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Summary

The objectives of this program are to investigate the crystal growth

of gallium nitride in the form of bulk crystals and epitaxial layers, to

characterize their structural and electrical properties, and to fabricate

gallium nitride p-n junctions for optoelectronic devices.

Five approaches have been explored for the growth of bulk gallium

nitride crystals: the closed-tube chemical transport, recrystallization

from a gallium solution, sublimation of gallium nitride or gallium trioxide

in an ammonia atmosphere, ammonolysis of gallium suboxide, and ammonolysis

of gallium monochloride. Extensive investigations have shown that the

ammonolysis of gallium monochloride is the best approach, producing gallium

nitride single crystals up to 2.5 x 1.0 x 0.5 cm in size, heretofore unknown.

The single crystallinity of these crystals was verified by the chemical etching

and optical microscopy and x-ray diffraction techniques. These crystals, with

19 -3
an electron concentration of 10 cm and Hall mobilities in the range of

2 - 1 - 1
100-160 cm v sec at room temperature, are suitable as substrates for the

epitaxial growth of gallium nitride.

The eptiaxial growth of gallium nitride on sapphire substrates with main

faces of (0001) and (1102) orientations has been achieved by the ammonolysis

of gallium monochloride in a gas flow system. The important parameters of

this process, such as the geometry of the growth apparatus, the composition

and flow rates of the reactants, and the substrate temperature, have been

studies in detail. The grown layers had electron concentrations in the range

19 -3 2 -1 -1
of 1-3 x 10 cm and Hall mobilities in the range of 50-100 cm v sec at

room temperature.
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I . Introduction

This is the final technical report of a research program on the gallium

nitride optoelectronic devices sponsored by the Langley Research Center

of the National Aeronautics and Space Administration, Hampton, Virginia. The

objectives of this program are to investigate the crystal growth of gallium

nitride, to characterize the structural and electrical properties of gallium

nitride crystals, and to fabricate gallium nitride p-n junctions for opto-

electronic devices.

Gallium nitride is a direct gap semiconductor with a room temperature

energy gap of about 3.4 eV. This material is well-suited for the fab-

rication of lasers and light-emitting devices operating in the near-untraviolet

and visible regions of the specrum. Stimulated emission and laser action

have been observed at 2°K from optically pumped single-crystal needles of

19 -3 (2)
n-type gallium nitride (n > 10 cm at 300°K) at 3.45 eV. Green dc

electroluminescence has been observed at room temperature from gallium nitride

diodes of the (n-zinc doped insulator) configuration. However, the

further development of these applications is hindered by the difficulties

encountered in the growth of gallium nitride single crystals of good structural

perfection and controlled distribution of shallow dopants.

Gallium nitride crystallizes in the wurtzite structure with lattice

parameters a = 3.18 A and c = 5.16 A. It undergoes thermal dissociation into

gallium and nitrogen. The equilibrium vapor pressure of gallium nitride

measured by the torsion -Languir method in the temperature range 1160° -

(4)1430°K can be expressed by the relation:

log P = 5.699 - 15,923/T

-8 -6
Thus, its vapor pressures are approximately 2.7 x 10 and 2.1 x 10 atm.

at 1200° and 1400°K, respectively. Gallium nitride has been reported to
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undergo dissociation at temperatures as low as 600°C. This thermal

instability has prohibited the use of the melt techniques for the crystal

growth of gallium nitride. Furthermore, gallium nitride crystals prepared

by other techniques at high temperatures tend to be nitrogen-deficient, and

the nitrogen vacancies behave as donors, contributing to the electrical

conductivity.

