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ABSTRACT

An experimental study of surface roughness effects on bidirectional

reflectance of metallic surfaces is presented. A facility capable of ir-

radiating a sample from normal to grazing incidence and recording plane

of incidence bidirectional reflectance measurements was developed. Samples

consisting of glass, aluminum alloy, and stainless steel materials were se-

-	 lected for examination. Samples were roughened using standard grinding

techniques and coated with a.radiatively opaque layer of pure aluminum.

Mechanical surface roughness parameters, rms heights and rms slopes,

evaluated from digitized surface profile measurements are less than 1.0 Pm

and 0.28, respectively. Rough surface specular, bidirectional, and di-

rectional reflectance measurements for selected values of polar angle of 	 y

incidence and wavelength of incident energy within the spectral range of

1 to 14 pm are reported. The Beckmann bidirectional reflectance model is

compared with reflectance measurements to establish its usefulness in de-

scribing the magnitude and spatial distribution of energy reflected from

rough surfaces.

The influence of surface roughness on reflectance measurements can be

summarized by reference to optical roughness and mechanical rms slope.

Optical roughness is defined as the ratio of mechanical rms height to wave-
i

length of incident energy and exhibits values less than unity for the rough

surfaces examined. As optical roughness diminishes, rough surface monochro-
_

matic reflectances (specul.ar, bidirectional, directional.) approach the corre-

sponding values appropriate to those for a smooth surface at the same.
	 I



direction of incident energy. Specular and directional reflectances de-

crease as optical roughness increases and are ordered according to mechani-

cal rms slope with smaller reflectance values corresponding to larger rms

slope values. Bidirectional reflectances for rough surfaces with nearly

identical mechanical rms slopes confirm that as optical roughness increases,

the distribution of reflected energy departs from that of a smooth surface

to a distribution with significant amounts of reflected energy in direcUons

of reflection other than the specular direction. Bidirectional reflectances

for rough surfaces with nearly identical optical roughness values display

the same trend as mechanical rms slope increases. Thus, the importance of

reporting surface roughness parameters rms height and rms slope is estab-

lished.

Comparison of the Beckmann model with reflectance measurements reveals

the following general conclusions. First, Specular and bidirectional re-

flectance results evaluated from the model using mecb4ixAcal surface rough-

ness parameters do not agree with the corresponding; monochromatic reflec-

tance measurements. Second, a significant improvement between predictions

of the model and monochromatic reflectance measurements is observed when.

optical surface roughness parameters are used in the model. An optical•

method based on monochromatic specular reflectance measurements for near--.

normal incidence provided optical rms height and optical rms slope de-

termined for each wavelength of incident energy. Optical roughness is then

defined with optical rms height instead of mechanical rms height. Specular

reflectance results are evaluated from the model using an average optical



by the cosine of polar angle of incidence are less than 27 times
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NOMENCLATURE

_.	 dA differential element of surface area

A
r

detector surface area

AAA monochromator entrance slit area

'	 AAS,AAS irradiated monochromator entrance slit area for incident
and reflected radiation

AA0 source area

a correlation length

E,B,E,H,H, p geometrical functions

C autocorrelation function

psc
fraction of incident radiation which is scattered by a
perfectly conducting material

fbd bidirectional reflectanca for a.perfectly conducting
material.

- f component of bidirectional reflectance for a
perfectly conducting material	 ^.

f scattered component of bidirectional reflectance for asc
perfectly conducting material of large optical: roughness 	 f

fsp specular component of bidirectional reflectance for a
perfectly conducting material.

G amplifier gain

z ,I
+

intensity of incident and reflected radiation
s

AIb ,Ai+ background intensity for incident and reflected radiation

AIc intensity of radiation emitted by chopper r

AID intensity of radiation emitted by sample

A25 intensity of.radiation emitted day shutter

i summation index

K parame'_er containing monochromator, detector, and
amplifier factors

M
3

summation Index	 ^	 ^



m

mm'mo

N

p

R

R

S

U

V-,AVr

AVb,AV+

rms slope

mechanical and optical rms slope

number of data points

probability density function

ratio of bidirectional reflectance to that in specular
direction

ratio of reflected energy per unit time, area,
and solid angle to that in specular direction

detector responsivity

function defined in Eq. (4.1.7)

voltage signal for incident and reflected radiation

background voltage signal for incident and reflected
radiation

V ratio of voltage signal for reflected radiation to that
in specular direction

x,y,z spatial coordinates on surface

a parameter for Dirac delta function

8 Dirac delta function

6',A polar angle of incideni and reflected radiation

Amax maximum polar, angle of reflection for viewing a sample,
Eq.	 (3.2.12)

A wavelength

pbd
bidirectional reflectance

pdh directional refeetance

P specular reflectance
s

P	 ,p smooth and rough surt gce specular reflectance
s o	 s,r

Cr rms height

Cr	 ^ mechanical- and optical rms. height
trE'	 o

T correlation distance

T transmittance of.opti al .system	 i



azimuthal angle of incident and reflected radiation

solid angle of incident and reflected radiation

detector solid anglr3

detector

mechanical

slit

emergent intensity

incident intensity

t'
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1. INTRODUCTION

Placement of man and temperature sensitive equipment aboard

spacecraft has created a need for precise spacecraft thermal. con-

trol.. Temperature of a spacecraft in a space environment may he

controlled by regulation of radiant heat exchange between space-

craft components and their thermal environment. It is often de-

sirable to determine before flight of a spacecraft radiant heat

exchange and, consequently, spacecraft temperature. Radiant heat

transfer can be evaluated once the radiative properties of the

spacecraft components, spacecraft geometry, thermal environment,

and either component temperature or heat flux are specified. The

radiative properties are of particular interest in this research.

The fundamental radiative property from which all other surface

properties can be developed is spectral bidirectional reflectance.

This property describes the spatial distribution of radiant energy

reflected by a surface which is irradiated by monochromatic radi-

ant energy from a prescribed direction.

Experiments confirm that spectral bidirectional reflectance

of an opaque material is strongly dependent upon direction and

wavelength of incident energy-as well as the surface characteris-

tics. In view of the ranges of interest for directions of inci-

dance and reflection as well as wavelength of i;neident energy,

the number of spectral bidirectional reflectance measurements re-

quired for a single surface is enormous. Consequently, it is :im-

portant to develop bidirectional reflectance models that accurately

describe the measuoement characteristics.. In order to substantiate

77
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these models, however, a limited number of measurements is required.

An objective of this research is to acquire spectral bidirectional

reflectance measurements for representative opaque engineering materials.

In addition, spectral directional reflectance measurements are also re-

ported fox the same materials. This radiative property represents the

fraction of incident monochromatic radiant energy that is reflected

into hemispherical space. A comparison between the measurements and a

bidirectional reflectance model is made in order to investigate the ac-

curacy and useful range of the model.

Development of bidirectional reflectance models or presentation

of reflectance measurements for engineering materials should he ac-

companied with information about the surface characteristics. Topo-

graphical, chemical, and physical characteristics are commonly used

to describe surfaces of engineering materials. Since simultaneous

consideration of all these effects is complex, it is useful to assess

the influence of each factor separately. Emphasis is placed in this

research on the influence of surface topography on spectral bidirec--

tional. reflectance, Surface topography information is presented for

selected engineering materials for which the previously mentioned re-

flectance measurements are reported.

In Chapter 2, literature pertinent to this research is reviewed.

An experimental facility developed to acquire spectral bidirectional

reflectance measurements is described in Chapter 3, A bidirectional

reflectance model selected for in	 is reviewed in Chapter 4..

In Chapter 5, preparation and specification of test samples are di:s.

cussed. Spectral reflectance measurements for these test samples are

presented in Chapter 6 and compared with a bidirectional reflectance

model: in Chapter .7. Summary of and conclusions drawn from this re-

search are presented in Chapter 8.
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2. LITERATURE SURVEY

Spectral bidirectional reflectance describes the spatial distri-

bution of reflected energy due to irradiation from a prescribed di-

rection by radiant energy within a small wavelength interval about a

selected wavelength. For brevity, bidirectional reflectance is de-

noted by BDR and, unless otherwise stated, all radiative properties

are understood to be monochromatic. Experiments El-111* confirm that .

BDR is strongly dependent upon direction and wavelength of incident

energy as well as the surface characteristics. Directions of inci-

dence and reflection contained within hemispherical space above a

considered surface area element are of interest. The wavelength

range of importance is 0.2 to 100 pm since the major contribution of

radiant energy as a result of solar irradiation and that emitted by

engineering materials at room temperature and higher is found in this

wavelength range. Specification of chemical, physical, and topographi-

cal characteristics is necessary to describe a surface, Emphasis is

given here to the influence of surface roughness on BAR for materials

sufficiently thick to be considered opaque. Surface roughness is com-

monly expressed in terms of root mean square (rms) roughness height [121

measured from a.mean surface plane. Typical..rms.heights for surfaces

produced by common engineering production methods are within the range

0.01 to 10 Jim [121. Upon examination of a rough surface profile, it

is realized that at least one other parameter is necessary in order to

adequately describe the surface contour.q ..	 y	 An i:mpartant:. second: parameter	 '•	 ,r.

is rms'slope,and it has received considerably less attention •than'rms• C

height Based`on reported. rms :slopes for engineering surfaces',- the . xms I
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slope range of interest is estimated to be 0.01 to 1.0 [13].

A general discussion. of surface roughness effects on BDR has been

given by Bennett [141. Surface roughness effects are generally cate-

gorized in terms of optical roughness defined as the ratio of a char-

acteristic roughness height of the surface to a characteristic wave-

length of incident energy. If the characteristic height is taken as

the rms height and the characteristic wavelength as the wavelength of

incident energy, then for the previously cited ranges for these quanti-

ties, the optical roughness range of interest is approximately 0.0001

to 50. Unless otherwise stated, reference to surfaces of small and

large optical roughness values refer to surfaces with optical rough-

ness values less than and greater than unity, respectively.

Surface roughness effects on BDR are reviewed in three sections.

Results for an optically smooth surface are discussed in Section 2.1.

In Sections 2.2 and 2.3, results are examined for small and large opti-

cal roughness values, respectively. In each section, BAR measurements

and models are reviewed.. Summary of the literature survey is given in

Section 2.4.

2.1 OPTICALLY SMOOTH SURFACE

An optically smooth .surface reflects incident energy according to

i-}7a 7 =wc ri-F RT1anT1I art -rim F9 =n+l n" TA11I nh $mr.i i ac ! ]^ ^ F no Fl an hca en nrimf
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angles of incidence less than 50 degrees. Furthermore, non--conductors

have a relatively small value for SPR at normal incidence (black glass:

0.05) that increases with increasing polar angle of incidence. Con-

ductors have a large value for SPR at normal incidence (aluminum: 0.9)

that decreases with increasing polar angle of !incidence until grazing

incidence is attained.

SPR for an optically smooth, chemically and physically uncontami-

nated surface can be predicted from solution of the Maxwell equations

of electrodynamics. The solution is expressed in terms of the Fresnel

equations [17,183. SPR for unpolarized incident energy is given in

terms of polar angle of incidence as well as wavelength dependent ma-

terial properties called optical constants. Various techniques C19-
i

213 have been employed to evaluate the optical constants from SPR meas-

urements. However, surface damage resulting from surface preparation

may cause the optical constants of thin surface layers which are im-

portant for radiative properties of materials to differ significantly

from those o," the bulk material. SPR measurements [14,221 for an

electropolished surface are observed to be higher than those fc y' L «,c-

chanically polished surface. Surface damage effects, however, are not
y

as important for wavelengths in the infrared.

2.2 SMALL OPTICAL ROUGHNESS

It is convenient to examine surface roughness effects for small:

x	 optical roughness by investigating their influence. on SPR... SPR [4;5;

i
	 8,23-273 for small optical roughness exhibits the following character

i
	

istics. First, 'SPR decreases with increasing opt.Ical roughness for

fixed polar angle of incidence. Thus, as the surface becomes rougher

or as the wavelength becomes shorter, the energy'' observed in the'

T`
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specular direction decreases. This could be a result of increased

scattering by, or multiple reflections within, surface roughness ele--

ments. For fixed optical roughness, SFR increases with increasing

polar angle of incidence. 'Thus, the surface becomes more specular

as polar angle of incidence increases.

