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ABSTRACT

The well known relationship between gauge invariance and current,con-

servation is exhibited within the usual quantum mechanical formalism. It

is then shown that the use of Gauge Invariant Atomic Orbitals does not

necessarily lead to the expected current conservation. The reason is found

to lie in the constrained nature of the gauge invariance which is provided

by the use of GIAO's. It is concluded that this invariance is, of itself,

no argument in favor of their use.
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I. INTRODUCTION

ii
If one views the Schroedinger equation from the point of view of

i i
Lagrangian field theory, then there is a well known connection between

gauge invariance and current conservation. In the next section of this

paper we will establish a similar connection within the ordinary quantum

mechanical formalism. In the third section we then show that the use of

2
gauge invariant atomic orbitals (GIAO's) does not necessarily lead to

the expected current conservation, and the reason is discussed. This

then leads us in the fourth section to examine in detail the nature of

the gauge invariance which is provided by the use of GIAO's. We conclude

that, contrary to what is probably the generally accepted view, this in-

variance is, of itself, no argument in favor of their use. The body of

the paper is concerned with static fields and with energy eigenfunctions.

An appendix is then devoted to a discussion of time dependent situations.

II. GAUGE INVARIANCE AND CURRENT CONSERVATION

We consider the problem of N non-relativistic electrons moving in

external static electric and magnetic fields, and we confine attention

to energy eigenstates. We now make use of the following general criterion

of invariance: Since the formalism of quantum mechanics is invariant to

unitary transformations of wave functions, one will have invariance to

particular transformations if these can be shown to lead to unitary trans-

formations. It is well known that gauge transformations meet this criterion.

Namely if the vector potential undergoes a gauge transformation
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where X is some real function, then the wave function undergoes the

unitary transformation

*"

and correspondingly the Hamiltoniah also undergoes a unitary transfor

mation

VV (A*) - (2)

where (we use atomic units and c is the velocity of light)

In particular we will be concerned with families of gauge transformations

•* (4)

where the ^J^ are arbitrary real numbers, and where the /^ o( are

some given real functions.

If now we expand rV^A'^ *h P0*7618 of the £^{ we find through

first order in the

where [ , ] denotes the commutator. Then from first order perturbation

T S> ~ty
theory, the first order change in the energy is given by £* c^ £y

o<

where
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and where &

A* - e fr ** ^
tt ^

However since (2) is a unitary transformation of Pr , the energy is

gauge invariant, whence *-«£ must vanish. Therefore we must have

I Ad U U)J^A) ) -=-0 (7)

which is of course true since Vst C A •) ̂ C& } ::i ̂ "̂ ^̂ J) • Thus
3

the hypervirial theorem (7) can be viewed as being a consequence of

gauge invariance.

It is now easy to show, after some integrations by parts, that (7)

can be written as

~where j is the one-electron current. Then since (8) is to hold for

all Ac* we have

•̂  ̂V a \ "̂ -G
J U (9)

4
i.e., current conservation.

So far all our discussion has concerned exact wave functions. We

now quote two relevant results for variational wave functions:

(i) If the set of trial functions is invariant to the set of gauge
5

transformations & then the optimal trial functions will

satisfy the hypervirial theorems (7) and hence (8).



(ii) We will have gauge invariance in the sense that if we use this

same set of trial functions with both "'A/ and *•' Mf, / -. the.n we

will get the same energies,-and also -the optimal trial functions will be

related by formulae like (1).
ar •••rS'i'^.iu- erfi /. "?'-•'• ic> i^ir: '•:-;-.;<••->:•. <v;'-:?.'; ;/jts.ila:j & B/.- U) 3%n.:.rt M3V3>ao.n

In particular it is easy to show ' that unrestricted.coupled Hartree-
'.:;• ^sij;;: *.-~.r £j"jo'i . r :Vr'i . i i l ' .-.[air. •?'« j -^Lf _.j ••"-" sio.rrsrfv/ c;fn:J..;^r:fcv^.i a.viT.i;.

Fock theory meets these conditions for all Ao< > and indeed in this

theory the energies'-arfe 'gauge' invar iah't,-;iarid -'the^ brie -'el'e'ctron current is

8
conserved., ̂, ,How.ever in mps,t# variational calculations this will .not be

"• 9'-
the case. . f . . . .