Thus far, gallium nitride crystals have only been grown by vapor growth

techniques using evaporation and chemical deposition. Epitaxial gallium

nitride layers have been grown on the basal plane of sapphire and the {ill}

surface of gallium arsenide at 550°C by the evaporation of gallium in a

nitrogen discharge. Layers prepared in this manner were of low-resistivity

n-type due presumably to the presence of nitrogen vacancies. The chemical

deposition techniques are more flexible. The reaction between gallium mono-

chloride and ammonia in a hydrogen atmosphere has produced epitaxial layers

of gallium nitride on the basal plane of sapphire at 825°C. However, the

crystals grown with no intentional doping have a high inherent electron

19 -3
concentration, 10 cm , due to nitrogen vacancies. Later work on the

ammonolysis of gallium monochloride indicated that the use of a helium or

nitrogen atmosphere instead of a hydrogen atmosphere could reduce considerably

/ o q\
the concentration of nitrogen vacancies. ' Gallium nitride epitaxial

layers with relative low concentration of nitrogen vacancies have also been

produced by the thermal decomposition of a gallium tribromide-ammonia complex

'10)
at 500 - 600°C.v However, the epitaxial layers and crystals of gallium

nitride grown to date have all been of n-type conductivity. Attempts of

incorporating group IIB elements, such as zinc, into vapor grown gallium

nitride have not been successful in producing p-type material; zinc,

though a shallow acceptor in gallium arsenide and gallium phosphide, has a

deep acceptor state in gallium nitride.
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Because of its thermal instability, vapor and solution growth tech-

niques have been used to investigate the preparation of device quality

gallium nitride. The solution growth technique was found to be unsuitable

because of the low solubility of gallium nitride in gallium. Vapor growth

techniques were studied in detail for the growth of gallium nitride in the

form of bulk crystals and epitaxial layers. Large single crystals of

gallium nitride, heretofore unknown, have been produced for the first time and

characterized. This represents a major breakthrough in the gallium nitride

technology. Epitaxial layers of gallium nitride have also been grown on

sapphire and gallium nitride substrates, and their properties have been in-

vestigated. Homoexpitaxial gallium nitride layers are structurally superior

to gallium nitride layers grown on sapphire substrates. These results are

summarized in the following sections.
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II. Technical Discussion

The technical approaches selected for this program were essentially

the growth of bulk crystals and epitaxial layers of gallium nitride and

to determine their electrical properties. Extensive investigations were

carried out for the preparation and characterization of crystals and

epitaxial layers of gallium nitride, and the results are discussed below.

II.A Growth of Gallium Nitride Crystals

Investigations on the preparation of gallium nitride crystals have

been directed mostly to the heteroexpitaxial growth on foreign substrates

such as sapphire and silicon carbide. Because of the differences in

the lattice parameters and thermal expansion coefficients of gallium nitride

and the substrates, the grown layers have high concentrations of structural

defects. Gallium nitride single crystals are the most ideal substrate for

the epitaxial growth process, and considerable efforts have been devoted

in this work to the growth of bulk gallium nitride crystals.

Because of the unfavorable thermodynamic properties, high melting

point and high dissociation pressure, the growth of gallium nitride crystals

is best carried out by vapor and solution growth techniques. The use of

relatively low temperatures in these techniques will minimize the dissoci-

ation of gallium nitride. Five techniques have been investigated for the

crystal growth of gallium nitride: the closed-tube chemical transport, re-

crystallization from solution, ammonolysis of gallium suboxide, sublimation,

and ammonolysis of gallium monochloride.

II .A.I. Crystal Growth by Checmical Transport

The chemical transport in a closed tube has been used widely for the

crystal growth of electronic materials. In this method, a solid reacts with

a gaseous transport agent to form volatile products which, in turn, undergo

the reverse reaction in a different temperature region of the system to
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the reverse reaction in a different temperature region of the system to

form the original material. Single crystals can be obtained by controlling

the nucleation and growth processes in the deposition region. The choice

of the transport agent is an important consideration. Since gallium nitride

undergoes thermal dissociation at high temperatures and gallium reacts

with ammonia to yield gallium nitride, ammonium chloride is expected to be a

satisfactory reagent for the transport of gallium nitride.

