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1. INTRODUCTION

The science of geodesy has found in artificial satellites new fruitful means
toward accomphshmg its ob]ectlves Thus the new branch of satelllte geodesy
was born, comprising the methods of treatment of the geodetic problems wh1ch .
employ the new celestlal bodles

- Satellite geodesy methods may be considered as falhng in three categorles:

() geometrlc methods employing mostly geometrlc pr1n01ples

(b) dynamic methods, whose results rely mostly on dynamlc prmmples and

(c) mixed m(,thods,' when no dlscernment can be drawn between the previous

two. _ _
~ The above categories furnish the basls for the distinction between geometric
,_'satelhte geodesy and dynamic satelhte geodesy
_‘ Given a smence say geodesy, its objectives are more or less defmed and -
'what changes are the methods and the means scientists invent and employ to come
closer to the solutions of the problems in questlon Therefore, comparison of

bthe results from different methods and means employed for the same ob]ectwe

- 18 made very often

It seems reasonable to state that the more 1ndependent the employed methods
and means are from each other, the more reliable are the 1nfercnoes from the
| comparison of the eorresponding results. . )

| Consideringvthe_’case of geometric and dynamic satellite geodes'y, there -

-.sppear to be problems wh_ioh may be_treated with methods of either one of the
two bren(:hes; One exemple is the determination of the equatorial radius of the
v-k‘earth | |

In this and analogous cases, one branch serves the other better when the
results rely as much as possible upon the principles of the branch within Wh1ch . |

they were obtained. Consequently geometrlo satellite geodesy problems should



.be treated in such a way that- dynamlc prmmples mvolvement is av01ded as
much as p0331ble ‘ . '
_ It is 1llum1nat1ng to trace back to the fundamental pr1n01ples upon. which
" the geometrlc satelhte geodesy is founded

| The bodies of the earth and the satelhte are con51dered in contlnuous
motion in space Thelr motlons are not mdependcnt from each other but never—
‘theless we do not know tl.c exact. relatlonshxp between them. because of dis-
‘turbing factors of not well known effects Geometrlc satelhte geodesy wants

“to 1gnore any knowledge of the relatlve motlon of the satellite W1th respect to

' the earth and. con51ders the satelhte at certam d1screte moments as a target

. pomt 1n space. Instead of the;bodles of the earth'and the satellite belng in con-
tinuous motion, now we ‘havevonly the solid earth in continuous motion'and a-set
of'discrete points Ql, 'Qa, .. Qu corrésp'onding to the satellite positions at
times tl, o ity ' PR R '

" One should look at the. problem as. followmg At tlme t, the satelhte is
. at the point Q1 whlle the solid earth has a umque relatlve position E, w1th respect
to Q1 This is an event whlch lS gwen the de31gnat10n l’Ei, Q/t 1.

If there exists a means to snap, 80 to say, an event I'Ei, Q,/t,]in suchaway that the

. relatlve~pos1t10n-of Q, w1th respect to the golid earth may be recovered then one
‘says that the po1nt Q. may be t1ed to the sohd earth,  Having the pomts Q. Qz, e
' Qn tied to the sohd earth we. may con31der the sohd ‘which comprises the solid earth

A ‘and the finite set of pomts Ql, Qz, ces ‘Q,,. Let this solid be called extended field

"'_.-of geometrlc satelhte geodesy. The f1e1d of the earth t1ed geometrlc geodesy is
A.deflned on the set of pomts of the sohd earth with operatlons the angle and dlstance
measurements. The field of geometrlc satelhte geodesy is an extenswn so to say,
of the field of the earth-tled geom.etrlc geodesy with the same operatlons,_ i.e., the
angle and distance measurements.‘ Problems which‘ could not be solved in the

field of the e‘arth-tied geometric geodeSy are solved in the field of geometric o

-' satelhte geodesy This is a pomt where one is tempted to recall in mind the -

,analogy with the. algebralc f1e1ds No matter how much apart in nature -the two .



cases are, one cannot deny the analogy of the above geodetic¢ case with that of
- the fields of real and c'omplex numbers. -For ‘example, the'equation x° + 1 =0
_does'not have any solution in the field of real numbers,_ but it does havein
.' the ‘fie]d of complex .numbers, whioh is obtained from the‘ former after the ad—
junction of-the element' i=, 1. If nothing else this analogy hmts some beauty in
formulation, deeper understandmg and broad perception of the situation, gamed
when the concrete structures of the specific: problem in question are identified
- with the_corresponding abstract mathematical structures. _
| A method of solution of a problem in geometric satellite geodesy might he
:considered‘ just for description porposes as anticipating two things- (l)the
1ecovery of the relative p031t10ns of the extension-points with respect to the
solid earth and (2) the solution of the problem itself. These two things are done
‘together in a unified way; however, this remark is of importance for the formula-
tlon of the problem | | | |
The recovery of the extension point Q of the event 'E{, Q,/t,is aehieved
by performing sumultaneous observations in a certain proper mode from ‘a number
of ground stations. Depending upon the‘obser\.zational mode and the problem to be .
v '_solved, there exists a minimum for the number of participating stations at each
e\}ent, and the number of events needed for a unique solution of the problem.
Geometric satellite geodesy has at its disposition today three basically
__different observational modes: |
| | (a) ‘the optical observations mode,
(b) the range observations mode, and
(c) the range dif_ference.obse‘rvations, mode.
The problems of geometric'satellite geodesy usoally éonsist in d_etermining the
bcartesian coordinates of a set of ground stations; it might happen some of them
| to be of known position. In this case the problem is easie_r than the problem
: wher_e all the stations are of unkown position. Geometric satellite geodesy
methods pr'ovide solutions to th'e general problem where all the stations are -

considered of unknown position. Geometrically speaking all the observational

3



" modes are equivalent' to cach other with .r.es'pe_ct. to 'th'at problem. ..
) In the 'o’ptiCal"observations mode each part'ieipating station P, at an
event ME, Q,/ti] observes quantmes that are geometrlcally equivalent to the
'dlrectlonal cosines of the dlrectlon PiQi W1th respect toa coordmate system
Wthh must be connected with the sohd earth. It should be explamed here that

the coordmate system is: consxdered connected w1th the solid earth either when
it 1s t1ed to the solid earth, or when it is not tied but the relatlve motion is con-
| s1dered known. Here and throughout thls work the employed coordmate
. system is. con51dered tied to the solid earth

| The problem to be solved is the determmatlon of the cartesian coordmates V
of the participating statxons The questions to be 'answered in the following
'jsectlons are: | _ | ' b | |
A . (a) What 1nformat10n do the observatlons alone (W1thout the introduction of
addltlonal data) prov1de about the conflguratlon of the statlons and what are actually
the quantxtles to be adJusted:‘ ‘ '. '
(b) What add1t10nal data are needed to be introduced in order to determine

the coordinates. of the statlons‘? Are these additional elements necessary during

the ad]ustment?



. (at least for the

2. THE CASE OF TWO OBSERVING STATIONS

2.1 Geometric Anzilysis '

As it has been stfeSsed earlier each method of geometric satellite

ge_odesly must anticipate observations for the recovery of the extension points

(satellite position points) on the one hand and the estimiation of the urikhowns of

‘the problem on the other.

' :Since two in’tersect:ing .
" ‘directions determine a point
itis c'onciuded that in the.
© optical obser’\.rat_ions’ mode
the minimum number of
part‘icfivpating- stations ét_

-each event is two .

"tyi'ng_.of the extension

~ points Qi); Itwillbe . _.—" — : — P R |
I vl ' , - . Fig. 1
X - | / 18-

' examined presently -

- Whether that infc\)rma'ti‘o'n at ea‘ch..ev'enf is enough to vsolvej' the posed. problem. ..
LetPand P, . Qe
_ b‘e'tw.o ground station sf :
which ’obsérv'e simul-
~ taneously at the iﬁsténces
Tt = Iy, ta, . . ., t,] the
satellite which at these
instances i at the points
Q)= "QuQe Q)
‘respectively. SR %—-

~ At the instant t, the stations P, and P, observe the point Q, and obtain

- information equivalent to the directional cosines fay, by, cyy] of the direction' P,Q,

5



- and Fagj, sz, Czy | Of the dx rectlon P2QJ, w1th respect to some cartesian coordinate
qystem de[mcd abovo

: I.(,t the lollowm;, not.\tmn qt.md for the qdjacont dlqc I‘lptl on:

XJ,YJ,ZJ' "~ Coordinates of QJ ’
xi, yi,’ z, | Coordinates of ground ’station P, ._ ,
| l'a“, bu, c”] m Dlrectional cosines vector of the direction P,Q,, where -
a,b,c c'o_rrespond‘.to the x, y, z-axes respectively.

T, - S Planedefined »by'QJ and the two observed directions.

"There appear to be three d1st1nct v1ews namely '

(a) the plane defined by the three pomts Pl, Pg, QJ

(b). the plane defined by the 11ne P P and the pomt QJ

(c) the plane defmed by the mtersectmg directions PIQJ and PZQ, wh1ch is

the above de51gnated by TT J _

The questlon arises as to Wthh one of these f1ts the actual situation in this
problem It is not dlfflcult to smgle out the last -one, As a matter of fact there
. are two observed d1rect1ons toward the point QJ Although the observatlons are
" made from P, and Pz the statlon posmon is not spe01f1ed on the respectlve d1rect10ns.

| Thus one may not con31der the pomts Pl, P, or the line P;P; for the definition

of the plane There remains only frJ and let it be. c_a_lled fundamental simplex of

the optical observatlon mode. L }
The equation of thlS fundamental sxmplex is that of a plane which passes from
a pomt QJFX,, Y,, ZJ] and is parallel to two vectors ml = Fau,bu,cu] and m; = Taaj, ‘
Ablgj,cm]. ‘That is ' ' '
‘-.,\:‘-XJ' y-‘YJ z -7
JA e ay, E bn - éu = »0.’ S 1)
R bal ey

- or'in normal form

|
S

0‘4’$+BJY'+717‘+5J = (2)



" where =

v by - Cy - , ,
I bay el ,
, cy  Cay|l : a ' | '
1Cz  Agy ’ '
- ay by . _
Yy = ‘ L (5)

and"

Sﬁbbo_se that iﬁdex j Agoes'ove'r the values. 1,2,..., p. Thén-there is é.sef of
p vlanes nJ‘ (j =1,2,...,p). Notice that each .6f ‘;hese planes is defined .independently
from the othérs._ Any pair of thevse planes uniquely d_efihés én undirected line. "
‘There exist- C} = p(p -~ 1)/2 such lines.

- - Consider any two from the planes ms, say j = j-,‘a’nd j=k, i.e.,

oo, . ax + By + vz +8, =0 | (7
‘ .._and‘-

T, i o4x t Ry * %z + 5 = 0. (8)

Let ALJk:be the line of intersection of these two planes and ay, by, cy its

| 'direcfioh' cosines. Now the foHoWivng theorem of analytic geometry will be pfoved.
Thébfem . The direction_cdsihes of ﬁhe line of intersection of two interse‘c»ting
plan.es are prqportional to the twé—rowéd minors‘:of.the.coefficient matrix df the
equations of the.two pianes, vtal{eh a}ternafely with the plus ar'ibd the mihu_s signs.

Proof. Consider any two points P, and P; of the line Ly of intersection. Then



It is of interest fo’ find the value of A

"~ Equation (9) yields:

o T By tvyz T Oy =0, oy * By, Fwezy + 6 =0,
FQJXQ -+ Bjy2 + y‘,Zg + ‘63 = 0, a“d C4Xo + a(yg + VkZQ + ﬁk = 0,
or
k oy (Xy = X2) *+ By(Yy -~ ¥2) + vy(Z) - Z2) =0
and “ '
04Xy — Xp) + By(Y1 - ¥a) * %(zZ, - 29 = 0.
But -
X=X _ Y -Va _ Z -2
Ay o by Cx
and then
ayay + Byby + viep = 0
Xy + Beby + Wey = 0
or A SRR
oy By [and R L |
' v _ = - Cyy -
oy Byl v by Y f"f
By Cramer's rule the last s-ysvtem yiélds;
vy By Qy Vi
€ = v Ad ¢y and by = ‘= T o
v By 0 ,31‘_
% B o B
or | |
A - by - i - L
By v Yy % L A
1Be " Hef Ye & e Bl 'Q.E.D.

€



: ' : 2 . 2
1= af + b3 red = —;7 PRI % By
s Bk Y« Yo O ' 04 Bc
or _
)\’Jk = |By s o+ Y ~ + % By (10)
Be ’)’k. Yx Oy o B L

iTherefore the direction cosines of LJk are completely defmed from the two planes
prOV1ded they intersect.

