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DAVIDON-BROYDEN RANK-ONE MINIMIZATION METHODS

IN HILBERT SPACE WITH APPLICATION TO

OPTIMAL CONTROL PROBLEMS *

By Terry A. Straeter
Langley Research Center

SUMMARY

The Davidon-Broyden class of rank-one quasi-Newton minimization methods is
extended from Euclidean spaces to infinite dimensional real Hilbert spaces. The mem-
bers of this class of minimization methods are distinguished by the manner in which a
particular parameter (the step size) is chosen at each iteration. For several techniques
of choosing the step size, conditions are found which assure convergence of the associated
iterates to the location of the minimum of a positive definite quadratic functional. For
those techniques, convergence is achieved without the problem associated with many other
first-order minimization methods, namely, the computation of a one-dimensional mini-
mum at each iteration. The application of this class of minimization methods for the
direct computation of the solution of an optimal control problem is outlined. The perfor-
mance of various members of the class are compared by solving a sample optimal con-
trol problem. Finally, the sample problem is solved by other known gradient methods
and the results are compared with those obtained with the rank-one quasi-Newton methods.

INTRODUCTION

In the past few years the problem of finding the location of the minimum value of,.a
real-valued function of n real variables by numerical methods has been the subject of
a great deal of research. (See refs. 1 to 4.) Several iterative procedures have been
developed to solve the problem. Much of the work has been directed toward developing
algorithms which use the function value and its gradient to locate the minimum by itera-
tion. This type of algorithm is usually referred to as a gradient method. Historically,
the method of steepest descent was the first such method. In order to accelerate conver-

* The material presented herein includes information from a thesis entitled "On the
Extension of the Davidon-Broyden Class of Rank-One, Quasi-Newton Minimization Methods
to an Infinite Dimensional Hilbert Space With Applications to Optimal Control Problems"
by Terry Anthony Straeter submitted to North Carolina State University, Raleigh, North
Carolina, 1971, in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Applied Mathematics.



gence, the method of conjugate gradients, developed by Hestenes and Stiefel (ref. 5), was
applied to the minimization problem by Fletcher and Reeves (ref. 4). Later various ver-
sions of it were extended to real Hilbert spaces (refs. 6 and 7) and applied to optimal con-
trol problems (refs. 8 and 9). Other first-order methods were developed which were
inspired by Newton's second-order method. In 1959 Davidon (ref. 2) proposed two effec-
tive techniques for solving the problem. The first method, given in the main body of his
report, was modified in 1963 by Fletcher and Powell (ref. 3). This algorithm is referred
to as the DFP method. They established that for any differentiate real-valued function,
the method is stable; that is, the value of the function is monotonically decreasing with
each iteration. Moreover, they showed that for a real-valued quadratic function of
n variables, the DFP algorithm converges in a finite number of steps. In fact, at most
n + 1 steps are needed. In 1968 Horwitz and Sarachik (ref. 10) extended the DFP method
from an n-dimensional Euclidean vector space to an infinite-dimensional real Hilbert
space and established convergence of the iterates when the functional to be minimized is
quadratic. In 1970 Tokumaru, Adachi, and Goto (ref. 11) also extended the DFP algorithm
to an infinite-dimensional real Hilbert space and gave a comparison of the DFP method,
the steepest descent method, and the conjugate gradient method on some sample optimal
control problems.

The second method due to Davidon, which he called a rank-one variance method,
was outlined in the appendix to reference 2. In reference 12 and again in reference 13,
he published modifications of the second method and established conditions insuring its
convergence to the minimum of a quadratic function of n variables in a finite number
of steps, at most n + 1, and insuring the stability of the method. In 1965 Broyden (ref. 1)
proposed a family of methods, which he called quasi-Newton, based on an arbitrary param-
eter a (the step size). If a = 1, then under certain conditions, Broyden's method and
the second Davidon method are the same. In 1969 Goldfarb (ref. 14) established conver-
gence of the iterates of a rank-one algorithm for a class of real functions of n variables
when a is chosen by means of a linear minimization technique (that is, a one-dimensional
search). He called the algorithm with the step size chosen by a one-dimensional minimi-
zation "an optimal variance algorithm."

The purpose of this paper is to extend the Davidon-Broyden family of algorithms to
an infinite-dimensional real Hilbert space, to establish conditions guaranteeing, conver-
gence of the iterates for various algorithms in the family, and to apply the family of algo-
rithms to optimal control problems. Also presented herein is a comparison of the,rank-
one methods with other first-order algorithms on a sample optimal control problem.