III. GIAO'S AND CURRENT CONSERVATION •.,_-.-.•;•• .-.ŷ . : ;_;,,.--,.

For clarity we will consider a very simple system: a.single electron

moving in the field of two fixed centers, and in a uniform magnetic

field B . Further, in accord with what seems to be t'hfe custom in quantum

chemistry, we will confine attention to a very special class:;of gauge

transformations. Namely for the vector potential we take /

'.:*r >-v (10)

and then confine attention to the gauge transformations
- • • • ' > < f '

where d is an arbitrary constant vector. From (11) we have
33 "..: •. ej" ~ :' 'T-~ • ••. - ;'Yc -n.c r.-?. -• .'-.-.r.' --1-- - '>:£-, .": :•'- 1.-- ,..-.- •• '.
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Now since the use of GIAO's is known to give gauge invariant energies

(we discuss this further in the next section) one might suppose, from

our earlier discussions, that one would necessarily have

.--and

We will now show that this is not the case.

First we consider (18) . One readily finds that

fc

Our assumption that «£" and <fe^ are s-states then makes the first

-line of (19) vanish, and allows the second line to be written as

2C

We now note that for B = 6 the expression in the brackets becomes

which in general doesn't vanish. Therefore , (19) will in general vanish

only if 0̂  is real.



We now turn attention to Vy 1 '' ̂  Nf / • Then assuming C\

4'
j and -̂3̂ - one readily finds

that

l̂ u,*̂ ) °3-2»o& I (̂  //&̂ TO|»Ê ') ̂.T%.1 4-"'(4* ^̂ ""̂ l-Cn/t Ê  "VU/

and in order for this to vanish the bracket must vanish (unless 0? ^

which seems unlikely. In particular if we expand in powers of B the

leading term in the bracket is

' " life T C<b ' v* ^4> \ » f L /•" "I (20)
. . . . . . 3Z. L % ? 53= ) 4- C* G-f)%.! 1
. • • • • • - ' • - ' • • • • ' • • V g r • J ' 'l<~ / • * - « • • • • • •

.and there seems no reason for even this to vanish, and,indeed a calculation

with Gaussians

yields a non vanishing, result (unless & '̂ ~Q ) . Therefore we conclude

that in this particular example we cannot, have both (17) and (18), and

hence we conclude that in general the use of GIAO's does not guarantee

such theorems. '

The reason for this failure is hot hard to find. As stated in (i)

of Section. II, the theorems will hold if .the set of trial functions is

invariant to the appropriate gauge transformation. However our" set,

.which (for fixed <$ 9 T^ and 4'-̂ — ) consists of the single function

, evidently changes under the gauge transformation (12): Namely

from (15) we have
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1 12Thus the conditions of (i) are not; met and so the theorems don't hpld.

Another, equivalent , reason for failure, one which makes direct

contact with (6) (t;he argument above of cqurse dealt directly with (7)),

is the following: First order perturbation theory in the form of equa-

tion (6), is a special case of the generalized Hellmann^Feynman theorem

f 13
for the parameter **d. . Now one knows that this theorem will also

hold in v^riational calculations provided that the set of trial funĉ l̂ons

is independent; of the &ck . Evidently this is not the case here.

Thus the first orde? energy change is not given by a formuia like (6)

but rather by one which contains extra terms, and therefore although thp

first order energy change does vanish in accord with gauge invar iance,

that vanishing does not lead to (7).

These considerations naturally raise the question: what t̂ en is the

nature of the gauge invariance which is provided by the use of GIAO's?

It; is tĥ .s question that we now turn.

IV. G|AO'S AND GAUGE INVARIANCE

• ^ ' - ^ • - • ' - " ' . '
Clearly the fact that T changes with A , the fact which led

to the failure in the previous section, is precisely the feature of

A. • -which leads to the gauge invariance of the energy. Thus the

transformation (21) is exactly the transformation (1) (for a one electron

problem) and hence, one has



i.e., the energy is gauge invariant. However having recognized that the

gauge invariance is guaranteed by the way in which the orbitals change

14with gauge, we then note that by a similar device we can make any

calculation equally gauge invariant. Thus for example consider instead

of 4"* * the function

-4

where §., and f^ are any given vectors. Then since we have

$* -= t ** "V

a calculation based on ^f will also yield a gauge invariant energy.

In particular if we choose jPj •= §^, = 0 then evidently we could con-

clude that even the use of simply

-5- \ r> - >-is
with A = vJ&Tt-* and e ° C^1 V<* otherwise, will yield gauge

invariant results.