As it was mentioned before there exist C5 = p(p - 1)/2 such intersection
linee Ly The adjustment problem becomes obvious: What is the line L best
fitting the p(p-1)/2 lines 1y, ? Statistically speaking, this is a regression
problem where all the components.of the position vector of each "point'" are
subJect to error ({227 pp. 186- 194) | _ |
A ‘The question sprmgs up as to’ Wthh quantlty one should apply the least
squares opt1mum criterion in such a regressmn problem‘? There exists a uniquely
‘ 'defmed quantlty between any two lmes, namely thelr shortest distance which is

- along their common perpendlcular, but this’ 1s a length and there ex1sts no length

g ;n the prob_lem.

' The observations are angular quantities that means absolute invariants for the
. metric. geometry and an adjustment of purely absolute invariants through relative
_‘ones, as the-'llength" is, would be considered a spoiled _orle.. It seems reasonable
~to heep an atljustrrient as "lpure" as possible. Therefore by principle the introduction
R of ‘any "length" is excluded here. The writer drafts heI:e the principle of duality, and
_prefers to go back enough into- the fundamentals of geometry to found the adjust-
. .ment to be employed for this problem _
The followmg subsection is devoted to the apphcatlon of- that principle to the
‘ problem in questlon i.e., the best fitting line to a glven set of lines. The result-

‘ing ad]ustment drawn through'thev duality principle will be called dual adjustment.




2.2 Dual Adjustiment

| 2.21 ThebDuality Principle

A iefresher introduction of the’.duality principle stressing thé points that
thé problem-in_ question needs more, is set forth now. Duality is not é. theorem
~ but c‘ohc‘er‘ns theorems. As any other principle in mathematics, duality principle
belongs.fd the jdrisdiction of _"metamat'hematic 8.'"  For wider comprehension of
the concept, it"will be given ‘-from two instructively different Standpoints:_

(1) that of synthetic geon.etry which studies figures without employing formulas,

and (2) that of analytic geometry which establishes a correspondence between

the elements of a .figure (whatéver they are bonsidered) and the elements of a set

called coordinates, and studies geometry through formulas between the éoordi— |

nates cofrespbnding to geometric relations. The intrinsié discussion will be .
within the latter point of view,

Duality in Synthetic Geometry.

Each geometric  figure may be considered as an assemblage of elements, i.e.,
"units" from 'which the figure may be constructed in some way. For example a
: pla’ne--eﬁipse might bé considered as the aggregate of points with which one of
them nioving along the ellipse succesively coincides. Buf equally well that plane-
ellipse might.be.consid'ered the envelope of the coplanar tangents at each of its
. points. Thus the same figure has been generated by using two different elements,
i.e., the pbiﬁt and the unlimited line in the plane of the ellipse. This is the case
for any plane figure.' Analogously in space each figure may b‘e considered as
.generéted either from a moving point or from a moving plane. It is this double way of
“ viewing a figure Being generated on which the prihciple of geometric dua].ityis.bavsed.'
It was Poncelet, Who first enunc-iatéd the principle of duality, which in the |
~ case of the plane is: ’ ' '
- Any theorem about 'pv'ropex“ti.es of position of plane figures is
-accompanied by the so-called dual one, which has the words "point"
and "line' mutually interchanged. For example the dual statement of

~ "three . points in a plane define a triangle", is "three lines in a plane
define a triangle. " ' .

~ The duality prihbiple in spaceis:

10 -



Any theorem -about properties of position of figures in space is
accompanied by its dual one which has the words "point" and 'plane"
mutually interchanged, while the word 'line" in place. .For example
‘the dual statement of "three not collinear pomts define a plane "

" is "three not coaxial planes define a point. "

~ In the above statements_ of duality there is no mention of the so-called mass
relations, i.e.; those which .include distance angle, area, etc. Infaet, the
duality principle was introduced within the frame of projective geometry at a
tim_e when it was unknown how to deduce metric geometry from p_rojective‘
" _ geometry. * The Cayley'is principle that metric and affine geometry can be con¥
sidered special cases of projective geometry made possible the extension Of.
~ the duality principle over the mass-relations of metric geometry. This is the
key for the solution of the problem in question.. Theanalytic character of this
problem naturally turns the discussion into the field of analytic geometry.
) However the fact that the whole deal is in. the three -dimensional geometrlc space,

_ _'that means wrthm v1suahzat10n helps somehow agamst unreahstlc analytlcal

o representatlons

Whlle in synthetlc gcometry duality is based on the double way of. v1ew1ng ,
the geometrlcal figure bemg generated, in analytic geometry duality is based on
"the double interpretation of the formula that Stands for a figure or its analytical
' representatlon with respect toa coordinate system 1ntroduced beforehand.

Duallty in analytlc geometry 1s extended in a un1f1ed way to spaces of any
A dlmensxon. However, this dlscusswr_x need not go beyond three-dimensional

space. Some representative examples will now illustrate the principle.

| --'For the duality in'plahe consider the equation of a straight line in the plane with

' respect to a cartesian coordinate system, (orthogonal or oblique) i.e.,

ax +by +c¢ =0 | o (11

* The Enghsh geometer Cayley in 1859 presented a way to deduce affine and metric
geometry from projective geometry

S11



"~ In homogeneous coordinztes X, X, Xs related to x and y through the relations
N 3 | oy = X2 |

X = and |y = = Xg # 0

S o X3 (%s )

_‘equa’aons (11) may be wrltten as

' ‘a'i + bxp + cx3 = 0, | -y’

© The last relation is 2 homogeneoué linear equation with respect to x,, X,, X and

the same holds with respect to a,b,c. One could .say that the r_elation is symmetrio

with respect to the triples _{x,, Xz, xa} and {a, b, c} . |
Now to what extent are the a, b, c, ‘cohversely determined by the

-straight line? If one compares (11)’ with, say,
a'Xl + b’Xg + C’Xa =0 S ‘ | (11)/,

under the assumption that they represent the same straight line one has, c_onsidering-

the linear system (11)" and (11)”, that *

“which implie'_s _ ‘ A _
a =\a, b - Ab, ¢ = ac’ _ (12)7
' Consequentl-y, the quantities a, b, c are determined by the straightline up to acommon
constant of proportionality. ' A '
Similarly each point determines Xl, Xz, X3 up to a common factor of pro.— '
portlonahty ‘Indeed, 1f {x1 ) Xz, Xq }represents the same pomt with {xl, Xao, xa}

whose non- homogeneous coordmates are x and y then

N SR Y R S
X3 X5 Xz . X

* Smce ra, b, c] and Fa b, ¢ Jare two non- vanishing llnearly dependent vectors,
_each is a multiple of the other '

12



or. equiva]ently if xa = p.xs then x; = x* X3 = xuxe' = u(xx;;) = uxf and
Xy T YR T YK = u(yxa)--—.uXe, e, |

Xy T OEX,, Xz T UXa, X & UXg. , (13)
'The important fact here is that one can associate coordinates to the straight
hne of the plane in the same way as with the points of the plane Consequently
~‘each triple [E n, C] may be 1nterpreted either as a pomt or as a straight line
of the reference plane.. Now, all the theorems that state anything about the
pomts of the reference plane about the aggregate of such points, and about the

’ relations among them are nothmg but statements about triples [& 7, f] he

_aggregate of such triples and algebraic relations among them. But the very same

L triples may be interpreted either as points or lines of the reference plane

- Two statements, one bemg expressed in point coordmates and dealing W1th
fp'oints,. the other in straight line coordinates and dealing with straight lines

- correspond exactl'y' to each other - and are called dual statements. Analogously

""point" and "line" are called dual elements in plane. As onerealizes, dual -

rb_statements are di'fferent interpretations of one and the same algebraic result.
In order to have a geometrical visualization of this example, that synthetic

geometry would prov1de, one could proceed this way: Keep the straight line

..iconstant in the plane (i.e., %‘ = @ = constant and.-g- =B = con_stant) and let the
i point Lx = —;5:,_ by = _xf ) \raryingf; Then bequation (11)' repre>Sents the range of

| points .of.the line. By keeping the_ 'point '\x = —)): s 'y = -Z;':} : constant in the plane;
| and having the straight line kg = a, -:i = .B}Varying the very same equation (‘1‘1)7
| '»rep‘resent_s the flat pencil of lin'es ‘throngh the point -:'x = _-:{E;; y = ;:, ) |

For the duality in three-dlmensmnal space consider the equatlon of a plane,

say, -

ax + By +?z 6 = 0', (19

13



~or in homogeneous point coordinates X,, Xz, X3, X, irelated to the non-homogeneous

X, y, % through the relations

- - X2 - X
X - ’ - y - 7 - Y # 0
y %' (x4 7 0)

ox, + Bxp + YX * 5x, = 0. : . (14)°

Relation (14)" is a linear homogeneous equation with respect to x,, Xz, Xa,

3 x4 and the same holds with respect to. o, B, v, 6.

| In the followmg, the same steps which were followed for the equation of a straight
line in a plane above are repeated, In fact, both of these casesare specialcases of a
general theory about hypei‘plane coordinates of a general projective space. Under,
the general theory, the commonly conceived planes are the "hyperplanes" of the
three—dlmensmnal projective space and the stralght lines are the "hyperplanes"

of the two-dimensional projective space. Nevertheless the same steps are re-
peated; for this is. the space (i.e., the t_hree—dimensional projective space) towhich
" the problem in question belongs :

First, the question:  to What extent are o, B, v, 6, conversely deter-

mlned by the plane? To answer thls questlon equation (14) is compared with, say,
ax, + Bxp t v t 8% = 0 (14)"
under the a_Ssumption that they represent the same plane. Then

a B v 8|
rank o = 1;
o, B ’ v, 5 '
since the intersection of (14)"and (14)” is just the plane itself, that means of
two dimensions, and consequently these planes are hnearly dependent. - Thei'efore,

there exists \# 0 such that

, ’ ’ ’

w= A, B»=;>\B, Y=Y, 8= (15)

An alternative procedure is to write
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%)+ Bxo t vxs + 6% - MoK+ BRe + ¥ke + 6%, =
@ hax BB Ay )R+ (B-A8YK = 0, (16)
. 'forv thelinear-'(.iepezn_denoe of .,the planes; then from the fact' that (16) must be :
»ideuticaily'satisfied (15) follows Consequently, the ¢, ,8 ¥, 6 are determmed
f by the plane up to a common constant of proportionality.

| Similarly each point with non- homogeneous coordinates x,y, z determmes
- xl, X2, ’_‘3'_"4 up to a common constant of proportlonahty through the relations

Xa

x o= 2y = X2 )
- Xq Xq X4

.Iudeed if X, le',v X5 s 3(4’ repres’envts.the seme point with X, X5, Xs, Xq, _theuu
oi‘, by putting Xy = ux4 it is obtained

| Xy = “‘3.1'," | X2 ;'N.jfe: | X3 = pXg, X4 = #X4’-‘ : ‘. (17)
Thus,' one can associate coofdihates to the plane in the same way as with

: th_epoints- in space'.‘* Consequen_tl_y eeoh quadruple [E, ”, g, T] may be inter-

: »pre,ted either as a point. or as a plane.  This is the point where duality principle

. in _space springs up. ' For, all the theorems that state anything about points in

»s_pace, about aggregate of such points\,' and about relations among them are nothing

, but etatements about”homogeneous quadruples [E, n'; g, TJ, aggregate of such

- quadruples, :ahd_algebraic relations among them. But the very same quadruples

: may-be _interpretedveither'as points or planes. - Two statements, one being expressed

- in point coordinates and dealing_with points, the other in plane coordinates and .

dealing with planes are called dual statements.

X Here by space it is- meant the three-d1mens1ona1 projective space The ad]ectlve
‘projective has been dropped to av01d confusmn for some readers.
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Again one notices fhat, dual statements are different infer‘pretations be
one and the same algebraic result. The above example exhibited that "point"
and "plane"” are dual notions in space, No mention was made about the third
fundamental element* of spacé, the straight linc. But the dual statements

"two not-coincident points define a line"
two not-coincident planes define a line"
show quarly that "straight line" is a self-dual notion in space.

After the above general introduction of the duality principle, one has all
| that is necessary to formulate the problem in a way that turns out to be very
fruitful. The following paragraph is devoted to this formulation and constitutes

 the key for the adjustment problem.

