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JAMES A. EARL

Department of Physics and Astronomy
University of Maryland
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ABSTRACT

When charged particles move in a random magnetic field

superimposed upon a relatively large constant field, their

pitch angle distribution can be calculated to any desired pre-

cision by an iterative approximation pfoceedure. Improved know-

ledge of the pitch angle distribution and of the characteristic

time for relaxation of anisotropy leads to an accurate expression

for the coefficient of diffusion parallel to the mean field.



I. INTRODUCTION

Scattering of charged particle trajectories by random magnetic fields

controls the propogation of cosmic rays in the galaxy and in the solar system.

The basic microscopic theory of this phenomenon is very complete (Jokipii, 1966;

Hall and Sturrock, 1967; Hasselmann and Wibberenz, 1968), but the simplest

application of this theory to diffusion has met difficulties that are not re-

solved and the exploration of higher order transport phenomena has not yet

begun. One manifestation of the difficulties is the fact that two different

methods of calculating the coefficient of diffusion parallel to the average

"dc" field give different answers. In the first method (Jokipii, 1966;

Hasselmann and Wibberenz, 1970), diffusive anisotropies, treated as a small

perturbation on the particle distribution function, are found by familiar

proceedures similar to those used in quantum mechanics. The second method

(Jokipii, 1968a), which involves an expansion of the distribution function as

a series of Legendre polynomials, embodies a well known and often used pro-

ceedure that is extensively discussed in standard references on transport theory.

Which method is correct?

To answer this question, this paper develops transport theory in terms of

eigenfunctions of the operator which describes pitch angle scattering (Section

II) . Many aspects of this treatment which are closely analogous to the standard

development in terms of Legendre polynomials will not be discussed in detail.

Instead, specific references to the volume by Weinberg and Wigner (1958) will

be given where appropriate.

In section III, diffusion is discussed with special emphasis upon the

important role played by the relaxation time for the lowest order anisotropic



eigenfunction. An exact evaluation of this parameter leads to a precise

expression for the parallel diffusion coefficient. However, it will be seen that

the diffusion coefficient obtained from perturbation theory represents a fairly

satisfactory approximation accurate enough for many purposes. The derivation

of the diffusion coefficient from a Legendre expansion leads to inaccuracies

which put severe limits on the validity of this approach. Diffusion

perpendicular to the average field is not affected by the considerations pre-

j

sented here? and, consequently, will not be discussed.



II. EIGENFUNCTIONS OF THE SCATTERING OPERATOR

Jokipii (1966) has demonstrated that pitch angle scattering can be

described by a Fokker Planck coefficient of the form

(1)

where p is the cosine of the pitch angle. The parameter A is given by

Vk q

A-h^'-S8-) <«R o

where o> is the relativistic Larmor frequency, and V and R are, respectively,

particle velocity and rigidity. The energy density contained in fluctuations

of magnetic-field components perpendicular to the average field of wave number

k in the interval dk is assumed to be Q (k /k)" dk so that Q represents the
XX O XX

spectral density at the reference wavenumber k . In an interplanetary context,

where spatial inhomogeneities convected by the solar wind past a satellite

observing platform give rise to temporal fluctuations of magnetic intensity

characterized by a power spectrum P(f) = P (f /f) , the parameter A can be
XX O

expressed as,

V V 2jtVf q
A = _w_ p <• - °) /3\
A
 02 xx V o> ' U'

R wo

where V is the velocity of the solar wind, and P is the spectral density
W XX

of perpendicular magnetic field components at the reference frequency f

(Jokipii, 1967; Jokipii and Coleman, 1968, Jokipii, 1971).

The Boltzmann equation can be expressed in terms of the Fokker-

Planck coefficient cp(u) as

df „ of 1 3 3f n - ...
SI" ̂ ^- 25^^ = ° (4)



where f(u,z,t) is the distribution function, z is distance parallel to the mean

field, and t is time. In the treatment that follows, the streaming term

uV3f/oz will be regarded as a perturbation which is usually but not necessarily

small. The equation

K

defines eigenfunctions R^Cp) and eigenvalues (2/T ) which are useful in describing

the time evolution of the distribution function. Physically, T is the
K

relaxation time required for an anisotropy proportional to R^ to decay by a

factor of (1/e). Sturm Liouville theory ensures that the R^ exist and form

an orthogonal set satisfying boundary conditions that the finite value

R̂ (l) = ± RjrC-l) and that R^CO) is finite.

