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ABSTRACT

The design and construction of a high pressure crystal growth chamber was

accomplished which would allow the growth of crystals under inert gas pressures of
2

up to 2 MN/m . A novel crystal growth technique called "EFG" was used to grow
tubes and rods of the hollandite compounds, BaMgTi7O1fi, ICMgTi CX-, and tubes

of sodium beta-alumina, sodium magnesium-alumina, and potassium beta-alumina.

Rods and tubes grown are characterized using metallographic and X-ray diffraction

techniques. The hollandite compounds are found to be two or three-phase, composed

of coarse-grained orientated crystallites. Single crystal c-axis tubes of sodium

beta-alumina were grown from melts containing excess sodium oxide. Additional

experiments demonstrated that crystals of magnesia doped beta-alumina and

potassium beta-alumina also can be achieved by this EFG technique.
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I. SUMMARY

The objective of the present program was to grow single crystal tubes of

sodium beta-alumina, sodium-magnesium beta-alumina, and certain hollandite

(BaMgTi7O16, KgMgTirjOjg, Kj gMgQ 8Ti? 2O16) and hexatitanate (Na2TigO13)

compounds using the Tyco-developed melt growth technique known as edge-defined,

film-ged growth (EFG). This technique is a modified melt-growth method which

allows the growth of crystals with almost arbitrary cross-sectional shape. These

materials were of interest because of their possible future application as single

crystal membranes for high energy batteries.

The original program was modified after twelve months to grow rods of

KJVIgTinOjg instead of tubes, and to grow tubes of K^O • 11 AlgO,, (potasium beta-

alumina) instead of Na2TigO13, as that was no longer of interest as a solid electro-
lyte^

Growth of the hollandite compounds was hindered by the fact that none of the

compounds mentioned above were found to melt congruently, as was supposed from

the literature references. Tubes of BaMgTirjO-.g and rods of KnMgTi^O.,g were

grown which were two-phase, polycrystalline, coarse grained orientated crystallites.

It appears that a flux growth system could be used for both BaMgTinCLg, and

KJVtgTi-Ojg if solubility data is known.

Under an earlier NASA sponsored contract (NAS 3-14410), it was shown that

sodium beta-alumina tubes could be grown by the EFG technique using iridium

components. However, loss of sodium from the melt as a result of volatilization

prevented the growth of stoichiometric single phase material. A primary goal of

this present contract was therefore the design and construction of a furnace chamber

which would allow the growth of crystals under inert gas pressures up to 2 MN/m ..*

By this method, we were able to suppress the loss of volatile constituents.

Single crystal, single phase tubes of beta-alumina containing Na0O,
Ci

2Na«O • MgO and KJD were grown as verified by Debye-Scherrer X-ray powder

*1 MN/m2 = 145 psi.



patterns, Laue back reflection X-ray photographs, and chemical analysis. Only
iridium components may be used without excessive erosion and dissolution of the
crucible and the die material in the melt, and subsequent incorporation in the
crystals grown.

The major problem to be solved is the tendency for the beta-alumina tube
crystals to crack along the cleavage plane during growth, which is perpendicular
to the c-axis and the slow growth speed required for successful growth. The use of

an afterheater may be all that is required to solve both of these problems.



II. INTRODUCTION

There is a new group of materials which are of particular interest because of
their potential use as ionic conductors and subsequent use as single crystal
membranes in solid-state battery applications. The hollandite and hexatitanate
compounds are of this group and are represented by BaMgTUOjg, KgMgTiJDj „,
Kj gMgQ gTi7 2Oj6 (hollandite), and NagTigOjg (hexatitanate).1"7

Also in this group is beta-alumina which has been, for some time, in wide-
spread use as a refractory material in the form of cast bricks. More recently, it

has beenproposed that it may have important future application as a membrane for high
energy batteries. Ford Motor Company has demonstrated this potential with poly-

8 9crystalline beta-alumina membranes and a liquid sodium-liquid sulphur system. '
The property of beta-alumina which allows it to be considered for this function

is the anisotropy which its crystalline structure exhibits with respect to ionic
9-12conductivity, electronic conductivity being essentially negligible in all directions.

At room temperature, it is virtually nonconducting along the c-axis of the hexagonal
cell, yet has a specific resistance of only 30 ohm-cm at right angles to this direction,
i.e., along the a-axis. Obvious advantages in efficiency compared with polycrystal-
line aggregates will accrue from the use of single crystalline membranes of the
correct orientation. Even if the polycrystalline aggregates are of preferred orienta-
tion, the presence of grain boundaries provides additional problems, since integran-
ular processes may occur, resulting in failure of the conducting path. Also, it is
possible that lower operating temperatures may result from the use of single crystal
materials. Thus, the establishment of a method for the growth of single crystalline
beta-alumina is of considerable interest.

The objective of the present program was to establish the feasibility of growing
single crystal tubes of beta-alumina and the hollandite and hexatitanate materials by
making use of a novel crystal growing technique developed by Tyco Laboratories,

13 14Inc. ' The design and construction of a high pressure furnace chamber which



2would allow the growth of crystals under inert gas pressures of up to 2 MN/m was a
primary goal of this contract. This was necessitated by the fact that under an

1 R
earlier NASA-sponsored contract it was established that 100% beta-alumina
crystals could not be grown without preventing the loss of sodium from the melt as
a result of volatilization. It was also thought that the high pressure growth chamber
may also be required for the growth of the hollandite and hexatitanate compounds,
where similar volatilization problems are expected.

