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1. INTRODUCTION

The science of geodesy has found in artificial satellites new fruitful means

toward accomplishing its objectives. Thus the new branch of satellite geodesy

was born, comprising the methods of treatment of the geodetic problems which

employ the new celestial bodies.

Satellite geodesy methods may be considered as falling in three categories:

(a) geometric methods, employing mostly geometric principles,

(b) dynamic methods, whose results rely mostly on dynamic principles, and

(c) mixed methods, when no discernment can be drawn between the previous

two.

The above categories furnish the basis for the distinction between geometric

satellite geodesy and dynamic satellite geodesy.

Given a science, say geodesy, its objectives are more or less defined and

what changes are the methods and the means scientists invent and employ to come

closer to the solutions of the problems in question. Therefore, comparison of

the results from different methods and means employed for the same objective

is made very often.

It seems reasonable to state that the more independent the employed methods

and means are from each other, the more reliable are the inferences from the

comparison of the corresponding results.

Considering the case of geometric and dynamic satellite geodesy, there

appear to be problems which may be treated with methods of either one of the

two branches. One example is the determination of the equatorial radius of the

earth.

In this and analogous cases, one branch serves the other better,when the

results rely as much as possible upon the principles of the branch within which

they were obtained. Consequently geometric satellite geodesy problems should



be treated in such a way that dynamic principles involvement is avoided as

much as possible.

It is illuminating to trace back to the fundamental principles upon which

the geometric satellite geodesy is founded.

The bodies of the earth and the satellite are considered in continuous

motion in space. Their motions are not independent from each other.but never-

theless we do not know tl.c exact relationship between them because of dis-

turbing factors of not well known effects. Geometric satellite geodesy wants

to ignore any knowledge of the relative motion of the satellite with respect to

the earth,and considers the satellite at certain discrete moments as a target

point in space. Instead of the:bodies of the earth and the satellite being in con-

tinuous motion, now we have only the solid earth in continuous motion and a set

of discrete points Qlf Qz, ... Qn corresponding to the satellite positions at

times ti,- ts, . i. tn.

One should look at the problem as following. At time ^ the satellite is

at the point Qt while the solid earth has a unique relative position Ej with respect

to Qj. This is an event which is given the designation fE l f Qi/tj].

If there exists a means to snap, so to say, an event \'Ei,Q.i/ti'\ in such a way that the

relative position of Qr with respect to the solid earth may be recovered, then one

says that the point Qt may be tied to the solid earth. Having the points Qt, Q2, ...

Qn tied to the solid earth we may consider the solid which comprises the solid earth

and the finite set of points Qi» Q2, ... Qn. Let this solid be called extended field

of geometric satellite geodesy. The. field of the earth-tied geometric geodesy is

defined on the set of points of the solid earth with operations the angle and distance

measurements. The field of geometric satellite geodesy is an extension, so to say,

of the field of the earth-tied geometric geodesy with the same operations, i. e., the

angle and distance measurements. Problems which could not be solved in the

field of the earth-tied geometric geodesy are solved in the field of geometric

satellite geodesy. This is a point where one is tempted to recall in mind the

-analogy with the algebraic fields. No matter how much apart in nature the two



cases are, one cannot deny the analogy of the above geodetic case with that of

the fields of real and complex numbers. For example, the equation x2 + 1 = 0

does not have any solution in the field of real numbers, but it does have in

the field of complex numbers, which is obtained from the former after the ad-

junction of the element i = V-l. If nothing else this analogy hints some beauty in

formulation, deeper understanding and broad perception of the situation,gained

when the concrete structures of the specific problem in question are identified

with the corresponding abstract mathematical structures.

A method of solution of a problem in geometric satellite geodesy might be

considered, just for description purposes, as anticipating two things: (1) the

recovery of the relative positions of the extension-points with respect to the

solid earth, and (2) the solution of the problem itself. These two things are done

together in a unified way; however, this remark is of importance for the formula-

tion of the problem.

The recovery of the extension point Ql of the event ^Eit C^/tjlis achieved

by performing simultaneous observations in a certain proper mode from a number

of ground stations. Depending upon the observational mode and the problem to be

solved, there exists a minimum for the number of participating stations at each

event, and the number of events needed for a unique solution of the problem.

Geometric satellite geodesy has at its disposition today three basically

different observational modes:

(a) the optical observations mode,

(b) the range observations mode, and

(c) the range difference observations mode.

The problems of geometric satellite geodesy usually consist in determining the

cartesian coordinates of a set of ground stations. It might happen some of them

to be of known position. In this case the problem is easier than the problem

where all the stations are of unkown position. Geometric satellite geodesy

methods provide solutions to the general problem where all the stations are

considered of unknown position. Geometrically speaking all the observational



modes are equivalent to each other with respect to that problem.

In the optical observations mode each participating station Pt at an

event TEt Qj/tj] observes quantities that are geometrically equivalent to the

directional cosines of the direction PtQi with respect to a coordinate system

which must be connected with the solid earth. It should be explained here that

the coordinate system is considered connected with the solid earth either when

it is tied to the solid earth, or when it is not tied but the relative motion is con-

sidered known. Here and throughout this work the employed coordinate

system is considered tied to the solid earth.

The problem to be solved is the determination of the cartesian coordinates

of the participating stations. The questions to be answered in the following

sections are:

(a) What information do the observations alone (without the introduction of

additional data) provide about the configuration of the stations and what are actually

the quantities to be adjusted?

(b) What additional data are needed to be introduced in order to determine

the coordinates of the stations? Are these additional elements necessary during

the adjustment?

4



2. THE CASE OF TWO OBSERVING STATIONS

2.1 Geometric Analysis

As it has been stressed earlier each method of geometric satellite

geodesy must anticipate observations for the recovery of the extension points

(satellite position points) on the one hand and the estimation of the unknowns of

the problem on the other.

Since two intersecting

directions determine a point

it is concluded that in the

optical observations mode

the minimum number of

participating stations at

each event is two

(at least for the

tying of the extension

points Qt). It will be . . ^

examined presently X
Fig. 1

Fig. 2

whether that information at each event is enough to solve the posed problem.

Let P\ and P2

be two ground stations

which observe simul-

taneously at the instances

ftj "1 = |"ti, tg, ' . . . , tp] the

satellite which at these

instances is at the points

fQj] = rQi,Q2, . . . ,QP]

respectively.

At the instant tj the stations Pl and Ps observe the point Qj and obtain

information equivalent to the directional cosines [ay, bu, cu] of the direction

. 5
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and ra2j> b2J, c^of the direction P2QJt with respect to some cartesian coordinate

system defined above.

the following notation stand for the adjacent discription:

. X j . Y j . Z j Coordinates of Qj
xi> vi» zi Coordinates of ground Station Pi

ra tj, bj j , cu] = nit Directional cosines vector of the direction PjQj, where

a, b,c correspond to the x,y, z-axes respectively.

Uj Plane defined by Qj and the two observed directions.

There appear to be three distinct views, namely

(a) the plane defined by the three points P^ P2, Qj

(b) the plane defined by the line P^ and the point Qj

(c) the plane defined by the intersecting directions PjQj and P^j which is

the above designated by TJ v

The question arises as to which one of these fits the actual situation in this

problem. It is not difficult to single out the last one. As a matter of fact there

are two observed directions toward the point Qj. Although the observations are

made from Pr and P2 the station position is not specified on the respective directions.

Thus one may not consider the points Plt P2 or the line PiPg for the definition

of the plane. There remains only ir'j and let it be called fundamental simplex of

the optical observation mode.

The equation of this fundamental simplex is that of a plane which passes from

a point QjfXj, Y j .Z j ] and is parallel to two vectors m\ = ra^b^c^] and in^ = ra2J,

bsi.Cail. That is

au t»u cu = 0, (1)
aai bai csj

or in normal form

ttjx + Sjy + y j z + 6j = 0, (2)



where

(3)

'ft = (4)

?U b ' l

(5)

and

.5.,.

'23.