In the spirit outlined above, we write Equation 4 as

_" — — - ffl) I '- ~ g (\L £ jy} (6 / •
ot 2 Ou yf-

where e is the perturbation and express both e and f as eigenfunction series

f = SfK(t, 2)̂ (11)

e = SeK(t,z)RK(u) (8)

where.the expression
+1

\ • ;i . (9)

which follows from the orthogonality of the R^ describes the coefficient e .

A similar expression gives the coefficients f-... Equations (7) and (8) can be
JX

inserted in equation (6) to yield, upon invoking the orthogonality of the R,



a set of independent equations for the coefficients f-.
IX

K

whose solution is

rt
-t/T / -(t-s)/T

+J eK(s,fR.(t,z) = fK(t=0)e + eK(s,z)e ds (11)

Equation (11) shows that the value of f at time t is primarily dependent upon
Js.

values of e within a period of width T preceeding t. When t » T and when
K. K

e does not change significantly in a time T (l/e)(3e/9t) « (1/T̂ ), then fv"• K. K. K

reaches an equilibrium value

fK = 6K \ (12)

Under these conditions, equation (12), together with general theorems which

2
require that the eigenvalues (2/t ) increase with K at least rapidly as K ,

K

guarantee that the series for f (Equation 7) converges absolutely and uni-

formly (Courant and Hilbert, 1953, p. 427).' By the same token, the approach

to equilibrium of higher order eigenfunctions is more rapid than of lower

order ones. (See Equation 11.)

In the case of isotropic scattering, <f = A(l-y2), the eigenfunctions

are Legendre polynomials PT,(y) with eigenvalues (2/t ) = K(K+1)A. When <f is
K K.

complicated, the R are found by standard methods which also yield useful esti-

mates of the eigenvalues. The qualitative behavior of the R is defined by

theorems which also apply to the P . Consequently, many features of
K

the R can be predicted by analogy with the P . For example, eigenfunctions

having even indices are even functions of y while those having odd indices are

odd functions, the number of zeros between y = -1 and y = +1 is equal to the



index, etc. The lowest eigenfunction R = const, describes the isotropic com-
o

ponent and is, of course, identical to P . The fact that the relaxation time
o

TO is infinite means that an isotropic distribution is stable.

Because the ratio of successive terms in equation (7) depends not

only upon the index K but also upon the boundary conditions and coefficients

e , no general statements can be made about how rapidly the series for f converges,

However, for the case considered here, e a y, the properties of R^ just described

imply that, for K > 1, the e decrease rapidly with increasing K but are not,
K

necessarily, identically zero as they are when R = P . This fact ensures

the

validity of the basic assumption of the diffusion approximation.that terms

above R, can be neglected. In contrast, when the diffusion problem is described

by another arbitrary set of orthogonal functions, f is essentially represented

by the isotropic component plus a series expansion of RI in terms of the new

basis set. In general, the convergence of this series, which depends only

upon the nature of R, and not upon physical parameters, is not as rapid as

that of the series in R_. An example that will be discussed in detail later

is the Legendre series for R- when q ̂  2 in which the coefficients of P
X K.

decrease as (1/K), much less rapidly than the (1/K2) dependence implied by

equation (12). These facts single out the R as a preferred set of orthogonal

functions whose use leads to greatly simplied analysis.