The original program was modified after 12 months,so as to grow rods of
KgMgTi-O-ig instead of rubes and to grow tubes of K«O • 11 AlgO, (beta-alumina)
instead of NagTigOjg, since that was no longer of interest as a potential solid
electrolyte.

This report describes experiments and results on the growth of single
crystalline tubes of BaMgTiJDjg, KJVlgTinO.. „, and beta-alumina.



III. APPARATUS AND BASIC EXPERIMENTAL PROCEDURES

The design and construction of a furnace chamber which would allow the growth

of crystal under inert gas pressures up to 2 MN/m^ (300 psi) was a primary goal of

this contract. This was necessitated by the fact that single phase beta-alumina tubes
15could not be grown from the melt because of the high loss of sodium by volitiliza-

tion at the growth temperature under atmospheric conditions. It was found that the

high pressure furnace was also required for the growth of the hollandite compounds

(K2MgTi7016 and K1>6Mg()>8Ti7!2016).

The high pressure furnace is shown schematically in Fig. 1 and was used for
the growth of all beta-alumina tube crystals. The pressure vessel consists of a 30 cm

2diameter by approximately 60 cm high 304 S/S split chamber, designed for 2 MN/cm

at 541 K. The chamber is water jacketed and mounted on a suitable stand with a

hand-operated hydraulic mechanism to raise and lower the bottom section approxi-

mately 30 cm. The lower section swings away in the lowered position for accessibility.

The furnace was designed to allow the growth of crystal tubes up to 20 cm long,

and includes the following features:

1. On top is mounted a linear motion device suitable for withdrawal

of crystals at rates of up to 2.5 cm/min.*

2. 10 cm port for RF power feedthroughs.

3. 5 cm inner dia sight ports (2) at 20° incline from horizontal.

4. 2.5 cm vacuum port.

5. Feedthroughs complete with manually-controlled x-y and verticle

motion device allowing precise location of crucible (x-y motion is ± 6 mm and the

vertical motion ±13 mm).

*A.D. Little Co., Cambridge, Massachusetts
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Fig. 1. Schematic of high pressure crystal growth chamber



6. Various 1.3 to 2.5 cm ports required for evacuation; introduction
of inert gas and measurement of gas pressure.

The entire high pressure crystal growing furnace is shown photographed in Fig. 2.
16An atmospheric pressure furnace shown schematically in Fig. 3 was used

for the growth of BaMgTi-CL tubes and the initial growth of KgMgTi-CLg. An atmos-
phere, oxygen or argon in the present case, is maintained within the furnace, which
consists of two concentric quartz tubes between which cooling water flows. The

melt and growth area is viewed directly through either of the ports which allow
essentially undistorted observation. The windowports are provided with a cover of
optical quality glass. The inert gas flow (2) acts to prevent oxide deposition on the
inside of the window and thus maintains clean observation conditions. The two ports
are separated by 120 ° of arc. They allow both temperature measurements and
control and optical monitoring of the growth procedures. They are at angles of 90°
and 60° to the furnace axis in order to provide additional observation freedom of the
area of interest. The overall system, including furnace, stereomicroscope viewer,
pulling system, etc., is shown photographed in Fig. 4.

The pulling mechanism may be simply considered as two rigid parallel
vertical shafts, one of which is an air bearing connected to a plate with guide bearings
on either side of the opposite shaft. Using compressed air, the system is essentially
frictionless. A ball disk integrator and synchronous motor are used to move the
shaft holding the seed crystal. The length of growth available is ~75 cm, and con-
stant growth speeds in the range 0.00004 to 1.65 cm/min may be selected. In order to
maintain a beneficial furnace atmosphere and to prevent backstreaming of air into
the system via the pulling rod exit, an expandable bellows arrangement was used

as shown in Fig. 4.
In both the above-mentioned furnace systems, a 450 kHz 20 kW induction unit

is used to raise the crucible containing the melt to the necessary growth tempera-
ture either by susception directly to the crucible or a susceptor surrounding it.

Schematic diagrams of the setups used for the growth of rods and tubes are pre-
sented in Fig. 5. Crucibles and dies were fabricated from iridium, platinum, and
molybdenum and will be described in the following appropriate sections.

Fifty grams each of BaMgTi7Ol6 and KgMgTi^g were synthesized by

solid-state reaction according to the equations:



Fig. 2. High pressure crystal growth furnace
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Fig. 4. Crystal growth apparatus
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BaCO3 4 MgO 4 7TiO2 — BaMgTi^g 4 CO2

and

K2C03 4 MgO 4 7Ti02 - l^MgTi^g 4 CO2.