*J Yj Zj

a,, bl

b3

(6)

Suppose that index j goes over the values 1 ,2, . . . , p. Then there is a set of

p planes 7fy (j = 1,2,. . . ,p). Notice that each of these planes is defined independently

from the others. Any pair of these planes uniquely defines an undirected line.

There exist C| = P(p- l)/2 such lines.

Consider any two from the planes trja, say j = j and j = k, i. e.,

and

ir vkz

= 0

6k = 0.

(7)

(8)

Let ijic be the line of intersection of these two planes and^a jk, b3k, cjk its

direction cosines. Now the following theorem of analytic geometry will be proved.

Theorem The direction cosines of the line of intersection of two intersecting

planes are proportional to the two-rowed minors of the coefficient matrix of the

equations of the two planes, taken alternately with the plus and the minus signs.

Proof. Consider any two points PL and P2 of the line ljk of intersection. Then



- 0, and 5 - 0.

or

and

But

and then

- x2) + j3j(yi - ya) + Vj(Zi - z2) = 0

= 0.- x2) + j3k(y1 - y2)

xt -
a,v

- Zg

=' 0

o k a j k .+ .Skbj,, + ykcjk = 0

or

By Cramer's rule the last system yields:

Ac c.k and b,k = _

or

a,v

p ft

k ftc

J^
X,v (9)

Q.E.D.

It is of interest to find the value of

Equation (9) yields:



ft <
*Jk

or

\)k
ft ft (10)

a,, Ok

Therefore the direction cosines of LJk are completely defined from the two planes,

provided they intersect.

As it was mentioned before there exist C| = p(p - l)/2 such intersection

lines ljlc. The adjustment problem becomes obvious: What is the line t best

fitting the p(p-l)/2 lines ^? Statistically speaking, this is a regression

problem where all the components of the position vector of each "point" are

subject to error ([22] pp. 186-194).

The question springs up as to which quantity one should apply the least

squares optimum criterion in such a regression problem? There exists a uniquely

defined quantity between any two lines, namely their shortest distance which is

along their common perpendicular; but this is a length, and there exists no length

in the problem.

The observations are angular quantities that means absolute invariants for the

metric geometry and an adjustment of purely absolute invariants through relative

ones, as the "length" is, would be considered a spoiled one. It seems reasonable

to keep an adjustment as "pure" as possible. Therefore by principle the introduction

of any "length" is excluded here. The writer drafts here the principle of duality, and

prefers to go back enough into the fundamentals of geometry to found the adjust-

ment to be employed for this problem.

The following subsection is devoted to the application of that principle to the

problem in question, i.e., the best fitting line to a given set of lines. The result-

ing adjustment drawn through the duality principle will be called dual adjustment.



2.2 Dual Adjustment

2.21 The Duality Principle

A refresher introduction of the duality principle stressing the points that

the problem in question needs more, is set forth now. Duality is not a theorem

but concerns theorems. As any other principle in mathematics, duality principle

belongs to the jurisdiction of "metamathematics. " For wider comprehension of

the concept, it will be given from two instructively different standpoints:

(1) that.of synthetic geometry which studies figures without employing formulas,

and (2) that of analytic geometry which establishes a correspondence between

the elements of a figure (whatever they are considered) and the elements of a set

called coordinates, and studies geometry through formulas between the coordi-

nates corresponding to geometric relations. The intrinsic discussion will be

within the latter point of view.

Duality in Synthetic Geometry.

Each geometric figure may be considered as an assemblage of elements, i. e.,

"units" from which the figure may be constructed in some way. For example a

plane-ellipse might be considered as the aggregate of points with which one of

them moving along the ellipse succesively coincides. But equally well that plane-

ellipse might be considered the envelope of the coplanar tangents at each of its

points. Thus the same figure has been generated by using two different elements,

i.e., the point and the unlimited line in the plane of the ellipse. This is the case

for any plane figure. Analogously in space each figure may be considered as

generated either from a moving point or from a moving plane. It is this double way of

viewing a figure being generated on which the principle of geometric duality is based.

It was Poncelet, who first enunciated the principle of duality, which in the

case of the plane is:

Any theorem about properties of position of plane figures is
accompanied by the so-called dual one, which has the words "point"
and "line" mutually interchanged. For example the dual statement of
"three points in a plane define a triangle", is "three lines in a plane
define a triangle. "

The duality principle in space is:

10



Any theorem about properties of position of figures in space is
accompanied by its dual one which has the words "point" and "plane"
mutually interchanged, while the word "line" in place. For example
the dual statement of "three not collinear points define a plane, "
is "three not coaxial planes define a point. "

In the above statements of duality there is no mention of the so-called mass

relations, i.e., those which include distance angle, area, etc. In fact, the

duality principle was introduced within the frame of projective geometry at a

time when it was unknown how to deduce metric geometry from projective

geometry. * The Cayley's principle that metric and affine geometry can be con-

sidered special cases of projective geometry made possible the extension of

the duality principle over the mass-relations of metric geometry. This is the

key for the solution of the problem in question. The analytic character of this

problem naturally turns the discussion into the field of analytic geometry.

However, the fact that the whole deal is in the three-dimensional geometric space,

that means within visualization, helps somehow against unrealistic analytical

representations.

While in synthetic geometry duality is based on the double way of viewing

the geometrical figure being generated, in analytic geometry duality is based on

the double interpretation of the formula that stands for a figure or its analytical

representation with respect to a coordinate system introduced beforehand.

Duality in analytic geometry is extended in a unified way to spaces of any

dimension. However, this discussion need not go beyond three-dimensional

space. Some representative examples will now illustrate the principle.

For the duality in plane consider the equation of a straight line in the plane with

respect to a cartesian coordinate system, (orthogonal or oblique) i.e. ,

ax + by + c = 0 (11)

* The English geometer Cayley in 1859 presented a way to deduce affine and metric
geometry from projective geometry.

11



In homogeneous coordinates xlt x8, x3 related to x and y through the relations

x = —i and y = —2 , (x3 ± 0)

equations (11) may be written as

ax! + bx2 + cx3 = 0, (11)

The last relation is a homogeneous linear equation with respect to xl5 x2, x3 and

the same holds with respect to a,b,c. One could say that the relation is symmetric

with respect to the triples {x^, x2, x3| and/a, b, c} .

Now to what extent are the a, b, c, conversely determined by the

straight line ? if one compares (11)'with, say,

H'X! + bx2 + c x3 = 0 (11)"

under the assumption that they represent the same straight line one has, considering

the linear system (11)'and (11)", that *

rank
a, b, c

' i 'a, b, c

which implies

a = Xa, b = Xb', c •= Xc'. (12)

Consequently, the quantities a,b,c are determined by the straight line up to a common

constant of proportionality.

Similarly each point determines xlt x2, x3 up to a common factor of pro-

portionality. Indeed, if {x/, x2', x3'j represents the same point with {xlf x2, x3

whose non-homogeneous coordinates are x and y then

X i • Xo X
—l,, y = —2 = —
x3 x3 Xg

* Since ra, b, c] and Fa , b , c ] are two non-vanishing linearly dependent vectors,
each is a multiple of the other.

12



or equivalently if x3 = fixg, then x^ - x • Xg = xjixg' = u(xx^) = jix^ and
xs '= y • Xg •= y > fix,,' = u(yx3') = uxg, i. e. ,

(13)

The important fact here is that one can associate coordinates to the straight

line of the plane in the same way as with the points of the plane. Consequently

each triple £, TJ, £ may be interpreted either as a point or as a straight line

of the reference plane. Now, all the theorems that state anything about the

points of the reference plane, about the aggregate of such points, and about the

relations among them are nothing but statements about triples £,T],H , the

aggregate of such triples and algebraic relations among them. But the very same

triples may be interpreted either as points or lines of the reference plane.

Two statements, one being expressed in point coordinates and dealing with

points, the other in straight line coordinates and dealing with straight lines

correspond exactly to each other and are called dual statements. Analogously

"point" and "line" are called dual elements in plane. As one realizes, dual

statements are different interpretations of one and the same algebraic result.

