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FOREWORD

This report presents a summary of the work conducted under

Contract NAS3-13311, "Study of Blade Clearance Effects on

Centrifugal Pumps," by Rocketdyne, a Division of North

American Rockwell Corporation, Hr. H. G. Diem, Program

Hanager. The contract was sponsored by the Lewis Research

Center of the National Aeronautics and Space Administration,
Cleveland, Ohio, and was administered under the technical

direction of the Chemical Rocket Division with Mr. D. D.

Scheer, Project Hanager. This report covers the period

from 2 ,July 1969 to 30 September 1971.

Special recognition is hereby extended to the following

Rocketdyne personnel who contributed in large measure to

the successful completion of the contract effort: Hr. F. C.

Catterfeld, who was responsible for the mechanical design

of the pump test assembly; Mr. L. J. Frederick, who was

responsible for the instrumentation of the test impeller,

and for the buildup of the pump test assembly.
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ABSTRACT

A program of analysis, design, fabrication, and testing
has been conducted to develop and experimentally verify
analytical models to predict the effects of impeller
blade clearance on centrifugal pumps. The effect of tip
clearance on pumpefficiency, and the relationship be-
tween the head coefficient and torque loss with tip
clearance was established. Analysis were performed to
determine the cost variation in design, manufacture, and
test that would occur between unshrouded and shrouded
impellers. An impeller, representative of typical rocket
engine impellers, was modified by removing its front
shroud to permit variation of its blade clearances. It
was tested in water with special instrumentation to pro-
vide measurementsof blade surface pressures during opera-
tion. Pumpperformance data were obtained from tests at
various impeller tip clearances. Blade pressure data
were obtained at the nominal tip clearance. Comparisons
of predicted and measureddata are given.
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SUMMARY

The study of blade clearance effects on centrifugal pumps was undertaken to eval-

uate the effects of impeller clearance on pump performance and cost. The stud)'

consisted of: (i) a literature survey to establish current state of the art,

(2) formulation of analytical models to predict performance effects, (3) analysis
of impeller clearance and cost effects, (4) design and fabrication of a test im-

peller and test rig, (5) a test program in which pump performance and blade pres-
sures were measured and compared with predictions.

The test rig and instrumentation were designed with provisions for measurement of

blade surface pressure and variation of blade tip clearances. The impeller was

tested in a closed water loop, and the resultant data were compared with values

predicted by the analytical models. Minor refinements were made to the program
as a result of the correlation.

A computer program was used to calculate impeller blade relative velocity. The

relative velocities allow the calculation of the static pressure differential

across the impeller blade. A comparison of the measured impeller blade loading

with the calculated data indicated that the calculated data were greater than

the measured value. The loading distribution was of good accuracy, but the mea-

surement of blade loading was curtailed due to failure of the test device. The

minimum blade loading data obtained did not permit the correlation of the model

at various other speeds. The data did indicate that the slip factors in the im-

peller program may not be of a proper magnitude and, therefore, resulted in

greater levels of calculated blade loading than that measured.

A method was developed to predict the pump head loss due to tip clearance increase.

The data correlated with the model and indicated that the prediction gave good re-

sults over a flow interval about the design point or point of maximum efficiency.
The method, however, was not as accurate at high and low values of flow. The

torque change that occurred in the pump due to impeller tip variation was analyzed

and a model was developed predicting the energy loss through the tip clearance gap

due to leakage. The prediction was based on the blade loading at the impeller tip
and calculated the energy loss due to tip clearance leakage flow.





INTRODUCTION

In the design of impellers for rocket engine turbopumps, hydrodynamic performance
can be predicted from empirical data for shrouded or unshrouded impellers with
small blade clearances. The lack of information on blade pressure loading and
performance as a function of tip clearance presents problems to the designer.
Consequently, the impeller mechanical design is usually based on several approxi-
mations, with liberal safety factors applied. This approach results in relatively
heavy impellers with undesirably thick blades. Also, because of the uncertainty
of the effects of unshrouded impeller tip clearance on pumpperformance, close
clearances are required or larger clearances are permitted with a degradation in
pumpperformance. Shrouded impellers maybe used, but these impellers have
lower stress limits and maybe more difficult to fabricate.

The purpose of this program is to evaluate the effects of centrifugal pumpimpeller
clearances on rocket engine pumpperformance and cost. The initial task of this
program consisted of conducting a literature survey of the effects of tip clearance
on the performance of centrifugal and axial-flow pumps (and compressors). The re-
sults of the survey were used as a basis for formulating an analytical model to pre-
dict the effects of tip clearance on centrifugal pumpperformance. Analyses were
performed to determine the probable range of impeller clearance that would be used
in an unshrouded centrifugal pump, and cost variation in design, manufacture, and
test that would occur between unshrouded and shrouded impellers. An unshrouded
centrifugal J-2 oxidizer pumpwas tested in water to determine the magnitude of
performance degradation causedby an increase in impeller tip clearance. The use
of the J-2 oxidizer pumppermitted a basic comparison to be madebetween shrouded
and unshrouded impeller performances, as well as a comprehensive study of impeller
clearance on performance. Also, experimental data were obtained which were used
for correlating the results of the analytical model and to refine the model. This
final report covers all the work performed under the contract.
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TECHNICAL PROGRAM

This technical program to investigate analytically and experimentally, impeller
clearance effects on centrifugal pumps is discussed herein. The combined ana-

lytical and experimental effort was divided into the following six tasks:

A. Literature Survey

B. Performance Analysis Formulation

C. Impeller Clearance and Cost Analyses

D. Test Rig and Instrumentation Design

E. Fabrication

F. Test and Data Correlation

TASK A: LITERATURE SURVEY

A literature survey was conducted to determine the current state of the art on

the effects of tip clearance on the performance of centrifugal and axial-flow

pumps and compressors. The Rocketdyne Technical Information Center compiled

bibliographies from the North American Rockwell Technical Information Processing

System, the National Aeronautics and Space Administration accessions, and the

Defense Documentation Center. Approximately 3500 bibliographies from these

indices were reviewed. From this list, 330 reports were ordered and reviewed.

Selected applicable summaries are presented in Appendix A along with a bibli-

ography list of pertinent reports, papers, and books. Applicable reports were

utilized to formulate theories for predicting the effects of tip clearance on
pump performance.



TASK B: PERFORMANCE ANALYSIS FORMULATION

A study of the literature indicated that many changes in flow patterns occur as a

tip clearance varies in a centrifugal impeller.

Of major concern in this study was that the matllematical model developed for the

performance analysis formulation would not be so complex and cumbersome as to

limit its usefulness to the designer. As a result, the effort involved formula-

tion of a model from which a performance prediction could be made for a broad range

of centrifugal impellers. Several methods of developing a model are presented

to give the designer a better insight into the mechanics of the problems involved.

The basic performance parameters of concern when formulating a model of this type

are torque or power, head, and efficiency. These are interrelated, however, since

the change in efficiency due to tip clearance is related to the change in impeller

head and power. The tip clearance torque loss is a wasted energy and directly

affects the efficiency. Similarly, the reduction in head additionally indicates an

efficiency penalty. Torque and head effects can be derived independently and used

to predict efficiency loss due to tip clearance. Head and torque are also related

since the blade loading across an impeller blade is directly proportional to the
torque.

Flow Patterns in the Centrifugal Impeller

The complex nature of the flow structure in the centrifugal impeller with tip

clearance makes it necessary to construct simplified models from which an analysis

can be formulated. A study of the literature dealing with flow in turbomachines

with open-face rotors indicates that a combination of three major effects are

associated with tip clearance. Figure 1 presents a sketch of a cross section

of blade passage and shows these effects to be (1) secondary flow due to pressure

gradients across the flow passages, (2) leakage of the flow past the tip clearance

because of pressure differential across the blade tip, and (3) the boundary layer

"scraping" effect caused by the blades moving relative to the wall boundary layer

and scraping up fluid from it. In pumps and compressors, the leading surface of

the blade in relation to its tangential velocity is the pressure surface. Con-

versely, the trailing surface of the blade is the suction surface. Within an

impeller passage, the pressure gradient from pressure to suction surface sets up

the secondary flow pattern as shown and, across the blade tip, instigates the tip
leakage flow. The fluid vortex is created by both the clearance flow and the

boundary layer scraping. Both these phenomena are additive, and tests indicate

they may develop into a single loss core per passage (Ref. 1 through 3 ), or

several depending upon the relative strength of both. The position of the core is

dependent upon the blade velocity relative to the wall, tip clearance, and wall

boundary layer thickness. Several methods have been advanced for the calculation

of these effects for axial turbomachinery, and cascade data have been obtained

(Ref. 2, 4, and 5).

Expanding the two-dimensional concept of the flow mechanism to a simplified three-

dimensional analysis gave a flow pattern approximating that shown in Fig. 2. In-

cluded are the boundary layer scraping, tip leakage, and secondary flows coupled to
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a rotation of the impeller. It is apparent that boundary layer effects are vary-

ing degrees and dependent upon impeller rotational speed, housing curvature, flow-

rate, blade number, etc. Hamrick (Ref. S) found that the adiabatic efficiency of

an impeller tested in air was maximum at a clearance greater than the minimum

clearance tested. He explained this by indicating the scraping effect was possibly

predominant for this lightly loaded blade causing higher losses than when the

boundary layer scraping and the blade pressure differential at the greater clear-

ance matched, allowing the blades to maintain the blade pressure differential with-

out a pressure surface boundary layer buildup. At the smaller clearance, the

pressure face of the blade indicated a boundary layer buildup which could not be

bled to the suction surface because of the scraping effect. An exact method of

calculation of these effects currently does not exist and test data must be relied

upon to aid in the development of models to predict these effects.

Preliminar Z Investigations

Potential Flow Solution for Spanwise Pressure Distribution. Some of the earliest

work done on tip clearance studies was accomplished by Rains (Ref. 6 ) for axial-

flow machines. In his work he developed a potential flow solution for flow into

a slot. This allowed him to determine that the perfect fluid model (when compared

with his test data) was accurate for determining the spanwise pressure gradient for

flow into a clearance. His data also indicated that, for the large Reynolds num-

bers existent in turbomachinery, and with the ratios of tip clearance to blade

thickness commonly used (>0.07), the viscous force effect on stationary blading

can be neglected without large errors. Figure 3 presents the potential flow

model of flow through a slot and its attendant pressure gradient (Ref. 6 ).

A continuation of Rains' study indicated that with rotation, the boundary layer

scraping effect on blade spanwise pressure was of sufficient magnitude to modify

the pressure field significantly. Visual observations of a rotating disk past a

blade indicated two regions of flow in the tip clearance: one being the boundary

layer flow close to the disk and the other where the tip flow was influenced by

the free stream flow. The mathematical analogy to the boundary layer scraping was

simulated by the potential flow into a corner (Fig. 4 ). The spanwise increase

in pressure was presented as well as the model. The superposition of the slot

flow and the scraping flow were then made to determine a net torque increase on

N rotor blades. For axial turbomachinery, the total force change can be applied

at the tip of near-constant radius; however, the radial machine must take into

account the effect of radius change over the blade chord as well as the effect of

boundary layer dependency on radius. This makes the procedure much more complex

for radial machines but, with considerable effort, it could possibly be developed

further. The solution of this •approach may prove satisfactory for determining

torque change due to spanwise pressure variations caused by tip clearance leakage

and boundary layer scraping.

Methods of Deriving Torque Chan_e Due to Tip Clearance. Several general approaches
can be utilized to determine the torque change due to tip clearance. As a result,

several approaches are discussed here which were studied during the model formula-

tion task period. The torque is described generally as the force moment created by

the pressure loading along the blade. In a centrifugal impeller, the spanwise

9
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pressure gradient as well as the radial variation in pressure must be accounted

for. Present methods for the prediction of blade loading do not account for the

spanwise effects caused by tip clearance flow. This requires that the spanwise
pressure distribution be developed more fully, which was not considered to be

within the scope of the present effort. The models presently developed to determ-

ine the blade torque utilize an average pressure loading distributed spanwise over

the blade. The relative effects of this assumption can be studied when comparing
the model to test data.

Tprque by Use of a Control Volume. If we assume steady incompressable fric-
tionless flow, a force balance may be developed for the control volume of the

blade passage of a radial machine as shown below. At any station, the torque on
the machine can be equated to the pressure force exerted on the blade normal to

the area times the radius r, as shown by Fig. S.

T = f (Pp - ps) r (b-k) dr

AT = (Fp Fs )
U

"//i "/////////////////z "////////////,
xx\\\'N_ \\\\\N

\
\ \

x ,,._"P b \ ,n

• x _ _ U \ N b

ML-, I ----ih- I X {
"f///f/fl_///////////I/_'//////_/1211

Fp ,.- I Fs [

I f

_dr t

A

r

MERIDIONAL VIEW

r-

A

SECTION A-A

Figure 5. Cross Section of Impeller Passage

That torque translates a force to the fluid which can be found by force balance
to be

f Pp - PS ) r (b) dr = ('roT WU + SL (Wu - VL))r

where _T = total mass flowrate of the fluid, and mL = leakage mass flowrate.

12



W. is the relative tangential velocity of the fluid within the control volume
a_d V L is the leakage velocity relative to the blade. The mass flowrates can be
expressed in terms of velocities and areas so that

rhT = PATWu; mL = PALVL

where AT ....(b-h) dr and A L = X dr, with p being mass density

or

_T = PWu (b-h) dr; _L = OVL X dr

This gives, then,

dT = PWu2 (b-h) rdr + pV L X (WU - VL) rdr

The first term, then, is the torque directly affecting the blades, as can be seen

by letting _ go to zero. This gives the ideal torque at zero clearance. The

second term is the torque caused by the tip clearance, which is a torque loss

assuming the kinetic energy in the leakage velocity is lost in the tip clearance
vortex.

dTloss = pVL X (WU - VL) rdr

Assuming the leakage velocity is caused by the blade pressure differential from
pressure to suction side,

V L = K gV_2g_

where K is an equivalent orifice coefficient and y is the specific weight. Simi-

larly, the relative tangential velocity WU can be expressed as a function of radius

and other independent variables. Using a slip correction factor (XM) to aid inthe definition

1 CM

WU = U - CU = U - XM (U tan _B)

where C. is the absolute tangential velocity, CM is the absolute meridional velocit_
BB = th_ blade angle which is dependent on the radius.

The development of _ as a function of radius may be extended as shown or may be

defined at the convenlence of the designer. Using the above approach with the

assumption that the meridional velocity remained constant throughout the impeller,

an expression was obtained for the relative tangential velocity.
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1,V[j2 1

2
Q3

[(XM2-1) (¢z+Cr)r2+2(XH-i) (cz+6r)%trtr + qbt2rt 2]

where _ is the rotative speed in radians/second, and (_+_r) = tan B_ through the

blade passage. The subscript t refers to the reference tip of the impeller in the

flow coefficient _t and the radius rt.

The pressure differential across the blade (AP) presented above was also fitted to
a polynomial of second order such that

AP = AP (A + Br + Cr 2)
max

These parameters were substituted into the torque loss equation, and the equation

was integrated over the interval from the inlet radius to discharge radius along

the blade tip. This expression was developed for the J-2 (Mark 15) oxidizer pump.

The results indicated a torque loss occurring at the tip clearance which was so

excessive as to be unrealistic. The simplifying assumptions such as the approx-

imations of the slip correction factor, and blade angle variation may have been

too general. This approach, however, should not be entirely discarded, as further
development may result in a better model.

Hethod of Determining Energy Loss in the Tip Clearance With Boundary Layer. The

effect of the boundary layer is difficult to assess in the centrifugal impeller
operating with a tip clearance, due to the complex three-dimensional effects.

There are two distinct and separate cases which should be examined when the bound-

ary layer is taken into account in the analysis of tip clearance flow. The first

case is that of a large boundary layer such that the boundary layer thickness 6

is larger than the tip clearance _ or _/_> i. This was the case where boundary
layer scraping takes place, adding a component to the vortex or loss core caused

by impeller tip leakage, as previously discussed. The second case where boundary

layer should be accounted for is where the boundary layer was large enough to af-

fect the velocity distribution of the tip clearance flow due to blade pressure

differential. Let the kinetic energy of the tip clearance flow be assumed as

totally lost due to its downstream dissipation with in the tip vortex core. The
kinetic energy within an incremental flow area will be defined as

2

&E = _ V L /2g

14



Where_, is the tip leakage weight flow, with V. being the tip leakage velocity asLshown in Fig. 6. The weight flow can be shownto be

= pgVLdydr

if y is the spanwise distance above the housing. The velocity U is the housing
velocity relative to the blade.

"/IIIIII//I/I////_ "/_//IIII/II//III/i
/.

PS Pp

III/IIIIIIIIII/IIIIIIIIII/ "IIIIII "//I

U

Figure 6. Tip Leakage Flow With Boundary Layer

The leakage velocity profile-due to blade pressure differential will be assumed

to be independent of the spanwise component y, and will be expressed as a function
of pressure differential

The velocity distribution will be expressed as

where N is an integer value.

V L = Vp + V B = K

The net leakage velocity is then

15



and the net energy loss in the leakage fluid is
3

AE _ fl rt

Letting the absolute fluid velocity CU be defined by a slip function

U L0r

Cu-_- _

with _ being the angular velocity,

The equation is solved by integration of the expanded function, assuming AP inde-
pendent of y and the boundary layer buildup not dependent upon the radius. This

latter assumption may be valid since the fluid velocity C. increases in proportion

to the boundary layer growth length between blades. The }irst integration results
in the following:

2 r o -_- _0r l -_ _ +

2K p mr 1 - _ N + 1 + _ N + 2 +

_r I - _ N+-----T+_-
_2 N + 2 t3 --T--N3

The final integration can be accomplished by numerical methods. The differential

pressure P is defined by the polynomial,

AP = £Pmax (A + Br + Cr 2 + ...)

The results are then tied to the boundary layer thickness 6, which has not been

developed. The boundary layer thickness would depend upon the blade spacing and

relative rotational effects since the blade tends to destroy the boundary layer
as it passes past a point on the housing.

Hethod of Determining Blade Loading Increase Due to Blade Scraping of the

Boundary Layer. The boundary layer affects the blade spanwise pressure distribu-

tion at the blade tip for the case where the boundary layer thickness 6 is greater

than the clearance i (6 > _). This is due to the relative boundary layer velocity

16



impinging on the blade tip. The velocity relative to the blade goes from WU at
the point where y/_ = 1 to the value of CU (_/_)I/N + WUat the point where
y/_ = _/6 (Fig. 7).