To approximate R.., we invoke the iterative method of Stodolla and

Vianello (Hildebrand, 1949, Chapter 5). In the first iteration, a trial

function w satisfying the boundary conditions but otherwise chosen arbitrarily

is inserted in Equation 5

fc * t = - T " ̂  (13)

to obtain, after two integrations, an improved estimate x of the eigenfunction

H 1

x(u) = (|) / f̂ jy /w(p) dp (14)

0 V

In the first integration over p, the constant must be chosen so that, at

\> = +1, cp(v)(dx/Sv) =0. (See Equation 1.) To satisfy a similar restriction

at v = -1, w must be an odd function of p. In the second integration over

V, the constant is chosen to make x an odd function of u. An accurate
(Hildebrand, 1949,Chapter 5, Eq. 89a)

estimate/for the eigenvalue (2/T) is r •)
J w du

<?>- £ (15)

J gw du
-1

where the function g - (T/2)x is the double integral which appears in equation

(14). This process can be repeated by using x as the trial function, replacing

w, to calculate an improved estimate y of the eigenfunction.

If w = u and cp is described by equation (1) with q < 2, equation (14)

gives: ,2, i rdv(i-v2)
= (T> 2 J cp(v)

0



an expression identical to that obtained by Hasselman and Wibberenz (1970)

from perturbation theory. In equation (16), as well as in all other expressions

for the first eigenfunction presented in this paper, only positive values of

u are considered. Since we are dealing with odd functions, corresponding

results for negative u are easily obtained by reflection. The approximate

eigenvalue calculated from equation (15) is

<|j> =| (2-q)(4-q) (17)

from which the diffusion coefficient first derived by Jokipii (1966) can be

obtained by the procedures outlined in the next section.

In the second iteration, using equation (16) as the trial function,

equation (13) is satisfied identically for u -» 0 provided that

fcnr) = (2-q)O-q) (18)
1A

which is, therefore, an exact expression for the eigenvalue. The corresponding

approximate eigenfunction, accurate enough for most purposes, is given by

u 1-a 1 - V3~qq ±- — ~ dv (19)

where the normalization constant

(1/C1} = 2

can be defined in terms of the digamma function f in such a way

that y(l) =1. In the limit u - 0,
P

while an accurate expression when u -» 1 is
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In Figure 1, the function y is plotted vs. u over a range from q = 2,

where the eigenfunction reduces to a step at the origin from -1 to +1, through

q = 1, where the Legendre polynomial P.. = u is obtained, to q = -1, where a

pronounced peaking in the forward direction (u=l) is evident. For q > 2, the

treatment given here breaks down and the eigenvalues diverge but for all other

values of q including negative ones the method converges to well behaved

eigenfunctions. For q < 1, the eigenfunction has zero slope at the origin but

this slope is infinite when 1 < q < 2. In the latter range, the shape of the

eigenfunctionis evidently quite sensitive to the parameter q.

It is appropriate in the present context to introduce the Legendre

expansion of the eigenfunctions:

ILfu) = £ a P (u) (23)
j J J

and to express y(u) in terms of its coefficients a,.. This representation not

only provides a useful method of evaluating certain parameters discussed later

but also it makes explicit the relationship between the approach given here

and the classical approach based upon Legendre expansions of the distribution

function. When equation (19) is inserted into the formula for

Legendre coefficients and when the order of integration over p. and v is

interchanged, the coefficients are given by,

1 v3"^ l

a.s = C. (2j+l) / dV V "1
 i"0 f P4(u) dp.

(24)

where the second integral, which involves only powers of \>, leads to the following

expressions for the first few coefficients:
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2 (2-q)(5-2q)

a!3 4 (2-q)<4-q) (5-2q)(7-2q)

n (q-l)(3-q)(8-3q)(71+138q-36q
2)C1

a!5 = 54 (2-q)(4-q)(6-q)(5-2q)(7-2q)(9-2q)

The coefficients for even indices are zero. The expressions in equation (22)

are such that no singularities occur for q < 2.5. (Note that, as q -* 2, C, -> (2-q).)

When q = I, a.- „ = a.. = 0, and the eigenfunction reduces to P.. (u) . When

q = -.4588, a.,_ changes sign.