In order to have a geometrical visualization of this example, that synthetic

geometry would provide, one could proceed this way: Keep the straight line
3. C

constant in the plane (i.e., — = Of = constant and — = |3 = constant) and let the
b b

point I x = — *v y = — 2 ; varying. Then equation (11)' represents the range of
I X3 'J

I
points of the line. By keeping the point 'ix '= , • y - \ constant in the plane,

v- xs xaJ

and having the straight line — - a., — = j3 (-varying the very same equation (11)'
I 3, 3. J

represents the flat pencil of lines through the point x = — l, y = — £l .
• . - • . . . . . . ' . ' . . X3 X3-'

For the duality in three-dimensional space consider the equation of a plane,

say, ' ' . ; ' - . •

ax + j3y + yz + 6 = 0, (14)

13



or in homogeneous point coordinates xt, x2, x3, x4 irelated to the non-homogeneous

x, y , z through the relations

0)

ax t ' + .0x g + yxg + 5 X4 = 0. (14)'

Relation (14)'is a linear homogeneous equation with respect to xlf x2, x3,

x4 and the same holds with respect to a, 0, y, 6. • . .

In the following, the same steps which were followed for the equation of a straight

line in a plane above are repeated. In fact, both of these cases are special cases of a

general theory about hyperplane coordinates of a general projective space. Under

the general theory, the commonly conceived planes are the "hyperplanes" of the

three-dimensional projective space and the straight lines are the "hyperplanes"

of the two-dimensional projective space. Nevertheless the same steps are re-

peated, for this is the space (i.e., the three-dimensional projective space) to which

the problem in question belongs.

First, the question: to what extent are «, 0, v, 6, conversely deter-

mined by the plane ? To answer this question equation (14)' is compared with, say,

OX! + j3'x2 + VX3 + 6X4 = 0 (14)"

under the assumption that they represent the same plane. Then

"a 0 y' . 5"
rank

jy, 0', v', 5'

since the intersection of (14)'and (14)" is just the plane itself, that means of

two dimensions, and consequently these planes are linearly dependent. Therefore,

there exists X/ 0 such that

a. = \ct, 0 = . X 0 ' , y = Xv', 6 = X6'. (15)

Ah alternative procedure is to write

14



J3x2 + vxg '•+ 6x4).-'X(ax r + )3x2 + yx3 + 6x4) = 0

o r • • . ' - . - . '

(a- X.a')X! + 0- X#')x3 + (v- X-/)x3 + (6--X6')X4 = 0, (16)

for the linear dependence of the planes; then from the fact that (16) must be

identically satisfied, (15) follows. Consequently, the a, (3, y, 6 are determined

by the plane up to a common constant of proportionality.

Similarly each point with non-homogeneous coordinates x, y, z determines

xlt x2, x3, x4 up to a common constant of proportionality through the relations

X i X^ Xo
— A lr — ia . TJ — i3~ » y r » z --

X4 X4 X*

Indeed if x/, xa', x3', x4' represents the same point with xlf x2, xa, x^t then

x, x/ Xa x2" Xg Xg^
x ._ __L = -j.f,f y - —a = -*. ̂  z = -a. = -i. ?

X4 XA X^ X^ X^ X^

or, by putting x* - /ix^ it is obtained

' ' X 2 = /HX3', X 3 = /IX3', X ^ = /JXi'. (17)

Thus, one can associate coordinates to the plane in the same way as with

the points in space. * Consequently each quadruple £, • rj, C, T may be inter-

preted either as a point or as a plane. This is the point where duality principle

in space springs up. For, all the theorems that state anything about points in

space, about aggregate of such points, and about relations among them are nothing

but statements about homogeneous quadruples £ , r\, C, r , aggregate of such

quadruples, and algebraic relations among them. But the very same quadruples

niay be interpreted either as points or planes. Two statements, one being expressed

in point coordinates and dealing with points, the other in plane coordinates and

dealing with planes are called dual statements.

* Here by space it is meant the three-dimensional projective space. The adjective
projective has been dropped to avoid confusion for some readers.

15



Again one notices that, dual statements are different interpretations of

one and the same algebraic result. The above example exhibited that "point"

and "plane" are dual notions in space. No mention was made about the third

fundamental element* of space, the straight line. But the dual statements

"two not-coincident points define a line"

"two not-coincident planes define a line"

show clearly that "straight line" is a self-dual notion in space.

After the above general introduction of the duality principle, one has all

that is necessary to formulate the problem in a way that turns out to be very

fruitful. The following paragraph is devoted to this formulation and constitutes

the key for the adjustment problem.

2.22 Formulation of the Problem through the Duality Principle

The geometric analysis of the optical observations mode from two

observing stations (section 2.1) showed that the adjustment problem

amounts to that of determining the best fitting straight line of a given set of

straight lines in space. Each straight line of the set to be fitted is the intersection

of a pair of planes from a finite set of planes. Therefore the adjustment problem

may be stated: What is the best line (in some respect) through a set of planes ?

Instead of attacking this problem directly, it is easier to consider its dual one,

which is a two-dimensional problem. The formulation of the dual problem is obtained

by interchanging the words "point" and "plane" and leaving the word "line" in place.

Thus the enunciation of the dual problem is: What is the best line (in some respect)

through a set of points? This is a problem in two dimensions (see section

2, 21), and its analysis occupies a first place in regression analysis. The

optimum criterion for the "best" will be that of least squares. What is needed

from this problem is the procedure of solution and not the solution itself.

*The characterization fundamental element for "point", "plane" and "straight line",
does not have any geometric justification. It is given on intuitive grounds only;
for there are other "elements" with equal geometrical justification.

16



Therefore, the solution procedure of the two-dimensional dual problem will be

sketched first, and then it will be translated through duality for the problem in

question. The problem of fitting a straight line to a set of points in a plane

depends upon how the coordinates of the points are treated in the adjustment,

from a statistical point of view. Thus there exist two cases:

(i) Only one of the coordinates of each point (either x or y) may be subject to

error, and

(ii) both of the coordinates may be subject to error.

In the first case, one obtains either the regression line of y's and x's (when

only y's may be subject to error) or the regression line of x's on y's (when only

x's may be subject to error).

In the second case, under some assumptions, there exists a unique regression

line. The case of interest here is the second one. As it is very well known, the

regression line in this case results from the minimum of the sum of the squares of

the distances of the points from the line to be fitted, provided the two coordinates

(x and y) are given equal weights*. If the coordinates x and y are given equal

weights, then the line of the observed and adjusted point is perpendicular to the

fitting line. It is supposed that this is the case here.

X
Fig. 3 Fig. 4

*If the coordinates x and y of a point P are not given equal weights, then the line
connecting the observed and adjusted points is not perpendicular to the fitting line.
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'i(xi.yi)ke a set of points in a plane and (e) the least-squares line through them

(Fig. 3). If P01 is the adjusted point of Pt, then (FtP^) .1. (e), and the least-squares

criterion is S df = min.

Nowlet(7rj)be asetofplanes in space, and (£) the least-squares line through them

(Fig. 4). Then duality principle establishes the following correspondence between the

elements of Figs. 3 and 4.

<«)'•'•—* (0
POI — *" HOI

(€ ) .L (P0iPi) —-* (I) i(4).. .

Let D(.ir0i,.'nr1)be a symbol standing for a concept of "distance" between the planes ir01and

rij. Then the least-squares criterion L df = min. for points is translated into

S D8(7rOI,7r) = min. for planes. The quest! on now arises as to what is the "distance"

between two planes. One might think of the angle between the planes. At least intuitively

angle is a suitable measure here, but there are many ways to measure aquantity, which

are equivalent in some respect. Therefore, it is not hopeless to search for a suitable

convenient measure of the "distance"betweentwoplanes. This is the target the

following subsections aim at.

2.23 The Euclidean Geometry

The problem in question falls within the content of the three-dimensional

Euclidean geometry. Although the Euclidean space is intuitively appealing, the re exist

some questions which are of importance not only theoretically, but also from the

point of view of the applications.