X

P- P+_.
," Z

/

I / \\

"

I

U-

Wu

6

Figure 7. Blade Pressure Rise Due to Boundary

Layer Scraping

The pressure rise then is due to the added velocity component CU (y/6)i/N over
the blade tip. Letting the pressure variation

so that

P
Y = 2-g WU + CU

P = 2-g CU 2 + 2 CU WU

the pressure then is integrated over the blade spanwise interval of influence of

y = _ to 6 and the meridional distance along the blade m at a radius r to determine

the torque caused by the increased blade load. This,then, gives

AT = f_ f _ r dy dm
m o

17



or

1/
AT _ g T2g d m

o
( u2( )2JN+2cu, 0( )lJ)rd dm

Substituting for WU = U - CU and CU = U/G

6m2 T 1 2

_T= _- _ m° +V '- V)_J )r

Since y is not dependent on the radius r

AT- 6_2 1 N 2
2g N+--'2+

o

= mr/G; WU = _r (1 - l/G)

d( )dm

1

NI _/6
N%-I r3dm

6m 2
AT-

2g m _ --- + _ _%-_- 1 -
O

_) l1 -(x)N+l/N/lr3dm

This represents the additional torque added to the blade due to boundary layer

scraping. The radius of the blade tip r for a given impeller can be stated as

a function of the meridional length of the blade and can be integrated. This

is assuming that the boundary layer is considered independent of the radius,

which is not necessarily valid at this point, as stated in the previous section.

Under this assumption, however, and assuming the radius as a function of the
meridional length, r = a + bm

K
AT =

4b

41 m= mT
[(a + bin)Jm=o

where

18



Model Formulation to Determine Torque and Head Change
Due to Tip Clearance

Torque Loss Due to Leakage Momentum. A loss in torque can be calculated by

the momentum force caused by the leakage mass flowrate mL moving through the

clearance space k at a velocity VL, or

AF = _LVL

If the mass flowrate is determined by continuity mL =
area Xdr, the incremental torque is then

2

dt L = pXV L rdr

P%VLdr for the incremental

If the leakage velocity is defined as the blade loading AP by use of an orifice
equation

VL = K q7-2-2_,

TL = 2K2% /AP rdr

The differential blade pressure AP can be formed by the blade loading program of

Appendix B, and can be expressed as a function of radius in polynomial form.

AP = AP (A+Br+Cr 2 + ...)
max

The resultant integral was given as

TL = 2K2_ frlt APMAx(A+Br+Cr2+...)rdr

and this was readily solved to yield

A 2) B 3 3. C. 4 4_ . )TL = 2K2% APMA x (_ (rt2-rl +_(r t -r I J+_(r t -r I _. .

By the assumption that the spanwise pressure gradient was negligible and that the

blade pressure differential can be expressed as an average across the span, the

blade torque can be found. This was done by integrating the blade loading across

the area bdr. The span of the blade b is variable, but should be expressible as
a function of radius r.
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The assumption of a constant meridional velocity throughout the impeller givesthe relation

bt rtb -

This leads to blade torque equation

_r_tTB = bt r t f_Pdri

Expressing the pressure as before and integrating the solution for torque is

B 2 C 3 _
TB=bt r t APbIAX(A(r t - rl) + _ (r t - r12) + _-(r t r13) + ...)

The leakage clearance tends to reduce the blading torque by movementof fluid
across the clearance space.

TT = TB - TL

Referencing the blading torque TB as the torque expendedby the machine at zero
clearance, the ratio of the torque developed by the blade with clearance T C to
that with zero clearance T is

O

TC T L

T o TB

The resultant equation is then

r

__Q 2K_X
T = 1
o b

2_ (rtl I + 4 (i r 4

•-Tr2 (i - rll+ Bt rt/ 2rt

The equation was solved for the Mark 4 oxidizer impeller as a test case for poly-

nomial curve fits of the pressure from order 2 to 4 with the same results within

4 percent. The major factor here, however, was that the defining polynomial of

the blade pressure differential must be accurate over the interval r to r . For

additional checks of the equation, an impeller tested and reported, _y Woo_, et.al.

(Ref. 7 ) was checked and found to agree well with the model. The comparison of
test data with the model is presented in Fig. 8.
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Pump Head Rise as Affected by Impeller Tip Clearance Flow Based Upon Impeller

Head Coefficient. The impeller head-flow characteristic is set by the impeller

design geometry, namely blade angle distribution, radius ratio, solidity, etc. The

delivered flow from a pump is not necessarily the same as that found flowing through

the impeller. This is caused by the recirculation of the leakage flow around the

impeller. With shrouded impellers, it is in the form of seal leakage and, with

open-faced impellers, it is caused by the tip clearance flow recirculation. For

small shrouded impellers or impellers with relatively large tip clearances, this

recirculation flow becomes very large and must be taken into account by the de-

signer during the analysis and design. The flow causes the impeller to operate at
a flow different than delivered and will result in a shift in the head-flow

performance.

The leakage flow is a function of the clearance area, the pump pressure rise, and

the blockage. The delivered thr0ughflow of an impeller is QD = CMA = CM2_rAbA,

where bA is the average blade height and rA is the average radius (Fig. 9). The

Taking the ratio of flows,leakage flow is then VL(2_rA)% A.

QL VL (2_rA) %A VU %A
m

CM (2_rA) bA CM bA

f

b.

CM

Figure 9. Heridional View of Impeller

The leakage velocity V L can be expressed as

vL : Kv TgAH

where the impeller head rise

2
Ut

AH = _D g

22



• _ _ : _?_ _:_ :_!!i::̧

with _D being the pump delivered head coefficient and U t the impeller tip velocity,
then

V L = KU t

Defining the impeller flow coefficient cD = CM/Ut' we have

QL K _

QD _D bA

with subscripts D and L defining delivered and leakage flow, respectively. The

leakage flow QL adds to the design flow QD to determine the true impeller flow
QT' or

dPT QT QL + QD K /_D

_DD = _DD = QD = 1 + dpD bA

If a pump head-flow characteristic is known, the impeller head coefficient _ may

be represented as a linear function of the flow coefficient so that _ = A+B_ or

_D = A+B_D, where B is the slope of the head-flow curve. This can be used on most

pumps for fairly large intervals of flow with sufficient accuracy (Fig. i0). The

resultant head coefficient with leakage flow added to impeller throughflow is then

_C = A + B_D _T/_ n so

Now, since A = _D - B_D'

B%K

_D

Since the zero clearance head coefficient

_ equals the delivered head coefficient, the ratio of the head coefficients is

_C BIK
Figure I0.

| i

_D _T

Head Shift Due to Tip Clearance

Leakage Flow Increase

The test data of two pumps were used to test the validity of the above equation.

The results are presented in Fig. ii. The results showed good agreement. The ori-

fice factor K, determined from the test data, varies from 0.74 for the S-4 oxidizer

pump to 0.702 for Woods (Ref. 7) test pump. The correlation of this parameter may

be dependent upon a function such as the eye-to-tip radius ratios which were 0.65

and 0.59 for the respective pumps, or for the head coefficients which were 0.449

and 0.302, respectively. This method does indicate a possible method for determin-

ation of the head reduction due to a tip clearance increase.
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Pump Head Rise as Affected by Impeller Tip Clearance Flow Based Upon Impeller
Blade Loading. In the previous section, the impeller tip leakage flow was described

as a function of the total head rise of the pump. This method has merit because

the individual blade loading determines the resultant pump head rise. It is then

of interest to approach the tip leakage flow from the point of determining a leak-

age through a space (X)resulting from a blade pressure differential (AP) and in-

tegrated over the meridional length of the blade tip (Fig. 12).

Figure 12. Heridional View of Impeller

Defining a leakage flow across the blade tip as being a function of meridional

increment dm, the clearance _, and the leakage velocity defined by the blade
loading, we have

QL = VLA = K _ _dm

Blade loading AP can be defined as a function of m in polynomial form
AP = APma x (A+Bm+Cm2+...) or = AP (H) so that

max

mT

foQL = KX _ AP ¢_dmmax

+Bm+Cm 2 dm =

0 0

v_-l-- dm

The solution of the integral is available and the results can be represented as
a dimensionless form factor M', so that

QL = KX _r_ma x V/_7_ M"

The form factor represents the distribution of the blade loading in the above

equation. The delivered flow, QD = _D Ut 2_rt bt"
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]'he ratio of the leakage flow to delivered flow becomes

QL KX A_ma x 2/27_/9M" _L

_D = (#D U) 2_rt bt = _7

Leakage flow adds to the delivered flow to determine the true impeller flow QT for
a given cl_arance

QT QL + QD K% _max _ M"

_D = QD =. 1 + (_oU) 2_rt bt

If't_C = A+B(q_ L + CD ) and U2D = A+B_D

_C = A+B + max
_DUt 2_r t bt _D

or, with _D being or zero clearance reference head coefficient _o'

_C = + __B_D (K_ _P/_P----2/_/0M')max_o 1 _D 2W_DUt rt bt

Where B is the slope of the reference head flow coefficient curve, b-, r-, and U
E E . t

is the impeller tip blade height, radius, and tangential velocity, respectively.

Efficiency Correlation With the Head and Power Change Due to Tip Clearance. The

pump efficiency that is of interest to this application is the overall efficiency,

which is defined as the energy increase of the delivered flow divided by the power

input to the pump. The models presently formulated were developed to predict the

effective torque or power change required due to tip clearance, and the head or

energy level reduction due to tip clearance effect. The combination of a torque

and head prediction models can then result in a prediction of efficiency.

If the reference efficiency is defined as

Y QoHo

n O - BHPo

where r is the specific weight, and the efficiency at a tip clearance is

Y QoHc

D C - BHPc
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Whenthe comparison is madeat the samed_livered flowrate, the ratio of efficiencies
can be found as

_0 HO BHPc

n C HC BHP o

or for comparable pump speeds

no H0 TC

nC HC TO

where the torque and head ratios are given by the models developed. This approach

was developed to predict the efficiency ratio and was used in the data correlation.
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TASKC: IMPELLERCLEARANCEANDCOSTANALYSIS

The hydrodynamic analysis and mechanical design of a liquid oxygen pumpwere com-
pleted for the following nominal operating conditions:

Flow, gpm (m3/s) = 5000 (0.3155)

Head, feet (m) = 3100 (944.88)

NPSH,feet (m) = 30 (9.144)

The design used state-of-the-art practice in both the hydrodynamic and mechanical
design areas, and was sufficiently complete for obtaining impeller clearance and
cost analysis. Two impeller configurations (shrouded and unshrouded) of the basic
design were priced and found to be approximately the same.

Hydrodynamic Design

To meet the nominal operating conditions (see above), the pump utilizes a high

suction specific speed inducer followed by a centrifugal impeller. Shrouded and

unshrouded impeller configurations were designed and are shown in Fig. 13. Current

state of the art permits a suction specific speed of 45,000 to be obtained by the

inducer; therefore, a pump speed of 8150 rpm (853.5 rad/s) was selected. The in-

ducer hub was tapered while the outside diameter was cylindrical for half the

axial length, then tapered to a decreased diameter. The high suction specific

speed used requires low inducer inlet velocities and large inlet diameters. The

inducer has an inlet flow coefficient of approximately 0.095 and a head coefficient

of approximately 0.12. Tapering of the inducer outside diameter at the discharge

resulted in a better impeller eye-to-tip diameter ratio and increased turning

radius for the impeller. The impeller was approximately 11.8 inches (0.30 m) in

diameter, with an impeller discharge flow coefficient of 0.II. Five full and five

partial vanes were used with a discharge blade angle of 32 degrees (0.557 rad) from

tangential. A scroll collector was designed tO provide minimum radial loads on

the pump bearings. Also, a conical diffuser was used to ensure high pump effic-

iency. The axial thrust was controlled by the wear ring on the impeller rear

shroud.

Stress Analysis

The stress analysis of the LO 2 pump design is summarized in Fig. 14. Both the

deflected and undeflected positions of the volute inner walls relative to the

impeller are shown. The deflections calculated are due to pressure loads within

the volute and to centrifugal loads on the impeller. The differential thermal

contractions of the parts were not included because the parts were assumed to

be made of the same material (Tens-50) and were of uniform temperature. The oper-

ating pressures and design parameters are also noted in Fig. 14. The volute design

as shown was not desirable for the unshrouded impeller application because of the

relatively large axial deflection of the volute front wall from the impeller blade
tip (approximately 0.010 inch (0.0254 cm)).
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The design was modified to reduce the axial deflection of the volute front wall
from the impeller blade tip. By increasing the thickness of the volute walls and

structural members, a 0.003-inch (0.00762 cm) maximum relative axial deflection

of the volute front wall with respect to the impeller blade tip was obtained.

This stress analysis investigation indicated that the volute front wall, with its

box-shaped structural ring section, must be increased in stiffness by about 45

percent. A sketch of the new section superimposed on the original section is shown

in Fig. 15. This figure shows the approximate radial increase of 0.75 inch (1.905
cm) in OD of the box-shaped structure and a smaller cored section.

Clearance Analysis

For a given pump design, the hardware and manufacturing costs should be lower if

increased tip clearance is permitted. However, in actual practice the unshrouded

impeller pump designs are generally manufactured with small blade tip and housing

clearances to maintain efficiency. To obtain the desired close clearance, pro-

files are machined on a pattern from which the impeller and housing contours are

then duplicated. The design impeller tip clearance at assembly is then obtained

by the use of shims. To maintain impeller tip clearance during pump operation,

axial and radial thrust, thermal and pressure deflections, mechanical dynamics of

the pump rotor, and shaft deflections due to cavitation-induced radial loads are

some of the important factors that must be considered in a proper design. Increased

clearances or changes in pump design may be required to allow for all these design
factors.

If the engine system is found to be less efficient and a larger (or more efficient)

pump drive system is required, the net effect of the large drive system on engine

performance should be determined. This net effect could be related through engine

thrust and specific impulse (Is) of the vehicle and, in turn, to the vehicle pay-

load. Some representative exchange factors for a gas generator cycle engine with

an LO 2 pump in the same general class as the one under study (J-2 LO 2 pump) aregiven below:

I. An increase of 1.0 percent _or example, from 80.0 to 81.0 percent) in

LO 2 pump efficiency yields a +0.92-percent change in engine thrust.

2. An increase of 1.0 percent (for example, from 80.0 to 81.0 percent) in

LO2 pump efficiency yields a +0.082-second change in engine I
S"

3. An increase of 1.0 percent in LO 2 pump efficiency for the six J-2 engines

on the S-II and S-IVB stages of the Saturn V will change the payload by
about 315 pounds.

Cost Analysis

The liquid oxygen pump design cost analysis was completed by Rocketdyne Manufactur-

ing Planning. Two configurations (shrouded and unshrouded impellers) of the basic

design were priced on the basis of one end item. Tables 1 and 2 list the manu-

facturing and material cost estimates for both the shrouded and unshrouded LO 2
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TABLE 1. MANUFACTURING AND MATERIAL COST ESTIMATES

FOR SHROUDED LO 2 PUMP ASSEMBLY

Labor

Hours

Manufacturing

Fabrication 2324

Tooling

Basic 510

Maintenance 186

Tool Engineer 50

Subtotal Tooling 746

Manufacturing Services

Manufacturing Support 220

Manufacturing Engineer 24____5

Subtotal Manufacturing Services 465

Material

Nonproductive

Productive

Vendor Tooling

Total 3535

Material

Dollars

1,670

1,670

12,305

33,150

47,125

TABLE 2. MANUFACTURING AND MATERIAL COST ESTIMATES

FOR UNSHROUDED LO 2 PUMP ASSEMBLY

Manufacturing

Fabrication

Tooling

Basic

Maintenance

Tool Engineer

Subtotal Tooling

Manufacturing Services

Manufacturing Support

Manufacturing Engineer

Subtotal Manufacturing Services

Material

Nonproductive
Productive

Vendor Tooling

Total

Labor

Hours

2366

510

189

5__ 0

749

473

3588

Material

Dollars

1,678

1,678

12,067

33t150

46,895
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pumps, respectively. Tables 3 and 4 list the cost analysis breakdown for the
various pumpcomponentparts for both the shrouded and unshrouded pumps, respectively.
The cost analysis included fabrication, tooling, inspection, and assembly (under
clean room conditions). The cost of the unshrouded and shrouded impeller configura-
tions was found to be approximately the same(_$50,000).

The cost of the modified (thickened) volute increased the cost of the pumponly a
small amount (only the cost of the additional material required) and, therefore,
did not affect the overall pumpcosts.
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TAB LE 3- COST ANALYSIS BREAKDOWN FOR COMPONENTS OF SHROUDED

LO 2 PUMP ASSEHBLY

Part Number and Part Name

AP70-126-3

-5

-7

-9

-15

-33

-395

-435

-45

-47

-495

-535

'55S

-59

-65

-67

-69

-73

-75

-77

-I05

-113

-i15

-117

-123

-125

-127

-135

-137

-137A

-149

-1655

-1675

Spinner
Shaft

Inducer

Liner

Housing
Volute

Spacer

Impeller
Pin

Shaft

Seal

Seal

Re t ainer

Retainer

Spacer
Shaft

Retainer

Spacer

Plate

Ring

Washer

Aft Curvic Coupling

Aft Mating Ring
Seal

Retainer

Sleeve

Seal Housing
Cove r

Manifold Housing

Manifold Housing Assembly

Manifold Tubing
Seal

Seal

Quantity

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

3

1

1

3

1

1

Total

Fabrication

Hours

4O

46

461

28

125

202

45

107

5

126

13

15

33

29

24

32

33

14

21

28

4

139

48

45

18

41

28

16

40

116

16

14

42

Material

Do 11ars
Vendor Tooling

Dollars

7

54

IIi0

634

263

1600

15

150

2

371

4

iii

14 "

23

36

7

39

27

35

238

4

259

238

43

35

475

35

9

137

IIi

134

20,000

12,000



Part Numberand Part Name

AP70-126- PumpAssembly
-17 Seal
-19 Seal
-5 7 Bearing
-63 Spring
-85 Seal
-87 Seal
-89 Seal
-93 Seal
-95 Seal
-103 Seal
-107 Nut
-119 Seal
-129 Spring
-133 Seal Assembly

Total Shrouded PumpAssembly

*Purchased Part

TABLE 3. (Concluded)

Total
Fabrication

Hours

330
pp*

Pp*

Quantity

1
1
1
4
2
1
2
2
1
1
1
1
1
1
4

2,324

_laterial
Dollars

250
275
23

500
1500
I12
68
80
85
38
4

1500
250

1400

12,305

Vehdor Tooling
Dollars

75
75

500

500

33,150
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TABLE
4. COST _ALYSIS BREAKDOI_ FOR COMPONENTS OF UNSHROUDED

LO 2 PUMP ASSEMBLY

Part Number and Part Name

Spinner
Shaft

Inducer

Liner

Housing

Housing Assembly
Volute

Spacer

Impeller
Pin

Main Shaft

Seal, Cover
Seal

Retainer

Retainer

Spacer

Shaft

Retainer

Spacer

Plate

Ring

_asher

Aft Curvic Coupling

Aft Mating Ring
Seal

Retainer

Sleeve

Seal Housing
Cover

Manifold Housing

Manifold Housing Assembly

Manifold Tubing

Pump Assembly

AP70-126-3

-5

-7

-9

-iS

-15A

-33A

-39

-43

-45

-47

-49

-53

-55

-59

-65

-67

-69

-73

-75

-77

-105

-113

-115

-117

-123

-125

-127

-135

-137

-137A

-149

Quantity

1

1

1

1

1

1

1

1

1

1

1

1

I

1

1

1

1

1

2

1

1

1

1

1

1

1

1

1

3

1

1

3

1

Total

Fabri cation

Hours

40

46

461

28

125

8

202

47

135

5

126

15

16

33

29

24

32

33

14

21

28

4

139

48

45

18

41

28

18

4O

116

16

385

Material

Do 11ars

7

54

iii0

634

263

1600

22

150

2

371

4

iii

14

23

36

7

39

27

35

238

4

2S9

238

43

35

475

35

9

137

Vendor Tooling
Dollars

20,000

12,000



TABLE 4. (Concluded)
Oo

Part Number and Part Name

AP70-126-17

-19

-57

-63

-85

-87

-89 •

-93

-95

-103

-107

Seal

Seal

Bearing

Spring

Seal

Seal

Seal

Seal

Seal

Seal

Nut

Quan ti ty

Total

Fabrication

Hours

1

1

4

2

1

2

2

1

1

1

1

pP*

Material

Dollars

250

275

23

500

1500

112

68

80

85

38

4
-119 Seal

-129 Spring

-133 Seal Assembly

Total Unshrouded Pump Assembly

Ir

Pp*

2366

1500

250

1400

12,067

*Purchased Part

Vendor Tooling
Dollars

75

75

5OO

5OO

33,150



TASKD: TESTRIGANDINSTRUMENTATIONDESIGN

The test rig and instrumentation design using an existing J-2 oxidizer pumpwas
completed. Detailed analysis and design of all new and modified components
necessary to test the pumpat the PumpCalibration Facility were completed. The
design layout included removal of the impeller front shroud, and incorporating
a pressure scanning valve located in the pumpshaft. Static pressure taps were
located at various stations along the impeller blades to obtain blade loading
data. A schematic of the "Scanivalve" test setup is shown in Fig. 16. The
instrumentation design also incorporated provision for measuring wall static pres-

sures and all parameters required to obtain the overall performance of the test pump.