SYMBOLS

A self-adjoint, positive, linear operator from H to H

A"* inverse of A

BW,VW sequence of linear operators

b fixed element of H

C linear operator from H to H

f function from Rn+m+1 into Rn

/8f- \
fu n x m matrix with elements f-r-^ ) where i = 1, 2, . . ., n and

\ Vj = 1, 2, . . ., m ^ /

(9f • \
^-M where i = 1, 2, . . ., n and
8xj/

] = i, z, . . ., n

g gradient of J

gn,g* gradient J at xn and x*, respectively

H real Hilbert space

h element of H

I identity

integers
n,q,r '

J functional defined on H

Jn, M, m, Mn,'}u ~ u > real numbers



function from Rn+m+1 into R

_9L_ _9L_
' dx2

! • • •' dxn

J square integrable functions from (tQ,tj) into Rr

M(n),N(n) set of integers

' > matrix-valued function of t
G(t),B(t)J

p^ elements of H

R set of all real numbers

rn nth residual vector, element of H, defined by equations (10)

S,M,S^,S^ subspaces of H

sn direction of nth step, element of H

t independent variable

tQ,ti initial and final values of the independent variable

Ux linear operator from H to H

u control variable

X,U,XQ,X* elements of H

x element of H at which J is minimized

xj,X2,x state variables

xn nth iterate, element of H

_yn element ojL^H_define<Lby_g±-^gn



a.ft/^X.M scalar s

o!n step size, a real number

6U change in u

en scalar, 1 - otn

61 (h) functional from H to R

6 zero of H

X,Xi,X2 adjoint variables

p. scalar defined by equation (14)

crn defined by xn+1 - xn

rn scalars defined by equations (11)

Vu gradient with respect to u

(• , • ) inner product on H

|| • || norm on H defined as (•,•) ' , and norm of operator A defined by

||A||=inf{K:||Ax||sK||x| |}

Abbreviations:

conv convex hull

dim(H) dimension of H

inf infimum (lower bound)

sup supremum (upper bound)

Dots over symbols denote derivatives with respect to t.



PROBLEM FORMULATION FOR QUADRATIC CASE

Consider the problem of finding the element x e H which minimizes the quadratic
functional J: H - R given by

J(x) = J0 + (x,b)+l(x,Ax) (1)

where JQ e R, the real numbers, and b is a fixed element in H, a real Hilbert space
with inner product (•,•) and zero 9.

In equation (1) A:H -» H is a linear self-adjoint operator; thus,

m(x,x) ^ (x,Ax) i M(x,x) (2)

where

,, (x,Ax)
M = sup V — r-

. (x,Ax)
m = inf -V2 — r-

and where it is assumed that 0 < m i M. Hence, ||A|| = M (ref. 15) where

||A|| = inf{K:||Ax||sK||x||}

Since m > 0, A exists (ref. 16) and A is also a self -adjoint operator. Moreover,

) (3), , ,

A functional J:H — R is said to be differentiable at x if there exists a bounded
linear functional UX:H — R such that for h e H

J(x + h) - J(x) = Ux(h) + 6l(h) (4)

where — - — j- -» 0, as (h,h) ' * - 0 (Frechet differential). If such a functional Ux
(M)1/2

exists, then it is unique. (See ref. 17.) Moreover, by the Riesz representation theorem
(ref. 18), for each x e H there exists a vector g e H such that (g,h) = Ux(h) for all
h e H and g is given by



(g>h) =

* NO

The vector g is called the gradient of the functional J.

For the quadratic functional defined in equation (1), the gradient is given by

g(x) = Ax + b (5)

A well-known necessary and sufficient condition that x minimize J(x) as given
by equations (1) and (2) is that g(x) = 9 where 9 denotes the zero element of H. (See
ref. 15.)

Hence, if x denotes the location of the minimum of the quadratic functional J
given by equation (1), then

x = -A^b (6)

Moreover, if x,h e H are such that x + h = x, then

h = -A-^x) (7)

Of course, the equation h = -A~*g(x) is the basis for the well-known Newton-Raphson
method for solving the operator equation g(x) =9 on a real Hilbert space. (See ref. 15.)
As a final preliminary note, recall that if A and B are positive self-adjoint linear
operators with (x,Ax) = (x,Bx) for all x e H, it is said that A = B. (See ref. 18.)

DAVDDON-BROYDEN ALGORITHMS

Let J:H — R be a differentiable functional with gradient g. Let XQ e H be the
initial estimate of the location of the minimum of J, and let v'™ be a self-adjoint lin-
ear operator from H onto H. Moreover, let MQ = mQ > 0 be such that for all x,
m0(x,x) ^ (x,v(°)x) i MQ(x,x), that is, v(°) is strongly positive. (See ref. 18.) If J,
the functional to be minimized, happens to be quadratic, then v'^' can be viewed as an
estimate of A"1. The quantities J(XQ) and g(xQ) are computed and the first (n = 0)
and successive iterations are obtained as follows:

(1) Let

x* = xn - anv(n)gn (8)



where gn denotes g(xn) and oin> the step size, is a scalar, the choice of which is dis-
cussed later. Let

sn = - (9)

and compute J(x*) and g(x*) denoted by g*; if (g*,g*) = 0, a necessary condition for
x* to be the location of the minimum, the computation is stopped. If J is a quadratic
functional as in equations (1) and (2) and g* = 6, then x* is the location of the minimum.
(See ref. 15.)

(2) Compute the vector

rn = yWjg* - (1 - an)gn]

- ansn

(10)

where

yn = s* - gn

The vector rn is called the residual vector for reasons explained in a subsequent sec-
tion. If rn = 8 and an * 1, set oin = 1 and return to step (1). If rn = 9 and an = 1,
then set rn = 0 and y(n+1) = v(n) and go to step (5).