It is not the purpose of this work to go over the foundation of the Euclidean

geometry. However, trying to define an appropriate metric for the adjustment

problem as set up above, it is inevitable to face the following question: What is con-

sidered a legitimate metric in Euclidean geometry and how is one to determine the

totality of these metrics? This question does touch the foundation of Euclidean geometry.

A rigorous presentation entails the parallel exposition of non-Euclidean geometries in the

contentof which Euclidean geometry is a specialcase. In orderto reach the problem's

goal without the employment of non-Euclidean geometries, for that would take the
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discussion top far, a conventional way will be followed, where rigorousness will be

guaranteed by recalling theorems of the general theory.

In any system of geometry the existence of some fundamental elements, which

constitute the objects of the operations of the geometry, is assumed. Different

kinds of geometry arise considering different fundamental elements or by defining

them in different ways. From this point of view in Euclidean geometry the existence

of two objects is assumed:

(a) the generating element (either point, or straight line, or plane, or some

other configuration of equal justification), and

(b) the distance between the generating elements.

Of course these are only the objects. In order to construct a geometry a certain set

of axioms is needed upon which the structure of the geometry will be based. If now

someone takes the point as the generating element and the distance between two

points in the commonly known sense and adopts the set of axioms of Euclid, the

point-Euclidean geometry is obtained. If instead of the point, one takes the straight

line or the plane as the generating element, one obtains equally justified geometries:

the line-Euclidean geometry or the plane-Euclidean geometry, respectively.

Geometries different from the Euclidean may be obtained either when the

distance is defined in a different way, but equally justified (in the sense that a

self-consistent geometric structure* may be built by using that), or when there

exist different, equally justified sets of axioms. The latter case is that of non-

Euclidean geometries, which arose by disputing Euclid's fifth axiom, the so-called

parallel axiom**.

From the above point of view, geometry seems to possess no organic

systematizatipn. This, however, is not the case. Analytic representations in

geometry appeared to be very fruitful and enabled geometers to develop geometry

in a systematic way as a unified structure.

*One may recall here as an example the Minkowskian geometry versus Euclidean
(see [11], p. 133).

**Some geometers distinguish between axiom and postulate, the former being a
simple fact of logic while the latter is about space perception.
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It was Klein's ingenious idea to introduce the notion of "motion" of figures

in geometry which has provided the best systematization of geometry so far.

Klein's view of geometry is simple, elegant and f r u i t f u l , and it will be adopted

here.

In analytic geometry one represents the various geometric figures in terms

of coordinates. For example, one thinks of the totality of points in the usual space

as represented by the totality of triples x ,y , z , i.e. , by their coordinates with

respect to some coordinate system. To every transformation of points in space

there corresponds a certain transformation of their coordinates. The converse is

not true. That is, not every analytic relation between coordinates corresponds to

a geometric transformation. In other words, each system in geometry (or each

"geometry" as it is usually said) possesses a well-defined group of motions, which

can be represented analytically (in terms of coordinates). One defines then the

geometry as the theory of the properties of the configurations which remain un-

changed under those motions. In this light, Euclidean geometry is defined as the

geometry which studies those relations between the coordinates, which remain

unchanged by the linear substitutions of coordinates corresponding to the following

motions:

parallel displacements,

rotations about the origin,

reflections about the origin, and

similarity transformations with the origin as center.

These substitutions are linear and constitute a group of transformations, the so-

called principal group* of transformations. For a figure to remain unchanged

under these "motions" means that it is "moved" as a solid in space; that in turn

implies distance and angle preservation.

In the principal group, the motions involve six parameters, to which one must

add one more parameter for the change in unit length (scale), so that altogether

*This set of transformations constitute a group, for (i) the product of any two of
them belongs to that set, (ii) it comprises the identity transformation and each
transformation has its inverse one.
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the principal group needs seven parameters to be defined completely.

Let this .group be designated by G7.

Gooilesists are very f a m i l i a r with this group. In each geometric adjust-

ment in geodesy, the conditions and the constraints involved arc dictated by the

principal group as it is considered in connection with the geometrical configura-

tion and the coordinate system of that adjustment.

2.24 The Euclidean Metric

Consider the three-dimensional geometric space, * as the set either of its

^points or its straight lines, or its planes. Let Eg, Eg-, Eg77 be the designations

'for these three sets respectively. These are the three sets of interest of the

problem in question. As it was shown earlier (while discussing the duality

principle) one may introduce a coordinate system, and establish a correspondence

between the elements of the sets Eg, Eg, E^ and the coordinates. Specifically

there was established the correspondence of

points with the quadruples Txj, xs, x3,

planes with the quadruples fa, Q. y, 5], and

lines with the pairs of points or planes,

It was said also, that each point determines the quadruple I"xl,Xg,x3,x4] up to a

common constant of proportionality, and similarly each plane determines the

quadruple fa, j3, V, 61 up to a common constant of proportionality. That is to

designate

Fx^Xs.Xg.x^ = FXxlt Xx2, Xxg, Xx4] and

• ' . . ' • ' f a , J3 , v , 6 ] - TXa, t f , Xv , X6].

Remark. If x4 ^ 0, one may write

x = = t y = = z =
X4 Xx4' X4 Xx4* x4 Xx4

*This is the empirically conceived three-dimensional space.
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But what does the condition x4 ^ 0 really mean? One can easily answer the

question by taking x4-»0. Then x -»°°, y->°°and z-»co. So the condition x^ ̂  0

excludes the points at infinity. Since the configuration of the ground stations and

the satellite positions is considered of finite extension, one can exclude the

points at infinity without any consequences for the problem. When x4 ^ 0 the

convenient value x4 = 1 is usually chosen, and the quadruples rx!,x2, x3,1] are

called affine coordinates. One then observes that x = xt, y = xs, z = x3. Never-

theless, Xi will be kept in the formulas for homogeneity and symmetry purposes,

and it will be always assumed in the sequel that X4 ^ 0. One might ask, whether

it is necessary to exclude the points at infinity or not. The answer is not

supposed to be given here, but anyway it is in the affirmative, for distance is

not defined at infinity.

Going back after this digression, one observes that, points and planes

have the same analytical representation. This is very important, because it

allows for simultaneous analytical treatment of both the two sets Eg and Eg77

without having to distinguish between "point" and "plane" during the analysis.

For a simultaneous analytical treatment of the sets Eg and E^, a general set E

is introduced, which designates the set of any Euclidean space to be defined

below,

Having the non-empty set E, the notion of distance between the elements

of the set naturally suggests itself. The non-empty set E equipped with a suitable

concept of distance, (provided there exists a suitable one), is called Euclidean

space, But what does one mean by distance, and what does this notion render ?

In the set E, a certain type of convergence is defined for the elements of the set.

For example, in the sets Eg and E£ the following types of convergence are defined

(see Figs. 5 and 6). Let rp0, plf . . . , plt ... ] be a sequence of points in Eg.

Then one says that this sequence converges to the point P, if the representations

of the points P^x^ ylt Zj], i - 0, 1,..., i , . . . , converge to the representation of

the point Prx.y.z], i.e.,
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TXO.X!, ... ,xv>
: ...;]» x

. fyo.yi , ' . i . ' - .yi , .;;. ]"'.-» y
fzo.Z!, . . . . j z l t . . . ] - > . z

Fig. 5 Fig. 6

Similarly, if TTO, TTi, . . . , 7^, . . . is a sequence of planes in Ef, then one says that it

converges to the plane ir, if the representations of the planes irjcti, j8t, Vi, 6il, i = 0, 1,

. . . , i, .-. . , converge to the representation of the plane -ufa, ^, v, 6], i. e. ,

. .. '•••; ^Vo, Vi, .'.'. , 'V l t ... 1 •-». V ;

r/50, 6ii . . / . . O t , ... 1 -* 6 .