Test Rig Design

A standard J-2 oxidizer pump and test adaptor was modified to obtain the pres-

sure differential across the impeller tip at various stations along the vanes.
Two approaches were considered and were as follows:

I. Use of a pressure scanning valve (Scanivalve Company, San Diego,

California) located in the impeller shaft

2. Use of miniature transducers mounted on the impeller blades or in the
impeller back shroud

The Scanivalve system was selected over the miniature transducers for obtaining

the blade pressure data. The successful results using the Scanivalve system

under NASA contract NAS3-I1216 "Study of Inducer Load and Stress", and the need

for increasing the number of measurements led to the Scanivalve selection.

Scanivalve Design. A standard model 48-J Scanivalve was selected and modified

to meet the test conditions and program requirements. The modifications were
as follows:

I. Use of stabilized O-ring sets to prevent implosion of the sensing seals

2. Installation of a 400-cycle drive motor with the required gear-train
drive

3. Installation of a Statham pressure transducer

4. Purge port machined into the rotating valve

Because of the increased operating and purge pressures of up to S00 psi
(413.7 N/cm2), the rotating valve seals were modified by use of internal collars

to prevent implosion of the O-rings. The use of a 400-cycle drive motor (Model

JMC-II5-400) permitted the Scanivalve to be rotated up to 6000 rpm (628.4 rad/sec).

The gear-train drive permitted the valve to scan at the desired 1 rpm (0.1047

rad/sec). The Statham pressure transducer (Model PA 208TC-IM-350) was installed

in the Scanivalve to measure the selected blade pressures from the pressure-
sensing tubes.
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Blade pressure measurements selected included five locations each on both the

suction and pressure surfaces along two of the tip and mean streamlines. These

20 pressure taps were connected to 0.040-inch (0.1016 cm) tubing which, in turn,

were connected to the Scanivalve. To ensure that the tubing contained GN2 only

prior to pressure measurement, the Scanivalve rotating valve was modified to

permit purging (Fig. 17 ). The purge port was located to permit tube purging

when the pressure transducer measured a blank tap. When the Scanivalve obtained

a blade pressure measurement, a blank tap was purged. With this Scanivalve

purge sequence, purged GN2 did not pass through the. impeller passages when the
blade pressure measurement was being recorded.

Impeller Modification. Both the J-2 oxidizer impeller (P/N 456293) and the J-2S

oxidizer impeller (P/N 460422) were stress analyzed to determine the allowable

speed when the front shrouds were removed. The allowable operating speeds were

reduced primarily due to increased vane pressure bending stresses. The results

showed that the J-2S impeller permitted higher operating speeds compared to the

J-2 impeller because of increased material properties. The allowable operating

speeds for the shroudless impellers for minimum and typical material properties
and vane thicknesses are summarized below:

Minimum Material/
Minimum Vane

J-2 impeller allowable rpm (rad/sec)

J-2S impeller allowable rpm (rad/sec)

so90 (s33.1)

6750 (706.9)

Typical Material/

Typical Vane

5640 (590.7)

7300 (764.6)

From these results, the unshrouded J-2S impeller was selected for use in the J-2

oxidizer pump. The locations of the pressure taps on the impeller vanes were

obtained and are shown in Fig. 18.

Design Layout. The mechanical and instrumentation design layout is shown in
Fig. 19 and consists of the following elements:

i. Modified J-2 oxidizer pump

2. Modified J-2 oxidizer pump test adaptor

3. Quill shaft with shear neck

4. Torquemeter

5. Mount assembly

Detailed layouts prescribing the static pressure taps along the impeller front and

rear housings profile were selected. Locations are shown in Fig. 20 and 21. These

impeller front taps were located at the same radii as the impeller blade tip pres-

sure taps (Fig. 18).
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Figure 18. J-2 Oxidizer Pump Impeller Front Shroud Removed_
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All detailed drawings were completed. The stackup assembly drawing (Fig. 22)

was completed to verify the assembly and mechanical design of the component

parts. The parts requirements list is also shown in Appendix C.

Instrumentation Requirements. Instrumentation was designed to obtain all per-

tinent experimental data required to correlate with and refine the analytical

model. These measurements included wall static pressures, blade static pressures

at various stations along the vanes, and the various pump parameters necessary
to obtain the overall pump performance. The instrumentation list is shown on
Table 5.
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TABLE 5. INSTRUMENTATION LIST

Pressure, psig (N/cm2)

PSI' Inducer Inlet

PS2' Inducer Discharge

PS3' Impeller Intermediate, Station 1

PS4' Impeller Intermediate, Station 2

PS5' Impeller Intermediate, Station 3

PS6' Impeller Intermediate, Station 4

PS7' Impeller Intermediate, Station 5

PS8' Impeller Discharge, Front No. 1

PS9' Impeller Discharge, Front No. 2

PSI0' Impeller Discharge, Back

PSI1' Volute Discharge

AP, Pump AP (PSI1 PSI )

PSI2' Cavity

PS Scanivalve

Ptl4' Probe Total

AP Probe Static AP
13'

Temperature, F (K_

TI, Inlet Water

Tt, Tank Water

TB, Bearing Discharge Oil

Flow, gpm (cm2/s)

QI' Inlet Water

Q2' Inlet Water

Speed, rpm (rad/sec)

IN1 , Pump

T0rque, in-lb (cm-N)

m, Pump

Range

-15 to +35 (-10.3 to 24.1)

0 to 150 (0 to 103.4)

0 to 200 (0 to 137.9)

0 to 200 (0 to 137.9)

0 to 300 (0 to 206.8)

0 to 300 (0 to 206.8)

0 to 400 (0 to 275.8)

0 to 500 (0 to 344.7)

0 to 500 (0 to 344.7)

0 to 500 (0 to 344.7)

0 to 500 (0 to 344.7)

0 to 500 (0 to 344.7)

0 to 150 (0 to 103.4)

0 to S00 (0 to 344.7)

0 to 500 (0 to 344.7)

-I00 to I00 (-68.9 to 68.9)

40 to 140 (277.6 to 333.2)

40 to 140 (277.6 to 333.2)

50 to 150 (283.2 to 338.7)

0 to 2500 (0 to 15,770)

0 to 2500 (0 to 15,770)

3976-5038 (416 -527)

0 to 15,000 (0 to 169,477)

Readout

DIGR

B rus ch

I

DIGR

B rus ch

i
Gage

I

Brown

Monitor

Brus ch

Brown

EPUT

EPUT

Brown
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TABLE5. (Concluded)

Impeller Movement, inches (cm)

DI, Bently Radial (Inducer)

D2, Bently Radial (Inducer)

D3, Bently Axial (Impeller Front)

D4' Bently Axial (Impeller Front)

DS, Bently Axial (Impeller Back)

D6, Bently Axial (Impeller Back)

Range

0.050 nominal (0.127)

Readout

Monitor
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TASK E: FABRICATION

Fabrication included all effort necessary to modify and instrument the J-2 oxidizer

pump and test rig defined in Task D. A J-2S impeller casting (CP/N 460422.-3) was

ordered and modified by removal of its front shroud. The Scanivalve system was

installed, and all required parts were fabricated or purchased. The blade pres-

sure taps and pressure-sensing tubes were installed to the Scanivalve assembly.
Required drive, instrumentation, and mounting elements were fabricated and all

components were assembled.

Impeller Fabrication

The fabrication of the impeller was divided into two steps. The first step was

machining the drive spline, rear labyrinth seal, mounting pilots, clamping surfaces,

and the final contour after removal of the shroud. The second step was positioning

of the instrumentation blade pressure holes on the suction and pressure surfaces,

and routing the pressure-sensing tubing _rom the blades through the impeller hub
and main shaft to the Scanivalve.

Machining of the drive spline, mounting pilots and clamping surfaces were comple-

ted. The front shroud was removed using a pattern that followed the blade tip

contour. The blade tips were handworked and the tip fillets removed. The blade

surfaces were then shot-peened and the rear labyrinth seal surface machined. Fig-

ure 23 shows the unshrouded impeller and a typical production shrouded J-2 oxidizer
impeller.

Preliminary tube installation and bending evaluation tests were completed using

aluminumU-channels. Type 321 annealed CRES tubing of 0.040-inch (0.1016 cm) OD

with 0.00S-inch (0.0127 cm) wall thickness was selected from the results of these

tests. Machining of the holes and channels for the pressure tubes were completed
followed by dynamic balancing.

The 20 pressure tubes for recording blade pressures were installed and attached

into the holes and channels in the impeller blades with epoxy (Epoxylite 211).

Epoxylite 211 was selected because of the highly successful results obtained with

this epoxy under the Mark i0 (F-I) impeller strain gage test program.

Figures 24 through 26 show the pressure tube installation on the blade suction

side, blade pressure side, and rear shroud of the test impeller, respectively.

The epoxy on both the suction and pressure surfaces of the instrumented impeller
was faired to provide smooth hydrodynamic flow surfaces.

Other Components

The pump inlet assembly was machined with one set of static pressure taps installed.

The part was hard-flash anodized and is shown in Fig. 27.

One Fabricast slip-ring assembly (Fig. 28), type 1274 was purchased with eight

low-noise slip rings (four brushes per ring) for 5000 rpm (523.5 rad/_ service.

This slip-ring assembly was used to transmit blade pressure data, and power to
the Scanivalve electric motor.
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Figure 23. Shrouded and UnshroudedJ-2S Oxidizer Impellers

IXY92-8/IO/70-CIB



1XYS5- II/2/70-CIB

Figure 24. Impeller Pressure Tube Installation (Suction Side)
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Figure 26.

IXY55-11/2/70-CIA

Rear View of Impeller Showing Epoxyed Pressure Tubes (20 Each)



Figure 27. Pump Inlet Assembly

IXY52-12/4/70-CIB
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Figure 28. Slip-Ring Assembly

ixY52-12/4/7o-ciE
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One Scanivalve assembly (Fig. 29) was obtained with the purge modification de-

scribed in Task D. The assembly also shows the sleeve assembly. Installed in

the assembly is the electric motor and drive train and the pressure transducer.

As existing torquemeter shaft was modified by reducing its shaft diameter from

1.394 inches (3.541 cm) to 1.196 inches (3.038 cm) to increase the operating range
of the torquemeter.

An existing pump test adaptor was obtained from the Tooling Department and modi-

fied for this program. All other parts required for the assembly were fabricated
or purchased.

Buildup of Test Pump

The main shaft was installed into the pump volute and test adaptor. Installation

of the instrumented impeller was accomplished by snaking the pressure tubes through

the main shaft. The tube ends are shown in Fig. 30 protruding through the aft end
of the main shaft.

Installation of the Scanivalve assembly into the main drive shaft was then com-

pleted. The impeller blade pressure tubes were leak pressure checked prior to

sealing of the aft end of the main drive shaft. Installation of the slip-ring

assembly onto the main shaft was completed. The wire leads for both the Scani-

valve electric motor and pressure transducer signal were also attached to the

slip-ring assembly. Figures 31 and 32 .show the sealed aft end of the pump test
assembly. The pump inlet was pressurized and both Scanivalve electric motor and

pressure transducer were successfully statically checked out.

The inducer was mounted on the drive shaft (Fig. 33), and then the pump inlet was

installed onto the pump assembly with the impeller clearance set at 0.015 inch

(0.0381 cm). Figure 34shows the inlet view of the completed assembly. The pump

test assembly was then shipped to the pump calibration test facility for installa-
tion and testing.
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IXYS2-12/4/70-CIA
Figure 29. Scanivalve Assembly



Figure 30.

IXY52-12/4/70-CID

Impeller Pressure Tubes Protruding Through
Aft Endof Main Shaft
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IXY52-12/4/70-CIC

Figure 33. Inducer and Impeller Installed on Drive Shaft
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TASK F: TEST AND DATA CORRELATION

The experimental test program was conducted at the Pump Calibration Facility in

Canoga Park. Four impeller clearance magnitudes were tested using a J-2 oxidizer

unshrouded impeller. The test program was completed successfully, but required
two rebuilds because of the pump adapter bearing failures.

Pump Calibration Facility

The experimental program was conducted at the Pump Calibration Facility located

at Canoga Park, California. The pump drive consists of a 1200-rpm (125.6 rad/s)

reversible, synchronous, electrical motor rated at 4000 horsepower (2984 kw).

The 4000-horsepower (2984 kw) gearbox consists of two output shafts, one capable

of producing speeds of 3976 rpm (416.29 rad/s) and 5038 rpm (527.49 rad/s), which

was utilized for this test program. The Yee-type torquemeter (torque as a function

of angular twist) is placed between the gearbox and pump mounting pedestal.

Figure 35 shows the schematic of the drive system and flow loop. Water is supplied
by an 8000-gallon (30.28 m 3) tank. A heat exchanger, located adjacent to the test

tank, maintains a constant fluid temperature of approximately 75 F (297.04 K) during"

tests. The test tank is rated at 150 psi (!03.42 N/cm 2) and has a vacuum capability

of about 28.5 inches of mercury (9.624 N/cm z) vacuum. The inlet ducting consists

of 8-inch (20.32 cm) schedule-40 steel piping, and the discharge loop consists of

6-inch (15.24 cm) schedule-120 steel piping rated at 2000 psi (1378.9 N/cm2).

Pump speed is measured by a magnetic pickup of a 60-tooth gear with the data recorded

on a Berkley Counter. Flow measurements are obtained by both magnetic- and turbine-

type flowmeters located in series in the inlet loop. A removable, full-flow,

stainless-steel, 40-micron (0.00004 m) filter is also located in the inlet duct.

Torque measurements are obtained by the Yee Torque-X-Ducer system and recorded

on Brown charts. Inlet and discharge pressures are obtained by direct pneumatic

Foxboro and Brown Wiancko carrier systems. Fluid temperatures are obtained by

_linneapolis Honeywell platinum resistance bulbs, and are recorded on Brown recorders.

The facility instrumentation and control room is air conditioned and adjacent to the

test cell. A separate air-conditioning unit is also located in the test cell for
maintaining ambient temperatures during tests.

Pump Assembly Installation

Prior to installation of the pump assembly, the facility torquemeter with the modi-

fied torqueshaft was successfully calibrated both statically with load and then

dynamically without load. The support mount and pump test assembly were then in-

stalled into the pump test facility. Both the quill shaft and main pump shaft were

aligned, and the pump test assembly locked into the support mount by locking bolts

and dowel pins. The torquemeter assembly was also locked in the support mount by
using radial locking bolts.

Both the pump inlet and discharge ducting were installed, and the required instru-

mentation was installed and calibrated. Figures 36 and 37 show the completed

installation of the pump test assembly in the Pump Calibration Facility.
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Discharge Duct

Figure 36. Installed Pump Test Assembly
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Figure 37. Pump Test Assembly in the Pump Calibration Facility



Test Program

The test results were obtained from the pump test assembly operating in water. A

total of 18 tests were conducted and head-flow efficiency data, as well as cavi-

tation performance and blade pressures from the Scanivalve were obtained. Four

impeller tip clearance adjustments were tested and performance data at clearances

of 0.015 inch (0.0381 cm), 0.085 inch (0.216 cm), 0.031 inch (0.0787 cm), and

0.009 inch (0.0229 cm) were obtained. Data for these clearances were taken at

speeds of 3976 rpm (416.29 rad/s) and 5038 rpm (527.49 rad/s). Blade surface

static pressure data were obtained at the 0.015-inch (0.0381 cm) clearance at a
speed of 3976 rpm (416.29 tad/s).

Table 6 is a summary of the tests performed indicating operating conditions, dur-

ation, and the type of tests run. As the table indicates, two bearing failures

occurred during the test series (test numbers 3 and 7). In both cases, the failure

mode was seizure of the No. 2 bearing (inner bearing of the duplex set). A num-

ber of changes involving the slave lubrication system, test rig lubrication cir-

cuit, housing-to-bearing outer race fit, and axial thrust compensation (pressure

control in the impeller back side cavity) were made before trouble-free operation
was achieved. The Scanivalve data were lost on test 5 because of an electrical

short in the Scanivalve drive motor. The proximity data were not obtained because

of electrical shorting of the Bently transducers; erroneous discharge probe data

were obtained and, therefore, are not presented.

Data Reduction Technique

Scanivalve Data. Test 3 resulted in good scaniva_ve data. The data indicated
suction-side and pressure-side static pressures on the impeller blades. The re-

sultant data trace as recorded on the strip charts is indicated in Fig. 38. This

figure also shows the locations of the pressure- and suction-side pressure taps

on the meridional view. The exact locations are shown in Fig. 18. Pressure-side

and suction-side taps were positioned at the same point in the meridional view,

but on opposite blades. This allowed the blade pressure differential to be found

simply by the difference between the two pressure readings. The tortuous path of

the blade pressure tap tubing resulted in failure of the pressure tubing for sta-

tions 7, 8, and 18. All other tap locations, however, showed good calibrations

and readings throughout the test. Failure of the Scanivalve was traced to the

motor, which ceased to function during test 5. The replacement of the scanivalve

system would have required a complete teardown and rebuild. The results of test

3 indicate that the system gave good pressure data, as was anticipated.

