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A STUDY OF THE MICROSTRUCTURE AND
OPTICAL PROPERTIES OF THIN LEAD-DIELECTRIC

CERMET FILMS

I. INTRODUCTION

Thin cermet films, similar to other vacuum-deposited thin films, are formed
through a process of nucleation that starts with the appearance of isolated
three-dimensional nuclei [1-5]. If deposition continues, the nuclei grow, intergrow, and
finally form a continuous deposit film at an average thickness of 5 to 100 nm [6].

Previous studies [7-9] have shown that composite dielectric-metal (cermet) films
consist of metallic grains embedded in a dielectric network. Miller and Shirn [7] studied
the conductive properties of co-sputtered Au-SiO2, thin film cermets. The electric
resistance was found to vary exponentially with gold concentration. The microstructure
was examined briefly by transmission electron microscopy and was found to consist of
discontinuous networks of Au and SiO2. A similar study of flash-evaporated Cr-SiO films
involving film structure, resistivity, and temperature coefficient of resistance was carried
out by Gland, et al. [8]. Electron microscopy revealed a discontinuous microstructure that
varied with metallic content. Another study of the structure and resistivity of co-sputtered
metal-dielectric films was made by Beckerman and Thun [9]. Various metal-dielectric
combinations of percentages and materials revealed a discontinuous, grainy microstructure.

Because of their microstructure, cermet films are intimately related to the
extensively studied but poorly understood ultrathin metallic films which consist entirely of
the initial, isolated nuclei or grains. Therefore, we shall briefly review the studies made of
ultrathin metal films, most of which are concerned with the electrical conductivity of the
films.

The problem of conduction by tunneling between isolated, conducting grains was
analyzed in 1930 by Frenkel [10]. Further studies on conduction through thin dielectric
barriers were made by Emtage and Tantraporn [11], who considered Schottky emission
through thin insulating films; Stratton [12], who extended previous tunneling theory by
including temperature dependence and image force corrections; Hartman, et al. [13], who
made extensive experimental measurements of electrical conduction through SiO films; Hill
[14], who did an excellent survey of the various proposed mechanisms and relevant
experimental results; and Gundlach and Simmons [15], who analyzed the range of validity
of the WKB approximations used in some of the proposed mechanisms.

The first detailed investigation of conduction in ultrathin metal films was done by
Neugebauer and Webb [ 16], who concluded that the conduction process consisted of, first,
thermally activated charge carrier creation involving charge transfer between initially
neutral particles and, second, the drift velocity of those charges in an applied field. Charge



transfer between charges occurred by tunneling. Neugebauer's and Webb's mechanism was
supported by experimental results. An alternate mechanism was then proposed by Hartman
[17], who assumed tunneling between neutral grains. Hartman's mechanism, which was
also in agreement with experiment, involved an activation energy corresponding to
differences in energy levels of the band structure of the individual particles, which was
assumed to be discrete because of the small size of the particles. The Neugebauer and Webb
mechanism suggested that a certain number of the microparticles must be charged, thus
requiring a therm'al activation energy to move the appropriate electrons, with tunneling
then occurring between charged and uncharged microparticles. Workers agreed that some
kind of activation energy was required to reconcile theory and experiment, but it was
questionable as to which theoretical form it would take. Experimental results slightly
favoring the Hartman theory were obtained by measurements of electrical resistance-strain
characteristics of thin metarfilms made by Parker and Krinsky [18], but then a further
modification of the Neugebauer and Webb thermal activation mechanism by Weitzenkamp
and Bashara [19] brought that theory more in line with experiment.

At this time a different mechanism was proposed by Herman and Rhodin [20],
who suggested that conduction should include contributions caused by electron tunneling
between regions in the substrate surface immediately under the metallic particles. Charge
carriers would be contributed to the insulator surface regions by the metallic
microparticles. Their activation energy, which also produced results agreeable with
experiment, was electrostatic in nature and depended upon the average size and separation
of the metal grains.

A modification of the tunneling process common to all the previously described
mechanisms was made by Milgram and Lu [21 ], who assumed that trapping centers existed
in the substrate. They considered charge carriers created both by thermal excitation and by
field injection coupled with a charge transportation mechanism consisting of tunneling via
the trapping centers.

Further modification of the Neugebauer and Webb model was done by Swanson, et
al. [22], who considered electron transfer between charged particles other than
charged-to-neutral particle transfers.

The confusion was finally resolved by Hill [23], who, in an extensive theoretical
and experimental work, established a mechanism similar to that of Neugebauer and Webb,
but with an activation energy that considered substrate electrical properties and
microparticle dimension and a tunneling mechanism that incorporated temperature
dependence and the effects of an active substrate.

It should be noted that an interesting proposal by Morris [24] suggested correlated
conductivity and Hall-effect measurements on cermet films as a method of finally
determining which of the above mechanisms was correct. Unfortunately cermet films never
showed a measureable Hall effect.1

1. I.E. Morris, Private Communication, April 28, 1970.



The only examinations of cermet films have been in the form of conduction and
structural studies. In addition to those studies mentioned, a detailed conduction study was
made by Christen and Hewitt [25], who measured resistivities and temperature coefficients
of resistance for radiofrequency, co-sputtered gold-silicon dioxide and vacuum-evaporated
gold-silicon monoxide films. Their results are compatible with the mechanism of
Neugebauer and Webb.

No optical studies have been made on thin cermet films until the present study,
although such films would be roughly included in the general study of the optical
properties of thin absorbing films made by Abeles [26]. Related optical studies have been
made by workers examining ultra thin metal films.

The theory of Maxwell Garnett [27] applies to island structure films, such as
ultrathin metal films. Studies of the optical properties of such films have been made and
are reviewed by Heavens [28]. Maxwell Garnett assumed spherical metal particles that were
small with respect to a wavelength of light. His results agree with the more general theory
of Mie [29] for light absorption and scattering by an arbitrarily-sized sphere in the limit of
small, widely-separated spheres. Some investigators [30, 31] reported disagreement with
the Maxwell Garnett theory and assumed nonspherical microparticles without any direct
evidence for the necessity of this assumption. The resultant treatments are extremely
complex. However, it was shown in the later work of Doremus [32, 33] that previous
results could be understood in terms of the Maxwell Garnett theory and that it was not
necessary to assume that the particles were nonspherical or to make any other
modifications of the theory. It might be noted that while in the original formulation of the
theory it was stated that for thin films the Maxwell Garnett expression for the dielectric
constant might have to be modified for light falling on the film at an oblique angle, the
results of Doremus indicate that no such modification is necessary. It is shown in the
present study that the Maxwell Garnett model applies with equal validity to thin cermet
films.

In this study, variations in surface structure are correlated with variations in the
internal metallic distribution. This is done by electron microscopy, using both replicating
techniques and direct observation of films, and by microprobe analysis. The structural
model found is approximated by the Maxwell Garnett model, which is then used to
generate theoretical refractive indices. Rough indices of refraction experimentally using the
Tekucheva method [34] for interpretation of transmission and reflectivity measurements
and more exact experimental values found using ellipsometry [35, 36] are compared to the
theoretical Maxwell Garnett refractive index values.

II. MICROSTRUCTURE EXAMINATION

This section presents the experimental procedure used in this study for the
examination of the microstructure of thin cermet films.



A. Film Formation

The films were made in a Consolidated Vacuum Corporation (CVC) Plasmavac
AST-200 sputtering unit, which may be seen in Figure 1. The unit utilizes an RF-sputtering
technique which enables one to sputter dielectrics as well as conductors. This technique is
well discussed in Holland [37]. Plasmavac chamber pressures were less than 10~s torr
before argon was introduced and sputtering began.

Figure 1. Photograph of CVC Plasmavac AST-200
sputtering unit.

polished before each deposition to remove any lead oxide.

Single sputtering tar-
gets were used. This tech-
nique should ultimately yield
fi lms more uniform and
reproducible than those
resulting from the dual-target
techniques used by others [7,
8]. The targets consisted of a
nickel backing, lead glass, and
varying amounts of pure lead.
A typical target was formed
by firing a coating of Corning
7572 or 7575 lead glass onto
a 0.157-cm-thick square of
nickel and fusing strips or
dots of pure lead to the glass.
The glass fired at about
500°C. This technique was
suggested by R.F. DeHaye,
Marshall Space Flight Center
(MSFC). Three targets were
made, having 10-, 25-, and
50-percent pure lead by sur-
face area, respect ively,
soldered to their fronts. The
targets were mechanically

Film thickness and sputtering rates were monitored by a Sloan 103-850 quartz
crystal monitor. This unit uses a newly developed round quartz crystal which mounts inside
a shielded stainless steel cap. Both the crystal mounting surface and its signal contact are
shielded from the evaporant stream. Thus, unlike previous monitors, the unit gives stable
readings while in a plasma. Monitor calibration was done by Tolansky interferometry L38J
in a Sloan M-100 Angstrometer. Measurement by quartz crystal monitor is described by
Holland [37]. Sputtering rates of about 10 nm/min were typical.

Films with thicknesses of 20, 40, 60, and 80 nm were made from each of the
targets, and additional films of 100 nm and 100 and 140 nm were made from 25- and
10-percent lead targets, respectively.



B. Examination by Microprobe

An Advanced Metals Research (AMR) Corporation X-ray spectrometer attachment
for the Philips EM-300 transmission electron microscope was used to measure the actual
lead content of the films. All films measured were deposited onto electron microscope grids
that were precovered with a Formvar film. Thus, the films could be inserted directly into
the electron microscope for analysis. A 40 nm-thick, evaporated-lead film was used as a
standard^ and a simple ratio measurement of peak heights was used to determine the
percentage of lead in the cermet films. Peak heights are taken to be proportional to lead
content. This procedure is described in References 39 and 40.

The AMR X-ray spectrometer attach-
ment and the associated Norelco Mark III
Data Control and Processor may be seen in
Figure 2. With this equipment attached to
the electron microscope, one bombards the
sample with the microscope's electron beam
and examines the intensity of the emitted X-
rays as a function of the X-ray energy.
Because of the discrete emissions character-
istic of any given element, one is able to
determine which elements are present in the
sample by comparing the resultant peaks or
lines with known, tabulated values. By com-
paring the intensities of the lines with line
intensities from the appropriate known
standards, it is also possible to determine
quantitative values for sample composition.

Figure 2. Photograph of AMR X-ray
Spectrometer attachment and Norelco
Mark III Data Control and Processor.

C. Examination by Electron Microscopy

Replicas suitable for electron micro-
scopy were made from each film. This was
done by the following well-established proce-
dure [41]. Presoftened replicating tape was
pressed onto each film and left to set for at

least 3 hours. These surface impressions were then removed, coated with a thin
vacuum-sputtered carbon film which followed the contours of the impressions, and
shadowed with chromium from a source angled at 30 deg with respect to the replica plane.
The replicating tape was then desolved away in an acetone bath, leaving the shadowed
carbon replicas which were scooped out of the bath onto a microscope grid. The resulting
specimens show the surface structure of the films under study.

It was also possible to examine the films directly by electron microscopy. Some
films were deposited directly onto 3.05-mm, 200-mesh Fullum electron microscope grids
that were precovered with a Formvar film. These specimens could be inserted directly into
the electron microscope and examined. All electron microscope examinations were made
on a Philips EM-300 transmission scope, which may be seen in Figure 3.



I, ill-

Figure 3. Photograph of Phillips EM-300 transmission electron microscope.

III. MEASUREMENT OF OPTICAL PROPERTIES

This section presents the experimental techniques used in this study for
measurement of optical properties of thin cermet films. The films were formed in the same
manner as before except that they were deposited onto Kodak B351 cover glass substrates.

A. Through Absorption and Reflection

It is possible to determine thin film indices of refraction by measuring the intensity
of monochromatic light reflected by and transmitted through both the bare substrate and
the film-substrate system. The approach used in this study is the method of Tekucheva
[34], whose method requires knowledge of the light source wavelength, the film thickness,
the substrate index of refraction, and the appropriate transmission and reflection
measurements. For this study, Kodak B351 slide cover glass was used as substrates. The
index of refraction of Kodak B351 glass has been determined to be 1.538 ± 0.001 at 546.1
nm,2 and this value as well as the film thicknesses measured by the Sloan 103-850 quartz
crystal monitor were the values utilized in the calculations in this study. These were also
the values used in evaluating ellipsometric measurements.

2. J.L. Zurasky, Private Communication, Marshall Space Flight Center, Alabama, 1970.



A Gary Model 14 recording spectrophotometer was used to make transmission and
reflection measurements. The instrument automatically records transmission and reflection
spectra over the 186 to 2600 nm wavelength region with accuracies of ±3 percent,-using
assorted light sources, energy receivers, slits, collimators, prisms, and gratings. In this
report, measurements were confined to the 325- to 800-nm region, where a tungsten lamp
acted as source and a 1P28 multiplier phototube acted as energy receiver.

Measurements were taken on all the cermet films under study, but meaningful
results were obtained only for the more absorbent films from the 50-percent pure lead
sputtering target, since the accuracy of the Gary Model 14 was insufficient to detect the
transmission variances required to use the Tekucheva method. A presentation of this
method follows. However, the values obtained acted as a rough guide in the determination
of the iteration range utilized in the McCrackin program for solution of the Drude
equations.

