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GUIDE TO THE USE OF THIS MONOGRAPH

The purpose of this monograph is to organize and present, for effective use in space vehicle devel-

opment, the significant experience and knowledge accumulated in development and operational

programs to date. It reviews and assesses current design practices, and from them establishes firm

guidance for achieving greater consistency in design, increased reliability in the end product, and

greater efficiency in the design effort. The monograph is organized into three major sections that

are preceded by a brief Introduction and complemented by a set of References.

The State of the Art, section 2, reviews and discusses the total design problem, and identifies

which design elements are involved in successful designs. It describes succinctly the current tech-

nology pertaining to these elements. When detailed information is required, the best available

references are cited. This section serves as a survey of the subiect that provides background

material and prepares a proper technological base for the Design Criteria and Recommended
Practices.

The Dcsi_ Criteria, shown in section 3, state clearly and briefly what rule, guide, limitation, or

standard must be imposed on each essential design element to insure successful design. The

Design Criteria can serve effectively as a checklist for the project manager to use in guiding a

design or in assessing its adequacy.

The Recommended Practices, as shown in section 4, state how to satisfy each of the criteria. \Vhen-

ever possihle, the best procedure is described; when this cannot be done concisely, appropriate

references are provided. The Recommended Practices., in conjunction with the Design Criteria,

provide positiw, guidance to the practicing designer on how to achieve successful design.

The design criteria monograph is not intended to be a design handbook, a set of specifications, or

a design manual. It is a summary and a systematic ordering of the large and loosely organized

body of existing successful design techniques and practices. Its value and its merit should be

judged on how effectively it makes that material available to and useful to the user.
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FOREWORD

NASA experience has indicated a need for uniform criteria for the design of space vehicles.

Accordingly, criteria arc being developed in the following areas of technology:

Environment

Structures
Guidance and Control

Chemical Propulsion

Individual components of this work will be issued as separate monographs as soon as they are

completed. This document, Space Vehicle Gyroscope Sens'or Applications, is one such monograph.

A list of all published monographs in tile series can be found on the last pages of this document.

These monographs are to be regarded as guides to design and not as NASA requirements, except

as may be specified in formal project specifications. It is expected, however, that the criteria

sections of these documents, revised as experience may indicate to be desirable, eventually will

be uniformly applied to the design of NASA space vehicles.

This monograph was prepared for NASA under the cognizance of tile Jet Propulsion Laboratory,

California Institute of Technology. Principal contributors were Mr. William C. Hoffman of Aero-

space Systems, Inc., Dr. "Walter M. Hollister of the Massaeh_setts Instih_te of Technology, and

Mr. John R. Mott of Northrop Electronics Division. The program manager was Mr. John Zvara

of Aerospace Systems, Inc.

The effort was guided by an advisory panel which was chaired by Prof. Walter Wrigley of MIT.

The following individuals participated in the advisory panel and monograph review activities:

R. A. Birch

A. M. Brady

A. T. Campbell
H. A. Dinter

G. B. Doane

B. M. Dobrotin

T. A. Fuhrman

G. Hofmann

M. W. McMurran

M, D. Mobley

R. S. Poquette
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General Electric, Valley Forge
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W.Talbott
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Contributions in the form of design and development practices were also provided by many other

engineers of NASA and the aerospace community.
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Aeronautics and Space Administration, Office of Advanced Research and Technology (Code RE)

Washington, D.C. 20546.
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SPACE VEHICLE GYROSCOPE
SENSOR APPLICATIONS

1. INTRODUCTION

Gyroscopes (or gyros) have been developed and used on a variety of space vehicles to provide

information on the attitude or angular velocity of the vehicle or an inertial platform with respect

to a reference coordinate system. Spaceborne gyro applications can be conveniently categorized

by their information bandwidth requirements:

(I) Guidance and navigation (very low frequency)

(2) Attitude reference and stabilization (near vehicle natural frequency)

(3) Tracking and pointing (very high frequency)

(4) Flight data analysis.

Gyro technology was adapted from aircraft to launch vehicles to provide attitude reference and

stabilization as part of the autopilot. As their performance and reliability improved, gyros became

suitable for use in space vehicle guidance and navigation systems, where they establish the inertial

reference frame in which vehicle motions are measured. More recently, gyros have been employed

for tracking and pointing of space vehicle experiments and/or communications antennas. Finally,

spaceborne gyroscopes have been widely used to monitor vehicle motions during flight and pro-

vide telemetry information for postflight data analysis. Although this last function has generally

been a secondary reason for gyro use, it often has proven extremely valuable, particularly on

early developmental flights.

The gyroscopes are key elements in any of the aforementioned real-time applications. As a result,

the performance of the associated space vehicle system is strongly dependent upon the perfor-

mance of the gyros. It is therefore essential that the gyroscope package be designed consistent

with the mission requirements in order to provide the required information, accuracy and relia-

bility. Failure to do so may result in degradation of mission performance or, in the extreme,

total mission failure. Thus the program manager must be aware of the capabilities and the limita-

tions of gyros and the design tradeoffs which might affect his application.

Important factors which influence the design and selection of gyroscopes for space vehicle systems
include:

(1) Configuration (strapdown or stable platform mounted)

(2) Interface requirements for other vehicle subsystems

(3) Performance (accuracy, drift rate, resolution, dynamics, etc.)



(4) Reliability (MTBF, redundancy, etc.)

(5) Lifetime (shelf life, operating life, testing duration, duty cycle, etc.)

(6) Environment (acceleration, vibration, thermal, magnetic, radiation)

(7) Cost (money, weight, volume, power, time)

(8) Ease of test and checkout

(9) History, (experience of gyro and manufacturer, production status, etc.).

The design and selection of the gyro is constrained by the mission requirements as weil as trade-
offs among the above factors.

This monograph discusses considerations which form the basis for the specification, design and

evaluation of gyroscopes for spaeeborne sensor applications. The applications are distinguished
in this lnonograph by basic vehicle category: launch vehicles, spacecraft, entry vehicles and

sounding rockets. Specifically excluded from discussion are gyroscope effector applications, i.e.,

control moment gyros. Exotic or unconventional gyroscopes for which operational experience is

nonexistent are mentioned only briefly to alert the reader of future trends. General requirements

for testing and evaluation are discussed, but details of gyro testing are omitted. Physical design

of the gyroscope and the construction details are also outside the scope of this document.

A related document, now in preparation, is titled Space Vehicle Accelerometer Application.9.

These two related documents describe the applications of inertial sensors in today's space vehicles.

2. STATE OF THE ART

Gyro technology and the application of gyros to space vehieh" systems have advanced rapidly

in the past 15 years. The number of gyros required for most space vehicle applications is usually;

small compared to the quantity produced for military and other applications. Consequently, most

of the gyros used in space vchich,s have been adapted from gyros developed for these other
applications.

In order to select the propcr gyro for a particular space velaicle application, it is essential that

the system designer have a basic knowledge of gyro principles. Several textbooks are available

covering the theoretical principh,s of gyroscopes (refs. 1-4). Tim Standard Gyro Terminology

(ref. 5) defines the characteristics of gyros in terms of general defnitions and of operational
performance characteristics.
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2.1 Gyroscope Purpose and Functions

Gyroseopes serve two lnajor purposes:

(1) To establish an inertial reference coordinate frame

(2) To measure angular rotation (position, rate) of the space vehicle about the reference axes.

The inertial coordinate frame may be used as a reference for stabilization of the vehicle's attitude

or attitude rate, or it may be used to establish a reference for the purpose of onboard navigation.

The orientation of a fixed reference frame relative to the current position of each gyro spin axis

may be established externally, most frequently in a digital computer, even though the spin axes

are intentionally reoriented.

Gyros are operated in two fundamental modes. A free (displacement) gyro measures rotation of

the gyro case with respect to space by sensing the output angle(s) between the gyro element and

the case. A "captured" gym is operated so that the output angle between the gyro element and

the gym cast' is kept near ]mll. This is accomplished either by torquing the gyro element so

that it rotates with respect to space or by using a servo followup which causes the structure that

supports the gyro case to rotate with respect to space. The inertial angular velocity of the

supporting structure is determined by measuring the magnitude of the torque applied to the

gyro element and dividin_ by the spin angular momentum of the gyro. In summary, the informa-

tion from a displacement gyro comes from an angle measurement, while the inforlnation from

a captured _yro is the result of a torque measuremel]t.

Gyro applications may be categorized by the frequency spectrun] of the angular motion to which

the gyro responds. Typical values are shown in table 1.

2.1.1 Guidance and Navigation (Low Frequency)

The principles of inertial navigation art' well-covered in references 6-9. Gyros are used to establish

the coordinate frame in which inertial accelerations art, measured and must be accurate to very

low rates. Gvro drifts of the order of 0.015 deg/hr h-ad to navigation velocity errors of the order

of one knot. Gyros have lwm_ used to provide an inertial reference for guidance and navigation

of uunat'rous launch vehicle's, spacecraft and entry vehicles.

2.1.2 Stabilization and Control (Near Vehicle
Natural Frequency)

Gyros used in autopilots and for rate damping are required to sense higher angular rates but

do not need as high accuracy as the inertial grade gyros, nor do they need to be as sensitive to



TABLE 1.--Gyro Applications

Application Gyro Types _ Frequency Range Torquing Rate Drift Rate

Guidance and 2DF Platform, Platform, 0.05 deg/hr or

navigation SDF-RI 0.001 to 1 ttz 50 deg/hr or less better

S trapdown, Strapdo_l,

0.001 to 10 Hz up to maximum
vehicle rate

Stabilization and Sl)F-rate 0. I to 10 Hz Up to ma.\imum 0.1 to 50 deg/hr
control SDF-RI vehicle rate

2DF

2DF-free

Tracking and SDF-rate Up to 100 Hz Up to 4000 deg/scc 0.1 to 10 deg/min

pointing 2DF-free

Flight data All b

analysis

aSee Section 2.2.

t'As required:

b b

very low rates. They have been used for attitude reference on a large number of space vehicles

and for attitude stabilization on nearly ew'ry actively controlled space w, hicle.

2.1.3 Tracking and Pointing (High Frequency)

Tracking and pointing is a special capability required for the stabilization and control of experi-

ment packages or antennas on some space vehicles, particularly spacecraft and sounding rockets.

Gyros may be used for this application in two principal ways. The first is rate-aided tracking,

which utilizes a gyro to achieve a required rate output level and thus provide smooth motion for

tracking. The second use is as a pointing reference or memory. Typical short-duration pointing

applications include orienting the space vehicle to a desired attitude reference then back to the

gyro "memory" position and temporarily turning the vehicle precisely for velocity corrections.

Longer "memory" examples are gyro reference of the Sun or other fixed space line when the

vehicle is eclipsed by the em-th or other body. The gyros are generally accurate in sensing

high-frequency rotation lint may be subject to low-frequency drift.

2.1.4 Flight Data Analysis

In addition to the real-time functions discussed above, gyro outputs are also used for analysis

of flight data either inflight or postflight. Inflight observation of gyro outputs may be made by an

onboard crew via displays or computer readout, as illustrated by the Mercury, Gemini and Apollo

spacecraft and the X-15 research vehicle. Inflight data from telemet_' is often used by ground

crews to verify the trajectory and to issue guidance commands, as is done for many launch



vehicles and for tile Apollo, Ranger, Mariner and Surveyor spacecraft. Inflight malfunctioning of

a vehicle can also be detected and possibly corrected as noted by tile OGO spacecraft experience.

Postflight data analysis of gyro outputs allows verification of proper system functioning, permits
reconstruction of vehicle attitude and rates at specific times such as during experiment operation,

and provides a ineans of interpreting vehicle dynamic problems. Data is usually received by

telemetry, although in some vehicles, such as the X-15 and tile lifting bodies, data may be recorded
onboard and returned to earth.

2.2 Types of Gyroscopes

Gyroscopes can be categorized as either single-degree-of-freedom (SDF) or two-degree-of-freedom

(2DF). These classes can be further subdivided by the type of spin bearings used to support

the gyro rotor. (The spin bearings should not be confused with bearings which support the gyro

element.) Spin bearings are primarily of two types: preloaded ball bearings and gas bearings.

2.2.1 Single-Degree-of-Freedom Gyros

In the SDF gyro (fig. 1) the gyro element is free to rotate about only the output axis (OA). The

input to the instrument is the angular velocity of the case about the input axis (IA). Various gimhal

restraints apply torques to the gyro element to keep its spin axis (SA) closely aligned with the

spin reference axis (SRA) of the case. The output produced by the piekoff is proportional to

the small angle that the gyro clement makes with the case.

2.2.1.1 Rate Gyros (Mechanically Restrained)

The mechanically restrained rate gyro (refs. 10, 11) was first used about 1920 as a basic indicator

for instrument flying. It is a simple, rugged, inexpensive unit having relatively low precision.

The gyro element is typically supported on ball bearings and depends on a mechanical spring

for elastic restraint (fig. la). An input angular velocity develops a precession torque on the gyro

element which is opposed by the spring. This creates an output angle that is proportional to the

angular rate about the IA. The main sources of error are instability of the mechanical spring and

output axis friction.

2.2.1.2 Rate-Integrating Gyros

These SDF gyros suspend the gyro element (or float) in a fluid which provides a viscous damping

torque whenever the gyro clement moves relative to the case (fig. lb). The flotation suspension



ROTOR--_

CASE

-TORQUER*

._ OUTPUT AXIS (OA)

_GYRO ELEMENT GIMBAL

__-_- ELASTI C RESTRAINT * GIMBAL AXIS

_ SPIN AXIS (SA) BEARING/7

"--DAMPER ROTOR7 /
INPUT AXIS _--G IMBAL/_//"I_" OA

(IA) PICK OFF_ ___ )g

o,, AA
(b) NO -_ _[ _ . _---TORQUER

CASE _'-
I SA

VISCOUS DAMPER -/ ¢

* TORQUER OR ELASTIC RESTRAINT MAY BE USED

AND IS DEPENDENT ON ,aPPLICATION

IA

Figure 1.-(a) Essential elements of SDF g)'ro; (b) line schematic of SDF floated, rate-integrating gyro.

also reduces frictional restraints about the OA. The development of flotation is largely responsible

for the orders of magnitude improvement in precision over nonfloated gyroscopes.

A floated gyro uses a fluid whose density closely matches that of the gyro element. However,

since the gyro element is perfectly floated at only one temperature, a heating jacket is usually

mounted on the gyro case to maintain careful temperature control. In some designs magnetic

or electrostatic suspension is used to compensate buoyancy errors and kinematic effects.

The effect of the viscous damping torque is to make the output of the instrument proportional

to the integral of the IA angular velocity. The pickoff measures the angular displacement of the

float about its OA. A torquer is installed about the OA to command a calibrated rate. The ratio

of the output angle to the input angular displacement is called the gain of the rate-integrating

gyro. It is determined by the ratio of the spin angular momentum of the rotor to the damping
coefficient of the flotation fluid.
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Low Gain Gyros

Heavily damped gyros using flotation fluids of a few hundred centipoise (10 a N" s/m _) provide

typical gains in the range from 0.1 to 50. The characteristic time constant of the gyro's response

to an input is equal to the effective OA moment of inertia divided by the damping coet_cient of
the flotation fluid. The efl'ective OA moment of inertia contains a correction for gimbal compliance

or fluid pumping. High-viscosity fluids provide high damping restraint, fast response, and low

gain. Damping is sometimes increased by applying paddle-damping or eddy current techniques.

Typical characteristic time constants for low-gain gyroscopes range between 1 and 100 msec.

High Gain Gyros

For low-viscosity flotation fluids, the gyro gain is typically of the order of 100, and the charac-

teristic time constant is approximately 100 msec. In hydrostatic SDF gyros, the float is supported

both radially and axially by a pressurized gas bearing which is self-centering and does not require

pivots, magnetic suspension or temperature controls. The gain of such gyros is as high as 10:',
and the characteristic time constant is around 100 see. Consequently, for angular motions above

0.01 ttz, the very-high-gain gyro output is approximately the second integral of the input angular

velocity, thus leading to the terms "double integrating" and "unrestrained" gyros.

2.2.2 Two-Degree-of-Freedom Gyros

The 2DF gyroscope has a support which permits the spin axis to have two degrees of rotational

freedom. This is historically the oldest type of gyro.

2.2.2.1 Gimballed Gyros

The gimballed 2DF gyro is supported with a gimbal (the outer gimbal) between the gyro element

(the inner gimbal) and the case (fig. 2). Inputs to the 2DF gyro can be applied about both of

the two axes perpendicular to the gyro SA. The outputs of the gyro are the two signals proportional

to the angle which the gyro element makes with the outer gimbal and the angle which the outer

gimbal makes with the case.

The most precise 2DF gyros are operated in the captured mode using a servo followup. The

torquers are used to command angular rates about each of the two axes. Angular rates are propor-

tional to the applied torque. One 2DF gimballed gyro tlms acts similarly to two SDF rate-

integrating gyros with unity gain. A 2DF "free" gyro is operated in the displacement mode with

no constraint on the magnitude of the angles which the case can make relative to the SA. A free

gyro is used to measure the case orientation relative to the SA directly, without a servo followup.



GYRO ELEMENT

TORQUER_

OUTER GIMBAL

TORQUER

ELEMENT

(INNER GIMBAL)

GIMBAL
PICKOFF

CASE

OUTER GIMBAL

ROTOR GYRO ELEMENT
PICKOFF

Figure 2.-Essential elements of a 2DF gimballed gyro.

2.2.2.2 Free-Rotor Gyros

A free-rotor gyro is a 2DF gyro without gimbals. Other means such as flotation, gas bearings,

electrostatic suspension or magnetic suspension are used to support the rotor (refs. 12--17). Usually,

the gyro rotor is nearly spherical and is not mechanically restrained to rotate about a particular

axis. All free-rotor gyros must have some means of either preventing or damping nutation (refs.