2. 22 TFormulation of the Problem through the Duality Principle

The geometric analysis of the optical observations mode from 'two
observirig stations (section 2. 1) showed that the adjustfrie_nt problerﬂ
~ amounts to that of determining_ the bést fitting straight line of a given sét of
Straight lines in space. Each straight line.of the set to be fitted is the intersection
of a pair of planes from a finite set of pléries. Thérefore the adjustment problem
may be stated: ‘What is the best line (in some re.spect) through a set of pianes ?
. Instead of attacking this problefn‘directiy, it is easief to c'onside.r'itsv dual one,
| which is a two-dimensioml«prdblem. The formulation of the dual problem is obtained
by inférchanging the words -"point’_' ‘and "plane" and leaving the word 'line" in place.
Thus the enunciation of the dual problem is: What is the best line (in some respect)
through a set of poihts?. This is a 'problém in two dimensions (see section
~ 2.21), and its analysis occupies a'f.ir'st place in regfession analysis. The
AODti’r»num criferion for the '"best" will be. that of least sqhares. What is needed

from this problem is the procedure of solution and not the solution itself.

*’_I‘he charact_erization fundamental element for "point'", '"plane" and "'straight line",
does not have any geometric justification. It is given on intuitive grounds only;
for there are other "elements' with equal geometrical justification,
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therefore",: 'the'. solution [)rOCédure ofr the two-dimensional -d@m] problem will be
A ske‘tchcd firét,‘ ‘and then it;Will‘vbe fraﬁslated through duality for the problem. in
"qlrlestion‘._ The‘problem of fittiﬁ_g ,é Straight line to a set of points in a blane '
dépends upon how the‘coordinates 6f the points are treated in the adjustment,
“from a. statistical point of view, Thus there exist two cases: »
(i) Only one’ of the vcbord'inatevs of each point (either x or y) may be subject to
.e_rror, and | - A | o
. (i) both of the coordinates may be subject to errpr.
In the first cése, one obt;ains either the regression line of y's and x's (when
only y s may be subject to error) or the regressmn line of x's on y's (when only
x 8 may be ‘subject to error), '
" Inthe second case, ‘_under some: éss’umption’s, there exists a unique regressiqn

" line." The case of interest here is the second one.  As it isvery well known, the |

A régres’sion_line in fhis case results from the minimum of the sum of the squares of ,‘
the diétanées of the points from _th_é' -line. to be 'fittéd, provided fhe two coordinates

(x and y) are given equal weights*, If the coordinates x and y are givén equal
’wéights,‘ then t‘h'evvline of'_the observed and adj'usted point is perpendicular to the
. fittin'gvrline. It is supposed that this is the casé here. | |

AL o ,
' |T _

l
l
|
I
¥

-f— —-—.—.-—.—_;. ___.._b
| ' Fig. 3 o I Fig. 4

*If the coordinates x and y of a point P are not given equal weights, then the line
connecting the observed and adjusted points is not perpendicular to the fitting line,
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Let P, (x, ,yi)be a setof pomts 1n aplane and(e) the ]east—squares line through them
(F1g 3). If P, is the adjusted point of Pi, then (P, 01) L (€), and the least- squares
criterion is E d? = min. '

Nowlet ( m)be a set of planes in space and (g) the least—squares line through them
(Fig. 4). Then duahty_prmmple establishes the following correspondence between the

elements of Figs. 3 and 4.

P1 - 1

€ -~ (@

Py = n_oi

(PyPy) —— (1)
() L (PoyP) =—= (1) £ (£).

: Let D(:n-oi,.‘rr‘i)be a symbol'standing for a,concept:of "distance' between the planes m, and
I1,. Thenthe least-squares criterion 21; d? = min. for points is translated into , |
21 D? (m.,,7) = min. for planes. The question now arises astowhatis the "c.listancev” .
between two planes. One might thinkof the angle between the planes. At least intuitively
. angle is a suitable measure here, but there‘aremany ways tomeasure aquantity, which
are equivalent in s_ome respect. Therefore, it is not hopeless to searchfor a suitable
‘convenient_measure of the "dietance'_'between twoplanes, This is the target the
following subsections aim at. | -

2.23 The Euclidean Geometry.

The problem in question falls within the content of the three-dimensional
.Euclidean geo’r‘netryT Although the Euclidean space is intuitively appealing, there exist
some duestions which are of i‘mpor‘tance- not only theoretically, but also from the

“point of view of the applications. | :

It is not the purpose of this work to '_go over the foundation of the Euclidean
 geometry. However, trying to define an appfopriéte metric for the adjustment
‘problem as set up above, it is irevitable to face the following question: What is con-
gidered a legitimate metric in Euclidean geometry and how is ‘one to determine the
~ totality of these metrics ? This question does touch the foundation of Euclidean geometry.
A rigofous presentation entails the pafallel exposition of non-E uclidean geometries inthe
content of which Euchdean geometry is a specxalcase In order to reach the problem s

-goal w1thout the employment of non-Euclidean geometrles for that would take the
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discussion too f'ar,. a ¢onventional Way will Abe'foll(I)Wed, ‘where rigorousness will be
guaranteed by recalling theorems ct, the.general theory. . o

- ‘In any ‘systc_m of gcometry the existence of some fundamental_elements, which
' constitute the objects ()l"thc‘operatio'ns of the geometry, isvaSSumed. Different
kinds of gcomctry :lri‘sc C()nsidering.di'fferent fundamental elements or by defining
) thcm in different W'lys B 'Fr-om.t'.his polnt of view inv Euclidean geometry the existence
of two ob]ects is assumed : |

(a) the generatmg element (elther point, or stralght line, or plane or some
other configuration of equal Justlflcatlon) and
(b) ‘the distance between the generating elements

Of course these are only the ob]ects -In order to construct a g'eometry a 'certatin set
;of axioms is needed upon which the structure of the geometry will be based. If now
'someone takes the point as the generatmg element and the distance between two
vpomts in _the commcnly_known sense -and adopts the set of axioms of Euclid, the
: ;',,po.i'nt—Euclidea.n geometry is _obtained'. If instead of the point, one takes the straight

' lin'e or the plane as the generating element, one obtains e_qually justified geometries:
the linejEuclidean '.g"cometry';or the plane-Euclidean geometry, 'respectively.
| ' Geometries different from the Euclidean'may be obtained either when the_ N
. _distenc,,e 1s defined in a different way, but equally justified (in the sense that a |

_.se.lf»-c'onsistent"geometric structure* may be built by using that), or when there
exist dlfferent equally justified sets of axioms. The latter case is that of non-

Euclidean geometrles which arose by disputing Euchd s fifth ax1om the so-called

'-parallel axiom**, -

F-rom'the above pdoint of vie‘wb,' gecmetry Seems to possess no organic

 systematization. This, however, is not the case. Analytic representations in -
geometry appeared to be very.fruitl'ul -and enabled geometersvto develop geometr'y

in a systernatic way as a unified structure.

*One may recall here as an example the Mmkowsklan geometry versus Euclidean -
. (see [117, p. 133).

*}*Sor'ne geometers distinguish between axiom and postulate, the former being a
- simple fact of logic while the latter is about space perception,
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‘It was Klein's ingenious idea to introduce the notion of "motion" 'o‘f figures
‘in geometry which has provided the best systema.tization of geometry so far.
_ Klein"svicw of geometry is simp]e,A e'legant and-fruitful, and it will be ad:opted
here. | : |
In ana]ytlc geomctry one represents the various geometrlc flgures in terms _
.of ‘coordinates. For example one thinks of the totahty of points in-the usual space
‘as repre'sente'd by the totality of trlples_x,y, , i.e., by their coordinates with
- respect to'some coordinate system. To every transformation of points in space
3 fhe_re_corresponds'a'cert'ain transformation of their coordinates. The converse is
not tru’e.' That is, not every analytlc relation between coordinates corresponds to
a geometrlc transformation. In other words,' each system in geometry (or each
. "geometry" as it is usually said)_possesses a wel'l—defined group of motions, Which
can be repreéented analytically (in terms of ¢oordinates). One defines then the
geometry as the theory of the properties of the configurations which remain an-
changcd under- those motions In thls hght Euclidean geometry is defmed as the
'-geometry which studies those relatlons between the: coordinates, which remain
: 'unchanged by the linear substltutlon_s of coordmates correspondmg to the following
motions: - |
parallel displacements .
~ rotations about the or1g1n
reflections about the or1g1n and
: »Slmllarlty transformatlons with the or1g1n as center.

. These Slletltllth[]S are linear and constltute a group of transformatlons the so-

‘called pr1nc1pal group* of transformatxons For a figure to remain unchanged
under these "motlons" means that it is "moved" as a solid in space; that in turn
1mp11es distance and angle ,preservatlon.

" In the principal group, the motions involve 4six parameters, to whichone ’must :

- add one more'parameterfor the change in unit length (scale); so that aitogether

*This set of transformatlons constitute a group, for (i) the product of any two of
them belongs to that set, (ii) it comprises the 1dent1ty transformation and each
transformation has its inverse one. :
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~ the p"rinc_i'pal group needs seven parameters to be defined completely.
Let this group be des-ignated by G. R .

Gco‘(l(\.sists:t_r(,. vc'r_y. I':-n'milvi:n- with this‘vg'ro_up'.v In cneh geometric adjust-
lnc'nt in gvodesv, the conditions and the constraints involved are dictated by 'the
prmcnpal group as |t i8 con31dered in connection with- the geometrlcal configura-

tion and the coordinate system of that ad]ustment

2. 24 The Euclidean Metrlc o

' Consxder the three dlmensmnal geometrlc space, * as the set either of its -
pomts or 1ts stralght lines, or its planes. Let Ef, Ei, ET be the de31gnat10ns '
for these three sets respectlvely These are the three sets of interest of the
problem in questlon ‘As it was shown earlier (while dlscussmg the duality
prmmple) one. may introduce a.'c'oordin'ate system; end establish a correspondence
between the elements of the sets ES, ES, EJ and the coordinates. A Spec'ifically

there was estabhshed the correspondence of

points with -the.quadruples Xy Xz, X3, X1,

_‘plenés with the quadruples o, 8, v, 5), end

ltnes with the pai rs of points or planes.
-I'tv was said alsot' that:each point determines the quadruple Fxl, X2, ka,x4] up toa

ommon constant of proportlonahty, -and s1m1]ar1y each plane determmes the

quadruple "o, B 'V, 51 up to a common constant of proportmnahty That is to-
| »Ades1gnate ' o v , S
: -_Txl,xa,ks,xﬂ = D\Xh Axa, an, Ax,] and

o, ﬁ v, 6] = N, 8, A, A8].

Remark If X4 7‘ 0 one may write

”"x';z; | M goX o M % _
T Xy 1)\)‘43’ Xs AX, ' Xy AXg

*This is the empirically conceived three-dimensional space,
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" But what does the co’ndition Xg# 0 really mean? One can eas‘ily answer the
~ question by takmg X, 0. Then x », y »>®@and z >« So the condition x, # 0
~excludes the pomts at 1nf1mty Slnce the conflguratlon of the ground statlons and
thevsatellite positions is con'sidered of _finite extension, one canexclude the
points at infinity -without any consequlenc'es for the problem. When x, # 0 the
convenient value x, = 1is u_sually chosen; and the quadruples x,, xz,x3,1] are
called affine ooordinates. One then observes that X=Xy, Yy =X Z= X5 Never-
. theless Xg will be kept in the formulas for homogene1ty and symmetry purposes,
AA and it will be always assumed in the sequel that x, # 0. One might ask whether
(it is necessary to exclude the pomts at infinity or not The answer is not
l supposed to be g1ven here “but anyway itisin the afﬁrmatwe for distance is
not defined at 1nf1n1ty _
Gomg back after thlS d1gress1on one observes that pomts and planes
have the same analytlcal representatlon Th1s is very important, because 1t .
allows for s1mu1taneous analytical treatment of both the two sets Ef and EJ
E v.WlthOUt havmg to d1st1ngulsh between "point" and "plane™ during the analysis.
For a 31mu1taneous analytlcal treatment of the sets Ej and EJ, a general set E
- is mtroduced which des1gnates the set of any Euchdean space to be defmed
below. - _} ' | ' _’
' ‘Having the non¥e'xnpty,set' E, the notion of distance between the elements
" of the- set naturally suggests "i'tself’» .’I“he non-empty’ set E equipped with a suitable
»‘-concept of distance, (prov1ded there ex1sts a suitable one), is called Euclidean
' _ ELac_e_' ‘But- what does one mean by dlstance, and what does this notlon render‘?