Static Pressure Tap Data. Static pressure taps were located along the front of

the pump housing so as to read the main static pressure rise along the impeller

tip. A total of ei_it pressure taps (designated tap No. 2 through No. 9) were

located along the housing. This allowed the static pressure on the housing to be

compared with the pressure rise found in the suction and pressure side of the

impeller blade Scanivalve data. Two static pressure taps were located on the rear

housing behind the impeller (designated tap No. i0 and No. 12), and measured pres-

sure levels in the impeller rear shroud area and the balance cavity area, respect-

ively (Fig. 21). These data were recorded on strip charts and were reduced by hand

73



TABLE6. TEST PROGRAM LOG

Test No. I Type Speed, rpm (rad/s) I _urationFlow, gpm (cm3/s) Test date _econds

Nominal Clearance = O.01S inch (0.0381 cm)

1 Shakedown

2 Checkout

3 Head Flow

4 Checkout

5 Head Flow

_3000 (314.1)

3976 (416.29)

3976 (416.29)

3976 (416.29)

3976 (416.29)

3976 (416.29)

5038 (527.49)

_1400 (88,312)

1900 CI19,852)

1514, 1264, 865 (95,503, 79,733,
54,564)

1420 (89,574)

1510, 1245, 1023, 756, 1245

(95,251, 78,535, 64,531, 47,688,

78,535)

1501, 1256, 991, 766 (94,683,

79,228, 62,512, 48,319)

2231, 1913, 1582, 1276 (140,732,

120,672, 99,793, 80,490)

Maximum Clearance = 0.085 inch (0,216 cm)

8 Checkout

9 Head Flow

10 1
ii Cavitation

Intermediate Clearance

3976 (416.29)

3976 (416.29)

5038 (527.49)

5038 ($27.49)

1250, 1520, 991, 767 (78,850,

95,882, 62,512, 48,382)

1501, 1251, 983, 749 (94,683,

78,913, 62,008, 47,247)

2230, 1897, 1598, 1279, (140,668,

119,663, 100,802, 80,679)

1592 (100,423)

= 0.031 inch (0.0787 cm)

12 Head Flow

13 l

14 Cavitation

3976 (416.29)

5038 (527.49)

5038 (527.49)

2/25/71

2/26/71

Nominal Clearance = O.01S inch (0.0381 cm)

31i17i

6/2271

6/23/71

7/2/71

7/2/71

8/26171

8/27/71

8/27/71

8/27/71

1530, 1261, i001, 756 (96,512, 8/27/71

79,544, 63,143, 47,688)

2230, 1905, 1580, 1282 (140,668, 8/27/71

120,167, 99,666, 80,867)

1591 (100,360) 8/27/71

15 Cavitation 5038 (527.49) 1607 (101,370)

Minimum Clearance = 0,009 inch (0.0229 cm)

Head Flow

1
Cavitation

3976 (416.29)

5038 (527.49)

5038 (527.49)

16

17

18

1521, 1261, i016, 767 (95,945,

79,544, 64,089, 48,383)

2225, 1906, 1591, 1271 (140,353,

120,231, 100,360, 80,175)

1591 (100,360)

8130171 ]

8!30171

8/30/71

8130171

i0

138

308

130

152

132

210

Remarks

Start-stop

Facility, instrumen-

tation and 8canivalv,

checkout test

Terminated due to

bearing failure

Facility cutoff

No Scan/valve data

Hydrodynamic test

Terminated due to

bearing failure

83

150

223

264

192

160

242

284

196

172

224

OK

OK

O"

Test Program

Complete
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for all tests. The readings were indicated as a percent of the chart pressure

calibrated range and, accounting for calibration shifts, the data were reduced to

units of psig (N/cm 2) at all flow levels in head-flow tests and at many levels of

NPSH for the cavitation test. The volute discharge flange pressure tap readings

and the inlet pressure data were reduced similarly.

Test Results

Scanivalve Data for Blade-Loading Determination. Figures 39 and 40 present the

static pressures measured on the blade pressure and suction surface. The test

was run at 3976 rpm (416.29 rad/s) with an impeller tip axial clearance of

0.015 inch (0.0381 cm) at three flowrates. The data are plotted as a function

of meridional distance along the impeller blade. Figures 41 and 42 present the

same test data plotted as a function of the pressure tap diameter. Due to the

loss of data from the taps previously mentioned, several data points were interpo-
lated from the smooth curve generated through the data.

Static Wall Tap Data. Static pressure levels were measured during all the tests

to determine the mean static pressure rise along the front housing as a function

of diameter at all clearance levels. These data were plotted as a function of

diameter for each head-flow test at each clearance, and are presented in Fig. 43

through 53. Included in these figures are rear shroud pressures, inlet pressures,

and volute discharge pressure. The static pressure data measured along the front

housing of the pump in test 3 show good agreement with the Scanivalve data from

test 3. The static wall tap must sense the pressure differential on the blade as

the blade moves by the tap. It is expected then that the static pressure reading

would indicate a mean pressure somewhere between the blade suction and pressure

surface levels, which is the case for test 3. Static pressure readings also allow

the axial thrust calculations to be determined with greater accuracy.

It should be noted that the pressure levels of tap locations 8 and 9 differ to

a large extent. Pressure tap No. 8 is in the same quadrant of the pump as taps

No. 2 through No. 7, and tends to indicate good continuity with those pressure

readings. Tap location No. 9 is placed 90 degrees from tap location No. 8. The

reason for the large difference is due to the stagnation pressure buildup on the

volute tongue, which influences the angular pressure distribution. This effect

is reduced as the radius decreases since pump rotation causes a smoothing of the

pressure profile. It is not expected that angular position of the pressure taps

would cause large differences in wall static pressure levels at diameters inside

the impeller tip diameter.

Cavitation Test Results. Cavitation tests were conducted for nominal flow at the

four clearances and at a mean water temperature of 75 F (297 K). Inlet pressures

were reduced to levels which caused a minimum of 10-percent pump head loss. The

tests were made at a test speed of 5038 rpm (527.5 rad/s). The reduced results

of these tests are presented in Fig. 54 through 57, and show pump head rise as a

function of NPSH. The cavitation characteristics indicate a stable pump head

level down to the "knee" of the curve, where the pump head falls quickly into the

supercavitating condition except at the lowest tip clearance where a slightly
unstable condition is evident.
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The static wall tap data furnished pressures at the entrance to the impeller at

the inducer exit. These pressures with inlet pressure indicate the inducer pres-
sure rise, which can be plotted as a function of NPSH. Some inducers have a tend-

ency to lose head gradually as NPSH is decreased. The reduction in head may not

be seen in the pump discharge pressure, however, since the impeller head rise makes

up for it. The impeller capability to make up for inducer head loss may be a

function of tip clearance. The inducer pressure rise as a function of NPSH for

the cavitation tests are presented in Fig. 58 through 61. These data indicate

that the inducer head loss is nearly abrupt, and indicates that the impeller loses

head due to cavitation whenever the inducer head supply is reduced. Impeller tip

clearance has little effect on pump suction performance as indicated by the compari-

son of NPSH values at the head falloff points in Fig. 54 through 57 or Fig. 58

through 61. The exception to this is the lowest tip clearance which shows both

a slight instability and lower critical NPSH.

Head-Flow _fficienc y Results. The test data for the head-flow characteristics and

the effect's of tip clearance on them were made at two pump speeds. Pump head was

determined from the pressure rise of the pump and the velocity head levels at pump
inlet and discharge. Each head-flow test was made at four flow levels at a con-

stant speed. Torque data were recorded from a torquemeter which supplied the pump

brake horsepower level at each flow. The torque levels were reduced along with

the head-flow levels to efficiency. The results of these tests are presented in

Fig. 62 and 63 for pump test speeds of 3976 rpm (416.3 tad/s) and 5038 rpm (527.5

tad/s), respectively. The data of both test speeds was corrected to the J-2 pro-

duction pump nominal operating speed of 8800 rpm (921.4 tad/s). The data indicate

a general degradation in the head and efficiency as the impeller tip clearance is

reduced. The torquemeter readings were bad during tests 3 and 8, which precluded

the efficiency determination. Torque data on test No. 7 were bad except for one
flowrate.

Correlation of Test Data

Blade-Loading Comparison to Model Prediction. A method for calculation of the

relative fluid velocities on the blade surfaces of arbitrarily shaped blades in

incompressible, nonviscous flow has been developed and is presented in Appendix B.

The relative velocities are necessary to determine the static pressure distribution
within an impeller passage. If the total pressure is taken as constant across an

impeller passage, the relative velocities can be used to find the static pressure
on the blade surfaces. Using Bernoulli's equation

W 2 W 2
s pH = H + - H +

total s 2g p 2g

where Htota I denotes the total head, Hs and Hp denote static head on suction and
pressure blade surfaces, and Ws and Wn denote fluid velocities relative to the

blade suction and pressure surfaces. _The resultant equation can then be given as

1 (_Vs 2 2)tlp - Hs - 2g . - Wp
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The program input presented in Appendix B requires a detailed geometry of tile

impeller. The input data include front and rear shroud definition, assumption of

the streamtubes within the impeller, blade angle definition along all streamlines,

and blade thickness distribution and fluid angles within the impeller. The data

are input at the points of intersection of the streamlines and the lines normal
to the flow.

Several impellers of which a detailed geometry could be found were used, and the

blade loading was determined at the nominal operating conditions. The resultant

values will be presented in a later section. The blade loading for the J-2 oxi-

dizer impeller was calculated and compared with the data from the scanivalve tests.

This comparison is presented in Fig. 64. The results indicate that the calculated

blade loading is higher than the measured values. The calculated values are based

on a closed model or one without any flow across the blade tips. Comparison of

the impeller test head with the calculated head based on the integrated blade

loading also indicates the impeller head to be larger than that found in the test

model. J-2 test data indicated an impeller head of 2250 feet (686 m) at 8800 rpm

_921.4 rad/s) and nominal flow. The calculated pressure rise due to blade loading
is found to be 3019 feet (920 m). It is interesting to note that the ratio of

calculated head to test head multiplied by the test blade loading brings the blade

differential pressures into much closer agreement. This indicates that the slip

factors used in the program could be varied to improve the blade-loading calculation

Other losses which may be more significant than slip might also be considered.

Only five pairs of pressure taps were used along each streamline. This results

in makin_ it difficult to define exactly the blade-loading curve shape. The data

of Fig. 64 indicate, however, that the maximum blade loading occurs closer to the

pump inlet than calculated. The calculated blade-loading varies as the partial

derivative of the blade angle B_ with respect to the meridional length m along a

streamline (3BB/3m). The hydroaynamic layouts were used to develop the blade

angle distribution for the calculation, and this could have some degree of effect

on the difference between this and the test piece. Also, it must be remembered

that the added flow moving through an impeller due to tip clearance leakage could
cause a shift in the blade loading. A flow model which considers the viscous

effects of flow would be expected to provide better correlation.

Additional data would be very useful in the improvement of the blade-loading/

relative velocity calculation program. The data presented are the first of their

kind available, since good data must contain the detailed description of the test

piece as well as the measured blade-loading results for comparison to that calcu-

lated by the model. This area of effort is very important to the designer in

turbomachines of high-performance levels, since blade-loading requirements are

necessary to properly design the part to withstand the stress levels in that range
of operation.
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Tip Clearance Effects on Cavitation. A series of cavitation tests were made at

four impeller tip clearances to determine the effects of tip clearance on pump

suction performance. A summary of the tests is presented in Fig. 65. The data

indicate that the suction performance is not affected up to 2-percent head fall-

off within the range of tip clearances tested (0.0113 < l/b t < 0.107). A typical

J-2 production pump is presented also to indicate suction performance is very sim-

ilar. A critical NPSH curve for NPSH at 2-percent pump head falloff is presented

in Fig. 66 for the nominal J-2 oxidizer pump. The nominal performance was estab-

lished by averaging 10 pumps. The cavitation results of the test impeller indicate

that at all clearances the critical NPSH was within 1 foot of each other, and

indicates slightly better performance than the nominal J-2 oxidizer pump. The

data fell well within the 2_ (standard deviation) band of the J-2 oxidizer pumps,
however, and must be considered as equal.

Comparisons of cavitation curves of pump head and inducer pressure rise for this

pump indicate no effect due to impeller tip clearance. Other inducer impeller com-

binations, however, may show that, with a decrease in inducer head rise, the pump

head rise remains constant over a decreasing range of NPSH until the impeller suc-

tion performance capability is exceeded and pump head is lost. Although this

impeller did not show suction performance change with tip clearance, it cannot be

stated emphatically that this is always the case. Cavitation tests on impellers

without inducers could be tested to determine the resultant effect of tip clear-

ance on suction performance and the influence on incidence angle change due to
tip clearance leakage back to the inlet.

Tip Clearance Effects on Pump Head Flow, and Efficiency. The pump performance

with the modified J-2 oxidizer impeller was reduced considerably by increasing
the impeller tip clearance. The test results of Fig. 67 and 68 indicate a con-

tinual reduction in head and efficiency as tip clearances were varied from 0.009

inch (0.229 mm) to 0.085 inch (2.16 mm). The data also indicate that performance

of the shrouded J-2 oxidizer pump was comparable or slightly better than that of

the modified J-2 shroudless impeller operating at the minimum tip clearance.

The head-flow-efficiency curves of Fig. 67 and 68 were used to develop comparisons

of the pump head rise and efficiency at a given flow as a function of impeller tip

clearance at the two test speeds. These comparisons are presented in Fig. 69

through 72 These data indicate that impeller head and efficiency improve with

tip clearance reduction to the minimum lip clearance tested. The data indicate

that the head change is nearly linear with the tip clearance over the interval

tested. The efficiency data indicate a nearly linear effect from the clearance

levels of approximately 0.015 inch (0.381 mm) to 0.085 inch (2.16 mm).

The efficiency gain with tip clearance below approximately 0.015 (0.381 mm) is

greater than a linear progression. This may be due to the boundary layer scraping

effect where the boundary layer thickness 6 is greater than the tip clearance l,
as discussed in the Performance Analysis section. Studies have indicated that

when tip clearance is much larger than the boundary layer thickness, the viscous

effects seem to be negligible (Ref. 6).
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A summary curve was developed for the modified J-2 oxidizer pump, presenting for

each flowrate the head coefficient ratio, the torque ratio, and the efficiency
ratio, all referenced to an extrapolated zero-clearance reference as a function

of the ratio of tip clearance to impeller discharge tip width (Fig. 73 and 74).

As before, straightline variations exist in the head ratio throughout the range
of clearances tested. This characteristic is the same for the efficiency except
for the smallest clearance tested. It is now of interest to note that, at nominal
flow, the torque did not change and the corresponding loss in head is proportional
tO the loss in efficiency. At lower flowrates, the torque was greater than at the
zero reference clearance while, at the highest flows, the torque was much less
than the reference torque. An explanation of this can be found in the pump per-
formance characteristics curve and will be presented in the next section.

Correlation of Test Data With the Formulated Models

Development of Available Data. The literature search indicated there were very

little detailed data available from which impeller performance versus tip clear-
ance correlations could be developed. Several articles in the literature had

performance characteristics of pumps operating at several tip clearances (Ref. 3,
8, and 9 ). These, however, did not give enough detail of the hardware tested to

be able to make a close study of the type required here. The final selection was

reduced to three specific pumps. Those were the S-4 oxidizer pump previously

studied within Rocketdyne, the pump designated RI-15 presented in papers by Wood,

Welna, and Lamers (Ref. 7 and i0), and the J-2 oxidizer test pump. Each pump

tested has enough data to make a detailed study by developing blade-loading cal-

culations and having head-flow efficiency data presented at one or more tip clear-

ances. Blade-loading curves at the design flow were developed based on the impel-

ler geometry specified. The S-4 impeller performance is presented in Fig. 75.

The pump was tested at zero running clearance or at a slight rubbing condition,

and at a clearance of 0.025 inch (0.635 mm). The shrouded impeller data are also
presented and indicate a greater head rise but lower efficiency, which could be

due to added disk friction and front seal leakage effects with shrouded impellers.
The meridional view of the S-4 oxidizer impeller (Fig. 76) was taken from hydro-

dynamic blade and impeller layouts, which also gave the blade angle distribution

as shown in Fig. 77. These data allowed the calculation of the tip blade-loading
profile, which is presented as a function of radius and meridional length in
Fig. 78.

The performance curves of the RI-15 model impeller of Wood, Welna, and Lamers

(Ref. 7 ) gave test data at clearances of 0.008 inch (0.203 mm) and at 0.028 inch

(0.711 mm). The shrouded impeller performance also is presented in Fig. 79. The

references listed above also provided a definition of the impeller geometry

(Fig. 80). Impeller inlet and discharge blade angles were given, and a blade

angle distribution was assumed (Fig. 81) in order to calculate the tip streamline
blade loading. The results are presented in Fig. 82, and indicate a smooth

increase in blade loading which may be due to the assumed smooth blade angle dis-
tribution used in the calculation.
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The meridional view of the J-2 oxidizer pumpis presented in Fig. 83. The view
presents the four assumedstreamlines used in the J-2 blade-loading calculation.
The pressure tap locations used for measuring the blade loading are also presented.
Blade angle distribution is as shownin Fig. 84. The resultant blade-loading cal-
culations for the tip streamline aregiven in Fig. 85, and are presented as func-
tions of meridional length and radius.

Iiead Change Due to Tip Clearance. The data from the two pumps found in the lit-

erature were reduced and are presented to indicate the direct effect of tip clear-

ance on the pump head, torque, and efficiency. These data are presented as ratios

of a reference zero tip clearance flow which was formed by extrapolation of the

data to a zero clearance. These data for the S-4 and RI-15 pumps are presented

in Fig. 86 and 87, respectively. A similar summary of performance for the J-2
pump is found in Fig. 76 and 77.

Two models were presented in Task B for the determination of the head change due

to tip clearance. Both dealt with the determination of the impeller throughflow

by calculation of the leakage through the tip clearance. The resultant head shift

was then accounted for by the change of impeller flow coefficient. In the first

method, the net leakage flow was calculated by integration of the tip clearance

flow over the blade tip meridional length with the tip clearance leakage velocity

defined as a function of the blade pressure differential. The resultant equgtion
for the leakage flow due to tip clearance was

/2 Ap M
QL = K _ _ max dm

The integral was considered as a form factor. The head coefficient ratio was
then defined as:

_2c B _D
- 1 +

_o _D 2g _D Ut rt bt /

The available impellers with blade-loading calculations were integrated numeri-

cally to obtain the form factors, and the equation of head loss ratio was solved.

The equivalent empirical constants (K) agreed closely for the J-2 pump and the

RI-15, being values of 11.30 and 10.54, respectively. The S-4 pump data indicated

a factor of 18.0 would be required. The blade loading of the S-4 oxidizer pump did

indicate that the pump head would be much higher than was found by the test data,

which would affect the leakage flow factor. The head rise predicted by the blade-

loading calculation was greater on all pumps than the measured values. The form

factor was corrected by the square root of the ratio of measured head to calcu-

lated head and the values of K were calculated. The constants K still closely

agreed for the J-2 pump and the RI-15 pump with respective values of 12.18 and

12.45, while the required constant for the S-4 oxidizer pump was 26.29. The

results, using an empirical constant (K) of i0.0, are presented in Fig. 88, and

indicate good agreement for two of the three pumps that have been analyzed.
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The second method developed was to determine a flow shift in the impeller due to

tip clearance leakage as a function of pump head coefficient. The leakage flow
was given by the equation

qbL _/2_P D

qbD K qbD bA

The head coefficient ratio was then defined as

_c.¢ = BXK 2_

_D ! + bA

The use of this model gave good results at the design flow. The empirical constant

(K) was found to be 0.74, 0.702, and 0.707 for the S-4, RI-15, and J-2 pump data,

respectively. These data were developed using a 10-percent increment of flow to

determine the slope (B) of the head-flow curve. Figure 89 presents the results of

the data against predicted head change based on a K factor of 0.71 for all pumps

at design Q/N. The data agree very well with the prediction, using the average

blade height in the tip clearance ratio. When the inlet blade height is used for

the prediction, only slightly less accurate results occur, as is indicated in

Fig. 90. The use of a K factor of 0.88 was used with the inlet blade height.

