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I. INTRODUCTION

This report is a revision of the secorid.-ifjart of an earlier 'report.

Our interest in the subject was reawakened by reading the paper of

2
Heaton and Moiseiwitsch which, among other things, led us to the reali-

zation that many of our earlier results were derived under unnecessarily

severe restrictions.

Our goal is to derive various theorems in the theory of scattering

of a spin-less particle by a real central potential, directly from the

4
Kohn variation principle. Such an approach provides a unified view of

the theorems and also, as a by product, yields sufficient conditions

under which an optimal variational wavefunction will satisfy analogous

theorems.

II. THE KOHN VARIATION PRINCIPLE4

Some Definitions :

Let Yo be a trial function satisfying the asymptotic condition

-S L /^ &-*-- AST) ±\ Q* GL«— J5LTT



where \ is independent of Then the Kohn variation

principle states that

(5)

where

and where, from (4) the variations of

condition

satisfy the asymptotic

In A moment we will derive the Kohn variation principle. That is we will

show that if the QTjj. are otherwise unrestricted then (5) implies

and is implied by the Schrodinger equation

d E- (8)

Therefore since, when (8) is -satisfied, we have . -s, )̂  we see

that provide a variational approximation to the true

w^ere ^JL ^-s t^16 phase shift).

Written out more explicitly (5) is evidently

o =
(9)



Further by an integration by parts, and by use of (1) and (6) it is easy

to show that

0 =

Thus we may write (9 ) in the same form as the familiar bound state

8
variation principle, namely

0= (§vv,. o~ tt,^-\ JL. rn=-«N v.v «J ^ do)

in which form it is clear that with S*"̂ ^ arbitrary, the Kohn varia-

tion principle implies and is implied by the Schrodinger equation.

Finally we make a simplification - clearly thg£gjs no need to

introduce complex wave functions, so we won't do so. /dince with M̂ j,

real the two terms in (10) are equal to one another, we can replace (9 )

and do) by

0-

and

0 •=• C£%} Ce-^c) ̂ (12)

Thê e. together with (6), the asymptotic conditions (4) and (7), and the

*v(l) - (3) are then our basic equations.

III. THE GENERALIZED HELLMANN-FEYNMAN THEOREM

Let 1U. be a real parameter in V . Then diff erentrating (6)

with respect to f»* we find



*t -f-

We now note,that

**jL*

satisfies (7) with

whence we see'from (ll) and (12) that the sum of the last three terms in

(13) vanishes to that

which by analogy with the bound state case, we call the generalized

Hellmann-Feynman theorem. For exact wave functions it is a well known
g

result. In a variation calculation (14) will be a possible variation of

^. , and hence (16) vrill be satisfied by the optimal trial function,*-*•-

provided that the set of trial functions is independent of /U.

IV. INTEGRAL HELLMANN-FEYNMAN THEOREM

Let ^V be an optimal trial function for a potential V

Then since



we see that if o is a real constant then

is of the .form (7) with

Thus we can choose,

whence we find from (11) , using (17) and (6) that

or

then we find from (12) [i.e., (tt) with '*s/everywhere]

0 -a (

We now note that if we choose, as we may

(20)

(21)



Thus we can write (19) as

whence from (6) we have finally

(22)

which,for exact wave functions, is a well-known result. Also it.is

clearly the continuum analogue of the so-called integral Hellmann-Feynman

12Theorem for bound states. ,

In a variation calculation (18) and (20) will be possible varietiOYii

of *A% an^ i\t, respectively, and hence (22) will be satisfied

the optimal trial functions provided that . \^_ — y and Wg,"̂

any given function such that

13are chosen from a common linear space of trial functions.

V. A SIMILAR THEOREM

The theorem of the preceding section describes what happens .if we

change "V at \si^A **^« . Now we investigate the effects

of changing JL at fi*«JI VI . First let J^ "> Ji be of

the form

j£~ JL f «*AI :

where /v\ is an integer. Then we can write

*T* *. JL



whence

(24)

satisfies (7) with

(25)

From (11) and (6) we then find, after some rearranging

0 =

Further from (23) we see that we may

(27)

which, when inserted into (12) yields

Thus we can write (26) as

<»>

which ,. is a known theorem.
14

_

For the case a\
JL —

Jfo except that now we can write

we proceed in a similar



whence we can choose

with

&"V^ CVi — >-,e) £>& ' (32)

and also we can use

(33)

The result is then

" * ~~ l-'Û .i. ' ̂- ' —<e} ~V7<_ ~ *7«.j *fy) ' oU OX^L

14which *&• again for exact wave functions is a known result.