Note: The above Figs. 5 and 6 illustrate two special types of convergence in

£3 and Ej respectively, which are the only ones of interest in the problem in

question. Fig. 5 illustrates the convergence of the sequence of the points

23



fPo, PI, ... , Pt, ... 1 to the point P along the straight line of the points P0

and P. In other words it illustrates the convergence of the sequence of the points

which is generated by P0, while it is approaching P along the straight line

(P0, P). Fig. 6 illustrates the convergence of the sequence of the planes

("TO, ff i»- • •» 'Ti> • • - . " ] » which is generated by *r0.while it is "approaching" the

plane IT, by turning around the line (-1) of the intersection of the planes TO. and TV

Now if there exists a function d of the coordinates of the elements of the set E

which converges in an equivalent way to the convergence already defined in E,

then d is called distance or metric. The set E along with the metric d, constitute

a metric space designated by (E,d), which is the so called Euclidean space.

The question faced now is: does a suitable metric d exist in the set E such

that convergence in the metric sense is equivalent to convergence in the above

defined sense in the set E ? It is reminded that E stands for either of the sets

£3 and E.^ and since they have the same analytical representation their metrics

(as functions of coordinates) will be of the same analytical expression interpreted

in a dual way.
" ; . ' • ' . " • • . " • - ' " ' \ . ' • ' - ' . - • • ' . - . .

At this point a result of the general theory about the foundation of Euclidean

geometry is recalled, in accordance with what was said at the beginning, about the

discussion of this topic. Thus the general foundation theory of Euclidean geometry

proves: The general expression of a Euclidean metric d(P0, P) in three-dimension

Euclidean space is the non-negative real function

d(P0,P) = I <
• l ,k=l

.**•
(18)

(X°.X4)2

where [x°, Xg, x£, x4]and [x^ Xj, x3, x4]are tne analytic representation of tne

elements P0 and P. .One may think of P0 and P either as points, or planes, or

any other equally justifiable configuration, with the same analytical representation.

In non-homogeneous coordinates, expression (18) has the form
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d(p0,p) =
t ,k=l

(18)

which is obtained by choosing for the non-vanishing x^ the value of one.

Although (18) 'is simpler than (18), the latter is more useful for the problem in

question. Before specifying the expression (18) for the cases of interest here,

(points and planes), a few general remarks about the Euclidean metrics are in

order:

(a) The square of the Euclidean metric d(P0, P) is a positive definite quadratic

form. Expression (18) may be written in matrix notation as follows.

d8(P0,P) ='

Y° yAr AJ

4 X4
*

X. Xjf

V° YX4 X4
XPOP (19)

i ,k=l x4)
3

where

gll glS

gai gas

g33

G - GT (20)

and

v° vX2 Xg

• X4

0. (21)

In the case of non-homogeneous coordinates, (21) has the form

• • = ' • [ (x° - x), (y° - y), (z° - z)] . (21)'

One says that the quadratic form d8(P0, P) = XTGX is positive definite, when

XTG X > 0 for every X ^. 0. The same can be expressed in terms of the

matrix G. Thus XTGX is positive definite when G is positive definite, meaning that

it has positive eigenvalues. Since G is a real symmetric matrix, if Xl, Xs, Xa
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are its eigenvalues with plt .ps, pa the corresponding normalized* eigenvectors, then

PTGP • = A = diagUi, X8, Aa); (22)

where P = [p t, pjj, P3] is the matrix whose columns are the normalized eigen-

vectors of G, and A is a diagonal matrix whose diagonal elements are the

eigenvalues of G. It is a well-known result that P is an orthogonal matrix, and

pTp = ppT = L Also pT - P'1. • / • • " ' " . • •

(b) In the previous subsection it was said that the motions of Euclidean geometry

preserve the distances and angles. The converse is also true. Having now both

of these measures (distances and angles) expressed analytically under one expression

d(P0, P), one can state that the motions of Euclidean geometry are those which

preserve the value of d(P0, P) for any pair of elements (P0, P), provided none of

P0 and P is at infinity. Let S be a matrix of a Euclidean motion. It is interesting

to find out what kind of matrix S is. Consider the "distance" d(P0, P). Under the

motion S, d(P0, P) is by definition an invariant quantity. If YPP is the new representa-

tion vector, into which XPP is transformed under S, one has

YPoP = sxPoP, . • : • . ' . ' , : ; • ; : : : : . . ' • ; • - . (23)
. Then' . ' " • ; ' ; . ; - ' • ' • ' • - ; ( - . • ; • ' • • , : ; : • • ' . ; . ' • ; . . _ - . ' . : • •

d(P0,P) _= X

where

M =

The invariant character of d(P0,P) entails

' • ; • M - - G - ; " _ . : ' ' / . V ' . , . . ' " ' • ' . ; - " :

o r • . . . • ; - • . ' - ' • . ' • • ' • • - • . •

(S^G(Sl) = G

o r ' ' . . ' • • : : . ' • / '

G '= STGS. (24)

*If pf, Pa, Pa* are the eigenvectors of G, then the normalized ones are

p* p|Pl = TRIP p2 = Mi? P3 =
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(c) One point of importance here is the following. In the case of a general metric

space, analysis defines a metric d on a set E* as a real function of ordered pairs

of elements of E which satisfies the following three conditions:

(i) d(elf ez) s 0, and d(elf ea).= 0 if Ci = e3;

•("). d(elt eg) = d(ea, e^, (symmetry);

(iii) d(el, eg) ^ dfe^ 63) + d(e3, eg), (the triangle inequality).

The above given Euclidean metric obviously satisfies the conditions of this

definition. Although on one and the same set E, one may define many metrics in

the above sense-, each one renders different metrization of E. As it was said,

the introduction of a metric follows the definition of a certain type of convergence

for the sequences of the elements of the set. It is the type of convergence defined

on the set which constitutes the criterion for the suitability of a metric.

The Euclidean metric given by (18) is one of the so-called projective metrics.

The metrics of all the metric geometries derived from projective geometry are

characterized as projective metrics. Thus, the use in some problem of a metric

whose form is not that of (18) means that the problem ;is not treated within the

Euclidean geometry goemetry. For example, the metric

max
1=1,8.3

X,

, (x°, 0),

(x°4 x4)

or for x° = x4 = 1

•= max |x° -x t |
1=1, » 3

(25)

does satisfy the conditions of the above definition of a general metric, but it is not

a projective metric. The same with the metric

da(P0,P) =
V° Vxl xl

1=1
-<-, (x°, x4

*Here E stands for an abstract set.
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or for x£ = x4 = 1
3.

d8(P0,P) = (26)
1=1

(d) In this note the corresponding -general expression for a Euclidean metric in

two dimensions will be given. This can be done immediately by omitting the

coordinate x^ and considering the remaining coordinates XL Xg, Xg as homogeneous

in two dimensions, i.e.,

• -
0.

Then

d(P0, P) =

or in matrix notation

ds(P0,P) '= Xjo

where

• • :_ '
•

3

) Sl.k

0
Xj Xt

Xg Xg -.

Q

Xjj Xjj

Xg Xg

/V° . v V» • •I V— 1 • I*"* •*v*5/ "f K— 1 \ O *3'

2

t

gll
— /->T.- G8,

and
x° Xl ir vXg Xa

xg •
0.

In non-homogeneous coordinates, (27) and (28) have the forms
* . . . . ' .

: d(P0, P) =

and

(27)

(27)

(28)

(27)*

(28)
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2.25 The Usual Euclidean Metric and Its Dual

The general expression (18) of a Euclide

d(P0,P)..=

3

'I'**'

X° X

Xt X4

x£ X

V - ' V•*»4 -^4

K ' XJS

i
• 2 • •

' (X4, 0) (29)

where [x°lf x^ x°, x4]and [xu xs, Xg, x4 ] are the analytic representations of the

elements P0 and P. At this subsection the elements P0 and P will be interpreted

either as points or planes. The matrix formulation of the above expression is

recalled also from (19), (20), and (21).

d9(P0,P) = G XPoP, (29)

G =

gll gl3 Sl3

gai gat S*3

g31 g33 g33

~"
0

xl xl
ox^ x^

, G = GT

0 -.X)
Xg 5Cg XQ X3

' 0 0
, X4 X^ , X4 X4

_ 4-x, x^ -x , x ° -x 4

(x°, 0) (30)

While discussing the principal of duality in the three-dimension protective

space, it was shown that "point" and "plane" are dual notions. It is true that the

duality principle does not hold in Euclidean geometry in general. Thus whenever

duality principle is drafted in Euclidean geometry, its validity must be demonstrated

sufficiently. That is why the preceding analysis has been placed before this point.