, :In the set E, a oertam type of convergence is defmed for the elements of the set.
For example, in the sets_ E} and EJ the followmg types of convergence are defmed
4'(sﬁee Figs. 5and 6). Let TPy, Py, ..., P, ... be a sequence of points in Ej. |
, .. Then one says that thisv sequence converges to the point P, if the representations
| of the points Pil’x,,y,,.ziv],' i< O, 1,..., 1, .., converge to the representation of

the point Plx,y,z}, i.e.,
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Mgy Ky 1 X
' ,rYO9YI)';-v‘Q'y1V’ .-_.:;. ]") y '

rZO,zl,..-.;zi, ._..] >z

Fig. 5 " Fig. 6

Similarly, if ﬁg,, Mireoos . .. isa sequence of planes in ET, then one says that it -

S converges to the plane , 1f the’ representatlons of the planes m, oy, Bl, v‘, 6 ], i=0,1,

cen , i,,} iees converge ‘to the representation of the plane o, B, v, 5]

. Foq‘,,“al, ey O, ... ) P

Boy Bry vvs Busvnn]> B

Yo, Vis oo Y1y oee I Ry

 TBoy B1y.sy B i o Bl
Note: The above Figs. 5'and 6 illu_straite twovspe'é.ial' ,tvypesiof eonvergenee in
E} and EJ fespecfivelyi which are the only ones of interest in the problem in

'question.v Fig 5 illustrates the convergence of the sequence of the points
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P, P, ..., P, .. ] to the point"P. along the straight line of the points P,
* . and P, _In other’ words it 1llustrates the convergence of the sequence of the points
whlch is generated by P,, whlle 1t is: approachmg P along the stralght line
' (Po, P) F1g 6 lllustrates the convergence of the sequence of the planes
fo, m, vy My, eel Wthh is generated by o whlle it is "approaching' the
plane n by turmng around the lme (4) of the mtersectxon of the planes Ty, and .
' Now if. there exlsts a fui. ctlon d of the coordinates of the clements of the set E
which converges in an equlvalent way to the convergence already defined in E, 4
_ then d is called d1stance or metrlc The set E along with the metric d, constitute
a metrlc space demgnated by (E, d), whlch is the so called Euchdean space,

© The quest1on faced now is: does. a suitable metric d ex1st in the set E such :
that convergence in the metr1c sense is equlvalent to convergence in the above
defined sense in the set E? It 1s remlnded that E stands for either of the sets
"f Eﬁ; and ET and s1nce they have the same analytlcal representatlon their metrics
) (as functlons of coordmates) will be of the same: analytlcal expressmn mterpreted :
in a dual way. - _ Lo _ ’
At th1s pomt a result of the general theory about the foundatlon of- Euchdean '

| geometry 1s recalled in accordance W1th what was said at the. begmnmg, about the

dlscussmn of this toplc "Thus the general foundatlon theory of Euclidean. geometry

- 'proves The general expressmn of a Euchdean metrxc d(Po, P) in three-dimension

: E'uclidean space is the non-negatlve real functlon .

x°-x;

S d(P,, P) = (18
. (o ) Zg“‘xq, x4 Xz_x4 (18)
k=l ,
(x4 x4)

-wnere [xl, x5, X3, x4]and [xl, X3, X3, x4]are the analytlc representation of tne
'elements P, and P. One may_ thmk of P, and P either as points, or planes, or
any other equally justifiable configiiration, with the same analytica) representation.

_ In non-homogeneous coordihatés; exp_ression (18) has the form
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1‘ , : )
d(Po,P> ng oG- xeQ-x), sy

B I k-l"
which 1s obtamed by choosmg for the non- vamshmg X4 the value of one. »
Although (18) “is 31mpler than (18) -the latter is more useful for the problem in
"questlon Before.spemfymg the expressmn (18) for. the cases of mterest here
B (pomts and planes), a few general remarks about the Euchdean metrlcs are in
order
) (a) The square of . the Euchdean metrxc d(PO, P) isa posmve def1n1te quadrat1c
form Expressmn (18) may be wr1tten in matrlx notatlon as follows

0

o s x| X x | | |
vvdz"(Po‘, P)_’-'.',Z o 1S Xel 1K) x| = X;OPG_X.PFQP’» ._ | o (19)
| o . -i;k:=1" (,‘;04:., )Q)ﬂ |

‘ \'.vherevj.' i _ B
R l&n .212 gx:; o » \ o
G =gy - (B Bw gw|, G=G (0

ST e _gy.gaa- o v , . ,
'an:d v .

. X Xy Xg_v xz Xg x’i .

XLOP ~ xg x, X?; x4l,,x2; X, ’ ; Xy 75 0. | | : o (21)

0 0
Xg * Xy x4-x4 Xg* Xy

- In the case “of non- homogeneous coordmates (21) has the form

it

Xl = (64-x), (8- Xg), 08 - %))

[(x—x),(y "Y)’ (Z "Z)]' . .. o - ) (21)’

vll

~ One says that the quadratic'_forfn d*(P,, P) = X'GX is positive definite, when .
X'GX > 0 for every X #.0. The same can be expressed in terms of the
matrix G. Thus foX is positive defihite when G 1s positive definite,meaning that

it has positive eigenvalues. Since G is a real symmetric matrix, if X\;, Az A
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are its elgenvalues thh pl, Pz, Ps the correspondlng normalized* elgenvectors then
PGP = A = dlag()\l, A;, Xo)i - S ~ (22)

5 . where P = fp,, p,, pa] is the matrxx whose co]umns are the normalized elgen-
vectors of G, and A is a dlagonal matrix whose diagonal elements are.the
.elgenvalues of G. It is a well-known result that P is an orthogonal matrlx and

PTP = PPT = L Also P’ = pY,

(b) In the prevmus subsectlon it was- sald that the motlons of Euchdean geometry
preserve the dlstances,and angles. The converse is also true, Hawng now both

of these measuree '(d'istances‘ and "angles) expressed analytically under one .expres.sion
'(Po, -P), one can state that the motions of Euc.lide'an.geo'metry are those which
preserve the’ value of d(P,, P) for any palr of- elements (Py, P), prov1ded none of

P0 and Pis at mflmty Let Sbea matrlx of a Euchdean motion, . It is 1nterest1ng '

to find out what k1nd of matrlx Sis. Cons1der the "d1stance" d(P,, P). Under the

motlon S, d(Po, P) 1s by defmltlon an 1nvar1ant quantlty If YP,, is the new representa-

~tion vector 1nto which X,, WP is transformed under S one has

T .SX"oP'* o e s (@3)
l'gv__\_-Then_'.j"'_ , . S _ .
d(Po,.P) = XEPGXPOP (S YPP) G(S Y, P)
= Y;P[(Sl)TG(S)]YPP |
= Y} MYP°P

- where
oM = (S‘)*G(s‘)
: The 1nvar1ant character of d(Po, P) entalls h
M-G , \
or .

osYesh =6

- or

¢ =saes. ,‘*~' I | (24)

*If pl, p3 pXare the elgenvectors of G, then the normahzed ones are

= N _ _p¥
s T ?'lT P HPzH’ =7 TRl
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(c) One pomt of 1mportance here is the followmg In the case of a general metrlc
» space ana1y81s defmes a metric d on a get E* as a real functlon of ordered pairs
‘of elements. of E which sa_tlshes the following three condltlons.

(i) d(e,, ez) = 0, andid(el, e3) =0 if e, = e

@) die,, e = d(eg, ey, (symmetry);

'(111) d(el, eg) < d(el, ee) + d(ea, ez) (the trlangle 1nequahty)

‘The above glven Euchdean ‘metric obwously satlsfles the condltlons of thlS '

- deflmtlon Although on one and the. same set E, one may define many metrlcs in.

-the above sense; ‘each one renders different metrization of E. As it was sa1d
- the 1ntroduct10n of a metrlc follows the def1mt10n of a certain type of convergence g
for the sequences of the elements of the set It is the type of convergence defined -

- on the set which constltutes the crlterlon for the su1tab111ty of a metric.,

The Euchdean metrlc glven by (18) is ore of the so—called projective metrlcs. -

_The metrlcs of all the metrlc geometrles derlved from prOJectlve geometry are
.characterlzed as prolectlve metrlcs Thus the use in some problem of a metric
- _whose form is not that of (18) means that the problem is not treated W1thm the :

--Euchdean geometry goemetry For example the metr1c

. ﬁ X1 . . ,. |
d, (P, P) = n}ax . xg Xel (xg’ x4 7 0),
1=, 3, - - : C
Kx,)?
. orforxd = X =1
dy(P, P) = max Ixi—xi| | . o (25)
S 1=1,83 . _ o .

- .does ;satisfy'the conditions-‘of the above definition of a general metric, but it is'not
a projective metric. ‘The same with the metric
(P, P) = Z I -ol—’ (x4, Xq 7# 0)
o B LT ‘

*Here E stands for an abstract set.
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~or for 3(2 = x, = 1
da(Po, P) - lea o R (26)

: 1=1 ; : )
(d) In thls note the correspondmg general expression. for a Euclidean metric in
- two dlmensmns will be given. This can be done 1mmed1ate1y by omlttmg the
coordmate Xy and conmdermg the remalnmg coordmates X1 Xz. X3 as homogeneous

in two dlmensmns i.e., -

-« = le o =1‘.i o
X Yo % # ;Of. s
Then . e 4y
: o 2
o s LS xk‘ ,
d(P,, P) = z gi,k Xs Xyl | X3 Xa , 27)
. . . 1’1‘?-1' . | ()(g xa)B J
~or.in matrix noi.:.a_tviorill . o -
@) = WGy, R 27"
where .
K : |8 8wl . >T
A PR S
and. e T
x| %G ‘Xa B | _ o
Xp = (18 %l , | xg A O (28)
BP - . [ xa }(3 ’ R xe . .
In non—homogeneous coordmates (27) and (28) have the forms
APy = [2 Bx (xi-xixxe mF . o @7
V ' k=10 : : ' e :
- and -
Ky = [(x°—x1), 8 - Xz)] B -
= l'(x -x), (y -1 I o _(28)’
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- 2.25 The Usual Euchdean Metr1c and Its Dual

.The general expressmn (18) of a Euchdean metrlc is recalled here

3 x| ‘X'tb_ »xk PAIE I
AP, P) = | ) e I xl [ x|
- 1,1l ("2 7‘4)a

S X N

where [xol, X3 x3, x4] and [xl, Xg, Xay x4l are the analyt1c representatlons of the
elements P, and P, At this subsectlon the elements P, and P will be 1nterpreted
' e1ther as points or planes. The matrlx formulatlon of the above expression 1s

recalled also from (19), (20), .and (21)

dg(Po,P) = x prop, o ' 29y
| gu-;glz"_gm L
G = |ga 8= 8o , G =G
831 832 Bm| o A
X] X, ‘,x% Xz x?; Xa ' o
Xep = |1 xal 0 16 xl, [ x|, & xFO -(30)

KR XX XX
Whlle d1scussmg the prmmpal of duahty in the three d1mens1on prOJectlve

'space it was shown that "pomt" and "plane" are dual notions. Itis true -that the
duality principle does not hold in Euchdean geometry in general, - Thus whenever
'duahty prmcxple is drafted in Euchdean geometry, its validity must be demonstrated

: suff101ently That is why the precedlng analys1s has been placed before this point.