In a variation calculation (24) and (27) will be possible variations

of ^ and ̂ y and therefore (29) will be satisfied if

^k _^ ̂ C and « x̂ ̂.̂ C , Q/vHv X defined as in the previous section,

are chosen from a common linear space of trial functions. Similarly one

will have (34) if T̂fc,— "X anQ" Hi.'4-/£ are chosen from a common

linear space.

Next we consider the

Here we can write

(35): *-



and

_ , (36)
~-\>

then we see that

r C (37)

satisfies (7) w>"Ht

*> ~̂ } ££- (38)

and also we see that

(39)

satisfies (7)'. Proceeding in the standard way one then findsArather

messy result ^

0- (40)

which, in case the Schrodinger equation is satisfied on av.erage i.e., so

that CvArJL) Ce

14
reduces to the form of the known result for exact functions. However

of itself (40) does not seem especially interesting. Also" it is not at
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all clear to us how to ensure that (37) and (39) are possible variations

so we will not pursue the matter further. The case Jl-y-JH- ̂ /^ 4 "2

yields similar results. In Section VIII we will derive rather nicer

theorems for these cases.

VI. THE VIRIAL THEOREM

We now observe, essentially following Robinson and Hirschfelder

that

dip-
Thus

& w Mi, (42)

\
satisfies (7) with

(43)

Inserting these results in (11) and (12) we therefore have

'-) (&- lit)\A/ ^K-) (44)

and

> ^" *-' (45)

.Since ._"_ L^£—\U-) Hlj,— vanishes asymptotically-one-may freely inte-

grate -w* parts in (45) in order to transfer the */»£* to the (tulvt
<f *
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Also one may transfer the to the rigfit by noting

that dif ferentations of (6) yields

Then using these results one finds, after a bit of rearranging, that

(45) can be written as

0,

Subtracting this from (44) then yields

0 - -
(48)

which become^j on evaluating the commutator,

0= - J
dk

which for exact wave functions is the virial theorem (Note that in

(49) V can also be replaced by O~ ) •

In a variation calculation one can ensure that (42) is a possible

variation of H^ by introducing a variation (scaling) parameter

as follows? Let

conditions. Then one readily sees that

satisfy the asymptotic

(50)
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will also satisfy the conditions, and further one sees that

$& (51)
frfe

where . -.. 0 vi , as desired. The triai^fitractions used in the-.. 0^ vi

first of references 2 are (aside from a difference ingnotation ) precisely

of the class (50) . More generally if l<^ times the set of trial

functions is invariant to fc.-*̂ .̂  fcl~?> |=- then (49) will be sat-

isfied.

VII. HYPERVIRIAL THEOREMS

See the second of References 1.

VIII. GENERALIZED TIETZ THEOREMS

Returning to the case

which we considered in Sec. V we now note from (35) that we can make a
Otl

rather simp lei" connection between <4k/ an<* TJ » namely

(52)
£*>•<. »" " " *"'

so that

(53)

satisfies (7) with' " "
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(54)

Thus we find from (11) that

O * V _ £>* 1 V 2j? 6% Ce-HU ^j (55)
fc-

However from (36) we also have

<5W

SO

^ yj •—» I *-* *—
r1" K\ «l > /

(57)

satisfies (7)' whence (12)' yields

or, integrating by parts

(59)

Multiplying this by *2,nAA. and adding to (55) then yields the result

<«).

Unhappily it is not clear to us how one could arrange for (;60) to be

satisfied in a variation calculation, i.e., for (53) and (57) to be possible

variations .
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Equation (60) is for exact wave functions, in fact essentially the

same as results given already by Tietz (in the case ̂  -s-̂ M )

18
more generally by Fradkin and Calogero. To see this one first notes that

in carrying out the operations in the integrand of (60) one encounters

derivatives of ^ \ > . However thefe can be eliminated as follows:

Evidently

(61)

satisfy (7) and (71) respectively with

. (62)

From (11) and (12') then we find

0- Ĉ S ClS-HO .̂̂ j (63)

(64)

which by subtraction yields

(65)

Carrying out the operations in the integrands of (60) and (65) and com-

bining theWft.yields

7 (66)
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which, for exact wave functions, is the result given by Fradkin ,a:hd

18
Calogero. The case

can be dx&ytw-̂ ) in a similar way and yields the result given in Reference

18 but with tL>Vs instead of y '.s again. For £-, J? ->-ty--*v and

^2— the straightforward results are more complicated (involving

both. *)> ^ and Il̂ Tl̂  as in (40)) and presumably even less inter-

esting (to repeat, we really don't know how, in a practical way, to

guarantee any of the. /results of this section variationally) so we will

not go into details.
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