If in the general expression of a Euclidean metric one takes the elements P0

and P as points, then d(P0, P) renders a means of "distance"* between tne points P0

and P. If one takes P0 and P as planes, then d(P0, P) renders a means of "distance"

between the two planes. In the following, the first case will be considered first,

for it is simpler and more visual than the second, in order to find out how the

usual Euclidean metric results from the general expression (29). Then the second

*The quotation marks are justified by the fact that the word "distance" stands for
the usual Euclidean metric, which, as it is proved in the sequel, is a special case
of the above.
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case will be deployed on the first, using the duality principle as a guide, to find

out the geometrical meaning of the dual metric to the usual Euclidean metric.

Case 1. Point-Euclidean space (Eg1, d).

In this case the elements of the space are the points* of Eg, which the human

mind seems to visualize better than any other configuration. The usual Euclidean

metric, i. e., the usual expression for the distance between two points, will be

connected with the general expression of a Euclidean metric.

Let P0 and P be tvo points with Cartesian coordinates [x°lv x°s,. x|] and

[xlt xa, x3] respectively. Then the usual Euclidean metric has the form

d(P0, P) - [(xl - XL)2 + (x°s - xs)
8 + (x° - xa)3 ]*• '(31)

Introducing homogeneous coordinates, the last expression may be written

d(P0,P) = X4

or

d(P0,P) "."=•• Xp p
o

1 0 0

0 1 0

0 0 1

A-p p
0

where

Xp

V° VX3 X3

Thus the usual Euclidean metric results from the general expression of a Euclidean

metric for G = I3, i.e., when G is the identity matrix. Recalling the relation (24)

of the remark (b) which followed the general expression (18), we observe that the

matrix S of a motion in Euclidean geometry satisfies the relation

S ST '=. ST S = la (33)

* It is recalled that when an element is considered as the generating element of
the space, it is supposed to be undefined for the geometry to be constructed
with that.
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That means that S is orthogonal. Thus the motions in Euclidean geometry with

the usual Euclidean metric are analytically represented by orthogonal matrices.

Analogously, in the two-dimensional Eucl idean space,the usual Euclidean metric

results from the general expression (27) for

1 0

0 1

Case 2.

In this case the elements of the space are the planes of E3. Although they

have the same analytical representation with points, it is much more difficult to

visualize configurations of planes than of points. Therefore, duality contributes

substantially to problems with configurations of planes like the present one. The

dual metric of the usual Euclidean metric will be formed and its geometrical

meaning will be given.

LetTT0 and ff be two planes with analytical representations fofe, j30,y0, 60] and

[a, j3, y, 6] respectively. Their equations are

y0x3 + 60X4 = 0,

and (33)

+ )3x8 + 7x3 + 6x4 = 0.

Since the points at infinity are not considered in the problem (i. e., x4 ^ 0), one

could write these equations as follows:

v0x3 + 60 = 0,

and (33)'

+ yx3 + 6 = 0.

They resulted from the previous ones for x4 = 1. By taking now the elements P0 and

P in the general expression (29)' of a Euclidean metric, as the planes -rr o andff

one has

(34)
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where

T '="
TTnff

«0 a

50 6 v 60 6 60 6

6,36 606 606

(60, 5 ? 0) (35)

and G remains exactly the same, for it is independent of the given interpretation

to the representation vector Xpop. Now for

i ' . 'o d • • ' . • " .
G =.. o i o

0 0 1

relation (34) yields

)T (.n )]. (36)

This metric is a Euclidean metric, and, consequently, a projective one. It

expresses the "distance" between TTO and77 in the same way the metric d(P0, P) in

(32) expresses the distance between the points P0 and P. But what is the geometrical

meaning of saying "the plane ff"? Any comment on this question is postponed

until later. Now the geometrical meaning of d(Tr0,7T) is in order. While trying to

interpret d(ir0,Tr) geometrically, the above question will manifest itself in a

natural way.

'• ' • ' Le t ' - ' [ . . . ' • ' ; : . ' • ' ; ' ' . ' . . - : . ' • ' . . . . ' .

a n d . • • - .'': • . • ' ' . : ' . - • - ' • ' • ' . ' / • ' • . ' . . ' . '

. ' .p = [a2 + )3S-f ya]V. , •••'•-•. ' .•."• ... ' ' " . ' . .

Then the expression (35) for (ta )Vmay be written as follows.

Po P

6fl. 1
Po P

Po P

^p 5
Po P

f

^o ' ••••%.
Po P

_5a .̂
Po P

PO ' P PO ' P :PO P _

(37)
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where both terms of each fraction have been multiplied by l/(p0p). Since

is an invariant under Euclidean motions(see section 2. 23), a parallel displacement

is applied on the configuration of the two planes TTO andu such that

Po P '
This transformation, though applicable, is not very clear from the present

point of view. Therefore, another proof, purely analytical, will be given. The

proof to follow, though rigorous, is in informal language in order to be put within

the background limits already set previously.

It was shown in (section 2, 21) that each plane (TT) determines the quadruple

[a, /3, y, 6] up to a common constant of proportionality. That means that the

planes fa, j3, y, 6] and [Xa, X$, X% X6], X^ 0, which are really parallel to each

other in the Euclidean space, are considered one and the same plane in the

projective space, or as one says in formal language, they belong to the same class*.

Therefore, each one of the planes TTO and TT determines a class in the projective

space, namely, they determine the classes FXa0, Xft>, Xy0, X60] and [f*a, PR /u.y, M6]

respectively. Since the general Euclidean metric, where the metric d(7T0 ,7T ) comes

from, is a projective metric(see section 2. 24), d(<rr0,7r) is a suitable metric for

expressing the convergence of a sequence of "points" in the projective space, i. e.,

d(TT0,7T ) can be used to express the convergence of a sequence of classes.

Consequently, d(7r0,7r ) expresses the "distance" between the classes [Xofc, Xj9t>,X%,

X6j] and Fjaa, Jlj3, \xy, /i6], independently** from the values of X and JLI. Thus, that

"distance" is the same for any pair of planes from the two classes. Just for

convenience one may choose the pair of planes for which 60/po - 6/P - 1. Note

that the planes 60 = 0 and 6 = 0 are excluded from the respective classes.

The above informal proof, indicates how analysis treats some intuitively

appealing facts in Euclidean geometry. Another important thing here is the projective

character of the Euclidean metric.

*The "points" of the projective space are the classes [Xa, X|3, Xy, X6], (X ̂  0).
The class is completely determined if only one of its members is known. The
others are obtained by varying X.

**X and n keep their signs while they vary independently.
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By putting 60/ft =,. 6/p • = 1 in the expression (37) of

is obtained.

!.APo p p

Then the expression (36) of d(ira,iT ) becomes

p0

. i

), the following

(37)

(38)

Fig. 7

Consider now the two planes

7T0: a0X! + ftxg + y0Xa + 60 • = '• 0, and

TT : axv + jS^ + yjXg '+• 6 = 0,

as well as the lines

I intersection of TTO and ir

4 perpendicular to & in TTO

(39)

(40)
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£ perpendicular to •I in ir, and

77 perpendicular to n.

Without loss of generality, consider these lines being concurrent at the

point P of t. Let the following notation be introduced:

XL Xj, X-3

V V ci
Y V Y
a , b , c

a ,. b , c
T] TJ • T?

coordinates of P,

direction-cosines of t,

direction-cosines of £ ,

direction-cosines of £, and

direction-cosines of r\.

Then the equations of *0 and ^, as the planes which pass through P and are parallel

to the pairs of lines [£, L"] and •[£, -t] respectively, are

TT0:

X l -x?
ae
\

xa - x£
i.
t
\

*-•*'

C
ci

= 0, (41)

and

TT : c

c.