Refractive Indices by the Tekucheva Method. Tekucheva's [34] method allows one
to obtain refractive indices of thin films from measurements of film transmission and
reflection. A derivation of this method follows.

Consider an absorbing medium of thickness d, reacting with monochromatic light
of wavelength X0 and initial intensity I0. We know that the transmitted light has
intensity I, where

-ad ,,.
I = I0 e (1)

and a is the absorption coefficient of the medium. We may relate a to the medium's
optical constants by

a. = 4.7T nK/\o , (2)

where

n = refractive index of medium

K = absorption index of medium.

Note that the complex refractive index n" would be defined here as

n1 = n (1 - i/c) . (3)



Equation (1) is valid only if there is little reflection at the boundaries. For a medium
without a substrate but with reflection at both boundaries, equation (1) becomes

I = I 0 ( l - r ) 2 e
-ad

(4)

where r is the reflection coef-
ficient for the air-medium
boundary, and the incident
light is normal.

Now consider an
absorbing film on a substrate,
as shown in Figure 4. Here, we
have reflection at three bound-
aries — the air-film, the film-
substrate, and the substrate-air
boundaries. Also, in addition
to film absorption we have
absorption by the substrate.
Assuming film and substrate
thicknesses of di and d2
and film and substrate absorp-
tion coefficients of «i and

a 2 j respectively, we may
write

I AIR

Figure 4. Film substrate system in unprimed mode.

I0(l - - R 2 > ( 1 - (5)

where Rj, R2, and R3 are the reflection coefficients at boundaries 1, 2, and 3,
respectively, as shown in Figure 4, and Ii is the intensity of the light transmitted by the
film and substrate. We are considering the incident light to be normal, and we are
neglecting multiple-reflection terms, which are relatively small at normal incidence for the
films under study.

We note that if we consider the intensity of the light transmitted by the bare
substrate only, I2, we may write

I2 = - R3) (6)

8



Solving for e""2 **2 in equation (6) and substituting into equation (5) yield

I, = I 2 ( 1 - R jK l - R2)e'aid l/(l - Hj) ,

or

Ii( 1 - R3) ...
- R l ) ( l - R2)

We define the overall reflection coefficient for reflection from all three boundaries as

R = irA>

where Ir is the intensity of light reflected from all three boundaries, and the system is
arranged as in Figure 4.

Approximating as before, we may write the reflected intensity of normally incident
light as

. (8)

and by neglecting terms that contain RjR; we have

-2(2. d, -2a}d, -2oiydyE « R! -t R2e
 J J + R3e

 l ^ . (9)

Now, if the system is arranged as in Figure 5, which will be called the primed
system, a similar expression may be derived for R', in which

that is,



= R (10)

Figure 5. Film-substrate system in primed mode.

Noting,that for normal incidence the Fresnel formulas for reflection at a boundary,
as derived in Appendix B, reduce to

R! = (n - l)2/(n + l) 2

R2 = (n - ni)
2/(n + ni)

2

R3 =

( i i )

10



where 1, n, and nj are the refractive indices of air, film, and substrate, respectively, and
solving equations (9), (10), and (11) simultaneously for n yields

P2(l - z4) + p2(R - Rgz2?2) - z2(R' - R3)
n' - 2n p2(l - z4) - P

2(R - R3zV) + z2(R' - R3) *
 1 = ° ' (12)

where : ; . : • • • >> . • > • . ' • : : . > ( ; -• •>

LX1VA1 -, • ^ — £,

z - e l and p = e

For a thick substrate, R3 terms may be neglected and equation (12) becomes

1 - z4 + R - R' z2/p2

(13)

Making some further approximations, we note that for small ajd^ , equation (9)
may be written as

R = Rt + R2 + R3 - (2o;1d1R2 + 2a1d1R3 + 2o;2d2R3) , (14)

which may be further written, for thin (d < 100 nm) and not too strongly absorbing films
on a thick substrate, as

R = Rj + R2 + R3 . (15)

Thus, putting (1 - R! )(1 - R2 ) = 1 - RI - R2 and using equation (15), we have

(l - R j C l - R2) » 1 - R + R3 . (16)

Substituting equation (16) into equation (7) yields

i ^ Ii 1 - a (17)
- '
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Now, we may calculate n and K for the film from transmission and reflectivity
data for monochromatic light of a known wavelength X0 if the film thickness di and the
substrate refractive index nt are known. We proceed as follows:

a. Measure the transmission of the bare substrate; this yields I2.

b. Calculate R3 using n, in equation (11).

c. Calculate p using equation (6).

d. Measure the total reflectivity of the film-substrate system in the primed and
unprimed modes as shown in Figures 4 and 5; this yields R and R'.

e. Measure the transmission of the film-substrate system; this yields l!.

f. Use the now-known values of Ii, I2, R3, and R in equation (17) to
obtain z.

g. Use z, p, R, and R' values in equation (12) to obtain a value for n.

h. Use the known dj and the calculated z values in the definition of z to
obtain a value for a i.

i. Use ai = 4 7 r n K / \ 0 to obtain K.

In this manner, the Tekucheva method yields quick, rough values for n and K which may
be used as first approximations in more sophisticated techniques.

B. Through Ellipsometry

The indices of refraction for the cermet films under study were measured on a
Gaertner Model LI 19 ellipsometer. This instrument and its peripheral equipment include
the following: an external-filtered mercury light source emitting 546.1 nm monochromatic
light; the appropriate collimators and shutters; two Nicol prisms, one rotatable about the
source beam axis and one rotatable about the source beam axis and a vertical axis; a
quarter-wave plate, rotatable about the source beam axis and situated between the two
prisms; and a photomultiplier tube with associated power amplifier and digital voltmeter.
The photomultiplier tube measures the intensity of the light after it leaves the source;
passes through the collimator, first Nicol prism and the quarter-wave plate; bounces off the
specimen; and passes through the second Nicol prism. The specimen is rotatable about the
same vertical axis as is the second prism. All rotational orientations can be read directly to
within 0.01 deg. With this equipment, changes in the polarization of the reference beam
upon reflection from the specimen can be measured.

The classical treatment concerning the change in the state of polarization of light
upon reflection from a bare surface or a surface with a film on it is the old and very elegant

12



approach of Drude [42], whose theory and equations are essentially exact. By using
Fosterling's theory of reflection and refraction by a plane-parallel homogeneous thin film, a
derivation of Drude's equations is given in Appendix B. Drude's equations cannot be solved
in closed form, necessitating trial-and-error and iteration methods. Thus, before the
availability of electronic computers, the routine application of the exact equations was
practically impossible. However, computer programs to solve the Drude equations now
exist, and, in this study, the National Bureau of Standards program of McCrackin [36] is
used.

The McCrackin program was rewritten in Fortran 4H as modified for the Xerox
Data Systems (XDS) Sigma Five computer used in this study, and, after extensive
debugging efforts, the program worked well in evaluating ellipsometric measurements of
the cermet films under study. The exact procedure used in this stage of the study is
outlined in Appendix A.

IV. RESULTS OF OPTICAL EXAMINATION

In this section, the results of the examination of cermet films of various thicknesses
sputtered from targets with different lead contents are presented.

A. Microprobe Results

The AMR microprobe attachment gave values of 58 ± 6, 45 ± 5, and 30 ± 3 percent
lead by volume for films from the 50-, 25-, and 10-percent lead targets, respectively. The
data for these films are shown in Figures 6 through 9. The peak height of the PbM (1,2)
doublet [43] was taken to be directly proportional to the percent lead by volume
contained in each film. The peak height of the pure lead film in Figure 6 was used as a
standard. The errors arise mostly from the simple ratio technique used to obtain
quantitative values, which is not strictly accurate for the complex metal-dielectric matrix at
hand. The PbLB ( 1 , 2 ) and MB lines are distorted by the proximity of the barium LB1,
LB2 (with satellites), LB3, LB4, and LB6 lines, and the platinum M3-01 line (arising from
the sample holder), and may be disregarded. It might be noted here that the dielectric part
of the films consisted of the oxides of zinc, aluminum, silicon, boron, and traces of barium.
These compounds are contained in the Corning 7575 and 7572 lead glasses.3

B. Electron Microscope Results

1. Direct Transmission Studies. Examination of the films deposited onto
Formvar-covered grids revealed that the films from each sputtering target had their own
characteristic structure, which may be seen in the following sections.

3. Brent W. Springford, Private Communication, Corning Glass Works, Corning, New York,
1970.
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Figure 6. Spectral pattern from pure lead film.
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Figure 7. Spectral pattern of film sputtered from 10-percent pure lead target.

PbMa(1,2)

30 31

2 0 ANGLE (deg)

32

Figure 8. Spectral pattern of film sputtered from 25-percent pure lead target.
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PbMa(1,2)
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32

Figure 9. Spectral pattern of film sputtered from 50-percent pure lead target.

a. Low-Lead Content Films (30 Percent by Volume). Films deposited
from the 10-percent pure lead target had a structure consisting of small spheres of lead
embedded in dielectric. The spheres were typically 10 to 30 nm in diameter and had their
centers separated by about 40 nm. The lead spheres occupied about 15 percent of the film
volume. This structure may be seen in Figure 10. The film was stable under the microscope
electron beam.
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b. Intermediate-Lead Content Films (45 Percent by Volume). As the
metallic content increased, the lead balls seemed to grow in size, typically to about 400 to
800 nm in diameter, although a number of balls less than 100 nm in diameter may be seen
(Fig. 11). In other photographs, some of the smaller balls are in the process of combining
with some of the larger balls, and some of the larger balls are intergrowing (Figs. 11 and
12). A higher magnification of one of the larger balls (Fig. 13) shows an outer edge
consisting of a number of smaller balls the size of those observed in the low-lead content
films. The larger balls are usually separated by a center-to-center distance on the order of
1300 ma-

*
' *

* * " * * » '
* «N|>Jt»-" * *

Figure 10. A 30-percent lead film on
Formvar-covered grid (260 000 x).

Figure 11. A 45-percent lead film on
Formvar-covered grid (31 500 x).

•
Figure 12. A 45-percent lead film on

Formvar-covered grid (76 000 x).
Figure 13. A 45-percent lead film on

Formvar-covered grid (260 000 x).
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Since the films are only 40 to 50 nm thick and are only 45-percent
lead, insufficient metal exists in the films to form spheres of the sizes and distributions
observed. A more likely shape for the metal particles is some type of disk.

Let us assume that the particles are oblate spheroids and that they
contain all the lead in the film (45 percent by volume). This shape is not unreasonable and
does not conflict with the micrographs.

Furthermore, the high contrast between the spheroids and the
remaining film in Figure 11 leads one to believe that almost all the lead is contained in the
particles. Let us further assume that the rotated ellipses forming the oblate spheroids have
the same eccentricity. A rough volume calculation based on the above assumptions implies
that such spheroids have eccentricities of about 0.96.

The above model infers that the larger spheroids have a maximum
thickness of 200 nm. They should therefore be jutting out of the surface as manifestations
of the underlying metal structure.

It should be noted here that it is possible that Figures 11 through 13
do not represent the totally undisturbed metallic structure. Some lead migration, as a result
of film heating in the electron beam, was observed; thus, the original film structure may be
different from that recorded. Such migratory effects have been noted in pure lead films
[38, 39]. The effect is not surprising since under certain matrix conditions the electron
beam can heat the sample to temperatures as high as 1000°C [40]. It is difficult to
estimate the degree of the migration since the effect occurred very rapidly, usually while
the microscope was being focused.

It might be further noted that no migration occurred in the high- or
low-lead content films except immediately before film breakdown. Apparently, in the
highly metallic films, conduction to prevent extreme heating existed, and in the slightly
metallic films the relatively small amount of lead was held in place by the heat-resistive
dielectric.

An indication of the accuracy of Figures 11 through 13 is obtained
in the replica study presented later in this report.

c. High-Lead Content Films (58 Percent by Volume). In the extreme
case, the metal particles remain about the same size as in the intermediate case, but more
numerous and closely packed; they touch or nearly touch and form an almost continuous
network (Fig. 14). However, there is not nearly as much contrast between the metallic and
dielectric areas as there was in the intermediate case, which indicates that lead atoms are
diffused throughout the dielectric.

In some areas (Fig. 15) the metal particles have combined
completely, forming a metallic medium containing dielectric particles that are
approximately 200 nm across. The lack of contrast in these areas indicates a diffused lead
content.
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Figure 14. A 58-percent lead film on
Formvar-covered grid (76 000 x).

Figure 15. A 58-percent lead film on
Formvar-covered grid (260 000 x).

2. Replica Studies. Replicas were made as follows. Impressions were made
with replica tape of the various films. The impressions were coated with a sputtered-carbon
film. This carbon film was shadowed with chromium, and the replicating tape was dissolved
away in acetone. This is a standard technique [41 ].

a. Low-Lead Content Films (30 Percent by Volume). Films that were
20, 40, 60, 80, 100, and 140 nm thick were examined by the replicating technique. No
surface trend with the thickness was seen. All films seemed to be continuous and exhibited
pits and mounds. It is possible that some of the features of the thinner films are caused by
substrate effects.