Excellent results with the three pumps are indicated.

The use of an increased flow interval of 30 to 40 percent of design flow for the

slope determination caused greater variations in the constant K. The operating

conditions at off design could not be predicted, nor could the tip clearance

effect at design (Fig. 91 ). The values of head at the high flows on the head-

flow curves indicate a greater loss ratio and, at lower flows, indicate a lower

loss ratio due to tip clearance. Examination of the pump performance curves can

possibly shed some light as to the reasons for this. All data indicate a greater

head loss for a given tip clearance at the highest flows. The pump head-flow

characteristics indicate a greater negative slope on all pumps at the higher flow

levels. The concept of tip leakage flows explains this since the leakage flow

adds to the flow through the impeller, which affects the impeller velocity triangle.

The greater flow decreases the tangential flow component CU, which results in a
reduced pump head. The slope of the H-Q curve indicates a greater head reduction

for the same flow increment at the higher flow, which satisfies the condition on

all the test data presented.
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The results indicate a constant K used in the equation presented should be on the
order of 0.71 to give good predictions of head loss due to clearance change at
the design point, and the flow increment used in determining the slope B should
be near the magnitude to give the resultant value of _L/_D as calculated above.

Torque Change Due to Tip Clearance. The formulated model calculates torque loss

due to the leakage momentum loss of the tip clearance flow. The mass flowrate

through the clearance is a function of the blade loading and is found by using

an orifice equation across the blade tip. Blade-loading curves were generated

for the three test pumps and are given in Fig. 78, 82, and 85 for the S-4, RI-15,

and J-2 pumps, respectively. The torque loss ratio is given by

T c 2K2_
-- = 1

TO b t

I- A

I

r t

1 ) + 3rt

rl ) B-K
1 rt + 2r t

where the values A, B, and C define the blade loading by Ap -- A + Br + Cr2+ ...

The torque loss ratios at the design point were calculated for the pumps using

an effective K factor of 0.90. The results are presented in Fig. 92 as a function

of tip clearance ratio to the blade height at the discharge. The results indicate

good agreement between the S-4 and RI-15 test pumps. The exact K factors required
to obtain the test values of torque loss were 0.90 and 0.94 for the S-4 and RI-15

pumps, respectively.

It is interesting to note that the torque did not change appreciably with tip

clearance change on the J-2 test pump. The data shown in Fig.74 indicate that

within the test instrumentation accuracy, the torque ratio was nearly constant

at unity for all tip clearances (up to approximately 120 percent of design Q/N),

which indicates the efficiency and head changewere nearly equal. The torque

ratio was not unity, but was at a near constant level at the highest flow (140-

percent of design Q/N) for the test speed of 5038 rpm (527.5 rad/s). This charac-

teristic is probably due to the fact that on centrifugal pumps at flow ranges

greater than about 120 percent of design flow, large losses are seen and have

been attributed to cavitation effects. These losses are additive to the tip

clearance losses and are a result of an operating region in which the pump design

cannot operate efficiently. The data indicating this loss are from three separate
tests at three tip clearances and, therefore, should be considered reliable.
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CONCLUDING REMARKS

Based on the results of the analytical and experimental program described herein,
the following conclusions can be drawn.

PREDICTION OF BLADE LOADING AND IMPELLER VELOCITY

DISTRIBUTION

The computer program is capable of predicting the relative velocity distribution

between impeller blade surfaces with an accuracy as good as can be expected con-

sidering that the method assumes a nonviscous fluid. The prediction accuracy is

tied closely to the determination of the fluid slip correction which provides the

relationship between the fluid angle and the blade angle at the pump discharge.

The blade-loading prediction, when reduced by the ratio of the true impeller head

rise to the head rise calculated from blade loading, gives values that correspond

quite well to the test data. The position of maximum measured blade loading also

is slightly closer to the impeller inlet than that calculated. Sufficient test

data were not generated to determine the effects of tip clearance with an open im-

peller on the prediction of spanwise blade loading. The further development of

this program can facilitate more accurate prediction of the blade loading for

stress calculation purposes, as well as lead to a method of determining the span-

wise pressure distribution effect of tip clearance on open-faced impellers. Fur-

ther effort in this area will result in better hydrodynamic design capability for
the designer of high-performance rocket engine pumps.

Test programs with open as well as shrouded impellers to determine blade pressure

distribution were proved completely feasible with the test apparatus used in this

study. The method of using a pressure-scanning valve located in the impeller shaft

has proved to be very satisfactory. This approach has provided a long-needed tech-

nique that will allow measurement of internal local pressures on all types of ro-

tating machinery. Further studies utilizing these methods would greatly improve
the state of the art of impeller design and performance prediction.

PREDICTION OF TIP CLEARANCE EFFECT ON TORQUE,
HEAD, AND EFFICIENCY

The analytical procedures and methods presented have resulted in models to predict

the change in head, torque, and efficiency in an impeller due to tip clearance.

The study of the effect of boundary layer scraping and its effect on the spanwise

blade pressure distribution has been discussed. The test data indicate that bound-

ary layer effects were probably not present in the test pump. on most tests. How-

ever, at the smallest operating clearance of 0.009 inch (0.229 mm), the torque de-

creased more than 2 percentage points than would be predicted neglecting boundary

layer, causing a net efficiency increase of 2 percent. A slight increase was evi-

dent in the head rise of the pump at the test speed of 5038 rpm, but was not in-

dicated on data with test speeds of 3976 rpm.

The data from the pumps used in the study show a single inconsistency that cannot

be adequately explained at this time. The torque ratio of the two pumps found in
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the literature show good agreement with the model and decrease with tip clearance

increase, while the torque ratio of the J-2 oxidizer pump test data remains con-

stant for all values of tip clearance. A review of the J-2 test data indicates

good accuracy; and the test data must be considered good. The prediction of head

change due to tip clearance at the flow, which approximates maximum efficiency,

shows good agreement, but deviates at other flowrates. This may be caused by the

fact that the head used in the model is the overall pump head. At flows other

than those in which maximum efficiency occurs, the difference between the true im-

peller head rise and the pump head rise is greater due to the increased losses at

these flows. Additional effort with the current model should examine the use of

the impeller head rise rather than the overall pump head rise when predicting a

tip clearance leakage. The leakage can then be added to the impeller delivered
flow to determine the new resultant head rise.

CLEARANCE AND COST ANALYSIS

For a given pump design, the hardware and manufacturing costs should be lower if

increased tip clearance is permitted. However, in actual practice, unshrouded

impeller pump designs are generally manufactured with small blade tip and housing

clearances to maintain good pump performance. To obtain the desired close clear-

ance, profiles are machined on a pattern from which the impeller housing contours

are then duplicated. The design impeller tip clearance at assembly is then ob-

tained by the use of shims. To maintain impeller tip clearance during pump oper-

ation, axial and radial thrust, thermal and pressure deflections, mechanical dy-

namics of the pump rotor, and shaft deflections due to cavitation-induced radial

loads are some of the important factors that must be considered in a proper design.

Shrouded and unshrouded liquid oxygen pump designs were priced based on one end

item. The cost analyses included fabrication, tooling, inspection, and assembly.
The cost of the unshrouded and shrouded impeller configurations was found to be
approximately the same.

GENERAL

The comparison of predicted performance with test data indicate the need to acquire

very accurate data for a study of this type. For tip clearance ranges used during

these tests, which were from 1 to over I0 percent of the impeller blade height

[which covers the range used in modern rocket engine design), the head loss at de-

sign flow was from 1 to 16 percent of the reference head, with efficiency losses

of the same magnitude. Instrumentation accuracies on the order of ±I percent are
the minimum required for such tests. Such accuracy requirements should be con-

sidered for any attempt to obtain additional data such as presented herein.
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APPENDIX A

DEAN, R. C.

LITERATURE SURVEY SUMMARY

Influence of Tip Clearance on Boundary Layer Characteristics in a Rectilinear Cascade

Report No. 27-3, Gas Turbine Laboratory, Massachusetts Institute of Technology, 1954

Empirical data are presented which reveal the mechanism and the influence of tip

leakage in a rectilinear cascade. The influence of tip leakage is determined from

measured flow patterns in the main stream and boundary layer, from pressure dis-

tributions and calculations of momentum flux, from passage and mixing loss calcu-

lations, and from calculated parameters indicating boundary layer "health." A

model of the interaction of tip leakage and secondary flow in the wall boundary
layer is built from the experimental data.

FOWLER, H. S.

An Investigation of the Flow Processes in a Centrifugal Compressor Impeller

National Research Council of Canada, July 1966

A program of experimentation was developed to analyze the flow patterns within a

centrifugal compressor impeller. A test rig was built on which 6-1/2-foot-(l.98 m)

diameter impellers could be rotated up to 70 rpm (7.33 rad/sec). An observer

sitting in the middle of the impeller and rotating with it, was able to examine

the flow in the channel with smoke and record it on movie film. A hot-wire

anemometer was used to measure flow velocities. Wool tufts in the channel were

photographed to aid in determining flow direction. The variable discussed in

the report are the effect of: impeller shroud as opposed to stationary casing,

various degrees of running clearance, and flow pattern in the impeller channel

due to throttling the flow at the volute exit. Detailed comparisons of velocity

profiles in the impeller channel are presented for various impeller clearances,
and without impeller shrouds.

FOWLER, H. S.

Some Measurements of the Flow Pattern in a Centrifugal Compressor Impeller

ASME Paper 65 WA/GTP-7, 1965

Description of the test apparatus which consists of a large 6-1/2-foot (1.98 m)

compressor impeller which contained a space in the hub where an observer rotating

up to 70 rpm (7.33 rad/sec) with the impeller observed and recorded flow patterns,

velocity profiles, etc., with the help of wool tufts, smoke, and a hot-wire ane-

mometer. Data are presented for velocity profiles in shrouded and unshrouded
impellers at various tip clearances.
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FURUYA,Y, I. NAKAMURA,ANDH. KAWACHI

The Experiment on the Skewed Boundary Layer On a Rotating Body

ISHE Bulletin, Vol. 9, November 1966, pp 702-710

When a body of revolution rotates in an axial stream, skewed boundary layers develop

on the body surface. Experiments were carried out on the skewed boundary layers over

a body of revolution with a streamlined nose. Heasured velocity profiles differed

little from the quasicollateral condition. A velocity component perpendicular to
the streamline appeared in a layer near the wall with a thickness of 0.0591 inch

(I,5 mm). The magnitude of this velocity component was about 5 percent of the main

stream velocity. Heasured boundary layer thickness compared with two theories which

used the momentum integral equations. Although there are some differences in the

assumed velocity profile between the theoretical and experimental results, this
agreement was fairly good.

GEARHART, W. S.

Tip Clearance Cavitation in Shrouded Underwater Propulsors

AIAA Paper No. 65-573, 14 June 1965

The problem of cavitation in the tip clearance region of a shrouded rotating blade

was discussed. The tip clearance flow associated with various shaped blade ends

rotating near a stationary wall was characterized and experimental results were

presented. Tip clearance flow was defined as that which passes through the area

between a blade and a guide wall and originates from the pressure difference across

the blade tip section and the relative motion between the blade endand adjacent

guide wall. "Gap" and "tip vortex" cavitation are also defined. Blade end con-

figurations to minimize gap and tip vortex cavitation are described.

GEARIIART, W. S.

Tip Clearance Flow In Turbomachines

Pennsylvania State University, Ordnance Research Laboratory, Navy Department,
Bureau of Naval Weapons, Contract NOw 63-0209-c.

Experience in testing rotating blades indicated that cavitation usually occurs in

the tip clearance region of the rotating blades before it occurs on the blades

themselves. An investigation was initiated to study the mechanics of the tip

clearance flow and its characteristics. It was assumed that cavitation in the tip

clearance region was dependent on the following parameters: (I) ratio of blade

tip thickness to tip clearance height, (2) ratio of the momentum thickness of the

boundary layer on the wall to the tip clearance, (3) ratio of hydrodynamic tip

loading to the tip speed, and (4) gap configuration or shape.
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A test apparatus was built which used air as the test medium. To simulate the
relative motion between a blade end and the casing wall, an endless belt was used.
With this apparatus, it was possible to vary the above parameters, and pressure
and velocity distribution associated with various gaps were obtained.

HANRICK,J. T.

Some Aerodynamic Investigations in Centrifugal Impellers

AS_IE Transactions, Vol. 78, pp 591-602, April 1956

Results of both theoretical and experimental investigations of flow in rotating

impeller passages are presented. The manner in which losses arise, their effect

upon the flow within the passage, and their overall effect upon:impeller perform-

ance are discussed. In addition, analysis and design methods based on isentropic

flow calculations are discussed and their application to the design of mixed-flow
impellers is demonstrated.

HARTMAN, M. J., G. W. LEWIS, AND E. R. TYSL

Design and Experimental Performance of a Small Centrifugal Pump for Liquid Hydrogen

NASA T.M. X-389, September 1960

A shrouded 4-inch- (i0.16 cm) diameter hydrogen pump rotor was designed and tested

in liquid hydrogen. The pump rotor was operated at a flow coefficient of 0.2,

and a pressure coefficient of 0.585, and indicates a hydraulic efficiency of 0.65.

This was a low-specific-speed rotor from which such efficiencies are expected.

An unshrouded model was tested and the results indicated a large reduction in

performance compared to the shrouded pump. The minimum allowable clearance for

the unshrouded rotor was large compared to the height of the flow passage.

HORLOCK, J. H.

Some Recent Research in Turbomachinery

Vol. 182, Pt. i, No. 26, Proceedings of Instrumentation Mechanical Engineers, 1967-68

Research on turbomachinery carried out at Liverpool University in the period 1958 to

1966 is reviewed. The work includes accurate determination of two-dimensional in-

compressible flow in cascades. The interaction of laminary and turbulent boundary
layers with flows due to tip clearance is discussed.

HORLOCK, J. H., P. M. B. PERCIVAL, J. F. LOUIS, AND B. LAKS_IINARAYANA

Wall Stall in Compressor Cascades

ASME Paper 64-WA/FE-29, 1964
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The effects of increased cascade deflection on development of the end-wall boundary
layer, separation of the effects of secondary flow (produced by the deflection of
a vorticity vector initially perpendicular to the flow at entry), skin friction at
the end wall, flow visualization of the wall stall, attempts to reduce the secondary
flow, and the severity of the wall stall were investigated. These attempts were
madeby reducing the blade chamberthrough the end-wall boundary layer and by opti-
mizing the clearance between the tip of the blade and the end wall. The following
conclusions were reached: (I) the end-wall boundary layer development in compressor
cascades cannot be adequately described by simple secondary flow because of the sepa-
ration in the corner boundedby the end wall and blade suction surface; (2) the end
wall rather than the secondary flow caused the separation and high loss; (3) the
severity of the wall stall increased with main stream deflection in a cascade of
constant chamber, but maybe reduced by reducing the chamberthrough the boundary
layer region; (4) there was an optimum tip clearance at which the extent of the
wall stall was minimized. These conclusions were limited to the case where no
streamwise vorticity was present at entry.

JEFFERSON,J. L. ANDR. C. TURNER

Some Shrouded and Tip Clearance Effects in Axial-Flow Compressors

Trans. N.E. Coast Inst. of Engineers and Shipbuilders, Vol. 74, 1957-1958

This paper, with a reference to the economics of blade manufacture, explains the

reasons for the main series of tests carried out at the National Gas Turbine

Establishment, the material being supplied by C. A. Parsons & Company, Ltd.

Four series of tests are described in detail. Various combinations of shroud-

ing and tip clearances were investigated; untwisted constant-section blading

being used in the first three series. The experiments were conducted over a

range of shrouding leakage clearances, and included an investigation of the

boundary layer flow on the convex surface of a stator blade in the compressor.

A brief review of published work on the effects of normal radial tip clearance

was followed by a description of some early results obtained on a multistage

compressor. It was concluded that shrouding of the type investigated should

be avoided if possible, especially under certain aerodynamic conditions. If

it is necessary, the clearance should be maintained at the smallest practicable

value. The use of very fine radial tip clearances also may result in a loss of

performance, although values in excess of 1 percent of the blade height are shown
to be undesirable.

LAKS_IINARAYANA, B.

Methods of Predicting the Tip Clearance Effects in Axial-Flow Turbomachinery

ASME Paper No. 69 WA/FE-26, November 1969

An expression is derived for the decrease in stage efficiency due to tip clearance.

The analysis includes all dominant flow and blade parameters that affect the flow

in the clearance region. The predictions agree closely with several compressor,
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fan, pump, and turbine data. The theoretical treatment of the flow predicts blade-

to-blade variation in outlet angles accurately and stagnation pressure losses

qualitatively. The predictions are compared with various experimental data avail-
able in the literature.

LAKSHMINARAYANA, B. AND J. H. HORLOCK

Leakage and Secondary Flows in Compressor Cascades

Reports and Memoranda No. 3483, Ministry of Technology, 1967

This paper describes the effects of leakage and secondary flows on lift, outlet

angles, induced drag, and loss coefficients in a rectilinear cascade of compressor

blades in which spanwise gaps simulated the clearance spaces of an axial compressor.
The resultant leakage flow was studied under three different conditions: uniform

inlet flow, nonuniform inlet flow near the gaps, and severely nonuniform inlet flow
and an end wall within the gaps.

MELLOR, G. L. AND R. E. STRONG

End-Wall Effects in Axial Compressors

ASME Paper 67-FE-16

The end-wall blockage effect in axial compressors can be related readily to the

conventional displacement thickness of boundary layer theory. With the help of
an end-wall hypothesis introduced in the paper, the displacement thickness can

be related to end-wall losses. An effort was made to obtain empirical informa-

tion about the end-wall displacement thickness and, therefore, the blockage and

loss. Only multistaged data were presented and were examined only at maximum
efficiencies. A computer program was presented which calculated the annulus

flow in a compressor, and determined the cascade losses, end-wall loss, and dis-

placement thickness necessary to match experimental efficiency. The particular

results indicated that end-wall displacement thickness was strongly correlated

with rotor tip clearance. The results are confined to a narrow band of pressure
coefficients, indicating that further work is necessary.