18, 19). Many gyros of this type are kept running to minimize the number of starts and stops.

2.2.2.3 Tuned Rotor Gyros

This 2DF gyro uses a rotating flexure suspension on one end of the drive shaft to support the

rotor (refs. 20-22). This all-mechanical, nonfloated design is extremely simple and provides a sup-

port free of rotational friction. The decoupling of the rotor from its drive shaft and support

bearings gives the gyro very stable g-sensitive drift and inertial quality at relatively low cost.

However, the instrument is very sensitive to inputs at the tuned frequency or its harmonics.

2.3 Configurations

Depending upon the application, gyros may be mounted on an inertially stable platform, directly

on the space vehicle, or on some member that moves relative to the vehicle such as a telescope

or tracker. These configurations often correspond with the gyro functions in Section 2.1 according

to the frequency spectrum of the sensed rotational motion.

8



2.3.1 Stable-Platform-Mounted

Gyros mounted on a stable platform or the stable element of an inertial measuring unit (IMU)

are isolated from the angular rates of the space vehiele. The stable element is generally suspended

by three or four gimbals to provide three degrees of rotational freedom.

The typical application for this configuration is for an inertial measuring unit (IMU). Aecelerom-
eters are also mounted on the stable element and their outputs are integrated for inertial velocity

and position information. At least three SDF, two 2DF, or one SDF and one 2DF are required

for a complete inertial referenee.

The operation of an SDF gyro in a platform system is shown funetionally in figure 3. Any error

in the platform position rotates the gyro case aboiat the IA; this produces a rotation of the float
around the OA and develops an error signal at the pickoff. The gimbal servo loop then nulls this

error by rotating the platform (and hence the gyro ease) about the gyro IA. As a result, the plat-

form is kept aligned with the desired referenee frame. Vehicle attitude information is obtained

from the platform gimbal angles.

ALIGNMENT COMMANDS AND

DRIFT CORRECTIONS

GYRO

TORQUE

CONTROLLER

I GYRO /"- OUTPUT SIGNAL

L_TORQUER GYLREOMENT PICKOFF _'_ SIAGMNpALIFtER H

4

I CASE MOTION

J THROUGH STABILIZED
PLATFORM

I

VANE_

PLATFORM J_ PLATFORM

GIMBAL GIMBAL

SERVO TORQUER
LOOP

PLATFORM

GIMBAL MOTION

HOLDS GYRO

PICK©FFAT NULL

VEHICLE ATTITUDE

GUIDANCE i INFORMATION

AND CONTROL _

SYSTEM

LACCELERATION, VELOCITY AND

POSITION INFORMATION

PLATFORM

GIMBAL POSITION

DETERMINED BY

GIMBAL PICKOFFS

Figure 3.-Function of gyro in platform configuration.



2.3.2 Vehicle-Mounted (Strapdown)

In a strapdown configuration the gyros are mounted directly on the vehicle. Gyros operating in

the displacement mode give direct angular measures of the vehicle rotation. Alternatively, the

gyros may be operated in the captured mode, in which case they are torqued at the rates required

to keep up with the vehicle motion. The torquing rates thus provide direct measures of the vehicle

rates. In a strapdown inertial reference system, the coordinate frame is stored in a computer, most

often by using the torquing signals to update the direction cosine matrix. Strapdown systems are

particularly well suited to many space vehicle applications because space vehicles do not have

the high angular rates associated with airborne vehicles (refs. 23--29). However, strapdown sys-

tems place a greater computational requirement on the computer than gimballed systems.

The operation of a captured gyro ill a strapdown system is shown functionally in figure 4. The

gyro SA is kept aligned with its case by torquing the gyro. The torque commands are used to

update the direction cosine Inatrix which defines the orientation of the vehicle relative to the

reference coordinate system.
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Figure 4.-Function of gyro in strapdown configuration.
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2.3.3 Hybrid Systems

An example of a hybrid system is one in which the gyroscopes are lnounted on some member

which moves relative to the vehicle, for example, a star tracker. The line-of-sight to the star
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establishesthereferencedirection,but thegyroscopestabilizestrackingof thestarby acting as

a mechanical filter to eliminate high-frequency noise in the tracker.

Another example of a hybrid system is one which uses one or more single-axis stable platforms

to isolate the gyros from vehicle rotation. Each platform is stabilized with respect to space about

only one axis by mounting the gyro input axis parallel to this axis and minimizing gyro input

rates by means of a servo followup. The motion of the single-axis platform relative to the vehicle

provides information on vehicle rotation about that axis. The accuracy in readout is shifted from

calibrated torquer signals (in the case of strapdown gyros) to an encoder which reads the plat-

form relative rotation. The negligible rate about the IA eliminates many dynamic errors present

in classical strapdown gyros.

In cases where most of the vehicle rotation is about one axis, such as a spin-stabilized sounding

rocket, a single-axis roll-stabilized platform can isolate three SDF gyros from the spinning launch

environment to provide a stable base for the strapdown pitch and yaw gyros. A computer pro-

grammed to interface with the hybrid platform can provide either quaternion or direction cosine

error signals to affect an attitude reference unit.

2.4 Modes of Application

Gyroscopes have been used in space vehicles in a number of different application modes, several

of which are discussed below.

2.4.1 Attitude Rate Control Using an SDF Rate Gyro

The functional operation of a spring-restrained rate gyro used in an attitude rate autopilot is

shown in figure 5. Turning rates about the gyro IA develop precessional torques which are

opposed (balanced) by the spring restraint. The torque developed by the spring is proportional

GYRO
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RESTRAINT ELEMENT PICKOFF

OUTPUT
SIGNAL

RATE
COMMAND

1
SIGNAL

AMPLIFIER "A F /1 CONTROLI--"
I NETWOR"/

CASE MOTION INPUTS THROUGH VEHICLE

Figure 5.-Attitude rate control with an SDF rate gyro.
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to the output angle deflection and tile spring rate of restraint. Thus the pickoff output is propor-

tional to the input rate. Tile control system can maintain the commanded input rate by controlling

the output signal of the rate gyro. To provide vehicle rate damping about the gyro IA, the

control system attempts to keep the pickoff at null.

2.4.2 Attitude Rate Control Using SDF Rate-Integrating
Gyros With Signal Feedback

Rate-integrating gyros call be operated ill a rate mode hy the addition of external, feedback

circuitry. This technique can be used with any rate-integrating gyro and provides the most

accurate type of inertial rate measurement. As shown in figure 6, the output signal of the gyro

is fed back to the torquer with tile proper phase so that the output angle is kept near null.

When the gyro is pulse-torqued, the angular rate is proportional to the pulse rate and the

number of pulses is proportional to the angular displacement (rate integral) about the IA.

Some spacecraft attitude control systems have utilized rate integrating gyros in a rate mode

in order to eliminate the requirement for heater power (ref. 30). By using the gyro in a rate

mode, the changing gyro gain due to temperature variation only affects the dynamics of the

feedhack loop instead of the calibration of angle measurement.
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Figure 6.-Attitude rate control with an SDF rate-integrating gyro.
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2.4.3 Attitude Stabilization With SDF

Rate-Integrating Gyros

The functional operation of an SDF rate-integrating gyro used in an attitude stabilization mode

is shown in figure 7. The gyro is mounted directly on the vehicle, and the gyro output is nulled

by rotating the vehicle. An attitude rate will continue as long as a command is applied to the

torquer. With no input command, the vehicle maintains the orientation established by the

gyro SA.

ATTITUDE
CHANGE
COMMAND
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TORQUE _-DJ TORQUER

CONTROLLER[ [

OUTPUT
SIG NAL

GYRO I

1
t
I
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Figure 7.-Attitude stabilization with an SDF rate-integrating gyro.
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2.4.4 Attitude Stabilization With 2DF Gyro

The operation of a 2DF attitude gyro is similar for each axis to the SDF attitude gyro shown

in figure 7. The gyro is mounted directly on the vehicle, and the attitude is measured directly

from the gimbal angles. Vehicle motion around the inner and outer gimbal axes can be

measured by the two pickoffs; drift corrections and commanded rates can be applied to the

two torquers. This configuration can control two axes with one gyro unit, but it requires two

units for three-axis stabilization (with one redundant axis). A 2DF gyro cannot easily provide

rate control, thus requiring additional SDF rate gyros.

2.5 Tradeoff Factors

The selection of a particular gyro for a specific application involves a tradeoff study of the

performance, reliability and cost of each available instrument.
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2.5.1 Performance

The performance of the highest-quality gyros has been improved over four orders of magnitude

in two decades, even though the fundamental principle still involves a spinning wheel. The

primary concern of gyro designers has been the elimination of torque uncertainty, which is the

direct cause of gyro drift. Consequently, gyros are tested extensively to determine their per-

formance characteristics, particularly drift stability, and to permit compensation for unbalances

and disturbance torques. Important performance characteristics are discussed below.

2.5.1.1 Precision

Precision is a measure of the gyro's ability to provide the same output each time the input

conditions are exactly repeated. For most applications it is more important that the gyro be

precise (i.e., that the measurements are repeatable) than that the gyro be accurate (i.e., that the

gyro output indicate the true value of the desired measurement independent of disturbing

inputs). The precision of a gyro is limited by the variation of its sensitivity to known disturbing

inputs and by the random error, which cannot be predicted. The extensive testing required

tends to associate high cost with high precision.

2.5.1.2 Dynamic Range

The dynamic range of a gyro is the ratio of the input range to the threshold (ref. 5). For an

angle-measuring instrument it is determined by the largest and the smallest angular displacements
which can be usefully detected. For rate-measuring gyros the dynamic range is the ratio of

the maxinmm measurable rate to the lowest detectable rate. The dynamic range provides an

indication of the error uncertainty as a fraction of the full-scale input. The dynamic range is

limited by the type and cost of the gyro, so that the threshold sensitivity is traded against the

maximum rate or angle for a given type of gyro. Typical values of the dynamic range for various

gyro types are indicated in table 2.

TABLE 2.--Typical D!tnarnic Range o[ Gtjros

Open-loop, spring-restrained gym

Ball-bearing suspension, open-loop gyro

Dr',', servoed gyro; ball-bearing gimbal mounts with feedback through torquer

Floated gyro; non-temperature-controlled

Fully-iloated. temperature-cont,'<,llcd, pulse captured strapdown gyro

8000 :1

20 000:l

40 000:1

100 000 : 1

l 0,000,000:1

2.5.1.3 Drift Rate Uncertainty

The drift rate uncertainty is the error ill the gyro output due to all those effects which are either

unknown or reduced to an acceptable minilmun level (e.g., flex lead spring restraint). Uncertain-

ties in the gyro output are compared with other contributors to provide a total error budget and

are traded against cost.
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2.5.1.4 Stability

Stability is one of the most important considerations for gyro applications. The stability of the

gyro depends strongly on the nature of its disturbances. Some of the largest changes in the gyro

performance occur from turnon to turnon. Thus there is some advantage to continuous operation
of the gyro ill the interest of stability. It also appears that there are optimum methods of storing

gyros to insure the maximum stability. Although little data is available on this subject, the

periodic turning of some gyros in storage is generally believed to improve stability. Storage at

elevated temperatures as close to operating temperatures as possible apparently improves stability

in some gyros. The subject of storage conditions vs improved stability is controversial since

results appear to be random and do not always yield an improvement,

2.5.1.5 Scale Factor

Gyro scale factor is the constant of proportionality between the mechanical input to the gyro

and the magnitude of the output of the pickoff. Any error in the value of this number normally

results in a proportional uncertainty in attitude or attitude rate measurement. Although the

scale factor is extremely sensitive to absolute temperature changes as well as temperature

gradients, this behavior can be accurately calibrated.

Gyro scale factor should not be confused with command rate scale factor (CRSF) associated with

closed loop operation of a gyroscope. Gyro scale factor is associated with the electrical output of

the pickoff; CRSF is associated with the device (torquer) utilized to restrain the float to null

in a closed loop operation. CRSF has units of rate per unit electrical input, e.g., deg/hr/mA.

CRSF is an important characteristic of the gyro since any change, independent of scale factor,

will have an effect on the overall control loop. For this reason, significant attention must be

given to CRSF in both analog and digital closed loop operation.

2.5.1.6 Linearity

Ideally, the output of the gyro will be directly proportional to the mechanical input for any
value between the mininmm and maximum design inputs. However, this is not always the case

since a number of factors affect this relationship. For exalnple, gyro nonlinearities can arise

from pickoff nonlinearities, torquer nonlinearities, temperature gradients and acceleration effects.
These factors are evaluated and controlh'd or compensated in any given design.

2.5.1.7 Output Noise

The high-frequency component of the gyro output error is termed noise. The major source is

the spin bearings. The use of gas bearings instead of ball bearings for the rotor support signifi-

cantly alleviates tim problem, providing low output noise at high frequency. Output noise
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becomes a significant consideration in pulse rcbalance closed loop operation since spurious pulses
may result in an accunmlating bias error due to unequal plus and minus pulse scale factors and

short sampling periods.

2.5.1.8 Temperature

Temperature control is extremely important for precision in floated gyro instruments (refs. 31-33).

Most of the gyro parameters are temperature- or temperature-gradient-sensitive. An unwanted

temperature gradient across a floated gyro may introduce an acceleration-sensitive torque on the

gyro which leads to output error. Where required for adequate performance, the gyro temperature

is controlled by heaters. Since heat can only be added, the gyro set point is necessarily above the

system ambient temperature. Typical specifications of temperature control for gyros floated with

fluorolube limit excursions to less than O.I°C. Newer silicone fluids are being used with 1-2°C

temperature excursions, which may allow the gyros to be operated without controlled heaters.
Non-floated gyros arc less temperature sensitive and exhibit drift rate uncertainties as low as

0.05 deg/hr over a 30 C ° temperature range.

2.5.1.9 Anisoelasticity

When the gyro support compliance is not identical in all directions, the gyro does not yield in

the same direction as the applied acceleration. This creates a moment arm proportional to the

acceleration, which results in a torque proportional to the square of the acceleration (g2). This

sensitivity to g'-' is important for applications in high acceleration or vibration fields (ref. 34). The

g2 error due to vibration grows with time because the error has the same sign during both halves
of a vibration cycle.

2.5.1.10 Anisoinertia

When the gyro element has unequal principal moments of inertia, there is an apparent torque

about one principal axis due to simultaneous angular velocities about the other two. This gives

rise to an error that is proportional to the product of angular velocity components. It is only

serious when the gyro is subject to high angular rates, primarily in strapdown applications
(ref. 35).

2.5.1.11 Coning

Coning is a physical phenomenon associated with the use of SDF gyros. When the axis of a body

moves in a cone about the same average orientation, the average angular velocity about the coning

is nonzero. An SDF gyro with IA placed along a coning axis correctly senses the average angular

velocity, which the system may falsely integrate into an average rotation. This problem is not an

erroneous output from the gyro but is that the eross axis gyro serve loop does not have
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sufficientbandwidth.Coningproblemsareusuallyminimizedby tight servoloopsonplatform
systemsand by high bandwidthcomputationand fine quantization with strapdown systems

(refs. 4, 36).

2.5.1.12 Error Models

Major gyru error contributors are error torques, scale factor errors, linear acceleration

sensitivities, misalignnlents, and sensitivities to temperature and power variations. A nuinber of

sophisticated error models have been developed to apportion the effects of these disturbances

both singly and in combination (rcfs. 11, 37, 38). The models are used to predict errors expected

and to assign values to the error coefficients of the gyro for error correction in flight. They are

verified for the selected gyro operating in any particular system application; ensemble compensa-

tion is often used if the gyros come from a family having well-known (repeatable) errors.

There have also beell a number of attempts at the statistical modelling of gyro errors (e.g., ref. 39).

V,Zhile this approach may be useful for application to optimal filtering, the majority of gyro errors

are caused by physical phenomena and are therefore of a deterministic rather than random nature.

The practical tradeoff comes in the amount of measurement and computation for gyro error

correction which nmst be performed in order to meet the error budget.

2.5.2 Reliability

Reliability is the prol)ability that a gyro will meet the specified performance requirements under

the specified environmental conditions throughout a specified operating or storage life (ref. 5).

Reliability is one of the most important factors considered in the choice of a gyroscope for space

vehicle applications, but the decision is a difficult trade-off t)etween older technology for which

reliability infor,nation is available and nc\ver technology that offers potential advantages. Relial)ility

predictions made without past history are themselves unreliable. Furthermore, the reliability of

the instrument usually becomes associated with that of the manufacturer as regards meeting of

delivery schedules, quality control, cost overruns, etc.

From the relial)ility standpoint, the best gyro is one which is in production in large quantities

and which has an established history of data on its performance and its failure modes. It should

also have been through service changes to correct any problems brought out by the failure data.

Several important reliat)ility considerations are discussed below.

2.5.2.1 Mean Time Between Failure

The mean time between failures (MTBF) is the most widely accepted measure of reliability,

but care must be taken to qualify the conditions under whieh the MTBF is established. It is also

important to specify which failures are included. A failure is generally defined as any out-of-
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specificationconditionwhichrendersthegyroscopeunacceptablefor its intendedapplication.
If a su_cientlylargesampleof gyrosisavaihd_le,theMTBFcanbeestimatedby dividingthe
totalnumberof operatinghoursbythetotal numberof failures.Fora smallnumberof failures
alowerconfidencelimit for anMTBFcanalsobecomputed.