Stoichiometric proportions of the basic oxides and carbonates were thoroughly mixed

and calcined at 1273 K for 15 to 20 h, in air, in platinum crucibles. The powders

were then reground, pressed into 1.9 cm diameter pellets under a pressure of

20 MN/m , and refired at 1673 K ( B a M g T i ) or 1423 K ( K M g l C L ) for 18 hg

in air. Debye-Scherrer (D/S) patterns were obtained from samples of each prepara-

tion lot. Hkl values, d-spacings, and line intensities for the first 30 or so recorded
lines are presented in Tables I and II and compared with the literature values. Many

more calculated lines than those previously reported as observed were noted. Some

very weak lines attributed to unreacted TiO0 (BaMgTi-O ft) , and partially reacted
£t ( lu

KgTiO-o (KgMgTi-CXg) were also detected. It was expected that complete reaction,

with no loss of components, would occur on melting, and no other premelting treat-

ments were carried out.

Some preliminary wetting studies using BaMgTuCLg and KqMgTi-Ojg (as

prepared above) and small pieces of Ir, Pt - 20% Rh, and Pt were carried out. The

molten material was observed to wet all three metal plates, without chemically

reacting, and no problems were envisaged for the growth experiments.

There is a continuing uncertainty with regard to the exact composition of

beta-alumina. The material commonly obtainable in such form and known as Car-

borundum Monofrax H beta-alumina is Na^O • 11 AUO, (8.34 mole % Na2O) . This

material was used for many of the growth experiments. Weber and Venero^- ' re-

ported the composition of beta-alumina as being 10 mole % Na«O with a congruent
18melting point at (2240 ± 6) K. Mituo Harata reported that Monofrax H cast

bricks contain small amounts of alpha- alumina as a second phase and that there is

a single phase area where beta-alumina exists. This area corresponds to Na«O

(10.9 to 13.7) mole % Na2O. Monofrax H beta-alumina was used as the raw material

in most beta-alumina growth experiments, with excess Na»O added to vary the com-

position from 8.34% to 20% Na«O. Calculated Stoichiometric mixtures of NagCOg

and Monofrax H beta-alumina were weighed into 5 to 11 g charges and placed in the
2

iridium growth crucible and melted under 1.4 MN/m .

12



Table I. BaMgTi^g X-Ray Results CuK (Ni) 50 kV 20 mA

Standard Pattern1,5 Prepared Material Grown Crystal

*Ir(obs) (calc) (obs) d(A) d(A)

vwd
w
w
s
vwd

—ms

—vw
m
vwd
vw
wm

—
—m

wm

w

vw

—vvw

wm

w

vw

w

vw
vw
wd
w
vw

7.149
5.055
3.574
3.197
2.864
2.528
2.492
2.383
2.261
2.235
2.044
1.983
1.895
1.787
1.734
1.685
1.5991
1.589J
1.493
1.481 I
1.452 1
1.429
1.432
1.402(
1.396 f
1.378
1.353J
1.345(
1.328
1.114
1.111
1.033
1.011
0.8930
0.8794
0.8669

*Ir = relative intensity
vs = very strong
s = strong

7.12
5.06
3.55
3.19
2.817

2.470

2.250
2.223
2.032
1.977
1.884

1.683

1.583

1.475

1.446

1.415

1.390

1.340

1.323

1.113

1.026
1.007
0.886
0.873
0.864

vvw
w
sm
s
vs
wm
vwd
sv
vwd
mw
m
mw
vwd
vvw
m
sm

w

sm

wmd

w
vwd

md

wd

mw

mw

vvw

vvw
vwd
vw
vvw
vw
vw
vwd

ms = medium
m = medium
w = weak

7.1440
5.0476
3.5719
3.2456
3.1942
2.8413
2.5680
2.4820
2.3041
2.2542
2.2249
2.1887
2.0403
1.9668
1.8896
1.6861

1.1218

1.5847

1.4813

1.4503
1.4207

1.3917

1.3737

1.3580

1.3461

1.3246

1.1710
1.1123
1.0286
1.0075
0.8889
0.8763
0.8638

strong

vvw
w
m
w
s
vw
vw
ms
mw
m
vw
vw
vw
vw
m
m

vw

ms

w

w
vw

w

w

w

w

vw

vw
vw
vw
vw
vw
w
vw

vw =
d =

7.1530
5.0248
3.5547
3.2375
3.1921
2.8399
2.5460
2.4780
2.2539
2.2246
2.1885
2.0359
1.9893
1.9629
1.8861
1.6865

1.6221

1.5839

1.4817

1.4517
1.4202

1.3958

1.3876

1.3576

1.3457

1.3251

1.1858
1.1118
1.0281
0.9665
0.8873
0.8751
0.8640

very we
dif fusee
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Table II. K9MgTi,,O1ft X-Ray Results CuK (Ni) 50 kV 20 mA
& I ID Ql

f*

Standard Pattern Prepared Material Grown Crystal Powder from Furnace

*Ir

m
m

w

vs

w
s
w
w
ms
vvw
w
ms

vw
vw
m
w
ms
m
vw

vw
m
w
vw
vw
vw

vw

*Ir =
vs =
s =

d(A)