(3) Define the scalar rn as

(11)

(4) Let

= V<n> + rnB<n> (12)

where B(n);H - H is defined such that for all x e H

-(1-3)-



gn+l = g*

5)_lf • J(x*) < Jjxn), let xn+i = x* and, consequently, J(xn+i) = J(x*) and
Otherwise, if rn * 0, lei "xn+f = xn" ' sothat ~ J(xn+1p"J(xn) "and'

If rn = 0, then return to step (1) and choose an so that J(x*) < J(xA Set n = n + 1
and go to step (1).

Figure 1 gives a two-dimensional illustration of the behavior of the algorithm. The
figure depicts the level curves of a hypothetical function J, the iterates generated by the
algorithm, the negative gradient at each iterate, and the direction of the step generated
by equation (9) at each iterate. Notice when v(0) is the identity, then the first direc-
tion is the negative gradient. Also note that the illustration shows that xj = x2; that is,
J(x*) for the first iteration is greater than JfxA Hence by step (5), x2 = xj. How-
ever, the computation of g* is used to compute v(2) which determines. the choice
of S2- The point X3 is then such that Jfxs) shows a substantial improvement over
J(x2). From X3, the iterates would continue until the necessary conditions for a mini-
mum are satisfied.

n ai i

Qlsl

-BO

J = C,

Figure 1.- Example of progress of algorithm.



Notice that the operator v(n+^/:H — H given in equation (12) can be expressed as

v(n+l)x = y(0)x + £ Pi(x,Pi)Pi (14)

ieM(n)

where x e H and M(n) = {i = n^y^r^ * 0} and

= -sgn . . (i e M(n))y >L

and

This expression for Vvn+l) is computationally more tractable than equation (12)
for those problems for which equation (12) would necessitate storing V"W as a large
rectangular array as in optimal control problems. However, equation (14) implies that
only the representation of p. needs to be stored with each iteration.

The elements of the class of algorithms outlined are distinguished by the manner
in which the parameter an is chosen with each iteration. Davidon (ref. 2), Broyden
(ref. 1), and Goldfarb (ref. 14) proposed techniques for choosing an in the finite-
dimensional case. For Davidon's rank-one variance algorithm, an = 1 for all n; how
ever, the scalar rn given by equations (11) is chosen so that certain inequality con-
straints are satisfied. These constraints insure that Davidon's V\n) remain positive
definite. Goldfarb's optimal variance algorithm required that o;n be chosen so that
JYxn + asn\ be minimized with respect to a. The Broyden quasi-Newton method
requires only that a>n be chosen so that (y(n)j exists and (y n > r n)^^ ' It is shown
subsequently that for certain choices of v(0), both Davidon's and Goldfarb's methods of
choosing (Yn satisfy Broyden's criteria.

THEOREMS INDEPENDENT OF CHOICE OF an

It is assumed that the functional to be minimized is quadratic as defined by equa-
tions (1) and (2). However, the first three theorems of this section are proved without
using this fact. Hence, the results of these theorems hold if J is any differentiable
function.

10



Theorem 1: B\n) as given in equation (13) is a linear self-adjoint, nonnegative,
_ operator for all n, for any choice of otn (nonnegative, that is, for all x e H

(x,B(n)x) So).

Proof: Clearly, B(n) is linear by the linearity of the inner product. If x e H,
then

(x,BWx) = (x,(x,rn)rn) = (x,rn)
2 S 0

and if x,y e H, then

(x,B(n)y) = (x,(y,rn)rn) = (y,rn)(x,rn) = (y,(x,rn)rn) = (y.BWx)

Theorem 2: \Kn) is self-adjoint for all n, for any choice of an.

n-1
Proof: v'n' = V* ' + / r^B'1' by equation (14) and v' ^ is self-adjoint by defi-

1=0
nition. By this theorem, the B'1' terms are self-adjoint and the finite sum of self-
adjoint operators is self-adjoint.

Theorem 3 (Basic theorem): If rn * 0 or rn = 9, then v(n+1)(g* - gn) = x* - xn;
that is, V(n+1)yn = ansn.

Proof: If rn = 9, then v(n)yn = ansn by definition. Also since rn = 0 by equa-
tions (11) and (12), v(n+1) = v(n); thus, v(n+1)yn = ansn. Otherwise, consider

V\n+l)\r rv a — V\n/v - I - T / V r \r n/cv vn ~ ansn - v vn + Tn^ynjrnjrn ~ ansn

= V n y n - ansn - rn = 9

by definition of rn.

The rank-one algorithms are Newtonlike in that the change in x at each iteration
is given by a linear operator upon the gradient at xn. The name quasi-Newton was given
to these algorithms by Broyden (ref. 1) because of the property of v(n+-'-) given in theo-
rem 3. Notice that for a quadratic functional such as equation (1), A~^ also has this
property, that is, A-^g*- gn) = x* - xn or

Therefore, v(n+l) and A~* agree on the vector g* - gn.