2.5.2.2 Life

The life of a gyl'o is a function of how tile gyro is used. The major clement in determining the

gyro life is the spin motor bearing. The typical failure mode for a gas bearing is that the friction

in the bearing becomes too large for the starting torque of the spin motor to ow'rcome, and tim
wheel fails to start. Consequently, there is a tendency to keep the gas-bearing wheel spinning

contimmusly. In ball-bearing gyros, the most eomlnon failure modes are excessively noisy bear-

ings and motors which will not run synchronously.

The common life characteristic for a production run of gyros is typically described by the

"bathtul_ curw# shown in figure 8 (ref. 40). During the debugging period the failure rate is high

because of the failure of marginal parts and infant mortality. These faults are detected and

corrected during burn-in operation, causing the failure rate to decrease. During the normal oper-

ating life of the gyros, the probability of a failure during a given time interval is essentially

independent of the age of the gyro. In the final period, parts begin to wear out from usage and

the failure rate increases with time. The plot is intended to be a smoothed curve which requires

considerable failure rate data. The objective of the system manager is to estimate the time of the

break points and minimize the risk by having the mission occur during the flat portion of the curve.
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Figure 8.-Common gyl'o life characteristic curve.
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2.5.2.3 Environment

The operatin_ conditions may have an important influence on the gyro reliability. The following

observations are typical:

(1) Excessive acceleration, shock or vibration will reduce gyro life.

(2) High temperatures or high-tempcratnre gradients across the gyro can be deleterious to

p('rformance and mechanical integrity.

(3) Magnetic shMding is frequently required to protect the gyro from external fields, or

occasionally to contain the field produced by the gyro itself.

(4) Iladiation hardening is needed for some applications. Difficulties art, often encountered in

verifying the radiation tolerance since radiation requirements are not presently well-
established.

(5) tluman t)hmders occasionally cause gyro damage; e.g., spinning a gas-bearing gyro back-

wards can ruin the bearing. A phase-order detection circuit improves reliability by pro-

retting against such a possibility.

2.5.2.4 Redundancy

To provide increased reliability, redundant instruments or redundant systems are often used.

\Vith double redundancy a major problem is the inability to detect the faulty unit without addi-

tional information. Consequently, triple redundancy is frequently used with majority voting logic

for isolating the failed unit. Although three SDF gyros are needed to detect angular velocity about

three orthogojml directions, redundant gyros for these three may be shared geometrically by
properly orienting the gyro input axes. Four gyros provide one spare; five gyros allow voting to

isolate one failed unit; six gyros allow voting to isolate two failures, etc.

Howew'r, the use of redundancy does have its drawbacks. For example, if a redundant gyro is

nonoperative for prolonged periods of time, startup problems may be encountered. On the other

hand, a power drain is imposed to operat(, a redundant gyro continuously. If the redundant unit

is "exercised" periodically, switching mechanisms are required and intermittent power inputs must

be provided for. The system weight is increased by redundancy and, if more than one gyro is

used, a decision is required as to whether to carry a redundant gyro for each operational unit,

thereby increasing weight substantially, or to use one redundant unit as a replacement for any of

the several operational units, thereby demanding more complex switehover equipment.

The reliability improvement provided by various redundant inertial sensor configurations has been

the subject of several investigations (refs. 41-4,5). The results of these studies are summarized in

figure .9, from reference 45. Clearly the optinmm skew configuration of six gyros is attractive for

its improvemcnt in reliability. However, other practical tradeoffs must be considered such as

simplifying gym output proccssing, obtaining compact packaging for thermal control of the gyros

and economical use of spacecraft volume, achieving reasonabh" fabrication and test procedures,
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Figure 9.-Beliability functions of six redundant configurations (ref. 45).

and reducing cost. The selection of the geometric configuration must consider the number of

sensors which will be operated simultaneously, the switching mechanism for adding sensors, and

the voting logic for detecting a failed sensor.

2.5.2.5 Design Risk

The use of any new or unproven design will invoh, e a certain risk. Previous experience has shown

the wisdom of using proven, existing design concepts rather than relying upon new concepts

which look promising but which require substantial development.

2.5.3 Cost

The cost of constructing a gyro and maintaining the ncccssary quality control is typically about

40 percent of the total initial cost to the purchaser. The remainder is the cost of burn-in, testing,
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and documentation. As a result, the price for the same unit may vary widely depending upon the

testing and documentation specifcations. In general, better performance is more expensive, but

the exact cost for a given performance is a function of tile level of testing or proof of performance.

Subject to this reservation, the cheapest, dry, spring-restrained rate gyros with an accuracy of 1

part in 100 can be purchased for a few hundred dollars. Better dry gyros using feedback through

the torquer and with drift rates around l0 deg/hr cost a few thousand dollars. All inertial grade

floated gyro with a drift rate near 0.01 deg/hr will cost above $10 000. The highest-performance
gyros typically cost above $25 000 each.

Figure 10 quantitatively illustrates the tradeoff between cost and gyro performance. Using short-

term random drift as the measure of performance, data from seven different gyros was obtained
under the following assumptions:

(1) Existing design purchased from existing manufacturing runs without modification

(2) Moderate documentation consistent with unmanned spacecraft; final functional test data
only; formal acceptance test costs not included

(3) Small buy (6 to 10 gyros)

(4) Short-term fixed drift instability (10 to 30 rain).

All data points fell within the indicated band, which is approximately a straight line in log-log

coordinates. The cost roughly doubles for an order-of-magnitude improvement in performance.
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A large portion of the purchase price of a gyro is usually devoted to testing to insure the gyro will
meet mission requirements by detecting and removing faulty units before usage and to establish

a data base for predicting mission performance. This will have all impact on total cost beyond

the unit cost of the component. The possibility of gyros failing the acceptance test encourages

the manufacturer to produce a more reliable instrument in order to achieve a sufficient yield rate.

The resulting increased life and reliability permits the customer to amortize his cost over more

use-hours and with less maintenance, thus lowering his cost per use-hour. On the other hand, the

time a gyro spends in test must ultimately represent some fraction of its total useful life. Conse-

quently, there is some optimum level of testing that will ininimizc the cost per use-hour of the

gyro. Documentation of the testing conditions and results is essential to any prograin. However,

special testing and documentation can escalate the cost of an existing gyro far beyond the basic
hardware costs.

Quality control also requires considerable judgment in order to achieve lower total cost. Excessive

inspection effort wastes money, but too little may allow a defective part to remain undetected

until a later and lnore expensive stage. Any change introduces new risk until it has been tried

and proven through test and field use. Even changes in assembly personnel have been reflected

in changes in production yields. Constant surveillance is required since problems have a way of

recurring, as a result of complacency in a successful program. A specific problem, peculiar to

gyros, is contamination of flotation fluids and bearing components.

2.6 Applications

The U.S. space vehicle missions on which gyroscopes have already been (or will soon be) applied

are summarized in table 3. The applications have been classifed under launch vehicles, spacecraft,

entry vehicles, and sounding rockets, since each category places its own characteristic require-
ments on the gyro. More specific discussions of selected applications are presented below for

each type of space vehicle.

2.6.1 Launch Vehicles

This category includes all launch vehicles and boosters which operate within or above the atmo-

sphere at high thrust levels. The operating lifetime is usually short, and the environment generally

includes high acceleration, vibration, and acoustic noise.

2.6.1.1 Centaur

The Centaur launch vehicle has an inertial guidance system to perform the following functions:

(1) Atlas (first stage) steering augmentation

(2) Centaur guidance and vehiclt' steering

(3) Engine start and cutoff signals

(4) Reorientation after spacecraft separation
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(5) Attitude stabilization during retro-maneuver

(6) Guidance telemetry signal conditioning.

TABLE ,?.--Mission Chart o[ Space Vehicle Gyroscope Applications

Sponsoring

Mission Agency/Gyro Function Configuration Gyro
Category ( vehicle ) User ( nmnber ) Identification

Gyro Type a

Launch Agena B USAF/Lockheed Guidance, Strapdown (S)

vehicles Flight control

and Guidance, Strapdown (g)

b_osters Flight control

Agena USAF/Lockheed

Atlas LeRC/Convair

( SLV-SA )

Burner 2 USAF/Boeing

Centaur LeRC/Convair

Delta NASA/Douglas

Saturn IB MSFC/Chrysler

Saturn V MSFC/Bocing

Scout LaRC/LTV

Titan IIIB USAF/Martin

Guidance, Strapdown (g)

Flight control

Navigation, Strapdown (8)

Guidance,

Flight control

Flight control, Strapdown (:3)

Stabilization Strapdown (8)

Guidance Strapdown (3)

Guidance, Platform (8)

Attitude reference

Guidance Strapdown (3)

Guidance,

Stabilization

Stabilization,

Guidauce,

Navigation

Guidance,

Stabilization

Guidance

Stabilization

Titan IIIC USAF/Martin Guidance

Stabilization

Honeywell GG76 SDF-RI

2 Honeywell GG76 SDF-RI

1 Honeywell GG87

Kearfott 2564 SDF-RI

Honeywell GG-384 SDF-RI

ttoneywell GG87 SDF-RI

Nortronics GRt][4T SDF-rate

Honeywell GG-49 SDF-RI

ttoneywell GG-49 SDF-RI

Platform (8)

Strapdown(9)

Strapdnwn(9)

Platform (S)

ttamilton Std. SDF-RI

RI- 1189E

Bendix AB-5-K4 SDF-DRI

Nortronics GRH4T SDF-rate

Nortronics GRH4T SDF-rate

Bendix AB-5-K8 SDF-DRI

Strapdown(g) HoneywellGG87 SDF-RI

Strapdown (8) SDF-rate

Strapdown (,3) Kcarfott 2536 SDF-RI

(wide angle)

Strapdnwn (5) Kcarfott 2536 SDF-RI

(rate)

Platform (.3) Delco 651G SDF-RI

Strapdown (5) Kearfott 2536 SDF-RI

(rate)

_RI = rate-integrating; DRI = double rate-integrating.
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TABLE &--(continued)

Category

Sponsoring
Mission

Agency/Gyro
(vehicle) User

Function Configuration

( number )

Gyro

Identification
Gyro Type

Space-

craft

Apollo CM MSC/NAR Navigation,

Stabilization

Stabilization,

Display

Stabilization,

Display

Stabilization

Apollo LM MSC/Grumman Navigation,

Stabilization

MSC/TRW Navigation,

Stabilization

ATM MSFC Pointing,

Stabilization

Biosatellite ARC/G.E. Attitude reference,

Stabilization

ERTS GSFC/G.E. Stabilization,

Attitude reference,

Initial stabilization

Explorer GSFC/ Stabilization

81

Gemini MSC/MeDonnell Stabilization

Navigation

Lunar LaRC/Boeing Attitude reference,

Orbiter Stabilization,

Pointing

Mariner JPL Stabilization,

Mercury MSC/McDonnell

Nimbus GSFC/G.E.

OAO GSFC/Grumman

Attitude reference,

Pointing

Stabilization,

Attitude reference

Attitude, Rate

display

Stabilization,

Attitude reference,

Initial stabilization

Stabilization

Attitude reference

OGO GSFC/TRW Stabilization

Platform (8)

Strapdown (8)

(wide angle

or rate)

Strapdown (3)

(rate)

Strapdown (8)

Platform (3)

Strapdown (8)

Strapdown (3)

Strapdown

Strapdown (1)

Strapdown (1)

Strapdown

Strapdown (6)

Platform (3)

Strapdown (8)

Strapdoxsm (3)

Strapdown (8)

Strapdown (2)

Strapdown (8)

Strapdown (1)

Strapdown (1)

Strapdown (8)

Strapdown (3)

Strapdown (8)

Strapdown (1)

AC 25IRIG

Honeywell GG248

Honeywell GG248

Kearfott 2021

AC 25IRIG

Hamilton Std.

RI-1189

Kearfott 2519

Honeywell JRT45

Kearfott 2564 .

Nortronics GRH4

Honeywell JRT45

Honeywell M S- 133

Honeywell GG-80Ol

Sperry SYG-100O

Kearfott 2564

Kearfott 2565

ttoneywell GG-79A

Honeywell GG-58

Honeywell MS-100

Kearfott 2564

Nortronics GRIt4

Honeywell JRT45

MIT 2FBG

Kearfott 2564

Honeywell MS

180B1

SDF-RI

SDF-RI

SDF-RI

SDF-rate

SDF-RI

SDF-RI

SDF-RI

SDF-rate

SDF-RI

SDF-rate

SDF-rate

SDF-rate

SDF-RI

SDF-RI

SDF-RI

SDF-RI

SDF-rate

2DF-free

SDF-rate

SDF-RI

SDF-rate

SDF-rate

SDF-RI

SDF-RI

SDF-rate
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TABLE &--(continued)

Category
Mission

( vehicle )

Sponsoring

Ageney/Gyro

User

Function
Configuration

(number)

Gyro

Identification
Gyro Type a

Space-

craft

OGO

OSO

OSO-3

Ranger

Skylab

workshop

Surveyor

Viking

Lander

Viking

Orbiter

GSFC/TRW

GSFC/Ball Bros.

GSFC/tlughes

JPL

MSFC/Doug]as

JPL/Hughes

LaRC/Martin

LaRC/JPL

Pointing

Stabilization

Pointing

Stabilization,

Attitude reference,

Pointing

Pointing,

Stabilization

Attitude reference,

Stabilization

Inertial reference

Attitude reference,

Stabilization,

Pointing

Strapdown (2)

Strapdo_qa (1)

Strapdown (1)

Strapdown (3)

Strapdown (9)

Strapdow_a (3)

Strapdown (4)

Strapdown (6)

lloneywell GG49

Bendix 25IRIG

Northrop GI-K7G

Honeywell GG49

Kearfott 2519

Kearfott 2514

ttamilton Std.

RI-1139S

Kearfott 2565

SDF-RI

SDF-RI

SDF-RI

SDF-RI

SDF-RI

SDF-RI

SDF-RI

SDF-RI

Entry

vehicles

ASSET

DynaSoar

HL-IO

M2-F2

M2-F3

PRIME

X-15

X24A/

SV-5P

USAF/

McDonnell

USAF/Boeing

FRC/Northrop

FRC/Northrop

FRC/Martin

USAF/Martin

FRC/No.

American

USAF-FRC/

Martin

Stabilization,

Flight termination,

Guidance

Guidance,

Backup guidance

Stabilization

Stabilization

Stabilization

Guidance

Navigation,

Stabilization

Stabilization

Strapdown (8)

Strapdown (1)

Strapdown (3)

Platform (8)

Strapdown (2)

Strapdown

Strapdown

Strapdown (9)

Strapdown (3)

Platform (3)

Strapdown (3)

Strapdown (9)

Honeywell

Giannini 151D

Honeywell

Honeywell 8001

Bendix 19008

U.S. Time

U.S. Time

Nortronics GRH4T

Honeywell GG87

Honeywell 8001

Nortronics GRH4T

Nortronics GRH4T

SDF-rate

2DF-free

SDF-RI

SDF-RI

2DF-free

SDF-rate

SDF-rate

SDF-rate

SDF-RI

SDF-RI

SDF-rate

SDF-rate
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TABLE &---(continued)

Category

Sponsoring
Mission Agency/Gyro Function Configuration Gyro Gyro Type

( vehicle ) User (number ) Identification

Sounding
rockets

Aerobee

1S0/170/
850

Aerobee

Aerd_ee

150/170

Aerobee

150/170

Aerobee

150/170

Nike-

T om a -

hawk

Nike-

Toma-
hawk

Black
Brandt III

CSFC/Ball Bros. Pointing, Platform (2) Conrac 34646H-04 2DF-free

( Strap 111) Stabilization Strapdo_'n (8) VARO 1005435-01 SDF-rate

Fine pointing Strapdown (2) ltoncywell GG 87 SDF-R1

AFCRL/NRL/ Pointing, Platform (2) Whittaker FM10G-2 2DE-free

Space General Stabilization Strapdown (3) U.S. Time Model 40 SDF-rate

( Mark II )

Space General Pointing Strapdown (1) Whittaker FMIOG-2 2DF-free

( Mark III) Strapdown (3) U.S.Time Model 40 SDF-rate

Kitt Peak/ Pointing Platform (3) VARO SDF-rate
Ball Bros.

( SPCS-1 )

Ball Bros. Pointing, Strapdown (1) Condor Pacific SDF-rate

( SPCS-2 ) Stabilization RS-9._AA- 1

GSFC/Space Pointing Platform (2) Space Vector 2DF-free

Vector Corp. MARS 1

( SPT )

Inertial reference is provided by a four-gimbal inertial platform, which is stabilized with three

SDF rate-integrating gyros. Some factors that entered in the tradeoff studies between SDF and

2DF gyros are presented in reference 46. A detailed description of the design and development

of the Centaur inertial guidance system, including a number of problems and deficiencies associ-

ated with the gyros and corrective actions, is also contained in reference 46.

2.6.1.2 Scout

The Scout launch vehicle is equipped with a strapdown guidance system which provides the

following major functions (fig. 11):

(1) Accurately times the initiation of guidance, ignition, and other events

(2) Generates suitable signals for programmed pitch and yaw commands

(3) Measures attitude error between reference and programmed attitudes

(4) Provides a properly conditioned set of commands to the vehicle control system.
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Figure 1 l.-Block diagram of the Scout guidance and control system.
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The strapdown gyro reference unit contains three SDF rate-integrating gyros to measure tile

relative rotational displacement of the vehicle with respect to an initial set of reference coordi-

nates. The displacement error signals for the pitch, roll, and yaw axes are summed with corre-

sponding rate signals, which are generated by the external rate gyro unit for stabilization of the

vehicle about each axis. The pitch and yaw displacement gyros arc torqued by externally

generated guidance commands to cause specified changes in gimbal alignments and consequently

in the w'hicle trajectory. A number of malfunctions detected in the inertial reference unit are

discussed in reference 47.