HILLER, M. J. AND R. F. SOL rIS

Detailed Performance of a Centrifugal Pump Impeller in Water

NASA TN-D-4613, June 1968

Shrouded and unshrouded versions of a 7.44-inch-(18.90 cm) diameter, radial-

bladed centrifugal impeller were tested in room-temperature water. Detailed

measurements permitted calculations of both circumferential and spanwise varia-

tions of flow and performance parameters over a wide range of flows. Flow and

performance parameters at five stations were measured or calculated. Measured
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stations were (I) inlet to impeller, (2) impeller outlet in vaneless space, and

(3) volute periphery. Calculated stations were at leading and trailing edges of

the impeller blade. The data presented primarily describe performance and flow

conditions across the impeller. Results from both the shrouded and unshrouded

version of impeller are presented. Average head coefficient and average efficiency

as a function of average flow coefficient for shrouded and unshrouded impellers

(clearance of 13 percent of blade height) were presented. Data indicated that the

redistribution of the streamlines caused by tip clearance flows affected the per-

formance of all spanwise positions. Also, as flow increased, the spanwise gradi-

ents of flow parameters did not change. The slip factor varied spanwise from hub

to tip for unshrouded impellers with large clearances. The unshrouded impeller

had a negative H-Q slope to _ = 0.21, while the shrouded impeller had a negative

H-Q slope to _ = 0.31 (attributed to leakage recirculation). Data also indicated

that suction performance of the unshrouded impeller was lower than the shrouded
impeller.

SOLTIS, R. F. AND M. J. MILLER

Visual Observations of Flow Through a Radial-Bladed Centrifugal Impeller

NASA TN-D-4282, July 1968

A 7.44-inch-(18.90 cm) diameter, radial-bladed centrifugal impeller designed by

the stream filament method was operated in water over a range of flow conditions.

Flow through the blade passages was visualized by observing movement of nylon tufts

glued to the impeller and by injecting dye into the fluid at the pump inlet. Photo-

graph and film sequences of the tufts and dye in the rotating passages are presented

A comparison of the visual observation also was made with the measured performance

results and with the flow conditions within the blade passages as calculated from
an analytical procedure.

WOOD, G. M., J. S. MURPHY, AND J. FARQUAHR

An Experimental Study of Cavitation in a Mixed-Flow Pump Impeller

ASME Transactions, Journal of Basic Engineering, pp 929-940, December 1960

A mixed-flow impeller design was tested with six, five, and four vanes in a closed

water loop to study the effects of cavitation on hydraulic performance, and the

results were compared with the work of other investigators. Two idealized flow

models for incipient cavitation were derived to illustrate limits of cavitation

design. Data showing incidence and speed effects plus the tip static pressure

profiles in cavitating and noncavitating flow are also presented.

146



APPENDIX B

METHOD OF COMPUTING VELOCITY DISTRIBUTIONS ON ARBITRARILY

SHAPED BLADES IN INCOMPRESSIBLE FLOW

This appendix presents a method for computing quasi-three-dimensional

velocities in a turbomachine with arbitrarily shaped blades. The method

is general in that it is useful for either nonrotating or rotating ele-

ments. The present computer program applies to incompressible, inviscid

axisymmetric, steady flow.

INITIAL PARAMETERS SPECIFIED

This method is used to perform an anlysis on an existing or proposed

blade design; therefore, geometry and operating conditions must be given.

Specifically, the fluid density and the flow and head requirements must

be known. The speed of the rotating elements and the number of blades

also are required. In addition, hub and tip profiles and the blade shape

must be completely defined to obtain the necessary program input. The

detail methods used for defining the geometry of the blade and analysis

are discussed in the following sections.

DESIGN PROCEDURE

Design of a rotating component by this method normally has been a trial-

and-error procedure. Originally, hub and tip contours were set, blade

angle profiles along the hub and tip were assumed, then the blade-loading

analysis would be conducted. This blade-loading analysis produced design

data and determined the suitability of the assumed blade angle profile

and the hub and tip contour. This procedure then was repeated until

satisfactory results were obtained. Pressure- and suction-side coordi-

nates of the blades were calculated and the drawings of the complete

rotating component then could be made.
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The blade-angle profiles initially assumedwere based on previous experi-

ence. With the blade-angle profile given, along the hub, tip, and mean-

line, the points on these curves at constant values of wrap angle (0) were

determined. Lines (termed traces) were drawn through these points. This
process is called trace position determination. With the traces on the

meridional view, it waspossible to perform a one-dimensional blade-loading

analysis by assuming a blade thickness distribution. Experience has shown

that once satisfactory results are obtained from the one-dimensional analy-

sis, two-dimensional axisymmetric analyses will show similar satisfactory
properties. Therefore, various blade-angle profiles were assumedand the
loading checked, using the one-dimensional method. This one-dimensional

methodwas found to be simpler and much less time consuming than the two-

dimensional axisymmetric analysis. Oncesatisfactory loading was obtained

from the one-dimensional method, the blade angle and the thickness profiles

were sufficiently established for a two-dimensional axisymmetric analysis
to be performed.

TRACEPOSITIONDETERMINATION

Trace position is determined by the following: (i) an established meridi-

onal view consisting of hub, tip, and meanline contours; and (2) a blade-
angle _-M) profile (see Nomenclature for M coordinate definition and

note that the meanline maybe thought of as an assumedstreamline). There-

fore, the blade angle (_) was knownas a function of M coordinate. The

radius R, as a function of M coordinate, was obtained by measurementon

the meridional view. The M coordinate for any desired wrap angle (0) was

found from the defining relation for the blade angle using the meridional
view as reference:

dO
- tan_ = R d--ff (B-I)

Practically, this consisted of solving the differential equation

dO = tan_ dM
R (B-la)

148



where R and tan _ were knownfunctions of M coordinate, subject to the

boundary condition that at M = 0, @= 0. Having found this point for the

three contours (hub, tip, and meanline), a smoothcurve was drawn through
the points at a unique value of @. Further, observe that when traces were

determined using a finalized blade-angle profile and finalized meridional

contours for the hub, tip, and meanline, finalized trace positions were

the result. This was true regardless of the flexibility of assumed

streamlines in the two-dimensional, axisymmetric blade-loading analysis.
In brief, trace positions resulted out of purely geometric considerations
and were not associated with hydrodynamic phenomenon.

TWO-DIMENSIONAL,AXISYMMETRICBLADE-LOADINGANALYSIS

This analysis is a trial-and-error process wherein streamline locations

on the meridional view were assumedin the analysis. In this process of

the analysis, the location of the streamlines to fit the assumptions was

calculated. This would be checked against the input location for agree-

ment. Attainment of this agreement yields results of "converged" stream-

lines. Only results of converged streamlines are usually presented as
design data.

In the downstreamsection of the rotating component, where the fluid

angles will differ from the blade angles, a parabolic fluid angle distribu-

tion is used to account for this difference (Stanitz & Prian Ref. B-I).
The two boundary conditions used to define the parabola uniquely are as

follows: (i) the Pfleiderer deviation angle correction applied at the tip

to set the fluid angle, and (2) the point of deviation defined by Eq.13
of Ref. B-I. IIaving located this point, the slope of the fluid angle
curve on the sin _-M plot is matched to the blade-angle curve on the same

plot. This method defines the fluid angle uniquely.

The differential equation for determining the relative velocity in the

meridional plane used in the axisymmetric analysis is given by
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m _fl
- Wm tan fl tan 6

8fl cos2fl
- _ tan fl R -

C

+

sin2fl Lcos a + tan 6 sin_ - sin2fl tan _ +
R

q

:. 2 _osinfl cos fl (cos a + tan 6 sina)] = 0 (B-2)
.18

The geometric blading relationships used to derive Eq.B-2 are shown in

Fig.B-l. For simplicity, Eq.B-2 can also be expressed in the form

_W
m

5g- + WmF1= F2 (B-S)

where

and

tan B tan 6 dB cos2B
- )-g tan B - --W--

c

sin2fl )1(cosa + tan _ sin

+

m
F 2 = _ Sin2fl tan 6 + 2 _o sin B cos 8 (cos a + tan _ sin a)

The method employed numerically integrated the above equation in steps,

each step being across a single streamtube. In effect, a median value

for F 1 and F 2 is found for each streamtube along each normal. F 1 and F

are then held constant across that streamtube. Noting that at a given

point IV = C , Eq. B-3 will then be reduced to
m m

or

dC
m

= F2 - F 1C m

dC
m

F 2 - F 1 C = dN (B-4)in
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Integrating across a streamtube,

m 1
F2 - F1 C d C =m m m

O

or

i ImF_Ln(F2_F,Cm)C
C
m
o

AN

dN

= AN (B-5)

where Cm is the meridional velocity at the streamline corresponding to

the hub contour of the streamtube, and Cmo is the same parameter but at

the streamline corresponding to the tip contour of the streamtube. Equa-

tion B-S reduces to

__ I_ Cmq]
F1 Ln F2 Cmo FI} = AN

which, after taking antilogs, becomes

F2 - Cm F 1 -F 1 AN

F2 Cm F1 = e
o

which reduces to the expression

) -F 1 AN
- = F eF2 CmF1 F2 - Cm 1

o

and dividing by F one obtains
1

(CmoC - + - e
m F1

(B-6)

Every parameter in this equation can be calculated except Cmo. Therefore,

the calculation is reiterated until a suitably accurate Cmo is obtained.

Cmo is evaluated on the first iteration only, from the continuity condition

for each streamtube, and Cmo is assumed constant across the streamtube.
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Accordingly,

/

C = Q

mo (2 7r R - z t )ANm m

The value of Cmo is systematically adjusted by iterative methods until the

continuity equation is satisfied at the design flow condition within ±0.5

percent. Therefore, it can be seen that the method used to evaluate Cmo

on the first iteration is of minor importance as long as Cmo on the final

iteration yields results that check the continuity condition with suffici-

ent accuracy.

Equivalent results may be obtained by using equations derived along a

particular characteristic line as has been done in Ref. B-I. It is also

possible (at least theoretically) to solve the differential equations de-

rived along the normal to the streamline in closed form. The method

described above has been programmed for solution on an IBM 360 computer.

A relative velocity distribution that satisfies the continuity condition

and the Eulerian equations of motion was found only when the streamlines

converged to a unique position. Attainment of this convergence in the

meridional plane permitted analysis of the flow in the blade-to-blade

plane. The underlying logic was that the resulting relative or absolute

velocity component found in Eq. B-6 was set equal to the like quantity at

the point midway between blades in the blade-to-blade portion of the

analysis (i.e., W = WBR or Wm = WBRm). To proceed, it was necessary to

assume some flow configuration in the blade-to-blade plane. Following

Stanitz and Prian (Ref. B-l), it was assumed that the relative velocity

distribution (in the blade-to-blade plane) was linear with distance (at

constant radius) between the pressure side of the trailing blade and the

suction side of the leading blade. The following relations were then

app iied :

WDR + WTR

WBR - 2 (B-7)
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or rearranged

WDR= 2 WBR- WTR (B-7a)

and

c°s'lw" IIWTR = _ cos-_+-_-f U - WBR sinfl R 0in c

It could be seen that these equations were in agreement with Ref. B-I ob-

serving that the driving and trailing surface blade angles (at constant

radius) were considered equal.

DERIVATION OF EQUATIONS

Consider the flow in a plane normal to the axis of symmetry (Fig. B-2):

Y

!

C
r

Cul

u d Cr

de u _/

Yl o
\ X

(a)

Y

_u

\
z

(b)

Figure B-2
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where on Fig. B-2a

Cr, Cu , C z are the velocity components at A and

Cu/, C / are the velocity at A/, a time 6t laterC /
r' z

(A/ is also shown superimposed on A)

On Fig. B-2b, the elemental volume is

6v = 6r 6u 6z and p is the mass per unit volume.

From Fig. B-2b the accelerating forces (forces per unit mass acting:

R.U.Z.) are

_Pr

-6u 6z _ 6r + p R6V in the direction of R,

bPu

-6r 6z _-- 6¢ + P U6V in the direction of U, and

_Pz

-6r 6u _ 6z + PZ6V in the direction of Z.

From Fig. B-2a (for steady flow) the accelerations are

dC
r de

dt C _-_ in the radial direction,

dC
U

m. + C
dt r

d_ in the tangential direction, and

dC
Z

dt
in the axial direction.

Noting the angular velocity is

C
de u
dt r
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wehave

2dC C
r u

Aradial --_ r

dC C C
u r u

Atangen t = -- + _ andial dt r '

dC
z

Aaxia I =-_

Now we can relate the accelerating forces to the accelerations by

Newton's second law, yielding

2
dC C _n

r u 1U=r

d--t-- _ p _-- + R

dC C C u=_nuu ru I
- -+ U

dt r P be

dC
z I _Pz

dt - p _-- + Z

In the limit as _t _ 0, Pr = Pu = Pz = p' and- for axially symmetric flow

,3pu/8¢ = O.

For relative motion in a rotor C = u + Wu, C = W , and C = W .u r r z z

The above equations, therefore, can be put in terms of relative velocity

components.

2 2 2
C =u + 2uW + W

U -U U

There fore,

2
dW W

1 8p r u a_2r
R = P_-_ + dt r 2_Wu

156



and

dC
u

dt

dW dW
du u u
dt + d--_--= _W +--r dt

So

dW

U - u
dt

W dW

--- + _W +__r lu + Wu_=' , ur r dt
--+ 2_aW

r

W W
r u

+ --

and

dW
1 8p z

z = _-EE + d--_

or grouped;

2
dW W

i _- o.q__+ r u - w2r - 2w W
R = _ _r dt r u

dW W

o u )dt + _)W +-- u + Wr r u

dW
l 8p z

Z = _-_--_ + dt (B-7b)

We now examine the relationship between angles for arbitrarily shaped

blades.

NOTE: In this blading geometry section only, the

angle _ is essentially defined negative with re-

spect to _ in the rest of the deviation.

The dextral set of mutually perpendicular unit vectors along the major

axes of the turbomachine component is as follows (see Fig. B-3):

i1 in the tangential direction

i2 in the axial direction

i% in the radial direction.
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Unit vectors e3 through _6 are defined as follows:

e3 is in the direction of the intersection of the stream surface
and the meridional plane.

e3 = cos a i 2 + sin a i 3 where a is the angle between the
stream surface and the axis of rotation.

e4 is in the direction of the intersection of the blade surface

and a plane perpendicular to the axis of rotation.

e4 = cos _ i3 - sin _ T 1 where _ is the angle between bladea

vector and the radial direction.

e5 is in the direction of the intersection of the normal to the

stream surface and the meridional plane.

m

e5 = cos a i3 - sin a 12

e6 is in the direction of the intersection of the blade surface

and a plane in the direction of rotation.

e 6 = cos _ i--2 + sin _ T 1 where _ is the angle between a

blade vector and the axial direction.

The vector normal to the blade surface is

% -e s = x e4

The vector in the direction of intersection of the blade and stream

surface is el where

e1 = e% x %

= e5 x (_-6 x e4)= I_-5

by vector algebra.

e--4)_6 -(e5 e%)e--4
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Therefore,

= (cos a cos _) e%- (- sin acos ¢) e4

= 11 (sin ¢ cos a cos _ - sin _ sin a cos ¢) +

T 2 (cos ¢ cos a cos _) + i% (cos y sin a cos ¢).

The blade angle may be expressed in terms of these unit vectors as

fellows:

tan_ - sin_ _ cos (90 ° -_) _ el 11

cos_ cos_ el e3

We then obtain the relation between the angles _, ¢, aand y by substitu-

tion where

tan_ = sin ¢ cos a cos _ - sin y cos ¢ sin a

cos _ cos2a cos Y + sin2a cos y cos

tan_ = sin ¢ cos a cos y - sin y sina cos
cos ¢ cos

tan_ = tan ¢ cos a - tan y sin a (g-7c)

The force components can be related through these same angles. Since the

force is in the direction of the blade normal _ the force components
S'

along the major turbomachine axes are

-2-

FO = F s (% 11)

Fr = Fs(_-s %)

F = F (ez s T2)
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where

es = e%x e4 as before.

Therefore,

% = % x e4 = (cos _ % + sin _ i-l) x Icos y % sin y zI

= (cos _ cos y)T 1 - (sin _ cos y) T2 (cos _ sin y) i%

So

F@ = F cos _ cos yS

F = F cos _ sin yr s

F = -F sin _ cos y
z S

yielding

1 Fs/F z -1Fo/Fr = tan y ' - tan _ "

The force normal to the stream surface is F where
n

Fn = Fr (% %) + Fz (]-2 e5)

Then in terms of the tangential force component (F@)

F = F@ tan y cos _ + F@ tan _ sinn (B-8)
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We now derive necessary relationships from the energy equation.

Re'lating the energy of particles at positions 0 and I:

added = total energy - initial energy

The energy

--g-'l -g-'o hi + 2g - "i

where

h I is static enthalpy

H. is absolute total enthalpy.1

Note that

U Cu 1

--g-J0 = 0

1 mrl rl + = hl + _ _rl + Wu I mI ig +C -H

_gl (_2 r12 + _r I ) 2-gl (2 2rl wr I _ 2)I_u 1 Ul Ul ml - H.1
= h 1 + + 2W + lq _ + C

2 2
2 2 W C

rI u I m 1

hi 2g + --_+ 2-_ = H"1
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now

W2 W 2 2= + Cu m

So

hl 1 w

which is the same for each streamline, and taking the differential

dhl = 1 [_2 rldrl - WdN ] .
g

For an isentropic process

1

dh I - plg dPl

and equating we have

dp - ( 2 rdr - WdW) = 0
P

and the derivative with respect to n is

1 dp= 2 dr dW
an r_- _¢d-_ "
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The geometry of the passage is as follows:

C
m

W u (negative)

C

(negative)

vs

z

Blade

Stream Surface

Meridional Plane

p v

From which,

F = F sin _ - F cos
n z r .
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Nowsubstituting for F and F from Eq. B-7b and
z r

or

F
n = _-_Z+ d-_--]sin c_- _r + d-T-- --_-- _o r - 20JWu cos O_

F 1 3(_-zsin _ - _P ) dW dW
= _ Z r

n p _ cos _ + d-}-- sin c_ dt

2
W
u 2 rcos _ + cos _ + 2mW
r u

COS

- _COS _ +

now taking the total differential

dp _ 3p dz _p dr
dn 3z _n" + 3r

where

dz dr
--= sin _ and
dn dn cos _ as shown below.

r
dz

-dr

n
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Therefore,

dp = ap sin _ _ _r co sdn _z

so substitution yields

dW
F =Idp+ z

n 0 dn _ sin _ -

2
dW W

r u 2
dt cos a + _ cos _ + m r cos a + 2mWr u

Now putting this in terms of W,

COS _.

r

We note

W = W cos
z m

W = W sin
r m

W = W tan
u m

and

dW
z

dt

dW
d_ m

W sin _ + cos _
m _ dt '
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also

dW dW
r d_ m

d-_--= W cos _ + sin _--m _ dt

So Substituting into above equation for F yields
n

F 1 dp W sin 2 da dW=_ _ m 2 d_
n p dn m _ _ + sin _ cos _ d-'t--- W cos (_ d-%--

2
dW W

m u 2
sin _ cos _ _ + -- cos _ + _ r cos _ ÷ 2 tO l'_u cosr

which reduced by

2

F ld_a w (% + Wu)
n = p dn - m d-t + cos a.r

We see that in this expression

d_ d_ dm C Wm m

dt dm dt R R
C C

where R is the radius of curvature defined as positive when:C

Stream surface
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also from the energy equation

1 dp= _2 r dr dW
_dn _ - W d--_

and

w a (Wm/COS_)_2r cos _ m
cos _ dn

3W
m D cos B

2 Wm cos B _n Wm an
= - _ r cos _ -

cos 8 2
COS

SO

2

1 dp = _ 2 W aW W_ m m m a cos B

p dn r cos _ 28 an + 3B anCOS COS

d_
Substituting this expression for 1 dp and the expression forp dn

equation for F yields
n

into the

( w
= - r cos _ m 3Wm m a cos _3 W 2 (_r + W )2m u

n 2_/-_-- + 3 an R +cos cos B c r
cos _ (g-9)

which is one expression for F in terms of W . We now seek another.
n m

From Eq. B-7b we saw that

dW
U

F - + cow
u dt r

W
r

+ -- (u + _%)r
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lqe again use

W = W sin
r m

W = W tan [3
u m

dW
u

We evaluate d-T by writing the total derivative

dW _W 3W
u u dm u dn

- +
dt _m dt _n dt

But since n is the coordinate normal to a streamline

dn = dW 3W 3W_ u u dm _ u
Wn dt 0 and dt - _m- dt 3m Wm

Substituting for W we have
u

(wm
u _ tan 13

3t = _m + tan [3 _-_-] Wm

so entering in the expression for F
U

2 3 tan [3 _Wm Wm sin a
F = W + W tan B + mW sin a + (u + lqu m 3m m Y m r m tan [3)

or collecting terms we have

F
u [w ]m 3 tan 8

= W sin _ tan [3 + tan [3 _ + 2 m sin (_ + W ,,-m n, _m
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From Eq. B-8,

F = F tan y cos _ - F tan _ sin
n U u

NOTE: _ is defined with the opposite sign in the

derivation here relative to that used in deriving

Eq. B-8, which explains the difference in sign

above. Here F_ was replaced by Fu.