11



The next theorem and its corollary state that because of the manner in which BW
is defined, if A and v(n' agree on a vector, then A~* and y(n+l) also do. That
is, information about the nature of A which v'n' contains will be retained by v'n+

Theorem 4: If u e H is such that A'^u = \Kn)u and C:H — H is a linear oper-
ator such that C = v(n) + /iBW for some real jj,, then A~lu = Cu.

Proof: Since A~Vg* - gn) = x* - xn and x* = xn - anv(n)gn by definition,

and

Therefore, rn = v(n)(g* - gn) - A-1(g* - gn) and, hence,

rn= (vW -A- l ) (g*-g n ) (16)

Since A~ lu = v(n)u,

(v(n) - A-iju =9 (17)

Therefore

(rn,u) = ((vW - A-!)(g* - gn),u) = (g* - gn, (vW - A"1)^ = (g* - gn, e) = 0

by theorem 2 and equations (16) and (17). Hence, the hypothesis (c - A'^u = juBW
implies that

MBHi = M(u,rn)rn = p. • 0 • rn = 6

Therefore, Cu = A u.

Since v'n+^' = V^n) + rnB(n), the following corollaries are obtained.

Corollary 1: H v(n)u = A-1u for some u e H, then v(n+1)u = A'V

Corollary 2 (Fundamental property of v(n)): v(n)yi = a^i^jAr^y^ for all i < n^
if— Tj-it-0— for — j =-0^'l7^^^-T7-n; ----------------

12



Proof: Note as previously observed (eq. (15)) since J is quadratic, A~*y- = 045^.
-From theorem-%

v(1)y0 = «oso

Assume that V^YI = 01^ for all i < n. Consider v(n+1)yt for i = n. Since rn * 0
by theorem 3, v(n+^Vn = ansn- Otherwise, for i < n, A~* and V"(n) agree on y^.
Corollary 1 implies that v(n+l)y^ = o^Si- Thus the corollary follows by mathematical
induction.

Corollary 2 is most useful in later convergence arguments and, hence, it has been
named "the fundamental property of v'n'.n

By equation (15) and theorem 1, Goldfarb (ref, 14) observed that equation (12) can
be expressed as

y(n+l) = v(n) .

l'vl

if rn 1= 0; otherwise, v'n ' = V^n' which yields the following theorem.

Theorem 5: If V^0) ̂  A"1, then V^ i A"1 for all n and similarly, if
v(0) < A"1, then V^ ^ A"1 for all n.

Proof: Proof of this theorem is by mathematical induction. Assume that
vO^A'1. K y(n+1) = V^, that is, rn = 0, the result is trivial. Otherwise, by the
preceding equation

and by equations (10) and (15), rn = (v'n' - A jyn. The inductive hypothesis implies
that v'n) - A"^ is a positive operator. Hence, by the Cauchy-Bunyakovski-Scharwz
inequality (refs. 18 and 19),

2

The second part of the theorem is obtained by merely considering (X,(A -
instead.

13



The following theorem whose finite dimensional analog is due to Goldfarb (ref. 14)
gives a condition under which the V^n) operators form a monotone sequence of self-
adjoint bounded linear operators.

Theorem 6: If V^ g A"1, then A ^ S V ^ S . . . ^ v(°) for all n. Similarly,
if y(°) i A'1, then A'1 2 v(n) ^ . . . ^ v(°) for all n.

"Proof: By theorem 5, if v(°) ^ A'1, then v(n) ^ A'1 for all n. If y(n+1) = V^
that is, rn = 0, then the assertion is obvious. Otherwise,

i 0

by equation (12). The inequality holds since theorem 1 gives (x,B(n)x) ^ 0 and from
theorem 5, v(n) - A~ = 0. The second part of the theorem follows by considering
y(n) - v(n+1) instead.

Corollary 3: If V^^A' 1 or v(°) ^ A'1, then the V^ operators form a
monotone sequence of strongly positive self -adjoint linear operators bounded
by V"(0) and A~l. Moreover, there exists a strongly positive self-adjoint
operator V such that lim ||v(n)x - Vx|| = 0 for each x e H.

n— °°

Proof: The VW operators form a bounded monotone sequence of strongly
positive, self -adjoint operators by theorems 2 and 6; that is, if \K°' i A" , then
y(°) ^ v(!) i v(2) ^ . . . § v(n) S . . .A'1. This relationship implies the existence

of a strongly positive self -adjoint linear operator V such that v'n' converges to V
pointwise (ref. 18) and similarly, for V^) 5 A"*.

Theorem 7: If rn * 0 for all n and if S is the space spanned by {yn}, then
lim ||v(n)x = A~IX| | for all x e S independent of the choice of the an. (By
n— oo
the space spanned by a set M is meant the smallest linear manifold contain-
ing M. )

Proof: Since x e S, this relationship means that x can be written as a finite lin-
ear combination of yn vectors. Therefore there exist /3| e R and some k such that

x =

14



Let n > k, then

V(n)x = |3iv(n)yi

(Corollary 2)

= A"

TheoremS: If v(°) S A"1 or v(°) g A'1 and rn * 0 for all n and the yi

form a Schauder basis (ref. 20) for H, then vW — A~^ point-wise independent
of the choice of an.