2.6.1.3 Little Joe II

Attitude error information for the Little Joe/Apollo latmch vehicle (fig. 12) was derived from a

strapdown reference unit consisting of two conventional 2DF gyros (ref. 48). One gyro was orien-

tated so that its inner gimbal sensed vehicle pitch error and its outer gimbal sensed roll error.

The other gyro sensed yaw error on its outer gimbal while its inner gimbal was slaved to the

vehicle roll axis. The pitch error was summed with a programmed signal to provide the desired

pitch attitude history. Both gyros were captured to their orthogonal positions and had torquing

capabilities which were used for ground checkout.

Vehicle damping signals were obtained from three identical spring-restrained rate gyros. As in

the case of the attitude gyro package, the rate gyros and their associated electronics were packaged

together, providing a single installation in the vehicle. The rate gyros also had torquing capahilities

and spin motor rotation detectors for ground checkout.

The obtainable errors in the vehicle flight trajectory could be attributed directly to thc drift rate

of the 2DF attitude gyros. The maximum drift rates for the three axes were 0.050 deg/min in pitch

and roll and 0.99 deg/min in yaw.
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Figure 12.-Block diagram of Little Joe autopilot.
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2.6.1.4 Atlas

The flight control system of the Atlas SLV-3A launch vehicle series was designed to achieve

stability of vehicle dynamic responses and to provide vehicle steering by orientation of the engine

thrust vectors. Guidance is provided by a radio-inertial system, and an onboard attitude reference

for the flight control system is required (ref. 49).

The reference attitude for the launch vehicle is provided by three SDF rate-integrating gyroscopes

(fig. 13). The signal amplifiers sum the rate and displacement gyro signals. The torquer amplifiers

receive signals from the programmer and/or from the guidance system and apply a proportional

torque to the displacement gyros to accomplish the commanded maneuvers.

The SLV-3A uses three rat(, gyroscopes that sense the rate of vehicle rotation about the pitch,

yaw, and roll axes and provide the necessary lead compensation to improve the dynamic stability

of the vehicle. The pitch and yaw rate gyros are remote from the displacement gyro package

to be forward of the antinode of the first body bending mode during boost.

2.6.1.5 Saturn V

The Saturn V launch vehicle uses an inertial platform for control of both rigid body and elastic
modes as well as for navigation (ref. 50). Vehicle attitude is sensed by the inertial platform
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system. As shown in figure 14, these signals are processed to provide the flight control computer

with vehicle attitude errors (ref. 51). The flight control computer also accepts attitude rate signals

from strapdown rate gyro packages in the instrument unit and (during first-stage operation) the

S-IVB stage, These signals are filtered and summed to produce engine commands for maintaining

vehicle attitude control, while simultaneously providing vehicle bending moment relief for the

S-IVB stage.

To provide extremely high reliability, the Saturn rate gyro package in the instrument unit is triply

redundant; i.e., each axis is monitored by three independent rate gyros. Hence failure of any

one gyro in an axis will not affect system operation. The flight control computer can also accept

attitude error data from the Apollo spacecraft in the event of failure in the Saturn platform or

at the discretion of the crew.
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Figure 14.-Saturn V attitude control system.

The inertial components used on the platform are of the gas hydrostatic design. The gyros are

built and tested to an absolute drift value and require no updating during their use. No flight

failures have occurred and no major gyro problems werc encountered during the Saturn man-

rated program.

2.6.2 Spacecraft

This category includes those space vehicles which operate primarily in free-fall orbits. The

environment is normally one of low angular rates, acceleration, and vibration. Operating lifetimes

are usually long and there may be a requirement for turn-on and turn-off of the gyros to conserve

power. The gyros often experience large temperature variations and possibly a high radiation
environment.

2.6.2.1 Mercury

The Mercury spacecraft was equipped with two 2DF free attitude gyros to determine attitude

angles between a set of fixed axes in the spacecraft and the local vertical reference. Azimuth was

obtained by gyrocompassing to the orbital plane. Both attitude gyros could be slaved to the proper

angles when commanded by a horizon scanner system (refs. 52, 53).
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Figure 15.-Functional block diagram of Mercury attitude stabilization and control system.

The Mercury stabilization and control system (fig. 15) used the outputs of the attitude gyros in

conjunction with the outputs of three SDF rate gyros. In addition, a rate stabilization and control

system which used independent rate gyros was provided for backup rate damping. Summing of

stick positions and rate gyro outputs provided rate control.
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2.6.2.2 Gemini

The Genfini manned spacecraft required a reference that could provide stabilization about three

axes and measurement of velocity changes. A platform IMU was selected over a strapdown system

because the gimballed system reduced spacecraft digital computer operations for coordinate

transformations and because the platform represented the lesser technical and schedule risk. The

platform chosen was a modified version of the four-gimballed unit used on the Centaur program.

A 100-hr runin was performed on the platform gyros to eliminate infant mortality failures and to
provide stability data over runup, cooldown, runup periods. When gyros indicated stable charac-

teristics, they were accepted for platform installation. The acceptance rate using this method was

approximately 75 percent. References 59. and 54 describe the development of the Gemini IMU,

including problems encountered and modifications made.

The Gemini spacecraft derived attitude information for stabilization and control from the guidance

system inertial platform. Rate information for the attitude and maneuver control system was

obtained from two identical rate gyro packages, each of which contained three SDF spring-

restrained rate gyros. For greater reliability, the gyros were switched to allow selection by indi-

vidual axis, rather than selection by package. Several significant problems encountered in the rate
gyro development are discussed in references 52 and 54.

2.6.2.3 Apollo

The Apollo Command Module (CM) and Lunar Module (LM) utilized a number of different gyros
in various primary and backup systems. (see table 3)

Primary Guidance and Navigation System

The IMU for the primary guidance and navigation system of the CM and LM consists of a three-

gimbal platform mounting three SDF rate-integrating gyros and three SDF accelerometers. The

gyros establish a space reference to keep the stable element nonrotating such that accelerations

are measured in a known inertial coordinate frame. Resolvers on the platform gimbal axes measure

the orientation of the spacecraft relative to the stable element. Both the gyros and accelerometers

are temperature-controlled to ±0.3°C utilizing a single temperature controller. One of the prin-

cipal design problems was to achieve reliable temperature control of all inertial components under
wide variations in the environment.

The platform gyros were chosen primarily to meet a 100 000-hr MTBF goal. A 1967 evaluation

of 361 production gyros indicated the MTBF goal had been met with 70 percent confidence

(ref. 55). There have been no inflight failures to date. Table 4 summarizes the Apollo gyro reli-

ability experience through May 1971. Based on inflight measurement of gyro random drift, 9 out

of 12 gyros in Apollo 7, 8 and 9 achieved better than 0.015 deg/hr performance (ref. 56).

The gyros are calibrated during prelaunch activity and may also be recalibrated by the astronauts
in flight against star sighting. During the Apollo 6 mission a divergence was observed between
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TABLE 4.IApollo gyro reliability experience - May 1971 (Block 11-071 configuration gyros)

Number of gyros (T) a

Bearing failure prediction

Predicted units that failed (PF )

Predicted units that did not fail (PF)

Failed units not predicted (PF)

Usefulness T PF -- PF
T -- PF

_ T -- PF -- PF
Efficiency

T -- PF

Total gyro operating hours

MTBF, hours, with 98% confidence

X 100,%

X 100, %

249

11

80

0

100

66

370 800

100 OOI)

a45 gyros flown on Apollo missions

Prettight wheel hours

Flight wheel hours

68 000

4400

the attitude information supplied by the primary system and the backup strapdown system. This

was first attributed to the primary system, but real-time review of prelaunch data on the backup

system indicated that the measured drift would account for the divergence (ref. 56). A detailed

description of the Apollo primary system can bc found in references 9 and 57.

LM Abort Guidance System

The strapdown reference system for the lunar module abort guidance system (LM/AGS) uses

three SDF rate-integrating gyros. The gyros are operated in the captured mode by means of a

pulse torque servo-amplifier (PTSA), as shown in figure 16. The output of the PTSA is a pulse

train to the computer, with each pulse representing an incremental angle. The torquing capability

of the gyro is approximately 28 deg/sec.

An error budget for the LM/AGS gyro is shown in table 5. The actual performance of the instru-

ment has generally been better than predicted. For example, over 1-day periods, the drift uncer-

tainty is typically around 0.1 dcg/hr, with equivalent results for longer periods. The day-to-day

torquer scale factor uncertainties are typically under 100 parts per million. Typical test results for

input axis alignment are better than 10 arc-see.

Initially, the LM/AGS gyros experienced excessive mass unbalance sensitivity. The cause was

determined to be due to storage orientation sensitivity as a result of stratification of the two-cut

flotation fluid used. This problem was resolved by storing the gyros in the same orientation in

which they would ultimately be used. A number of other minor design problems and modifications

are detailed in reference 58.
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TABLE 5.--Apollo LM/AGS Gyro Performance Error Budget (ref. 58)

Error Source Predicted
EITor

Gyro Fixed, deg/hr

Time instability ( 8 days )

Electrical power variation
EMI

Thermal effects

Vacuum effects

Magnetic effects

Residual vibration

Total Error ( RSS )

Gyro Vibration and I,imit Cycle Induced Error (Powered Ascent), dcg/hr

Nonlinearity ( asymmetry )

Spin-input rectifcation

Spin--output rectification

H-vector spin--input rectification
Anisoelastic drift

Gyro Spin Axis Mass Unbalance, deg/hr

Time instability ( 8 days )
Thermal effects

Vacuum effects

Command Rate Scale Factor Instability and Nonlinearity, parts/million

Time instat)ility ( 120 days)
Residual shock

Check instability

Nonlinearity

Gyro Input Axis Misalignment, arc-see

Initial alignment

Instability

Total Error (RSS)

Total Error ( RSS )

Total Error (RSS)

Total Error ( RSS )

0.14

0.03

0.07

0.04

0.11

0.01

0.06

0.21

0.24
0.0g

0.00

0.02

0.01

0.24

0.10

0.07

0.18

0.22

147

57

10

65

171

44

lO

45

CM Backup Attitude System

The Apollo spacecraft obtains primary attitude information from resolvers on the IMU gimbals.

Strapdown SDF gyros are used in the CM haekup atl_itude control system for both attitude and

rate sensing (fig. 17). The backup attitude reference unit contains three wide angle (±20 deg)

rate-integrating gyros which ean be operatcd in either a rate or a position mode. An additional

set of three strapdown rate-integrating gyros is provided for rate information.

The strapdown inertial unit was selected after an extensive tradeoff study, the results of which

are presented in table 6 (ref. 59). Major considerations in selecting the four systems for further
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TABLE 6.--Apollo Stabilization and Control Subsystem Tradeoff Tabulation #eft 65)

Volume, Weight, Power, Relative Relative
System Reliabilitya m _(ft 3 ) kg ( lb ) W Cost Flexibiliw

Strapdown

Two 2DF free gyros 0.99971 0.0202(0.715) 92.6(49.9) 64.5 1 4

Three SI)F rate-integrating 0.99955 0.(/170(0.599) 17.2(38.0) 30.1 1.8 3

gyros I'

Platform

Three-gimbal stable element 0.99944 0.0385 (1.36) 32.2(71.2) 58.1 3 2

Four-gimbal stable ele,nent 0.99931 0.0402 ( 1.42 ) :36.7 ( 81.0 ) 74.6 3.:3 1

aReliability equal to or greater than 0.999276 through inflight repair.

hSelected system.

study were the needs for compatibility with the primary inertial platform system and reliability

of the backup system. The following conclusions were drawn from this tradeoff study:

(i) An inertially stabilized platform provides the best solution to the attitude reference sub-

system problem from a performance and operational point of view. However, the reliability

requirements result in a weight and volume penalty.

(2) The three SDF attitude gyro solution provides the best compromise for the reference sub-

system. Its principal limitations are (1) accuracy errors associated with gross vehicle maneu-

vers (normal operation) and (2) inability to maintain an attitude reference under conditions

of high and uncontrolled vehicle tumbling rates (emergency operation). It was also recom-

mended that a hardware design study be initiated on an inflight maintainable, four-gimbal

platform which, if feasible, could be phased into the program at a later date.

(3) The 2DF free gyro suhsystem was the most complex system studied. This, in addition to

the operational limitations (four areas of attitude singularities) and high drift rates, caused

this system to be rated below the three-gyro subsystem.

2.6.2.4 Lunar Orbiter

The Lunar Orbiter (LO) attitude control subsystem utilized a three-axis strapdown inertial refer-

enee unit in a hybrid mode (fig. 18). A basic reference attitude was established by a sun sensor

and star tracker. A rate damping signal was provided by a rate gyro for each axis during normal

celestial hold operation with the sun sensor (pitch and yaw) or star tracker (roll). During sun

and Canopus occultation periods, attitude was maintained by the gyros in the rate-integrate mode.

The functions of the attitude control subsystem were to:

(1) Acquire, stabilize, and maintain a sun orientation of the spacecraft in pitch and yaw

(2) Acquire, stabilize, and maintaiu a Canopus-referenced orientation in roll

36



[ POWER 1

I SUBSYSTEM ]
t__ __ __

1_i..

_1[ COMMU NICATIONI

L SUBSYSTEM ]

T_._F- DEEP SPACE
NETWORK

L

CANOPUS I

I STAR I

L T---RAiKJRJ

1
INERTIAL

REFERENCE I

UNIT I

GYRO__S1
_ACCELEROM_ETE_RS..I

FLIGHT
ELECTRONICS

CONTROL
ASSEMBLY

PROGRAMMER

CLOSED LOOP
-ELECTRONICS

SUN
SENSORS

I- - =- J-- q
IREACTION I ITHRUSTVECTOR I
I CONTROL I I CONTROL I
L l t J

Figure 18.-Lunar Orhiter attitude control subsystem.

(3) Maneuver sequentially one axis at a time away from celestial references as desired e.g.,

for photographic or velocity change purposes

(4) Hold attitude to inertial references as required, e.g., for photo sequences, for velocity

changes, and for periods of sun and Canopus occultation

(5) Return the spacecraft to celestial reference orientation upon completion of tile above

maneuvers

(6) Point the high-gain antenna

(7) Provide delta velocity measurement and control for engine burns.

The selection of the SDF rate-integrating gyro for the inertial reference unit was based on its

applicability to the Lunar Orbiter mission, experience gained with it on an Air Force satellite

program and cost. Major difficulties were encountered in modifying the gyro to lower the operat-

ing temperature from 74 to 63°C. To achieve the desired damping at the new temperature the

flotation fluid was changed, and weights had to be added to the float to achieve neutral buoyancy.

The addition of these weights introduced g-sensitive drift instabilities; but the gyro g-sensitivity

balance trim adjustment was limited to 1 deg/hr/g increments as the result of the damping

change. The damping permitted larger than planned OA motion and potential mechanical inter-

ference between the gyro case and float unless the balance weights were maintained in a specific

orientation.
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Production problems were encountered associated with restarting a gyro line since the selected

gyro was not in quantity production. Contamination, broken pivots, and erratic drift problems

affected gyro yield and schedule. A backup program was instituted using another gyro in volume

production, and no changes internal to this gyro were permitted. The backup program was able
to support the LO launch schedule only because tile manufacturer was ahead of scheduled

deliveries on the selected gyros. These and other minor problems are detailed in reference 60,

2.6.2.5 Mariner Mars 1971

The attitude control system on Mariner Mars 1971 used an inertial reference unit (IRU) to pro-

vide a means of (1) sensing and controlling angular rates after separation and during sun-Canopus

acquisition, and (2) sensing and controlling changes in spacecraft attitude when celestial refer-

ences were not acquired (refs. 61-63). The IRU utilized three strapdown SDF rate-integrating

gyros that operated without temperature control at spacecraft temperatures, typically 13 to 38°C

(55 to 100°F). They were configured in a rate sensing mode to provide both rate and position

information (fig. 19). In this configuration, the gyro pickoff output is amplified, demodulated,

and fed back to the torquer through a precision series resistor to ground. The voltage across the

precision resistor is proportional to torquer current and hence to input rate. Angular position

information is obtained by integrating this rate signal with an active operational amplifier.

The IRU modes of operation were (fig. 20):

(1) Acquisition. Rate information is supplied to the attitude control electronics to provide damp-

ing of spacecraft rates after separation and during sun-Canopus acquisition.

ELEMENT PICKOFF _ DEMODULATOR

\TORQUER RATE

PRECISION
RESISTOR

F- 7

I
I

I

COMMAND
TURN BIAS

OUTPUT

POSITION
OUTPUT

Figure 19.-Gyro loop configuration for Mariner Mars 1971.
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Figure 20.-Functional block diagram of Mariner Mars 1971 inertial reference unit.

(2) Inertial. Both rate and position information are supplied to tile attitude control system to

maintain constant spacecraft attitude in all three axes. This mode is utilized during motor

1)urns.

(3) Commanded turn. Same as inertial mode except bias is added to input of either yaw or roll

integrator to cause spacecraft rotation about the selected axis at a constant rate.

(4) Roll i_ertial (straylight). When angular position iuformation is not available from the Cano-

pus tracker, the spacecraft is stabilized about the roll axis with the gyroscope operating in

the inertial mode. Durin_ this mode, only the roll gyro operates.

In the ahove four modes, the rate output of the gyros was used only for damping, and high

accuracy was not required. Accuracy was, however, critical in determining angular position dm'-

ing the inertial, commanded turn, and roll inertial modes. Required turn angles were obtained

by first commanding a known turn rate (nominally 650 deg/hr) about the axis of interest, then

controlling (measuring) the time duration of the turn rate.

To obtain satisfactory operation at spacecraft temperatures, tile gyro command rate scale factor

was calibrated at four temperatures (30, 38, 47 and 54°C) (85, 100, 115 and 130°F) prior to launch.