The transport of gallium nitride was carried out in a fused silica

tube of 25 mm ID and 29 mm OD. Polycrystalline gallium nitride, obtained

by heating gallium trioxide at 900°C in an ammonia flow was used as the

source material. In a typical experiment, a mixture of 1 g. gallium nitride

and 0.08 g. ammonium chloride was placed in the reaction tube, evacuated to

10 Torr or less, and sealed. The reaction tube, approximately 30 cm in

length after sealing, was placed in a horizontal tube furnace containing

two independently controlled temperature zones. The region of the tube

containing the source material was placed in the high-temperature zone, 900°C,

and the lower temperature region of the tube was 100-200°C lower. There was

a considerable amount of transport after about three days; however, the

deposit was grayish in color due presumably to the partial decomposition

of gallium nitride. Also the reaction tube exploded occasionally due to

the pressure increase associated with the decomposition process. This trans-

port process was not further explored.

II.A.2 Growth from Solution

The solution growth technique has been widely used for the crystal

growth of gallium phosphide and has greatly reduced the problems associated

with its high dissociation pressure. This technique is based on the fact

that solubility of gallium phosphide in gallium increases with increasing
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temperature. The solubility of gallium phosphide in gallium is about 1 and

6 mole per cent at 1000° and 110Q°C, respectively, and gallium phosphide

platelets up to 1 cm have been obtained by the slow cooling of a saturated

solution at 1100-1125°C.

To determine the feasibility of using the solution growth technique

for the crystal growth of gallium nitride, experiments were carried out to

estimate its solubility in gallium. A mixture of gallium and polycrystalline

gallium nitride was sealed in a fused silica tube and heated at 700°C for

three days. This tube was then slow cooled. Close examination of the re-

sulting mixture indicated that gallium nitride is essentially insoluble in

gallium at 700 °C. Solubility determinations at higher temperatures must be

carried out in the presence of ammonia to suppress the decomposition of

gallium nitride. A mixture of gallium and gallium nitride was placed in a

fused silica tube provided with gas inlet and exhaust tubes. The mixture

was heated at 1100 °C while ammonia was passed over the surface of the mixture

at a rate of 100 ml/min . Since there were no indications of recrystalli-

zation of gallium nitride upon cooling, it is concluded that the solubility

of gallium nitride in gallium is very low at 1100°C. No further experiments

were carried out.

II. A. 3. Growth by Ammonolysis of Gallium Suboxide

Gallium nitride can be prepared by the reaction of ammonia with a

volatile gallium compound. Gallium suboxide, Ga O, has been reported to

(12)
have an appreciate vapor pressure at temperatures below 1000°C and is

used in this work for the growth of gallium nitride crystals according to

the reaction:

2 Ga O(g) + 4 NH (g) -> 4 GaN(s) + 2 H 0(g) + 4 H (g)
£ 3 £ . & .

The suboxide was prepared by the reaction of gallium and gallium trioxide
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according to the reaction:

4 Ga(£) + Ga O (s) + 3 Ga 0 (g)
^ J £,

Although gallium and gallium trioxide have very low vapor pressures at

high temperatures, the equilibrium vapor pressure of gallium suboxide

over a 4:1 molar mixture of gallium and gallium oxide is approximately 0.2

Torr at 800°C and 10 Torr at 1000°C.

The apparatus used for the growth of gallium nitride crystals by the

ammonolysis of gallium suboxide is shown in Fig. 1. The formation of gallium

suboxide took place in the quartz boat containing a mixture of gallium and

gallium trioxide, and the nitrogen flow was used to carry the suboxide vapor

into the reaction tube. The suboxide then reacted with the ammonia, which

was introduced separately into the reaction zone. The experiments were

carried out with the quartz boat in the temperature range 875°-1050°C and the

reaction zone in the temperature range 1000°-1200°C. The flow rate of

ammonia was 400 ml/min, and that of nitrogen through the quartz boat was

200-600 ml/min (the other nitrogen inlet was only used to purge the re-

action tube prior to the heating of the furnace). The temperature of the

quartz boat, or the suboxide formation temperature, was found to be not

critical; however, gallium nitride crystals were obtained only for a re-

action zone temperature of 1150° ± 10°C. Needle-like gallium nitride

crystals dark green in color and up to 1 mm in size, were found near the

ammonia outlet. Dendritic crystals with dimensions up to 3 mm were some-

times found also. The efficiency of this technique under the conditions

used here is limited by the vaporization from the boat of free gallium

which was found near the reaction zone.