Proof: For any x e H there exist /3^ e R such that

x =
i=0

since /yA form a Schauder basis for H. Consider

• IIU-

(A-1 - v
i=0

n-1

By corollary 2, (A'1 - V^) ^ ^=0. Since
n-1

or

(18)

i=n

by theo-

rem 6 and its corollary, it must be that ||vH| ^ IJA-1! | or s||vHI- Therefore
"1 - v(n)|l is bounded for all n, and by equation (18) it follows that the remainder

must go to fcero, that is,
i=n

- 0 as n - oo. Therefore, lira
n— oo

= 0.

15



Notice that all these results have been established without regard to the choice
of o!n. As defined in equations (10), rn is a residual vector. The reason for this
terminology will now be explained.

Suppose rn = 9 for some n. Then v(n)yn = ansn, and if (\Knv exists,
vn = -an(V^)~lv^gn = -"n^n so that by definition yn = g* - gn = -angn. Since J
is quadratic, g* = gn + an

Asn- Therefore, anAsn = -angn so that sn = -A-^.
Hence, since sn = -v(n)gn, v(n)gn = A.~lgn.

Recall that the minimum of J (quadratic as in eqs. (1) and (2)) is attained by
<•»- 1x = xn - A~1gn. Step (2) of the basic algorithm is that if rn = 6, an ± 1; therefore, let
an = 1 and repeat step (1). Then the new x* is x* = xn - v(n)gn and it has been
shown that v(n'gn = A~*gn. Therefore, x* is the location of the minimum of J. This
result explains the reason for step (2), and the following theorem has been proved.

Theorem 9: If rn = 9 and (v(n))~ exists, then by applying step (2) of the basic
algorithm, Q!n is set equal to 1 and the resulting x* given by x* = xn - v(n)gn
is found to be the location of the minimum of J.

CONVERGENCE IF an IS CHOSEN BY A ONE-DIMENSIONAL

MINIMIZATION PROCESS

There are two rather obvious ways to choose an at each step: (1) let otn = 1
for all n, and (2) let an be such that J(xn + an

sn) = ̂ (xn + ̂ sn) f°r a^ rea-l *•• Both
cases have been investigated by Davidon and Goldfarb and convergence has been estab-
lished in the case of a quadratic functional on a finite-dimensional Hilbert space.

The convergence of the algorithm to the location of the minimum of a quadratic
functional on an infinite-dimensional real Hilbert space when an is chosen for every n
so that

J(xn + ansn) =i J(xn + xsn) - (19)

for all real X will now be shown. This relationship, of course, implies that xn+i = x*
in step (5) of the algorithm. If an is chosen in this manner, then by necessity

dj(xn + Xsn) = Q

dx

at X.= an. Hence, . - -

16



Therefore,_ it must_bej:hat

J(xn+l) = J(*0) -

Since, inf J > -°°,

oo 9

y (W <,
.A2(s i,As i)

which implies that by necessity

lim (Si'gi) =0 (21)
i-« (sbAsi)

Since its derivation in no way depended on the method of choosing s^, equation (21)

must be true for any descent method. This well-known result and the following lemma

are given by Horwitz and Sarachik (ref. 10). They used their results to prove conver-

gence of Davidon's first method, steepest descent, and the conjugate gradient method in an

infinite-dimensional real Hilbert space for the problem under consideration, namely, min-

imizing a quadratic functional as in equation (1).

Lemma 1: If gn — 9 as n — °°, then xn converges in norm to the location of
the minimum x= -A b.

xn +

NowProof: 0 ^ (xn + A-lb,A(xn + A-*b)) = (xn + A-lb,gn) £ ||xn + A-lb|| ||gn

' ~ b is bounded for all n, since for all n, xn is contained in a bounded set,

namely, S^. = conv/x e H:J(x) i J(xo)} (re^- 15), the closed convex hull of the indicated

set. Hence lim fxn + A~lb,A(xn + A~lb)) = 0 and since A is strongly positive,
n— «>

lim xn + A~ b = 9.

A general convergence theorem for this case can now be proved.

Theorem 10: If there exist positive reals a,|3 such that al = v(n) = ̂ 1 for
all n larger than some N and if otn is chosen as in equation (19) then

lim ||xn + A~^b I = 0, that is, xn converges in norm to the location of the

minimum.
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Proof: Since for all u e H, m |ju||2 g (u,Au) i M||u||2,

M||u| m||u|

and since a ||u||2 i (u,v(n)u) ^ |3||u||2 for all n sufficiently large,

1 < 1

Since v(n) is self-adjoint, ||v(n)u|| i/3||u||. Therefore,

v(n)e \ (e v(n)e 1i> v &n / > \&n> on/ >
M|is

M

=n
2 ^ 0

Therefore, by equation (21) gn — 9 as n — °° and by lemma 1 xn — A b in norm.

The hypothesis of theorem 10 is more restrictive than necessary, only
. . 2 / i \ \ 2a gn I = (Sn^^WgnJ = /3 |gn|| is required. A result similar to that of theorem 10

but more general can be found in reference 7. Theorem 5 can now be combined with
theorem 10 to state a convergence theorem for the rank-one iterates.