During operation, the required turn ratc was obtained by noting gyro temperature and using the

appropriate calibration. This approach provided a significant power reduction and eliminated the

complexities of gyro temperature control. With this system, the achieved commanded turn rates

were within 0.5 deg/hr of the turn rate predicted by the prelauneh calibration (3e).
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2.6.2.6 Orbiting Geophysical Observatory

During normal operation, attitude error signals for the Orbiting Geophysical Observatory (OGO)

were provided by sun sensors and a horizon scanner (fig. 21a). However, during earth and Sun

acquisition, a reference angular rate about the spacecraft pitch axis was established by a spring-
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RATE
GYRO

YAW

SUN
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A = ACQUISITION MODE
N = NORMAL MODE

k_j A M/A = MAGNETIC AMPLIFIER

FILTER

NETWORK1li"/ I A

_YAW "_
LEAD LAG

NETWORK
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GAS JET
VALVES

(a)

OPEP
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OPEP
GYRO

No. 2

N_j_l lOPER/

I t IM/;'7--_. _1 DRIVEt--_RESOLVERh

I OPEP SHAFT ANGLE_

(b)

Figure 21.-Block diagram of OGO control system.

(a) Attitude control system
(b) Orbit plane experiment package (OPEP) control system
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restrained rate gyro. The gyro was electrically biased such that at null, a 0.5 deg/sec rate was

established. The pitch rate gyro was operated during launch and while in the acquisition mode,

but was turned off otherwise. A spin motor rotation detector (SMRD) circuit indicated whether

the spin motor was operating at synchronous speed and, together with a self-test torquer, greatly

facilitated testing of the instrument. Problems with the pitch rate gyro were attributed to poor

quality control which was a result of the gyro being discontinued as a production item (ref. 64).

Orientation of the OGO Orbit Plane Experiment Package (OPEP) was maintained by a separate

gyro assembly, which detected errors in the alignment of the OPEP shaft with the orbital plane

(fig. 21b). The OPEP inertial reference assembly contained two SDF rate-integrating gyros (for

redundancy) which were operated in a captured (or rate) mode to serve as a gyrocompass. When

the gyro IA was located in the orbital plane and was pointing in the direction of travel, there

was no error signal output. If the IA was not in the orbit plane, the gyro sensed a component

of the spacecraft orbital rotation rate proportional to the attitude error.

At the time of the gyro selection, the OPEP design was to use the gyro as an attitude reference

with periodic resets to trim drifts. Although this scheme was eliminated in favor of the gyro-

compass scheme, no major change was required in the gyro.

The possibility of damage from shock and vibration was minimized by running the OGO gyros
during launch. Several gyro problems were uncovered, however, associated with power voltages,

the SMRD circuit, the heat circuit, and noise. These are described in reference 64.

2.6.2.7 Apollo Telescope Mount

The Apollo telescope mount (ATM) will use sun sensors, a Canopus star tracker, and rate gyros

for accurate pointing of an experiment package to acquire data on solar phenomena (ref. 65).
To achieve the required pitch and yaw pointing stability in the presence of man-motion disturb-

ances, the experiment package is isolated from the ATM by a two-axis gimballed experiment

pointing system (EPS). Two SDF gyros are mounted on the experiment package to detect pitch

and yaw rates. An additional rate gyro is located on the ATM to detect roll rate. These gyros may

be operated in either a coarse or a fine mode; the respective maximum output rates are ±1 and

±0.1 deg/sec. The same type of rate gyro will be used for all three axes for interehangeability.

During the experiment pointing mode, the ATM control system obtains pitch and yaw attitude

from the acquisition sun sensor and roll attitude from integration of the roll rate gyro output.

The EPS uses fine sun sensors on the experiment package for pitch and yaw attitude and the

pitch and yaw gyros for rate information. During occultations of the Sun, the EPS gimbals are

caged at zero, and all three attitude signals to the ATM control system are determined by inte-

gration of output signals from the EPS rate gyros.
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2.6.3 Entry Vehicles

This category includes all space vehicles designed for atmospheric entry. The environment is

characterized by high acceleration, vibration, and temperature; the operating life is short.

Experience with gyros for navigation, guidance, stabilization, and control of entry vehicles has

been limited to spacecraft returning to earth and a number of suborbital research vehicles

(refs. 66, 67). The Mercury and Gemini spacecraft and the Apollo CM used the same gyros during
entry as in space.

2.6.3.1 The X-15

The X-15 research vehicle was equipped with an inertial flight data system which used a four-

gimbal platform containing three SDF rate-integrating gyros. Gyro drift-rate stat)ility and

repeatability were sufficiently good to allow compensation to be performed on the day preceding
a flight. The X-15 inertial systems are discussed further in reference 68.

Rate gyros were also used in both the primary aerodynamic stability augmentation system and

the reaction control system of the X-15. These systems are described in references 68 and 69.

2.6.3.2 The X-24 and M2-F3

The X-24 and M2-F3 lifting bodies used for entry vehicle research are both equipped with a
redundant stability augmentation system (ref. 70). Nine rate gyros are used for three-axis rate

sensing in a triplex configuration (fig. 22). The gyro is a SDF spring restrained rate gyro that

features a wheel-speed detector for monitoring purposc's and a torquer to provide self-test
capability.

All equipment in each axis is triply redundant, except the third servo, which is simulated elec-

tronically. Cross-channel comparison monitors provide failure detection. Any single failure will

cause at least one comparator to trip, thereby isolating the failure to a single axis and channel.

Multiple critical failures will cause axis shutdown in a safe manner. Transients resulting from

failures in either the gyros or the electronics are suppressed by the mid-value logic circuitry.

2.6.3.3 The ASSET

The ASSET vehicle, used to investigate aerothermal-strueture problems of entry, was equipped

with gyros for stabilization (refs. 71, 72). The primary function of the flight control system was
to control the vehicle to a programmed flight attitude and to stabilize it about this attitude. The
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vehicle attitudes were sensed by three body-mounted SDF rate-integrating gyros. A separate rate

gyro unit contained three identical rate gyros to provide damping as an aid in vehicle control

loop stability. The pitch displacement gyro was torqued to command a change in gimbal position

and therefore maintained aligmnent relative to the vehicle axis for the predetermined glide

angle-of-attack.

The only gyro malfunctions occurred during ground test operations. In two instances a high null

output was observed which indicated a rate gyro "hang-up." Both gyros were disassembled and

nylon debris was found in their interiors. The faulty gyros were replaced, and all units flown

worked properly.

Because of unreliable radio communications during entry, ASSET was equipped with a self-

monitoring flight termination system to protect all land masses. This system used a 2DF, non-

floated, free gyro to provide an independent indication of vehicle yaw and roll. During flight

the yaw gimbal was torqued to a null position. The roll gimbal pickoff was compared with a fixed

reference voltage, and if the error exceeded a specified limit, the destruct procedure was initiated.

2.6.4 Sounding Rockets

Attitude control of sounding rockets, because of the limited useful flight time, demands rapid

accomplishment of initial stabilization and orientation and quick maneuver and acquisition

capability.

2.6.4.1 MK II ACS

The MK II ACS is a gyro-inertial attitude control system, which is available for the Aerobee

series of sounding rockets (ref. 73). It uses two 2DF gyros as an orientation reference: one

providing roll and pitch information, the other yaw information. The gyros are mounted with

their outer gimbal axes colinear with the vehicle longitudinal axis. The outer gimbal of the yaw

gyro is slaved to the vehicle to maintain proper alignment of the inner gimbal with the body-fixed

yaw jets. When the vehicle is brought to a roll null condition using error signals from the unslaved

outer gimbal of the roll/pitch gyro, a similar alignment of pitch jets to inner gimbal is realized.

Maneuvering of the vehicle is accomplished by torquing the appropriate gyro gimbal. Signals

from the gyro position transducers are summed with rate gyro signals and applied to a controller

which produces reaction jet action to maintain this error signal within a narrow deadband. Point-

ing stabilization and scan mode capabilities are also incorporated in the MK II ACS. The

magnitude of maneuvers is fixed hy controlling the time during which voltage is applied to the

gyro torquers. A digital programmer-timer is used for this purpose, as well as to control the time

during which a fixed attitude is held.
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2.6.4.2 STRAP III

The Stellar Tracking Rocket Attitude Positioning System (STRAP III) was developed to provide

three-axis orientation of sounding rocket payloads (ref. 74). Three-axis inertial coarse attitude is

provided by two 2DF free gyros mounted on a roll-stabilized platform (RSP). The lISP (fig. 23) is

slaved by a servo to the roll gyro output signal. The platform isolates the gyros from the high

roll rates of the spin-stabilized portion of flight and hence eliminates the gyro inner gimbal

spin-induced drift.

Pointing the rocket at preselected targets is accomplished with electrical torquers which torque

the gyro gimbals at a fixed rate for a preset time, thus causing a position gyro error. Since the

system is "null seeking," the rocket follows the moving gyro gimbal. Accuracies of --+3 deg and

limit cycle magnitudes of -4-_ deg at body rates of _ deg/sec or lower are obtainable using

only the gyro inertial control system. Three SDF rate gyroscopes with an input capability of

40 deg/sec are used to provide damping for system stability.

The STRAP III has also employed an inertial grade rate-integrating gyro package to obtain

high-resolution data from targets which cannot be tracked otherwise. These units can provide

inertial drift rates of less than 0.1 deg/hr (compared to the 6 to 10 deg/hr capability of the two-axis

free gyros). Limit-cycle magnitudes of -+5 arc-sec at rates of less than 5 arc-sec/sec have been

achieved in flight.
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2.6.5 Miscellany

One of the first questions the designer should ask is whether a gyro or some other technique

should be used for a particular application. The SPARCS sun-pointing system used on the Aerobee

sounding rocket is an example in which another technique was selected instead of gyros to pro-

vide attitude and rate information. Since SPARCS is limited to the sun-pointing mission, sml

sensors (for two axes) and magnetometers (for the third axis) are used to provide attitude infor-

mation on the spinning vehicle. The use of the signals from these same sensors to calculate rate

information in lieu of rate gyros results in a less efficient, more difficult to analyze, spiral capture

of the sun. The main advantage of the system is that it has very few moving parts. In this ease,

a simple spring-restrained rate gyro would probably have provided a simpler, more flexible and

less expensive system.

Another important question is how to meet the required reliability. In Apollo, ground control

is given the primary responsibility over the onhoard inertial system except where there is no

choice, such as during powered flight, flight behind the moon, and earth entry. Great care was

taken to provide backup redundancy for the inertial systems. The IMU in the CM is identical to

the one in the LM, thus providing a spare. The backup system for the LM is a strapdown system,

as different and as isolated as possible from the primary platform system, in order that a single

common failure would not endanger both. Although the inertial systems experienced problems

during development, their inflight performance has been excellent.

Cyro users have long debated whether it is better to run the gyro continuously or turn it on and

off. The tradeotf is between unnecessary power consumption and wear, as opposed to preliminary

degradation and the risk of the gyro failing to start. On Lunar Orbiter the gyros ran continuously,

although they were switched between rate and rate-integrating modes. However, the Mariner

gyros were on only for launch (nonfunctional), for separation rate damping, for optical acquisition

phases, and during midcourse corrections and terminal pointing, because the missions were nmch

longer and the available power was more limited.

In general, the effect of the space environment is beneficial to gyro performance; the zero-z

condition eliminates all acceleration-sensitive errors, greatly improving the gyro's drift perfor-

mance. However, an exception to this rule was encountered with the relatively inexpensive 2DF

gyros on Aerobee, which actually performed better on the ground than in space. The problem

was with sensing low rate thresholds. In the space environment, the static bearing friction and

the slip-ring friction were enough to cause the gyro to "lock up" and move very slowly with the

vehicle without detecting vehicle rotation. On the ground, small external vibrations plus earth

rate were enough to prevent bearing stietion. To overcome the problem several operational fixes

were attempted. The first was to intentionally place the entire vehicle in a forced limit cycle

oscillation. This approach had obvious disadvantages, including the higher reaction control

fuel required. The second approach was to mount electrical vibrators on the gyro cases. This was

not entirely satisfactory and increased the total power requirements. The problem was finally

solved by introducing a slight unbalance in the gyro rotor which created just enough vihration
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to prevent sticking. Interestingly, the problem did not arise until the gyro manufacturer obtained

new precision testing equipment which permitted him to produce gyros with extremely low

wheel unbalance.

Judging from the nmnerous case histories, the most serious and costly mistakes occurred when

the systems user treated the gyro as a simple component (much like a relay, switeh, synehro, etc.)

and when a new gyro design was instituted at w,hicle control go-ahead time. In spite of fidl

qualification, configuration management, reliability testing, and associated monitoring effort, some

of these designs fell behind schedule. On one such project a seemingly simple gyro part, the fluid

expansion compensating bellows, costing about .$30, remained a "simple" part until it failed fatigue

testing. To replace this unit with an improved one delayed gyro delivery by about 35 days. The

total cost, reflected up through systems test, system qualification, launch facilities, services, and

schedules which were brought to a virtual halt, was measured in thousands of dollars per day.

2.7 Testing and Evaluation

The purpose of testing and evahmtion is to assure the user that the gyroscope will perform

satisfactorily during the mission. The test data thus forms the basis for acceptance of gyros. More-

over, increased testing, although raising the purchase price, can result in a lower cost per use

hour via a longer and more reliable performance life by rejecting deficient gyros. An important

function of gyroscope testing and evaluation is to permit the prediction of performance at some

future time (i.e., during the mission). This requires systematic record keeping of variations in

measural)le parameters from gyro to g,vro, and from time to time in the same gyro, ahmg with

careful analysis of the test data. Proper testing and "parameter monitoring" require extensive

knowledge of gyro characteristics and effects of parameter changes. Descriptions of such charac-

teristics and parameter changes can be found in reference 75.

It has been estimated a typical set of spacecraft gyros will have a test history distribution

approximately as shown in table 7. The Lunar Orbiter gyros were typically operated about

1000 hours during the phases from manufacturer to launch. This time would tend to decrease with

the project's life, particularly if only minor gyro or system problems were experienced.

TABLE 7.--Typical Spacecra# G!/ro Test History

Phase Percent of Total Test Time

(;yro nmnufacturer

Systems ( including _.cceptancc, integration and system test )

Prelamwh

Flight monitoring ( including telemetry data reduced fi)r gyro performance

evahmtion vs only go/no go )

40

:30

10

20
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2.7.1 Types of Tests

Gyroscope tests can be conveniently separated into three general categories:

(1) In-Process Tests. In-process tests are performed on subassemblies during the manufacturing

sequence and on the final assembled instrument. Examples of less elaborate quality control

tests are resistance and continuity checks, insulation and circuit isolation tests, including

the so-called tti-Pot or megger tests, and weight and CG checks. More elaborate tests

include float freedom, motor phasing, and flotation checks. The latter tests are often

performed on the final test stand just prior to the beginning of the performance tests.

(2) Performance Tests. Performance tests are conducted on all completed units to provide

assurance that the performance specifications are met. The principal test in this category

is the acceptance test, which follows a formally documented, detailed procedure. The

acceptance test is normally the basis for acceptance of the unit by the customer, generally

with the understanding that the unit will satisfactorily pass an acceptance test at any time

during its specified life. Certain portions of the acceptance test, along with monitoring of

selected parameters, are repeated on each unit periodically. This repetitive testing and

monitoring provides a history of specific performance values, relating them to unit life,

thermal conditions, power measurements, and other selected parameters to allow a predic-

tion of continued performance and to establish indicators of incipient degradation. While

not specifically a test for performance, diagnostic testing examines the causes of performance

degradation so that such degradation may be minimized through construction or use

changes.

(3) Environmental Tests. Environmental tests may include any of the following (ref. 76):

(1) F,lectrical variations

(2) Life

(3) High/low temperature

(4) Mechanical shock and acceleration

Thermal shock

High/low pressure

Vibration

(5)

(6)

(7)

(s)

(9)

(10)

(11)

(12)

Acoustical noise

Thermal radiation

Air cnrrents

Nuclear radiation

Magnetic fields.

The specific test program is selected to conform to the needs of the particular space vehicle

mission. However, some tests, such as the effects of zero-_ (ref. 77), may be impossible to perform
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in aground-basedlaboratory.Lifeandenvironmentaltestsaregenerallyperformedonly on a few

selected units to establish general conformity of performance under the specified conditions and

to establish expected performance changes.

2.7.2 Gyroscope System Test Program

Most space vehicle applications incorporate a number of gyros into a system with integrated

power supplies, thermal controls, and other electronics. The performance of the gyro mounted

in the system is not the same as when tested indMdually because of changes ill mounting, align-

ment, and vibratory and thermal conditions, and in the manipulation of the inputs and outputs

by the system electronics and/or gimbal elements. Thus most space vehicle gyros are tested with

the complete system for performance under expected environmental conditions. Repetitive tests

are made during the life of the complete system and correlated with prior componeut tests to

monitor parameter trends and predict the mission performance as accurately as possible.

2.7.3 Test Data Evaluation

The test data to be recorded and the evaluation techniques to be utilized depend on the system

requirements, the cost, and the specific test objectives. The most useful data for predicting the

gyro's performance is the trend or stability of its performance coefficients. If repetitive testing

and monitoring is conducted at programmed intervals on each gyro and system, trends and erratic

behavior can be noted. From these it is possible to make some predictions as to future changes

and to establish some indicators of incipient degradation. With data derived from the environ-

mental tests, changes due to expected environments can be included in predicting the gyro per-

formanee. Catastrophic failures are avoided by removing units which indicate excessive changes.

Failure analyses on these units are essential in understanding the changes and developing cor-
rective action.