7.16
5.08

3.592

3.211

2.538
2.487
2.391
2.271
2.235
2.045
1.991
1.896

1.794
1.740
1.691
1.676
1.592
1.487
1.457

1.426
1.399
1.349
1.333
1.283
1.263

1.196

relative

I
r

sb
m
wm
sm
vvw
vvw
mw
mw
vs
wm
wm
md
mw
mw
w
sm
mw
w
m
w
w
vvwd
vw
sm
vvw
vw
vvw
m
vwd
sm
mw
vwd
vwd
m
vw
vw
vw
vw
mwd

intensity
very strong
strong

d(A)

7.7882
7.1598
6.4337
5.0770
4.4906
4.1965
3.6891
3.5865
3.2059
3.0867
3.0451
2.9708
2.7898
2.6958
2.5331
2.4856
2.3746
2.2626
2.2331
2.0991
2.0739
2.0384
1.9895
1.8973
1.7939
1.7538
1.7368
1.6907
1.6624
1.5899
1.4868
1.4545
1.4257
1.3955
1.3496
1.3313
1.2806
1.2609
1.1921

ms =
m =
w =

w
sm
wm
ms
wm
w
wm
vs
vvw
vw
m
sv
vvw
sm
sv
vvw
m
sv
vw
vw
w
w
ms
w
vs
mw
w
vw
vw
s
wm
mw
w
w
vw
mw

d(A)

7.3627
7.0418
5.1642
5.0192
3.5603
3.4716
3.2422
3.1854
3.0675
2.7377
2.5211
2.4741
2.3769
2.2593
2.2220
2.0381
1.9819
1.8897
1.8643
1.8396
1.7857
1.7338
1.6865
1.6698
1.5866
1.4830
1.4509
1.4320
1.4252
1.3952
1.3467
1.3285
1.2805
1.2602
1.2413
1.1940

vs
w
s
wm
vw
vw
s
sm
w
vw
mw
w
w
wm
vvw
w
vw
sm
ms
wm
vw
vw
vvw
vw
vvw
vvw
vvw
vvw
wm
vvw
vvw
vvw
vvw
w
w
vw

d(A)

6.95
3.745
3.47
3.145
3.028
2.905
2.675
2.6035
2.389
2.321
2.259
2.232
1.997
1.870
1.817
1.742
1.646
1.554
1.
1.
1.
1.
1.
1.

.517

.418

.345

.340

.3025

.285
1.224
1.196
1.1585
1.095
1.0135
0.996
0.987
0.960
0.946
0.896
0.889
0.867

ms = medium strong
= medium
= weak

vw = very weak, etc.
d = diffused
b = broad

14



Rods and tubes were grown from hollandite and beta-alumina melts using

the Tyco-developed melt growth technique, "edge-defined, film-fed growth"

(EFG). ' This technique is a modified melt-growth method which is akin to the

old Czrochrolski method of crystal pulling and allows the growth of single crystals

with constant, but almost arbitrary, cross-sectional shapes. The crystals grown

were examined using optical microscopy in transmitted and reflected light. The

composition and occurrence of second phase in the crystals grown was determined

using standard Debye-Scherrer examination of powdered samples and comparing the

pattern and line intensities with standard films (in the case of beta-alumina) and

literature values (in the case of the hollandite compounds). Laue X-ray back reflec-

tion photography was used to study the crystallinity of the samples grown. An

annealed piece of BaMgTi7O1fi was analyzed by nondispersive X-ray spectroscopy

using a scanning electron microscope (Fig. 6).

15



Fig. 6. Transverse section of BaMgTi^Oie ube No- 1 annealed for ~60 hr
in air - C>2 (1000X); area inside the squares on matrix and angle
bars is area analyzed by scanning electron microscope

16



IV. CRYSTAL GROWTH EXPERIMENTS

A. Hollandite -

A crystal growth apparatus capable of growing BaMgTi^O.. fi tubes was

assembled from iridium components. The die used allowed the growth of tubes

5 mm outer dia x 3.5 mm inner dia. All BaMgTi7O1 „ growth experiments were

made using this iridium tube setup. Five of the growth experiments resulted in the

formation of BaMgTi7O1fi tubes.
All the growth experiments were made in air or Og, inside a water cooled

quartz tube, using a 20 kW, 450 KHz RF set as the power supply. (See Figs. 3 and 4) .

The 19 mm outer dia x 19 mm high x 0.5 mm wall iridium curcible, containing the

calcined BaMgTi_O1R charge material, and the iridium tube die were both suscepted

to directly. Manual temperature was achieved by a multiturn potentiometer arrange-

ment of the RF manufacturers design.

The iridium crucible was raised to the melting point of the BaMgTi^CL,,

compound. When melting occurred, liquid charge material was seen to rise to the

top surface of the tube die. Crystal growth was then nucleated on the end of a

1/4 mm dia iridium wire. During the initial growth experiments, some difficulty
was encountered in causing the crystal to become a complete tube. This was over-

come by increasing the temperature gradient and pulling speed. The growth experi-

ments were performed at 5 to 11 cm/h. The tubes of BaMgTi-Ojg consisted

of coarse-grained orientated crystallites and were two-phased (~95% BaMgTi_O1fi -

5% TiCL) , as determined by Debye-Scherrer powder patterns and metallography.