Since the limit of replica resolution is about 5 nm, one might expect
difficulty in spotting surface features caused by the underlying 20-nm-diameter lead
spheres. However, some surface details that could be so caused can be seen in Figure 16.

b. Intermediate-Lead
Content Films (45 Percent by Volume). For
this case, films with thicknesses of 20, 40,
60, 80, and 100 nm were examined by the
replicating technique. Again no trend with
thickness was established; all films seemed
to be continuous. However, several features
can be seen that could be surface manifesta-
tions of the lead spheroids observed in
Figures 11 through 13. The surface features
in Figures 17 and 18 correspond especially
well in size and distribution to the sphe-
roids. This is evidenced because the sphe-
roids are not totally a product of heating in
the electron beam. The shape of the fea-
tures implies that the oblate spheroid model

Figure 16. Replica of 20-nm, 30-percent is correct in some instances, at least. In
lead film (79 300 x).
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Figure 17. Replica of 60-nm, 45-percent
lead film (31 000 x).

Figure 18. Replica of 60-nm, 45-percent
lead film (63 000 x).

these instances, most of the lead in the film is contained in the spheroids. It is possible that
in areas which do not exhibit such sharp surface features the lead is simply more dispersed
through the dielectric.

c. High-Lead Content Films (58 Percent by Volume). Films that were
20, 40, 60, and 80 nm thick were examined by the replicating technique. A trend with
thickness appeared and can be seen in Figures 19 through 22. By assuming that most of the
surface features are a manifestation of the underlying metal network, the plates imply that
the network becomes more defined and connected as film thickness increases. Metal
particles seem to form and join together as the film thickens. Definite pits and protrusions
were seen (Fig. 23) which matched well with the sizes and distributions of the metal
particles observed in Figure 14.

Figure 19. Replica of 20-nm, 58-percent
lead film (31 300 x).

Figure 20. Replica of 40-nm, 58-percent
lead film (33 600 x).
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Figure 21. Replica of 60-nm, 58-percent
lead film (30 500 x).

Figure 22. Replica of 80-nm, 58-percent
lead film (176 000 x).

Figure 23. Replica of 60-nm, 58-percent
lead film (100 000 x).

C. Interpretation of Electron
Microscopy Observations

1. Internal Film Structure.
Direct transmission electron microscopic
examination of lead-dielectric cermet films
indicates that increases in the lead content
of the films from 30 to 45 to 58 percent
vary the film structure drastically. In the
30-percent lead films the structure consists
of 10- to 30-nm-diameter lead spheres
embedded in a slightly homogeneous die-
lectric medium. As the lead content is
increased to 45 percent, the spheres grow
to well-defined oblate spheroids which are
400 to 800 nm in diameter. Further addi-
tion of lead (to 58 percent) results in many
additional spheroids in the 400- to
800-nm-size range that join to form a con-
necting network as the film thickens.

2. Film Surface Structure. Replicas of film surfaces reveal mounds and pits
that are roughly the size of the underlying metal particles. These features can be
interpreted as manifestations of the film's metal structure, which juts out of the film
plane in some areas and depresses the film surface in other areas. Thus, there appears to
be a gratifying correspondence between the replica and direct electron microscopy
studies.
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3. Effects of Film Thickness Variations. No outstanding thickness trend
appeared in the range observed except for the case of the 58-percent lead films, which
seemed to show an increase in the definition of their metallic structures as film thickness
increased. All films were continuous at 20 nm.

V. RESULTS OF MEASUREMENT OF OPTICAL PROPERTIES

This section presents the results of measurement of optical properties of thin
cermet films.

A. Refractive Indices from Reflection and Transmission
Measurements

Since the noise level in the Gary Model 14 recording spectrophotometer was higher
than the differences in reflection and transmission that were measured in the less absorbent
films, physically meaningful refractive indices were obtained only for the 58-percent lead
films. These values are presented in Table 1 and in Figures 24 and 25. It is difficult to
estimate the error in these indices; it is merely known that it is large. It should be noted
that the usefulness of these rough values was in their specification of the initial iteration
range to be used in the McCrackin computer program; in this sense, they were extremely
valuable. It is interesting that the rough values for n indicate the same thickness
dependence that is obtained from the final ellipsometric values.

TABLE 1. REFRACTIVE INDICES FROM REFLECTION
AND TRANSMISSION MEASUREMENTS

Lead Content of Film
(Percent by Volume)

58 ± 6

58 ± 6

58 ± 6

58 ± 6

Film
Thickness (nm)

80 ±4

60 ± 3

40 ±2

20 ± 1

n'(Real Part
of Index)

3.9 ± ?

4.3 ± ?

5.0+ ?

2.5 + ?

Kappa («')

0.60 ± ?

0.30 ± ?

0.50 ± ?

0.60 ± ?

B. Refractive Indices from Ellipsometry

Successive iterations of decreasing range and increment values on the XDS Sigma
Five and 3 hours of computer time yielded the refractive indices shown in Table 2 and
Figures 26 through 31. The data used are shown in Table 3. Figures 26 through 28 indicate
a thickness dependence for the real part of the refractive index. No analysis of this
dependence will be attempted in this study.
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Figure 24. Approximate values of n' from reflectivity and transmission
measurements for 58-percent lead films.
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Figure 25. Approximate values of K,' from reflectivity and transmission
measurements for 58-percent lead films.
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TABLE 2. REFRACTIVE INDICES FROM ELLIPSOMETRY

Lead Content of Film
(Percent by Volume)

58 ±6

58 ±6

58 ±_6 _

58 ± 6

45 ± 5

45 ± 5

45 ± 5

45 + 5

30 ± 3

30 ± 3

30 + 3

30 ± 3

Film
Thickness (nm)

80 ±4

60 ±3

40 ±2

20 + 1

80 ±4 '

60 ±3

40 ± 2

20 ± 1

80 ±4

60 ± 3

- , , 40 ± 2

20 '± 1

n'(Real Part
of .Index)

1.94± 0.06

2.75 ± 0.08

2.69 ±0.20

1.81 ±0.08

2.15 + 0.02

2.31 + 0.01

2.30+0.02

2.13 + 0.03

2.05 ± 0.02

2.16+ 0.02

2.1 3 ± 0.02

1.98 ±0.03

Kappa (K')

0.35 ± 0.02

0.51 ±0.06

0.79 + 0.08

0.99 ± 0.05

0.10 ±0.03

0.08 + 0.02

0.06 ±0.02

0.05 ± 0.02

0.17 +0.02

0.05 + 0.02

0.04 ±0.01

0.020 ± 0.004

Note: ncomplex = n ' - n 'K ' i
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Figure 26. n'versus film thickness for 58-percent lead films.
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Figure 27. n' versus film thickness for 45-percent lead films.
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Figure 28. n'versus film thickness for 30-percent lead films.
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Figure 29. K' versus film thickness for 58-percent lead films.
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TABLE 3. ELLIPSOMETER READINGS

1. Typical Bare Substrate (Kodak B351 Cover Glass)

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

48.85
139.38

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

47.72
137.33

Analyzer (deg)

178.49
2.09

Analyzer (deg)

178.09
2.18

2. 80-nm, 58-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

155.09
65.02

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

30.45
120.39

Analyzer (deg)

21.44
161.60

Analyzer (deg)

160.28
20.53
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TABLES. (Continued)

3. 60-nm, 58-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

148.44
58.20

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

36.65
126.78

Analyzer (deg)

32.45
152.67 '

Analyzer (deg)

151.89
31.59

4. 40-nm, 48-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

59.36
149.48

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

125.72
35.61

Analyzer (deg)

150.40
34.81

Analyzer (deg)

33.82
149.46
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TABLES. (Continued)

5. 20-nm, 58-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg) o

151.70
61.54

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

33.22
123.20

Analyzer (deg)

27.39
156.93

Analyzer (deg)

156.09
26.51

6. 80-nm, 45-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

51.37
141.53

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

123.65
33.08

Analyzer (deg)

155.28
17.10

Analyzer (deg)

21.98
160.25
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TABLES. (Continued)

7. 60-nm, 45-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

139.32
49.20

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

45.85
135.60

Analyzer (deg)

24.48
159.23

Analyzer (deg)

158.48
25.00

8. 40-nm, 45-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

130.70
39.88

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

54.30
144.64

Analyzer (deg)

22.28
160.66

Analyzer (deg)

160.77
23.26
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TABLES. (Continued)

9. 20-nm, 45-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

31.83
120.20

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

152.47
64.31

Analyzer (deg)

. 167.09
13.22

Analyzer (deg)

14.57
167.71

10. 80-nm, 30-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg

a. Quarter Wave Plate: +45 deg

Polarizer (deg)

57.98
148.14

b. Quarter Wave Plate: -45 deg

Polarizer (deg)

126.86
37.93

Analyzer (deg)

163.21
20.26

Analyzer (deg)

19.73
162.76
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TABLE 3. (Concluded)

11. 60-nm, 30-Percent Lead Film on Kodak B351 Cover Glass

Angle of Incidence: 55 deg •

Quarter Wave Plate: -45 deg :

Polarizer (deg)

46.85
136.64

Analyzer (deg)

161.05
22.14

1 2. 40-nm, 30-Percent Lead Film on Kodak B35 1 Cover Glass

Angle of Incidence: 55 deg

Quarter Wave Plate: -45 deg

Polarizer (deg)

144.04
54.55 .

Analyzer (deg)

20.20
163.46

13. 20-nm, 30-Percent Lead Film on Kodak B35 1 Cover Glass

Angle of Incidence: 55 deg

Quarter Wave Plate: -45 deg

Polarizer (deg)

65.57
154.94

Analyzer (deg)

169.45
11.79
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Figure 30. K ' versus film thickness for 45-percent lead films.
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Figure 31. K' versus film thickness for 30-percent lead films.
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VI. REFRACTIVE INDICES FROM THE MAXWELL GARNETT THEORY

The theory of Maxwell Garnett [27] describes the optical properties of a medium
containing minute metal particles. Maxwell Garnett assumed that the metallic particles
were spherical and small with respect to the wavelength of light. His results agree with the
more general theory of Mie [29] for light absorption and scattering by a sphere of arbitrary
size in the limit of small spheres far apart.

The Maxwell Garnett theory has received considerable elaboration in the hands of
Schopper [30] , who assumed nonspherical particles, but it was later shown by Doremus
[32, 33] that it was not 'necessary to assume that the particles were nonspherical or to
make other modifications of the theory. Doremus [32, 33] obtained good agreement with
experimental data for thin island gold films by use of the Maxwell Garnett theory.

The theory of Maxwell Garnett will be used in this study to derive theoretical
values which will then be compared to the experimental values already obtained. The
method of Male [44] will be used to obtain optical constants from the Maxwell Garnett
theory.

In the Maxwell Garnett theory [27] , the effective complex refractive index for the
film is related to the complex refractive index of the metallic particles contained in the film
by:

n'2 - u2 n2 - u2

5'2

where

n' = n'(l - IK') = effective complex refractive
index for this film

M = volume factor = fraction of volume taken up by
the metal particles

n = ft( 1 - k ) = complex refractive index for the
metal particles

v = refractive index of the dielectric medium.

Equation (18) is the basic equation of the Maxwell Garnett theory and is derived in the
following subsection.

A. The Maxwell Garnett Theory

Maxwell Garnett [27] dealt with the problem of light passing through a dielectric
medium that contained many small metallic spheres in a volume with linear dimensions on
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the order of wavelength. In this classical treatment, Maxwell Garnett showed that such an
assembly is equivalent to a medium with a certain complex refractive index rV = n'(l -
k' ), and he obtained expressions for n' in terms of the optical characteristics of the
metallic spheres and the dielectric medium. His expressions will be derived in this section.

We shall first need to derive the Lorentz-Lorenz formula. Its derivation follows the
treatment of Born and Wolf [45] .

Let us consider the electromagnetic field in a nonconducting medium in a region
where the current and charge densities (J and p, respectively) are zero. Using the
rationalized mks system of units, Maxwell's general equations are:

V x H = J + 3D/9t

v x E = -as/at ,
(19)

V • D = p ,

V • B = 0 ,

where

E = electric vector

B = magnetic induction

j = current density

D = electric displacement

H = magnetic vector.

The last three vectors are needed to describe the effect of the field on material objects.

We describe the interaction of field and matter through the following relations:

D = e0E + P , (20)

B = (H + M ) M O ,
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where

a = specific conductivity of medium

P = electric polarization of medium

M= magnetic polarization of medium

e0 = permittivity of free space ;

Mo= permeability of free space.

The terms P and M vanish in a vacuum. ;
 r

For the medium under consideration, we have -

a = 0

and

T = P = 0 . (21)

Substituting equations (20) into equations (19) and imposing the conditions of
equation (21) yield

~~ ~~ •
V x B -Moe0-£7 = Mo(v x M + 8P/8t)

' ~ (22)
= JMo

where '.:

J = 9P/3t + V x M , (23)

V x E + 9B/3t = 0 , (24)

eo
V E = -- , (25)

where

P = - . V P

= free charge density,
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and

V • B = 0 (26)

Since the divergence of the curl of any vector is.zero, equation (26) is satisfied by

B = curl A , (27)

where A is an arbitrary vector function of position and time. Substituting equation (27)
into equation (24) and interchanging the curl and time derivation operators yield

V X (E + 8A/8t) = 0 ; (28)

and since v X V 0 = 0, where 0 is an arbitrary scalar function, equation (28) is satisfied if

E = - 8A/8t - grad<£ . (29)

Now A and 0 , which are called the magnetic vector potential and the electric
scalar potential, respectively, must be defined to satisfy the remaining Maxwell equations
[equations (22) and (25)].