In Table I, numerical values of C.. , given by equation (20), of

C../(2-q) and of a--, a.., and a..,., given by equation (25), are

tabulated for several values of q. The fact that C../(2-q) deviates from one by

no more than 10$ demonstrates that equation (21) is a surprisingly accurate

representation of the eigenfunction. An equivalent statement is that even

the first approximation described by equation (16) is fairly accurate. In

Figure 2, which presents values of y given by equations (21) (dotted line) and

(22) (dashed line) for q = 1.9, the Legendre series including terms up to P_

(solid line) displays large oscillations around the correct eigenfunction. This

manifestation of the Gibbs 'phenomenon is to be expected in a range of q where

the eigenfunctions are virtually equivalent to the step function reached in the

limit q -> 2. In fact the coefficients for q = 1.9 are nearly equal to those of

the Legendre expansion of a step function: a.... = (3/2), a- « = -(7/8) and

a15 = (11/16). In contrast, at q = 1.5 (Figure 3), the Legendre representation

is relatively accurate. The accuracy of the Legendre expansion has an important

bearing on the applicability of classical transport theory, a point that will

be discussed further in the next section.
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III. DIFFUSION EQUATIONS

When T is finite, the approximate solution of the Boltzmann equation

obtained by keeping only the R and R terms in equations (7) and (8) and by

neglecting the time derivative (df-/dt) is the diffusion equation. (See

Weinberg and Wigner, 1958, p. 231). In this case, equation (J.O) gives;

o~r= eo= 'voi si" (26)

of . . of

= * = -v§ (27)
where the quantity Vn, is a "matrix element" in the eigenfunction expansion of

the perturbing term.
df

!
(28)

'+1

VKJ - VJK * V T+l 2 f+1R>j-i J-i
(29)

Note that, because u is an odd function, V = V v« = V ^ = ... = 0, while
Kjx Jx, JxTZ K, Krp̂ f

K,K+1' K,K+3 etc are finite except for unusual cases when uR,, happens to be

orthogonal to RTJ.IJ etc. This coupling, through u, between odd and even eigen-

functions is a ubiquitous feature of transport theory (Weinberg and Wigner, 1968,

p.246). The diffusion equation results from inserting f.. calculated from

equation (27), neglecting (df-/dt), into equation (26)

df a , of , Sf
o O 2 o o o

oT" = o7 Tivoi 9T = 51 D

with the diffusion coefficient D given by



13

(•(«
I uR, c
L3-i l

where the fact that R. = 1 has been used in applying equation (29). The inte-

grals in equation (31) can be expressed in terms of the Legendre coefficients

given by equation (25)

I uRndn = (2/3; a

(1/C,)2 =( R2du =(2/3) a2 +(2/7) a2 +(2/11)
/ J-l i

(32.)

where C is evidently the constant multiplier required to convert RI into a

normalized eigenf unction. Numerical values of C2 calculated from equation (32)

appear in Table I. The diffusion coefficient is given by;

2 2D=(l/3)riV [3(VQ1/V)] «a/3>xV (33)

where the second approximate equality follows from the fact that the quantity

3(V/V)2 = [(a)2(C)2]=[l ( a / a > 2 + ( a / a ) 2 + •••]~1 (34)

is virtually equal to one. (See Table II.)

Equations (33) and (34) make evident the fact that D is critically de-

pendent upon f but is quite insensitive to the exact shape of the eigenf unction.

When TV is defined as the mean free path \ the elementary formula D ~\V/3 is

recovered from equation (33).

With the exact value of T given by equation (18) the diffusion coefficient



calculated from equation (33) is,

V2 Ol . I2/31_ v
. ~ A 3(2-q)(3-q) ~ (2-q)(3-q) A (35)

an expression which can be compared to the result calculated with T given by

equation (17) (This result is identical to that obtained from the perturbation

approach discussed by Jokipii (1966) and by Hasselman and Wibberenz (1970).)