- If in the general expressmn of a Euchdean metric one takes the elements P,
and P as pomts then d(P,, P) renders a means of "d1stance"* between tne pomts Py
_and P, If one takes P0 and P as planes then d(Po, P) renders a means of - "dlstance" :

| . between the two planes In the following, the first case w1ll be_ cons1dered first, |

- for itis simpler and more visual than the second, 1n order to find out how the ' |

usual Euclidean metric results from the general expression (29). Then the second

*The quotation marks are justified by the fact that the word "'distance" stands for
~ the usual Euclidean metric, which, as'it is proved in the ‘sequel, is a spec1al case
of the above. S : : :
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case will'l' be depioyed on the firSt using the duality principle as a ‘gnide to find
- out the geometrical meamng of the dual metmc to the usual Euclidean metrlc
| Case 1. Pomt-Euclldean space (E3, d)

In thls__case the elements of the space are'th_e, points* of Ej, which the human
mind seems to ‘.‘ri.sualivze better than any othei' eonfigufatidn ‘The usnal Euclidean
m’etric’ i.e, the usual expressmn for the dlstance between two pomts w111 be
E connected with’ the general expresswn of a Euclidean metric. =~
Let Po and P be tv»o pomts W1th Cartesian coordmates 4, xz,. ]l and

I'xl, Xz, X3) respectlvely Then the usual Euchdean metrlc has the form
'd(Po,,P) = (8 - xa, * (- X9+ () - m’]d. N G

~ Introducing homogeneous coordinates, the last e‘Xpression may be written

T e o e O
AP, Py = |15 x| + x5 x| + | x| |, | (31)
| [_,(_x‘i:&)’fr X (Bx)° | o
d(P, P) = | X5, 1.0 Xiaoﬁ‘ = [X;o)’; XPo:J e _ - (?2)
~ where T
o X.?.., Xx xz »- Xz ' _xg-‘ Xa
: XPOP" = xq‘i x4 ) xi x4 AR
| B Sx,  Bx, 8x,

Thus the usual Euclidean metric results from the general expression of a Euclidean
" metric for G = I, i.e., when G is the identity matrix. Recalling the relation (24)
'_of the r'e'rhark (b) whiéh followed the general 'exbression (18), we observe that the -

‘matrlx S of a motlon m Euchdean geometry satlsﬁes the relation

ssT = s‘s = 13 L '_ s (33)

* It ig recalled that when an element is considered ag-the generating element of
- the space, ‘it is supposed to be undefined for the geometry to be constructed
‘with that, Lo - » : o



That means that S is orthogonal. Thus the motions in Euclidean geometry with
the usual Euclidean metric are _analyticnﬂy represented by orthogonal matrices.
-Analogously, in the two-dimensional Euclidean space,the usual Euclidean metric

results from the general expression (27)'for

| 1 0]
G20 1]~ T

In this case the elementé of the space are the planes of EZ.‘ Although they
" have the same analytical representation with points, it is'much more difficult to
»vv‘isualize configurations of planes than of points. Therefore, duality contributes
substantially to problems with configurations of planes like the present one. The
dual metric of the usual Euclidean metric will be fdrmed and its géometri_cal
meaning will be given. | ,

_ Letm, and 7 be two planes with analytical ,rer.)resentat'ions lay, BosYo, 00] and

la, B, v, 6] réspectively. Their equations are

OoXx; + 3oxz + ¥Xs + 8oxg = 0, ,

“and L | . (33)
ax, + Bxp +_7§<3 +6x, = 0. ' '

“Since the points at infinity are not considered in the problem (i.e., x, # 0), one

could write these equaﬁons as follows:

0pX; * BoXa +V'Voxa + 6, = 0, _
and , o - ‘ (33)
ax, + Bxg + ¥xs + 6 =0, | '
They resulted from the prévious ones for x; =1, By taking now the elements P, and
P in the general expression (29)” of a Euclidean metric, as the planesy ;, andw

one has

i
2

- T
diom) = (@, )o@, )

. (34)
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" where

e ﬁ’ T yl | S
@ =116 81, [0 8, 6 8l|, (.07 0) (35)
86 ,‘505 ,50’5

and G remams exactly the same, for 1t is’ 1ndependent of the given interpretation

. to the representatmn vector X,, po Now for

10 0o
: G'-‘=,v:‘, 0 ’ 1"* 0| = I,
o 01 '

N relat1on (34) ylelds =
d(n o) = E(ﬂ o *’(Qﬁ-;,& )1%. N Ol
,Th.IS metrlc isa Euchdean metrlc and consequently, a prOJectwe one, It
expresses the "dlstance" between 1ro andn' in the same way the metrlc d(Po, P) in
. (32) expresses the dlstance between the pomts P0 and P ‘But what is the geometrlcal
h ,meanmg of saymg "the plane 7 "‘? Any comment on thls questlon is postponed
" unt1l later Now the geometr1ca1 rneamng of d(no,ﬂ ) is in order. While trying to
1nterpret d(Tro,‘rr) geometmcally, the above quest1on W111 man1fest itself in a
natural way. o ' ‘
:Po'.’z. [a°2 "‘:‘BO + Yo ]§ S
and ’ | L R '
C p= (ot yzl%. i

~ Then the epression (35) fOr .(&}, ﬂ ) may be wr1tten as follows

o 0:
R TERETONT S TR PRI
, po ‘P Po P : Po P
S SR Y B EP 1 1 -
o Qo._Q 8,8 5,6
L P Po. P RPo P |



where both terms of each fr.action' have been multiplied by 1/(oP). Since d(my,m )
is an:invariant under Euchdean motions(see section 2. 23), a parallel displacement
is applied on the conf1gurat10n of the two planes Mo andm such that

S B

Po P

This transformation, though applicable, is not very clear from the present

- point of ‘view._ Therefore, an'other"proof, purely ahalytical, will be given. The
proof to follow, though rigorous, is in informal language in order to be put within
the background limits already set p'revious'ly. '
It was shown in (section 2, 21) that each plane (1) determines the quadruple
:[02, B, v, 8] up to a common constant of -’proportiohality. That means that the
- planes [a, B, ¥, 6] and [Xa, A8, X%, A8], X# 0, which are really parallel to each
other in the Euclidean space, are considered one end the same plane in the
' ,prbjective space,‘ or as one says'in formal language they belong te the same class*,
Therefore each one of the planes 7, and 7 determines a class in the projective
space, namely, they determine the classes D\rxo, XBy, Mo, A0o] and [Ma, ug uy, 167
_ respect1vely. ‘Since the general Euchdean metric, where the metric d(1ro 7 ) comes
'from, is a prOJectlve metrlc(see section 2, 24), d('n'o.'rr) isa sultable metmc for '
expressmg the convergence of a sequence of "points" in the projective space, i.e.,
d(fro,fr ) can be used to express the convergence of a sequence of classes.
Consequently, d(m,,m ) expresses the ""distance' between the classes [ Aoy, Ay, A%,
.)\d,] é'mdv Fua,i ug, w, u.b],. independéhtly** from the values of \ and y. Thus, that
"distance" is the sé.nle for any peir of blanes from the two classes. Just for
. . convenience one may choose the pair of planes for which 0o/ .= 6/p = 1. Note
that the planes.§, = 0 and 6=0 are eXCluded from the respective classes.
The above informal proof indicates how analysxs treats some intuitively
appeahng facts in Euchdean geometry. Another important thing here is the projective

character of the Euclidean metmc.

*The "points" of the projective space are the classes [on, AB, Xy, )\5], \ # 0).
The class is completely determined if only one of its members is known, The
others are obtained by varying A.

**X and p keep their signs while they vary independently.
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By putting GO/R, =, ﬁ/p 1 in the expression_"(37) of (Q17 . ), the following
. ‘ ) 0

is obtamed

@ )T r(gf (f;"; S) (po p_)J | - @

Then the expression (36) of d(n' o-,n..) -_becOm‘es

'dz.(.no.'ﬂ") = <%2 0) i <§9 é <ZQ_ §> | - .‘ - (381).

L '._ax,+Bx2+y,x_3+_ 1=

Consider nbvi/ the. tWO-biéneé '
kTT aoxl + ﬁoxe + ')’oXa + 50 = 0 and a ) ) .: (39)
m: axl + BxXz + lea + 5 = 0, '. o - -. B o ‘ o _-'(40).
.as well as the 11nes B | . .. | )

4 mtersectmn of o and 17._ S

~-§ . perpendicular to 4 i _1n To
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¢ . perpendicular to4 in T, and
'm  perpendicular to 7. '

Without loss of generality, consider these lines being concurrent at the |

~point Pof 4. Let the following notation be introduced:

Xf, X§, X8 coordinates of P,

aL, b{/, cL .‘d.lrec.:tlo‘n-—cosmes of £,

a_, , C direction-cosines of § , -

[ 3 2

a_, b, c direction-cosines of ¢, and
a,b,c direction-cosines of 7.

n n " '

. Then the équations of m, and ‘m, as the planes which pass through P and are parallel

~ to the pairs of lines [£, 4] ‘and [, 4] respectively, are

X -X  xa-X % -X -
Mot ag" /bg.- 'cg' =0, . (41)
a, b{, Cy

and

X -X]  X-X§p X -Xj | | |

T: ' b~ c = 0, 42
' b v _ - :

Comparing (39')' with (41) and (40) with (42), the following is obtained:

|b, ¢ e - c
0y = S bg cg_ . o = 8 bc ct , : (43)
. L £ B 4 : :
c, a : c, a
- S - £ ¢
B, So| o al? B 8 c a |”
' L 1L ‘ 4 1
‘ b b
I _ e e
Yo = S|, pir YT S op |
7L 7 L 4
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Xt X, x5 ¥ 8 X8
8y = -s5}a b, c,j|, 6 = -sla b ,
S S G S <

a c a bL L

P A

whnere S, and s are constants of proportlonahty Notice the presence of the point

(X3, X3, }Q) Q is on 4, generally different from P, The followmg theorem is

useful at this point,

Theorem The square of the sine of the angle between two directed 11nes is equal
'to the sum of the squares of the two-rowed minors which-can be formed from the

matrix constituted by the two sets of direction cosines of the lines,

If 4 and v are two lines with direction cosines [é , b, ¢ Jand[a, b, c ]
_ - T T\ vV Vv
~ respectively, the above theorem proves that
bu Cu 3 cu a- 2 a 2
.2 = ain®g = |/ + Bl " n
sin®(u, v) sin®f b c *le a Y. b |- (44)
v 4 7
- Proof. Consider the identity
(a + b7 + @3 + ba + cB) - (2,33 + bibz + cieg)” =
' bl. Cy 3 .Cl a.l-z_» a, bl 8 :
= . S+ + 45
by cs Cs 3| - |ag bg (#3)

Applying this to the _direotion cogines of v,the lines wand v, the following is obt‘a.ined.

. . | b c 2 {c o a * a, bl 2
1+1- (a av +b bv +c (3U)2 = bu' c“ + c.u' : a’J' + . .
uy uv - s b,

But

auav + b“b’v + oucv = eos M,v). = cos B

.'Then the left-hand side of the last relation is sin 9, and thus the theorem is proved.

By virtue of this theorem, relatlons (43) yield

+3§+-y0 = s0 sin® &,4) _5 so»sin 90° = so,_
and’ - '

o +B°+'y2 s? gin® (C 2) = s®sin®90° = §°
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Thus
[N = 5 and p = s.
Relations (43) yield the _normalized coordinates of the planes m, and 7
in terms of the difection ‘cosines of three characteristic lines €, (£), and (©).

This rébresentatio_ri is very useful for it offers the means to transfer from plane

~ to line coordinates and vice-versa.

o _ | %l e |% %
.pa bL Cy p bl, Cy
Bo_ | | B_|%
[ c, a,’ P . - : L
Lo RO | e
, a b, a, b ' ' .
P L A
Po aL b{, | o] aL... bl, N
o XX % xR
=L = _la b, e ly —=-1a.- b c
Po E & & P I SR S &
a, by 120 Py o

“One may introduce the last‘ relatic_ins into (38) to eXpréss dﬂ(rro,'rr) in terms of the
directional cosines of the lines (£), () and (). -However, the discussion continues
- at this point in plé'n’é coordinates, - " o

The expression (38) of d*(m,,T) may be written

P m) = aZr @iyl ofr Py ) ot BBt yey
[o}] ) pod | pa | pop
- ' s+ BB+ Yoy
=1+1 -2 ——
- - + 1 : pop
.OI‘
& (Moy m) = 2 (1_ a‘?’a;oﬂpnlg’“)’o‘y ) | an
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As it is well -known, the vectors [, By, Yo] and [, B, V] are '
perpendlcular to the planes o and 7, respectively. But each plane has
two faces, and 1f (e, /3 Y1'is pointing outward on one face of m, then the.

vector [~oz /3 ')'] is po1nt1ng outward on the .other face of .

Let each face of a plane be represented by the correspondmg per- :

. pend1cular vector to the plane. The the followmg notation is adopted

[ -avo.a' "30 s =% ]

,.
&
m o

D~

[dOa & 70]

..'rr = po[af‘B,_y] a .-11 = p_[-a,.-B,p-y

v' '. ) Therefore, when one talks about "dlstance" of two planes, he actually
means "distance" between two ‘of the four faces. When the equation of a
plane is written down, the face of the plane to be considered is defined.
Consequently, that equatlon is for one .of the faces of the plane This
remark ‘sounds _probably trivial, but it is of 1mportance at this point to

the advancement of the present analys1s
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 Let 6 b_e the angle* between the vectors [Qo, Bos ¥o] and [, B,v1l,
that is the angle between the faces corresponding to these vectors. Then
“one has '

e, '.éu .ﬁ_+_za oY 2 cosh
I L S

‘and the relation (47) is written

da(ﬂ'o, TT) = 2(1 ‘-C(‘)SG) =_'3.4Sin2 _62__ . , (48)

- This is the "dlstance" between the faces [Oto,ﬁo, Y»] and [&, B,¥].
Cons1der now the "d1stance" between the faces" [Ot /3 7] and [-&, -Bo, -Yol.