Substituting equations (27) and (29) into equations (22) and (25) and noting that

V x ( V x z) = V ( V • Z) - V 2Z and ( V • V )Z = V 2Z ,

where Z is any vector, we obtain

V2A - M0e092Vat2 - V(V • A + H0e^/Bt) = - MoT 5
(30)

+ 8/8t(v • A
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If we now impose the Lorentz condition

V- A + fi0e^/dt = 0 , (31)

equations (30) reduce to the inhomogeneous wave equations

V2A - M0e092A/at2 = - MO I 5
(32)

Vfy - M0e0920/9t2 = - P/e0 .

We should note that since V • V X Z = 0 , equation (22) requires that

- V • 8E'/8t = V . J/e0 (33)

and by using equation (25), equation (33) becomes

dp/Bt + V • j* = 0 . (34)

Equation (34), the equation of continuity, is satisfied by 'p and J and may be seen from
the definitions of p" and J [equations (23) and (25)] by applying the vector
identity V • VX Z = 0 .

The solution of equations (32) may be expressed in terms of the polarization and
magnetization in the form

0(r, t) = - • — - > / ( l/B)[div» 5] dVf , (35)

and

A ( r , t) = ^- f(l/R)[curl' M + 9P/9t] dVV , (36)
4TT J

where the differential operators div ' and curl ' are taken with respect to the coordinates (x',
y ', z') of the variable point of integration r' at which the volume element dV ' i s situated.
The square brackets denote retarded time values; i.e., t is replaced by tA/Moe<> R inside
each bracket. Further,
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I/
R = I r - r' I = {(x - x')2 + (y - y')2 + (z - z')2} 2 (37)

is the distance from the point T(x, y, z) to the volume element dV at ~'(x ', y', z'). The
integration is performed over all space.

Let us verify that equation (35) is a solution for the scalar potential in equation
(32). Imagine that the point r is surrounded by a sphere of radius a, centered on T. Divide
equation (35) into two parts:

0 = 0 1 + 4 > 2 , (38)

where

0 = contribution to the integral from the interior of the sphere

02 = contribution from the rest of space.

Since R =£ 0 for every point r'(x', y', z ') , there are no singularities in
the 02 contribution, and 02 may be differentiated under the integral sign.

It should be noted that equation (35) may be written

0(r, t) = —— Jp(r, t - \T/vT0R)/R dV' . (39)

In spherical coordinates when considering solutions representing spherical waves, i.e.,
solutions of the form V = V(r, t), we have

V2V = (l /r2)9/3r(r28V/ar) , | (40)

and we may write

:V
2(p/r) = (l/r)a2p/9r2 , (41)

thus showing that 02 satisfies the homogeneous wave equation

= 0 (42)
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since

9 p(r. t -
at2

_

Now the case of 0i will be considered, noting that the integrand has a singularity
at R = 0. It will be assumed that ~p is a continuous function of 7 and t.

By making the radius of the sphere sufficiently small, we can assure that for
all r ' inside the sphere

p ( r ' , t - - p ( r , t ) < 6 (44)

for any prescribed 5 , where 5 > 0. Thus, as the radius => 0,V20! approaches more
closely the electrostatic potential of a homogeneously charged sphere with charge
density /T ; i.e.,

= - p(r, t)/e0 (45)

for sufficiently small a.

Equation (45) is called Poisson's equation; it arises directly from the definition
of 0 and the electrostatic field equations.

Also, as a-* 0,0i => 0, since if a is sufficiently small, we may write

• -

0 0 0

2 ..

Therefore, it follows that as a -»• 0,

(46)

02) - , t)./e0 . (47)
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Thus equation (35) is a solution for the scalar potential in the inhomogeneous wave
equation (32). In an exactly analogous manner, it can be seen that each Cartesian
coordinate of equation (36) is a solution of the corresponding inhomogeneous wave
equation, noting that in the process we would substitute for JT the appropriate component
of VT^o j- Thus, equation (36) satisfies the inhomogeneous wave equation (32) for the
vector potential.

Note that since pi and j satisfy the continuity equation (34), equations (35) and
(36) may be seentto satisfy the Lorentz condition of equation (31).

One may regard A and 4> in equations (34) and (35) as arising from contributions
from each volume element in space. Note that \/fi0e0 R is the time required for light to
travel from T' to T . Equations (34) and (35) are therefore called retarded potentials.

We now use the following identities:

div'[P] = [div' P] + ™L R • [P]
and (48)

curl'tM] = [curl' M] + »» E x [M]
K

where

R = r - F ,

to write equations (35) and (36) as

_ (49)

[M] - R x
47T

Equation (46) will now be rewritten by modifying the vector identities

div(P/R) = ( 1 /R) div P + P • grad( 1 /R)

and (50)

curl (M/R) = (1/R) curl M - M X grad(l/R) .

According to the divergence theorem,
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§ C • ndS = / V • C dV , (51)

where C is any vector field C(f) defined within a volume V surrounded by the closed
surface S .

Equation (51) may be used to write equations (50) as

J(l/R)(n ' P)dS = J{(l/R)divP + P • grad(l/R)} dV

and (52)

J(l/R)(n x M)dS = J{(l/R)curlM - M xgrad(l/R)} dV,

where we have integrated over an arbitrary finite domain, letting n be the unit outward
normal to the surface.

Assume now that the region of space where P and M differ from zero (the
substance) remains within a finite closed surface. If the integrals in equations (49) are
extended over the volume inside this surface, the surface integrals in equations (52) vanish,
and equations (49) can be written as

/ * i

• grad'(l/R) + Mffi R • [P] > dV

' (53)

A = ftt I {[ M] x grad' (1/R) - -^^- R x [M] + [ P] /R >dV

Let us now consider the substance itself. We shall regard matter as being composed
of interacting particles embedded in the vacuum. As'long as the region over which our
averages are taken is large compared with the particle dimensions, the electromagnetic
properties of each particle may be simply described by electric and magnetic dipoles.

We shall now consider a small sphere centered on a particular molecule, with a
radius that is large compared to the linear dimensions of the molecule. Neglecting
molecular structure outside the sphere we assume that the polarization P is constant. We
shall assume that the molecules inside the sphere cause no resulting field at the central
molecule. We therefore have a molecule situated in a spherical region, inside of which there
is vacuum and outside of which there is a homogeneously polarized medium.

Now, 4> must be determined for this case, namely <t> for the free charges on the
spherical discontinuity surface where P changes from zero (interior) to a constant exterior
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value. Consider the potential "0 of the complementary configuration, that of a
homogeneously polarized sphere surrounded by vacuum. The superposition of these two
configurations is a homogeneously polarized surface with no boundary. Therefore, the
potential caused by the boundary is zero and

<f> + <f> = 0 . (54)

The term ? is just the scalar potential stated in equation (53), but with P being a
constant; thus,

0 = _ 0 = - ~-P ' Jgrad'(l/R) dVT . (55)

Now since R = {(x - x')2 + (y - y')2 + (z - z')2} , grad' can be replaced in equation (55)
by — grad and equation (55) can be written as

1 -

where

P • grad/(l/R)dV =- P • grad00 , (56)

=- ~ /(l/B)dV . (57)

The term 00 is interpreted as the potential of a uniformly charged sphere of
charge density p = - 1 . Then by Poisson's equation,

2 j -i /_ /c o\
v rO ~ ' 0 • ' \*^^/

Now, by using equation (56),

+ P 900/3y + P 90Q/9z)y z

= P 9200/9x2 + P 9200/9x9y + P 3200/9x9z • ' (59)
X V Z
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with similar expressions for 30/3y and -30/3z . Now, by symmetry it is known that at
the center of the sphere

= ° '(60)

and

- , (61)

where equation (58) has been used in equation (61 ).

By using equation (59) and similar expressions and noting equations (60) and (61),

~V0 = tP 9^0/ax2 + fp a200/ay
2 + ftp a=Vaz2 = ~- . (62)'x y z oeg

The total field inside the sphere, E ', which is the effective field acting on the
central molecule, is obtained by adding the mean field E to equation (62), which yields

E« = E + •— . (63)

It will be assumed that for each molecule the electric dipole moment p established under
the influence of the field is proportional to the effective field E' ; i.e.,

p = a!' , (64)

where a represents the_ mean polarizability. Thus, with N molecules per unit volume the
total electric moment P per unit volume is .

p = Np = NaE« . . (65)

Assuming that P is proportional to E, that is, .

P = r?E (66)
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where TJ = dielectric susceptibility, we'have, by eliminating E' between equations (63) and
(65), that . . . ; . - . ; . ; .

or

(67)

1 _ -^ (68)
3e0

Now using equation (20)

D = e0E + P = eE = e0E + rjE , (69)

where an isotropic medium has been assumed with

D = eE , (70)

where e = permittivity. Thus, from equation (69)

e = e f l + T) . '•• • (71)

Substituting equation (68) into equation (71) yields

2 N q • ' • - • .

e = ^— ,.. (72)

3e0

and solving equation (72) for a yields

« • If £ ' e
_ 3 £ o / n - l\ . .
~ if U2,+ 2) • (73)
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where the Maxwell relation e/e0 = n2 for nonmagnetic substances has been used.
Equation (73) is called the Lorentz-Lorenz formula.

Equation (73) will be used to obtain the Maxwell Garnett formulation. Note first
that by using equations (63), (65), and (73),

E ' = E + n
2 " l ET (74)

n* + 2

Let us now consider light of a wavelength X falling on a metal ball with
radius a and optical constants n , the real coefficient of refraction, and K , the
absorption index. The total field inside the sphere is then given by equation (74), subject to

n - ft(.l - i/c) . (75)

If we now consider light falling on a medium consisting of many small metal spheres
distributed in a vacuum, many to a wavelength, and integrate over a unit volume, this has
the effect of summing the field contributions of the spheres, and equation (74) becomes

E1 = E + (47rN!a3/3) n
2 " * E1 , (76)

II ~r £j

where

N' = number of metal spheres per unit volume of medium

4rrN'a3 /3 = percent metal per unit volume of medium.

Now E' represents the effective field in the new medium. It has been assumed that the
medium under consideration extends throughout a space of dimensions which in no
direction are smaller than the order of a wavelength.

Thus we have a medium with a revised polarization P' , which by definition means
that

E« = E +^- (77)
3e0

and by comparing equations (76) and (77) we have

P' = 4 7 r N ' a 3 e - i - E ' . (78)
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By eliminating E' from equations (77) and (78) and assuming that