BDR measurements L4-6,8,26-281 for small optical roughness ex-

hibit the following characteristics. For optical roughness values

less -than 0.05, BDR distributions are similar to those for specular

reflection. As optical roughness exceeds this value, greater amounts

of reflected energy are observed in directions of reflection other

than near the specular direction. For fixed optical roughness, BDR

distributions approach those for specular reflection as polar angle

of incidence approaches grazing incidence. Furthermore, BDR distri-

butions attain maxima in the specular direction for optical roughness

values less than approximately 0.5 [61. For larger optical values,

however, the maxima occur at polar angles of reflection greater than

the specular direction.

g	
Theoretical investigations that attempt to describe surface rough-

k	 ness effects on BDR for small optical roughness are based on diffraction
t

effects. Numerous diffraction models have been developed in connection

i
	 with reflection of radio and radar waves from rough surfaces. A review

of these models and relevant literature is available in a book by

Beckmann and 5pizziehino [29]. 'Although more recent BDR models have

been suggested [30,31], a complete examination of these models in view

of engineering application. and BDR measurements is lacking. The Beckmann	 5.

z
model has been previously examined by Houchens and Hering [321 and shown

to have a wider range of endineering.application than some other models.

_.
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Beckmann developed a model for a perfectly conducting rough surface.

Since absorption is absent, the model essentially describes surface

roughness effects on the spatial distribution of reflected energy.

The rough surface was taken isotropic with a statistical description

for the roughness elements. A more detailed description of this model

is given in Chapter 4. According to the model, surface roughness pa-

rameters that characterize the surface profile are rms height and rms

slope. Comparisons[26,28,32] of the Beckmann model with SPR and BDR

measurements demonstrate that the model exhibits similar characteris-

tics as the measurements for optical roughness values less than 0.2

and for near-normal incidence. As previously noted E26,321, there are

insufficient measurements available for well--documented rough surfaces

to substantiate conclusively BDR models for small optical roughness

values.

2,3 LARGE OPTICAL ROUGHNESS

Characteristics of SPR measurements for large optical roughness

are not as well defined as those for small optical roughness. Toporets
h

[331 reported SPR measurements for polar angles of incidence less than

80 degrees that exhibit the following characteristics. SPR increases

with increasing optical roughness for fixed polar angle of incidence.

Moreover, for fixed optical roughness, SPR decreases with increasing

polar:.angle of :incidence. These characteristics are contrary to those...

observed for small optical roughness SPR measurements [34-361 for polar

angles of incidence greater than 80 degrees exhibit similar characteris-

tics as those for small optical roughness BDR measurements,[5-8,27,37-

39] . for large optical roughness exhibit the following characteristics...

As-optical roughness increases, greater amounts of reflected energy are

a
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found in directions of reflection further removed from the specular

direction. The diffuse reflection Limit [15] in which the intensity

of reflected energy is uniform over hemispherical space is attained

only for near-normal incidence [5-7,10,111. For other than near-normal

incidence, BDR distributions exhibit maxima in the plane of incidence

at polar angles of reflect.- Nn greater than the specular direction. As

optical roughness increases, these so- called off--specular peaks occur

at polar angles of reflection further removed from the specular direr--

Lion. As polar angle of incidence approaches grazing incidence, BDR

distributions are similar to those for specular reflection. BDR measure-

ments reported by Voishvillo [401 for polar angle of incidence of 70

degrees exhibit a peak in the specular direction as well as a smaller

peak at polar angle of reflection greater than the specular direction.

Theoretical attempts to develop BDR models that describe the meas-

urements for large optical roughness are formulated using the methods of

geometrical optics. As noted by Toporets [361, however, this method ap-

plies only for directions of incidence other than near-grazing incidence

and diffraction effects must be accounted for in analyses for near-grazing

incidence. nPR measurements for polar angles of incidence greater than

80 degrees [34-36] were correlated with an expression similar to that for

the specular component of the Beckmann model [321. BDR models have beers

developed for surfaces composed of mirror-like-roughness elements [13,
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distribution function has been utilized to specify the probability that

a surface area contains roughness elements of given slope. The rough-

ness parameter employed in the distribution function is related to rms

slope. For surfaces composed of diffusely reflecting roughness elements,

the roughness element slopes have been assumed equal. Hence, BDR models

for large optical roughness are independent of optical. roughness. Diffrac-

tion models [32 3451 for large optical roughness are also expressed only in

terms of rms slope. Since a very limited amount of information is avail-

able for the rms slope of engineering materials, the importance of this sur-

face roughness parameter for correlating BDR measurements and models has

not been established. Comparison of BDR models with measurements have

almost always been performed by adjusting the parameters of the models

until reasonable agreement is obtained. Comparison [39,42,46] of BDR

models [39,41,421 with reported BDR measurements illustrates that the

models do exhibit characteristics similar to those of the measurements.

:y.
2.4 SUMMARY OF SURFACE ROUGHNESS EFFECTS

This literature survey of surface roughness effects on BDR reveals

3	 the following:

1. Experiments confirm that BDR is strongly dependent upon di-

rection and wavelength of incident energy as well as surface

topography.

2. At least two surface roughness parameters are necessary to

characterize the surface profile, namely, rms height and rms

slope, The rms height has received considerably more experi-

mental investigation than rms slope. Both parameters, however,

have received theoretical investigation.

3. Surface roughness effects on BDR measurements are conveniently

discussed in terms of optical roughness. As optical roughness

r	 ''
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approaches zero, the specular reflection limit is reached.

Diffuse reflection is attained only for large optical rough-

ness and for near-normal incidence. Off-specular peaks are

observed for other than near-normal incidence for large opti-

cal roughness.

4. BDR models have been developed by utilizing the concepts of

physical and geometrical optics and are applicable to small

and large optical roughness values, respectively. BDR models

for small, optical roughness are expressed in terms of rms

height and rms slope, but only rms slope appears in BDR models

for large optical roughness.

5. Comprehensive comparisons of analytical models with measure-

ments are lacking. BDR measurements are inadequate both in
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3. BDR FACILITY

Before a description of the BDR facility is given, the definition

of BDR used in this research is presented. The coordinate system il-

lustrated in Fig. 3.1 aids in defining BDR. Radiant energy incident

within solid angle dw r about direction 6 1 ,0' is reflected by surface

jr	 area element dA into solid angle dW about direction 6,0. BAR which is

here denoted by the symbol pbd(B',,^) is defined as the ratio of in-

tensity of reflected energy to incident energy. Thus,

dIr(6,0

cos

where I {A',c') and dIr(8,0) denote intensities of i

fleeted energy, respectively. As noted in Chapter 2

ness effects can be conveniently examined to some ex

to SPR. SPR, denoted by the symbol ps (6',, is de:

of reflected intensity in the specular direction (6

to incident intensity.

I+(e t >0' t 70

In addition to SPR, directional reflectance also aid,

of surface roughness effects. Directional reflectan,

the ratio of energy reflected into hemispherical spa

energy. In terms of BDR, this property is expressed

Pdh(.^r 
 t } ; . rPbd 01 ,0 .1 ;6,0) Cos 8 dW

W

where the integration is over all solid angles of re:

Examination of reported BDR measurements and mo+

ident and re-

surface rough-

nt by reference

ned as the ratio

(3.2)

in examination

is defined as
f

to incident
S"

S follows

(3.3)

ection. {
k

Zs as discussed ''
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Figure 3.1 Directions of Incidence and Reflection
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in Chapter 2 reveals that considerable information about the validity

of the surface roughness parameters as suggested by the measurements and

models can be obtained from plane of incidence BDR measurements. Further-

more, the added complexity of BDR, facilities [47,481 for recording meas-

urements outside the plane of incidence is not justified for the present

investigation. Consequently, a facility capable of acquiring plane of

incidence BDR measurements was developed. The plane of incidence is

formed by direction of incident energy and the mean surface normal. Azi-

muthal angle of reflection ^, therefore, assumes the values of ^' and

0' + 180 degrees. It was noted in Chapter 2 that there are insufficient

BDR measurements available to substantiate application of any -hall op-

tical roughness BDR model. Therefore, BDR measurements were acquirei

within the spectral interval 1 to 14 pm where the small optical rough-

ness results are expected to be applicable.

3.1 DESCRIPTION OF FACILITY

Schematic diagrams of the BDR facility are presented in Fig. 3.2.

The reflectometer consists of an irradiating optical system, sample

holder and goniometer system, de-recting optical system, and electronic

and recording system. The systems are composed of numerous components

whose general arrangement may be observed by reference to photographs

in Figs. 3,3, 3.4, 3.5, and 3.6. Descriptions of the systems as well

as their components follow. More detailed information about some of

the components is available elsewhere [49 -541.

The irradiating optical system (rig. 3.3) consists of source,

shutter, and mirrors. Supports fo: Y theca components are attached to

the source arm. A globar housed in a water cooled jacket and powered

by a regulated power supply provides a source of radiant energy. A

c.

Y	 -

^r

r
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Figure 3.3 Irradiating Optical System

Figure 3.4 Sample Holder and Goniometer System

1 -1. -
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Figure 3.5 Detecting Optical System

Figure 3.6 Electronic. and Recording System

f
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shutter attached to a rotary solenoid allows elimination of sample ir-

radiation by the radiant energy source when background radiation measure-

ments are recorded. The rotary solenoid is activated by a voltage signal

from the control interface which is described later. Emitted energy of

the source is focused on the sample by a plane mirror and a spherical

mirror. The spherical mirror has a diameter of 40.5 mm and a radius of

curvature of 462.15 mm. Solid angle of incident energy is determined by

the spherical mirror and has a value of 0.0060 steradians.

The sample holder and goniometer system are shown. in Fig. 3.4.

The sample holder is designed so that the front surface of a plane mirror

sample conincides with the axis of rotation of the goniometer. The goni-

ometer consists of two coaxial rotary tables. The sample bolder is affixed

to the rotary portion of the upper table.	 The source arm is rigidly con-- F.

netted to both the base of the upper rotary table and the rotating ele-

ment of the lower rotary table.	 Polar angles of incidence 0 1 from normal

incidence (0' = 0 degrees) to grazing incidence (0'	 90 degrees) are

manually set to an accuracy of.±0.025 degrees with the upper rotary table.

Azimuthal angle of incidence c' is varied by rotation of the sample about

its normal:	 A 200 step per revolution Slo-Syn.drving motor is employed '-

to scan over polar angle of reflection e by driving the lower rotary

table through a speed reducer.	 One step of the motor is equivalent to

0.01 degree change of the 0 angle. 	 A Slo-Syn two-axis preset indexer.

that is activated by the control interface.drives this motor. 	 Azimuthal

angle of reflection	 is altered by scanning over 0 and passing from one
^p

side to the other side of the mean surfacenormal of the sample..

The detecting optical system (Fig. 3.5) is stationary and consists_

of mirrors, monochromator, and detector.	 Radiant energy reflected by the ^
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sample is focused on the entrance slits of a monochromator by two

plane mirrors and a spherical mirror. In order to allow continuous

scanning throughout the plane of incidence and reduce blockage of in-

cident energy, these mirrors are suspended from an arm rigidly attached

to the monochromator. Supports for these mirrors are positioned so

that interference with the irradiating optical system components is

eliminated as the source arm is rotated. The plane mirror that views

reflected energy from the sample is contained in the plane of incidence.

Blockage of incident energy by this mirror is confined to a 16 degree

angular interval centered at the direction of incident energy (6 = 61,

The spherical mirror has a diameter of 71.4 mm and a radius

of curvature of 820.0 mm. Solid angle of!reflection is controlled by

the spherical mirror and has a value of 0.0060 steradians.	 ^.

A Perkin-Elmer Model 99 monochromator with sodium chloride prism

is employed to provide spectral measurements. An internal chopper is

utilized to interrupt the light beam. An erratic reference signal

from the chopper was corrected by replacement of the original chopper

motor and mechanical system that furnished the reference signal to the

lock-in-voltmeter with a synchronous motor and photodiode system, re-

spectively. The photodiode system consists of a stationary narrow
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A thermocouple detector mounted inside the monochromator is em-

ployed to transform the cyclic radiant energy incident on the detector

into a cyclic voltage signal. By adjustment of a plane mirror located

beyond the exit slits of the monochromator, blockage of the radiant

energy by the detector was eliminated.

,.

