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ABSTRACT

The well known relationship between gauge invariance and current. con-
servation is exhibited within the usual quantum mechanical formalism. It
is then shown that thé use of Gauge Invariant Atomic Orbitals does not
necessarily lead to the expected current conservation. The reason is found
to lie in the constrained nature of the gauge invariance which is provided
by the use of GIAO's. It is concluded that this invariance is, of itself,

no argument in favor of their use.
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I. INTRODUCTION

If one views the Schrgédinéer equation from the point of view of
Lagrangian field theory, then there is a welllknownl connection between
gauge invariance and current.conservation. In the next section of this
paper we will establish a similaf connection within the ordinary qﬁantum
mechanical formalism. In the third section we then show that the usg'of
gauge invariant.atomic orbitals (GIAO's)2 does not necessarily lead to
the expected current conservation, and the reason is discussed. This
then leads us in the fourth section to examine in detail the nature of
the gauge invariance which is provided by the use of GIAO's. We conclude
that, contrary to what is probably the generally accepted view, this in-
variance is, of itself, no argument in favor of their use. The body of
the paper is concerned with static fields and with energy eigenfunctions.

An appendix is then devoted to a discussion of time dependent situations.
II. GAUGE INVARIANCE AND CURRENT CONSERVATION

We consider the problem of N non-relativistic electrons moving in
external static electric and magnetic fields, and we confine attention
to energy eigenstates. We now mqke use-of the following gepefal criterion
of invariance: Since the formalism of quantum mechanics is invariant to
unitary transformations of wave functions, one will have invariance to
particular transformations if these can be shown to lead to unitary trans-
formations. It is well known that gauge transformations meeﬁ this criterion.

Namely if the vector potential undergoes a gauge transformation
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where ‘7\ is some real function, then the wave function undergoes the

unitary transformation
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and correspondingly the Hamiltonian also undergoes a unitary transfor-

mation
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where (we use atomic units and ¢ is the velocity of light)
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In particular we will be concerned with families of gauge transformations

MP) = T & N

(4)
where the Eé& are arbitrary real numbers, and where the ER(X are
some given real functions.
>, o
If now we expand H’C A-? ih powers of the C"‘.,( we find through

first order in the E\g_
WA =W(R) —v TA WYy -~m (5

where [ , ] denotes the commutator. Then from first order perturbation

. . R
theory, the first order change in the energy is given bY"ggréhﬁffﬁy

where
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and where
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However since (2) is a unitary transformation of ey » the energy is

(*
gauge invariant, whence EE@{ must vanish. Therefore we must have

(v (B, L A WIEYTNGE) =0 7)

which is of course true since W CXP) \}“C:"};%) = 'E'\VCZ?) . Thus
the hypervirial theorem3 (7) can be viewed as being a consequencé of
gauge invariance.

It is now easy to show, after some integrations.by parts, that (7)

can be written as

tgfaﬂt 13?~;f"“kw< =0. K (8) -

where -ﬁ»'is the one-electron current. Then since (8) is to hold for

all >\ ot we have

= .
V4] =0 )

i.e., current conservation.4
So far all our discussion has concerned exact wave functions. We
now quote two relevant results for variational wave functions:
(i) 1I1f thé'set of trial functions #s invariant to tﬁe set of gauge
-4 D

transformations € then5 the optimal trial functions will

satisfy the hypervirial theorems (7) and hence (8).
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(ii) We will have gange invariance in the sense that if we use this

-
Same set of trial functions with both @*(/%> and G‘()?') then6 we

R AT 8

will get the same energies,: and also the opt1ma1 trial functions will be

related by formulae 11ke (l) R
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In partlcular 1t 1s ‘eagsy to show7 that unrestrlcted conpled Hartree-
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Fock theory meets these conditions for all :\9{ R and;indeed in this
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theory the energies are gauge invarlant, and the one’ electron current is

'8
.conserved.ib,However 1n mostfvarlatlonal calculations this will not be
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For clarity we will consider a very simple system.‘ a single electron
moving in- the field of two fixed centers, and in a uniform magnetic
< - £ e _ U~ o TRy
field B . Further, in accord with what seems to be the custom in quantum
chemlstry, we will confine attentlon to .3 very speclal class~of _gauge
crron A L u.\ v.,; o Tiy e el IS L ] .
transformations. Namely for the vector potentialvye-take
2 | e e T .
R A p=-3 i gx ﬁh PR ~;" N (10)
and then confine attention to the gauge transformatlons
cEan TR ZI —3 e
RIS ' BXw“ + V é,( - (1)
L$T:;:w.J1 B I;xc:;: Troe e N VS e T N
where d 1s an a; b1trary constant vector. From (ll) we ‘have
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* ‘Now since the use of GIAO's is known to give gauge invariant energies
(we discuss this further in the next section) ene might suppose, from

our earlier discussions, that one would necessarily have

R L

We will now show. that this is not the case.