where 1?' is the dielectric susceptibility for new medium, we have

~~~ 2 + 2 ~~

or

1 - :£TT)
Now, if M = 47rN'a3/3,

n2 - 1

- M 72

The dielectric constant e' for the medium is defined as

e? = efl + I' • (80)

Substitution of equation (79) into equation (80) yields

(82)

If the metal spheres are situated in glass of refractive index v instead of a vacuum, eo ->•
e" in equation (82), where e " is the dielectric constant of the glass, yielding

f\ "I€ , ^ , ,, _,_ (83)
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where

n2 =e/e0 -> e/e" .

Equation (83) may be written as

6"

e<>
-t!

(84)

Now by noting that

e"/e0 =u2 ,

and defining

(n')2 =[n '(

we have

( n < ) 2 = "2

n2 - u2

+

1 -
n2 - u2

n2 + 2u2

(85)

where ,n' is the effective refractive index of the new medium. Note that equation (85) may
be rewritten as ,

n'2 - u2

n r 2 2u2 (86)

\
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since from equation (86)

n'2 = n2 -

n2 ii22_n__-_u_
2 n2 + 2u2

= v* + 5 5

1 ' M n2 + 2u2

Equation (86) is the Maxwell Garnett relation which describes the effective
refractive index, n' , of a dielectric embedded with many metallic spheres per wavelength
of light in terms of the optical constants of the dielectric and the individual spheres. It
should be noted that n' depends onn , the relative volume of metal, rather than on the
individual sphere radii. Thus, the spheres may be of quite various radii, provided that they
are present in sufficient numbers.

B. Results Using the Maxwell Garnett Theory

Now, following the method of Male' [44] , we proceed as follows. Rearranging
equation (86) yields

/ 2(n
2 _ 2 n_^

~ 72 n T\ (o I )"1 d

or

n' 2( 1 - jur) - u2 = 2u2jur , (88)

where, in polar form

n2 - u2 tor = ^n^ = Ae (89)
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Solving for n'2 in equation (87), we have

2r/
1 -

or

n1 = TJ -2 = uBe1/3 = n' - in' K< ,

where the definition-of n' has been noted and rewritten in polar form.

Now let us define the following points in the complex plane:

N = -l/2r D= 1/r Q = n .

The graphical solution for n' = uBe1^ can now be written since

i/
B - (2QN/QD) /2 and 0 =

Further, since n' = n' - in'/c' ,

n' - -uB and n T K T = uB sin/3

(90)

(91)

(92)

(93)

(94)

Let us now evaluate r for our case, letting v = 1.5, fi = 2.42, and nic = 4.45 [46], where
we have used the definitions in equation (75). From equation (89), it is found that

r = T
n2 -

Therefore, by definition of n we may write

r =
(n - Ucfi)2 (ft2 - K2fl2 + 2u2) - 2i/cn2 (95)
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Now substituting numerically into equation (95),

= -16.2 - 21.6 i _ (-16.2 - 21.6i) (-9. 45 + 21. 6i)
r ~ -9.45 - 21.6 I ~ (-9.45 - 21. 6i) (-9.45 + 21. 6i)

= 1.12 -0.2621 = Ae10 (96)

i/
A = {(l. 12) 2 + (0.262)2}'2 and a = tan'1 (-0.262/1.15)

= 1.15 . (97)

Now, by using equation (92),

N = -l/2r = -0.434 e'1" ,

D - l/r = 0.87e-ia , (98)

Q = M = 0.15, 0.25, and 0.45 for our three cases, as
estimated from the electron micrographs.

By using the plot in Figure 32 and proceeding in accordance with the method of
Male', the following cases are obtained:

Case I. 30 Percent Lead Films

Now, from Figure 32, it is found that

QN = 5.78 QD = 7.26 DQN = 174.2° .

Therefore, from equation (93),

B = (2QN/QD)1/2 = 1.26 0 = ±_I = 17?. 6,
^j

Now by using these results in equation (94),

n' = -uBcos/3 = 1.89 n'/c1 = uB sin/3 = 0.096

51



REAL
AXIS

Figure 32. Male's method for solution of the Maxwell Garnett equations.

Similar procedure for the other cases yields the following:

Case II. 45 Percent Lead Films

n' = 2.18 ,

and

Case III. 58 Percent Lead Films

n' = 2.91 ,

and

The above results are listed in Table 4, along with the extreme values obtained
experimentally.
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TABLE 4. THEORETICAL AND EXTREME EXPERIMENTAL
REFRACTIVE INDICES

Lead Content of Film
(Percent by Volume)

30 ± 3

45 ± 5

58 ± 6

n'(Real Part
of Index)

Theoretical

1.89

2.18

2.91

Experimental

1.95 to 2.18

2.10 to 2.32

1.73 to 2.83

nV (Imaginary
Part of Index)

Theoretical

0.10

0.19

0.49

Experimental

0.03 to 0.41

0.06 to 0.30

0.57 to 2.94

Note: "complex = n ' - i n / K

VII. CONCLUSIONS

As a result of the physical and optical examinations of the thin lead dielectric
cermet films studied in this report, one may conclude the following.

A. Internal Film Structure

Direct transmission electron miscroscopic examination of lead dielectric cermet
films indicates that increases in the lead content of the films from 30 to 45 to 58 percent
vary the film structure drastically. In the 30 percent lead films the structure consists of 10-
to 30-nm-diameter lead spheres embedded in a fairly homogeneous dielectric medium. As
the lead content is increased to 45 percent, the spheres grow to well-defined oblate
spheroids which are 400 to 800 nm in diameter. Further addition of lead (to 58 percent)
results in many additional spheroids in the 400- to 800-nm-size range which join together
to form a connecting network as the film thickens.

B. Film Surface Structure

Replicas of film surfaces reveal mounds and pits that are roughly the size of the
underlying metal particles. These features can be interpreted as manifestations of the film's
metal structure, which juts out of the film plane in some areas and depresses the film
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surface in other areas. Thus, there appears to be a gratifying correspondence between the
replica and direct electron microscopy studies.

C. Film Refractive Indices

The refractive indices of lead-dielectric cermet films as measured by ellipsometry
agree acceptably with the theoretical values predicted by the Maxwell Garnett theory for
those films whose structure fits that of the Maxwell Garnett model; i.e., for those low- and
intermediate-lead content films whose structure consists of tiny metal balls embedded in a
dielectric. As expected, the experimental values for the highly metallic network structure
films diverge from the Maxwell Garnett values. This is especially noticeable for the
imaginary part of the refractive index. Thus the Maxwell Garnett theory may be applied to
thin cermet films of suitable structure.

D. Effects of Film Thickness Variations

Electron micrographs reveal no outstanding thickness trend in the range observed
except for the case of the 58-percent lead films, which seem to show an increase in the
'definition of their metallic structures as film thickness increased. All films examined were
continuous at 20 nm.

The ellipsometer measurements reveal a definite thickness trend for the real part of
the refractive index. This may be seen clearly in Figures 26 through 28. No existing
theories have predicted such a trend.
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APPENDIX A. USE OF THE ELLIPSOMETER

1. Theory of the Ellipse meter

Ellipsometry is the measurement of the change in the state of polarization of light
on reflection from the surface of a dielectric or metal covered with a film. The ellipsometer
in its modern form was developed by Rothen [47] in 1944! Motivated by the need of
measuring thin film thicknesses quickly and accurately, he designed an apparatus, which he
called an ellipsometer, based upon the fundamental principles established by Drude [37]
concerning the change in the state of polarization of light upon reflection from a bare
surface or a surface with a film on it. Rothen's apparatus followed the general form shown
in Figure A-l. With the advent of modern electronic computers the application of the
somewhat cumbersome exact Drude equations became routine, and ellipsometry became a
powerful technique for measuring the thicknesses and refractive indices of films. An
excellent review of the historical development of ellipsometry has been written by Rothen
[35].

In understanding the use of the ellipsometer in analyzing polarized light, it is
convenient to utilize the Poincare' sphere representation .of polarized 'light. This
representation will now be developed by use of Stokes parameters, and will, in general,
follow the presentation of McCrackin, et al. [48] in relating the Poincare sphere
representation of ellipsometry.

A-l. Schematic representation of the halfshade ellipsometer [46].
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Consider a plane monochromatic wave traveling along the axis of a coordinate
system. For elliptically polarized light, the electric vector of the wave is

E = at cos (T + 64) -,
A

E = a2 cos (T + 62)

and (A-l)

E = 0
z

where

T = Co(t-Z/v)

co = angular frequency

v = linear velocity of the light

3j = component amplitude

The polarization can be described by the phase difference, 5 = 52 -61 , and the
amplitudes, a! and a2 , of the components. In a stationary plane whose normal is parallel
to the z axis, the locus of the electric vector's end is the ellipse shown in Figure A-2.

The ellipse may also be described in relation to coordinates x' and y' along the
axis of the ellipse. Thus, the semiaxes, a and b , of the ellipse and the
inclination 0 of these coordinates also describe the polarization of the light.

Now, the auxiliary angles a and x are introduced and defined by

tan a = aj/aj (A-2)

and

tan X .= ±b/a . , (A-3)

The angles 0 and x are called the azimuth and ellipticity of the light, respectively; and
representation may be made either in terms of 0, x and ai + a2; ai , a2, and 6 ; or a, 6,
and aj + a2.
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Figure A-2. Locus of the electric vector for elliptically polarized light
in a plane normal to the direction of propagation.

Still another representation of the state of polarization, and one which leads quite
naturally to the Poincare sphere, is by parameters which all have the same physical
dimensions. These are called Stokes parameters and can be defined as

S0

Si

S

- a

2 = 2ata2 cos 6

and (A-4)

S3 = 2a1a2sin6

Note that S0
2 = S'i2 + S2

 2 + S^2 , so that the Stokes parameters are not all independent.
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The Stokes parameters are also given by

Sj = S0 cos 2X cos 20 ,

52 = S0 cos 2X sin 20 ,

and (A-5)

53 = S0 sin 2X

The proof of equations (A-5) follows [45] .

Returning to equations (A-l), they are rewritten as follows:

E /at = cos r cos5^ - sin r sin
x

and (A-6)

E /a2 = cos r cos 62 - sin r sin 62

Hence,

(E /aj) sin 62 - (E /a2) sin 5^ = COST sin (62 ' - '61)

and (A-7)

(E /aj) cos 62 - (E /a2) cos d^ = sin r sin (62 -

Squaring and adding yields

E E
(E /aj2 + (E /a2)2 - 2 -Z-Z cos 6 = sin2 6 , (A-8)

x y ata2
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where . . • ,

6 = 62 — 61

Equation (A-8) is of the form

Ax2 H- Bxy + Cy2 + Dx + Ey +, F' = 0 (A-9)

where A, B, C, D, E, and F are constants, which is the general equation of second degree.
If B2 - 4AC < 0 , then equation (A-9) represents an ellipse [49].

Comparison of equation (A-9) with equation (A-8) yields

B2 - 4 AC = (4 cos2 6)/(ai
2a2

2) - 4/(ai
2a2

2) = 4(cos26 - l)/^2)

= -4 sin2 6/(a1
2a2

2)<0 . (A-10)

Therefore, equation (A-8) represents an ellipse, and equations (A-l) represent elliptically
polarized light. The ellipse is inscribed into a rectangle whose sides are parallel to the
coordinate axes and whose lengths are 2at and 2a2. The ellipse touches the sides at (±a j ,
±a2 cos 6) and (±aj cos 6, ±a 2 ) and has its axis along the coordinates x' and y' (Fig. 5).
Then, using the standard rotation matrix we have

E , = E cos 0 + E sin 0
xr x r y ^

and (A.H)

. . ' E , = -E sin 0 +,.E cos 0 . . : .
- •• y« x Y y * • . . •

Note that 2a and 2b (a < b, Fig. A-2) are the lengths/of the axes of the ellipse, therefore

E f = a cos (T + 60)
X

and (A-l 2)

E f = ±b sin (T + 60) , ., , .;,

where the two signs describe the two possible senses in which the end point of the electrical
vector may describe the ellipse.
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Comparison of equations (A-l 1) and (A-12) and use of equations (A-6) gives

a(cos T cos 60 - sinr sin 60) = a^cosr cos 6j - sinr sin 6^ cos 0

+ a2(cos T cos 62 - sin T sin 62) sin 0

and

±b(sinTCos60 + cosTsin60) = -aj( cosrcosdj - sinr sinSj) sin0

+ a2(cosrcos62 - sinrsin62) cos0 .

(A-13)

Now, equating the coefficients of cos T and sin T yields

a cos 60 = aj cos 6j cos $ + a2 cos 62 sin 0 , (A-14)

a sin 60 = al sin 5± cos <f> + a2 sin 82 sin 0 , (A-l 5)

±b cos 60 = a1 sin 6^ sin ^ - a2 sin 62 cos 0 , (A-l6)

and

±b sin 60 = -a1 cos 5\ sin 0 + a2 cos 62 cos 0 . (A-l 7)

Squaring and adding equations (A-14) and (A-l 5) and noting that S = S2 - 5 j yields

a2 = aA
2 cos2 <£ + a2

2 sin2 0 + 2a^2 cos 0 sin $ cos 6 . (A-l 8)

Similarly, from equations (A-l6) and (A-17),

b2 = at
2 sin2 0 + a2

2 cos2 0 - 2aja2 cos 0 sin0 cos 6 . (A-19)

Hence,

a + b2 = a^ + a2
2 . (A-20)
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Then multiplying equation (A- 14) by equation (A- 16) and equation (A-15) by equation
(A-l 7) and adding, one obtains

±ab = a1a2(cos 5\ sin 62 - cos 62 sin 6t) = a^ sin 6 " " . (A-21)

Further, dividing equation (A-16) by equation (A-l 4) and equation (A-17) by equation