Various statistical treatments are used to enhance the confidence level of the conclusions drawn

from the test results. For example, the elegant method developed for gyro performance prediction

in the Poseidon system is described in reference 78. The technique used for the Apollo platform

gyros is presented in reference 52. Other examples of such treatments may be found in references

36, 77, 79, and 80.

Clear-cut, consistent predictions of future gyro performance cannot always be obtained by the

above techniques. A major limitation is that space vehicle applications do not usually involve
sufficiently large numbers of gyroscopes for the accmnulation of accurate reliability statistics.

Also, practical test limitations often prevent performance tests being conducted under the exact

mission conditions, and extrapolations nmst be made. Despite this, the presentation of gyro case

histories, coupled with parameter monitoring and engineering judgment, is the only currently

feasible method for predicting gyro performance.
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2.7.4 Prelaunch Checkout and Flight Monitoring

After installation in the space vehicle, the gyro system is recalibrated and a number of tests are

made in prelaunch configuration. These tests depend upon tile particular mission, the system

configuration, and the spacecraft limitations, but they generally include:

(1) Alignment check of gyro system to spacecraft

(2) Go/no-go cheeks

(3) Parameter monitoring (temperature, wheel rotation, power, etc.)

(4) Alignment to chosen coordinates (gyroeompassing, line-of-sight to ground or star, etc.).

Flight monitoring of a given system depends on the many constraints imposed by the general

configuration and operational characteristics of the gyroscope system. In most spacecraft, the

gyros are updated at selected times from data computed from a master reference system, optical

direction sensor, radar, or ground sightings. Selected indicators of failure are moifitored so as to

switch control to an alternate system if necessary. Performance parameters that may be monitored
to aid in flight decisions and postflight failure analyses include _yro temperature, whcel power,

excitations, etc.

2.8 Advanced Concepts

Some of the newer types of gyros offering promise for future applications are briefly discussed
below. More detailed descriptions of the operating principles and features of these gyros and a

variety of others are contained in reference 81.

2.8.1 Laser Gyro

The laser gyro detects rotation by monitoring the phase shift between two oppositely directed

laser beams traversing a closed path. In principle, tile counting of one fringe shift is a measure

of inertial rotation through an angle typically of a few arc-seconds. In practice, to prevent mode

locking, the beams have to be uncoupled either by dithering the beam through mechanical rota-

tion or by using electromagnetic polarizing devices. Tile accuracy of the sensed angular velocity

is of the order of 0.1 to 1.0 deg/hr. The laser gyro's advantages are short warmup time and no

moving parts. There are errors proportional to acceleration and temperature due to their action

on tile structural geometry. Problems with short operating life still exist. A buy of a statistically

valid number of systems is needed to establish enough data to make the laser gyro competitive

with conventional gyros.

2.8.2 Electrically Suspended Gyro (ESG)

The ESG is a free-rotor gyro using a lightweight spherical rotor suspended in an evacuated hous-

ing 1)y an eh'ctrostatic field. The attractive force on the rotor is controlled l)y making the capaci-
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tancebetweentherotorandits housingpart of atunedcircuit.This circuit controls the current

to the capacitance in such a manner as to keep the rotor centered. Spin-up of the rotor is achieved

by a gas jet or by inducing an eddy current into the rotor with the motor coils. The motor coils

also provide a means of nutation damping and spin vector alignment. After spin-up the motor is

not used; active speed control is maintained hy the suspension electronics in one version. How-

ever, the drag oil tile rotor is so small that it takes thousands of hours for the gyro to run down

without a speed controller. For readout, a controlled mass unbalance is built into the rotor of one

device, and the spin axis attitude is sensed by observing the mass unbalance modulation of the

suspension pickoff signals. In another ESG, the angular motion of the case relative to the rotor

is read optically. An extremely precise ESG being developed to test Einstein's general theory of

relativity (ref. 82) utilizes the magnetic moment generated by a rotating superconductor for

readout. The main advantage of the ESG is extremely high accuracy. However, the rotor nmst he

prevented from touching the case after a sudden power loss, else the gyro suffers a catastrophic

failure. Both platform and strapdown configurations of the ESG have been evaluated. The ESG

has found application as a monitor gyro for precision navigation systems.

2.8.3 Cryogenic Gyro

This is a free-rotor gyro w_ry similar to rite ESG; it consists of a superconducting metal rotor

suspended by a magnetic field. At temperatures near absolute zero the rotor becomes a magnetic
insulator; when subjected to a magnetic field it repels the walls of the case and stabilizes in the

center of a spherical cavity without the use of any external electronics. The only requirement for

maintaining the suspension is a continuous supply of liquid helium, which is the main disadvan-

tage of the system. The angular motion of the case relative to the rotor is read out optically at

a very slow rate so that the illumination energy does not raise the temperature of the supercon-
ducting sphere.

2.8.4 Tuned-Rotor Gyro

The tuned-rotor gyro is a 2DF, dry, gyro which gets an effective magnification of the gyro coning

period by operating near a structural resonance of its support. This gives a performance capability,

of 0.005 deg/hr without flotation. It is claimed that the gyro can provide this precision at a cost

of a few thousand dollars per axis. Platform versions of these gyros are now used in aircraft

navigators but have not yet been used in space. High-torquing-rate versions are being developed

for strapdown applications. For space vehicles, the major advantage would be lower cost and

power requirements at this performance level. Until the gyro is proven in operation, however,

the risk will be higher than that of other gyros. Also, the tuned-rotor gyro must be protected

from vibration environments that have significant energy at frequencies near the gyro resonance.

2.8.5 Vortex Rate Sensors

These devices are typically used to sense vehicle angular rates for the flight control of weapons.

As a result, nmeh of the information about them is classified. They use fluid or gas as the moving
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mediumandarethereforeusefulin systemswhichemployno electronics.The accuracyis of
autopilotqualityor worse,but thecostis low andthereliabilityveryhigh.

2.8.6 Multisensors

It is possible to build an inertial sensor that measures angular rotation and linear acceleration

in the same unit. The advantage is lighter weight and smaller size. Some such units have been

built, and this approach may be extended in the future. A 0.86-kg (1.9-1b) inertial platform using

two multisensors is now undergoing flight testing for possible aircraft navigation and missile

guidance applications (ref. 83).

2.8.7 Other Devices

A number of devices which have been built to measure inertial angular rotation have either not

proven competitive with existing gyros or have not yet been developed enough to be considered

for space vehicle applications. Some of these are the nuclear gyro, particle gyro, fluid gyro, and

vibrating rod.

3. CRITERIA

Space vehicle gyroscopes should be selected to establish a coordinate frame or to measure angular

velocities relative to specified reference axes under all anticipated mission conditions. The gyro-

scope should achieve specified accuracy and reliability of performance within allotted volume,

weight, and power consumption constraints. The design should satisfactorily minimize suscepti-

bility to all inherent factors that can potentially degrade reliable performance. These factors

include the testing and operational environment, the various interfaces between the gyro and the

space vehicle, possible interference sources, and the gyro's functional characteristics. Demon-

stration should be made, by a suitable combination of analytical and experimental studies, that the

gyro design is entirely suitable for its intended application.

3.1 Applications

First, the question of whether a gyroscope is required or not for the given mission should be

answered. If it is so determined, all specific applications to which the gyroscope might be put
should be considered. These include:

(1) Navigation and guidance

(2) Vehicle stabilization and control

(3) Tracking and pointing

(4) Flight data analysis.
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Thegyroscopedesignshouldbeselectedto providetheangularrateand/orpositioninformation
requiredby thespacevehicleforeachapplication.Theuseof the same gyro for several appli-
cations should be evaluated where possible.

Environmental specifications should include conditions to be experienced during handling, storage,

shipment, assembly, test, prclaunch, launch, and all phases of flight. A model or specification,

sufficiently accurate for evaluation purposes, should he established for each of the following envi-
ronmental factors. The combining of test environments should also be considered.

(1) Acceleration

(2) Angular rate and total rotation

(3) Shock and vii)ration--both linear and angular

(4) Temperature

(5) Radiation

(6) Magnetic feld

(7) Noise

(8) Humidity

(9) Lifetime

(10) Vacuum.

3.2 System Design

Strapdown and platform configurations, if applicable, should both be considered for the system
design. The choice of configuration for a particular application should be the result of a tradeoff
study.

The gyroscope system should be designed and packaged for ease of alignment and calibratioia. To

the extent possible, the gyro package should be prealigned prior to mounting in the space vehicle.

Once the gyro package has been installed in the space vehicle, the physical alignment or align-

ment verification between the gyro and other sensor axes may also be required.

Interface conditions should be specified, if possible, by interface definition documentation. It

should be demonstrated that both the gyro package and the system to which the package inter-
faces will perform satisfactorily where the specified conditions exist. It should also be demon-

strated that the gyro package will not be adversely affected by the presence or the operation of
other spacecraft systems. Consideration must be given to several factors:

(1) Electrical interfaces with the spacecraft electronics and power system by means of ground
currents, electrostatic discharges, magnetic fields, and electric fields
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(2) Mechanicalinterfaces-includingstabiliw,rigidity,andeffectsof mountinganddeinount-
ing, alignment and aceess, and thermal expansion

(3) Thermal interfaces between the gyroscope and spacecraft (heat transfer by conduction or

radiation)

(4) Fladiation interface with radioactive devices (nuclear power or calibration sources)

(5) Interfaces with the _yro test equipment.

The specification of output signal format (either digital or analog) should be based on an evaluation

of the amount of signal processing to be performed and the extent of analog-to-digital or digital-

to-analog conversion required. The data rate and quantization levels for di_zital signals nmst be

adequate to represent the expected input rates over the entire instrument range.

3.3 Gyro Selection

The selection of a gyro for a specific application must be carefully exercised by means of an

iterative, parametric tradeoff process. The type of gyro should be tentatively selected by consider-

ing the basic input, output, performance, and reliability requirements for the application. Fore-

most consideration should be given to gyros which have a proven record in similar applications.

The choice of spinmotor design (ball or gas bearing) for a given mission should be based on an

evaluation of the history of proven bearings in view of system requirements. Where proven types

of gyros require substantial modification to meet the mission requirelnents or provide inadequate

performance margin, consideration may be given to the use of new types of gyros. The overall

gyroscope precision must not be overspeeifed but should be consistent with the error budget

allocated to the gyro.

The gyro should operate satisfactorily in the mission environment and should minimize suscepti-

bility to factors inherent in the operational environment and the vehicle installation, including

various interfaces and design tradeoffs between the gyro and the spacecraft, the spacecraft
environment, and the interference sources.

Gyro parameters and performance specifcations should be realistic in relation to the system require-

ments and consistent with manufacturing feasibility. To the extent possible, IEEE standards should

be followed in establishing all component specifications. The characteristics of individual _yro

components should be examined for compatibility and for assurance that the properties of one

component do not mmcccssarily constrain the selection of other components. The gyro specifi-

cation should define the suscei)tibility of each component to degradation in operational and test

environments to insure reliable performance throughout the mission.

3.4 Reliability

Stringent quality control and extensive qualification testin_ of gyroscope components and the

asselnl)led gyro should be considered as primary methods of maintaining reliability. If statistical
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dataisavailablefromasufficientlylargegyropopulation,thisshouldbeconsideredastheprimary
indicatorof that _yro'sreliability.Otherwise,historiesof failuremodesshallbe maintainedto
determineareasin whichthegyro'sreliabilitycanbeenhanced,andsystemmonitorsof thegyro
shouldbespecifedto obtaintrendindicatorsthat providea completegyroprofilehistoryonan
individualbasis.Changescausedby componentdegradation,manufacturing,andenvironmental
effectsshouldbedeterminedandevaluated.

Theoperationallifetimeof the gyroscope should be adequate for the mission reliability require-

ments and should be demonstrated by approved analyses and tests. For critical applications, redun-

dancy at the system or gyro lew'l should be considered to achieve the reliability requirements. The

gyro system should be as insensitive as possible to electrical malfunctions and transients in other

suhsystems. A major factor limiting operating life is gyro spin axis bearings, and since their

integrity is difficult to predict and verify, all aspects of their performance should be of concern.

The regulated temperature, if required, should be as low as possible for the system application

since elevated temperatures tend to reduce gyro life. Shelf storage and transport modes should be

adequately controlh'd to prevent damage to the gyroscope. Periodic testing and reorientation of

gyros in storage should be conducted. These nonoperational modes should be constrained to safe-

guard the gyroscope with respect to all other mechanical, thermal, and inagnctic environmeuts
as well.

The importance of the human factor must he appreciated by both gyro and system designers.
Controls should be required to preclude gyro damage or performance degradation resulting from

shock due to carelcss handling, temperature extremes due to unprotected-eontrolh,r failure, con-

ncctor almse, and magnetizatiou din' to improper choice of checkout instrumcntation.

3.5 Testing and Evaluation

A comprehensive testing program including in-process, performance, and enviromnental tests
should be conducted to sufficiently establish that the gyroscope performance parameters are within

specifications under all expected operating conditions. Test requirements for any gyro should be

carefully specified in the gyro-to-system interface specification as well as in the gyro specification.

A definition of the relationship between the test electronics and the system electronics should be

included in the specification. Provision should be made early in the program for gyro system

monitors, with special emphasis on diagnostic tests that may be necessary, especially at higher

levels of integration in the spacecraft. Because of their impact on gyro design, test procedures

and associated systcm interface decisions concerned with the inclusion of wheel-speed verification

or other operational monitors and optimized system power sequencing must also be made at an

early stage. Consideration nmst be given to "pyramiding" tolerances; i.e., test limit tolerances at

any level should be narrower than at each subsequent level.

The test environment for ground tests should simulate the operational environment as closely as

possible, with allowance in interpreting the results made for any differences. All completed gyro
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packagesshouldbesubjectedto acceptanceteststoverifyconformancetothespecifiedparameters
andinterface requirements. Engineering evaluation tests, including environment tests, and quali-

fication tests should be conducted on as many units as practieable.

If possible, complete systems tests should be performed using operational flight electronics. Means

should be provided to verify the correct operation of all features of the gyro package, including any

redundancy or repair mechanisms, after its installation in the spacecraft or in a fixture that dupli-

cates the spacecraft installation. Spacecraft integration system tests should verify compliance with

the gyro system interfaee and performance specifications. The gyro package installation and

operation should he evaluated by calibration and alignment tests.

During prelaunch checkout and flight, critical gyro performance indicators should be continuously
monitored. Provisions should be made for prelauneh alignment relative to the estahlished reference

frame and for realignment during flight in the event of loss of reference. Means should be provided
to detect gyro failures, and consideration should be given to the prediction of potential failures.

4. RECOMMENDED PRACTICES

It is imperative that personnel from gyro component and system design groups, as well as other

concerned groups, work closely together throughout the gyro design or selection and development

and participate in all tradeoff deeisions. Changes should be avoided if possible, since there are

no "minor" changes to gtjro design. Any gyro design change should be thoroughly qualified in the

gyro and in the syste,n. Experience has shown that the dewqopment sequence should involve

(1) using the best analytically established design possible, (2) putting the gyro in the field in large

numbers, (3) establishing a vigorous field-failure investigation procedure, (4) determining the

field-failure modes and their causes, and (5) continually correcting the design and manufacturing
procedures to eliminate nonrandom failure modes.

Thus the preferred gyro would he one of a mature design which fits the applicable performance

requirements, has been proven in the field, and is currently in large-quantity production by a
reliable gyro manufacturer.

4.1 Applications

The functional purpose of a gyroscope for a specific application should be clearly defined in the

earliest mission planning stages so that the required gyro model and system configuration can be

selected. The control modes, environments, and system performance and interface requirements

which constrain the gyro application should he carefully defined for each mission phase (welauneh

checkout, boost into orbit, orbit change, velocity corrections, entry, etc.).
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4.1.1 Mission Objectives

Generally, gyros used to provide reference frames for guidance or navigation should be of high

accuracy, with uncertainty drifts of less than 0.1 deg/hr. These could successfully be configured

in either a platform or a strapdown system. In the strapdown configuration, the same gyros

should be considered for use as the controlling rate gyros.

For most vehicle stabilization purposes, relatively inexpensive spring-restrained rate gyros should

have sufficient accuracy and stability. For some critical stabilization loops, for example, where an

order-of-magnitude drift performance improvement is desired as compared to the spring-restrained

gyros, a small rate-integrating gyro operating in the rate mode is recommended. It is generally

true that gyros should be vehicle-frame-mounted where stabilization signals are desired. Gyros

used for attitude reference should be typically of medium quality, with drift uncertainties in the

range of 0.1 deg/hr to a few degrees per hour.

Gyros should be considered for rate-aided tracking applications and in systems requiring a

pointing reference or memory. In general, these gyros should be accurate in sensing high-

frequency rotation, but they may be subject to low-frequency drifts as high as several degrees
per minute.

Consideration should be given to using gyro stabilized reference data outputs for reconstructing

the flight history of a space vehicle. The data may be recorded by an onboard device which is

later recovered or telemetered during flight and recorded at the receiving installation. In either

ease it may be necessary to multiplex the gyro data with other information (accelerations, tem-

peratures, etc.), in which case the bandwidth of the desired gyro data must be specified.

4.1.2 Environment

The gyro applications engineer should be able to define with considerable aeeuraey the environ-

ments his units will have to undergo. Mission duration and acceptable lifetimes should be

established. The durations, magnitudes, and combinations of vibration, aeeeleration, shock,

temperature, pressure, radiation, and other environments should be predieted to the highest

degree possible. The gyro user should attempt to tabulate each aspect of the anticipated environ-

ment as a preliminary guide to the system speeifleations. This can often be accomplished most

conveniently as a function of the mission phases. An example of sueh a tabulation is presented in
table 8 for a typical earth-orbital spacecraft.