(Table I and Fig. 6.) After growth, these crystals were bluish-black in color. As

reported previously, annealing at elevated temperatures (1073-1473 K) in air or

oxygen changed the specimen color (to cream -yellow) , but with no accompanying

measurable gain in weight. Fig. 7 shows the typical appearance of unannealed and

annealed tubes. Similar color changes have long been known in barium titanate

17
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Fig. 7. Top row shows pieces of unannealed (bluish-black) and annealed
(light yellow-brown) BaMgTiiyOjg tube No. 1 (annealing was carried
out for 90 h in flowing O2 at 1323 K); the bottom row shows the
BaMgTi7<Di6 tube No. 2 (annealed for 125 h. in flowing O2 at 1323 K)
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compounds and are associated with the oxidation of titanium from Ti to Ti , the

bluish-black color being due to oxygen deficiency. It should be noted that the

MgO-BaO-TiOg section in the quaternary Mg-Ba-Ti-O system is, of course, not one
of constant oxygen concentration.

The Debye-Scherrer patterns obtained from crushed samples of these tubes

agree closely with that reported by Norrish, using d values calculated using the
o o

lattice constants, a = 10.110 A and c = 2.986 A, reported by Dryden and Wadsley.

In addition, extra lines were found and identified as arising from the presence of
rutile as a second phase. (See Table L)

Wet chemical analysis of the overall tube composition is shown in Table III,

together with the weight percent of each element present in the starting material. The

apparent increase in Mg content may be due to the greater relative loss of Ba, Ti, and

O during growth, since the melting point of BaO is only 2196 K and the decomposition
temperature of TiO2 is only 1913 K, while the melting point of MgO is 3073 K. The

temperature of the melt was observed to be approximately 2023 K by optical pyro-

metry.

Table III. Nominal and Analyzed Tube Composition

Calculated Wt %
for BaMgTi?O16

Ba

Mg

Ti

0

18.2403

3.2286
44.5315

33.9996

Chemical Analysis
Average Wt % (Both Tubes)

Tube No. 1 Tube No. 2

18.1

3.86
45.2

*32.84

17.95

3.71

45.1

*33.24

*Based on total content of Ba, Mg, and Ti.
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An attempt at determining the orientation of the as-grown tubes No. 1 and
No. 2 of BaMgTUOjg was carried out using Laue back-reflection X-ray photographs.

Great difficulty was encountered during our attempts to orientate the crystal due to

fluorescence from the crystal. This caused the film to be over exposed in the center
and identification of the exact growth direction impossible using this method. The

principal determination that could be made from the Laue X-ray photographs was
that the tubes appeared to be essentially single crystalline, even though they were
two-phased microscopically. This was because the second phase (TiCL) was oriented
with respect to the BaMg TUO-g (hollandite) in the grown tubes. An annealed piece
of tube No. 1 was analyzed by nondispersive X-rays using a scanning electron micro-
scope. Figs. 6, 8, and 9 show a transverse section of this tube. As can be seen
from these microphotographs, the tube consists of two major phases: a matrix
phase and a phase which looks like angle bars. Nondispersive X-ray analysis of the
indicated region in Fig. 6 shows the matrix to contain Ba, Mg, and Ti, while the
angle bars contain Ti but not Ba or Mg. The scanning electron microscope was not
capable of detecting oxygen. These results confirm the conclusions derived from the
Debye-Scherrer X-ray powder patterns of as-grown and annealed samples of
BaMgTi?O16 tube No. 1.

A Laue X-ray photograph of an annealed piece of tube No. 1 showed more dis-
tinct spots than the as-grown tube. From the Laue X-ray photographs taken of
BaMgTinCL., tubes No. 1 and No. 2, it appears that they were grown in the same
direction, despite the fact that tube No. 2 was seeded by a piece of tube No. 1 which
was orientated 90° from its growth direction. The common growth direction was
determined to be along the c-axis of each grain by the observed cleavage as well as
by optical extinction observations. Longitudinal and transverse sections were viewed
under reflected polarized light. Since BaMgTi_CLg is tetragonal, an extinction posi-
tion is observed upon rotation in polarized light about any axis not parallel to the
c-axis. When viewed parallel to the c-axis, no extinction occurs. The extinction
pattern of longitudinal and transverse sections showed that the tubes were grown
parallel to the c-axis.

There is some evidence to indicate that the compound BaMgTi?O16 may not
melt congruently. Fig. 9 shows a third phase which evidently was not detected by

X-rays.
A growth experiment was performed from a melt containing 5 mole % excess

Ba and 5 mole % excess Mg to try to reduce the amount of TiOq in the grown tube. The
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Fig. 8. BaMgTiTOjg tube transverse section, annealed; 60 h, 1323 K
reflected light (750 X)

Fig. 9. BaMgTUCLg tube transverse section, as-grown, reflected light (750X)
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pattern obtained from this Ba. ^c^g., n(-Ti_O,c t tube was essentially the same as
l.UD l.Uo ( lu.l

that obtained from tubes grown from the original composition BaMgTi_O1R. The

pattern indexed to BaMgTi^O^ (hollandite) and TiCL (rutile) in the ratio of ~95% to
i 10 iL

~5%. We conclude, based on the abovementioned results, that growth in this system

will not be possible until the phase diagram of this system is examined.