,2
D =

1 V
p (2-q)(4-q) A (36)

and to the expression derived from a Legendre expansion neglecting all terms

beyond P (Jokipii, 1968) (Weinberg and Wigner, 1958, p.233),

q(q+2) V2
DL - *9 A" (37)

To illustrate the relationship between these three expressions for the

diffusion coefficient, Table II gives the ratios (D /D) and(D /D) as a function
P !•

2
of q. Also given in Table II is the quantity [ 3(V_j/V) ] which is the ratio

between the exact and approximate forms of equation (35) . The exact value of D
*• f or 1 < q < 2

is a little smaller than that given by equation (36)/but deviates by no more

than 25$ for 0<q<2. This good accuracy reflects the fact that equation

(36) gives the first approximation in a rapidly converging sequence. The

result derived from a Legendre expansion is not very useful since equation (37)

does not predict the divergence at q = 2 and incorrectly gives zero diffusion

for q = 0. These discrepancies occur because the Legendre derivation arbi-

trarily sets equal to zero the coefficients a.. _, a , etc. When these terms

are taken into consideration, the diffusion coefficient can be represented by

an infinite series in which equation (37) appears as the first term but this
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term is not necessarily the largest one. On the other hand, when q = 1,

equations (35), (36) and (37) give identical values of D. In this special

case, all three methods of calculating the distribution function are exact.

The streaming flux S is given by the integral

S = (1/2)V V uf du (38)

which reduces to

S = (!/3)anVf1 + (1/3) a31Vf3 + ... (39)

an expression which involves only the coefficients a, of the first Legendre

polynomial PI = u. In contrast to the situation in classical transport theory

where u is orthogonal to all other Legendre functions, all odd R contribute

to the flux. However, for reasons given earlier, the terms above f.. will

almost always be negligible.

The use of equations (27), (29) and (31) shows that the familiar expres-

sion for the diffusive flux.

S = -D - (40)
.oz

retains its rigorous validity. On the other hand, an often used relationship

between flux and anisotropy 6 which is based upon a Legendre expansion neglecting

terms above P..

j. max min _ S / / i \6
L

 = f • +f . = 3 vr (41)
max mm o

must be replaced by the correct expression

6 • <3/au> w~ (42)
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valid when f »f_, f_, etc. For q = 1 equations (41) and (42) are identical

but they give different results for q ̂  1. For q ~ 2, the anisotropy given

by equation (42) for a given flux is 50$ smaller than would be expected from

equation (41). (See the numerical values of a.. , appearing in Table I.) These

remarks apply to diffusive anisotropies only. Convective anisotropies, such as

those discussed by Forman (1970), result from a term in the distribution function

accurately proportional to u and, consequently, are described by equation (41).

These difficulties could be avoided by defining the anisotropy in terms of the

coefficient of P.. . This definition lacks the direct relationship with observed

intensities embodied in the first equality of equation (41) but it is entirely

workable and, in fact, corresponds to what is measured by the usual Fourier

analysis of periodic variations in the rate recorded by a rotating detector.

When equations (26) and (27) are solved retaining the derivative (5f-/3t)

and assuming that T does not depend upon z, we obtain

9 •> *
8 fo 1 3 fo 1 3fo

a version of the well known "Telegraphers equation" which embodies both diffu-

sive phenomena characterized by D and wavelike propogation at velocity Vn, .

Equation (43) is analogous to a result of classical transport theory (Weinberg

and Wigner, 1958, p. 235) which has been discussed in the context of inter-

planetary propogation of solar cosmic rays by Axford (1965) and by Fibich and

Abraham (1965). These treatments obtain for the propogation velocity (VA/J)

which coincides with Vfi1 only for q = 1. However, the deviations of VQ.. from
o

(VA/3) are quite small as can be seen from the values of (V5vQ1/V) given in

Table II. Note that, for q ̂  1, the velocity Vnl is always a little smaller

than (V/ >/!*).
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IV DISCUSSION

The above analysis has treated in detail only the special case of a

power law spectrum of magnetic irregularities described by the two parameters

A and q. More complicated cases involving additional parameters could also

be analyzed by the methods presented here. However, it is evident from

equations (14) and (15) that both the first eigenfunction and the relaxation

time T are given by integrals over u which are rather insensitive to the exact

behavior of cp. This insensitivity implies that the above results can be used

with confidence in describing the interplanetary propagation of

cosmic rays whose diffusion is controlled by a portion of the

irregularity spectrum characterized by a power law with index q ~ 1.5 (Jokipii

and Coleman, 1968). On the other hand, caution should be exercised in applying

these results to situations in which propagation is controlled by a

steeper power law (Sari and Ness, 1969) with an index close to the

critical value q = 2 where divergences appear. Hasselman and Wibberenz (1970)

have suggested that, for q > 2, the diffusion picture breaks down and convective

effects dominate. The observed steepening of the interplanetary magnetic power

spectrum implies that diffusive anisotropies at high energies are more

concentrated around the average field direction than at low energies. Because

the eigenfunction is quite sensitive to the value of q (See Figure 1.), this

difference might be observable.