First we consider (18). One readily finds that

. ) | | |
(v y Ta ) = (\4") (P'g; + %%) b ) Al (_4?1)'(9%«9—'}._;%) b)+

| b%%% | | | |
t [d ( fs’f,; € s +’.g%) *‘?z} +c, c.] (19)

o

Our assumption that 47 and ﬂiﬂ are s-states then makes the first

' ‘line of (19) vanish, and allows the second line to be written as

]G (we—%) wm». %(ww@ﬂ

We”nOW note that for B = 0 the'expre331en in the;brackets becomes

— (!.», zcb
’ TE

which in general doesn't vanlsh. Therefore.(19) will in general vanish

only if is real. .



We now turn attentlon to C%J N¢sq F%J%> . Then assuming 5&

. real and invoking the symmetry of C%l and C%bu— one readily finds

~ that ' )

| m;; B =20t B (PR, "B%‘ \%mne

+ W QM %) }+(&> J@MB&M
and in order for this to vanish the bracket must vanish (unless OL ﬁz@)

whlch seems unllkely. In partlcular if we expand in powers of B the

leading term in the bracket is

—— [4 o (' ) % N p
T E} “Tffe) %%' Cdi L~ L Cﬁ:;);l , .
.and there seems no reason for even this to vanish, and indeed a calculation
. with Gaussians

T -\ Cv{v' "V %V -
b ek e £O m e

uh/ﬂ
(R~&"
T el )
Lot .
. yields a non vanishing result (unlees é? '=~3r ) . Therefore we conclude

that in this particular example_we_eannop.have,both_(17)«and (18), and
hence we conclude that in general the use of GIAO's does not guarantee
such theorems.
-

The reason for phis_failure_is”hot-hard to find. As stated in (i)
of Section II, the theorems will hold if,phe se; of trial functions is
) 1nvariant to the approprlate gauge transformatlon However ourgset,

46 -

which (fer fixed ot K 4% ~ and 4t?’ ) conslsts of the 51ng1e function

&y
%{*” , evidently changes under the gauge transformation (12): Namely

from (15) we have
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Thus the condjtions off(i)-axe not met and eo_the theorems don't hold,]"z

_Another, eqpivalent, :eaeon for failure, one which makes qirect
contact with (6) (the argument above of course dealt directly with (7,
~1s the following: First order nerturbation theory in'the‘fo:ﬁ of'eqoav

‘tion (6), is a speciai case_of the genexalized Hellmannerynmap theorem
. for’the parameter -‘;d ,> Now ome knows that this theorem vill also
. hold in variational calculations provided that the set of trial funqtions
isvindependent of the | éaﬁ K Evidently this is not the'casq here.,

Thus the fifst ordep»energy change is not given hy a formula like-(G)

R but rather by one whioh contains extra terms, and therefore although tha

first order energy change does vanish in accord with gauge invariance,
that vanishing does not lead to (7) - A |

Ihese cpnsiderations naturally raise the question'v what then is the'
..nature of the gauge invariance which is provided by the use of GIAO 8?

It is this question that we now turn. .

1V, GILAO'S AND GAUGE VINVARIAN.CE»

A A > S . .
Clearly the fact that ﬂ’ changes with A, the fact which led

to the failure in the previous section. is precisely the featuxe of
w*fbh which leads to. the gauge invariance of the energy. Thos the
‘tpansformation (21) is exactly the transformation (1) (for a one electron

' problem) and hence one hag
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i.e., the energy is gauge invariant. However having recognized that the

gauge invariance is guarénteed by the way in which the orbitals éhange
with gauge,14 we then note that by a similar device we can make any
_ calculation equally ‘gauge invariant. Thus for example consider instead »

of q*n the functioen

- P20 T P 2
o “z KR+ A ALE
1/ = € Qi + d€ s < #{hn
where f& and (29 are any given vectors. vThgn since we have

4 —
F. e T ¥
"a calculation based on :F' will also yield a gauge 1nvariant energy.;
In particﬁlar'if we choose f; = £ = 0 then. evidently we could con-'
clude that even the use-of simply |

RS 5 |
with A= -3 Bx¥ and e © (’Q +d b)) otherwise will yleld gauge
invariant results.