B. K M T i - Hollandite

The initial tube growth experiments of K^MgTi-O were performed using

the same furnace, iridium setup, and procedure as that mentioned above for

BaMgTUO..-. During the attempted growth experiments, the melt was observed to

vary its melting point. As growth progressed at 3.8 cm/h, the melt at the top of

the die would freeze and when remelted was observed to freeze at a higher tempera-

ture than before. Bubbling was also observed in the melt at the top of the iridium

tube die. Because of these difficulties, it was not possible to grow a complete tube

from the ICMgTi^CLg melt. The growth experiments resulted in pieces of

KgMgTi O1fi which were not complete tubes. The color of the as -grown crystals

varied from a bluish -black to a light brown. A piece of a crystal was examined

using a Debye-Scherrer X-ray camera to see if the compound K^MgTi-CL,,. was

actually grown from the melt of the composition K«MgTi_O1fi. There was also some

volatilization associated with the atmospheric growth of ICjMgTi-CLg which resulted

in a deposit being formed on the walls of the growth chamber. This powder was

also examined using Debye-Scherrer X-ray techniques to see if it could be identified.

The results listed in Table II show the standard pattern for KqMgTi^O,,, compared

to the starting material, the as -grown piece of KgMgTi^O^, and the powder deposited

in the growth chamber. From these results, it can be seen that the piece of as -grown

crystal shows KgMgTUO..,, with a slightly smaller lattice parameter and a few uniden-

tified lines. The shift in the lattice parameter is probably due to the loss of one of

the constituents in the compound. The powder pattern obtained for the deposited

material in the growth chamber and listed in Table II was not identifiable. It does

not appear to be a potassium oxide, titanate, or magnesium titanate.

Based on the above results, it was concluded that the high pressure furnace

should be used in an attempt at producing KgMgTi-O tubes or rods. Experiments
were conducted under 0.7 to 1.4 MN/m argon overpressure, and growth speeds varied

2
from 2.5 to 65 cm/h. Pressures as low as 0.7 MN/m appear to be effective in sup-

pressing potassium vaporization. Melts were contained in both iridium and molyb-

denum crucibles, and both iridium and molybdenum were used as die components.

Growth was nucleated on the end of a 1/4 mm dia platinum or molybdenum wire.
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Several growth experiments were performed in an attempt at producing

KgMgTUCLg tubes. During all growth attempts, the crystals could not be encouraged

to spread into a complete tube. As was the case of the growth experiments performed

at atmospheric pressure while growth was taking place, there was liquid and solid at

the melt interface at the same time. A sample composed of coarse-grained orientated

crystallites 19 mm long with a 6 mm circle radius was the best result.

Because of the difficulty encountered in trying to produce KgMgTi^O..,, tubes,
u l i t )

it was decided to attempt to grow K^MgTi^O fi rods from either iridium, platinum or

molybdenum setups. Some success was encountered in growing a polycrystalline rod

6 mm in dia and 10 mm long from an iridium rod die. Molybdenum components
were used for the growth of 3 mm dia K0MgTi_O1c rods. Even though rods were

& i lb
able to be produced, there was always the appearance of liquid and solid at the melt

interface. The as -grown color of the K^MgTi O1fi rods was a bluish-black, which

became a cream color upon annealing in air at ~ 1273 K for 15 h. All of the above-

mentioned crystals were composed of coarse-grained orientated crystallites which

appeared orientated so that the long axis (c-axis) was parallel to the growth direction.

This is 90° from the desired direction, which is with the c-axis perpendicular to the

growth axis.

Samples of the K^MgTi-CX „ rods grown from both iridium and molybdenum
setups were examined using Debye-Scherrer X-ray techniques and metallography.

As was the case of the K^MgTi-CL fi grown at atmospheric pressure, the X-ray pattern

obtained consisted of ~90% K^MgTi^O _ with a slightly smaller lattice and ~ 10% of

an unidentified phase (Table II) . The metallographic sample consisted of two phases

in the as -grown and annealed condition. Fig. 10 shows a transverse section of a

6 mm ICMgTi^O..,, as -grown rod. Based on the above-mentioned results, it can be

concluded that single crystal growth will not be possible until the K«O - MgO - TiCL

system is more thoroughly investigated.

C. Sodium Beta -Alumina

There are considerable difficulties associated with the crystal growth of

sodium beta-alumina. The difficulties are due principally to the fact that the com-
19pound appears to decompose peritectically as well as due to the high vapor pressure

g
of sodium over beta -alumina at its decomposition temperature.

During the initial growth experiments, considerable difficulty was encountered

with localized overheating of the Conax fittings and the power port to which they were
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Fig. 10.
transverse section

rod, as-grown from iridium setup (150 X);
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connected. These problems were overcome by modifying the Conax fittings to accept

fiberglass-reinforced Teflon pressure plugs and by water cooling the power port.