II.A.3. Growth by Sublimation

Since gallium nitride undergoes thermal dissociation and the resulting

gallium also has a measurable vapor pressure at temperatures above 1100°C,

it is conceivable that the sublimation of gallium nitride in an ammonia
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it is conceivable that the sublimation of gallium nitride in an ammonia

atmosphere may be used for the crystal growth of gallium nitride. Gallium

or gallium oxide may also be used as the starting material since they are

converted into the nitride in the presence of ammonia at high temperatures.

The apparatus for the sublimation method consisted of a single zone

furnace with a fused silica reaction tube. Provision was made to introduce

ammonia or ammonia-containing gases at various flow rates and pressures.

Six types of source material were used: (1) gallium trioxide powder, (2)

gallium nitride powder, (3) a mixture of gallium and gallium trioxide,

(4) a mixture of gallium and gallium nitride, (5) pressed pellets of gallium

and gallium trioxide, and (6) pressed pellets of gallium and gallium nitride.

The initial experiments were carried out with loosely packed powder of

gallium trioxide or gallium nitride in an alumnia boat using ammonia at a

flow rate of 50 ml/min. A reaction temperature of 1170°C was found to be

optimum, and experiments were carried out for different time periods.

Typically after three days, very small crystals of gallium nitride were found

in the boat. With a fifteen day growth period, crystals were found at two

locations. Dark green, slightly transparent, n-type, needle-shaped crystals

up to 3 mm long by 0.2 mm thick were found on the wall downstream from the

source material; the dark color is due apparently to the thermal decompo-

sition of gallium nitride. Transparent crystals of 0.4 x 0.04 mm dimensions

were found in the boat. These results were not changed by using a mixture

of 20% NH and 80% N as the carrier gas. In an attempt to suppress the

decomposition of gallium nitride, a series of sublimation experiments were

carried out under an ammonia pressure of 5 atm. The gallium oxide source

material was placed in an alumina boat in a fused silica liner located in a

ceramic reaction tube. The ceramic tube has appropriate fittings so that a
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high ammonia pressure can be maintained with a controlled flow rate.

Typically, the source material was at 1170°C, the flow rate of ammonia was

50 ml/min and the pressure in the reaction tube was 5 atm. No improve-

ments in the size of the gallium nitride crystals were observed. It was

also observed that no crystals formed at reaction zone temperatures much

below 1150°C or higher than about 1180°C.

Similar experiments were carried out with powdered mixtures of

gallium-gallium trioxide and gallium-gallium nitride. There was a tendency

for larger gallium nitride crystals to grow in the boat, and crystals were

also formed downstream on the wall of the reaction tube. A third series

of experiments was carried out with pressed pellets of gallium-gallium

trioxide and gallium-gallium nitride mixtures. The pellets, approximately

1 g in weight, were made with a Parr 2811 pellet press capable of producing

2
V diameter pellets at a pressure of approximately 5,000 Ibs/in . They were

placed in an alumnia boat located at the maximum temperature zone in the

furnace liner. A source temperature of 1160° ± 10°C was found to be necess-

ary for obtaining crystals of reasonable size, and the crystal growth

experiments were carried out for periods of up to 20 days. Needle-like

crystals up to 3 mm long by 0.5 mm thick were obtained in two locations.

Light colored crystals were found growing inward from the surface of the

pellets, and dark green crystals were found on the wall of the reaction tube

downstream from the pellets. Usually one type or the other dominated in a

particularly experiment. The exact reason for this has not been established,

and the composition of the pellet and the pressure used in its formation

could be significant. The results were independent of the flow of ammonia

in the range 200 to 800 ml/min. Figure 2 shows examples of the two types

of gallium nitride crystals. These crystals were shown to be single
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Fig. 2 Gallium nitride crystals grown on the wall of the silica tube
(upper) and in the alumina boat (lower) by the sublimation
technique.
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crystalline by the x-ray diffractions technique. Chemical etching of these

crystals with a 40% sodium hydroxide solutions for 30 min revealed no sig-

nificant structural defects. The vapor grown crystals are always n-type with

low electrical resistivities. Using indium as ohmic contacts, the electrical

resistivities of these crystals were measured over a wide temperature range,

and the typical results are shown in Fig. 3. The darker crystals have a

lower resistivity than the light crystals as expected. The resistivity is

essentially independent of temperature in the range 160°-330°K, indicating

the presence of a high concentraion of shallow impurities, presumably

nitrogen vacancies.