	

	 The electronic and recording system is shown in Fig. 3.6. The upper-

most instrument"in the left--hand rack is the Slo-Syn two-axis preset in-

dexer. Below the indexer,] in the order in which they appear in the

--	 photograph, are the lock-in-voltmeter, control interface, background

shutter control, photomultiplier tube power supply, reference signal con-

trol, and source power supply. A Hewlett-Packard Model 2012B digital

data acquisition system is located in the rack to the right in Fig. 3.6.

Function of these instruments is briefly discussed.

The cyclic voltage signal generated by the thermal radiation de-

tector is amplified by a Brower Laboratories Model 131 Lock-in-Voltmeter.

This instrument consists of a preamplifier located-near the thermal radi-

ation detector and the main amplifier ehown .in . Fig. 3.6. The output of

the amplifier is digitized and recorded by the digital data acquisition

system. Raw data is recorded on magnetic tape and reduced as well as

analyzed with the aid of a digital computer.

Activation of the preset indexer and data acquisition system is the

function of the control interface. The interface was built using inte-

grated circuits and other standard electrical components. The interface

has the capability of independently stepping the wavelength drive motor
3	 :.

and the polar angle of reflection drive motor, At each position of

these motors, there is a time,delay before activation of the recorder in

order to allow the detector and. amplifier to respond to . the..change in
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rad 4nt energy signal. The output voltage signal of the amplifier may

be recorded up to ten times when noise levels are high. Background ra-

diation measurements may be recorded by activation of the rotary sole-

noid. Two modes ,of operation are possible, namely, wavelength scan or

angle scan. In the wavelength scan mode, the set of five thumbwheel
p

switches to the left in Fig. 3.6 is used to preset the desired number

of total steps of the wavelength drive motor. In the angle scan mode,

the set of thumbwheel switches to the right is used. Provisions have

been incorporated in the control interface to record data at small angu-

lar increments for directions of reflection where the reflectometer sig-

nal is expected to vary rapidly (for example, near the specular direction)

and at large angular intervals in regions where the signal changes slowly.

Angular increments of 0.01, O.02, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 degrees

are available.

3.2 METHOD OF'MEASUREMENT

The relation between BDR and output voltage signal of the lock-in-

voltmeter is determined by first considering the signal observed when the

radiant energy incident on the sample is viewed directly. To perform

this measurement, the goni.ometer is adjusted by setting polar angles of

incidence and reflection to 0 and 180 degrees, respectively, and remov-

ing the sample holder.. The amplifier voltage signal maybe expressed as
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response with gain G. S denotes the detector responsivity. Reflectance

and transmittance of the optical components are represented by f. L-

and AI+ represent the intensities of radiant energy of the source and

chopper, respectively. Emission by the optical components, stray energy

and equivalent stray electrical signals are represented by AID. 0,D

the polar angle for radiant energy incident on the detector and AD is

the irradiated detector area. Radiant energy incident on the detector

is contained within solid angle w D . For sufficiently small wavelength

interval AA about the wavelength of interest, the factors S, T, I-,

AI+, and Al b may be considered independent of X within AA. Furthermore,

for radiant energy contained within a small solid angle Aw D about 6D3

the intensities and polar angle of incidence may be assumed to vary im-

perceptibly within Am D . Since the solid angle of reflection Aw is the

limiting solid angle of the reflectometer, Aw D = Aw. For sufficiently

small irradiated detector area, S, I - , AIc , and AIb can be assumes in-

dependent of location within AA D' The irradiated entrance sl o t area of

the monochromator AA  determines the size of the irradiatei detector

area and is hereafter referred to in the analysis. Taking into account

the preceding observations, the integrations indicated in Eq. (3.2.1)

can be performed to yield

V- - K(I	 AI+ + AIb ) AAS 4w
C

(3.2.2)

where K(=G5 T cos e , AA) depends principally on A.

When the source emission is blocked by the.shutter, the voltage
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where AI+ is the intensity of radiant energy emitted by the shutter.

Subtraction of Eq. (3.2.8) from Eq, (3.2.2) yields

VW - AVM = K(I- - Ai+ ) AAA Am	 (3.2.4)

Replacement of the sample holder and adjustment of the goniometer

to the desired directions of incidence and reflection, the voltage sig-

nal due to reflected energy from the sample is given as

AV r(0 00) = KEPbd(6',0',O,0) I- cos e' Aw'

	

- Aye + AIb 'r(0,0) + Ale( O ,^)] AASA re	 (3.2.5)

where AIe(6, 0) is the intensity of radiant energy emitted by the sample.

AT+ r(M) is the background intensity and is considered a function of
direction of reflection. AA+ is the irradiated entrance slit area which

is not necessarily equal to AA., Blockage of the source yields a voltage

signal due to shutter, chopper, background, and sample intensities.

AVb r (6,$) = K[Pbd(8','^6,) Ale eos 6'Aw' - Qle + d^ r(9,^}

+ Al (6,O)l AA  Aw	 (3.2.6)

Subtraction of Eq. (3.2.6) from Eq. (3.2.5) yields

AV r(610) - AVb r ( 0 ,0)	 KPbd(O',O';8,O)[i-	 Ai I
,

• .cds 9'Aw'AA+ Aw	 (3.2.7)

The ratio of Eq. (30267) to Eq. (32.4) gives an expression for BDR in
x

terms of recorded. voltage :signals'..

l	 AV+(6,) - L'r{ 9 ,^) AAS
(@^,.;8,.c) =	 (3.2.8)Pbd	 cos BIM,

	
V -' dV	 AAA
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The relation between AA- and AA+ is now discussed.

There are fundamentally two methods by which the irradiated sample

area can be viewed by the entrance slits of the monochromator. In the

first method, hereafter called overviewing, the entrance slits view an

area on the sample Larger than the irradiated area. For this arrangement,

the relation between AA - and AA +S is

AAS = AA  cos 8/cos 9'
	

(3.2.9)

where AA  is the irradiated sample area for normal incidence which is

also the source area. AAS/cos 6 1 is the entrance slit area. Equation

(3.2.8) can then be written as

I	 r A +(6,O) - AVb r(6110)

Y - AV 

In the second method, called underviewing, the entrance slits view an
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Since the difference between the incident and reflected energy

voltage signals can be many orders of magnitude, it is more convenient

to make relative measurements between signals of the same order of mag-

nitude and then perform only a limited number of absolute measurements.

For a given wavelength and direction of incidence, BDR measurements are

normalized with respect to that obtained in the specular direction. The

normalized relations between BDR and voltage signals are written as fol-

lows for the two viewing methods.

Overviewing

R cos 6/cos 8' = V	 (3.2.13x)

Underviewing

R = V	 (3.2.13b)

where
Abd(e'^^'^69^}

R =(3.2.14a)
Abd 6', 0' ^V 7 101 + 7

and

_	 dV+(8,^) - AVM (010)
V W	

r	 b,r .	
(3.2.14b)

For BDR measurements that are presented in Chapter 6, the overviewing

method was utilized for polar angles of incidence of 10, 30, and 60

degrees and the underviewing method for. polar. angle of incidence of 80

degrees. Thy source and monochromator entrance slit 'dimensions- for the
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Table 3.1

Dimensions for Source Mask and Monoehromator Entrance Slits

e ! , Ieg_L'ees
Source Mask,'mm Monoch3romator

Entrance Slits, mm

Width Height Width Height

10 1.90 3.43 2.075 12

30 1.50 3.33 2.075 12

60 0.71 3.33 2.075 12

80 6.35 19.0 2.000 6.35

emission and absorption spectra of various substances. The emission

lines of a mercury are lamp were observed for calibration in the 1.0 to

2.3 pm spectral range and absorption lines of water vapor, carbon di-

oxide, and polystyrene film in the 2.3 to 15 pm spectral. range. Wave-

length identification of these lines was determined by comparison of

observed lines with those available elsewhere E54-571. Slit widths as

recommended in the cited references were used for the calibration meas-

urements. Using a least-square technique similar to that of Fryer [583

to fit a curve through the drum position-wavelength data, a table of

drum number versus wavelength was generated. This technique yielded a

wavelength accuracy of 1-0.025 pm. The spectral bandwidth of radiant

energy is centered about the wavelength and is determined by the slit 	
f

width. For slit widths shown in column 4 of Table 3.1,:the bandwidth is

approximately 0.08 pm at a wavelength of I pm, 0.35 pm at 3.0 pm, andh.	
I

0.09 pm at 14 pm. These bandwidths are not expected to significantly

influence : the .accuracy.of the..me .asurements since BDR does .not change

rapidly with.wavelength within the considered spectral range.

Angular al gnment of i:he. reflcctome er .was. vcr fa ed.:hy .. observing

i

r °:	 - -ri	 -^-•



26

the angular distribution of incident energy as well as that reflected

from a plane mirror sample. Figure 3.7 displays measurements for wave-

length of 2.3 pm and for polar angles of incidence of 0, 10, 30, 60, and

80 degrees. The radial coordinate R is given by Eq. (3.2.13a). Measure-

ments for polar angle of inca.%'pnce of 80 degrees have been multiplied by

the factor cos a/ cos e l . Angular alignment measurements for other wave"

lengths are similar to those reported in Fig. 3.7 and, consequently, are

not presented. Data for polar angle of incidence of 0 degrees corre-

spond to incident energy measurements, and these have been rotated by

180 degrees for presentation in this figure. Incident energy measurements

were acquired by adjustment of the reflectometer as discussed in Section

3.2. The maxima of the distributions occur at polar angle of reflection

within 0.1 degrees of 8 = 180 degrees for incident energy and of e = 01

for the plane mirror sample. Further verification of -the optical align-

ment as well as accuracy and repeatability of the measurements was ob-

tained by comparing these measurements with results from a geometrical

optics analysis [421 of the irradiating and detecting optical systems.

Good agreement is shown in Fig. 3.7 between the data and the geometrical

optics results which are represented by solid curves. Due to the finite

size solid angles, the reflectometer applies a broadening factor to re--

tiectance of specularly reflecting samples and as displayed in Fig. 3.7,

causes a spread of the me,asttrements and analytical results. For infini-

tesimally small solid angles, R would have a value of unity for each

polar angle of incidence.

The relation between BDR and voltage signal was verified by measur-

ing BDR of a diffusely reflecting sample made from sulfur flowers [591.

These measutlemen•ts are also displayed in Fig. 3.7 for a wavelength of

--	 ^: 	 7.7-
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2.3 pm and polar angle of incidence of 10 degrees. A diffuse surface

has an R distribution given by cos 0 /cos 0 1 and is represented in this

figure by the broken curve. Good agreement between measurements and

theory for a diffuse surface is shown.

It should be noted that the data points displayed. in Fig. 3.7

,...	 are taken from a larger set of measurements for each case. Measure-
.:.

meets for the plane mirror sample were recorded at 1 degree angular

intervals for 6' - 10 0 < 0 < 0' - 2 0 as well as 0' + 2 0 < 6 < 0' + 100

and at 0.1 degree intervals for 0' - 2 0 < e < e' + 20 . For the sulfur

sample, measurements were recorded at 2 degree angular intervals. The

time required to record the former set of measurements for each polar

angle of incidence was approximately 15 minutes but for the latter, 50

minutes was necessary. Tests were performed to evaluate variation of

source output and electronic drift over the time interval necessary to 	 A

x
acquire the measurements. Results showed that the source output and

drift varied Less than 2 percent for the Larger time interval.. Since

shorter time intervals were used for the measurements presented in

`	 Chapter 6, the source variation and drift is not expected to signifi- 	 ^'I
^s
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4. BDR MODEL

The BDR model selected for comparison with reflectance measure-

ments reported in Chapter . 6 is attributed to Beckmann [291. Houchens
s;

and Hering [32] examined this model in view of certain theoretical

criteria and demonstrated that it has a widen range of engineering ap-

plication than some other physical optics models. It is not the pur-

pose here to discuss this model at length, but to present some results

that are pertinent to later comparisons. Detailed development and

discussion are available elsewhere [29,32. In Section 4.1, a descrip-

tion of the model is presented,and representative results are reported

in Section 4.2.