Difficulty was also encountered with arcing from the interior coil to any

available groundpoint due to the presence of sodium vapor. This was initially

prevented by coating the coil with a high dielectric constant film called "Durafilm 111

Dielectric Enamel."* After several growth experiments using this coating, it was

found to be sensitive to alkylides and was replaced with "Durafilm 300 Series"*

dielectric enamel, which is insensitive to alkylides. In addition, the crucible, gas

inlet tube, and seed holder have been electrically insulated from the pressure

chamber with boron nitride inserts and ceramic shields. (See Fig. 1.)

In order to establish the amount of gas overpressure required for the growth

of 100% beta-alumina, growth experiments were conducted at 0.7, 1.4, and 2 MN/
2

m . All the growth experiments were conducted using iridium crucible and die

components, with Monofrax H beta-alumina as the raw material and argon as the

inert gas. Growth experiments were performed in the a-axis and c-axis directions

at speeds of 1/4 to 5 cm/h. The seeds used to initiate growth were pieces of

Monofrax H single crystals orientated in either the a or c-axis direction. The in-

fluence of inert gas overpressure is shown by Table IV, which gives the approximate

relative beta-alumina and alpha-alumina composition of tubes grown under increasing

inert gas overpressure. In each case, the starting melt composition had the approxi-

mate composition Na^O • 11 AUCL. As may be seen, there is a clear tendency for

the relative percentage of beta-alumina present in the crystal tube to increase as the
2

overpressure is increased from atmospheric to 1.4 MN/m . Beyond this, however,
2

a further increase in pressure to 2 MN/m does not give a further increase in beta-
21

alumina content. This effect could be due to local convection currents but is
17 19more likely associated with the incongruent melting of beta-alumina. These

beta alumina percentages were determined by comparison of the intensities of alpha-

alumina and beta-alumina X-ray reflections as observed in Debye-Scherrer photo-

graphs as well as from metallographic observations. Although a single beta-alumina

crystal was uses as seed in every case, none of the tubes where the beta-alumina

content was not 100% was single crystalline. These results, together with data
18published by Metuo Harata, in which he shows that Monofrax H cast bricks contain

small amounts of alpha-alumina as a second phase, convinced us that growth of 100%

beta-alumina would not be possible without the addition of excess Na«O. To prepare

tubes having a 100% beta-alumina composition as well as a substantial single

* American Durafilm Co., Inc., Newton Lower Falls, Massachusetts
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Table IV. Alpha (Al2O3) and Beta-Alumina Contents of Tubes Grown
under Inert Gas Overpressure (Compositions determined
by Metallographic and Debye-Scherrer X-Ray Powder
Pattern Measurements)

Inert Gas
Starting Composition

(mole % Na2O)

8.34

8.34

8.34

8.34

20.0

Pressure
(MN/m )

Atmospheric

0.7

1.4

2

1.4

Percent
Beta -Alumina

40%

75%

85 to 90%

85 to 90%

100%

Growth
Number

LP 8

HP 4

HP 9

HP 10

HP 15

crystallinity, it has been necessary to use melts containing an excess of Na«O. As

illustrated in Table IV for the case of tube No. H. P. 15, the use of a melt composi-

tion that contained an enriched Na2O content enables tubes having a 100% beta-alumina

content to be grown.

Often the as-grown tubes were covered with a grayish-white deposit. In most

cases this was successfully removed by annealing the tubes at 1523 K, which is

above the decomposition temperature of Na^O. Cracking was also a problem that was

encountered during growth and seemed to occur more at high growth rates (> 6 rnm/h)

than at slow rates (~ 2 mm/h). The cracking always occurred in the cleavage

plane, which is perpendicular to the c-axis. In one instance, a grown crystal that was un-

cracked and left to stand in the growth chamber for 72 h in room atmosphere was

found wet and cracked in three places upon removal from the furnace.

A photograph of four beta-alumina tubes is shown in Fig. 11. Two of the four

crystals are 100% beta-alumina: H. P. 11 a-axis growth and H. P. 15 c-axis growth.

Fig. 12 is a Laue back-reflection photograph taken from the bottom of tube H. P. 15

beta-alumina and confirms that this tube is substantially single crystalline. It has

taken up the orientation of the seed crystal that is with the high conductivity planes

normal to the tube axis.

Table V lists the chemical composition for tube H. P. 15 beta-alumina grown

from a melt of composition (NagO) _ „ (AlgOJ g. As can be seen from the table, the

tube contains more Na than is found in Na«O • 11 ALO,,, yet still retains the beta-

alumina structure, as determined by Debye-Scherrer powder patterns and Laue back-

reflection X-ray photographs (Fig. 12).
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Fig. 11. Top to bottom H.P. 11 beta-alumina, H.P. 12 beta-alumina,
H.P. 15 beta-alumina, and H.P. 17 beta-alumina, all annealed
~12h at 1473 K in air
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Fig. 12. Laue back-reflection X-ray photograph taken of bottom of beta-
alumina tube H.P. 15 parallel to growth direction

28



Table V. Composition of Tube Crystals

Analysis (Wt %) Mole %

Crystal

H. P. 15

H. P. 30

Charge

Top

Bottom

Charge

Top

Bottom

i

Na

6.8

7.5

4.4

5.0

Mg

—

0.7

0.9

Al

63.6

56.3

46.9

47.0

~~l

O

(29.6)

(36.2)

(48.0)

(47.1)

i
Na20

20.0

11.1

13.5

7.95

9.6

10.7

MgO

—

—

—

4.68

2.9

3.8

*"1
A12°3

80.0

88.8

86.6

87.5

87.5

85.5

The use of an excess Na0O melt composition together with a high inert gasz
overpressure is sufficient to overcome the problem associated with the high vapor

pressure of sodium as well as with the possible incongruent melting of beta-alumina.