(A-l 5) yields

. _ ai sin 8i sin 0 - a2 sin 52 cos 0
at cos 6j cos 0 + a2 cos 62 sin 0

_ -aj cos 6} sin 0 + a2 cos 62 cos 0 ,
aj sin 6i cos 0 + a2 sin 62 sin 0

Rewriting equation (A-22) yields

cos 0 sin 0 (a^ - a2
2) = aia2(cos 6^ cos 62 + sin Sj sin 62)

x (cos2 0 - sin2 0)

or

or

2ab 2a1a9 sin 6 2 tan a
— — — ~ — —

2
— 5 — r? = — ? — F~ = ^ — i — 2a1 + bd a. + a 1 + tan11

j2 - a2
2) sin 20 = Ba^j cos 6 cos 2<f> . (A-23)

Now, using a as defined in equation (A-2), equation (A-23) can be written as

2a1a? cos 6 2 tan a
tan 20 = — V-^ - 5 — = , — - — 9~ cos or a/ - a/ 1 - tan a

tan (20) = (tan 2a) cos 6 . (A-24)

Now, from equations (A-20) and (A-21), we have

= 2 sin a cos a sin 6 = (sin 2 a) sin 6 , (A-25)
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and using x as defined in equation (A-3), equation (A-25) becomes

sin 2X = (sin 2 a) sin 6 . (A-26)

Now, from equations (A-4), (A-25), and (A-26), we have

S3 = 2aja2 sin 6 = (at
2 + a|) sin 2X = S0 sin 2X . (A-27)

Further, it is noted from equations (A-4) and (A-24) that

S2 = 2ata2 cos 6 = (a^ - a2
2) tan 2 0 = BJ tan 2 <f> . (A-28)

Now, noting that S0
2 = Si 2 + S2

2 + S3
2 and using equations (A-27) and (A-28), we have

S0
2 = S^ + S^ tan2 20 + S0

2 sin2 2X

which means that

2 S 0
2 ( l - s i n 2 2 X ) = 2 2

1 1 + tan2 20 °

or

Sj = S0 cos 2X cos 20 . (A-29)

Substituting equation (A-29) into equation (A-28) yields

S2 = S0 cos 2X sin 20 . (A-30)

However, equations (A-27), (A-29), and (A-30) are just equations (A-5), which we desired
to derive. We can now proceed with the Poincare sphere representation of polarized light.

It should be noted that equations (A-5) are the transformation equations required
to go from linear to spherical coordinates. Thus, the state of polarization may be described
by a point on a sphere of radius S0 by the spherical coordinates S0, 20, and 2x .
Alternately, the Stokes parameters may be used as Cartesian coordinates to represent the
polarization. This is shown in Figure A-3.
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With the assumption that the law of conservation of energy holds and that the light
ity is unity, the point can be projected onto a sphere of unit radius. The coordinates
en given bv

intensity is unity
are then given by

and

S n =

1 - tan2 a
1 + tan2 a.

= cos 2X cos 2ft>r

2 tan a cos 6 „,, .
S, = — —5 = cos 2X sin 2<b2 1 + tan2 a r

(A-31)

where S0 = &i2 + a2
 2 = 1 and equations (A-2), (A-4), and (A-5) have been used.

Thus, light of a given polarization is
represented by a point on the sphere with
polar angles 20 and 2\ , which represent,
respectively, twice the azimuth and twice
the ellipticity of the light. Consider an
example. For plane polarized light, the
ellipticity \ is zero and S3 = 0 . Thus,
plane polarized light is represented by
points on the equator of the Poincare
sphere. Again, consider circularly polarized
light, with an ellipticity of 45 deg. Here, Si
= S2 - 0 and 2\ - ±?r/2,and circularly
polarized light is represented by the poles
of the sphere.

This representation may be used to
define elliptically polarized light with
respect to any physical axis, say x" and
y" at an angle 0" with the xy axes. The
ellipticity x is independent of the choice

of axes, but the azimuth $ is changed by 4>" in going from the unprimed to the double
prime system. Thus the Si and S2 axes must be rotated about the S3 axis by 2<j>" .

Figure A-3. Representation
of polarized light on the Poincare'sphere.

The Poincare' sphere is convenient for representing the effects of double refracting
plates and reflection on the state of polarization of a light beam. For example, let the
polarized light in Figure A-2 pass through a double refracting plate of relative phase
retardation 0 . Choose the x and y axes in Figure A-2 along the fast and slow axes of the
plate. Since the azimuth of the fast axis is zero, consideration of equations (A-31) shows it
to be represented by the positive Si axis. The only effect of the plate is to change the
relative phase of the components by 6 ; thus, a! and a2 remain constant, and by
equations (A-2) and (A-31), a and S! also remain constant. Thus, upon passing through
the plate, the point representing the polarization will remain on the intersection of the
sphere and the plane Si = constant . Consideration of equations (A-31) shows that this
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intersection, as illustrated in Figure A-4, is a circle of radius (2 tan «)/(! + tan2- a). The
incident light is represented by the point P , and the transmitted light is represented by the
point L : Therefore, the effect of the doubly refracting plate is to turn, points on the
sphere about the St axis by an angle 0 . If the plate had been oriented with its fast axis at
a <t>' azimuth with respect to the xy axes, the rotation by 0 would have been about the
line between the center of the sphere and the point 20' on the equator.

Figure A-4. Intersection of the Poincare sphere and a plane normal to the axis.

Now, consider the Poincare' sphere representation of reflection at a metal surface.
For this case, the incident light ray is resolved into components in the plane of incidence
and normal to the plane of incidence (in the surface plane). The amplitude components

AQ p , AQ s of the incident waves and the corresponding components RQ , RQ „ are

related by the Fresnel relations derived in Appendix B and may be stated as
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= tan (00 - et)
0,p tan (00 + 0t) o,p

and (A-32)

R = sin (00 - Qt) A

0,s sin (00 + 0^ 0,s

The quantities involved are further governed by Snell's law,

^ (HO sine,))/^ , (A-33)

noting that since this case n! is complex;- thus, 6 j is complex also and no longer has the
simple significance of an angle of refraction. Further, since 9l is complex, so are the
ratios RQ P/AQ s and RQ S/AQ s ; i.e., characteristic phase changes occur on reflection.
Thus, linearly polarized light will, in general, become elliptically polarized on reflection at
the metal surface. Then, if 6p and 8S are the phase changes and pp and ps , which are
the absolute values of the reflection amplitude coefficients, we have

16 16
R /A = p e P and R ./A = p e S . (A-34)

0,P 0,p Kp 0,s 0,s • s

Further, if the incident light is linearly polarized in the azimuth <j>0 , we have

0 = A0,s/A0,p '

Thus

1(6 - <5 )
p = R /R = (p. /p ) tan* e P S , (A-36)p 0,p 0,s vpp Ks; rO '

or, more generally,

p = tan ij> e , (A-37)

65



where \p and A are functions of the optical constants of the surface, the angle of
incidence, and the thickness and refractive index of any surface films present, and A = 5 D

- Sg , representing the phase difference between the s and p components. Tan \p is simply
a measure of the relative absorption of the two components.

For consideration of the reflection process on the Poincare'sphere, represent the
light with respect to Cartesian coordinates with the z axis in the direction of propagation
and the x and y axes in and normal to the plane of incidence. Then tan \p = ajan . The

.
Stokes parameters before reflection are given by equations (A-31) and after reflection by

,, _ 1 - tan2 QJ cot2 ip .. ... . . . . • ; •
1 1 + tan2 a cot2 ip '

_ 2 tan a cot ip cos (6 + A)
1 + tan2 a cot2 ip

and (A-38)

q II _
bo —

_ 2 tan a cot ip sin (5 + A)
1.+ tan2 a cot2 ip

where it has been noted that the process of reflection introduces a phase
difference A between the s and p components and changes-the ratio of their amplitudes
by tan i//. Further, it is noted that cot i//e"iA = rs/rp and.that tan a.= a2 /&i .

The reflection is represented on a
Poincare'sphere in Figure A-5. The intersec-
tion of the Si axis with the sphere (the
point Ip , with Cartesian coordinates 1, 0,
0) represents the orientation of the x axis, or
the plane of incidence, as Ip corresponds
to zero ellipticity x and zero azimuth <j> by
equations (A-31). The point I§ has Carte-
sian coordinates (-1, 0, 0) corresponding to
zero ellipticity and an azimuth of ir/2 ;
therefore, it represents the orientation of
the y axis, or the plane of the surface. As in
the case of the double refracting plate, the
phase change rotates the point P , which
represents the polarization of the incident
light, around the Si axis through an
angle A , the phase change produced by
reflection, to the point L , which has the
coordinates

Figure A-5. Representation of metallic reflec-
tion on the Poincare sphere, side A [48].
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, _ 1 - tan'' a.
1 ~ 1 + tan2 a '

, _ 2 tan a cos (6 + A)
82 ~ 1 + tan2 a

and (A-39)

, _ 2 tan a sin (5 + A)
3 1 + tan2 a

The point L is further translated to the point L' , whose coordinates are given in
equations (A-38), by the relative absorption of the components caused by reflection.

From equations (A-38) and (A-39),
we have S3"/S2" = S 3 ' /S 2 ' = tan (6 +
A) ;i.e., points L and L' lie on the great
circle given by the locus of points lying on
the Poincare sphere satisfying S3/S2 = tan
(5 + A) . This locus is shown in Figure A-6
and is given by the intersection of the sphere
with a plane normal to the $! axis and
passing through the point .L . Thus the
point L is moved along the above great
circle to the point L' to correctly represent
the polarization of the reflected light. Let us
now derive the location of L' on the great
circle.

The coordinates of !„ and Is are
(1, 0, 0) and (-1, 0, 0), respectively, and
those of L are given by equations (A-39).
T h e r e f o r e , the l e n g t h s of the Figure A-6. Representation of metallic
chords IpL and IgL are reflection on the Poincare sphere, side B [48].

I L =
P

1 - tan2 o- \ 2 ["2 tan a cos (6 + A)12

1 + tan2 at I + |_ 1 + tan2 a ]

f2'tana sin (6 + A)12

+ | 1 + tan2 a \

[4 tan4 a + 4 tan2 a~\ 2_ 2 tan a '
= 1 (1+ tan 2 *) 2 \ " ( 1 + t a n , a ) y ,

and

4 - 1 - 4 tan2

(1 + tan2 a) 2

(A-40)
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so that

•V = tana ' .' ' ' '• . . •/ (A41)

IpLls' is a right angle since it is inscribed in a semicircle; therefore, IpIsL = a . Note
that tan a = a2 /ai by equation (A-2).

Now, the position of L' is determined by the angle IpIsL' . The tangent of this
angle again gives the ratio of the amplitudes of the components of the reflected light, in
analogy with equation (A-2). This ratio is given by tan a/tan i// . Therefore,

I L'
, = tan (II L') = tan a/tan $ . (A-42)

P S

Using equations (A-38) as in equations (A-40) it is found that

I L' = 2.tan« cot » \ . (A-43)
P (1 + tan2 a cot2 "$) /2

Moreover, using equations (A-41) and (A-42),

(I L)/(lgL)
t an i / )= (i L')/(ISL') ; (A-44)

in general, the ratio of the chords between a point representing the state of polarization of
a given light wave and two diametrically opposed points on the sphere is equal to the ratio
of the amplitudes of the components when the electric vector of the light is resolved along
axes represented by these two opposed points.

Let us now summarize the Poincare sphere representation of the reflection of light
from a surface with known complex coefficient tan. i// e1^ . The point P , representing the
polarization state of the incident light, is moved by the reflection process through an
angle A on the sphere in a plane normal to the Si axis to the point L . The
chords L,L and LL are measured -and tan a calculated by equation (A-41). TheV *
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chord IpL' is calculated from equation (A-43), or the angle IpIsL' is calculated from

equation (A-42), thus determining the state of polarization of the reflected light. It will
later be shown how this representation can be used for the calculation of the effects
occurring on reflection. First, however, still following the treatment of McCrackin, et al.
[48], the instrumentation will be described briefly.

2. Instrumentation

The various components of the ellipsometer are shown in Figure A-7. Collimated
monochromatic light, that of the mercury green line (546.073 nm), is used. The polarizer, a
Glan-Thompson prism mounted in a graduated circle, serves to polarize the source light.
The compensator, also mounted on a graduated circle, is a mica quarter-wave plate; it is
used to convert the linearly polarized light into elliptically polarized light. The incident
light has an azimuthal angle and ellipticity predictable from the polarizer and compensator
settings. In general, this azimuth and ellipticity will be changed by reflection from the
sample.

The aperture is an adjustable opening allowing a variation in the surface area
examined and in the amount of light reaching the phototube. The analyzer, a second
Glan-Thompson prism mounted on a graduated circle, can be rotated until a minimum
intensity as indicated by the photometer is reached. If some ellipticity exists in the light
reaching the analyzer, light extinction cannot be obtained by rotating the analyzer alone.
In this case, the polarizer and analyzer must be adjusted alternately to remove this
ellipticity and obtain extinction. Such an extinction, or null point, indicated that the light