In defining the environment specifications, two conflicting cost-oriented factors should be con-

sidered. The total cost of the space mission including design, hardware, booster, launch facilities,

and services is so great that some margin should be included in the environment specification as a

57



TABLE &--Example Tabulation of Typical Gyro Environment as a Function of Mission Phase

Mission Phase

Orbit Course
Environment Prelaunch Boost Insertion Orbit Correction

Acceleration 2 g 11 g max. 85 see 17 g max, 48 see 0 g, 1 yr 0.6 g, 5 sec

Angular rate ± 8 deg/sec, 4 deg/sec 240 deg/hr, 1 yr ± 1 deg/sec,
control 1 min

Shock 50 g, 11 msec 240 g, 0.8 msec

Thermal --18 to 60°C 15-88°C 15-88°C 1.-47: C

Magnetic field 3 PL0.6 × 1(}_ T 3 +0.6 _: 10 -_ T _3 × 10 -_ T _3 × 10 '_ T _3 × 10 4 T

Life service

Start-stops

Vibration

Sinusoidal

Random

( Tracker and

earth fixed )

1000-hr testing

200

±5g
5-50 Hz

S | e _,v

(emergency)

Acoustic noise

1.5 rad/sec

Mission success > 0.930

probability

Nonoperating Nonoperating Continuous Seconds
9000 hr

6-1{}

12 g max
20-2000 Hz

15 g rms, "15 grms, 4 _ rms

20-2000 Hz 20-2000 tlz 300-2000 Hz

+47 dB above +18 dB above
ref ref

1 tad/see

2) {}.995

Recommended test levels :

(1) Qualification: 15(}% factor.

(2) Workmanship vibration all units; + 2 g, 20-1500 Hz.

(8 ) Burn-in, 150 hr: all electronic parts, 120% voltage, 85_C.

safety factor. This margin will also enhance the flexibility of the system to accominodate potential

changes in the mission requirements. On the other hand, in an effort to hold costs down, all truly

unnecessary environments should be eliminated froin the specification. Examples are operation

over extreme temperature ranges, instantaneous readiness, pyrotechnic shock if not experienced at

the instrument compartment, and tight mass unbalance specifications for zero-g operations. This

will also minimize potential delays in relaxing unrealistic requirements if it becomes evident the

gyro is incapahle of passing them, as (K'eurred with Lunar Orbiter for example. The detailed
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specifications should reflect the performance needs of the space vehicle, the vehicle environmental

profile, and tile environmental conditions encountered during storage, shipping, and installation.

4.2 System Design

\Vithin the confines of the system-performance requirements, the gyro-to-system interface has

elements of flexibility which permit compromise in both the gyro and the system designs. It

should be recognized that the cascading or arbitrary safety margins by various system engineering

levels can impose unnecessary demands upon the gyro design. Detailed gyro-to-system interface

documentation is recommended as a check against such occurrences and to assure realism in both

gyro design goals and gyro test program requirements.

4.2.1 Platform vs Strapdown Configuration

The choice of a platform vs a strapdown configuration for a particular application should be the

result of a careful trad('off of the advantages of each in the light of the mission requirements.

A comparison of a number of performance limitations of strapdown and piatform systems is
contained in reference 26.

Strapdown systems are generally favored for orbital and long-range space applications because

of the limited angular rates imposed. Boosters and space vehicles generally have maximum rate

values below 4 deg/sec, whereas sounding rockets and entry vehicles may have roll rates of one

or two orders of magnitude larger. Sounding rockets are usually spin-stabilized during powered

flight at 1 to 3 revolutions per second. If measured by a strapdown system, the accumulated roll

angle will result in a large error, since the dominant measurement error propagates as a function

of the total input angle. Single-axis platforms should be considered to isolate the gyros from these
high roll rates.

Strapdown sensors present maximum angular rate limitations which are not encountered by plat-

form systems. The strapdown system is limited by the maximuna capahility of the electromagnetic

torquer and by the dynamic range desired. The platform can typically accept input rates of up

to 4,000 deg/sec and is not subject to abort rate dumping as a strapdown system might be.

Although the space vehicle may normally have maximum rates of around 4 deg/sec, abort situation

rates nmy easily exceed 30 deg/sec; a strapdown system for a manned vehicle would require

protection against such rates. Strapdown systems provide lower cost, fewer parts (i.e., higher relia-

bility), and weight and power reductions; their major limitations are high torquing-rate require-

ments, large dynamic range, kinematic rectification effects, and scale factor uncertainties.

4.2.2 Alignment and Calibration

The mounting bracket in the space vehicle should be prealigned to obtain the desired relationship

between design alignment surfaces and vehicle axes. Particular attention should be provided to the
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strapdowngyroalignmenttothcvehicleandtoothergyroandaceeh'romcteraxes.Tilemechanical
bracketrythatprovidesthisshouldpermitsmoothandstableadjustmentswhenaligningthegyro
IA to the bracket. It should also clamp reprodueibly to the aligmnent surfaces on the strapdown

system package. An IA indexing scheme with a limitcd adjustment range is recommended to

preclude 180_-IA positioning errors.

Preflight alignment of the stable element of a platform IMU or determination of the initial

orientation of a strapdown IMU is a standard procedure programmed into the computer and

carried out with the vehicle at rest. The system axes are erected to the local vertical and aligned

with true north by gyroeompassing or to a predetermined optical reference directly. Vibration

or sway of the vehicle may complicate the process, but modern control techniques have made

fast alignment possible even in sew_re environments. Normally 5 to 25 min are required for gyro-

compassing. Practical computation procedures for ground-based and inftight correction of the

vehicle attitude parameters are presented in reference 84.

Inflight calibration and alignment will require auxiliary sensors, such as horizon seekers, sun
sensors, or star trackers, and/or the use of ground-based optical ranging or radar equipment. The

mechanization to update the calibration and alignment coefficients nmst include algorithms for

computing the new values and means for inserting them into the computer or other system mem-

ory units.

4.2.3 Signal Processing

Digital output format is used predominantly for strapdown gyros in current space applications

for guidance, navigation, and other precise modes (ref. 27). Even low-accuracy stabilization or
rate damping gyros used in autopilots and vehicle control loops, which have traditionally been

analog, have more recently been digitally fornmlated. There is a trend in this direction in line

with current efforts in the development of all-digital autopilots.

For precision space guidance and navigation, digital loops have typical quantization values of

the order of arc seconds or smaller. The maximum clock frequency and switching frequency must

be sufficiently high to provide for the maximunl expected vehicle rates. Typical switching fre-

quencies are from 50 to 100 kHz.

Platform gyros ahnost universally have an analog output format which is used in the gimbal servo

loops. Special hybrid platform/strapdown units have been designed for spin-stabilized vehicles

in which the analog format is digitized for transmission and computational purposes when the

gimbal motion is locked. When spin stabilization is completed and the vehicle brought to a

nominally zero rotational rate, the gimbal is locked and the digital output format used.

4.3 Gyro Selection

Tile gyro sclection process is an iterative tradeoff procedure invoMng a hierarchy of competitive

alternatives and previous decisions. Current and detailed information needed by the svstems
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engineerconcerningthe elementshe is trying to specifyshouldbeprovided1)ythe gyrosub-
systemscngineerasearlyas possible.The gyrosubsystemsengineershouldalsoreviewthe
intendedsystemapplicationto beableto suggestalternativesto thesystemsengineer.

Ideally,the generalprocessof selectinga gyrofor a particularapplicationshouldbepursued
throughthe decisionsequenceshownin figure24.Giw'n thefunctionalgyrorequirementsfor
themission,thefirst stepof thegyrocustomershouldbe to defineanddocumentcarefullythe
detailedgyroperformancerequirementsvia technicaldevelopmentspecifications.Gyroprices
shouldbeobtainedfor all competingdesigns,basedonthe quantitiesactuallyneededplus all
services,data,qualityassurance,inspections,andprogramanddesignreviewmeetingsaswill
berealisticallyrequiredontheprogram.Thisshouldpermitearlyselectionof thebestavailable
basicgyrodesignandprecludeuncxpectcdpriceincreaseslaterin theprogram.

In theearlyphasesof a design,a numberof availablegyrosmightfit the missionrequirements.
However,oncea gyromodelis chosen, many unique and complex interface details (including

electrical impedances, outline, weight, connectors, heat sink, and mounting arrangements) are

irrevocably frozen from the system designer's viewpoint. Consequently, the selection of a new

gyro at a later stage should be avoided, since this will nearly always result in a higher price and

uncertain reliability. However, to lessen the potential cost of switching gyro types, the initial

design studies should consider the possibility of such an occurrence.

The gyro characteristics should be completely evaluated, early in the program, by a thorough

evaluation test program at the gyro and system levels. Rigid process, configuration, and test con-

trols should be implemented once the gyro design is released. Adherence to these practices will

greatly enhance the probability of confidently meeting system design requirements for the gyro.

Owing to the critical nature of the gyros and the small quantity generally procured for a space

application, the cost of data, quality control, and services is frequently several times that of the
hardware itself. The customer should not be forced to accept an inferior gyro by having to choose

the lowest bidder in a final procurement cycle, since the lowest hardware cost will not always

yield the least expensive overall program.

4.3.1 Gyro Selection Tradeoffs

Many design elemcnts within the gyro are subject to choice and emphasis. Each tradcoff usually

involves a penalty in terms of size, weight, power consumption, dollar cost and possibly reliability.

Table 9 lists some of the major tradcoffs by penalty incurred and gyro parameter affected versus

the desired quantity.

A much-debated tradeoff which frequently recurs on new gyro applications is the choice of ball

vs gas spin bearings. The following considerations are presented to illustrate gyro tradeoffs in

general, and specifically to provide suggestions for spin bearing selection.
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DEFINE MISSION OBJECTIVE AND REQUIRED CONTROL MODE:

GUIDANCE, NAVIGATION, AUTOPILOT, ATTITUDE REFERENCE,
RATE DAMPING, TRACKING AND POINTING, ETC.

1
DETERMINE PERFORMANCE REQUIREMENTS, ENVIRONMENTAL

CONSTRAINTS, ANDTRADEOFF FACTORS, ACCURACY, DYNAMIC

RANGES, STABILITY, LINEARITY, NOISE, TEMPERATURE, HIGHER

ORDER(g2)AND KINEMATIC ERRORS, RELIABILITY, COST.

) 1
CHOOSE SYSTEM

CONFIGURATION:

PLATFORM vs STRAPDOWN

1
MAKE TENTATIVE

SDF vs 2DF

BALL-BEARING
PROVEN TYPES

t
GYRO SELECTION:

vs GAS-BEARING
vs NEW TYPES

1 r I

1
1

ESTABLISH GOALS AND
PRELIMINARY
SPECIFICATIONS

OBTAIN TECHNICAL PROPOSALS AND QUOTES FROM GYRO VENDORS

)
!

ITERATE DECISIONS ON SYSTEM CONFIGURATION, GYRO TYPE AND ]
SELECTION I

)
I

PREPARE DETAILED GYRO SPECIFICATIONS INCLUDING QUALITY J
ASSURANCE, TESTING AND EVALUATION REQUIREMENTS I

)
I I

] OBTAIN FIRM PROPOSALS AND PROGRAM COST FROM GYRO VENDORS I
I I

l

Figure 24.-Gyro selection process.

If a specific gyro is under consideration, the performance history of its existing spin motor bearings

should be evaluatcd using the specification as a criterion. Only if there is reason to change should

the bearings be replaced. When equivalent designs are available, a gas spin bcaring gyro will

tend to exhibit less high-frequency noise and will not be as likely to exhibit narrow-band noise

due to ball race imperfections and lubricant migration. However, if sufficient averaging time is

available, a numerical filter can 1)c us('d with ball I)earing gyros to rcduce the narrow-band error

variance by 1/(time)'-'.

When considering a gas spin bearing, the system engineer should carefully investigate the avail-
able starting torque. It is suggested that the initial spin motor torque available be approximately
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TABLE 9.--Major Gyro Tradeoffs

Desired Quantity Gyro Parameter Affected Penalty Incurred a

High performance (low Angular momentum Size, weight, wheel power, low torquing range

drift uncertainty )

Low noise

Low heater power ( for

given swing in heat sink )

High torquing range (e.g.,

strapdown )

Long life

High reliability

Precision alignment

Magnetic shielding

Thermal control

Low torque suspension

Wheel bearings, pickoff

characteristics, electrical

shielding

Mounting and insulation,

gyro materials thermal
match

Angular momentum,

torquer size including

magnet dynamic range

capability

Wheel bearings, hermetic

seals, materials

All parameters

Gyro mount suspension,

thermal paths, gyro

material, stability

Size, handling care

Size, power, electronic controller, possible
electrical noise

Size and power ( for active suspensions ), flotation

High signal-to-noise design, design cost and/or

choice limited to matured design

High operating temperature (decreased reliability

and life ), if unheated, compensation networks

are penalty

High power, size, weight, intermittent heating of

gyro, possible reduced performance at low

torquing end of range

Possible reduced testing allowance prelaunch,

choice of proven gyros limited, low operating

temperature

Choice of proven gyros limited

Mount and alignment time

aIn addition to cost.

twice that required to start the gyro to allow for an increase in required starting torque during

the life of the gyro. This will normally result from migration or gradual lubricity change of the

boundary lubricant with time, the condensation of volatiles in the gas spin bearing and, in the case

of a ceramic or ceramic-coated bearing, the presence of particulates. A zero-g environment pro-

vides a significant additional margin since considerably less starting torque is required (ref. 85).

In the case of the ball bearing, the difference between starting and running torque is considerably

less; however, margin must be available here also to provide for an increase in average and peak

running torque with time, due primarily to lubricity changes and increased ball-retainer friction.

Both types of bearings exhibit compliances leading to g_ errors. However, the gas spin bearing

is normally not as stiff as a preloaded ball bearing, and hence the magnitude of the g2 (and higher

order) nonlinearities is likely to be greater than for a ball-bearing instrument of similar design.

All gas spin bearings exhibit the phenomenon of a load capability reduction at half rotor speed

frequencies. The use of "antiwhirl" pockets in cylindrical gas bearing designs significantly im-

proves this minimum capability (ref. 86).
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4.3.2 Compatibility With Performance Requirements

Determining tile compatibility of gyro performance to system and mission requirements is a

process which should be continuous from the preliminary study phase onward. The recommended

practice involves comprehensive liaison with the gyro vendor by visits or residence for the fol-
lowing:

(1) Precontract Phase

Vendor survey

Preliminary specification review

Proposal review--fact finding

(2) Control Phase

Preliminary design review

Progress report meetings

Critical design review

First article acceptance

Qualification testing

Special test equipment acceptance

Performance data reviews

Field support

Failure analysis reviews

Reliability reviews

Summary project review.

The critical time of gyro selection and program success is prilnarily determined by the prccontract

phase and early contract phase.

4.3.3 Component Specifications

Principal responsibility for certain gyro specifications belongs to the systems engineer. Among

these are allowable performance tolerances, cost, size, weight, power and environmental con-

straints. The gyro engineer should be aware of all impacts of possible detailed specification

changes. A suggested approach is for the systems designer to identify "primary" and "secondary"

parameters, along with a third priority level of "desired features" in his gyro specifications. This

procedure will aid the gyro engineer in making the gyro selection and application more cost-

effective. If these priorities are not well-established, the systems and gyro engineers should deter-
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minethroughdirectdiscussionthe importanceof eachgyroparameter.This processis often

enhanced by a project engineer who is familiar with both the systems and component require-
ments.

The gyro vendor proposals should include qualification test proposals, shelf-life and running life

data, and MTBF and other parametric values from specific experience and production history.

A number of indicators of a gyro manufacturer's ability to perform are available and should be
evidenced. These include:

(1) A history of good performance on similar space programs, along with verified results which

were attained in the field by the hardware previously produced

(2) Indication of management, organization, and manufacturing capability willing and flexible

enough to be responsive to a small quantity order for very high quality, heavily docu-
mented instruments

(3) A capable and experienced person designated and empowered to accept the full range of

program management responsibility and with the authority to manage the program

(4) Evidence that the quality assurance and reliability groups are recognized in the organiza-

tion and have demonstrated competence in surveillance and monitoring of a space appli-
cation instrument program.

Two guides arc recommended for preparation of the detailed component specification:

(1) MIL-STD-143A (ref. 87)

(2) IEEE Standard 292 (ref. 10).

These documents arc well-founded on experience and are widely accepted throughout the indus-

try. They provide an outline of topic paragraphs which should obviate any serious omissions and

which should promote familiarity by both author and reader with the specification sequence.

4.4 Reliability

Reliability should be one of the foremost concerns of the gyro designer or user. It is recommended

that gyros be selected from an operating production line fabricating units of the quality class

required. Any change from a previously approved article in the gyro package or a manufacturing

process should be treated with extreme caution. For example, even damping fluid change can
cause maior yield problems.

Traceability requirements on all gyros should be established to preclude voids in gyro history

during testing and handling. The importance of these requirements increases with program size;

oversights can result in acceptance of marginal gyros as well as in reiection of good gyros. Failure

analysis of all faulty gyros should be conducted to determine the mechanisms that precipitated

the failures. A statistical evaluation of the analysis findings should be used to establish more
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quantitativespecificationsforidentifyingtheonsetoffailureandto reviseestimatesoftheremain-
ing usefullife of gyrosstill in service.

If budgetandschedulepermit,it is recommendedthatseveralsparegyrosbeprocured.Benefits
thatcanresult from this practice include:

(1) Selective choices of "blue ribbon" instruments can provide increased probability of mission

success.

(2) A number of gyros will be available for life-testing purposes at the gyro facility, These

units can be exposed to all environments which can or will be experienced by flight units.

(3) Failures or degradation indications in life test units will allow for complete teardown

analysis and failure mode identification.

(4) Failed units can be rebuilt with design improvements incorporated, often at lower cost.