The use of a 1:4 molar ratio of NaJD to AlnCL, as the melt, constituents an essen-

tially flux growth process which allows growth at ~50°C below that required for

NagO • 11 AUCL. These results show that properly orientated single crystal beta

alumina tubes can be produced relatively crack-free, if the growth rate is 1/4 cm/h.

The addition of an afterheater would have the twofold advantage of preventing deposits

from forming on the tubes and preventing cracking.

D. Sodium Magnesium Beta-Alumina

The techniques and equipment used to grow beta-alumina plus magnesium

oxide were the same as those mentioned above for the growth of sodium beta-alumina.

Growth was performed in the c-axis direction using a piece of Monofrax H single
2

crystal as a seed, and growth was performed under 1.4 to 1.7 MN/m argon overpressure

at pulling speeds from 2 to 6 mm/h. The starting material was 5 g of Mono-

frax H beta-alumina, to which was added 0.05 g excess Na0O in the form of Na0COo
£ £t O

and 0.1 g of MgO. This gave a starting composition of ~(2 Na2O • MgO) ~ 14

(Al«On) _ Rfi. Fig. 13 (a) and (b) shows two MgO doped beta-alumina tubes grown

during these experiments. As can be seen from the Laue back-reflection photographs

of crystal number H. P. 30, the crystal is essentially single crystalline, with the
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Fig. 13a. H.P. 30 beta-alumina plus magnesium oxide

Fig. 13b. H.P. 31 beta-alumina plus magnesium oxide
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c-axis parallel to the growth direction (Fig. 14). Table V list the chemical analysis
for tube H. P. 30. The analysis shows the tube to contain less magnesium oxide than
was in the starting material and cannot be explained at this time. Debye-Scherrer

powder patterns taken of the tube show it to have the beta-alumina structure. It is
concluded from these results that it is no more difficult to grow beta-alumina with
magnesium oxide additions than undoped beta-alumina.

E. Potassium Beta-Alumina

One growth experiment on potassium beta-alumina was performed. The
starting material for the growth experiment was potassium beta-alumina which was
prepared by leaching sodium beta-alumina in KNO, (method supplied by NASA-

o

Lewis). Analysis after the four leaching treatments showed that 98% of the sodium
in Monofrax H had been exchanged by potassium. The seed was a c-axis oriented
crystal of Monofrax H. Growth was performed in the high pressure crystal puller

2
under 1.4 MN/m argon overpressure at ~ 6mm/h. Upon initiating growth, the seed
broke loose from the A10OQ 1/2 mm diameter filament it was attached to, so growth/ o
was then nucleated on the AUO, filament. Growth continued until the crystal froze
to the tube die terminating the growth experiment. The resulting tube crystal had
several cracks in it due to freezing problems during growth, but was 32 mm long and
did not have a deposit on it from growth. Both cracking problems were due to a crack
developing in the molybdenum susceptor. Observed cleavage showed the crystal was
grown in the a-axis direction, and the Debye-Scherrer X-ray powder pattern showed
it to be 100% potassium beta-alumina.

From the above mentioned results, it has been concluded that potassium

beta-alumina is no more difficult to grow than sodium beta-alumina.
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Fig. 14a. Laue of bottom of H.P. 30 beta-alumina plus magnesium oxide
tube parallel to growth direction

Fig. 14b. Laue of side of H.P. 30 beta-alumina plus magnesium oxide
tube perpendicular to growth direction
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V. CONCLUSIONS

Although tubes of BaMgTiP7O1,, and rods of K0MgTir7O1 fi were grown, they
I J. 0 £t i L U

consisted of coarse-grained orientated crystallites which were two-phase. It was

concluded from these experiments that neither BaMgTiJD.g or KJVIgTUOjg melt

congruently, and therefore these compounds will be extremely difficult to grow by

EFG until more phase diagram information is learned. Crystal growth from a flux

system may be possible for both BaMgTUOjg and KgMgTi-Ojg, provided solubility

data for these materials have first been obtained.

It has been demonstrated that melt growth of single crystal beta-alumina tubes

using the EFG technique developed by Tyco Laboratories is feasible. The successful

crystal growth of both beta-alumina and beta-alumina with magnesium oxide
additions has been accomplished using the high pressure crystal puller designed and

built during this contract. Laue back-reflection photographs, Debye-Scherrer

powder patterns, and chemical analysis data all confirm the fact that 100% beta-

alumina was grown, which was single crystalline and orientated in the c-axis

direction.

Further work is necessary on increasing the growth rate, reducing the

cracking, and preventing surface contamination during growth. The latter problems

can probably be solved by the use of an afterheater.
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