reflected from the sample is plane polarized.

It should be noted that while alignment of the ellipsometer is not too critical for
thickness and refractive index measurements on thin films, it is critical for measurements
on surfaces. A step-by-step alignment procedure has been presented by McCrackin, et al.
[48].

3. Determination of Reflection Coefficient

The reflection of light from a surface is characterized by the complex reflection

coefficient tan i// e , and hence by the two quantities i// and A . Still following
McCrackin, et al. [48], it will later be shown how the refractive index and thickness of
films on a surface are calculated from A and i// . Here, however, we shall deal with
how A and 4> are determined from readings on the analyzer (A) and polarizer (P) scales.

For any given surface there is a multiplicity of polarizer, compensator, and analyzer
scale readings that produce extinction by the analyzer of the reflected light from the
surface. In explaining these numerous readings and how A and \!/ may be computed
from them, it should be remembered that all azimuthal angles are measured positive
counterclockwise from the plane of incidence when looking into the light beam, and that
the compensator is generally set so that its fast axis is at an azimuth of ±ir/4 . The present
discussion is for an instrument such as that shown in Figure A-7, with the light passing
through the compensator before reflecting off the sample.
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The various readings fall into four sets or zones, two with the fast axis of the
compensator set at -n-/4 , numbered 1 and 3, and two with it set at +7T/4 , numbered 2 and
4. In each zone there is one independent set of P and A readings, or a total of four.
However, since both polarizer and analyzer may be rotated by -n without affecting the
results, there appear 16 P and A settings, indicating a null point. Further, since the
compensator may be rotated by n without affecting the results, there are finally 32
possible sets of null point readings.

In calculating A and \ j / , it .is useful to calculate the three quantities p, a ', and
a§ from the P and A values, p being related to the P readings, a being related to
the A readings in zones 1 and 4, and as being related to the A readings in zones 2 and 3.
These quantities and their relations will now be examined, following the Poincare' sphere
treatment of Winterbottom [50].

The following definitions and rules for use of the Poincare sphere, which was shown
in Figures A-3 through A-5, should be briefly noted:

a. The Poincare sphere is a sphere of unit radius.

b. Use of the sphere may be compared to use of a globe in navigation. The
sphere has north and south poles: (which lie on the S3 axis) and is divided by latitudes,
longitudes, great circles, and other arcs as needed. ?

c. ' , Latitudes on the .Poincare
sphere show the ellipticity of the light or the
ratio of the minor (b) axis to the major (a)
axis of the ellipse: By definition, x is the
ellipticity: Then, 2x is the latitude on the
sphere and tan x = b/a . For example, circu-
larly polarized light has b/a = 1. Then tan x
= 1 and x = 45 deg . The latitude for circu-
larly polarized light is then 2\ = 90
deg, which is at the poles. For linearly
polarized light, b/a = 0. Then, tan
X and x are zero, and the points repre-
senting this polarization lie on the equator.
Elliptically polarized light has x between
zero and one; therefore, all points except
those on the equator and at the poles repre-
sent elliptically polarized light (Fig. A-8).

d. Longitudes represent the
angle of inclination of the major axis of the
ellipse 0 . At 0-deg longitude, which is the
point Ip in Figure A-9 [51], the major axis
is parallel to the equator. At 180 deg, or
point Is in Figure A-9, the major axis is
perpendicular to the equator, <t> = 90 deg .
Longitudes are measured clockwise from 0 to 360 degj'thus, the angle of the major axis
turns from 0 to 180 deg.

Figure A-8.. Poincare sphere, the general
significance of the different areas.
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, e. The sense of rotation of the ellipse is counterclockwise in the southern
hemisphere and clockwise in the northern hemisphere, using the traditional sense.

The compensation process will now be given in terms of the Poincare sphere
representation [5 1 ].

and
In Figure A-9, as in the case of metallic reflection, Ip marks the plane incidence

Is marks the plane of the surface. In the ellipsometer, the corresponding planes are
horizontal and vertical. Point marks the

Figure A-9. Poincare sphere,
the ellipsometer compensation

process [51].

fast axis of the compensator, which is set in
this case at 270/2 or 135 deg to the plane
of incidence, which is the same as at an
azimuth of -rr/4 . The fast,axis of the com-,
pensator is its optical axis. Point Cs marks
the slow axis of the compensator, which is
180/2 or 90 deg from the fast axis. Point P
is the polarizer angular reading, which in
this case is roughly 40/2 or 20 deg clock-
wise from !_ .

The phase change caused by the
compensator, §c , changes the linear polar-
ization form at P into the elliptical form
at Z . The phase change 5C is tr/2 for a
perfect quarter-wave plate. As explained in
the previous treatment of the double
refracting plate, such a phase change rotates
polarization forms clockwise on the sphere
about the Cf - Cg axis as one looks
from Cf - Cs through an angle equal in
magnitude to the phase change. •

• Reflection of the elliptically polarized light Z from a metal surface produces a
phase change A which rotates Z to L about the Ip

 : Ig axis. In addition to the phase
ch'ange A , a relative absorption of the EX and Ey components occurs which shifts the
linear polarization from L to L'. This L' form is extinguished by setting the
transmission plane of the analyzer A at 180/2 or 90 deg from,; L' . In this case, A. is
roughly 60/2 or 30 deg. > , / •• ' : v • • : . • < . " >

As noted .before^ polarizing prisms and: quarter-wave compensators can be rotated
by TT without affecting the polarization forms; To'avoid confusion, ellipsometer readings
are grouped into four sets or zones. • '• : - , ; ; " ' . : . . . ' • • • • . . . . . ; r

,Figure A-10 shows plane views, of the Poincare; sphere, which illustrate; how .the
four zones arise. Zone 1 corresponds to the diagram .in.Figure A-9. The P.and A readings
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ZONE 1,Cf AT135def

I.

ZONE 3V Cf AT135deg

L'

ZONE 4. Cf AT 45 deg

's

L'

Figure A-10. Plane views of the Poincare sphere [51 ].
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in Zone 1 will be designated p and ap , respectively. Since P and A can be rotated
by JT and still give the same polarization form as before, there are four possible readings in
this zone. These readings are combinations of P = p, p + n and A = ap , ap + rr .In Zone
2, the case shown gives P = n/2 - p, 3n/2 - p, , and A = ag , ag + TT . Zone 3 has P = p +
7T/2 , p + 3rr/2 and A = n - ac , 2tr - ae . Zone 4 has P = 7 r - p , 2 7 r - p and A = it - a,, , 2-n

j j LJ

Zone 1. The fast axis of the compensator is at -rr/4. The polarizer plane of
transmission makes an angle of -hp with the plane of incidence. The analyzer plane of
transmission makes an angle of +ap with the plane of incidence.

Zone 2. The fast axis of the compensator is at -Hr/4. The polarizer plane of
transmission makes an angle of jr/2 - p with the plane of incidence. The analyzer plane of
transmission makes an angle of +as with the plane of incidence.

Zone 3. The fast axis of the compensator is at -rr/4. The polarizer plane of
transmission makes an angle of p + n/2 with the plane of incidence. The analyzer plane of
transmission makes an angle of -ac with the plane of incidence.

'&

Zone 4. The fast axis of the compensator is at +n/4. The polarizer plane of
transmission makes an angle of -p with the plane of incidence. The analyzer plane of
transmission makes an angle of -aD with the plane of incidence.

Thus, the term p is the angle between the polarizer plane of transmission and
either the plane of incidence or the plane of the surface, while a,, and ac represent thev s

angle between the analyzer plane of transmission and the plane of incidence, being labeled
either ap or as , according to whether p is the angle between the polarizer plane of
transmission and the plane of incidence or the plane of the surface, respectively. The
relations of P- and A to p and ap or as are summarized in Table A- 1.

We shall now relate p , ap , and ag to A and i|/ .

Winterbottom [50] has solved the spherical triangles involved in the Poincare
representation of the compensation process, as shown in Figure A-7, and has obtained ,

,-tan A = sin 6 cot 2p

and • ; • (A-45)

tan2 ib = tati a tan a , ^
P S , t
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TABLE A-l. RELATION OF P AND A READINGS
TO p, ap , AND as [48]

Zone

1

•

3

2

4

Compensator

^7/4

-77/4

+77/4

+77/4

P

P

P + 77 ;

P

P + 77

P + 7 7 / 2

P + 377/2

P + 77/2

P + 377/2

77/2 -P

. . 3W2 -p . .

77/2 -p

3ir/2 -P ;

77 -p

2lt - 77

T T - p

277 -p

A

^

Q
aP

v*
ap + 77

77 -as

277 -as

2r7-a s

as

as + 77

as + r7

77-a p

77 -anP

277 -ap

>-Hp-
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where 5 is the relative retardation of the compensator. For a perfect quarter-wave
plate (6 = 7T/2), these reduce to

A = 7T/2 + 2p

and (A-46)

w — S i — £ L - » . - , . . _ - .
p s

Thus, by using Table A-l and equations (A-45) or (A-46), it is possible to
compute p .and ap or as from P and A , and hence compute A and i// .

In practice, the values of p , ap and as found from the P and A readings in the

various zones are not identical. Experience shows that the averages from Zones 1 and 3
check very closely with the averages from Zones 2 and 4 for both p and a , so
measurements are usually taken in Zones 1 and 3 only and averaged.

4. Computation of Film Indices and Thicknesses

A typical thin film under study consists of a film of index n2 and
thickness d2 on substrate of index n3 immersed in a medium of index n, , as shown in
Figure A-l 1. Let all media be isotropic and n, represent a real index of refraction, while

Figure A-ll. Reflection and refraction of light by one thin film.
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n2 and n3 may be complex. This system is treated in Appendix B, where it is shown
that the parallel and normal reflection coefficients for light incident at the boundary
between the immersion medium and film are

p _ n2 cos 0! - nj cos 02_
12 n2 cos 0! + H! cos 02

and (A-47)

s ri cos 01 - n2 cos_
12 nt cos 0! + n2 cos

Similar expressions hold for the reflection coefficients at the boundary between film and
substrate, rP, and r|3 . The cos <j>^ values needed for these reflection coefficients are
given by Snell's law; i.e.,

cos 02 = [1 - (sinfi Vn2)2] /z (A-48)

etc.

It is also shown in Appendix B that the total reflection coefficients that include the
contributions of reflections from lower boundaries are given by:

RP _ r?2 + r23 exP D

1 + r!2 r23 exP D

and (A-49)

s
R-= Ts _ r12 + r23 exp D

s s : '
1 + r12 r23 exp D

where D is A-n i n2 cos 02 d2 /X .

The ratio of the total reflection coefficients defines p , where

p = RP/RS (A-50)
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which may be further expressed as

p =

As has been shown, we can calculate p from the ellipsometer readings.

Therefore, by knowing ni and n3 and by making ellipsometer measurements, we
can determine refractive indices for films of known thicknesses or thicknesses of films of
known indices. Note that the equations cannot be solved for d and n2 in closed form.
The normal procedure is to assume a series of refractive indices and to calculate thicknesses
from the experimental measurements. Since manual calculations of this type are
impractical because of the complexity of the equations, the problem is normally solved by
computer techniques. In this study, the ellipsometer computer program of McCrackin [36]
was adopted to Fortran 4H by Mr. J.L. Zurasky, MSFC, for use in the MSFC XDS Sigma
Five Computer. This program calculated the refractive indices used in this study from
ellipsometric measurements made on a Gaertner Model LI 19 ellipsometer.
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APPENDIX B. DERIVATION OF THE DRUDE EQUATIONS

Let us first derive Fresnel's formulas for the reflection and refraction of light on a
boundary between two isotropic dielectrics. We proceed as follows.

Consider a plane light wave incident on a reflecting boundary. The medium from
which the light ray is incident has permittivity e0 and refractive index n0 , and the other
medium, in which the light ray is refracted, has permittivity ej and refractive index nj .
The permeability of both mediums is that of a vacuum, MV • Vector orientation is as shown
in Figure B-l.

Figure B-l. Reflection and refraction of light at a plane boundary
. between two dielectrics.

It should be noted that the velocity of light in the first medium (with index 0) is
given by

V = (B-l)