Jokipii (1968b) has already pointed out that the small amount of

scattering near u = 0 implied by a Fokker-Planck coefficient described by

equation (1) leads to a much larger relaxation time T- than that predicted by

setting TI equal to the collision time as is suggested by a result of elementary

kinetic theory. Equation (18), which predicts that T -+ 9 as q -• 2, provides

a rigorous basis for these ideas.
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The derivation of a nearly exact expression (Equation (35).) removes

any conceptual uncertainty about the value of the diffusion coefficient but

the numerical results are not very different from the first order approximation.

(Equation (36).). The following formula, based upon equations (3) and (35),

2
gives the parallel diffusion coefficient D in cm /sec:

2.22xl028 >" V-701 I/ Brv ** • ^.^A-i-v I * f jjJL \ II D

D = < 2 - q > ( 3 - q ) L3 (~> Jl2.09xl07 f XXo

where (3 = (V/c), R is particle rigidity in GV, V is solar wind velocity in

km/sec, B is the average field in gamma, and P is the spectral density in
XX

2
(gamma) /Hz of perpendicular fluctuations at a reference frequency of f Hz.

Interpolation between the values given in Table II will yield an adequate

2
estimate of 3(V»../V) . This expression is comparable to that given by Jokipii

(1971, Equation (62).). In using equation (44), note that P refers to a

frequency spectrum defined, in terms of the Fourier transform of an auto-

correlation function, for negative as well as positive frequencies. Observations

are often given with the contributions of positive and negative frequencies

combined. In this case, the reported spectrum is 2 P
XX

Of greater significance, perhaps, than any of the above points is that

the discussion of eigenfunctions given here provides a starting point for the

investigation of higher order diffusive effects and of phenomena encountered

when q > 2.

This paper was written while the author was on leave at the California

Institute of Technology where the hospitality and criticism of J. R. Jokipii

were much appreciated. This work was supported, in part, by the National

Aeronautics and Space Administration under Grant NCR 21-002-066.
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FIGURE CAPTIONS

Figure 1: The shape of the function y, obtained by numerical integration of

equation (19), is strongly dependent upon the parameter q.

Figure 2; For q = 1.9, the function y is accurately given near u = 1 by equation

(22) (dashed line) and near iu = 0 by equation (21) (dotted line). The Legendre

expansion (solid line), including terms up to P_, is not a very accurate re-

presentation of y.

Figure 3: For q = 1.5, all three representations of y give fairly accurate

results .



Table I

Numerical values of some parameters

21

q

0

0.5

1.0

1.5

1.8

1.9

o r\^ • u

Equation

Cl

1.562

1.326

1.000

.548

.217

.105

(20)

C2

1.668

1.458

1.225

.972

.826

.782

744. /H-H-

(32)

C1/(2-q)

.781

.885

1.000

1.096

1.086

1.055

1 000J. . \J\J\J

(21)

all
.703

.829

1.000

1.233

1.397

1.450

500

(25)

a!3

.322

.207

.000

-.359

-.662

-.771

- R71;• O / D

(25)

a!5

-.036

-.011

.000

.213

.471

.577

f.Q-7• DO /

(25)
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Table II

Comparison of Diffusion Parameters

q

0

0.5

1.0

1.5

1.8

1.9

2.0

(Dp/D)

1.23

1.10

1.00

.94

.92

.91

.90

(DL/D)

0

.80

1.00

.68

.31

.16

0

[3(V01/V)2]

.917

,974

1.000

.957

.887

.857

.831
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