4.1 DESCRIPTION OF BDR MODEL,

Beckmann developed a Model for a perfectly conducting, randomly

rough surface with negligible shadowing by, and multiple reflections

within, adjacent roughness elements. Since absorption is absent, the
F	

.

model essentially describes the influence of surface roughness on the

spatial distribution of reflected energy. According to the model, the

surface roughness parameters that influence BDR are rms height Cr and

rms slope m. Optical roughness is then defined as U/A where A is the

wavelength of incident energy. The general farm of the Beckmann model

can he written as follows

fbd (6 1 , 1 -0 0) a fsp0 1 ) U0 1 ,0 1 0 0) + fsc ( 8, 4 1 0,0)	 (4.1.1)	 s

The symbol fbd denotes. BDR for a.perfectly conducting material. f$p is 	
i

referred to as the specular component with U designat rig that this com

ponent : .contributes.to fb d only in the direetion'tsf specular^reflectioa..

z:
	 fsc is called.the scattered component and-it describes the spatial

3

i

_	 _
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^^	 a

C(Q/h)El2M ex -27x2 (a/A)2 x (4.1.3)
t1 Mf
	 p
.	 M	 m2

M - 1

where

30

distribution of energy reflected throughout hemispherical space. Specific

expressions for fsp and fsc are given by [601

fsp (0') = Rx; {-C47r(a/a ) cos 6'] 2 }	 (4.1.2)

f { 6 ' ^ 3 6
e^) = 27r(a/A 2 B exp { -[(alx) E]2}

sc	 cos 0 cos U , m

2
E - 1 + cos a cos 0' .sin a sin 0' cos W - 0	

(4.1.4)
cos	 cos 6'

E = 27r(cos a + cos 61)

ti

?i = sing e + sing e' + 2 sin a sin e' cos
t

rms slope is related to correlation length a by the relation
i
f	

1	
-.

M = q2 	 ^ a){ ^ (4.1.8)

The expressioii for U introduced in Eq. (4.1.1) is
j	 I

'	 F

U(011301 30,x`) _ 26[sirn2 	 6'	 - sin	 e] 6[^'	 —	 {	 '	 7i), (4.1.7)
Y

where 8(a) is the Dirac delta function for parameter a.
i

f
For large optical roughness WX » 1), the specular component is

zero for all but near-grazing incidence and Eq. (4.1.3) reduces to the

i` following [601.

(e ,	 ,e,	 °xpf
sc	 `. {4..1..8)

2rm	 cos 8 cos 6'	 2m_.

where
': $ ...^

B
(4.1..9) .

5

2
(Cos '6 + cos e' )

0.1.10}2
(cos 0 +'Cos-81)
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Note that the expression for f sc is independent of wavelength and depends

--	 only on a single surface roughness parameter rms slope.

4.2 DISCUSSION OF BDR MODEL

Portions of the following discussion of the Beckmann BDR model have

been extracted from [601 and are repeated here for reference purposes.

Since the Beckmann BDR model applies to perfectly conducting material,

all incident energy must be accounted for in the reflected energy leav-

ing the surface. According to the model, reflected energy is represented

by the specular and scattered components. The fraction of energy incident

from direction 8 1 ,c' which is accounted for by'the scattered component

Fsc(0 1 ,0 1 ) may be evaluated by integrating the product of fsc and the co-

sine of the polar angle of reflection over all solid angles of reflection

F5C ( 61 0 1 = J fsc(e.',^'3ee^) cos a dw 	 (4.2.1)

w

The sum of the fraction of incident energy from direction e 1 ,0' ac-

counted for by the specular and scattered components should be unity.

fsp (e l ) + Fsc ( O ' '}	 l	 (4.2.2)

It has been shown [421 that the conservation of energy requirement ex-

pressed by Eq. (+x.2. '2) is usually . satisfied within a few percent if rms

slope is restricted to values less than about 0 . 14. However, the mag-

nitude of the discrepancy depends -on the value of. optical : roughness,

rms slope, and polar angle of incidence.

Typical: results. for the , specular. component :are illustrated in.

Fig.- 4.1 where fsp (81) distributions are shown for selected values. of

optical roughness.. For prescribed direction of xncidence, . the specular

component decreases with 'increasing optical roughness. With ' optical
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roughness prescribed, the specular component increases with increasing

polar angle of incidence. Since, according to Eq. (4.2.2), the factor

C1 - fsp (0')7 represents the fraction of incident energy which is

scattered, Fsc (B r , t ), the right-hand ordinate in Fig. 4.1 may be used

to evaluate this quantity for a surface of prescribed optical roughness

.,	 irradiated from a specific direction. 	 Apportionment of reflected energy

.	 between the specular and scattered components is determined by polar

angle of incidence and optical roughness.

With direction of incident energy and value of optical roughness

specified, the magnitude of the scattered energy is fixed.	 Its spatial

distribution is uniquely determined by rms slope.	 The general influence

of rms slope on the scattered component is similar for all polar angles

of incidence and values of optical roughness. 	 Some representative re-

sults are illustrated in Fig. 4.2. 	 The product of the scattered com-

ponent for large optical roughness and cosine of polar angle of reflec-

tion is shown versus polar angle of reflection for normal irradiation

and rms slope values of 0.040, 0.057; 0.094, and 0.14. 	 The product of

BAR and cos a is the fraction of incident energy reflected per unit

time and per unit area into a unit solid angle around the direction of

reflection.	 No azimuthal angles are indicated on the figure since for

normal irradiation BAR is azimuthally symmetric. 	 A diffusely reflect- 	
V.

ing surface is represented in the figure by the dashed curve.	 The angu-

lar spread about the specular direction within which the scattered

energy is significant increases with increasing rms slope.	 The increas-

ing angular spread of the scattered energy is accompanied with a reduc- 	 t

tion of BDR in the . s ecular direction. 	 Thus,; the.surface,tends towardp 

a diffusely reflecting surface as rms slope increases.	 Even for the	 ?
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largest value of rms slope (m = 0.14), however, the spatial distribution

of reflected energy differs significantly from that for diffuse reflec-

tion.

For a fixed value of rms slope, the dependence of the spatial dis-

tribution of scattered energy on direction of incidence is markedly
s 
dif-

ferent for large and small values of optical roughness. The product of

the scattered component and cos 0 for rms slopes equal to 0.094 and 0.14

is shown in Fig. 4.3 versus polar angle of reflection for large optical

roughness WX >> 1) and a small vague of optical roughness (tr/A = 0.1).

For each value of optical roughness, distributions are shown for polar

angles of incidence equal to 0, 20, 45, and 60 degrees, and fox* each

polar angle of incidence results are shown for selected values of azi-

muthal angle of reflection.

Consider the distributions for rms slope equal to 0.14. It is im-

portant to note the strong reflection of energy into -the plane containing

the specular direction (strong forward scattering). For large optical

roughness, (Fig. 4.3a), the maximum value of 
Esc cos 0 increases sharply,

and the angular spread of the scattered energy around the specular direc-

tion decreases for increasing polar angle of incidence. Of particular

note is the rapid decrease of energy scattered out of the plane of Inci-

dence with increasing polar angle of incidence. For small optical rough-. 

ness, (Fig. 4.3b), the maximum value of f cos 0 decreases with increas-
sc

ing polar angle of :incidence due to the increasing magnitude of the inci-

dent energy which undergoes specular reflection. In contrast to the dis-

tributions for.large optical roughness, the.lobes of scattered energy in

the plane of incidence for small optical.roughness.and moderate to .large,

polar angles of incidence are not centered about the,specalar direction



znaFrIonl
Rai

Z Y Reflected

Radiation

w

x

0
4P

gPPs

m
^=a"	 'aPA^
^	 ^S

35



X"

R

37

but are shifted toward the surface normal.

It should be noted that the scattered component contains a singularity

for polar angle of reflection equal to 90 degrees. This accounts for the

generally small, but finite, value of the product f Se cos 6 for grazing re-

flection. This error results from neglecting shadowing effects in the

derivation of BDR.

Since the Beckmann model is limited to perfectly conducting surface,

it is necessary to modify Eq. (4.1.1) for application to engineering ma-

terials. The approximate method employed here to account for energy ab-

sorption consists of multiplying the perfect conductor relation by SPR

of a. smooth surface of the same material [25,29]. BDR of an engineering

material is then expressed as

pbd ( O "VO M = ps o (6',^') fbd (o f ^ T ; D ^ )	 (4.2.3)

where  Soo (0'4 1 ) denotes smooth surface SPR.

In Chapter 7, the BDR model is compared with rough surface SPR meas-

urements by utilizing the following expression for SPR

Asir r ^r	 fsp(6' ) + fsc (0 7 ,0 1 ; e 1 , 0 1 -3- 'fT) cos 6' AW
s ,,o

exp {-C(a/)L)P]21 + AW(6/2) 
2 

P exp T-[(6/7► ) P]2}
2m

eo

C(a/h) PI 2M
	

(4.2.4)
M M:

M l
^	 J

where ps i (6', ') is rough surface SPR and P = 4'ff cas 6 1 . In Eq. (4.2.4),

the first term on the right=bend side is the specularr component and the

second term is the contribution of the scattered component to energy re-

flected into the s ecular direction. Birkebak 61 :]	 Ip	 ^	 presented. an expression.
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tfor the second term that includes an extra multiplicative factor 4/cos A'.
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S. SAMPLE PREPARATION AND SPECIFICATION

In this chapter, test samples selected for this research are dis-

cussed. Sample preparation is presented. in Section 5.1. Specification

of surface characteristics for the test samples is discussed in Section

5.2.
r,

5.1 PREPARATION

Shape, size, and distribution of roughness elements on surfaces of

engineering materials are influenced by the material mechanical proper-

ties as well as the method of surface preparation. These effects may

be partially investigated by selection of test samples of different ma-

terials and utilization of different abrasive sizes for surface prepa-

ration, Test samples consisted of glass, 6061--T6 aluminum alloy, and

303 stainless steel discs. Glass samples were 2 mm thick with a 27 mm

diameter and were Uurchased with a smooth finish. Metallic samples were

6 mm thick with a 25 mm diameter. The influence of "as received" con-

dition for the metallic ,samples was eliminated by polishing one face of

the metallic discs to a smooth finish utilizing a 0.5 um diamond paste

as the abrasive. One smooth stuaface sample of each material was re-

tained and the other samples were roughened with abrasives that con-

sisted of 6 }gym diamond paste, 1000 grit silicon carbide powder, and

600, 400, 320, 240, 180, as well-as 120, grit silicon carbide paper.

The abrasive used in roughening each sample and corresponding sample

number are shown in columns 1, 2, 3, 6, and 9 of Fable 5.1. The G-1,

A-1, and S-1 samples are referred to as the smooth samples... All samples.

were ultrasonically cleaned and then coated with a vacuum deposited

layer of pure aluminum to a thickness of. approximately:.0..1 .pm. Speci:fi-.:..

cation of surface characteristics for the test samples is discussed in



Table 5.1

Abrasive Size, Sample Number., and Surface Topography Parameters

Average Abrasive Sample Substrate Material

Size. Glass Aluminum Allay Stainless Steel

Grit um.. Number 6 2
M

m a
m Number m

mm Number 6m mm

G-1 A-1 S-1

6 A-2 0.0570 0.0238

1000 8.a5 A-3 0.14& 0.0443 S-8 0.496 0.0300

600 17;5 G-5 0.837 0..142 A-4 0.286 0.101 S-2 0.109 0.0410

400 23 G-2 0.270 0.0834 A--5 0.314 0.104 S-8 0.134 0.0395

320 30. G-3 0.358 0.108 A-6 0.751 0.190 S-4 0.240 0.0536

240. 60 G-4 0.374 0.133 A-9 0.987 0.216 S-6 0.279 0.0798

180 80 A-8 0.804 0.178 S--5 0.251 0.0883

120 110`. G-6 0.927 0.274 A-7 0.794 0.156 S--7 0.368 0.105
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the succeeding section.