II.A5. Ammonolysis of Gallium Monochloride

A significant improvement in the size of gallium nitride crystals has

been obtained by the ammonolysis of gallium monochloride. This process

involves two steps: the formation of gallium monochloride by the reaction of

gallium with hydrogen chloride, and the reaction of gallium monochloride with

ammonia to form gallium nitride. The cherr.ical reactions are:

2 Ga(£) + 2 HCl(g) ->- 2 GaCl(g) + H (g)
A

3 GaCl(g) + NH (g) -*• 3 GaN(s) + 3HC1 (g)

The apparatus for this process is shown schematically in Fig 4. It

consists of a fused silica reaction tube of 4.5 cm ID and 90 cm length

situated in a two-zone resistance-heated furnace. The ends of the reaction

tube are provided with standard taper joints. The end cap on the gas inlet

side has provisions for introducing hydrogen chloride mixed with a diluent,

helium or hydrogen, and for introducing ammonia to the reaction zone.

Gallium was placed in an alumina boat and was heated by one of the heaters,

and the rate of formation of gallium monochloride was determined mainly by

the flow rate of hydrogen chloride. Single crystalline sapphire platelets

-13-
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with main faces of (1102) orientation were used as substrates. The geometric

relationship between the substrate and the ammonia outlet was found to

be the most critical parameter in this process. Because of the strong

reactivity of ammonia toward gallium monochloride, the ammonia outlet

should be very close to the substrate surface to minimize the volume re-

action and to achieve the maximum yield. To obtain a uniform deposit,

the substrate was oriented about 30° from the horizontal. Both hydrogen

and helium were used as the carrier gas. Hydrogen was purified by dif-

fusion through palladium-silver alloy, and helium was purified by passing

through a liquid nitrogen trap and a fused silica tube containing copper

turnings at 550°C. When helium was used as the carrier gas, the typical

flow rates of ammonia, hydrogen chloride, and helium were 1000, 20, and

2000 ml/min, respectivily. The gallium source was maintained at 900°C,

and the temperature of the substrate was 1050°C. The reaction time was

usually six hours, and the grown material was usually 2-5 mm thick

weighing up to 4 g. The yield of the deposition process was about 15%

on the basis of gallium consumption. Deposition on the basal plane of

sapphire substrates did not yield crystals of comparable weight or thick-

ness .

After the deposition process, the sapphire substrate may be removed

by lapping with silicon carbide abrasive. When the resulting gallium

nitride crystal was used as a substrate for the growth process, it was

first mechanically polished with alumina abrasive and etched in-situ with

a hydrogen-hydrogen chloride mixture at 850°C.

Figure 5 shows two typical gallium nitride crystals grown on a

sapphire substrate of (1102) orientation and a gallium nitride substrate.

Figure 6 shows two polished gallium nitride crystals cut from the larger

crystals, and the upper crystal was etched in a 40% sodium hydroxide

-16-



Fig. 5 Gallium nitride crystals obtained by the ammonolysis of gallium
monochloride. The upper crystal was grown on a sapphire substrate
of (1102) orientation, and the lower crystal was grown on a gallium
nitride substrate.

Fig. 6 Two gallium nitride crystals cut from larger crystals. The upper
one was etched in a 40% sodium hydrocide solution at 100°C for 30
min. Scale divisions are millimeters.
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solution at 100°C for 30 min. The etch figures in the crystal are shown

at higher magnifications in Fig. 7, taken by both transmitted and reflected

light.

Figure 8 shows the angle-lapped and chemically-etched surface of a

gallium nitride crystal deposited on a gallium nitride substrate where the

substrate was grown on sapphire. As expected, the grown crystal has much

better structural perfection than the substrate as indicated by the re-

lativily heavy attack of the substrate by the sodium hydroxide solution.