(5) The gyroscope manufacturer and user will have available complete reliability data to

provide assurance that the gyro can meet system demands.

The effects of storage on gyro reliability should not be ignored. The following storage conditions

can affect the drift performance of a gyro and should be carefully specified:

Temperature extremes
Instrument attitude

Applied excitations (i.e., suspensions might be operative)

Length of storage time.

It is recommended that gyros be operated periodically while in storage. If inertial parameter

changes occur after nonoperating periods, further operation of the gyro prior to rechecking

characteristics may be advisable. Storage-induced shifts in drift level and stability should be
considered in the test routines set up for the system and in the evaluation of gyro operation in

the system environment.

The following reliability-related practices are recommended as the result of experience to pre-

clude problems in future programs:

(1) The gyro exterior should be protected from possible deterioration sources, including gaseous
environments, salt spray, humidity, and similar sources.

(2) The gyro connectors should be protected by attaching "stub" connector mates at the earliest
feasible time and removing the tooling connectors only for assembly to the system.

(3) Safeguards should be imposed to protect the gyro from electrical parameters or coefficient

changes through careless use of ohmmeters, spin motor phasing, etc.

(4) The use of polarized connectors with male pins on the gyro is suggested to protect system
electronics.
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(5)

(6)

(7)

The system designer should be cognizant of hazardous gyro excitation levels. His electronic

design reviews should include checks to verify that electronic failure will not catastroph-
ically affect the gyro.

Electrical monitors of the gyro should not impair gyro performance or require circuit

breaking and making procedures in the system.

Systematic gyro drift induced by cable-resistance changes (associated with wheel, suspen-

sion, torquer and pickoff drives) due to temperature cycling should be reduced to acceptable

levels by use of large conductor sizes, multiple conductors, or techniques which include

the cables in the power-supply feedback loops.

The advantages and drawbacks of gyro redundancy should be carefully evaluated for each appli-

cation. Factors which should be considered include increased system power requirements for

operating spares, potential startup problems of unpowered spares, switching mechanisms for gyro
outputs and power inputs, implementation of failure detection and isolation algorithms, and

increased weight and volume. The number of redundant gyros required depends on the specified

probability of mission success, tile MTBF of the individual gyros, and the redundancy configura-

tion applied. A skewed configuration should be considered in which each gyro measures a vector

contribution from each vehicle axis, together with a means of resolving these vectors and com-

paring them. The reliability of several such configurations has been compared in figure 9, Section
2.5.2.

4.5 Testing and Evaluation

Tile gyro performance should be frequently tested, monitored, and evaluated during the entire

sequence from fabrication through flight. Prior to flight, it should be measured not only in the

laboratory environment but also in as close a simulation as can be obtained of the actual system

and vehicle environments. Failure to do this can result in costly modifications to the components
themselves or to the inertial platform or strapdown package and electronics circuits later in the

program. Consistent test results demand extreme thoroughness in specifying adequate controls
over switching, on-off control, well-defined initializing procedures, and gyro-data accumulation.

4.5.1 Test Planning-- Specifications

The testing program should be designed to provide assurance that the gyroscope component or

system package complies with the detailed specifications and to examine its performance under

the specified environmental conditions and with elapsed time. It should be noted that the system

package or the gyro is not necessarily subjected to the vehicle amplitudes of vibration, shock,

thermal conditions, or pressures because of the enclosure and mounting. To prevent unnecessarily

severe inputs, the gyro or system test requirements should reflect the actual requirements expected
at system or component interface.

Prior to the writing of specifications, a performance budget should be established, allotting
maximum errors at the gyro component interface and at the system mount and output interface.
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Simultaneously,enviromnentalconditionsshouldbespecifedfor eachof thesetwo interfaces.
Theerrorbudgetandassignedenvironmentalconditionsshouldbeasrealisticaspossible,with-
outunduefactorof safety'allowances.

Separatetestspecificationsthenshouldbepreparedfor the system package and for the gyro-

scope component, cacti reflecting the performance errors allowable and its assigned environmental
conditions. Tile tests should be specified -.ompletely, including equipment, test content and

sequence, test positions, conditions, times and model reduction equations. Sample specification

formats and test procedures may be found in references 11 and 75. The use of Standard Gyro

Terminology (ref. 5) is recommended to avoid unfamiliar definitions. It is important that the

writer be well-versed in details of gyro construction and performance parameters. He should also

have a practical working knowledge of testing limitations to be able to present applicable and

attainable testing specifications and also to prevent ambiguous or conflicting specifications.

Limitations on the calibration of precision gyros due to drifts and oscillations of the test platform
are discussed in reference 88. Further information on gyro testing methods and limitations may

be found in references 4, 34, 89, 90, and 91.

4.5.2 Component Tests

The most important recommended component testing practice (including acceptance test, environ-

mental test, or special engineering tests) is that the electronics, mechanical, and thermal mounting
should duplicate the system interfaces as closely as possible. Suggested procedures include the

use of holding fixtures that are adapted from the system IMU, production system electronics, and

heat sinks that are mechanized in the same way as the system's cooling scheme. Generally, the

precise test content will be different for each application. Gy'ro fixturing and thermal-environment

stability, should be consistent with required test times and accuracy. Because of practical limita-

tions, certain gyro tests may be performed with the gyro nonoperating and performance checked

before and after the specific environmental tests. Gyro test monitors should be nondisturbing by

design, and test personnel should be trained to minimize gyro disturbances resulting from care-

lessness or ignorance (e.g., to cause float motion against a mechanical stop).

Repeated temperature cycling of a gyro prior to acceptance testing, through a range representa-

tive of the expected life, is reeolnmended to speed up aging and to improve drift stability. At

acceptance testing the gyro should be configured as nearly like the system-ready gyro as is prac-

ticable. The acceptance test itself should be based upon a necessary-and-suftqcient philosophy

consistent with the end-item use of the gyro and should be limited to verifying gyro integrity,.

The use of prototype test data should be considered when designing the acceptance test (ref. 92).

4.5.3 Subsystem Tests

Subsystem tests of the gyro package should be conducted using as nmch of the system flight

electronics as possible. Completion of qualification tests and engineering evaluation tests early in
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theprogramis recommended.In addition,qualificationtestsshouldprovidea reasonablematch
with realisticsystemrequirements.

Wheneverpossible,thenominalconditionsat thecomponent,subsystem,andsystemtestlevels
shouldbeidentical.Therelaxationof performancerequirementsfromthegyrotestlevelthrough
thevarioussystem-integrationstagescanbedeterminedby experienceor by analysis.A frequent
causefor concernis thevariationin performanceof thegyropackagefromtheteststandto the
systemcausedby differingthermalconditionsat eachlocation.If theprogramincludesa large
numberof gyrosandmorethanonemanufacturer,the effortnecessaryto providereasonably
identicalequipmentandtestingconditionsin all locationsis justified.Testelectronicsshould
employsystemdesignsto thegreatestextentpossible(electronicsmeetingsystemspecifications
is analternatesolution),andgyro-excitationsequencingshouldconformto systemsequencing
consistentwith testrequirements.

4.5.4 System Tests

The system acceptance and spacecraft integration tests should provide the same critical param-

eters of gyro performance as obtained in components and subsystem tests. This continues the

trend information on the stability of these coefficients, which is vital to predicting the system

flight performance. Careful preplanning and coordination of test procedures, data control, and

management are essential to the success of this activity. Computerized test systems (e.g., ref. 93)

are recommended to minimize the possibility of operator errors and to facilitate handling of test
data. Insofar as is practical the system tests should duplicate the spacecraft connections, mount-

ing, thermal conditions, and power supply characteristics, so that:

(1)

(e)

(3)

Gyroscope system tests outside of the spacecraft give valid indications of performance when
installed in the vehicle

Connection of the gyroscope system to the spacecraft does not short or damage either the

gyroscope system or the other elements within the spacecraft

Gyroscope parameter monitoring is possible both in and out of the spacecraft.

Since the gyroscope system tests cannot be implemented without correlation with spacecraft con-

ditions, exchanges of this type of information are required early in the program.

4.5.5 Test Data Evaluation

The basic reqnirements for accurate evaluation of gyro test data are the following:

(1) The critical performance parameters should be defined.

(2) The gyro component and system specifications should be indicative of the critical perfor-
mance specifications.
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(3) The component and system test procedures and requirements should be in accordance with

their relative specifications.

(4) The resulting test (or test-derived) data should indicate the values of the critical perfor-

mance parameters when reflected back to the gyro component or the system interface.

Depending upon budget and schedule constraints, all test data, from component tests on, should

be collected to provide continuous histories of the critical performance parameters for each gyro.

The trends and stability of these performance coefficients should then be correlated with gyro

failures and environment data to establish indicators of incipient degradation and to permit pro-

jections of future changes.

High-speed computer installations provide an ideal tool for gyro data reduction, compilation

and presentation and should be considered on all programs. The utilization of computerized data

processing requires program coordination from the beginning. However, the establishment of test
data banks which can be readily processed is a powerful aid in evaluation of gyro performance

and reliability trends and should not be overlooked.

4.5.6 Prelaunch Checkout and Flight Monitoring

The systems engineer should establish the criteria for prelaunch checkout with the advice and

consultation of the gyro engineer. Any space application design review should include a require-

ment for a detailed prelaunch test procedure. This document should defit_e:

(1) Checkout procedures for gyro subsystem at launch site (go/no-go)

(2) Failure detection procedures for monitoring during mission.

In any ease, all measured parameters should be compared to previous data taken. In the event

that a shift in any parameter is observed, the unit being tested should be considered suspect and

a go/no-go decision should be based on data trends and accmnulated history.

The possible reduction in system reliability due to the monitoring circuitry should be carefully

evaluated when the monitoring points are being selected. However, a spin motor rotation detector
should almost be considered mandatory. Consideration should also be given to monitoring the

torquer current and pickoff outputs. A checkout procedure should be provided so that a test cur-

rent can be fed to the torquer and the resultant error signal from the pickoff observed. The gyro

system engineer should evaluate the cost and complexity of establishing additional monitoring

points and comparison circuitry against the requirements for his application.
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NASA SPACE VEHICLE DESIGN CRITERIA
MONOGRAPHS ISSUED TO DATE

SP-8001

SP-8002

SP-8003

SP-8004

SP-8005

SP-8006

SP-8007

SP-8008

SP-8009

SP-8010

SP-8011

SP-8019,

SP-8013

SP-8014

SP-8015

SP-8016

SP-8017

SP-8018

SP-8019

SP-8020

SP-8021

SP-8022

SP-8023

SP-8024

SP-8025

(Structures)

(Structures)

(Structures)

(Structures)

(Environment

(Structures)

(Structures)

(Structures)

(Structures)

(Environment

( Environment

(Structures)

(Environment

(Structures)

(Guidance and

Control)

(Guidance and

Control)

(Environment)

(Guidance and

Control)

(Structures)

(Environment)

(Environment)

(Structures)

(Environment)

(Guidance and

Control)

( Chemical

Propulsion )

Buffeting l)uring Atmospheric Ascent, revised November 1970

Flight-Loads Measurements During Launch and Exit, December 1964

Flutter, Buzz, and Divergence, July 1964

Panel Flutter, July 1964

Solar Electromagnetic Radiation, revised May 1971

Local Steady Aerodynamic Loads During Launch and Exit, May 1965

Buckling of Thin-Walled Circular Cylinders, revised August 1968

Prelaunch Ground Wind Loads, November 1965

Propelhmt Slosh Loads, August 1968

Models of Mars Atmosphere (1967), May 1968

Models of Venus Atmosphere (1968), December 1968

Natural Vibration Modal Analysis, September 1968

Meteoroid Environment Model---1969 (Near Earth to Lunar Surface),

March 1969

Entry Thermal Protection, August 1968

Guidance and Navigation for Entry Vehicles, November 1968

EIfccts of Structural Flexibility on Spacecraft Control Systems, April

1969

Magnetic Fields--Earth and Extraterrestrial, March 1969

Spacecraft Magnetic Torques, March 1969

Buckling of Thin-Walled Truncated Cones, September 1968

Mars Surface Models (1968), May 1969

Models of Earth's Atmosphere (120 to I000 km), May 1969

Staging Loads, February 1969

Lunar Surface Models, May 1969

Spacecraft Gravitational Torques, May 1969

Solid Rocket Motor Metal Cases, April 1970
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SP-8026

SP-8027

SP-8028

SP-8029

SP-8030

SP-8031

SP-803"2

SP-8033

SP-8034

SP-8035

SP-8036

SP-8037

SP-8038

SP-8039

SP-8040

SP-8041

SP-8042

SP-8043

SP-8044

SP-8045

SP-8046

SP-8047

SP-8048

(Guidanceand
Control)

(Guidanceand
Control)

(Guidanceand
Control)

(Structures'

(Structures

(Structures

(Structures

(Guidanceand
Control)

(Guidanceand
Control)

(Structures)

(Guidanceand
Control)

(Environment)

(Environment)

(Chemical
Propulsion)

(Structures)

(Chemical
Propulsion)

(Structures)

(Structures)

(Structures)

(Structures)

(Structures)

(Guidanceand
Control)

(Chemical
Propulsion)

SpacecraftStarTrackers,July1970

SpacecraftRadiationTorques,October1969

EntryVehicleControl,November1969

AerodynamicandRocket-ExhaustHeatingDuringLaunchandAscent,
May1969

TransientLoadsFromThrustExcitation,February1969

SloshSuppression,May1969

BucklingofThin-WalledDoublyCurvedShells,August1969

SpacecraftEarthHorizonSensors,December1969

SpacecraftMassExpulsionTorques,December1969

WindLoadsDuringAscent,June1970

EffectsofStructuralFlexibilityonLaunchVehicleControlSystems,
February 1970

Assessment and Control of Spacecraft Magnetic Fields, September 1970

Meteoroid Environment Model--1970 (Interplanetary and Planetary),

October 1970

Solid Rocket Motor Performance Analysis and Prediction, May 1971

Fracture Control of Metallic Pressure Vessels, May 1970

Captive-Fired Testing of Solid Rocket Motors, March 1971

Meteoroid Damage Assessment, May 1970

l)esign-Development Testing, May 1970

Qualification Testing, May 1970

Acceptance Testing, April 1970

Landing Impact Attenuation for Non-Surface-Planing Landers, April 1970

Spacecraft Snn Sensors, June 1970

Liquid Rocket Engine Turbopump Bearings, March 1971
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SP-8049(Environment)

SP-8050(Structures)

SP-8051(Chemical
Propulsion)

SP-8052(Chemical
Propulsion)

SP-8053(Structures)

SP-8054(Structures)

SP-8055(Structures)

SP-8056(Structures)

SP-8057(Structures)

SP-8058(Guidanceand
Control)

SP-8059(Guidanceand
Control)

SP-8060(Structures)

SP-8061(Structures)

SP-8062(Structures)

SP-8063(Structures)

SP-8064(Chemical
Propulsion)

SP-8065(Guidanceand
Control)

SP-8066(Structures)

SP-8067(Environment)

SP-8068(Structures)

SP-8069(Environment)

SP-8070(Guidanceand
Control)

SP-8071(Guidanceand
Control)

SP-8072(Structures)

SP-8074(Guidanceand
Control)

SP-8077(Structures)

TheEarth'sIonosphere,March1971

Structm'alVibrationPrediction,June1970

SolidRocketMotorIgniters,March1971

LiquidRocketEngineTurbopropInducers,May1971

NuclearandSpaceRadiationEffectsonMaterials,June1970

SpaceRadiationProtection,June1970
PreventionofCoupledStructure-PropulsionInstability(Pogo), October 1970

Flight Separation Mechanisms, October 1970

Structural Design Criteria Applicable to a Space Shuttle, January 1971

Spacecraft Aerodynamic Torques, Jammry 197 l

Spacecraft Attitude Control During Thrusting Maneuvers, February

1971

Compartment Venting, November 1970

Interaction x,Vith Umbilieals and Launch Stand, August 1970

Entry Gasdynamic Heating, January 1971

Lubrication, Friction, and Wear, June 1971

Solid Propellant Selection and Characterization, Jnne 1971

Tubular Spacecraft Booms (Extendible, Reel Stored), February 1971

Deployable Aerodynamic Deceleration Systems, June 1971

Earth Albedo and Emitted Radiation, July 1971

Buckling Strength of Structural Plates, June 1971

The Planet Jupiter (1970), December 1971

Spaeeborne Digital Computer Systems, March 1971

Passive Gravity-Gradient Libration Dampers, February 1971

Acoustic Loads Generated by the Propulsion System, June 1971

Spacecraft Solar Cell Arrays, May 1971

Transportation and Handling Loads, September 1971
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SP-8078(Guidanceand
Control)

SP-8079(Struetu,'es)
SP-8082(Structures)
SP-8083(Structures)
SP-8084(Environment)

SP-8085(Environment)
SP-8086(Guidanceand

Control)

SP-8091(Environment)
SP-8092(Environment)

SP-8095(Structures)

SP-8098(Guidanceand
Control)

SpaeeborneElectronichnagingSystelns,June1971

StructuralInteraction\VithControlSystems,November1971
Stress-CorrosionCrackinginMetals,At,gust 1971

Discontinuity Stresses in Metallic Pressure Vessels, November 1971

Surface Atmospheric Extremes (Launch and Transportation Areas), May

1972

The Phmet Mercury (1971), March 197.9.

Space Vehicle l)isplays I)esign Criteria, March 1972

The Planet Saturn (1970), June 1972,

Assessment and Control of Spacecraft E]eetromagnetic Interference, June

197'2

Preliminary Criteria for Fracture Control of Space Shuttle Structures, June
1971

Effects of Structural Flexibility on Entry Vehicle Control Systems, June

1972
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