5,2	 SPECIFICATION

It is common practice to describe the surface finish of engineer-

ing materials in terms of the chemical, physical, and topographical char-

acteristics of the surface [14,66,6+1.	 As mentioned in the previous

-	 section, test samples were coated with a 0.1 pm thick layer of pure alu-

minum.	 For this layer thickness, the sample retains the roughness to-

pography of the substrate material while providing a radiatively opaque

surface of high electrical conductivity with the well-documented optical

properties of pure aluminum [651. 	 Upon exposure to an atmospheric en ,-
0

vironment, an aluminum oxide film of approximately 25 A thickness [661

forms on the aluminum .film. 	 Bennett [661 reported that the decrease in

SPR for a 25 A aluminum oxide film formed on an aluminum film is less

than 0.1 percent for wavelengths longer than 0.9 Jim. 	 Thus, the oxide

film is not expected to significantly effect ,reflectance measurements.;A

Qz_alitative surface topography information was obtained from scan-

ning electron microscope (SEM) secondary electron emission photographs

as displayed in Fig. 5.1 for selected samples. 	 Photographs for a mag--

nification of 1000 X represent a sample area approximately 100 pry wide,
n.

a

.	 whereas those for a magnification of 10,000 X correspond to .a 10 pm .

wide area.	 The width of the irradiated sample area for, reflectance
a

measurements is greater than the width of the sample area shown in the

photographs for the lower magnification by at least a factor of seven.
A

go-preferential orientation of roughness was eviId ent when other areas of

the sample were viewed with the SEM.	 In each photograph the electron in--

tensity profile is` illustrated for a position indicated by the tick marks jj



(a } G-6 (b)

(c)

(e) A-9 (f)

(g)
S-7

(i) ,.P	 .
	 ( j)S-s
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1000 X Magnification
	

10,000 X Magnification

Figure 5.1 SEM Photographs of Rough. Surfaces
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located on the sides of the photographs. The dark .line observed on

some photographs is due to residual electrical charge on the surface

when a single scan was recorded for the electron intensity profile.

The surface roughness profile cannot be directly inferred from the in-

tensity profile since sharp edges yield disproportionately more intense

intensity signals. Analysis of stereopair photographs from an SEM can

provide quantitative evaluation of surface topography parameters [671.

This procedure was not utilized in this study, however. According to

the photographs, the A-2 sample has the smoothest finish and the G-6

and A--9 samples have the roughest finish for the sample photographs

shown. The surface of the S-8 sample consists of numerous pats of less

than 3 pm diameter that are separated by relatively smooth areas.

These characteristics may influence the reflection properties of this

sample.

Surface roughness parameters for the test samples were evaluated

from surface profile measurements recorded with a Talysurf. Model 3 pro-^

filometer attached to a digital data acquisition system [681. The pro-

filometer has a 2.5 }1m radius stylus. The:w`oltage . signal corresponding

to the vertical displacement of the stylus was digitized and recorded on

magnetic tape.for corrEputer analysis. The horizontal position for each

digitized vertical position was derived from information concerning the 	 a

horizontal speed of the stylus drive and.the.digitizing rate;of the: data

r^

acquisition system. A total of 2,897 vertical' .pos,itions equally spaced
1

within a horizontally traversed distance of 3`..Ol mm was acquired for
f 	 .

each surface profile scan. One scan in the vicinity of the irradiated
I^

surface area was recorded for each. sample..'
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Surface roughness parameters could be evaluated directly from the

recorded profiles,but it is more convenient 	 to	 use the mean surface

plane as a reference.	 The mean surface plane was determined by using

a least-squares technique to fit a first order polynomial to the pro-

x
files [69].	 The resulting linear equation represents the mean surface

-' plane.	 For convenience of computation and presentation, a transformation

T
4

1

was applied to the recorded profiles so that the mean surface plane co-

i.ncides with the x-axis of an x-z Cartesian coordinate system and the

- z-axis corresponds to the height of the rough surface as measured from

f' the mean surface plane.	 Graphical display of the transformed profiles
Y

revealed that some of the surfaces exhibited waviness. 	 Waviness could

be caused by slight movement of the sample as the profile was recorded.

It was necessary to repeat some of the scans because sample movement was

noticed while recording the profile. 	 A least-squares technique was used
K:

1-

:: to fit a second order polynomial to the transformed profiles that exhibited
r'

waviness.	 Surface roughness profiles for samples that exhibited waviness

were obtained by subtraction of waviness as described by the second order

polynomial from the transformed profiles. 	 Representative portions of sur-

face roughness profiles for selected samples are shown in Fig. 5.2 where

the ordinate z represents roughness-height... Surface roughness parameters

were evaluated from analysis of these as well as similar profiles: for

other samples.	 -

It was noted in Chapter 2 that rms height and rms slope represent

two surface roughness parameters that are necessary to characterize a'
t

rough surface profile. 	 These parameters were.evaluated from the surface

roughnes:s. ,profiles:using the following `expression nor. rms height

_:_^--.— —	 --
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N	 1/2

2

M	 N - 1	
(zi )

and the following expression for rms slope

_	 N _ l	
21/2^'6zi

mm	 N-2	 px.
j ,	 i	 1	 i

(5.2.1)

(5.2.2 )

In Eqs. (5.2.1) and (5.2.2) subscripts m indicate that the surface rough-

ness parameters were evaluated from mechanically acquired measurements.

N represents the number of profile data points. Az. is the distance per-

pendicular to the mean surface plane between two profile points, and Axi

is the distance parallel to the mean surface plane between the corre-

sponding profile points. Results of the calculations are presented in

Table 5.1. In general, rms height and rms slope are ordered according

to the abrasive size used for surface preparation. The exceptions could

possibly be due to surface preparation technique. - . Newness of the abra-

sive, pressure on the sample, speed of polishing.wheel, amount of lubri-

cant, and length of time determine the roughness attained by the sample.

These- affects are not expected to influence the conclusions derived from 	 e

this weseaxch since the surface characteristics are specified. Samples

i	 of identical substrate material are numbered.accordng to increasing rms

Height. The S-6 sample possesses the largest rms height but the smallest
t	 ^

rms slope of the stainless steel. samples... .These characteristics are also

displayed, by SEM photographs shown in Fag. 5.l for this sample. Except

for the S'S sample,.rms.slopes.are nearly proportional to rms height with

the proportionality constant equal to approximately 1/4.

Further:quantztative specification' of the: : surfaae;,roughnass profiles.

was determined by calculation of'roughness height probability density

,t
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function and autocorrelation Function [29,70]. The difference between

the minimum and maximum values of roughness height for each sample was

divided into 45 equal height int,rvals [701 for calculation of prob-

ability density function. Representative results of this analysis are

presented in Fig. 5.3. The graphs to the left in this figure display

the normalized roughness height probability density function,

P(Z) a 
m 
A/27 as a function of normalized roughness height a/a m, The

graphs to the right represent the autocorrelation function C(T) as a

function of correlation distance 'r. Also shown on the respective

graphs are results for a Gaussian roughness height probability density

function described by the expression

P(z) =	
1	 exp [-z2/(2a2)]	 (5.2.3)

Cry : 2'7

and the Gaussian autocorrelation function given by the relation

C(-r) = exp [-(-L./am)23
	

(5.2.4)

where am is correlation length. Correlation length was taken as the

value of .correlation distance where the autocorrelation function for
r;

-1
the profile measurements attained a . value of. e. [291. It appears..

that the statistical properties of the rough surface are adequately

described by Gaussian distributions. i

t

As the profiiome-ter -traverses the rough surface, a scratch de-- 	'.
s

velops due to the . finite : weight (100 mg) required for-the stylus to

maintain contact with the surface. SEMI photographs of the scratches on

the A--9 and :S 3 samples are shown in Fig. 5.4. Two -scratches. are shown

for the A-9 sample, and two photographs of different magnifications

are shown for a scratch on the S-3 'sample. Observe that for the ,alu..

minum'alloy sample, the stylus plows through the surface irregularities 	 ^
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A-9 145 X Magnification

(a)

650 X Magnification 	 S-3	 1300 X Magnification

(b)
	

(c)

Figure 5.4 SEM Photographs of Profilometer Stylus Scratches
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6. REFLECTANCE MEASUREMENTS

Presentation of reflectance measurements is subdivided into three

sections. SPR and BDR measurements are reported in Sections 6.1, and

6.2, respectively. In Section 6.3, directional reflectance measurements

are discussed. For all reflectance measurements, test samples were

~

	

	 oriented such that azimuthal angle of incidence has a value of 180 degrees

and, therefore, azimuthal angle of reflection attains values of 0 and 180

degrees.

6.1 SPR MEASUREMENTS

SPR measurements for smooth and rough surfaces are reported in

Sections 6.1.1 and 6.1.2, respectively. Measurements for smooth samples

are necessary to calculate SPR and BDR values for the rough surfaces and,

also, are intended to further demonstrate the accuracy of the BDR facility

described in Chapter 3.

6.1.1 Smooth Surfaces

SPR measurements for glass, aluminum alloy, and stainless

steel smooth samples were acquired, and average values for the three samples

are displayed in Fib;. 6.1 as a function of wavelength of incident energy

for polar angles of incidence equal to 10, 30, 60, and 80 degrees. Indi-

vidual sample measurements deviated from these average values by less than

1 percent with the maximum occurring at a wavelength of 1 pm. In compari-

son to SPR measurements for polar angle of incidence equal to 5 degrees as

reported by Bennett [661 for aged aluminum film, SPR measurements for polar

angle of incidence equal to.l0..degrees presented..in Fig,. 6.1 differ..by less. .

than 1 .percent for wavelengths Ion gsr than 2 pm and less than 3.3 percent
r	 ,.

i
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for shorter wavelengths. The difference at shorter wavelengths may be

attributed to substrate surface preparation and evaporation conditions

which are known to strongly influence SPR at these wavelengths [661.

Further examination of measurement accuracy particularly for other than

near--normal incidence was made by calculating SPR from the Fresnel

equations [16] using reported optical constant values for aluminum film

[65]. For wavelengths longer than 2 jim, SPR measurements were within

1 percent of the calculated values for all polar angles of incidence.

The maximum difference for short wavelengths (A < 2.0 Jim) was 4.1 per-

cent which occurred at a polar angle of incidence equal to 60 degrees

and wavelength of 1 Jim. This large difference may also be attributed

to substrate preparation and evaporation conditions and, therefore,

the measurements are not necessarily in error by that amount.

6.1.2 Rough Surfaces

SPR measurements for glass, aluminum alloy, and stainless

steel rough samples are illustrated in Figs. 6,2, 6.3,. and 6..4, re-

spectively. Measurements are reported for wavelengths of incident

energy within the spectral range of .l to 14j im and for polar angles of

incidence equal to 10, 30, 60, and 80 degrees. The ordinates represent

the ratio of .SPR for a roughsurface, ps.r(6' .,^' ),to the corresponding
,

value for a smooth surface of the same substrate material, Rs o(B^,c^').
e

Certain characteristic trends of rough . surface SPR measurements are evi-

dent in these figures. First, SPR of the rough surface approaches that

of the smooth surface as wavelength increases. This. trend is primarily

due to a decrease in scattering byi the rough surface as confirmed by

BDR measurements since directional reflectance measurements indicate
i
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only a small increase in the magnitude of reflected energy as wavelength

increases. BDR and directional reflectance measurements are presented

later in this chapter. Except for a few samples, SPR decreases as rough-

ness increases. BDR measurements illustrate an increase in scattering

by the rough surface as roughness increases which results in smaller

amounts of reflected energy in the specular direction and, therefore,

lower SPR values. Directional reflectance measurements exhibit a small

decrease with increasing roughness which is insufficient in amount to

explain the decrease of SPR measurements. At long wavelengths (X > 10 pm),

SPR measurements for each substrate material are ordered according to the

magnitude of rms height with the exception of the A-6 sample. The de--
r

pendency of SPR on rms height at long wavelengths is characteristic of

BDR models based on diffraction theory [32]. The behavior of SPR for

short wavelengths can be explained by reference to rms slope. As dis-

played by the measurements, SPR decreases as rms slope increases. BDR

models based on .geometrical optics.analysis [13] also exhibit a decrease

of SPR as rms slope increases. Furthermore, these models suggest that

two surfaces of identical.material and-equal rms slopes should, have

equal SPR values. rms slopes for the A-6 and A-9 samples are nearly

equal. and as observed in Fig. 6.3, their .SPR measurements. for. near--normal

incidence (0'' 10 degrees) are similar at short wavelengths.

i
:.::...