The electrical properties of the bulk gallium nitride crystals sepa-

rated from sapphire substrates were measured at 77° and 300°K by the van

der Pauw technique. ' At room temperature, the bulk crystals had an

19 -3
electron concentration of approximately 10 cm and carrier mobilities

2 -1 -1
in the range of 100-160 cm v sec. ' The carrier concentration was essen-

tially the same at 77°K; however, the mobilities decreased by about 25%

due presumably to impurity scattering.

II.B. Epitaxial Growth of Gallium Nitride

Concurrent with the investigation of bulk gallium nitride crystals,

the epitaxial growth of gallium nitride on various substrates by the ammono-

lysis of gallium monochloride was investigated. The most important parameters

affecting the structural and electrical properties of epitaxial gallium

nitride include the geometry of the deposition apparatus, the composition

and flow rate of the reactants, and the substrate temperature.

The apparatus used for the epitaxial growth of gallium nitride is

shown schematically in Fig. 9(a) and (b) . Common to the two configurations

is a fused silica reaction tube of 36 mm ID and 90 cm in length situated

in a two-zone resistance-heated furnace. Both ends of the reaction tube

are provided with standard taper joints and end caps. The end cap on the
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(a)

(b)

Fig. 7 Etch figures in the upper cyrstal in Fig. 6 by transmitted light (a)
and by reflected light (b).
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Fig. 8 The angle lapped and chemically etched surface of a gallium nitride
crystal deposited on a gallium nitride substrate. Etchant: 40%
sodium hydroxide solution at 100°C for 30 min.
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gas inlet side has the necessary connections for introducing the gases and

a sealed tube serving as a thermocouple well near the gallium boat. The

end cap on the exhaust side of the reaction tube supports the substrate

holder with a thermocouple well and has provisions for introducing a dopant.

In one configuration, Fig. 9(a), the gallium source is a closed boat, and

the gallium monochloride enters the gallium zone from a nozzle. In the

other configuration, an open boat was used for the gallium and the gallium

monochloride enters the reaction zone as a uniform flux. The second con-

figuration, though less effective in utilizing the gallium source material,

was used in most of the experiments because it was convenient and provided

more uniform deposits.

Many geometric factors such as the diameter and shape of the ammonia

outlet, the location and orientation of the substrate, and the spacing be-

tween the ammonia outlet and the substrate were investigated within these

two basic configurations using the crystallinity, uniformity, and electrical

properties of the grown layers as criteria. A series of experiments were

carried out using various configurations of the ammonia outlet tube, such

as a simple open tube of different sizes, a downward facing slot, and a

funnel-shaped opening. The optimum configuration was determined to be a

simple open tube of 8 x 10 mm. Various substrate locations and orientations

were also investigated. A horizontal orientation was considered the best,

and the optimum location was within 8 cm from the ammonia outlet. For each

experiment, one substrate was located 3.5 cm from the ammonia outlet and

a second substrate was about 2-3 cm futher down. The front substrate

always had a thicker deposit than the rear one. The vertical spacing be-

tween the substrate and the ammonia outlet was kept within 1 cm. The distance

between the gallium boat and the ammonia outlet was about 10 cm, and this
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spacing is not critical.

Other parameters, such as the nature of the substrate, the reactant

composition and flow rate, and the substrate and gallium source temperatures,

were considered to be more critical than many of the geometric factors.

Initial experiments were carried out to investigate the use of silicon

carbide and sapphire as substrates. Although the lattice match between

gallium nitride and silicon carbide is considerably better than that between

gallium nitride and sapphire, the large difference in the thermal expan-

sion coefficient between gallium nitride and sapphire leads to the cracking

of the deposited layer at thicknesses greater than about 5 urn.. Subsequent

experiments were carried out with sapphire and, in a few cases, gallium

nitride substrates. Sapphire substrates with main faces of (0001) and

(1102) orientations were used, and no significant difference in the prop-

erties of the grown layers was observed.