Corollary 4: If v(°) i A'1 or v(°) = A'1 and an is chosen as in equation (19),
then J(xn) converges to the minimum of J(x), and moreover xn converges
in norm to the location of the minimum.

Proof: H v(°) i A'1, then by theorems 5 and 6, y(°) ^ v(n) ^ A"1 for all n.
Hence, = V^ = m l for a11 n.

CONVERGENCE WITH A MORE GENERAL CHOICE OF an

In this section, as in the previous one, the convergence of rank -one iterates to the
location of the minimum of a quadratic functional as in equations (1) and (2) is investigated.
However, herein the step size an need not be chosen by a one -dimensional minimization.
Conditions on the initial estimate and the an scalars under which the iterates converge
to x = -A~lb, the location of the minimum, are determined.

Let /biA denote the sequence of step sizes used by the rank-one algorithm. (From
eq. (8), x* = x^ + o^s^ fqr^ach i.) __ For each_.n-=_l, denote-by - -N(-n) -that set- of "integers"

less than n for .which jfx^ - Q!|VWg^ < J(Xj) and the integer n - 1; that is, N(n) con-
tains the indices of those step sizes which caused a decrease in the function being mini-
mized and the integer n - 1. If y^ = gi+j - gj, then
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-(22)
ieN(n)

Hence.

v(n>yi = v(n)g0 + V
ieN(n) ieN(n)

(23)

From corollary 2, v(n)yi = aisi = xi+1 - xi for all i < n, and hence for all i e N(n). If
xi+l ~ xi is denoted by ai? then by step (5) of the algorithm and the definition of N(n) .

xn = X0 + 2, ai
ieN(n)

From equations (8), (23), and (24),

(24)

x* =

Hence,

ieN(n) ieN(n)

Then by using equation (25)

ieN(n)
(25)

ieN(n)
(26)

In order to establish convergence, it must be shown that ||x* + A-1b can be
made small as n - °°. Let S^ = conv(x e H:J(x) ^ J(XQ)} • Since it is known that Si
is bounded (ref. 15), the following lemma can be proved.

Lemma 2: If (atn - l}n - 0 as n - <*> and there exist a, /3 > 0 such that\ ll ' i, ,-, 11 '
oil 5 y(n) i (31 and rn ^ 0 for all n, then

icN(n)
- 0 as n -» «>.
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Proof: By definition NaJ I = i l a i s J I = -a.vWgJ . Therefore
M i l l 1 1 i M ! I I i i | I

1 1
vWfAxi +b)

ed set, I

|v«|| *
side of equation (27) is independent of i and ||crJ| = L for some L = 0 and all i.
Hence,

(27)

Since x^ e S^ is a bounded set, ||xjj| is bounded and since cq — 1 as i — °°, ofj is

bounded. By hypothesis and A ^ M; thus, everything on the right-hand

- orn)
ieN(n)

= (l - an)
n • L - 0

since by hypothesis (otn - l)n — 0 as n — °°.

Lemma 3: Suppose either gQ is an element of the smallest subspace containing the
y^ vectors denoted by S(y^) or the y^ vectors form a Schauder basis for H.
If the Vvn) operators are uniformly bounded, an — 1 as n — °°, and rn + 0
for all n, then (A'1 - anv(n))g0 — 0 as n —

Proof: Write oin as 1 - en; then since an -~ 1 as n — °°, ^ — 0 as n — °°.
Therefore,

(A'1 - v(n)g0 + env(n)g0

Hence because of the hypothesis on gQ, lim

Also since the v(n> operators are uniformly bounded, v(n)

-n

= 0 from theorem 7 or 8.

must be bounded for

all n. Therefore lim le
n— °

-n = 0. Hence the lemma is proved.

The following statement can now be made.

Theorem 11: Suppose gQ e S^y^ or the yt vectors form a Schauder basis for H.
If rn ± 0 for all n, the v(n) are uniformly bounded, and if (an ~ l)n -* 0 as

. n, •-* °°j then ||x* + A~^

Proof: By equation (26)

— 0 as n —

(A-I - anv(n
a_

i eN(n)

and by lemma 3 the first term goes to zero. By lemma 2 the second term goes to zero.

20



Hence, conditions under which two variations of the basic algorithm converge to the
location of the minimum of a quadratic functional have been established. These condi-
tions are given in theorems 10 and 11. In both of these theorems, the primary interest
is in the convergence question for an infinite-dimensional Hilbert space. In a finite-
dimensional space of dimension n, it can be seen that for almost any collection of non-
zero Q!n scalars, the algorithm converges to the location of the minimum in a finite
number of steps. The conditions on the an scalars and the proof are given in the fol-
lowing theorem from Broyden (ref. 1).

Theorem 12: If TJ * 0 and oij * 0 for all j = 0, 1, . . . and if (v(J))~ exists
for all j, then after at most q + 1 steps x* = -A~*b where q = dim(H).

APPLICATION TO OPTIMAL CONTROL THEORY

Fixed-time problems will be considered since by a simple transformation (ref. 17),:
the free-time problem can be transformed into a fixed-time problem. Moreover, Horwitz
and Sarachik (ref. 21) have given several other schemes for solving the free-time prob-
lem by using fixed-time techniques, and these schemes are applicable when the Davidon-
Broyden algorithms are used.