	

	 .The. influence of :surface-roughness parameters on :SPR can be further

viewed by reference 'to;Figs. 6.5, 6.6, and 6.7 where rough surface SPR

measurements are .plotted as a-function of optical roughness, m/^l: This

ratio appears in BDR models based on diffraction theory [32] and as dis-

cussed In Chapter 2.. is:. . useful; for examining .surface roughness effects on

BDR. As-expected, SPR approaches that for a smooth surface as optical

f
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roughness diminishes. SPR measurements can be correlated with optical

roughness for optical roughness values less than 0.02, but the degree of

correlation depends on rms slope. As optical roughness increases, SPR

measurements for each substrate material are ordered according to rms

slope. This trend, however, is not fully developed in SPR measurements

at polar angles of incidence of 10, 30, and 60 degrees for the G-5 sample

and some of the stainless steel samples. At near-grazing incidence

(B' = 80 degrees), SPR measurements with the exception of the S-6 sample

are in agreement with this trend for the largest optical roughness values

shown for each sample. SPR measurements at near- ,normal incidence for the

G-6, A-6 through A-9, and S-8 samples are relatively insensitive to opti-

cal roughness for optical roughness values greater than 0.8, 0.6, and 0.2,

respectively. Geometrical optics models [131 predict an independence of

SPR on optical roughness. This characteristic, however, becomes less pro-

pounced as polar angle of incidence increases. Thus, as observed in

Chapter 2, polar angle of incidence strongly influences the range of ap-

plication of BAR models. As previously observed, rms slopes for the A-6

and A-9 samples are nearly identical and as displayed in Fig. 6.6, their

SPR measurements coincide. This characteristic is also exhibited by the

A-7 and A-8 samples and their rms slopes are..nearly equal. .These ob-

servations illustrate the importance of rms slope for correlating SPR

measurements..

Some cited trends. for SPR depend on polar angle of incidence where-

as others may he examined. by reference to _Figs. 6.5, ..6.6, and. 5..7. SPR

increases with increasing polar angle of incidence up to 60; degrees for

all samples. and: continues.:: to, increase for :`the 5=8.:sample at near. grazing 	 r

incidence A decrease of SPR for polar eagle of incidence equal to 80

.	 3
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degrees is observed for the A--2 sample for all optical roughness values

and for other samples (excluding the S-8 sample) only for the smallest

Optical roughness values. SPR for the largest optical roughness value for

each sample (excluuding the A-2 sample) continues to increase at near-graz-

ing incidence. Torrance [71] reported SPR. measurements that exhibited

trends similar to those observed here. The increase of SPR with increas-

ing polar angle of incidence is primarily a result of a decrease in scat-

tering as indicated by BDR measurements. The decrease in scattering is

of greater magnitude than the decrease of directional reflectance which

displays a decrease even at polar angle of incidence of 60 degrees. The

decrease of SPR at near-grazing incidence and small optical roughness values

is attributed to the decrease of directional reflectance since BDR dis-

tributions approach specular reflection characteristics as polar angle of

incidence increases.

The term (cFJA) cos 6 1 appears in diffraction. BDR models [32] and sug-

gests a means for correlating SPR measurements for various polar angles

of incidence. SPR measurements for glass, aluminum alloy, and stainless

a	 ^

I
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represent the specular component of the Beckmann BDR model, £q. (4.2.4),

with am as rms height.. Agreement between the specular component and

SPR measurements is limited to polar angles of incidence equal to 10 and

30 degrees and strongly depends on rms slope. Adjustment of the constant

4'r could improve the agreement but there is no justification for this

.procedure at the present.

Comparison of SPR for the three substrate materials reveals that

SPR measurements at long wavelengths shown in Figs. 6.2, 6.3, and 6.4

are ordered with rms height for rms height less than 0.37. At larger rms

heights, the metallic samples generally exhibit higher SPR values than

the glass samples for a given rms height. For short wavelengths, the in-

fluence of rms slope becomes significant and as-previously noted, some

trends are not well defined. Comparison between SPR for short wavelengths

can be performed by reference to Figs. 6.5, 6.6, and 6.7 where SPR is

plotted as a function of optical roughness. The general trends indicate

that SPR measurements are ordered with rms slope.. This is particularly 	 x:

evident for polar angle of incidence equal to 80 degrees where SPR meal--	 -	 h
urements are in sequence with rms slope. Exceptions, however, are the

A-2, S-3, and S-6 samples which do not deviate significantly from this

order.

i

6.2 BDR MEASUREMENTS
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of incidence equal to 80 degrees were recorded using the underviewing

method, Eq. ( 3.2.13b), and for presentation in these figures have been

multiplied by the factor cos 6 /cos 8 1 . BDR measurements were recorded

at a 1 degree angular interval for polar angles of reflection within

±4 degrees of the specular direction and at a 2 degree angular interval

for the remaining values of polar angle of reflection. In order to

maintain clarity of the graphs, broken and solid curves are used to

represent the data. Where appropriate, BDR distributions have been

-	 extrapolated for polar angles of reflection at which blockage of inci-

dent energy occurs. Absolute value of BDR can be evaluated from the

following expression

ps' 
r 	 ^ 	 Rbd(e "O' a 8 'O) Cos 6	 1

pbd	 S'o(6^^^',8^^) =p(6i s^^ ^ Aso(8r^^r) 
Pbd 6 1	 +ir)cos Bt Co eAA^usAW

(6.2.1)

where smooth surface SPR is read from Fig. 6.1. The ratio within the

first set of brackets is obtained. from Figs. 6.2, 6.3, or 6.4 and that

in the second set which is equivalent to R from Figs. 6.11, 6 . 12, or

6.13. For discussion purposes only, BDR distributions for the G-2

sample are similar to those for the A-3, S-9, and S-4 samples, the G-3

sample to the G-5 and A-5 samples, , the A-6 sample to the G-4, A-7, and

A-8 samples, and those for the A-2, S-2,. and S-8 samples to a smooth

surface.

Some general comments can be cited concerning the characteristics

of illustrated BDR distributions as well as -chose not displayed. First,

specular reflection is approached with increasing wavelength and/or as.

polar angle of incidence nears grazing incidence BDR measurements dis-

played as shown in these figures exhibit specular reflection characteristics

i

N
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for optical roughness values less than about O.C5 for near--normal inci-

dence and 0.1 for near-grazing incidence. A smooth surface would have

non-zero R values only for polar angles of reflection within a 10 degree

angular interval centered about the specular direction with a value of

unity at the specular direction. Secondly, as roughness increases,

greater amounts of reflected energy are found at polar angles of re-

flection further removed from the specular direction. The G-6 sample

has the largest rms slope and exhibits the greatest amount of scatter

of incident energy, Pig. 6.1. Its BDR distributions for short wave-

lengths and for near-normal incidence, however, differ considerably

from that for a diffusely reflecting surface which is represented in

these figures by the factor cos 6/cos 0 1 . Thirdly, the maxima of BDR

occur at the specular direction,and off-specular peaks [61 are not ob-

served when the factor of cos 8/cos e' is removed from R. The greater
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polar angles of incidence equal to 10, 30, and 60 degrees. SPR and

directional reflectance measurements are higher for the A-4 sample than

for the A-5 sample. Further!,uore, it was observed in Section 6.1.2 that

SPR measurements for the A-7 and A-8 samples were nearly equal. BDR

distributions, however, show that the A-7 sample scatters more than the

A-8 sample. Directional reflectance measurements for the A-7 sample

are higher than for the A-8 sample. Thus, if SPR measurements for these

four samples were normali;:'-ad with directional reflectance, the order of

this ratio would agree more favorably with BDR distributions. This

ratio could possibly be a better indication of the degree of scattering

by one rough surface in comparison with that for another rough surface.

This procedure was not undertaken in the present study since directional

reflectance measurements for all the samples were not available. SPR

measurements for the A-6 sample were observed not to agree with the rms

height correlation. for wavelengths longer than 2 }im. BDR distributions

confirm that this sample scatters more than the other aluminum alloy

samples with the exception of the A-9 sample:. 	 Directional measurements

for this sample are in agreement with the sequence of SPR measurements.

Based on these observations, the rms height value reported for the A-6

sample appears in error and should be intermediate to that for the A-8

and A-9 samples. The nearly wavelength independent behavior of SPR for

the G-6 and A-6 through A--9 samples for short wavelengths and near-normal

9 -	 1
k
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In Section 6.1.2 SPR characteristics were discussed by y r.ference to

surface roughness parameters rms height and rms slope as l ell as to opti-

cal roughness. Correlation of BDR distributions with rrese quanitities

is examined by first observing that for a given rough surface, scattering

increases as optical roughness increases. This is to be expected since

the only variable as optical roughness varies for a given rough surface

is wavelength. Influence of optical roughness,particularly for samples

of different substrate material, is further demonstrated by selecting

samples with nearly identical slopes and then comparing BDR distributions

for different optical roughness values. According to diffraction BDR

models E321, increased scattering should be observed as optical roughness

increases. Since rms slopes varied for each sample, an rms slope interval

was selected and BAR distributions for surfaces with rms slopes within

this interval were examined. The interval size must be selected so that

the influence of rms slope is not observed. The G-3, A-4, A-5, and S--7

samples exhibit nearly equal rms slopes, 0.108, 0.101, 0.104, and 0.105,

respectively. BDR distributions for these samples are shown in Fig. 6.14

for near-normal incidence. Results for other polar angles of incidence

are similar. The variable between the curves in this figure is optical

roughness. With the exception of the A-4 . sample, BDR distributions ex-

hibit an increase scattering as optical roughness increases. Thus,. for

prescribed rms slope, scattering increases with increasing optical rough-.

ness. The applicability of this conclusion to BDR'distributions for op-

tical roughness values greater than 0.25 remains to be evaluated.

Diffraction.BDR,models also suggest that for a, prescribed optical

roughness value scattering increases as.rms slope.increases. Since.very

few samples exhibited identical optical roughness values for BDR

d
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Sample rrm/a mm Sample a-MA mm
A-4 0.191 0.101 — — -- 0,157 0,104
S-7 0.245 0.105  S-7 0.0994 0.105
G-3 0.239 0.108

—
	 IA-5

—•	 G-3 0.0968 0.108—__
0.143 0.101 A-4 0,0773 0.101

J

A-4
A-5 0.209 0.104 -----	 A-5 0.0849 0.104
S-7 0.184 0.105
G-3 1 0.179 10.108

a,= 100

Acw = 0.0060 sr
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i distributions recorded, it was necessary to select an optical roughness

interval. The size of this interval was controlled by the desire of

examining only the influence of rms slope. Interval sizes of approxi-

mately ±5 percent centered about optical roughness values of 0.1 as well

as 0.25 and -112 percent for optical roughness value of 0.55 were selected.

BDR distributions for samples with -these optical roughness values are il-

lustrated in Figs. 6.15, 6.16, and 6.17 for near--normal incidence. The

variable on the graphs is rms slope. With the exception of two optical

roughness values (0.133 and 0.156 in Figs. 6.15 and 6.17, respectively),

scattering increases as rms slope increases. Thus, for two surfaces with

identical optical roughness values, the surface with the larger rms slope

is expected to scatter more of the incident energy. 'these observations,

as well as those discussed for SPR, establish the importance of specifying

rms slope.	 j

6.3 DIRECTIONAL REFLECTANCE MEASUREMENTS

Directional reflectance measurements were acquired with a heated

cavity:reflectometer similar to that described in C721. Basically, this

-	 reflectometer consists of a cavity whose walls are heated to a tempera.

ture of approximately 750 0C. Radiant energy within the cavity hemi- 	 F

spherically irradiates.a sample Yield by a . sample holder which is located

near the cavity center. A specular reference sample of platinum is at-

tached to the sample holder and is'.employed.'to...reduce errors caused by
_	 ;E

nonuniform cavity wall intensity. A viewing port allows a monochroma-

for and detector to receive reflected..energy from the 'sample contained

within a solid angle about direction of reflection. For uniform irradi-

ation of the sample, the ratio: of detector' voltage signals recorded when l
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Sample a'm A mm Sample a'm I X mm

_
G-4 0.101 0.133 _ _ _	 S-7 0.0994 0.105

------	 A-9 0.09' 7 0.216 G-3 0.0. 968 0.108
— — —	 A-3 0.0968 0.0443
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e' =10°
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t
Aw = 0.0060 sr
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Figure 6.15 BDR Distributions for Prescribed: Optical Roughness (Cy A ^' o.a.)
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Sample a"m A mm Sample o"m /X	 mm

G-6 0.251 0,274  f S-7 0.245 0.105
-»-----»---»--	 G-4 0.249 0.133 W 	 1G-3 0.239 0,108

— —. —	 S-4 0.240 0.0536
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Sample 6m A mm Sample a'm /x mmF

--	 G-6 0.618 0.274 — — ..	 A-7 0.529 0.156
--_-----	 A-9 0.494 0.216 •»-.__.__	 A-8 0.536 0.178

— --	 A-6 0.501 0.190 - - —	 G-5 0.559 0.142

I

0' = 10°	 I l''^ i
Lbw = 0.0060 sr

I'
i I
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the sample and reference are viewed is hemispherical -directional reflec-

tance. Imposing the Helmholtz reciprocity requirement for BDR, hemi-

spherical-directional reflectance is equivalent to directional-

hemispherical reflectance or,as referred to in this research,direc-

tional reflectance. The spectral range for the heated . cavity reflectome-

ter used in this research is 2.5 to 12 pm. Since finite size solid

angles are necessary and due to the requirement of a viewing port, polar

angles of incidence within the angular range of 20 to 60 degrees are

permissible. The accuracy of the reflectometer is estimated to be t2 or

3 percent. Since cooling of the back side of the sample is necessary

to maintain the sample surface at room temperature, directional reflec-

tance for the glass samples which might possibly break and allow water

in the cavity could not be acquired with the reflectometer. However,

conclusions derived from measurements for the metallic samples are ex-

pected to be applicable to the glass samples.