= 0. (42)

Comparing (39) with (41) and (40) with (42), the following is obtained:

a (43)

y = s
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xg
-s0 6 .'= -s

wnere s0 and s are constants of proportionality. Notice the presence of the point

(X?, XJJ, X§); Q is on -t, generally different from P. The following theorem is

useful at this point.

Theorem. The square of the sine of the angle between two directed lines is equal

to the sum of the squares of the two-rowed minors which can be formed from the

matrix constituted by the two sets of direction cosines of the lines.

If \JL and v are two lines with direction cosines [a , b , c ] and [a , b . c ]

respectively, the above theorem proves that

sin (JLI, v) - sin 9 :

Proof. Consider the identity

(a? + b2. + c?)(a| + bl + cf

b c
.U M

b c
V V

2

+
c a

M JU
c a

V V

3

+

a b
M V

a b
V V

(44)

v9 _

Cg 83
(45)

Applying this to the direction cosines of the lines fzand v, the following is obtained.

1 • 1 - (a a + b b + c c f =
li v \i v \i v

b c
U \L

b cv v

s c a
u w

c a
v v

s £H bi

a b
f y

But

aa +bb +cc = cos (u, v) - cos 9
|i v \i v p v .

Then the left-hand side of the last relation is sins9, and thus the theorem is proved.

By virtue of this theorem, relations (43) yield

0?+)3f+yo •= s?sin2(£,-l) = s? sin3 90° = a?, _

arid

a8 + )3a + y8 = s3 sin8 (C, 1) = s8 sin9 90° - s8.
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Thus

ft = So and p =

Relations (43) yield the normalized coordinates of the planes TTO and ir

in terms of the direction cosines of three characteristic lines (£), (£), and (£).

This representation is very useful for it offers the means to transfer from plane

to line coordinates and vice-versa.

ft

ft
(46)

Po

ft

One may introduce the last relations into (38) to express d (7 r 0 , f f ) in terms of the

directional cosines of the lines (t), (£) and (£). However, the discussion continues

at this point in plane coordinates.

The expression (38) of dz(TT0,Tr) may be written

b4 C4
\ ct

^ ^ci \
a b

• "
ai \

Of

' p ~

ff =
) p

I =
t p

\ cc
\ cl
cr ar
ct at
aC bC

at -t
•V-P VP V Yf-<v^ y\jj ^g . - -A.

• • - . . . 6v vv-.-*: ~ ac
O " \~\ f* ' - Q

*l ."l Cl \

•o2

= 1 + 1-2 yQy
PoP

or

^-^i-T;y^ ) (47)
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As it is well-known, the vectors [a0, j30,y0] and [ot, j3, y] are

perpendicular to the planes TTO and ff, respectively. But each plane has

two faces, and if [&,&, y] is pointing outward on one face of rr, then the

vector [-a, -0, -y] is pointing outward on the other face of IT.

a0

Po

A
t

'a"
3
Y

Fig. 8

Let each face of a plane be represented by the corresponding per-

pendicular vector to the plane. The the following notation is adopted.

— [0£0, A.Vo] ,
H3 '

1_
Po

= — [-a0V-A),-%]

-IT •=— [-a, -p, -y]

Therefore, when one talks about "distance" of two planes, he actually

means "distance" between two of the four faces. When the equation of a

plane is written down, the face of the plane to be considered is defined.

Consequently, that equation is for one of the faces of the plane. This

remark sounds probably trivial, but it is of importance at this point to

the advancement of the present analysis.
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Let 9 be the angle* between the vectors [Ot0, j30, y0] and [a,£,y], <-

that is the angle between the faces corresponding to these vectors. Then

one has

+ .. + . - , C O S 9 ,
Po P Po P Po P

and the relation (47) is written

0
<f(tro t ir) = 2(1 . - cos 9) =4 sin2 ~ . (48)

. • ' • " • •

This Is the "distance" between the faces [&o > £o> Vo] and [a,/3,y].

Consider now the "distance" between ; the faces [ot, /?, y] and [-o;0, -ft,, -y0]

Equation (47) gives

•, _ „, . 9.(-7T0,7T) - 2

•or

9
d2(-7r0,ir) = 2(1 +cos9) • = 4 cos2 - . (49)

• ^ . - • - • • • • .

Thus, one observes that given a face TT = [&,P, y] one may define with

the two faces of another plane ir0 two different "distances." As a special

case, one can consider the "distance" between the faces of a plane TTo;

that is

,2, ' _ " ot0(-a0 ) + A> (-&) + r (-VQ ) 0/1 . ,. .
d ( f f 0 > -ffo) = ?. 1 -'• "' Uf. -•' ruf - = 2(1 + 1) = 4 ,

Po MJ

i.e. , :

.. ' : d3^, - ff0) = 4 . ' (50)

Recapitulating the above formulas about "distances" between the faces

of two planes one has

*One may find the notion "angle" out of place in this context. However,
this discussion aims at revealing the geometrical meaning of the "distance"
between two planes, and this mixture is unavoidable.
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d(ir0 , ir) = d(-7r0, -TT) =/2(I - cos 8) ='2 I sin- |
^ ' '

d(7T0 , 7T) = d(7T0 , -1T ) = /2(1 - COS 6) = 2 \ COS" |

(51)

d(TT0 ,1To) = d(7T, ff) = 0

d(lT0, -^0) = d(7T, -7T) =2

In order to comprehend better the discussion following this point,

a geometrical (or trigonometrical) interpretation of the formulas (51) is

introduced here. Consider the cylinder with axis the line of intersection

(£•) of the planes TTO and ff and cross-section the unit circle. The cylinder

is considered of infinite length (Fig. 9).

-Tt
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Take a cross-section of the cylinder (Fig, 10). This is a

unit circle with the traces (AF) and(BC) of the planes IT and TJO , respec-

tively. Using elementary trigonometry it is obtained that:

d(7T0, IT) = d(-TTo, -7T) = 2 | sin~ | = 4 - area (OCL) - (AC)
*•* •

d(-7T0, if) '= d(7T0, -ff) = 2 I cos - I = 4 • area(OAM) = (AB)

(52)

Now, one has in his hands a very simple model in order to study the

"distances" between the faces of two planes. The four faces +n, -IT, +7r0,

-7T0 are modeled by the points A, F, C, B, respectively on the circum-

ference of the unit circle, and the "distance" between any two of the faces

is modeled by the chord joining the corresponding points. One may check

all the formulas (51) through this model. Thus

d(77b,7T) - (AC)

d(-7To,-ff) = (BE)

d(-7T0» ff) = (AB)

d(7T0, -ff) = (CF)

= (BG) =

d(ff, -ir) = (AF) = 2

and obviously

= 0

•d(ir 0 , - f f 0) = d(7T, -IT) - 2,
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Remark. One thing that should be stressed here is the linear representation of the

"distances" between the faces of planes. It should have been noticed that it is not

necessary to inverse the circular functions involved, and express the "distances"

in terms of arc.

The two different "distances" which can be defined between the faces of two

planes are not independent from each other. They are related through the relation

dz(n0, ir) + d2(-7r0. <r) = (AC)2+(AB)8 =4 (53)

Having the distances between faces of two planes, naturally springs up the question

as to whether there exists a way to treat each plane as a unit and find a unique

"distance" between two such units. That "distance" has to be a Euclidean metric

and consequently a protective metric (see section 2. 24). The above-employed

representation for the "distances" between faces of two planes (Fig. 10) shows

so clearly the existence and uniqueness in magnitude of such a "distance", that it

hardly needs any further explanation. Thus the "distance" between the planes 77 and

77o is given by the distance (AN) of A (face +77) from the hypotenuse (BC), (trace of

the plane rr0 on the plane of the cross-section). As one checks immediately the

distance of A from (BC) is equal to the distance* of F (face -77) from the same line

(BC), as well as with the distances of B (face -<n0) and C (face + Wo) from the line (AF),

(trace of the plane 77 on the plane of the cross-section). Therefore, the "distance"

between TTO and 77 is uniquely defined. Let it be called D(77o ,77). It remains to be

proved that D(TTO , 77) is an Euclidean metric. To this end, the geometrical meaning

and the connection of D(TTO , 77) with the "distances" d(f7o, 77) and d(_77o, 77) will be found

as intermediate results. From Fig. 10 one obtains

area (ABC) =£ (AC) (AB) =£ (BC) (AN).