So by Eq. B-7 with signs on tan 8 and tan _ changed,

tan _ = tan 8 - tan y sin
COS

Substituting this expression into Eq. B-8,

or

F = - F tan a (tan B - sin a tan y) + F tan y cos
n u u

2
sin

= F (- tan _ tan 8 +
U COS

tan y + tan y cos _)

_ (sin 2 2 )= F tan _ tan 8 + tan y _ + cos _)
u COS C_

F:F(tany )n u cos------_-tan _ tan B

which may be combined with the expression for F
U

above, yielding

W
m

F -
n cos ['r'__m(tan y - sin _ tan 8) sin _ tan B + Wm

am@W ]

m
tan B-c--- + 2 to sin

tan 8

m

(B-IO)
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Wenow have two expressions for Fn, Eq. B-9 and B-lO, which we equate as
follows:

2 w _w w 2 B)2
- _ r cos _ m m m _ cos _ Wm2 (_r + W tan

2 _n + 3 _n R + m
cos B cos B c r

W W= W (tan y - sin c_ tan _) m tan c_ tan B + m _ tan B
m T cos _ _m +

tan B _W 1
cos a _m + 2 m tan J

Now expanding,

COS

2 W _W (
- _ r cos _ m m 2 1 _ cos 8 1 tan 2 B cos

2 _n + W
cos fl m cos 3 g _n R + rC

(tan y - sin a tan 8) ( .tan ",_rtan B

2 _W
m

+ 2 cos _ _m
COS

tan 8 cos a = (tan y - sin a tan _) W___
m \cos O_

2

and multiplying by -cos
W

m

2
+ m r cos _ +

)_+ 2 _o tan e

B
to obtain a unit coefficient for the first term

,w j 2m -sin f_ 2B cos 8 sin2B cos
-_ W + - (tan y - sin _ tan B)

m cos B _ Rc r

(tan a sin B cos B + 1 _B)lr cos------_ _'m - 2 _0 sin B cos B cos

= - (tan y - sin _ tan B) [|sin B BCOS

COS C&

_)W

m )+ 2 m cos 2 B tan c_
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Gathering terms in the coefficient of W we have
m

- tan y tan (% sin 8 cos 8 tan Y 38 sin (% tan (% sin 8 cos 8
r cos (%]_ + r

2 sin 2 8 cos (%sin (% tan 8 38 tan 8 38 cos B +
cos (% 3m 3n R r

c

Note that the third and last term reduce as follows:

sin 2 2 2
(% sin 8 + cos (% sin 2 8 _ sin 8

cos (% r r r cos (%

and regrouping, the coefficient is

38 tan - tan a_n8 costan (% tan 8- co---7- R
C

and gathering terms not coefficient to W
m

8+ sin 2 8 0
r cos (%

3W
m

or _----, we have
dln

tan YtanSin8 (%)I

- 2 to sin 8 cos B cos (% +
2 (tan 83Wm )tan y cos 8 \c--_ (% _m + 2 to tan (% -

3W
2 m

tan (% sin B 3m

2

2 to sin B cos 8 sin (%
cos (%

or

_tan 8 3W ) 3Wmtan y cos 2 8 _c-o-_ (%_T + 2 to tan (% - tan (% sin 2 8 _ -

2 to sin 8 cos 8 (sin 2 c°s 2)
cos (% (% +
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Rearranging and eliminating the trigonometric identity we have

m tan y sin 8 cos 8 tan _ sin 2
3m cos _ - 8) - 2 m sin 8 cos 8cos

2
+ 2 _0 tan a tan y cos 8

or

3W 2 ( tan y. -i) +2 _ sin 23-'m--sin 8 tan _ tan 8 sin

Now putting all terms together, the equation is

3n Wm _ an (z tan 8 cos --e - tan

2 2
38 cos 8 + sin 8

8 3n R r cos
C

(itanysin )lIm 2
tan 8 + _ sin tan y i) +8 tan _ \tan 8 sin

2 _ sin 2 8 tan _ /tan y

tan 2 8 sin e tan 8 = 0

to compare with Eq. B-2

tan y )tan 6 = tan e 1 - sin e tan 8

Suction surface, midpoint and pressure surface relative velocities are

plotted for the tip, meanline, and hub in Fig. B-4, B-5, and B-6,

respectively.
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2}/CELt4(.I,J} - (BETA(I,J) - BETA(I,J-I )}/DELM(I,J-I)) /180.) 00001050
I5O---DBDM (I,-M)---=--(B-E-TA(I,J) - BETA (I ,J-I ))* PI/('D-E-EM(I,J-I )* 180. ) 00-00-I-060

C 00001070

C ......C_LC. OF DBETA/DN 00001080

CO 162 J=I,M .......................................................................OOOOl090

00 162 I=1,Nt.}1 00001100

162 DELN(I,J) = SQRTF((R(I,J) -R(I+I,J))**2 + (Z(I,J)-Z(I+I,J))**2) 00001110

00--1-6-0J=l ,M 00001-120

CO 161 I=I,NMI 00001130

164 IF( I-I)165,165,166 00001140
165--08CN( I, J )- (-B ET-A( I-+--I-,J-}_-BETA-( I-,-J )-)-* P I / (18O.*-OEI_N (-I,j-)) ................ 00001150

GO TO 161 00001160

tO



O_StO000
............... 0_§ tO000

0_ [0000
0_[0000

LL [ 'LLL 'SLL ( 6"68+ ( r ' I I} l H3 } _ ]
((P'I)IN3+ (r'l)_Bd'IV:)dOS_D/((r+i)lH3 +(r'I)_dg-IqV)93NI,S=LBS

N'L = I: O_L 03

W'l=P O£L _3
OtSL.O000 "h/

OOSLOOOO(([-P"[-I)dN30 + (r'i-l)dW30+ (L-P'I)dWgO + (r'l)dN90)= (r'l)W3WDO

06_t0009 LWW'_=r OLLD3
.................. 09_[0000

OLhtO000
09hLO000
OghLO000

OhVtO000

O£htO000

................... OE_LO000
OL_LO000
00_[0000
06_[0000
O8[LO000
OL_tOOO0
OgEtO000
0_£10000
Oh_LO000
o££Lo pp
O_E[O000
OlELO000
O0_LO000
06_tO000
09_10000

OZ.Ztog o
09_tO000
O_gLO000

................. 0 h_ L0000
O_LO000
0_[0000
OtZtO000
O0_tO000
06[tO000

?Lt

NWHI 3411 ON_ dWD WDd 02SBNS S I ND ONV N_HI

89[ tDJ. DO
"O=Ng_

('OBL*(P+IWN)N'IBO) / ((P'LNN)VJ.B8- (P'N)VLBS)++Id = (p+N)N3B8 09[ o
_hNI INOD- [-9[...... _ ....

((rJL-I)N'l_O*'Ogt)/l(l(p+[-I),_'I_O +(r+ !)N-l_O}..Ogt)/l(r,_t_i )_
O£LLOOOON'IBO/((P+L-I)VJ'3I+ - (r+I)vi38) - (r+I)Nl_O/((r'I)Vt_£ - (+"+L_-t)VI[
oz[ t o0oo9-_-- i-f;,-i_-*-(i--EC--I )N%_-O+ -- [ -)* I d-*-( ( r'-[-f)V±_- --(r"I-) v+±9£) ...... (r' I ) N3_o 99[ ............

_*__N_V__OO__d _Oli091_ISIO AIIDOq3A ** P_h9

LWN'L=I OLt DO
W'i=r OLL O0

.... LLL DI DO
(P+I )W3=( P+I )d_3

L_N'L=I 69L DO

W_'_L_=_r'+_69 L_Do
• L=N,q _

BNI± IS_I9 O3"IVD dN3
L9[

3
3

.................. LNN'_=I 9LLD3

"_/((£+[)d43C] + ([-£+[)dN30] = (£+[)WONOO
L____L'_Z-r __Z t _3

"g/((N_I)dNOO + (N+L-I}dN30) = (H'I)N3_433 hZ[
°7_/((L+I)dN30 + (L+L-I)dNDO) = ([+I}NOWDO

......................... LWN+_=I hLtOO

( LNe+' t )tiN3(]= (N' L)N3ND3
( L+_L+NN__)_dN_3O_=_.(I_'_N }_NONO0

(L' t )d_3C] =(L' t)wowDO
(LWN+I}dN30 = (W'I}d_3g _ZL

(.+P:'_I).W.]::+O/+_((+r__+_I)dN3_--_( l +p '_! }.riND) = (P + I ) dNOO _2.[
L;_'L=P _ZL O0 ..............

LWN't=I ZZt o+ iLL
( ( r" I ) N"Ia(]* ( ( r" I }i ...( r ) _ - ( ( r ' I ) a + ( r" t + I +)__)___*_Id ))/_b_ _=.(j:.' I_)_dW3 _OL.t



,--,I

Oh$ [0000 oo ---

OE6[O000 [NN'L=I L_E O0 _EE
OE6 [ 0000 ...................................................................... E_E' EEE, lg[ ( " ! -NO_ )_ I
Ot6[O000 "O=Nn_ _I _I_ISI+O N3 "D]VD3_ ........_ ......

_O05_lOOOO 3rlNI IN03 0£_

068 [ 0000 SE_ .01___09
088/0000 _IO = 7510

VN3= IS_]W3
OLBLO000 ......................... (=!I0- "l=lI::]}/((r't)w3 -ISV7N:)) *=110- (r'L)N9 (r'l)w3098 [0000 ...................... =
O_%tO000 (r'[)w3 = VW3

O_8+LOOO0 MD7-_- IM= _IO 9E_
OESlO000 _EE C)I 09
OE8 [0000 MO7:I/IM*( C ' [ ) WD= (r'[)N3 .....................
0[8[0000 MD7d-IM : 7_I0

ozz [ qQ.Oo
OL/LO00O
OOL[O000

069L0000
089t0000
OLgto000

099[ 0000
0_9[0000

C08[OO00 .............................................................................................. (.P't)W3= ISV7N3 _EE
06LLO000 9E_'h_E'h_E('[-(p)I_I)_I E_E ..........

0.SZ_LO_O00 O_E'£EE'EEE('SE-(p)I_I}_I E_E
OZZ[O000 _____'___O_E__'O__£_(500"- I_l(M075 - IM)dSSV)dI

09LtO000 +l-I)ag+(r' I )w3)*( (r' l-I )l*(r)8-( (p' [-i)_+(g+ I )_).I d)_MO7_,=MO3j DEEOgL tO000

ohztoooo(tr,t-t )L++(p+I)E_-j-;-t-r-E-L- . '_ : (r'I)wD ......

OEL tO000 ((r+t_I) l.++(r+ i) l.l)/( (r+t_i)E_+( r+I )Z_ }= :_

___'z-t_+ Oz_z..Do
"0 = M03+

"D:(P)I+I
( d'-[-i-dW5-=- ( r' t ) wD

w,t=r oEz _o
NDI IV_D31NI 3
(((r+I)VZ_-a L

*'E)_ONI$* EBS*V93WO+ E**((P+I)VZ3g)_ONIS*[SS*(P+I)WONDO}=(p+I)E_ 08[
Oh9tO000

0£9L0000
oz9toooo
Ot9tO000
o_o_gjop.Oo
065 [0000
08g[O000

OlgtOOOO
0 9S l 0000

((,'r-'I-}_)I_
EsS* E**((P+I)VlBS)_ONI_+ (P'I)_A3. _**((r +l)vlBS)_Osog_((r,l)v

138}dOSDD/((P+I}N090 - [8S*(P'I)NOSO)*((P_I)Vi3B)_ONIS)-= (r'I)t-_ SZl

OD/( (r' I )IH3} _ONI S*
((r'I)+8-+7v)-+ONIS-((r,I)+8+7v).+oso_}/.t= _8s LZt

6L [ Ol 09
•o:za s +_-zl

3

** NVWOD_d_ND llnQ !wIS IO AII 3O7BA ** ,_h9



642 e -----*-*--v-EE-o-C-TT-Y--ZTI--JfR-/B-O-T I-O-N--#RO GRAM * *

.... O0

141

190

CO 1_¢I J=1 ,M

Ei_R(I,J )= (BETA (I, J )- +-BETA (I+ I-,J )-)i2.

_e_R( i, J)=(BETB( I,J )+ BETB(I+I,J) ) 12.

R_R(I,J) =(R (I ,J)_R(I*I ,J} )/2.

W BR ( I, J ) = (CM CI-,-J-}+CM(-I-+-I-,J)-}-/-(2-.-*-CdS-D-F-(B-B-R(I, J })}
CO 190 I=1 ,NMI

gO 190 J=I,MMI

COOO! 950

("0001 960
00001970

00001989

00001 990

0O0O20OO

00OO2010
NO T E CCMP ( I, J ) iS USED -_iERE WI TH-D_I F-F. "ME-AN--iN-G--TH-AN--A-I'S-T-I_-t_-T--N_o 17-30C,.002020
DCMP{I,J) = (RBR(I,J+I)*(OMEGA*RBR(I,J+I) + WBR(I,J+I)*SINDF(BBR(IO00020SO

1,J+l))} - RBR(I,J)*(OMEGA.RBR(I,J) + WBR( I,J}*SINDF{BBR(I,J)))).(200002040
I._P-i%-(R-BR-(-I,J}-_RBR(I,j+I)) -2.*B(J)*T{I,J}}/,I{RBR(I,J}÷RBR(I, J+1))00002050

191

1*e(J )*DELM( I,J ) )

CO 191 I=I,NMI

NTR( I, I-)--=(coS-DF-{-BBBR-(I-,-i-F)-/2-_-F*-(2.*WBR( I, I--)-/-C0S OF (858R (I, 1 })+
IP(I,1}}

WTR(I,M) =(COSDF(BBBR(I,M})/2.}*(2°.WBR(I,M)/COSDF(BBBR{I,M}}+
1 P (-i-.M M-I-))

00002060
00002070

0CM00002080

00002090

DCMO0002100

OOO0211O

192

195 WER(I,J)=2.*WBR{I,j) - WTR(I,J)
C

CO !44 I=I,NMI
DO 144 J=I,M

144 CELP(I,J)=RO*(WTR(I,J)**2 - WOR(I,J)**2)I(144.*64.4)
00 -14-5--I--h-N M 1
HECP[ I, I )=0.

145 HCMOM( I,I }=0.

CO 146 I=I,NMI ....................................

CO 192 I=I,NMI 00002120

DO 192 J=2,MM] 00002150

WTR (I, J ) = (C 0 SD F (8BB R-(I-,-J)--)-/2-.-)--*-(2-.-#w-B-R-(I-,-J-)-/-C-O-S-DF (BB BR (I,.J ))+ (DC-MOC 002140

P(I,J-1) +DCMP(I,J)}/2.) 00002150

CO 195 'I=I,NMI 00002160
c0- I-93--J--i-,-M 000 b-#i7 o

00002180

00o0219o

00002200

o00o221o

0000222o

00002230

000022_0
00002250
00002260

CO 146 J=2,M 00002270

HZEP(I,J) = FODP(I,J-I} + OMEGA*RBR(I,J-I)*CELP(I,J-I)*DELM(I,J-1)O00C2280

l* CELN ( I,J- 1 )*I _4.*B (J)*( AN-I. )/wT ..................... COC02290

1_¢6 HDMOM(I,J) = -OMEGA*(RBR(I,I)*(OMEGA*RBR(I,I)+ (CM(I,l)+CM(I+I,100002500

...... i)}*SINDF(BBR(I,I))/(2.*COSDF(_BR(!,I)))) - RBR(I,J)*(OMEGA*RBR(I,JO0002310

2 } + (CM (I, J )- +,"-CM(I-+i,-J)-}-*-SINDF(BBR (I "J-}-)-/(2-'-*c-osD-F-(B-BR-(I ,-J)-)}} ) -00002520

3 / 52.2 "00002530



6428 ** VELOCITY DISTRIBUTION PROGRAM ** •

148
1

3O0

12g 148 I-.I,NMI

UCU(I) = OMEGA-*-RBR-(-I-.]-}-*-i-O-M-E-G-A-.R-B-R(I, ] )

(BBR (I, 1 ))/ (2.*COSDF (BBR (I, 1 )}))/32.2
CO 320 J=I,M
FL I =0.
I=I

K=I

CML = 1.

FL = (CM(I,J)+:CM(I+I,J))*(PI*(R(I,J)+R(I+I,j)) - B(J)*T(I,J)}*DELNOOO02420
1(I,_JL/2.

A=Io 00002430

301 FL2 =A*Q - FL1 -FL 00002440

....FL IP =Q -FL 2 00002450

IF( FL2 }302,-3()4-,-304 00002460
302 _ : A+I. 00002470

GO TO 301 00002480
304 @2 = K 00002490

00O02340

+ (CM( I,I )+CM( I÷I, I) )*S IND-FOOO02350 .............

00002360
00002370
do0o2 8 o
00002390
00002_00

00002_I0 .................

IF( FL+FLI-Q )306,308,308

308 D_E_L...NN_(K,J)= (Q-FLI)*2./((CM(I,J)

l,J)) - B(J)*T(I,J}}) ¢ FLI/CML
+ CM(l+1,J) )*('PI* (R {I ,,J)

IF( CELNN(K, J })325, _25,305
305 IF(K-N+1)309,320,320
3b-S--FL-i--=-o.