Directional reflectance measurements for the aluminum alloy and

stainless steel samples are displayed in Figs. 6.18 and 6.19,

'	 respectively, as a function of wavelength for polar angles of inci-

dence equal to 30 and 60 degrees. Measurements were acquired for polar

angle of incidence equal to 20 degrees but, as is discussed later, are

indistinguishable from those for 30 degrees. Directional reflectance

for the A-2, S-1, and S-8 samples are similar to those for the A-1

sample shown in Fig. 6.18. The accuracy of the .heated cavity reflec-

tometer was examined by comparison of directional reflectance for the

A--1 sample with smooth surface SPR presented in Fig. 6 .1. The differ-

ences observed between these measurements are-less . than 1 percent with

a few data points particularly at polar angle. of incidence equal to 60	 ^
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degrees exhibiting differences of about 2 percent. Although some di-

rectional reflectance -trends have been cited in conjunction with the

discussion for SPR and BDR, additional trends may be noted. In agree-

ment with SPR and BDR, rough surface directional reflectance approaches

that of a smooth surface as wavelength increases. Increasing surface

roughness results in decreasing directional reflectance. However, as

observed at a wavelength of 2.5 pm, directional reflectance for the

roughest sample (A-9) differs by less than 10 percent of smooth surface

SPR. Except for the A-5 through A-9 samples for wavelengths shorter

than 3.7 pm, directional reflectances are nearly identical for polar

angles of incidence equal to 20 and 30 degrees and show a decrease for

60 degrees. Directional reflectance for the A--6 through A-9 samples

at wavelengths shorter than 3.7 pm and for polar angle of incidence

equal to 20 degrees are lower than those for 30 degrees by approxi-

mately I percent, With the exception of the S-8 sample and the A-7

as well as A-B samples whose results nearly coincide, directional

reflectances are order with SPR.

As observed in the previous two sections, SPR and BDR measurements

could be correlated with optical roughness and rms slope. Similar cor-

relations were examined for directional reflectance measurements by.plot-

ting these measurements versus optical roughness as shown in Fig. 6.20

for.polar angle of incidence equal. to 30 . degrees.. it is.observed.in.

this figure that directional reflectances-decrease as optical roughness

increases and . exhibit_a . tendency to-be ordered n.sequence.with...rms

slope sor the largest opt cal'xoughness values presented for each sample.

This hatter trend is applicable when samples of different .substrate ma-

terials are compared and is particularly evident for the four roughest
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Symbol Sample m'm,µm ma,.

0 A-3 0.145 0.0443
1^1 A-4 0.286 0.101
0 A-5 0.314 0.104
v A-6 0.751 0.190
<o A-7 0.794 0.156
o A-8 0.804 0.178
a A-9 0.987 0.216

i V	 ikd	 J.
a-m / A

(a) Aluminum alloy samples

1

Symbol Sample O'm, Elm mm
0 S-2 0.109 0.04.10.
0 5-3 0.134 0.0395'
a S^-4 0.240 0.0536
v S-5 0.251 0.0883
v 3-6 0.279 0.0798
o S-7 0.368 0.105
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aluminum alloy samples. Directional reflectance measurements reported

.^	 by other investigators [4,73] for samples with different rms heights

do not exhibit this trend. However, rms slopes which were not reported
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7. EXAMINATION OF A BDR MODEL

It is the purpose of this chapter to compare the Beckmann BDR

model discussed in Chapter 4 with reflectance measurements reported

in the previous chapter. As noted in Chapter 4, the Beckmann model

is limited to perfectly conducting materials and the method employed

to account for energy absorption consists of multiplying the results

for a perfect conductor by smooth surface SPR. It has been suggested

[32,361 that rough surface directional reflectance be used in this

method. Since smooth surface SPR and rough surface directional re-

flectance differ by less than 10 percent as observed in Chapter 6,

the method employed here represents a reasonable approximation to ac-

count for energy absorption. Examination of the expression for abso-

lute BDR, Eq. (6.2.1), reveals that the first bracket term can be

associated with the-magnitude of reflected energy, whereas the second 	 ^.

bracket term describes -the spatial distribution of reflected energy.

The Beckmann model, therefore, is examined for its applicability to

represent the magnitude and spatial distribution of reflected energy.

if the model satisfactorily predicts the spatial distribution of re-

flected energy but not the magnitude, then SPR measurements could be

utilized for the magnitude of reflected energy. It should be noted.

that the quantity of measurements and necessary equipment for SPR are

far less than for BDR. 'Predictions of the Beckmann model are. compared f

with rough surface SPR and BDR measurements in Sections 7.1 and 7.2,

respectively.

7:1 'SPR COMPARISON

In order to compare the Beckmann BDR model with SPR measurements,

surface roughness parameters.rms height . and rms:slope-must be s.pecified.:

c of theAs observed in Figs 6.,8,, 6.9, and 6.10, the-specular component 	 ,
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Beckmann model exhibits only limited agreement with SPR measurements

when mechanical rms height is employed. Including the scattered com-

ponent evaluated with mechanical rms slope is not expected to signifi-

cantly improve the agreement between the model and SPR measurements.

Therefore, an optical method based on SPR measurements [24,25,323 was

utilized to evaluate surface roughness parameters. The parameters so

determined are referred to as optical rms height o o and optical rms
slope mo . At sufficiently Long wavelengths and small solid angle of
reflection, the contribution of the scattered component to energy re-

fleeted into the specular direction is negligible, and the expression

for SPR of the Beckmann model, Eq. (4.2.4), reduces to

Cr
^S 'r ( B,' , 

= exp - 47T ]^ cos

s,o

Thus, with SPR measurements, wavelength, and polar angle of incidence

specified, optical rms height , can be evaluated. For shorter wave-
lengths, both the specular and scattered components contribute to

energy reflected into the specular direction, and Eq. (4.2.4) can be

sowed for optical rms slope to yield

Aw(6 /7L) 2 P	
CO	

(CrC 	 A) P]2M

mo =	 °^	 exp {-[( ( Cr 	 P]2} 	 oM(M')
M = 1

v )	 1/2

iAs 'r0.4 ^ ,	 exp I-E(a0A) P12 	1.

	

}	 (7..2)
s,.ol	

}

where P = 4w cos 6 1 . With optical rms height determined, and polar

angle of incidence, wavelength, as well as solid angle of reflection

specified, optical rms slope can be evaluated from SPR.measurements.

Since previously reported studies [28,32] corr.elE.ted tire.. Beckmann

model with near-normal. incidence SPR and BDR,measurements, rough-

:
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surface SPR measurements reported in Figs. 6.2, 6.3, and 6.4 for polar

angle of incidence equal to 10 degrees were employed in the optical

method. Results of the calculations are presented in Table 7.1 for

glass, aluminum alloy, and stainless steel rough samples. Optical rms

heights were evaluated from SPR measurements for wavelengths longer

,.,	 than 11 pm and optical rms slopes from shorter wavelengths. The lat-

ter results represent average values [26,32] which gave reasonable

agreement between the model and measurements. Optical rms height for

the A-2 sample, however, was calculated from SPR measurements for wave-

lengths shorter than 5.0 pm and optical rms slope is not reported since

SPR measurements are adequately represented by the specular component.

Graphical comparisons of mechanical and optical surface roughness pa-

rameters are displayed in Fig. 7.1 where optical rms height is plotted

versus mechanical rms height and optical rms slope versus mechanical

rms slope. With the exception of five samples, optical rms heights are

smaller than mechanical, rms heights. Optical peak-to-valley heights

[68] which can be expressed in terms of optical rms heights are also

generally smaller than mechanical peak-to-valley heights. These ob-

servations are contrary to those reported by other investigators [26,

611 where, for metallic surfaces, mechanical rms heights are smaller

than optical rms heights. A possible explanation for the conflicting

trends is the method by which mechanical.rms height values.were ac-

quired. The present values as well as those reported in [681 were

evaluated from digitized surface profile measurements as discussed in

Chapter 5, whereas the other reported values [26, 611 were electronically

evaluated. Although results from the two methods are expected to bei^`

equivalent, no documentation appears to substantiate this conjecture.
i

Optical rms slopes are less than mechanical rms slopes by about the



Table 7.1

Mechanical and Optical Surface Roughness Parameters

Sample Ia 2Cf m 3 m 4
m o m o

G-2 0.270 0.265 0.0834 0.0109

G-3 0.358 0.323 0.108 0.0139

G-4 0.374 0.491 0.133 0.0208

G-5 0.837 0.708 0.142 0.0366

G-6 0.927 0.950 0.274 0.0536

A-2 0.0570 0.0309 0.0238

A-3 0.145 0.174 0.443 0.00919

A-4 0.286 0.233 0.101 0.0422

A-5 0.314 0.338 0.104 0.0298

A-6 0.751 0.666 0.190 0.0643

A-7 0.794 0.564 0.156 0.0437

A-8 0.804 0.559 0.178 0.0432

A-9 0.987 0.842 0.216 0.0665

S-2 0.109 0.0800 0.0410 0.0250

S-3 0.134 0.133 0.0395 0.0149

S-4 0.240 0.246. 0.0536 0.0147

S-5 0.251 0.238 0.0798 0.0202

S-6 0.279 0.241 0.0883 0.0207

S-7 0.368 0.306 0.105 0.0247

S-8 0.496 0.343 0.0300 0.0130
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factor 4. fart of this difference could be attributed to the method of

determination of optical rms slope. Agreement between optical and mechani-

cal rms slopes could be improved but such adjustments reduce the correlation;

between the model and SPR measurements as is discussed later.
i

SPR measurements for polar angles of incidence equal to 10 and 30 de-

grees were correlated with the parameter (am
 /X) cos 0' as shown in Figs.

r
6.8, 6.9, and 6.10. Recognizing this correlation, SPR measurements for

polar angles of incidence equal to 10 and 30 degrees are plotted as a

function of the parameter (Crc/A) cos 0' in Figs. 7.2, 7.3, and 7.4 for

glass, aluminum alloy, and stainless steel rough samples, respectively.

Trends similar to those reported for (CT m/A) cos 0 1 are displayed in these 	
•'i

figures. Using optical rms height and rms slope values reported in

Table 7.1, SPR results were calculated from Eq. (4.2.4) and are illustrated

in Figs. 7.2, 7.3, and 7.4. The specular component given by Eq. (7.1.1)

is represented by a single solid curve, The sum of the specular component

and the contribution of the scattered component to energy reflected into

the specular direction as expressed by Eq. (4.2.4) is represented by broken

curves for polar angles of incidence equal to 10 and 30 degrees. Calculated

SPR values increase with increasing (a A) cos 0' for samples with optical

rms slopes less than about 0.025. The increase of SPR results is attributed

to the scattered component. SPR measurements for these samples do not dis-

play this characteristic. As expected, agreement between the specular com-

ponent and measurements is observed at the smallest (a
0 
A) cos 0 1 values for

t

	

	 each sample and is extended to larger values of this parameter by including

the scattered component. As optical rms slope increases, correlation ex-

tends to larger (a0/A) cos 0' values Contrary to what other investigators

have reported, speaitying.a (a /.A) cos 01 value to which correlation exists	 i

r	
between the model and measurements is insufficient information. Optical



9', Degrees
Sample 6o , /im mo10 30

0 0 G-2 0.265 0.0109
q M. G-3 0.323 0.0139
o A G-4 0.491 0.0208
O G-5 0.708 0.0366
v- G-6 0.950 0.0536



I

8; Degrees

Sample Q'o ,. t m ma.10 30
0 0 A-2 0.0309
o IN A--3 0.174 0.00919

® A-4 0.233 0.0422
O A-5 0.338 0.0298

A-6 0.666 0.0643
p A-7 0.564 0.0437
© A-8 0.559 0.0432
o •^ A-9 0.842 0.0665
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rms slope must also be reported in defining the range of application of

the Beckmann model. For reported SPR measurements, (a 0/A) cos e l values

for which agreement exists are less than approximately 27 m a. A slight

reduction of (a0 A) cos 9' values where agreement exists is observed for

polar angle of incidence equal to 30 degrees. For larger polar angles

of incidence, agreement between the model and SPR measurements is un-

satisfactory and further examination is required.