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and in the second medium (with index 1) by /

Vl = lA/e^T . . . , (B-2)

By using the complex form, where

E = electric field strength = E0e
1T , (B-3)

in which

E//"\ y /\.C .

E0)y = Be15 ^ ,

E~ = CpiS 30 z '

T = co(t - z/v), where z is the direction of propagation ,

8 i , 5 2 , 5 3 = phases , -

t = time ,

v = velocity of light in medium investigated ,

w = angular frequency ,

co = 2irf , ' •' •

f .. = frequency ,

the vector plane wave of the incident light can be written as

d
E~~ T ^"0 /B-yl'in = At\e ; (ti~^>

80



the vector reflected wave as

EO - R0e
1T° ; (B-5)

and the vector refracted wave as

E? = Al6
1Tl . (B-6)

Note that for equations (B-4) through (B-6)

d / x sin 0n + zcos0n\
T0 = uft ^ 112) , (B-7)v vfl /

r = _ _ _

and

TI = w|t -

where 00, 0o', and 0, are defined as shown in Figure B-l.

The amplitude vectors in equations (B-4) through (B-6) are divided into
components normal to and in the plane of incidence; .i.e., AQ.IS divided

into AQ p and AQ s , RQ is divided into RQ p and RQ s , and Aj is divided

into Ai n and Ai c .i ,P i ,&

Now, the above vector light waves will be written out into components onto the
coordinate axis, noting that the components of the s amplitudes lie in the y direction and
that the p components have projections onto the x and z axes. This may be seen from
Figure B-l.
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Thus, the following equations are obtained for incident light

. d
d 1T0Er> - Art costf e ,0,x 0,p M) '

. d

and
. d

d 1T0
Vz = -Ao,P

sinV
For reflected light we have

En = R cos^'e
0,x 0,p rO

. r

and (B-10)

. r - ' ' • • ' '
r 1T0En = -Rrt sin^'e ,0,z 0,p yO '

and for refracted light,

d
 iTiE , . = A cos 0 er

and

d
= -A
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Now, by Maxwell's equations for isotropic homogeneous dielectrics containing no electric
charges, which are

V-.
x

9H
j

V at

9H

§F

9E

9z

9E

9E
z

ay

9E

9x 9z

and (B-ll)

9H 9E
x

v 9t 9y

9E
y

9x

and by integration; using equations (B-10) in equations (B-l 1), the following equations are
found for incident light 0

rt = -n . n0,x 0 v v 0,s

iT

and
. d
IT

H. = n V e / M A sin0 e
0,z 0 v ^v 0,s rO

For reflected light we have

H = -n
0,x o

. r

V,sCOS%eT° *

H = n N€ M Rn e
0,y 0 v v 0,p

and (B-l 2)

H =n I S / € / M R
0,z 0 v v 0,s 0
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and for refracted light,

H = -n ve /u A
1,X 1 V V ]

. d
IT1cos0 e -1- ,

d
ri

and

d , r- lTi
, = n \/e /n A sin<6 e
l,z 1 v v l,s 1

Now, for two dielectrics, the tangential components of E and H and the normal
components of B and D are continuous across the interface [52] . Therefore, we may
write

0,x 0,x
= E

0,x 0,x

0,y
H

0,y ' 0,y

) = e Ed , M (Hd
 + Hr ) = M Hd

,z/ 1 l,z' v\ 0,z 0,z/ ^v l,0V 0,z 0,

Now, substituting equations (B-l 1) and (B-l 2) into equations (B-l 3), we obtain

. d
1T0

IT-
. d

A cos0 e " + R cos0Te = A" cos0 e ' ,
0,p 0 0,p 0 l,p • 1

iTd iTr iTd

A e ° + R e ° - A e l , • . ^0 , s 0 , s 1 , s . , - . . . - .

. d , r , <
eo(Ao,P

sinV ° + Ro,P
8ln

. d
IT

n (A cos0 e .+ R cos^'e ) = n A cos 0 e ,
0\ 0,s 0 0,s 0 / 1 l,s 1

. r
IT

. d
IT

(B-13)

(B-l 4)

(B-l 5)

(B-l 7)
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. d . r ' . d
IT IT IT

n (A e + R 'e ) = n A e ,
0V o,p 0,p / 1 l,p

. d r . d

Now, by the law q'f reflection, it is known that- cos 00'
 = -cos 00 and sin <t>0 = sin

0o' , and by Snell's law of refraction it is known that sin 00/sin 4>i = ni/n0 . Therefore,
equation (B-19) may be written as

• .'. v • • ' ! • „ ' ; • • . • • ' • -•:• : „ ,.' '. ' i
. d ' . r ' " . d ' '• • ' ' • • ' ' -
^ 1T« 1T,

A e ° + Rn e ° = A l e * ,:. , ,-
0,s 0,s . l,s . " -•• ' ; '

which is the same as equation (B-15). Noting that e0 = n0
2 and G! = nt

2 , equation
(B-16) may be rewritten as . . .. _

. d '.. "', '/,r- . :.;."", ; " "~ ' " • ' • '
IT ' :•• IT^. - - IT:

nnfAn e ° + RA e °V= nA e 1
0 \ 0 , p 0 , p / I l , p

which is the same as equation (B-18). -;

' : ' • • Thus"four conditions remain that'must be satisfied at z;1= 0 for all t. These
requirements are satisfied by the following eohditioiis at . 'Z-0 . . ; ;

• r a . ' Phase condition : ' - - . • > ; • • . • ' •• ••_•••=' .• • .<• ' • . - . • . - • • . - • • : , . . .

1 ••"-.;•• - T
d = t f = T ^ - ' . ' ' • ' : • - • • • • ' • • • • - • - M - . - . V . ; . - . , i -:'(B-20)

"•-' - 'bl fi Amplitude conditions' •:• '- • • • - ' ' • •"••• • . ! ' ' ^ - ' -" '• " > • • ' • • • ':-

(A

(B-21)

o0,p ; . 0,p
'•••' . V

(A + R'?' ) n •- = A ""H" "v 0,p 0,p; 0 l,p i;

An + R = A
0,s 0,s
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and for the reflected wave

-r —
ko (*-

x sin0 - zcos<
- R (B-27)

In the film there are again two waves, the wave refracted by the first boundary,
which includes all waves passing in the same direction after reflection at z = 0 and z = d ,
and the waves reflected at z = d . The wave refracted at z = 0 is written as

E = A exp io; ft -
x sin0 + zcos0 . d

(B-28)

and the wave reflected by z = d is written as

= R exp 1C.1 ft -
• U^ -

vl
ZCOS0

' _
(B-29)

In the third medium, we have all waves refracted by z = d . This set of waves is
regarded as one wave which is written as

ico (t. -
xsin^ + z cos0

2t £i \ -

V2 }\

. d

- A e"2
A26 .

(B-30)

In general, AQ , RQ , Aj , Rj , A2 , and R2 are complex numbers.

Now, at boundaries I and II, we may apply Fresnel's formulas, equations (B-22)
through (B-25), which yield the following relations.

I z
 ; tan

rf = R /A =
p 0,p 0,p ' tan

r' =
.1

/A
s 0,s 0,s .

(B-31)
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2 sin * cos
t1 = A1 /A1 l

p . l,p 0,p sin(0o + 0^ cos(0Q

2 sin0 cos 0
t' = A., /A\ = . , l ^ °
s l,s 0,s sm(0 + 01

(B-32)

- • ' / \p 1, p 1. p tan (0 + 0 )xrl r2'
(B-33)

_ _
s l,s l,s sin(0 + 0 )

J- £

TT TT 2 sin 0 cos 0
ttt _ A

u /A
u _ - : - £ _ i - __

p 2,p l,p sin(0i + 02) 003(0^^ - 02) '

(B-34)
2sin0 cos0

ttt _ A
u /A

u _ - £ _ J-
s 2,s l,s sin(0 i + 02)

Note that equations (B-10) are still valid for the components

of EQ , E 0
r , a n d E j " . Analogously, we may write for the components

rof E^r and E<£ the following:

irr

ir\ (B-35)

El,z =-Rl,

. d
d 1T2

E = An cos0 e
2,x 2,p Y2

. d
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. d

(B-35)
(Con't)

Equations (B-12) for the components of HQ" , HQF , and:Hj^ are also still valid.

Analogously, we may write for the components of Hjr and H^ the following:

H = n \Te //LI R cosde
l,x 1 v v l,a rl

H = n, -Ve XM R-, e

l,y 1 v "v l,p

. r
r /—7— _

H = n N/e /u R sinti e
l,z 1 v v l,s 1

H = -n . n2,x 2 v v 2,s

. d
1T2

(B-36)

. d
d w2

H = n N/F7/TA,, e , .:
2,y 2 v *v 2,p

. d
IT

d /—7— 2
H = n Ve /u A sin«A e .

2,z 2 v v 2,s r2

. As boundary conditions we have the continuity of the tangential components of
the electric and magnetic field strength over boundaries I and II. This means that
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E d
 + E^0,x 0,x

0,y

0,x 0,x l,x 1, x ,

Hd + H* = Hd + H
0,y 0,y

and

1 -v 1 v 9 v 'J., X. -••» A ^, A ,

El,y + El,y = E2,y '
(B-38)

1 v 1 -v ~ 9 -v 'J., A •«•» A 4, A

TTd TTr TTd
H + H = H . : (i»y i»y 2,y

Note that because of the discussion following equation (B-l9), it is necessary to consider
the requirements for continuity of the normal'components of the electric and magnetic
induction across the boundaries, since these conditions are contained implicitly in
equations (B-37) and (B-38).

The above boundary conditions are satisfied by the following assumptions:

a. The phase conditions TQd = TQT = r j" and T jd = r jr = T-^ are satisfied

at z = 0 and z = d , respectively.

91



b. The following amplitude conditions are satisfied:

At Boundary I (z = 0)

(A1 - R1 ) cos0A = (A* - R* ).cos01v 0,p 0,p' ^0 v l,p l,p' rl

(A1 + R1 )n = (A1, + R1 )nv 0,p 0,p' 0 l,p l,p' 1
(B-39)

I I _ I I
O Q • 0 Q 1 Q TCI •• • "• O V/ j O _L y O J. • O

(A - R^ ) n cos ri = (A, - R_ ) n cos^.,v 0,s 0,s 0 rO l,s l,s' 1 rl

At Boundary II (z = d)

) cosd - Knp7 rl 2,p
(A, - R, cosv l,p l,7

, An _ii x .11A + R, J n = A n
' 1»P 1»P 1 2,p 2

(B^O)

A11 T,11 A11

i + 1 = 5>

, s * '-B s) ni 1 s

The amplitude conditions are obtained by substituting equations (B-10), (B-35), (B-12),
and (B-36) into equations (B-37) and (B-38) and letting the phase conditions be fulfilled.

Now, we must consider the phase relations between the amplitudes; i.e., we must
introduce the principle of the interference of light into the calculation. From equations
(B-26) through (B-30), it may be seen that we are concerned with a factor of w times the
optical path difference, which is the product of the distance and the refractive index n(n =
c/v, where c = speed of light in a vacuum);i.e., for a beam of monochromatic light that has
been split and recombined, the phase difference between the two recombining beams
is 27T/X times (optical path difference), or

Phase difference = 27T/A (I/n-d- " E n - d - )
V i l l j 3 V

(B-41)
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Now, Jenkins and White [54] show that the optical path in Figure B-2 is such that we have
a phase difference of

x = phase difference = ( 27T/A) 2n d cos 0 . ~ (B-42)

Remembering that coz/v = (27r/X)cz/v = (2?r/X)nz , we have

;. todcoB*
A, = A, exp( ) - A,

\ / 1.P

T TT ' * *+** ^* *-/v^t-» TK - .. TT 1 / .

Rl,p = Rl,peXP'( v—-1) = Rl p6 X ' . (^3)

A1 . A" ,
1, s l,s l,s l,s

Now we may combine equations (B-39) and (B-40) as:

. I T , I \ . /A I I Voix „! ! -VU// . T , \ . / A I I o i x „ ! ! - x x(A -R )cos0. =( A e / 2 -R e/2 )cosv 0,p 0,p7 rO V l,p l,p '

A' + H' - A" e'^ + „? e-'^'x ,
0,s 0,s l,s l,s

(A0,S -
 K0,s)nOC°^0 - ( V* - </'Sl

II II II II
Now noting that from equations (B-33) that Rj p = r"Aj p and Rj s = r"Aj s

and substituting e"'2ix = z and e = 1/z, we obtain
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" r"zI I II
A - E \cos<j>n = - - — A. cos0 ,

0,p 0,p/ rO z l,p 1

T T TT
A* + R* \n = - 2— An.

0,p O.p^ 0 z l,p 1

2
1 -L T-" <7

I .,! 1 + rsz .IIA + R = - A ,
0,s 0,s z l,s

- z
(A - R ^n cos0 = - A n cos
V 0,s 0,s^ 0 Y0 z l,s 1

Considering first the last two equations of (8-45), we may write

I I 2
An + R^ (l + r"z )n

I I , , , 2 .
An - En (1 - r "z ) n,

0 , s 0 , s s i

Now, note that by equation (B-31), we have

t _ sin(0o ~ 0i) _ nocos^,
s sin(0Q + 0j) ngcos^o + 11^0030^

Therefore,

rf

1 - rT

S

and equation (B-46) becomes

0,s 0,s

(1W6)

cos ^>0 (B-47)
'
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Rewriting, we have

A0,s[(1 -

CB-49)

or

„!

,s

= r e S

[(1 + r ' 'z2)(l + r« ) - (1 - r"z2)(l - r' )]
o o o o

[(1 + r ' 'z2)( l + r') + (1 - r"z2)(l - r|' )]
s s s s (B-50J

. ^ . . . • ^ LA.
r"z + r' r' + r"es s s s

1 + r"r' z2 1 + r'r"e~lx

s s s s

Now considering the first two equations of equations (B-45) we have

I I 2A^ +R (l + r"z ) n cos0A
O.P O.P = P .1 • 0
I I 2 'An - R (1 - r"z )n cos0
0,p 0,p v p 0 1

Note that by equation (B-31) we have

r, = tan(00 -
p tan (00 +

Therefore,

1 + r'
P _ QI cos ftp (B-53)

1 - r'
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and equation (B-51) becomes

A* + R* (1 + r " z 2 ) ( l + rf)
_2iS 2iP = P • P . (B-54)
A\ - R* (I - r"z2)(l - r')

0,p 0,p v p /v p7

Rewriting we have

[(1 - r"z2)(l - rj) - (1 + r-z2)(l + r^)I
(B-55)

= B^p[ - (1 + r^z 2)( l + rj) - (1 - r-z2)(l - r^)]

or

• rpz 2 ) ( l

0 p
(B-56)

2r"z2 + 2rT rf + r"e"lx

p _ P_ = P P
2 — ix

2 + 2r"r' z l + r1 r"e
P P P P

We have thus obtained the exact Drude equations for the reflection coefficients for
a film-covered surface in the form

16 r' + r"e
Tp n P PR^ = r e P = -E- £ r ,

p . tl ~1X
1 + r' r"e

PP (B-57)

16 rr + rrie-lx

Rs , r e B = _^ s f
S 1 + r'r"e

s s
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where x is (27r/X)(2rii d cos 0i) and r§' , rg" , rp' , and and rp" are the well-known
Fresnel amplitude coefficients.

It should be noted that the derivation just presented treated the case of a dielectric
(nonabsorbing) media. We shall follow the common approach of extending our results to
include the case of conducting (absorbing) media by replacing the real index of refraction
by a complex quantity (n + ik, where k = 0 for a dielectric media). The extension proves to
be approximately correct and is in accordance with a careful development of the Fresnel
coefficients by Stratton [55]. This extension is also discussed by Nestall [56].

We note further that the classical Fresnel equations, while generally inadequate in
metal optics, are applicable here since the frequency involved is below the plasma
frequency, co- . At co- and above, the effects of polarization waves must be considered.
For most metals, cop lies in the ultraviolet. This facet of the Fresnel equations is discussed
by Melnyk and Harrison [57], who point out that when polarization fields become
important the classical. Fresnel equations no longer apply. However, for frequencies up to
and including visible light frequencies, there are no measurable bulk charge densities in
metals; hence no polarization fields.
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