More generally it is clearly always possible to get such, what we

might call "enforced gauge invariance" or "constrained gauge invariance",

for the energy calculated using any set of trial functions whatsoever in

any one gauge simply by changing the trial function appropriately as one

changes gauges (or equivalently, by always returning to the original

gauge to do the calculation) . Further it would seem that if one proceeds

in this way, and as we have seen in using GIAO's one does precisely this,
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that then the resulting gauge invariance should not be thought to lend

any special credance to the.calculation since requiring it has simply led

to a specified connection:between the sets of trial functions to be used

in different gauges. Rather one's a priori, expectations concerning the

accuracy of the calculation, i.e., one's a priori expectations concerning

the physical completeness of the set jm any one gaugQ, must clearly be

"based on other considerations; In contrast, if in the spirit of (i) and

(ii) of Section II, the set: of:trial functions is invariant to gauge
" - '* { j • ' • ,. • • . : ' ' ' ' -

transformation^ then equally clearly this is a relevant piece of informa-

tion since evidently it does supply some information concerning the

'completeness of the set. '

Now in fact, as is well known, there is a real physical basis for

• " ' . • ' • " -i&ty)'̂ " . ' ; : '•
the use of GIAO's: The^function & ® ^l is, through
; ' • ' ' • ' - i * ' : " '
first order in B ., the exact eigenfunction of.a one-electron one-center

• "̂  «4teplus uniform magnetic field problem which for B = 0 has ^L as an

eigenfunction. Moreover we would emphasize that nothing we have said
, ' ! " ' ' ; "''

about "constrained" or "enforced" gauge invariance should obscure th>£

point. Rather we are saying that this, and not the resulting gauge

invariance, is what suggests that the use of GIAO's may be an effective

tool in dealing with problems of molecules in uniform magnetic fields.

On the other hand, of course, the failures which we have discussed .are

also real and should be weighed in the judgement.

-*•
Returning to our special, example, since any choice of ® and

^ ^J<&, will yield a gauge invariant energy .Which however depends on J>.

^ '- •£ -*and it ;is natural to ask for the best J and in the
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sense of the variation principle. To find out we of course simply let

& • ' • ' • • : '
and j^. be variational parameters. It; is then; of J

to note that the resultant set of trial functions is now invariant to
-* &! ••'•*'• V

gauge transformations since ^ can be gotten from j1 by

5replacing f and ^, by J\4-<i and 5>4̂  respeqtlve,ly

so that a gauge transformation simply turns one trial function into

another. Thus from (i) and (ii) of Section II it follows tl>at by

ducing this extra freedom we will ensure that (17) and (18) are now
I- • t'. • . i . ' • ' • • ' . ; • ' • • • • •' .•">•-; ri'«V ' • ' -df- ' • •'

satisfied (evidently therefore in our example the optimal f, and ^r

are not (0,0,0) and (0,0,R)), and also we will gt^ll have gaug^ invariant

energies and properly gauge variant wave functions, but now in an un-

forced way (one uses the same set of trial functions in all gauges) rather

than by constraint.
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APPENDIX . . ;

Although in the body of the paper we are concerned only with station-

ary states it would seem useful to add some comments on the time dependent

case. Here under a gauge transformation the vector and scalar potentials

change according to
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Again invariance is expressed by the fact that the wave function undergoes

a unitary transformation

~ •*•""• f of,
and correspondingly

c.
where «\

' " A "5, >(

If now we choose

"5*>C*;<t>^ £.

then the analogue of the result (6) for the first order energy change is
i~"-," '-"•- .. -. . • ••- ,. -.-. - • '••••• . • 18 ' - '
provided by the time dependent Hellmann-Feynman theorem which yields

a relation between the change in T and the change in H , due to a

change in a parameter, whatever the nature of that change may be. As we

have emphasized, gauge invariance is expressed by the particular nature

of the changes (jV̂ J and (frfyt in particular by the fact that (jtV-1̂  is a unitary

transformation. For our particular case then the general theorem
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where Q-* is a real parameter yields

f)
This result, a special case of the generalized Ehrenfest's theorem or

time dependent hypervirial theorem, is of course a well known consequence

of the Schroedinger equation. However we now see that it can also be

regarded as a consequence of gauge invariance, and evidently in the time

independent case, and with the €:$ = 0 , it reduces to (7). Further it

is easy to show that (A-4) can be rewritten as

JJ?-( V? ̂.;J ) Xrf =o (A-5>
>-c

where P is the one electron density. Then since (A-5) is true for

all /sot, we have

i.e., current conservation.

All this is for exact wave functions. For variational wave functions

19one. can show in complete analogy to the static case, that if the set

of trial functions is invariant to the set of gauge transformations then

the optimal trial functions will satisfy (A-4) . This condition is met

by unrestricted coupled Hartree-Fock theory for all AQ{ and hence

one has current conservation in that theory.
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