Optical rms slopes larger than those reported in Table 7.1 would

significantly improve the correlation at larger (a 0 A)cos 9' values for

each sample but yield poorer agreement for smaller values. This is il-

lustrated for the A-»9 sample in Fig. 7.3 for polar angle of incidence

equal to 10 degrees where optical rms slope was adjusted to equal 0.107

so that SPR results and measurements coincide at the two largest (aa/A)

• cos 0 1 values for this sample. For (co /A) cos 6 1 values between 0.1
i

and 0.5, agreement is unsatisfactory.. For the larger (a /A) cos 01

values, however, shadowing effec-,:s and multiple reflections which are

not accounted for by the model become increasin%ly important. Thus, it

is more appropriate to select optical rms slope from SPR measurements

for smaller values where the validity of the model is . open to less

criticism.

7.2 BDR COMPARISON

In order to compare BDR distributions predicted by the Beckmann

model with BDR measurements presented in Chapter 6, surface roughness

parameters rms height and rms slope must be specified. 'There are
I

basically three methods for selection of surface roughness parameters

for use in the model. The first method uses mechanical rms . heights and.

rms slopes reported in gable 5.1. For both the second and third methods,
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the optical rms heights reported in Fable 7.1 are employed. For the

second surface roughness parameter, optical rms slopes evaluated for

each wavelength as expressed by Eq. (7.1.2) are utilized in the second

method,whereas average optical rms slopes given in Table 7.1 are used

in the third method. A fourth method which was not considered in the

present study consists of a trial and error selection of surface rough-

~ ness parameters. Results calculated from the Beckmann model for the

three methods are compared in Fig. 7.5 with BDR measurements for the

A-4 sample at polar angle of incidence equal to 10 degrees and wave

lengths of 1.5 and 6.2 pm. Only results for the scattered component

are displayed and, therefore, R for the Beckmann model is expressed as

_ f(e' 9^'' ^e=} cos
sc	

. @ Aw

R - fsp (8'	 fse	 ;9,0' ' 10 , + TO cos 8' aw	 (7.2.Z)

At the shorter wavelength (h = 1.5 jim), R for the Beckmann model is

nearly unity in the specular direction which implies that the scattered

component dominates. The scattered component in this instance repre-

sents 99.6 and 97.3 percent of reflected energy when mechanical and

optical rms heights are employed, respectively. At the longer wave-

length (X - 6.2 pm),the specular component accounts for 72..2 and 80.5

,r percent of reflected energy for mechanical and optical rms heights, re-

spectively. Results calculated at.the longer wavelength using mechani-

cal surface roughness parameters display significantly more scattering

than that indicated by the measurements,. At the shorter wavele ngth,

results calculated using these parameters display more scattering for

polar angles of reflec =tion in the vicinity of the specular,direction

and less scattering at angles removed from this direction. Results for

optical surface roughness parameters evaluated using the second and

4A^



— Measurements

Beckmann BDR Model-Scattered Component

------ a'm = 0.266µm .—.,—.... tro = 0.233 gm
mm = 0.101 mo = 0.0465

...».o..._ a-a =0.233 µm mo = 0.233 gm
mo =0.0422 ma = 0.0438

A-4 Sample
0' =10'
Aw = 0.0060 sr

;A = 1.5 µm
a'm /A = 0.191

a'o /A = 0.155

I
A = 6.2 µm -- -,
6m /A = 0.0462
Go A =0.0376

I

x.0-1

R

10-2
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third methods exhibit reasonable agreement with BDR measurements at the

longer wavelength. Agreement exists at the shorter wavelength, however,

only for polar angles of reflection near the specular direction and the

model displays less scattering at other polar angles of reflection. Of

the three considered methods for selection of surface roughness parame-

ters, the second method based on optical rms height . and optical rms slope

evaluated at each wavelength yields BDR distributions that adequately

describe BDR measurements. The agreement, however, is limited to nearly

specular reflection BDR distributions. It should be recalled that SPR

results from the second method correctly represent SPR measurements for

polar angle of incidence equal to 10 degrees and satisfactorily repre-

sent SPR measurements for 30 degrees.

Using optical rms heights reported in Table 7.1 and optical rms

slopes evaluated from SPR measurements for each wavelength, BDR distri-

butions were calculated from the Beckmann model.. Representative BDR

distributions for the G-3, A-3, and S--7 samples are displayed with cor-

responding BDR measurements in Figs. 7.6, 7.7, and 7.8, respectively,

for polar angles of incidence equal to 10, 30, 60, and 80 degrees. Only

results for the scattered component are displayed since the specular

component does not contribute at polar angles of reflection outside a

+5 degree. angular interval.of the specular direction. BDR distributions

calculated from the-Beckmann model adequately represent BDR measurements

for wavelengths longer than .those. shown in these figures and deviate Sig-

E

nificantly for shorter wavelengths. As polar angle of incidence increases,
E

there is a decrease in the degree of correlation between the.model and

measurements. ; The scattered component for polar angle of incidence equal.

to 60 degrees is observed to exhibit maXima at polar ang-les of

r -	 T
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reflection smaller than the specular direction. DDR measurements do not

exhibit this characteristic. The lack of correlation with increasing polar

angle of incidence is offset by a decrease in the amount of reflected

energy represented by the scattered component. At a polar angle of inci-

dence equal to 80 degrees, the specular component accounts for approxi-
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8. SUMMARY AND CONCLUSIONS

An experimental study of surface roughness effects on bidirectional

reflectance of metallic surfaces has been reported. A facility capable

of irradiating a sample from normal to grazing incidence and recording

plane of incidence bidirectional reflectance measurements was developed.

Samples consisting of glass, aluminum alloy, and stainless steel materials

were selected for examination. Samples were roughened using standard

grinding techniques and coated with a radiatively opaque layer of pure

aluminum. Mechanical surface roughness parameters rms heights. and rms

slopes evaluated from digitized surface profile measurements were less

than 1.0 um and 0.28, respectively. Rough surface specular, bidirectional,

and directional_ reflectance measurements for selected values of polar

angle of incidence and wavelength of incident energy within the spectral

range 1 to 14 pm were reported. The Beckmann bidirectional reflectance

model was selected for comparison with reflectance measurements.

Several trends were evident from reflectance measurements. First,

as wavelength increased, rough surface monochromatic reflectances (specu-

lar, bidirection4l,.directional) approached the values appropriate to the
u

corresponding reflectances of a smooth surface at the same direction of

incident energy. Second, the influence of direction of incident energy on

rough surface monochromatic reflectance may be summarized as follows. At

short wavelangths,specular reflectance increased . with polar angle of inci	 x--

dent energy throughout the entire range of polar angle of incidence in-

vestigated:.(1.0.to.80.degrees).. Although . -the . same trend was evident at

long wavelengths, it was limited to polar angles of incidence from 10 to

60 degrees; for larger angles; specular: reflectance `decreased:as polar'. 	
I

angle of incidence:varied from 60 to 80 degrees. Bidirectional. reflectance 	 ^
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approached that of a smooth surface as polar angle of incidence varied

from near-normal to near-grazing incidence. Directional reflectance was

invariant with polar angle of incident energy for polar angles of inci-

dence less than 30 degrees and decreased as polar angle of incidence was

increased to larger values. Third, surface roughness significantly in-

fluenced the reflectance properties of the materials. Monochromatic specu-

lar and directional reflectances diminished as surface roughness increased

with this trend being more pronounced at short wavelengths than at long

wavelengths. Bidirectional reflectance measurements confirmed that as su p-

face roughness increased, the distribution of reflected energy departed

from that of a smooth surface to a distribution with significant amounts

of reflected energy in directions of reflection other than the specular

direction. The spatial distribution of reflected energy, however, con-

tinued to be concentrated in directions of reflection not very far re-

moved from the specular direction for the rough surfaces examined.

Fourth, convenient parameters for examining the influence of surface

roughness on reflectance measurements are optical roughness and mechani-

cal rms slope. Optical roughness is defined as the ratio of mechanical

rms height to wavelength of incident energy and has values less than unity

for the rough surfaces examined. As optical roughness decreased, rough

surface monochromatic reflectance asymptotically approached that of a

smooth surface. As optical roughness increased, specular and directional

reflectances decreased and the influence of mechanical rms slope becomes

more apparent. For the larger values of optical roughness, specular and

directional reflectances are ordered according to Mechanical rms slope

with smaller reflectance values corresponding.to larger rms slope values

5pecular reflectances for polar angles of incidence equal to 10 and 30

<s
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degrees for each sample lie along a single curve when plotted as a

function of the parameter formed by multiplying optical roughness by

the cosine of polar angle of incidence; for .urger angles, specular

reflectances deviated considerably from this correlation. Bidirectional

reflectances for rough surfaces with nearly identical mechanical rms

slopes demonstpated that as optical roughness increased, greater amounts

of reflected energy are found in directions of reflection further re-

moved from the specular direction. Rough surfaces with nearc-ly identical

optical roughness displayed a corresponding trend as mechanical rms

slope increased. These conclusions illustrate the importance of report-

ing surface roughness parameters rms height and rms slope in experimental

studies similar to that presented here.

The Beckmann bidirectional reflectance model was compared with re-

flectance measurements to establish its usefulness in describing the mag-

nitude and spatial distribution of energy reflected from rough surfaces.

T	 Comparisons reveal several general conclusions. First, specular and bi-

directional reflectance results calculated from the model using mechani-

cal surface roughness parameters dial not agree with the corresponding

monochromatic reflectance measurements. Specifically, bidirectional re-

flectance results evaluated at Long wavelengths displayed greater amounts

r	 of reflected enerrgy'in directions of reflection other than the specular

direction. At short wavelengths, a similar trend is evident but is limi-

ted to directions of reflection near the specular direction; at larger

directions of reflection, results evaluated from the model exhibited

smaller amounts of reflected energy. Second, a significant improvement

between predictions of the model and reflectance measurements is ob-

served when optical surface roughnness parameters were used in the model.

A,
a
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An optical method based on monochromatic specular reflectance measure--

-	 ments for near-normal incidence provided optical rms height and optical

rms slope evaluated at each wavelength. Optical rms height then re-

places mechanical rms height in the definition of optical roughness.

Average values of optical rms slopes calculated from those for each

wavelength were used to evaluate specular reflectance results from the

model. Agreement between the results calculated from the model using

optical surface roughness parameters and reflectance measurements is

summarized in the following observations. Monochromatic specular re-

flectance measurements for polar angle of incidence equal to 10 degrees

are adequately described by specular reflectance results evaluated from

the model when values of optical roughness multiplied by the cosine of

polar angle of incidence are less than 27 times average optical rms slope.

Results for polar angle of incidence equal -o 30 degrees exhibited a

slight reduction in this limiting value, and a lack of agreement is ob-

served for larger polar angles of incidence. Bidirectional reflectance

results calculated from the model using optical .rms height and optical

rms slope evaluated for each wavelength adequately represented monochro-

matic bidirectional reflectance measurements provided optical roughness

and optical rms slope are less than 0.05 and 0.02, respectively.

This study of surface roughness effects on bidirectional_ reflectance

has suggested several areas of further investigation. First, reflectance

measurements for optical roughness and rms slope values greater than those

reported would assist in further . . defining as well as extending the cited.

trends and correlations. Second, reflectance measurements for rough sur-

faces with diff event . coating materials as . well as without.a coating would.

aid in further understanding and defining the influence of the various
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