More .generally it is clearly always possible to get such, what we

might call "enforced gauge invariance" or "constrained gauge invariance",

for the energy calculated using anj set Qf trial functioné:whatsoever‘in‘ h
anz.one gauge simply by changing the,trial-function appropriately as one
changes gauges (or equivalently, by always returning to the original

gauge to do the calculation). PFurther it would seem that if one proceeds

15

in this way, and as we have seen in using GIAO's one does ﬁrecisely this,
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that then the resulting gauge invarrance should not be thought to lend"
any special credance to thercalculation since requiring it has simplyvled
to a spécified connectionéﬁétween the sets of trial functions to he used
" in dlfferent gauges.:;RathEr‘one’s';bpriori“expectations concerning the
'accuracy of the’ calcnlatlon, 1 e;, one' s a nriorl expectations concerning.
the phy51cal completeness of the set in any. one %3253; must clearly bev
ﬁbased on other consideratlons;h In contrast, if in the spirit of (1) and
(ii) of Sectlon II, .the set:of:trial-functions is'invariant to gauge
transformatlon§pthen equally clearly thls is a relevant plece of informa-
tlon since ev1dently it. does supply sone 1nformation concernlng the
lcompleteness of the set. -
Now 1n fact as 1s well knonn, there ‘is a_ real phySLcal basis for

mg\ 7%(@:) r%‘ ¢

Athe use of GIAO' s.( Theffunctlon  e A jis, through
»first order‘in' Br,lthe exact eigenfunction of a one-electron one-center
plus uniforn magnetic field problem whrch for-§n= 0 has | d?L as an
elgenfunctlon.lé. Moreover we would emphasize that nothing we have said
about ' constralned" orﬁ"enforced" gauge invariance should obscure tihs
point.” Rather we are saying that this, and not the resulting gauge
_invariance3 is what suggests that the use of GIAO's may be an effective
teol‘in>dealing with problems oflmolecnles in uniform magnetic fields.
VOnche_other:hand{,of course, the failures which we have discussed are
”alsonreal ano,should be weighed in the judgement.

an Returning te our special.example,:since any choice of Ei and
$o will yield a gauge invariant energy>:'qwhich however depends on }?:

Y o . -> '
: _and 5 ) it is natural to ask for the best jz and %, in the
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sense of the variation principle. To find out @efof cou#se'simply let ‘
' = - S . ’ ‘
;z and 5&. be variationalAparametens. I;_issthen of interest =
to,note:that the resultant set of'trial functions is now invaniant"to |
! ' Y S
- B » L) :
gauge transformations since 4P _ can be gotten from ﬁf by
) v < .? B -V‘” ..
replacing f' . and g.,_ by f»*é and SFd respeqtively.,
'so that a gauge transformation simply turns. one trial function into.
7:'another Thus from (i) and (il) of Section II it follows that by intro~>'

ducing th1s extra freedOm17 we will ensure that (17) anq (18) are now

satisfied (ev1dently therefore in our example the optima; g; andf;,

‘are not (0,0 0) and (0 0 WR)), and ‘also we will still have gaugq 1nvariant .

"energies and properly gauge variant wave fpnctions, but now in aq un—-
forced way (one uses'thevsame set of-trialrfunctionsfin all gauges) rather 7i

than by constraint.
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- APPENDIX

Although in the body of the paper we are concerned only nith station=-
ary states it would seem useful to add some comments on the time depeqqeﬂc-'
case. Here under a gauge transformation the vector and secalar potentiﬁls

change according to
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Again invariance is eXpressed by the fact that the wave function undergoes

a nnitary transfornation
)l =LA e N
PR, § e \},"M) 2] B (A:zf):‘_

‘and correspondlngly

H’Cﬁ' & “}LA §)€ .;—,L?& - ’-_._‘(A-'a:)'
. a0
where 0
_ A = > 'i
=

If now we choese.
NP = = 6 ™ C?-f)'

then the analogue of the result (6) for the first order energy change is
h prov1ded by the tlme dependent Hellmann—Feynman theorem18 which yields
a relation between the change in \¥5' and the change in H , due to a
change in a parameter, whatever the nature of that change may be. As wep
:have emphasized, gauge - invariance is expressed by the particular nature
of the changes(&ﬂ) and(Aé@, in particular by the fact thatG»Q) is a unitary

'transformatlon For our particular case . then the general theorem

"‘:Lcn\/,zbﬁy—(uy ¥

dt
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where <~ 1is a real parameter yields
A ~ (% a4l [ |
Sy ‘I\o'-“() = (¥ %%; )+ 0T Ade) e

This result, a special case of the generalized Ehrenfest's theorem or
time dependent hypervirial theorem, is of course a well known consequence
of the Schr'c;edinger equation. However we now see that it can also be
regarded as a consequence of gauge invariance, and evidently in the time h
;!\dependent case, and with the Go& =0, it reduces to (7). Further it

is easy to show that (A-4) can be rewritten as

¥ ( ¥ T ) )\ =0 (A-5)
J97 (22 + 9.7 ) 2

where f is the one electron density. Then since (A-5) is true for

all \o{ we have
28 4§y =0
ot
i.e., current conservation.
All this is for exact wave functions. For variational wave functions
one .can showl9 in complete analogy to the static case, that if the set
of trial functions is invariant. to the set of gauge transformations then
the optimal trial functions will satisfy (A-4). This condition is met

by unrestricted coupled Hartree-Fock theory for all ‘)\g( and hence

one has current conservation in that theory.
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