGH 89 WHEN TEMP. IS ABOVE 30°C NOMINAL
HFE POWER PROFILE

THERMAL CONTROL

CONDUCTIVITY HEATERS TURNED ON & OFF BY GROUND CMD

NM = NIGHT MAX
DM = DAY MAX
DA = DAY AVERAGE

2 \degree 6 \text{ WADS}

FEB 72 327.7.25
HFE Emplacement Criteria

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Requirement</th>
<th>Priority</th>
<th>Indicator</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance from Subpackage 1</td>
<td>25-30 ft (30 ft cable)</td>
<td>2</td>
<td>Paced Off</td>
<td>To obtain probe separation from RTG*</td>
</tr>
<tr>
<td>Direction from Subpackage 1</td>
<td>NORTH</td>
<td>2</td>
<td>Visual</td>
<td>Greater than 80° from RTG</td>
</tr>
<tr>
<td>Level</td>
<td>±5° of vertical</td>
<td>2</td>
<td>Bubble</td>
<td>Interacts with alignment</td>
</tr>
<tr>
<td>Align with UHT Shadow at Decal</td>
<td>±5° of E-W</td>
<td>2</td>
<td>Arrow and shadows</td>
<td>Thermal req for Sun shield shadows to align with plate edges</td>
</tr>
<tr>
<td>Distance from Electronics</td>
<td>18 ± 1 ft (16 ft cable marks)</td>
<td>1</td>
<td>Paced Off</td>
<td>To obtain 30 ft separation between probes (requirement)</td>
</tr>
<tr>
<td>Direction from Electronics</td>
<td>140° apart</td>
<td>1</td>
<td></td>
<td>Probe and RTG separation* avoid shadows or any other disturbance from all subsystems</td>
</tr>
<tr>
<td>Vertical Alignment</td>
<td>Within ± 15°</td>
<td>2</td>
<td>Visual</td>
<td>Objective for drilling</td>
</tr>
</tbody>
</table>

*Separation distance from RTG: 40 ft minimum, avoid major disturbances (trampling, etc.) and shadows in 17 ft circle around probe.

FEB 72 3270.7.27
APOLLO LUNAR SURFACE DRILL

- EARTH WEIGHT, LB: 29.54 (TOTAL)
- STOWED SIZE, IN.: 22.7 X 9.6 X 7
 (NOT INC DRILL STRING & CAPS)
- DRILL OPERATED BY SELF-CONTAINED BATTERY
- BATTERY INSTALLED 5 DAYS PRELAUNCH
- BATTERY SHELF LIFE
 - DRY: 2 YR
 - ACTIVATED: 30 DAYS
- DRILLING PRINCIPLE: ROTARY – PERCUSSION
- TORQUE REACTION SYSTEM: NONE
 (MINIMAL VERTICAL & ROTARY REACTION, EVEN IN ROCK)
- DRILLING TIME: 5 TO 15 MIN/HOLE
 (DEPENDING ON MATERIAL)