-Equ'ttlon (47) gwes

f(—m,,m . \'1 ot (ﬁp)ﬁ,ﬁ_um |

Pop

or

@

& (-m,m =201 +_-;cos'6)v = 4 cos? 5 | . _ (49)
Thus, one observes that .given a féce m= {oz,- B, v] one may define with
the two faces of another plane 7o two different "distances.” As a special
cas_e, one can consider. the "distance" 'between_ the faces of a plane fo;
that is » -
(-Olo) +130( ﬁn) +7( Yo)
popo

d‘°‘(1rc§,,—‘no)é2."1 =21+ =4

i.e., o _
&M, -M) =4 . - (50)

Reeapitulatihg the above formulas about 'distances” between '-th.e»’fa'ces

of two planes one has.

'~ *One may find the notion "angle" out of place in this context. However,
this discussion aims at revealing the geometrical meaning of the 'distance"
between two planes, and this mixture is unavoidable. ‘



'd('rro » ) ﬁ_d(—ﬂo ’ —7T) =/2(1 - cosB) = 2 I sing |

2
- d("ffd,ﬂ) =d('rr'§ ,-_—ﬁT) =V2(1—cos€ =2 |cosg' l

o (51)
d(flo, o) = d(m,m) = 0

d(mo, = To) = d(TT,'fTT) =2

In Order. to comprehend better the discussion following this point,
a geometrical (or trifbnomet_rical) int'erpretation of the formulas (51) is |
introdﬁced here. Considér the cylinder with axis the line of intersection
) of" the planes' fro and 7 and cross-section thé unit circle. The cylinder

is considered of infinite length (Fig. 9).

(B
kl
| 'l\ . JRE R l.’
N B
) ) ~ - I »,
»l.l e N ’
| N ’
1
I W . /,‘ S
q Uy
{ |\\ t"‘al - \_\\
[} o
I L—/
) 4

S
7

| s
(4
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Take a cross- sectlon of the cylinder (Fig, 10). Thisisa
unit circle w1th the traces (AF) and(BC) of the planes m and o, respec-

- :tlvely.. .Usmg elementary trigonometry it is obtained that:

. d(mo,m = d(-m, -m = 2} sin% | =4 area(ocL) = (AC). -

d( Moy M) = d(fioy ~M) = 2 | cosg =4+ area(0AM) = (aB)
Now, one has in his hah:ds a very simple model in order to study the
- "distances" between the faces' of’ tWo planes.' The four faees M, -1 ‘+1To,

‘—no are modeled by the points A F C, B, respectlvely on the c1rcum—
' ference of the umt cu'cle, and the "dlstance" between any two of the faces '
s modeled by the chord Jommg the correspondmg pomts. One may check

all the formulas (51) through thlS model Thus

;am; m = (AC) | |
é@—:@ﬂ;d(nm m = d(-m, -m) = 2| 'sin'g- |,
d(-mmo, -m) = (BF)| -

@L;C%d( o) = d(y, ~m) = 2 | cos 3 &

d(me, -m) = (CF)

d(mo, ~m0) = (BC) =2(
B {==>d(me, -m) = d(n, -m =
dem, -m) = (AF) =

~ and obviously '

Ao, %) = d(m,m) =0
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Remark. One thing that should be stressed here is the linear repres_entat-ion of the
nqistances,” between the faces of .planes'. It should have been noticed that it is not
neces'sary to inverse the circular functions involved, and express the "distances"
in terms of arc. v | | _

) The two different "distances" which can be defmed between the faces of two

' planes are not independent from each other. They are related through the relation
& (m,, m + & (-m,, 7 = (AC)>+(AB)* = 4 - . (53)

Having the distances between faces of two planes, naturally springs up the question :
as to whether there exists a way to treat each plane as a unit and find a unique
"distance'' between two such units. That "distance" has to be a'Euclidean metric
vand consequently a projective metric (éeeb section 2. 24).. The above- -employed
representatmn for the "distances'' between faces of two planes (Fig. 10) shows

so clearly the existence and un1queness in magnitude of such a "dlstance", that it
ha_rdly needs any further eXplanation. 'Thusthe "distance'' between the planes ¢ and ‘_
7, is given by the distance (AN) of A (face +11)- frcrn the hypotenuse(BC), (trace of

| the plane T, on the plane of the cross-section) As one checks 'immedi’ately'the 4
; -dlstance of A from (BC) is equal to the distance* of F (face -1 from the same line A

| (BC), as. well as with the distances of B (face -m,) and C (face + g, ) from the line (AF), :
(trace of the plane ¢ on the ,pla.ne of the croSs—section). Therefore, the "distance"
between . and 7 is uniquely defined. Let it be called D(yr,, 7). It remains to. be

‘proved that D(qr;, m) is an Euclidean metric. To this end, the geometrical meaning ,.

. and the connection of D(r, ,‘ m With the "distances" d(m,, m) and d(-m_, 7) Will l)e found

as intermediate results. From Fig. 10 one obtains
| ‘area (ABC) = %(AC) (AB) =} (BO) (AN).

- =%.2.D(n,, 'n)‘D('n ,n)
or, by recalling (52) and (51)

*What has been said for A could be repeated for D. Because of the ant1symmetry of
the cross- sect1on the dlscussmn is given on the one half of the figure only
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) D(‘"o ,:ﬁ) =% (2 |sin %‘ ).('2 cos g' ). = |sing].
- Thus o , .
D(ﬂ; ,m) = |sing| , ) - k (5
’and also | _ _ | ' _ ‘
| D'(17.o ,q) = area (ABC) =% d(w;, vm)-dlem, .m0 - A - (55)

The extreme values" of D(m, ,m will be given heré Wifhout any recourse to thé‘
properties of sing. From (53) one concludes immediately that since the sum of
d (1';o »m) and o (_m, , 7). equals c,oh‘stantl'y, to 4, their product becomes maximum
_ when'dzf(ifo ym) =& (M) = 2. Thus the maximum of DP(m,,m = :11' &, , 7). d?
. ‘ ,('"o ,TT) is
max [D?(y, ,m] = 1.
Since D(x_ ,7) is taken positive by definition, it can be written
- max [Dr,,mMl=1or Dlm,,m<l, - o ' (56)

that verifies the known result

sine' _<_ 1. One can,verify all the known properties
of sing. ” '
' In order to be shown that D(r 1) is an Euél_ide’an metric it is sufficient to recall
the relation (55), i.e., ' |
- DPw,.m) = &Fm, ;"rr)-_d?(-no ,m)
where d? k"o ) and d? (_Tro‘,n) are :EUclidean metrics, as it is known from the
preceding dis'cuSsion.'., But it is worthwhile to pilt D?(m,,m) in the general form of an
Euclidean metric (éee section 2 24, relation (18)). One may proceed as follows:
- D? ("o Nk Z d (11'° ) B (..ﬂo o) = Z 2(1-cosp) 2 (1+COSG)

"= 1-cos?g

= l_ﬁ:a + BQB+701/)2
' PoP -

43



(Bo 'y'Byo) + (Ot y oe Vo )2"'(& B‘Boa)2

po p°
or -
. - |R v '
Do 2 Y iz |8 B2
DQ(TTO,TT) =Po P, + Po - Po o+ Po Po :
. ' . . (57)
By y g o B
PP R T
The 1ast expression may Ye Wri_tten
D(r;m)=U'U o o - S | (58)
where e . T | |
| . Bo Yol | % 0 o, B |
v=|[m Fl % ow] |
; ; ' (59)
Loyl |y ¢ |2 B ~
P Y p p p p

‘This shows that D®(y, ,7) is a special case of the g’éneral _e‘xpression.(18)‘ for a
‘Euclidean metric between points (see relation (32)) Thus, the metric D(m, , )
'wﬂl be called dual metric of the usual Eucl1dean metric. As it was proved
- ‘D(m,. , ) renders the shortest "distance" between the planes 7, and 7 (cons1dered
- as,umts),-_ in _the_sa.me way as ..d(-Po) P) renders the shortest distance between
the points P, and P. | |
" The above expressmn (67) of Da(ﬂ' »m, is in terms of plane coordinates
actually normahzed plane coordinates. Two more analytic expressmns of
DQ (m,m) very useful for the adjustment problem will be g1ven here. One is in
'lme coordmates (directional cosmes) while the other is in line and plane coordmates.
For the first, consider the lines () of mr, and (g) of the 7 perpend1cu1ar to the -

intersection line (y) of 7, and 7. Then relation (44) yields:
. o v
be al” , |% |

For the second cons1der again the line (g) of . (the same:as above), and the

P (m, . m = sirPo = (60).

vector lo . B, ), (which is perpend1cular to n). Then ‘
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Recapltulatmg the results yielded by the above discus8ion’ abéut the B =
f

P, i A
''distance'' between two planes one has the following: . E"{uui = {me ,mE NI

(e8]

(i) Given the equation gx, + X + 4% + 8%, = 0 (of arplahein (inyhomogeneous \&

coordinates) or class [n) of planes 1s determmecf whose;representathn vector

’r. 3 , ‘o oX ! foy ot {
is na, PV:A Ay, A8], where)# 0. or x>0 thersulf)class [+1'r]"ls :obtamed which 1s
. 2_., ¥ v'

) 2 i
determined by one of t.he faces of tne plane. n, namely,wthesfac_e,rrt_:_[a,’_B, ., NS

‘For \<0 the subclass [-7] is obtained wh1ch’ 1s;"detenmmegfby;thej}other face of 7,

nan‘wly, the face - = [-a,_ —ﬁ, 7:,]f'f i

.
1
57
£ .
i
|

(ii) G1ven the equations . L ! L N -

| " 0 .

and v
LT :

{3 ; 503 98 {40 yf Bl bi; {40 .30 8] oronw
of two pla.nes m, and 11, two classes [17 ] and [n] are’ detérmined with“representatmn
COEE cea o) sr® o SNy o rCTN00GAST v BAR  _p a0y ond o off doidw

vectors D_ao, AB, )\‘yo » A8, ] and [pa, p,b, p:'y: é] espectwely, (X5 p# 0) I

(5} omtl
0,0 YRRy, v T =.poE 11 el sagprehon C,Z{D “’cao}ﬁe i meA
, = S8, .
. + B2+ + R+ g - :
aoa /e 0’2 Bﬁ% -/ OP Re {28 2 vog) maidorg B g
. 3 o 13 ii g 8l ebdd Jont 1o wolien
and
SETLT S A Locnisminel sav 3 as meldorg insmysuie 58 a3 bas
. d(+11° ,+ 11) the "d1stance" between any. two members of the subclasses
YR S SR SR . vt 2 koo noisesTgoT ol Yo% goizeooro DoEbpes

[+n 1 and [+l i. e., >\, u >0, (with analogous defin it1ons for the
gm0 gleviens [nohiniisde o) 0F bojovah ri
"distances" d(_n ,-n), d(-m, , +rr), d(+-n , -, ete.),
‘then

_d(+ﬂo st =d (-, -m) = /2 (1-cosg) = 9

d(-m, +ﬁ) =d (+m,, -m = /2(1+cosp) = 2 \cbs%‘

leing,

d(*m, , -m,) = d(*m, -m) = 2
d(+m , +1,) = d(tm,+m) = 0
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These are Euclidean metrics, and express 'distances" between faces of two planes. '
| (iii) There exists a uniquely defined Euclidean metric, D(m, , m, which expresses’
o ‘the shortest "d1stance" between two planes m, and n. The followi.ﬁg expressions for

this metr1c are equlvalent

1/ D(no yTT) = svine . .
2/ Diri,»m) =} +d(n,,m)-d (m,, )5

| 1
. Bo Y 2'_ : Yo O | O 'Bo 2 g.
_ . IR ' + _a_+ |
8/ =l 211 % °', ]
o . [06"'32 +,y°]2 [az+ﬂa+y ]?
4/ Dlr, »m) = bf € ?-+' c"c afl i + ag ‘.bf 2|
. 3 L by (.B'C - e | ac. .bc-,
5/ Din,om = ayatbgptey Y 3
e o!a+ﬁ'~’+72 B

where [ag b, ’g] and [ac b, c (] are the direction cosines of the lines (£) and (C)',‘
’ wh1ch lie in the planes M, and . respectively and are perpendicular to the intersection
line (&) ' ‘ N |
B Among all these expressmns the last one is of part1cular interest for the _
' ad]ustment problem (see section 2. 22),. and 1tw1ll turn out tobe very convement As a
matter of fact, thxs 1s a linear expression with respect toa,, F’ cp and% g- b

’ and fits the adJustment problem as it was formulated in section 2. 22 Thus the B
"..i'required expression for the regression model has been found The followmg subsecnon

| is devoted to. the statlstlcal analysxs of this model
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2 26 Statistical Analysis of the AdJustment Problem

JIEIR e ST DI G 00 A G or g [ &7 ot gif sdT  .zentl noilsesysinl

The geometrlcal analysis of the optical observations mode (see section 2. 1)
adi mp somse odf el isds 1o zenil soiisesisisl odd 1o o adid of el

revealed the type of the statlstlcal model, namely, a linear regression model,

Ag v 8 LE = ()T esnsls 1o Joz odi dgudtli TOT MG oTIE Boisopa-teas!
Although the enunc1at10n of the ad]ustment problem &1 .» what is the least-
aed’l Lo oy d.,58] eanizon noilostib dliw {9 ,9) ouil odi od (3 ¥l

squares line through & set of planes) was crystallme about the linearity of the
vol eriil oa7 0 2boogestyco i1 ,88.8 noijoos ai moieewneib sl of zuibreocs

problem, the analytical expression of the model was not so obvious. Being
Doiieiisz el ooi1adite mperidgo esvsupe iesel gtiwollol odi duidw
convinced of the linearity of the problem, one was expectmg a linear analytical
expresgion. Duality principle offe‘;‘:gg{mgimoangﬁo(fclgxg Tt t\he suitable analytical
expression for the linear regression model. The fact that oiié knows the statistical

model doemdiqcharge him from being obligated to discuss it stochastically .