A Quadratic Payoff With Linear Constraining Differential Equations
4> O

From the class «£ (tg^tj), the problem is to find a function u(t) which minimizes

(t)T P(t) x(t) + u(t)T R(t) u(t)> dt (28)'

subject to the constraints

x(t) = G(t) x(t) + B(t) u(t) (29)

and x(tg) = XQ where XQ, tg, and tj are fixed. For this problem,

x n vector

u r vector

G(t) nXn matrix with components in L*(tQ,tj)

B(t) nXr matrix with components in L-Vtg,tj) and bounded
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p(t) n x n symmetric, positive semidefinite matrix the components of which are
piecewise continuous on (tQ,tj)

R(t) r x r symmetric, uniformly positive definite matrix the components of which
are piecewise continuous on

Horwitz and Sarachik (ref. 10) have shown that this problem can be considered as
n

that of finding the location of the minimum of a quadratic functional on o£r(to,ti). This
function is exactly the type of function for which the conditions given in theorems 10 and 11
guarantee the convergence of the various modifications of the basic algorithm.

General Optimal Control Problems and Gradient of Payoff

In this section a class of problems generally referred to as optimal control prob-
lems (ref. 22) or in the calculus of variations as Lagrange problems (ref. 17) is described.
Also presented formally are the mechanics of applying the algorithms discussed to com-
pute solutions to these problems, even though these functions generally are not quadratic.

• Given a system of n differential equations such as

x(t) = f(x,u,t) (30)

with xftg) = XQ and u e Rr, find that function u = u(t) which minimizes the value of

L(x(t),u(t),t) dt. Assume that f(x,u,t) and L(x,u,t) have continuous partial deriva-*1

to
tives of at least second order in x and u and are piecewise continuous in t. Also,
assume that there are no constraints on u or x, other than that x must satisfy
equation (30).

Moreover, it will be assumed that L and f are such that corresponding to every
_ O

u = u(t) e "CLrYtQ^A a real Hilbert space, there exists a solution, x = x(t), of equation (30)

rtj
and that for this x and u the integral \ L(x(t),u(t),t) dt, exists. Hence, the func-

JtO
tional J:H - R can be defined by

<•>•£'tn

J(u) = \ L(x(t),u(t),t) dt

where x(t) is a solution of equation (30) corresponding to u.
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Therefore, the problem is that of locating the minimum of a functional J on a real
-Hi"lbert~space™H: — In~order~to~apply"thie~al"goi'ithTffs~di&rass?d~earlier7 the^gFadi'ent^of J
must be computed. The gradient of J is that part of Jfu + 6U) - J(u) which is linear

in 5u.

It can be shown (ref. 23) that if the Hamiltonian is defined as

H(x,X,t,u) = L(x,u,t) + XTf(x,u,t) (31)

then the gradient of J at u is given by

T1

g(u) = VUH = |Lu(x(t),u(t),t) + XTfu(x(t),u(t),t)] (32)

where

x = f(x(t),u(t),t) = |S (x(io) = xQ)

X = - |S(x(t),X(t),t,u(t)) (x(t!) = 0)

The steps necessary to compute the gradient of J at u = Ug(t) are (1) numerically
integrate x = f(x,UQ,t) with xftg) - XQ forward to t = tj, and (2) at t = i\ integrate
(again numerically)

X = -fT(x,U0,t)X - Lj(x,u0,t

with xta) = 0 backward to t = tQ. Therefore, the gradient as given in equation (32) can
be computed by using the control u = ug(t) and the values of x(t) and x(t) previously
computed. In practice, UQ is usually expressed in tabular form. If the gradient is
computed according to equation (32), then B*n' and rn can be computed as in equa-
tions (13) and (10). Hence, the algorithms outlined can be used to generate a sequence of
controls which hopefully converge to the optimal. The practical significance of theorem 1 1
is to demonstrate that the rank-one algorithms are not as sensitive to the accuracy of the
one -dimensional minimization as are the other widely used gradient algorithms, for exam-
ple, conjugate gradient and Davidon- Fletcher -Powell (DFP) methods. For minimizing
many functions (not necessarily quadratic) by these two algorithms, a large part of the
computing time is required to solve the one -dimensional minimization problem repeatedly.

EXAMPLE PROBLEM AND RESULTS OF ANALYSIS

In order to exhibit the convergence characteristics of the rank-one algorithms, a
sample optimal control problem which others have used to display convergence character -
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istics of other algorithms (refs. 8, 9, and 11) has been chosen. The problem is to find
the function u = u(t) which minimizes

(33)

subject to constraining differential equations described by the Van der Pol equation
(ref. 24) with e = 1, that is,

Xj = X2

> (34)
x2 = -Xl + (l - xf)x2 + u J

with initial conditions

xx(0) = 3.0

x2(0) = 0.0

By equation (32) the gradient g of J at u is given,by

g(t) = 2u(t) + X2(t) (35)

where

X i = [l + 2xjX2JX2 -
(36)

with

X2 = -Xt - l - xx2 - 2x2

X2(5) = 0

In order to compute the gradient g(t) of J at some t, equations 34 are inte-
grated forward to t = 5.0 by using u - Ug(t)r - Next,- equations (36) are integrated from

~tr^~570~barck~to t^~070: Then~by~u"sin"g~u~=~uo(t) and the^computed value^of
g(t) given by equation (35) can be computed.
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Figures 1 and 2 depict the progress toward the minimum of J by using the algo-
rithm outlined with four different methods .of choosing—o;n.- -These-four-methods-of
choosing an are:

(1) an = 1 - (n3 + 2)"1/2 for all n.