÷

00002500

00O02510

R(I+100002520

00002530

00002540

00002550

313 K=K+I

KA = A+B2-2.

IF{ K-KA )311 ,Z 1 I-,-30-6

311 OELNN(K,J) = Q*2-/((CM(I,J}+CM(I+I,J})*(pI.(R(I,j}
IJ)*T( l,J}),}

I F( C ELNN-(-K-TJ-)-)-_25_-£5-,-313

+R(I+I,J}) - B(

00002560
00002570
00002580
00002590 .....
00002600
00002610
000d262U306

315

314

316

525

OO

IF(I-N+1}314,315,315
IF(K-N+l)314,316,316 00002630

CML =(CM{i,]-)_CM(-I+-I.JT)_(-PI-*-(R(-_J-)-+-R-(£#I-_j}-)-_-B-C__y(i-_}]-/2,--00002640
FLI =FL1P 00002650 ....
I=I+I

GO TO 300

DELNN(K,J} = (Q-FLI }'2. / ((CM(I ,J)
I)-B(J}*T(I,J}}) + FLI/CML

IF(C ELNN (-K'-J)-)-3-25;325,-320

WRITE OUTPUT TAPE 6,326,K,J

00002660
00002670

CM(I+I,J}}*(PI*(R(I,J}+R(I+I,j)
00002680

0000269C,

00002700
00002710

00002720



090_'0000
05OEO000

............... OtlOEO000
0£0£0000
OZOEOOOO

0 tO_O000
055_0ooo
065_0000
085_0000
OZ6_O000
096 _0000
056_0000
0#6_0000
0_6_0000
O_6Z_O000

0 16_0000
C06_0000
068_D000
o8_-o0oo
018_0000
098_0000
O_g_O00O
0 _8 _0000
O_SEO000
0_8_0000
Otg_O00O
008_0000
06Z;_O00-O
OgZ_O000
02.Z_0'300
09L_O000
OSL_O000
Ot_ZovO0_.

02L_O00 r_.

3
D

"_',*(P)N1 = (PIN± LSE
- - w't=r ZgE Do--

"_[*(PLI)w73o = (P'I)W733 gS_
"Zt*(r'_I) N7_qO = (r'_I) N133
• _t.(r'_I)NNq30 = (r'_i)NN-13O

• _[*(r'I)Z = (r_I}Z
°_[*(.r'I}_ = {r'l)a

(r"I)IH3----= (P'I)IN3
• 06 + (r'I)_13£= (r'l)S13g
"05+ (C'I)vi39= (C'I }v138

w,t=r SSE _3
N _[=I ggE gO

_nNIINg3 09£
iw*(r"_-N-NI_O-= {r'_}NN7_O os_...........

iNN _[=I Ogg DO

"h,h[*_V= (r)_3u_
i NN7 _O-2-i-N-q#O ---- i v

(P_I)NN7BO + INNqBO = INNlBO Oh[
la*'z*lr'I}_.(r,i)N7_O + _v = _v

.... (r_I-)N]30 , $NqB3 = $Nq3O .........

L NN _ L=I O#E OO
"0 = _V

" 0 ---INNI_O
"0 = 1N73.0

3nNIIN_D _£_

(P_L+IIND+ (r'I }N3 = _vawD

[NN_[=I gE_ DO
--N-LL=P 09E- DO oo.

98ni iIa Oi SNq30 MgN isnrov Di 3
3 nr,;I iNOD DZ£

** _IV_0g_d NO Ii,q£ l_iS IO A_'IOD7_A ** 8_h9



6428

.............. DO510

** VELOCITY DISTRIBUTION PROGRAM **

I:I,N .....
M5 = I - 00003120

IFIM-9}520,520,515 00003130
M_6__=___MO__.8 00003140

GO TO 525 00003150
M6=M 00003160

g5]..__

520
00003170

525 WR IT E 0 UTP U T __TAPE _6,700, (C_V2 (I_,J)_,_J_=_MO_,_N_6) 00003180

700 FORMAT(//8_- CV2 9F10.3) --00003190

WRITE OLTPUT TAPE 6,723,(CV2C(I,J),J-_M5,M6) 00003200

___WRITE OUTPUT TAPE 6,70],(DBDM(IjJ)_LJ_=M5tM6} 00003210
TO] FORMAT(EPO DBDM 9F10.3) 00003220

725 FORMAT(8HO CHI 9FI0.3) 00003230

_724 _FORMAT (8HO DELN ......9F_IO. 3 ) 00003240

WRITE OUTPUT TAPE 6,702,(DBDN{I,J),J=MO,M6) 00003250
702 FORMAT(OFO DBDN 9F10.3) 00003260

703_FORMAT_(_8_HO _DCMDM 9F IO. 3 ) 00003270

704 FORMAT(BHO FI 9F10.3) 000032-80

705 FORMAT(8HO F2 9F]0.3) 00003290

706_FORMA T( 8 _0 T......---9-F--!0_-3) 00003300

707 FORMAT(8HO ALFBR 9FI0.3) 000033-10
700 FORMAT(OhO BETA 9FI0.3) 00003320

709 FORMAT(OFO R 9FI0.3) 00003330

710 FORMAT(8PO Z 9F10.3) 00003340
"/11 FORMAT(SHO OELNN 9F10°3)
712 FORMATI8HO CMP 9FI0.3)

713 FORMAT (EPO--C-M 9-FIO. 3 )

714 FORMAT(8HO WTR 9F10.3)
715 FORMAT(8HO WBR 9F10.3)
7i6---F0 RM-A-I"(E-I_-O--W-I]R 9F 10,3 }
717 FORMAT(OHO DELP 9FI0.3)

718 FORMAT(OHO HDDP 9FI0°3)
719 FORMAT(OHO HOMCM 9-FI0-_-3_)

721 FORMAT(OHO B 9F10°3)

Oo

722 FORMAT(BPO DELM 9F10.3)

7-2-3-FORM AT]--8HO--C-V2C----gF-I-O_-3)

WRITE OI,TPUT TAPE 6,703,(DCMDM(I,J),J=M5,M6)

WRITE OUTPUT TAPE 6,70h,(FI(I,J),J=M5,M6)

WRITE OUTPUT TAPE 6,713,(CM(I,J),-J-=M5,M6)

WRITE OLTPUT TAPE 6,7O5,(F2(I,J),J=M5,M6}

00003350
00003360

00003370

00003380

00003390
0000-3_0
00003410
00003420

00003430 ............
00003440
00003450
00003_60
OOOO3470
00003480

00003490

00003500



068£O0O0

.............. 088£0000
O18_O000

098£0000

OgSE_O000
0_8_0000

0E8£0000
O_SEO000

0L8£0000

008£OOO0

o s L:_qQoo
08ZEO000
OZZ_O000
09Z£0000
OgLEO000

(£'OL_OL--_L)iVW_D_ 8£_C

(E'OL_O'O_[)IVW_D_ LEg

(_'OLd'XSZIOH [)IVW_D3 9_

( I_).n_DA' ___.__9_. Bd.._'l IAdlNg 3 II NM_OEZ
[NN'L=I OEZ 08

( (I )nO qH9'×OE _-H [//)IVW_g_

............... OE,L_9 3dVi Ir]dl3g 3iINM

(r)vB_v'(r)Nl'(r)l_i,5##,9 3dVl i_dlnD 311NM

W'I:P 0[9 gO

O#L£O000

C£ZEO000
OEZ20000

089£0000
OZ9EO000

099E0000

OL9

OZZ_9 Bd_l l_dlqO _II_M

3DNIINDD 9L'S

09g_OtS_O[g(QN-W)_I 9S5
5_g Ol DO

6÷9W = 9W
L+9w = SW ggg

W : 9W

L_9W : SW 095

3dVi Inain_ 311_M
aavi inaino _i_M
BdVi indino BIiaM

O[LEO000

OOZEO000

069E0000 g_§_
(9N_S_=r'(P_I)_O_OHI'6[L,9

(9W'gw:r'(r'I)dOOH)_8t/,9

(9w_gN:r _(r _I)d7BO)*Z tL_9
0S9£0000
0#9£0000

OE9EOOOO
0Z9£0000

0[9_0000
O09EO000
06SEOOO0

9 '085_0300

OZggO000

09S£0000

0SS£0000

O#SEO000

OESEO000
OZS_O000

C LSEOOO0

(gw'sN:P _ (r' I)_OM)'9LZ'9
( 9W _ sw:r' qr' I i_8M) _S[Z _9
-( 9N • 5W:£-_( r _-I ) _lM,}_ #[Z_9-
(gW' 5w=r' (r' I )tiN0) ' Z[L'9

(9N' SN=F _ (c' I )N,_130) ' [[Z_9
(-9W ' SW: r "(-r' 'Y)N 7B 0 )-_ _EZ' 9

(9w'Sw=r' (r'l)W7a0),z_z,9
(9N;cw=r _ (r -_ I) IN9) _g_/._9

3dYl lOdlqO BII_M

Bd_l IDdl30 BII_M

-3dYl-iQdl30 3!I_M ...............

_dVl 1QdlQD 311_M

_dVl IF1dl_qg 31i_M
_dVl Indlqg _II_M _S
'E_S'i_ZS([NN-I)_I
_d_l INdlqO 3!I_M

BdVI l_d!_D 311_I_ ....
(9N'gw:r'(r)g)'L_Z'9 3d_l INdlqg 311aM

(9w'sw:r'(P'I)Z)'OLZ'9 _=d_l IndlNO B!IaM _o
igN'SN=P' (r-' i ) _) _60}_'9- 3dVl-lfldl_lD- 31I _i4 ........... oo_....

(9N'gw=r'(r'I)v!3_)'8Oi,9 3dVl IAd!rlO 311_Y_

(9w'gw:r'{r'I)_g_]V)'LOi,9 3dVl lDdlqg _II_M



006£0000 (0'0'0'0'0' 1.' 08 Ol I. ' 040' 0'0'0_ [ )ON3

** WV)_OD_d :_DIlngI_l_IO A±IDD73A **



NOMENCLATURE

b

c orC

Cp or c v

n

morM

M.

Mtotal

horN

p or P
/

Q

r or R

R

Rc
R

m

s

t

t m

T

u orU

v

worW

w,R

WDR

W
m

= blade blockage factor

= absolute velocity

= specific heat

= enthalpy

= M coordinate; curvilinear distance along any assumed

streamline in the meridional plane

= Mach number

= M coordinate at component exit normal minus M coordinate at

component inlet normal

= N coordinate; curvilinear distance along a line ever_vhere

normal to a set of assumed streamlines in the meridional plan

= pressure

= Volume flow through a streamtube defined by two adjacent

streamlines

= Radius or radial coordinate

= gas constant

= Radius of curvature

= Radius to midpoint of line normal to two adjacent streamlines

= entropy

= Circumferential blade thickness

= Circumferential blade thickness af midpoint of line normal

to two adjacent streamlines

= absolute temperature

= Component tangential velocity at radius R

= specific volume

= relative velocity

= relative velocity midway between two adjacent blades assuming

linear relative velocity distribution in blade-to-blade plane

= relative velocity at driving surface of trailing blade

synonymous with blade pressure side relative velocity

= meridional relative velocity component
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W
m

o

WTR

Z

F

5

6

L

_or 0

inc

#

o_

= meridional component of relative velocity at the tip (N=O)

= relative velocity at trailing surface of preceeding blade,

synonymous with blade suction side relative velocity

= number of blades; or axial coordinate

= angle in meridional plane between a tangent toa normal

and the radial direction

= blade angle in stream surface with reference to meridional

plane =  '-90°)

= blade angle in stream surface with reference to tangential

direction (8' = _+90 °)

= circulation

= angle in meridional plane between a tangent to a normal

and a tangent to the blade trace

= deviation angle

= angle between stream line and axial direction

= loss coefficient

= polytropic expansion efficiency

= wrap angle or angular coordinate in plane normal to axis

of rotation

= wrap angle between driving face of trailing blade and

trailing face of preceeding blade

= flux, or specific mass flow

= stream function

= angular velocity of impeller
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APPENDIX C

PARTS REQUIREMENTS LIST FOR AP70-126 TEST INSTALLATION

Existing Parts

456205 Inducer

Make From Existing Parts

AP70-126-26 Volute Assembly

(make from 458161 volute and

from 458425 seal assembly)

AP70-126-33 Impeller

(make from 460422-3 casting)

AP70-126-25 Housing Assembly
(make from T-5029142-201

Existing Parts Available From T-5029142

(To be used on AP70-126 Test' Installation)

T5029143-501 Nose

T5029143-406 Nut (mating ring)

T5029143-405 Mating Ring

T5029143-402 Nut (internal)
T5029143-301 Retainer

T5029143-606 No. 3-3-50-02-BO-40 Sealol Seal

T5029143-607 No. 3-6-50-02-BO-40 Sealol Seal
T5029143-407 Sleeve

T5029143-404 Mating Ring

T5029143-603 ND Q-30314 No. 5A Bearing

T5029143-I13 ND No. ii0 Spring Washer (wavy)

T5029143-304 Deflector, Oil

T5029143-I18 AN6230-8 O-Ring

T5029143-I15 AN6230-21 O-Ring

T5029143-I14 AN6230-7 O-Ring

T5029143-I16 MS9021-035 O-Ring

T5029143-III AN6230-17 O-Ring

T5029143-I12 AN6230-33 O-Ring

New Parts (To Be Made)

AP70-126-2 Calibration Adapter Mount

-003 Flange (CI020 H.R. steel plate 1.50 stock)

-005 Body (CI020 H.R. steel plate .75 stock)

(or pipe (16.00 schedule 120) 1.218 wall)

(seals A-106B)

-007 Flange (CI020 H.R. steel plate 1.00 stock)

-009 Gusset (CI020 H.R. steel plate 1.00 stock)

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

2 Required

2 Required

1 Required

2 Required

1 Required

1 Required

1 Required

1 Required

1 Required

5 Required
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New Parts (To Be Made - Continued)

AP70-126-3 Torque Shaft (4340 alloy steel bar)

(Similar to 126017-M3)

AP70-126-4 Quill Shaft (4340 alloy steel bar)

(Similar to 127017-M6)

AP70-126-5 Main Shaft (Inconel-X bar)

(Similar to T5029142-602)

AP70-126-6 Sleeve, Serrated Scanivalve

(6061 T6 aluminum)

AP70-126-7 Spacer, Scanivalve End

(A286 CRES)

AP70-126-8 Nut, End Spacer (internal)

(A286 CRES)

AP70-126-9 Sleeve, End Spacer
(321CRES)

AP70-126-10 Washer, Scanivalve Thrust

(Neoprene)

AP70-126-II Probe, Main Shaft (serrated)
(321CRES)

AP70-126-12 Stop, Probe
(321CRES)

AP70-126-13 Mating Ring (440C CRES)

(each side of AP70-126-35 seal assembly)
AP70-126-14 Set Screw (make from ANS6SA428-16)

(for slip ring assembly to main shaft)
AP70-126-15 Nut (internal)

(holds AP70-126-16 retainer in AP70-126-25 housing)

AP70-126-16 Retainer (321CRES)

(retains rear bearings and 3-3-64 sealol seal)

[AP70-126-17 Number Not Used]

AP70-126-18 Mating Ring (440C CRES)

(retains 3-3-64 sealol seal)

[AP70-126-19 Number Not Used]

AP70-126-20 Spacer Set (416 CRES)

(separate rear bearings for lubrication)

AP70-126-21 Nut, Mating Ring (A286 CRES)

(rear bearing)

AP70-126-22 Lock, Mating Ring Nut (302 CRES)

(rear bearing)

[AP70-126-23 Number Not Used]

AP70-126024 Washer, Tab Cock (302 CRES)

(to secure AP70-126-18 nut)

AP70-126-27 Adapter (6061 T6 aluminum)

(used with AP70-126-40 and -41)

[AP70-126-28 Number Not Used]

1 Required

1 Required

1 Required

2 Required

1 Required

1 Required

1 Required

l Required

1 Required

1 Required

2 Required

3 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required
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New Parts (To Be Made Continued)

AP70-126-29 Adapter (Bently Prox.)(321CRES)

AP70-126-30-3 Shim (.320)(321 CRES)

-5 Shim (.335)_Use between

-7 Shim (.365) IVolute and

-9 Shim (.385)JPump Inlet

AP70-126-31 Body, Pump Inlet (6061 T6 aluminum)

AP70-126-32 Flange, Assembly of (321CRES)

(impeller cavity drain)

AP70-126-34 Button, Pump Inlet (nylon)

AP70-126-35 Seal Assembly (scanivalve vent)

AP70-126-36 Nose, Assembly of

AP70-126-37 Spring, Assembly of

AP70-126-38 Housing
AP70-126-39 Pin

AP70-126-40 Tube Retainer (321CRES)

(part of AP70-126-27)

AP70-126-41 Guide, Sleeve (321CRES)

(part of AP70-126-27)

AP70-126-42 Probe, Retainer

AP70-126-43 Adapter, Probe Retainer (321CRES)

New Parts (To Be Purchased)

Bearings

ND QH20217DT5A or MCR7217DU-ABEC5
Seals

No. 3-3-B0-02-B0-64 Sealol Seal

O-Rings Part No.

MS29513-003

-010

-011

-012

-013

-041

-042

-121

-138

-159

-162

-275

-442

Bolt AN101321

Washer (flat) AN960-616

2 Required

1 Required

1 Required

1 Required

1 Required

1 Required

1 Required

4 Required

1 Required

2 Required

2 Required

1 Required

2 Required

1 Required

1 Required

1 Required

1 Required

2 Required

1 Required

Where Used Quantity

AP70-126-27 Adapter 1

-43 Adapter 1

-27 Adapter 1

-29 Adapter

and Bently Prox. 6

-29 Adapter 2

-43 Adapter 1

-35 Seal Assembly 2

-35 Seal Assembly 2

-32 Flange 1

-7 Spacer 1

-16 Retainer 1

-16 Retainer 1

-31 Pump Inlet 1

-31 Pump Inlet 1

1 $1Cylinder to Pump Inlet 51
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New Parts (To BePurchased - Continued)

Nut

Washer (flat)

Washer (lock)

Bolt

Nut

Washer (flat)

Washer (lock)

Bolt

Washer (flat)

Washer (lock)

Bolt

Nut, Jam

Bolt

Washer (flat)

Washer (lock)

Setscrews

AN565-I032-2

AN565-I032-5

RDI14-I002-0005
Volute to

LD153-0010-0012

MS35338-140 Housing Flange

AN104030

RDI14-I002-0006
Housing to MountLD153-0010-0014

MS35338-141

AN101219 1
LD153-0010-0012 -35 Seal Assembly

MS35338-140 to Housing

AN148559 I -29 Adapter and

AN316-6 ! Bently Prox.

AN101010 }
LD153-0010-0007 -32 Flange

MS35338-138 Impeller Cavity Drain

I To Secure Sleeve

AN565-I032-5 (to secure -16 retainer)

Pipe Plug

AN932D2 (use in -26 volute)

Plug

NASI081C6A6 (use in -5 main shaft)

Quantity

12

12

12

12

12

12

12

7

7

7

4

6

4

4

4
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