\._,_

and to appralse the va11d1ty~of e statistical assumptions(g}vhich accompany the
)
model, under the conditions of the problem. T'his-subgection'aims at a general

\
statlsncal tr\gatment(of the problem.,

- \

2.26%
out s1m&1taneous optical

W
Two* ground stations P, and Pg afg‘calf

_observatzbns of a Set of satellite” posxt""on points Qy; Qs ..o} Q. The
observed %uantmesabyh&ﬁlon P; at the event [EJ, Q, | tJ](éee section1l)are
equlvalent\‘to the d1rect1§£§?ﬁfé‘§*‘~ : c, 4] of the dirgction PIQJ.
At each evento,,,,,two dlnectw,ns.,,Pni.Q,,..,and."P Q d, which

U pX O g% Ve HiX 0 ¢

are not independent from each ot‘ger, for they meet at Q;. These two
directions intersecting at Q,, determine8aiplane m, which is defined as
~ passing from Q, and being parallel to the directions P,Q, and P,Q;(see section
2.1).  Thus, thetelidd)sel BI flatlet’S§ (felpp@ p08), ,(p) indBfendeney
‘determined from each other. One might think that since the planes 7, are
passing through the line (P1 P,), mheydcxiphld bgucﬁnsugeﬁ ﬁeamembers of
a pencil of planes with axis, the 0lme (P1 P2 . hut such a thing would
" kill the problem. statistioally, for the Qla?fi?% " gfo;t(@fln%}ageqnot inde-
pendent from each other any more. Further discussion on this is post-
9litw ysrr o0
- poned until later. These planes determine C3° = p(p - 1)/2 1ndependent

Vol e a2 LA T G0 = (7 aomd={r )d=,d
- :"

[
e



inters'ection lines. The line (P1P ) is conmdered as the- f1tt1ng straight

‘ line to the set of the- intersection lines, or that is the same as the

: least squares straight line through the set of planes TT; (J =1, 2 ceesP)e
‘Let (g) be the line (P1 z) with dlrectlon cosmes [a bg, c E »Then

,accordmg to the discussion in sectxon 2,22, 1t corresponds to the line for

which the following least squares optimum criterlon is satlsfxed

) z .Da(no.i s ﬂ.i) = minimum: . _ - o (62)

Q; x,+pjvx, -{-Yj. Xq +§,x4:

Fig. 11

where D(mgy, ) (see »se"ction"z.'2_5) is giVen_by (6,1_), i.e.,
- o éi A,

D (T, ™ —‘La b +

(Togs ") E Pa E (o] ~€"

—[013'*33 +73]%

One may write

D(e,n,)—nm,,n,) aN,a€+&,b€+yN,ce 69



where
o}

o - _Bs Y _0y ’
oy =2 By =Er, g, = Buy = =t
Ny o4 B s Y ’ ?’NJ o, ’ 3 Py ’ (64)
are the normalized coordinates of my.
If (63) is written in the form
_ OtN‘gi':l.E + RNJbEL"*; YNJCL-’- 0
D, = ' —T » (j=1,...,p) (65)
a - +b,2+c21% ’ ’ .
g b o] o .
where as is known
2 2 2
a, +b~ + ¢ =1, 66).
[g £ E] , | (66)

‘then one recognized immediately the formula: for the distanée of a pbint
with coordinates [ayy, Bvy,¥ny] from the plane, the perpendicular vector
This is very remarkable because the problem'

of which is [a , C

| g P gl
in question is thus reduced to a very well-known.case, namely: find the
least-squares plane through a set of points. Hamilton's _presentafion

of the least squares solution to this problein will be adopted here [18,19].

Let - :
m = [ag, bg. cg], _ (67)

- and

;{Jz[aNja BN3’7N3]T9 (j=1929"'9p) (68) :

be the coordinate vectors of the ''plane' to be fitted and a typical

6bserved "point''* respectively. Then (65) and (66) may be written

DazAﬁzﬁiJ’(jéls“"p)’ 69
mm'=1 | o : - (70)

*The quotation marks are justified by the fact that the notions point and
plane are symbolic there.
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The eqUations'(Gf.)) are the soFcalled observation equations while (70) is - -
‘an absolute const'raint As far a.s statistical ass'umptions go, i't‘is
assumed that aN.,, B” gy and W are 1ndependent normal random variables.

' Before proceedmg to the least squares solutlon, some comments on the

st_atlstlcal model are set forth.,

2. 262 Lomments on the Statlshcal Modsl -

It certamly has been notlced that the "observed quantities" in the
above adjustment are the coordmates Ol g 3NJ: YNy of the plane 1.
One might wonder how far away these quantltles are from the quantities

which are actually recorded by ‘the observer. In Principle, the quantity

. whlch enters the adJustment as observed represents the observational

: umt, so-to say, that is the event whlch 1s repeated durlng the obser—
vatlons and wh1ch may be considered mdependent from the precedmg and
followmg one. The questlon now is, what is the observatlonal umt in
the optlcal observatlons mode? The "instrument" of these observatlons :
is not each one of the two mstruments at the observing stations, but
both of them, and the "obslerved quantity" is not each one of:the tvv.o |
' direotions, but both of them together as a unit. That unit is nothing _
else' but:the plane d.efin’ed by these- two directions which, by fact, meet
at the satellite position point. Obviously, this is the observational
unit,- or the event,if one wishes,: which is repeated during the observa--
tions and may be eonsid'ere_d independent, from vthe’other such events.

' There‘fore,' the'quantities whiehlenter the adjustment as observed.
must represent'the planesk ‘whieh are defined Aindependently from one
' another and_each by the corresponding ‘simultane()us direetions,' Thus,‘
the above adjustment oa'nnot_be simplified' further without violating basic .
: j 'statistical principles about adjustments.- But there are‘many ways to
. represent one and the same plane. This matter was discussed in section
2.1, where it was concluded that the only statistically permissible

representation of the plane m, (see Fig. 12) is from the two
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Fig. 12

» intersecting directions ﬁQ, and IS;Q,. If one considers the planes m,,

' forx_ning a 'penc'il"of'plarie.sj with axis the line (Py Pa), then the independence
_<_5f these planes diséppears, and a-matherﬁatic_al model for which this is

: tﬁe_ case, does not .yield an adjuStment of this problem. From the above

diséus_sion it became clear thét-thére was no othér way to look at this

probiem, (i.e., two unknown ground stat'_ions observing simultaneously

" directions to a set of sate.llit:e position points). = That means one must
l.ook at (i)l P;) as thé_ fitting line of a set of lines (all possible inter-
sections of the planes ;). In tﬁe folloWing» of the présent commentary,

a mathematica'll-.model for the same problem,differént from the above which-

appeared in geodetic p’ubvli’cati.ons will be discussed briefly [2]. The

. matﬁemat_ical model g'ivén here there (somehow arbitrarily) is the following

(see Fig.- »13);

Direction P,Q;:
XJ - X1 T Iy 3.13'= 0
YJ _y1._ r“.bu =0

‘ZJ-Z‘I - r“-cljl—'f 0
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Direction, P,Q J:-‘
| XJ,*.’Xz " Tzyaz; =0
YJ = Ya - rz,gbad‘ 0

.ZJ ~ Za'_',radc;g',= O

-0

ORIGIN

‘Fig. 13

There is no- questlon that they are necessary, but as' it'turns out, ‘
'they are not suff1c1ent for thlS problem. One may observe the following :
) pomts. o -
o After el1m1nat10n of the satelhte coordmates, the above cond1t1ons
. _".are reduced to three _ These three resultant equatlons have the form

| X - Xetryay - Tajazy = 0 |
(only the X- component is wrltten for brev1ty) o

One might think that-the presence of the coordinates and the distances

in the above formulas is' intrinsic. - But thls is ‘not the case As a matter

of fact the dlstances r“ and rgj are unknown and they become known
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after the introduction of the length riz, through the relations

_ sin €,
ryy = I3, _
W7 M2gings
‘and _
' L sin 6,
ray = N
A 1.'“ 8in 63
Then
X - Xa . 8in6 ~~ s8ind -0
r ) ) 25 1 ‘agy <
18 8in9; ' 8in6,
or

(sinBg) a3 +(sinfg) aiy - (sinby) agy = 0.

The last one is independent from the coord'inates of the boints P, aud Pz ' »

_ Another thing Wthh must be pointed out is. that the directions P1Q3
and PaQ 4y are introduced mdependently, while they are not 1ndependent for -
'they intersect at Qg.. This dependence is expressed by the equatxon of - |
the plane through Q, and parallel to PQ y and Pan which is not
mentioned an'y'u/here there. - These two points show that the above model
does not give the required adjustment. It is not easy tovvisualize what it
does. It seems that after such an adjustment each triple [P, P:Q,, P2Q,]
is parallel to a'plane, but there is no connection between these planes.
That model cannot be identified with any of the known stat1st10al models.

. It belongs to the category of the so-called generalized least squares.

There appears to be no objection against the generalized least squares,

' provided the employed conditions are.proved to be not only necessary but
sufficient too; sufficient in the sense that they define the .conﬁguration
uniquely.v Unless the sufficlency of the conditions is proved, the results
are very precarious. The fact that there is no rigorous statistical
foundation for the ge'n_erahzed least squares is an additional reason for
some people to keep their reservations with this method. In the last
analysis, why should one have recourse to an unconvincing generalized
least squares solution, while he has a clearer, fully convincing solution

of the adjustment problem ? 7
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2.263 Least—Squ'ares Solutilon

"Equations (69) and (70) _constitute the mathematical model of the problem.
The least-squares solution to this problem is very known. As a matter of fact
there are more than one approaehes to the solution of this problem [17,18].

Since this mathematical model is very eoxnrnon in statistics there exists a
vast bibliography about its statistical _analysi_s (eomputmg techniques for estimation,
hypothesis testing, etc.) which is very beneficial for the geodetic pnoblem. Once
the problem of the optical observations mode is reduced to that one above, the task
.of the present work 1n this d1rect10n has been accompl 1shed Nevertheless for com-

: plet1on purposes, Hamilton's method of solution will be given below.

Hamilton's solution to the problem of fitting a "plane'’ through a set of "points'.

The following matrix notation is introduced

= (D, D, ...,D), (1xp) _ v (71)
X = (il,fa,.l'._.,_a),: (3xp) | - | (72)
Mx (3p x 3p) 'variance—covar'iance matrix of i
- ﬁd (p x p) ‘ ' variance-covariance matrix of D
w = ﬂd"l v‘veightnlatrix of D [to be discﬁssed later)

. 'Pfdc_eedingvformal_ly‘ one obtains the function to be minimized, i. e.,
_———T V T ) . ’
¢ = D W D —-k(ﬁﬁ - 1), - (73)

where k is a Lagrange mu1t1pl1er for the constramt ' = 1. From (69) and
(70) one has . '

D= (BE, B, ... BE)=®X N ('S
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foen_(73)_ may be written
s =m(XWX' )T -k(H@m' - 1).