(2) an = 1 for all n.

(3) Q!n = min<1.0, |_Jm - J(un)J/(sn,gnn where Jm is the estimated minimum

value of J, sn is defined by equation (9), and gn is the gradient of J at u = un(t).

(4) an is the minimum with respect to a. of J(un + asn) as computed by
Davidon's one-dimensional cubic minimization method (ref. 2).

Methods (1) and (2) of choosing o;n satisfy the condition given in theorem 11 (for
these methods (l - Q!n)n — 0 as n — °°J. The form of an for method (3) follows by
considering Jm = J(un) + an(sn,gn) + higher order terms, dropping the higher order
terms, and solving for ot-^, where Jm is some nominal estimate of the minimum
of J along the line un + ot sn.

Notice that methods (1), (2), and (3) of choosing an involve no extra functional
and gradient evaluations; that is, for each iteration equations (34) and (36) must be inte-
grated only once.. The fourth method of choosing o;n, although the one-dimensional min-
imum is computed more accurately than by method (3), involves at least one more func-
tional evaluation per iteration. Hence, with the fourth method of choosing an, at least
two functional and gradient evaluations per iteration are required.

In figure 2, J(un) is plotted against n (that is, the iteration number) for the four
different methods of choosing an. Figure 2 shows that the fastest convergence in terms
of iterations is achieved by the algorithm with an chosen by method (4). Also, figure 2
shows that after 12 iterations, all the methods have converged. Moreover, after eight
iterations for all methods of choosing ctn, the change in the value of J is too small to
show up in the graph.

In figure 3, J is plotted against the number of functional evaluations. Notice that
in figure 3, methods (3) and (1) converge faster with respect to function evaluations than
method (4). Note also that after at most eight functional evaluations, the change in J is
too small to be noticed in the graph.

Figure 4 shows the rates of convergence to the minimum for the example problem
for the three first-order methods (steepest descent, conjugate gradient, and DFP). These
results were reported by Tokumaru, et al. (ref. 11). Note that the DFP algorithm shows
the fastest rate of convergence.

By using the same initial estimate of u that was used for the results shown in
figure 2, the DFP method was applied to the example problem. The results for the DFP
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method were identical to those of the rank-one algorithm with an chosen by method (4).
The reduction in the payoff and the iterates for the two methods were the same.

In figure 5, the values of J(un) have been plotted against the number of function
evaluations for the DFP method and the algorithm when an is chosen by method (3).
Notice that in terms of function evaluations, the rank-one method for this choice of an

converges faster than the DFP algorithm. The linear minimizations for the DFP algo-
rithm were carried out by method (4). This method was chosen because high accuracy
in the linear minimization is necessary for the DFP method.

The rank-one algorithms outlined herein have several attractive properties. Theo-
rem 7 gives conditions under which v(n) — A~l pointwise where v'n) is given by equa-
tion (12) and A is given by equation (2). This property can be used to accelerate the
convergence when many solutions corresponding to different initial conditions are desired.
This property is not available with the method of conjugate gradients. Moreover, these
rank-one algorithms require one-half the storage necessary for the DFP method. Also,
rank-one methods require the computation of only one operator per iteration whereas the
computation of two operators are required per DFP iteration.

The results of the example problem show that the algorithm can be applied with suc-
cess when otn is chosen in a variety of ways. It appears that method (3) of choosing ofn

is best when the functional to be evaluated is very complex, its computation is time con-
suming, and storage considerations are not as important. If storage considerations are
pressing and the computation of the functional is not as time consuming, then method (4)
would seem to be the best choice for o;n.

CONCLUDING REMARKS

The extension to a real Hilbert space of the rank-one minimization algorithms has
been presented. Conditions insuring the convergence to the location of the minimum of
a quadratic functional are given for various techniques of choosing the step size. Also
the application of these algorithms for the direct computation of optimal controls has been
outlined. An example optimal control problem has been solved by using several rank-one
algorithms. The example problem shows that rank-one algorithms give promise of a fast
rate of convergence, comparable to that for the Davidon-Fletcher-Powell (DFP) method.
Moreover, the rank-one techniques use less storage and involve fewer computations than
the DFP method. Also, the example problem illustrates that the one-dimensional search
required by DFP is not critical for convergence when a rank-one algorithm is used. In
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fact, for the example problem, convergence to the location of the minimum was achieved
by-using four-different methods for chbosirig"the step size. Two of the choices for step
size used in the example were independent of the function values and yet convergence
was achieved.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., October 26, 1972.
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