The use of hydrogen, helium, and nitrogen as carrier gases was studied;

however, no conclusive results were obtained with nitrogen. Both hydrogen

and helium could be used to obtain single-crytalline, epitaxial, light-

colored layers. It was observed that the deposition rate and characteristics

of gallium nitride depended on the ratio of flow rates of the carrier gas to

ammonia and on the ratio of flow rates of ammonia to hydrogen chloride. For

the configuration shown in Fig. 9(b), the optimum flow rates of helium and

ammonia are 2 and l£/min, respectively, and those of hydrogen and ammonia

were 1 and 3£./min, respectively. For either carrier gas, there was a range

of hydrogen chloride flow rates which could be used to obtain uniform de-

posits. A minimum flow rate of 3 ml/min with helium as the carrier gas

and 5 ml/min with hydrogen as the carrier gas was required to obtain uniform

nucleation on the substrate. At lower flow rates, isolated crystallites

tended to form on the substrate. Excessive flow rates of hydrogen chloride,
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above about 10 ml/min in helium and 20 ml/min in hydrogen, yielded poly-

crystalline deposits thicker than 100 ym after one hour of depostion. Single

crystalline layers were obtained with growth rates in the range of 10 to

60 ym/hr by controlling the flow rate of hydrogen chloride.

The temperatures of the gallium source and the substrate are also of

importance. Varying the gallium source temperature near 900°C did not in-

fluence the epitaxial growth process, and the substrate temperature was

a very critical parameter, when helium was used as a carrier gas, a deposition

temperature of 1050°C was found to be optimum, and at temperatures below

1000°C, the grown layer was always dark and of low resistivity. With hydrogen

as a carrier gas, a growth temperature near 950°C was normally used, and

epitaxial growth was achieved at temperatures as low as 875°C.

The grown layers were characterized by optical microscopy, x-ray

diffraction, and Hall measurments. The crystallinity of the layers could

usually be determined by optical examination, and x-ray techniques were used

to verify the optical observations. The best layers grown on the basal

plane of sapphire were essentially colorless and showed no structural features

under an optical microspcope. In very thin layers, hexagonal structure was

sometimes visable near the periphery of the substrate. Layers grown on

sapphire substrates of (Il02) orientation had wave-like features on the

surface and were also shown to be single crystalline by the Laue method.

The electrical properties of epitaxial gallium nitride layers were

determined from four-point probe, thermoelectric, and Hall measurements.

The resistivity values obtained from the four-point probe technique were in

good agreement with those from the Hall data, and the four-point probe

technique was used for routine resistivity measurements. All epitaxial

19 -3
layers were n-type, and the lowest carrier concentrations were about 10 cm.
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2 -1 -1
Hall mobilities up to 80 cm v sec were measured at room temperature,

and the typical room temperature resistivities were about 3 x 10 ohm-cm.

These values were obtained by using both helium and hydrogen as the carrier

gas. Efforts were made to dope the epitaxial gallium nitride layers with

zinc; however, the electrical properties of the doped layers have not been

measured.
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III. Conclusions

(1) Epitaxial and single-crystalline gallium nitride layers have

been grown on sapphire substrates with main faces of (0001) and (1102)

orientations. The grown layers are n-type with electron concentrations

19 -3
in the range 1-3 x 10 cm and Hall mobilities in the range of 50-100

2 -1 -1
cm v sec at room temperature.

(2) The use of sapphire substrates is not the best approach for the

preparation of gallium nitride device structures because of the differences

in lattice parameters and thermal expansion coefficients between gallium

nitride and sapphire.

(3) Bulk crystals of gallium nitride have been grown from the vapor

phase by sublimation, ammonolysis of gallium suboxide, and ammonolysis of

gallium monochloride. The ammonolysis of gallium monochloride has produced

large gallium nitride crystals up to 2.5 x 1.0 x 0.5 cm in size, heretofore

19 -3unknown. These cyrstals with an electron concentration of 10 cm and Hall

2 - 1 - 1
mobilities of 100-160 cm v sec at room temperature are best suited as

substrates for the preparation of epitaxial gallium nitride device structures.
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