The least-squares estimate of the unknown vector T is given as it is known by

the solution of the following system:

(XWX -kI, )@ = (C- kI,)@m = 0 (75)

But the last equation shows that ™' is an eigenvector of C corresponding to the
_'eigenvalue k. Since C is a symmetric positive definite matrix it has three real

eigenvalues, and let them be in the following order

A, S g < As

Then ETV correspondsto @ k=min) = A, . By some stahdard numerical» _
_prbc'edure one may obtain the minimum eigenvalue. The eigenvalues of T are
_the inverses of those of E, and the maximum eigenvalue of C - corresponds to
the minimum of C. Since the numerical procedure to find the eigenvalues starts
vvith_the_ maximum eigenvalue one is looking for the maximum eigenvalue of ct,
' Whose the inverse is the minimum of C. Given the fact that C= X WX' is a

(3 x 3) matrix there is not much numerical trouble involved in these manipulations.

. Nature of the Weight Matrix W.

~ In this problem the variance covariance matrix of f, i.e. F& may be
considered diagonal with (3 x 3) diagonal blocks. That because, the planes Ty»
(= 1, 2,. . . , p) may be considered independent. Nevertheless in this general
treatment, a full variance-covariance matrix ﬁ, is taken and let its typical

element be denoted by M_**, i.e.,

_b EYRER) Irlep —_—t .
M, = Momm M WYY s (3x3) (76)
. _‘_p,l . _'M_p,p . . -
Mx_ ) x
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‘Equation (74) may be written

. 1 ‘1 'y . v .

ST ' ’ ; e < : .

7 D = 193 1I.na e () . _XB T = pc‘MSP 3p X1 » | (77)
o O '1.-m3_ Xp‘

. Then the formula for the propagation of errorvy'iel_ds
'}-_1‘_.,'_"'_7 o |
W= M_d =vﬂﬁ,MxeM o C (78)
The typical element of M, is -

';13 T

— =1y _ S - :
l, =mM, m -~ - . (79)
= =ty e =
I M, is d1ago:1al, then M, = 0. for i#j and M, is dragonal too, ie.,
(—M m)' B U | R
— _—aa_t -~
My= | 0 + (MM m).... 0 . - (80)
=T
0 0 .. .. (mM m )
or
——tr—r 0 v v v v vt 0.
‘ mM,’ m. , . _
‘;_ﬁ -1 _ : ) T | : s . .(81')
W=M, T = S —— — e e 0 :
0 | 1
0 6 “ e e - —P,P _T
B I - mM, m ]

Smce the weight matrlx W 1s a funct1on of m the equatlon (75) is non hnear in m.

o Therefore an 1terat1ve procedure is followed. One assumes a vector m, calculates _

the weights from (78), der1ves a new value for m from (75) and then recycles Inl ‘
cases of two or three d1mens1ons, l1ke the present one, the process converges in

.no more than two iterations.
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Remé.rk. Because the wéights depend on E and an iterative procedure is

used it is important to note that the minimum 'eigenvalue of C does not necessarily
corréspond to the best solution. When the solutions to the eigenvalué equation (75)
have been found, the quantity DWDT should be computed for each eigenvalue.

If the ellipsoids of error for the md1v1dua1 points are very eccentrlc, it frequently
happens that the minimum BWB does not correspond to the minimum eigenvalue [20].
This is particularly likely to happen if the initial choice of m for the iteration is

far from the correct one.

Covariance matrix of m (ﬁm ).

. From (74) one obtains
D =X o XWD' =XWX'm'=Cm’

and o o
X W) D . (82)

Me = (C XW)M, (WX C ")
- T T o T oeT !
= C'X WM,M,"X (XWX )
-1 — ——T —— =T g
= (XWX )(XWX)
or
“Mm = C . | | (83)

Testing hvpdthesis .

Consider the hypothesis H: m = m. Assuming that the distribution of D

_ is normal then the quadratic form

Q® = (i, - m) C(im, - m)' | (84)
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. 1s "dis.tributed as '3F3', p,' Where F is: the Qeli-knoWh.vévriance-rva"tio distribution
~and 3 is the nﬁmbéxj of unknown parametéfs. If Q®is less fhan the tébula'r vélue,
the hybdfhééis 'is_z‘ié‘c-epted. rTh'a.t 'n.leans‘ﬁ"lo may characterize the "p]zine, " which
'iS 1;,h'e ],iné (E_',) in _this; pfoblem.f_ Si’ncé
. - :

lim 3F3,;, = Xs

PP

for large p one may use X ? test instead of F.

In evéry sta_tisticial prbblem', af.te‘r‘the statistical model has been Vchosen,
the goodness. of the estimation and the stétistical inferences .dé_pé'nd‘s upon the
weights ass_i_gned to the ’obéerved quéntities. FcA)x_" the present brbble;n, thé
difficulty 1s about éssigniﬁg the wéighf t6 the obsérvafioﬁ 've'ctor Xy. By reéalling

equations (2) - (5) (see section 2. 1), one has

—_ : o1, oy
x“’ : [aNj ’ BNJ’ WJ] = 'EJ [a_j ’ ﬁjb 'VJ]
or S . -
’ _ by ey Cis Ayl [Py by : C ,
. byy oyl Pzy2zy |22 bsy ' '
where ' '
p, = lo? +B2+v72] .

" Ttis interesting to note that Py is the sine of the angle which is formed by
the two observed directions at the satellite position point (see relation (44 )
If the observed angular -quantities é,ré the declination (5) and the hour angle (h)

 the following relations hold

‘a;; = cosb,, cosh, a5 = cosb,; coshy, .
' - ' o (86)
by = coss,, sinh;, by, = coséy, s1nh2>J :
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Then

b, ¢, cosd,,* sinh,, , sin g,

oy, = = ’ (87)
' b,y €y, cos 6y, * sinh,, , 8in &, ,

4y Cy, COS §,,° cosh”, sing, , : ' -
B, =- =- , (88)

a5 Ca Cos 8,4 cOShy,, sin 8, , _

a,, b, cos §,, cosh , cos§,, sinh,, :
Yy = = . (89)

: ay, by, coS 8,y cosh, COS 8, sinhu

It

oy Sin(P:QJ , P,Q,) = sing, (cos ' 8,).
' 1
= [1_(3’133‘3J+b15b23 +c1jcﬁd)a]§

or

p;> = 1-[sing,, sing,, + coss,, cosf,y, costhy -y )P B (90)

Thé above formulas are not tool complicated to compute the errors of

Onys Byys Yngo 5y using the formula for propagé.tion of error on the linearized

- expressions of the above when the errors of 8149 h ,, & i h.‘aJ are given, It

ié stressed again ;that the vobservational unit of thié broblem is the plane My

and not the directions P:)QJ énd P:Qd individually. Hencg, the coordinates of
this plane are the ""observed quantities'' for the adjustment. problem and these
are.those which m.ust be assigned a weight. As it was inferred above, fhe plane
m ‘is the simplest obsefvational unit and any mathematical model whose observa-

tional unit is simpler than that plane does not adjust the observations of this

problem.
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2.3 Determination of the Cartesian Coordinates of the Stations

‘A-ft'er fhe a'bOVéI adj_u'stme.n-t.one has af its disposit_ion the direction cosines
of the line (§) = (P,Py). In order to compute ‘the Coofdinaﬁes, oﬁe needs the
ébordinateé of ei_ther oné of t_ﬁé two 'poir;ts_ aﬁd the length." ' Lét xLA,y,, z, be fhe

) coo‘rd'inat'ves of P, , a.nd'Sw bé the lengfh of the distance (Png). 'Ther}
ey = 2 x | |
Vs . bES@# i ’  _ : ey B

Zg = Cgsxé*LZi.

1l

3. THE C-AS.EY_“OF MORE THAN Tw'o STATIONS
, Let Pl,: Pg,‘ v ;,Pi‘be a s.eAt of .grou.n‘c.l Stations. Conéidei‘ all the pairs of
_ statiéné from fhis set, each one of which*vh;as obseryed simujtaneous]y 'at leialst>0ne -
satellite positioﬁ. It does:,not_ matter whether some of the satellite pdsition

points t'ak_el part in more than one pairp Let‘thesé pairs be classified .




as follows:

A, set of station pairs e-ach of which has observed more than two satellite
' posiﬁori points, -

A, éet of station pairs each of which has (;bserved just two satellite
_positién pojnts,

A set of s;‘,ation pairs each of which has observed just bﬁe satellite
position point,

Remark. It is possible, of course, one and the sgme station, say P, to be

found in all these three sets .of pairs, but never as it is understood, two and

. the same stations can be found in twq different sets of pairs.

1st Estimation.

For each station-pair of the set Aj, an adjustment is carried out
"which yields the directional. cosines of the line of that pair. For each station-
pdir of the set Az, there is no adjustment problem inasmuch as there exists
only one intersection line, which is taken as the line of that station-pair. If,
fo;f example, (P, P;) is a station-pair which has observed two satellite i)oints

Qi and Qo (see Figure 14), the only intersection line is that of the planes
m and 7, (see Section 2.1). For the station-pairs of the set A; there is no
, infbrmation during the first estimation. Thus, the first estimation consists
of the direct information provided to the ground stations from the satellite
observations, that is, the directional cosines of the li_nes of the station-pairs
- in Aa and Az.

 After the first estimation one has additional information for the deter-
mination bf the directional cosines of the lines of the station-pairs, which

may be called indirect observations. That is, in a second estimation of the

direction cosines of the line of a station-pair (P,,P;) one may consider not
only the planes m; corresponding to the satellite position points Q; observed

by the stations P, and P,, but also the planes Tli; = (P, P,Py)(i =3, 4, ...),
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_’ provided the dlrectlons Pl Pi and Pa P, have been est1mated in the flI'St.
' estnnatlon. Con81der, for example, the S1mp1e configuration of three
stations P, P, Ps (see Flgure 14), where the hnes (P, Py), (P2P ) and

(Pa P1) have known d1rect10na1 cosines from the first estimation. The
d1rect10ns P1 Pa, P2 P,, Pg P, as they result from the f1rst est1mat10n,
are not in general coplanar. One mlght consider here the coplanarity

- condition of three directions, i.e.,

, a1z b1z Ciz _
Faig, byy,cyy) = [ aza  bes Cz23 =0, (92)
o ~ |as - bsr  cam |

and:adjust the results of t_he firétv.es,ti:rnati'on according to this condition.
This way is followed inv [1']. But taking the first estimation results and _
enforcmg them to Verlfy condition (92) it is 11ke killing the problem statls— |
- tlcally, and abandomng the pr1n01ples adopted in this. treatment for the case
- of two stations by 1mphcat1ng statistical models for which theorles about
'statlstlcal 1nferences have dublous vahdlty, the functlon F (ayy, bi 38 C19)s

(i, j=1, 2, -3) has nine variables and it is of third degree. Therefore,

| by prmmpal the adjustment here will not proceed this way. ‘The natural
way to proceed is that of a second est1mat1on, as already quoted above.

»-'2nd Est1mat10n

. The second est1mat10n is s1m1lar to the first, and only the number of
A'observatlons has been 1ncreased, by taking 1nto account not only the dlrect

:observatlons (wh1ch y1e1ded the first est1mat1on results), but the indirect _
"observatlons too. . Con81der a stat10n—pa1r, say (P,, P3), and let the following '

g - sets be defined

B

[rr] = [111, s m, ]

C [1'[] = [ng “ .. _,.'n12,l- . ;] ’

where B is the set of. planes corresponding to the satellite points Q; having



been observed by the station-pair (P, P2) and C is the set of planes

Il; = (P, P, P,) corresponding to the ground stations P;, such that PYP,
and P:Pi have been determined in the first estimation. X is observed
that in the second estimation one obtains the direction cosines of a
station~pair whenever the gset C is not empty, (the set B is not empty

by fact). Thus, while one could not estimate the direction cosines of a
'statiovn-pair in the set A; in the first estimation, he might be able to do
that in the second one, provided the set C of the station-pair in A: is not
empty. ,

Note. One should be aware of the definition of the plane Hig. It is defined
as the plane which passes through the station Py (ﬁpper index) and it is
parallel to the directions P_: Py and P:Pi .

After the second estimation a third one should follow in which the
~observations consists of the direct (original) and the indirect ones resulted
from the second estimation. Thus, an iterative procedure is established
which obviously leads to the coplanarity condition. The iteration steps
continue until no significant difference exists between the results of the last
step and the one immediately' preceding it.

After that the adjustment is complete and for the Cartesian coordinates
of the stations one has to introduce the coordinates of one station and the
.length .of the distance between two of the stations whose direction has been

determined during the adjustment.
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