= |.2.D(770, 7T) = D(T70,7r).

or, by recalling (52) and (51)

*What has been said for A could be repeated for D. Because of the antisymmetry of

the cross-section the discussion is given on the one half of the figure only.
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sin ~ ) (2

Thus

cos 8. \ Ul sin e

D(7T0,77) = sine

,77). d(_ir0,ir) .

(54)

(55)

and also

D(TTO, 17) = area (ABC) =

The extreme values of D(tr0 ,77) will be given here without any recourse to the

properties of sine. From (53) one concludes immediately that since the sum of

d2(770 ,77) and d2(_77o ,77) equals constantly to 4, their product becomes maximum

when d2 (770 , IT) = d2 (_tfo , 77) = 2. Thus the maximum of D2 (TTO , 77) = ~ d2 (n0 , IT) . d2

(-r70,77) is

max [D2(T70,T7)] = 1

Since D(rr0 , 77) is taken positive by definition, it can be written

max [D(770,77)] = 1 or D(ir 0 i i r )gl , - (56)

that verifies the known result sine < 1. One can verify all the known properties

of sine-

In order to be shown that D(T7077) is an Euclidean metric it is sufficient to recall

the relation (55), i.e.,

77)= d2(770,77).da(-770,77)

where d2^ ,77) and d2(_770 ,77) are Euclidean metrics, as it is known from the

preceding discussion. But it is worthwhile to put D2(770 ,77) in the general form of an

Euclidean metric (see section 2. 24, relation (18) ). One may proceed as follows:

D8 (T70 , 77) = I d2 (Tr0 , IT) . d2 (_770 , ff) - J 2(l-cos6) 2 (1+cose)

= i-cos2e

PoP
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ft
"Po

0
P

P̂o

y '
p

2
4-

or

~P0 .

f T

The last expression may be written

D3(770,TT) '= ITU

where

2

+

»o

Po

CV

T"

ft
PT

0
r

(57)

(58)

ft %
•pT "fc
f y

P P

9

^o %
Po PT

y tt
P P

J

fr. ^
a 18
p p

-| T

(59)

This shows that DS(TTO >TT) is a special case of the general expression (18) for a

Euclidean metric between points (see relation (32)). Thus, the metric D(TTO ,TT)

will be called dual metric of the usual Euclidean metric. As it was proved,

D(770, TT) renders the shortest "distance" between the planes TTO and 77 (considered

as units), in the same way as d(P0 , P) renders the shortest distance between

the points P0 and P.

The above expression (57) of TP(ir0 ,7r). is in terms of plane coordinates

actually normalized plane coordinates. Two more analytic expressions of

D^TToTr) very useful for the adjustment problem will be given here. One is in

line coordinates (directional cosines) while the other is in line and plane coordinates.

For the first, consider the lines (|) of <n0 and (|) of the 77 perpendicular to the

intersection line (4) of no and 77. Then relation (44) yields:

se On «> a» a*. b,o

Foir the second, consider again the line (§) of TTO (the same as above), and the

vector [a, /3, y], (which is perpendicular to 77). Then
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or

iol e sine,
.f. J jis[f

9BOdT

rrjCI^oritaa^iissfoilasfiH. banrrsb vJoupiisf s sJaixs erralT (iii)
/£»-! \

owj asov/isd "aoasjaib" Jasrio/ia oxit

•<n aifil.
Recapitulating the results yielded by the above discussion about the

i i
"distance" between two planes one has the following: < jeriisi = (n r 0rr)CI \I

(i) Given the equation a^ + ̂  + y»3 + 6X4 = 0;(of<a-pJahe(TT,(in}homogeneou4'tI \2

coordinates) or class [TT] of planks is, determined!, whose] repjresentatiqii vectorI j0t\ 0» i |jo 0\c j "~ io\" o U j j . :

is |Xa,X/3, Xv. X6], where XT^ Oj For X>0 the'-subclass [-fTT^is jobtained' iwhich is
! I B » i | * \" I ^ ^|

determined by one of the faces of_thje_plane.ir;..namely.,.JHeJfac_ejtn_=_La,L^; '^]-0
fT}(1 ^

,£ ^ . f- -
For X<0 the subclass [-77] is obtained whicffiis/dltermined^by^thejoiher face of tr,

namely, the face -77 = [~a, -/3, .,.s -.u

(ii) Given the equations

and

y
•^o

TT: O^-i ̂ " P^ "*" v^3 "^ 6^ — 0

of two planes 77P and ij, two classes [770] and [77] are''determined withfrepresehtation

vectors [Vc^, X/S0, Xy0, X60] and [^, ^ft, jj,v, p.6] respectively, (X, ^ 6). If

^io.nw
;ion
rfoiriw

and
2 t:;• cGo

ja.'a'xss Q39iif lie snomA
r= cose, '

is/3 ooa) msldo-fCJ teaiaJBurhs

il .s ai arsli ..lofjl 3o isiierr

the "distance" between any two members of the subclasses *"•

[+TTO] and [+TT], i.e., \, ^ >o, (with analogous definitions for tiie
,i'sbcifi riiii; 'io aiavlfif ir , f«oij3itele sil> oJ boiovab ai

"distances" d(_TT0,-TT), d(_TT0, +rr), d(+n0,_rr), etc.),

then

d(+rr0 , +TT) = d (-TTO , -rr) = /2 (1-cose) = 2

d(_TT0 , +TT) = d (+TTO , -TT) = /2(l+cose) = 2

sin:

cosr

= 0
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These are Euclidean metrics, and express "distances" between faces of two planes,

(iii) There exists a uniquely defined Euclidean metric, D(TTO , TT), which expresses

the shortest "distance" between two planes TTO and TT. The following expressions for

this metric are equivalent:

I/ D(TTO,TT) = sine

2/ D(TTO ,TT) = | .dfrr ,TT).d (_TTO ,TT),

3/ D(TTO,TT) =

-

—Po To

p *y

2 : y0 GO
y >

2 »
a° p°

o ^

~

2
1
^

4/ D(TT.TT) =

5/ D^.TT) = aeO! + bt/3 +

S_ •|

t

where [af, bf, c+] and [a.., b^, c.] are the direction cosines of the lines (£) and (£),

which lie in the planes TTO and TT respectively and are perpendicular to the intersection

line (I).

Among all these expressions the last one is of particular interest for the

adjustment problem (see section 2. 22), and it will turn out to be very convenient. As a

matter of fact, this is a linear expression with respect to a,., b^, c. and J3f. p • p »

and fits the adjustment problem as it was formulated in section 2.22. Thus the

required expression for the regression model has been found. The following subsection

is devoted to the statistical analysis of this model.
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2.26 Statistical Analysis of the Adjustment Problem ., ,,_, .,
juo amjoij. am C..B. ucj^x>A.t;^;.> .....> ig'^.j'1/ ---ml srf T ,33ml

The geometrical analysis of the optical observations mode (see section 2. 1)
erfi SB arms a adi ai isdJ 10 .asnil fiol.lf.>93'ioM' arii lo JOB ani oj eml

revealed the type of the statistical model, namely, a linear regression model.
, (q, . . . t£ ,1 ~ [) .'if aenslq lo tee. orii rfguoirlj sail ja'^j"-u« aa-i^ujiw-jasal

Although the enunciation of the adjustment problem (i. e. , what is the least-
usiiT - L ^ t j ^ t ^ B ] asriiaoo noiioairb riJiw. («,H /I) sail odJ sd Q) fcnl

squares line through a^set of planes) was crystalline about the linearity of the
TO"! anil am oi sbnoqseiioo ii ,SS.S noijose ni noiaaiioaib sriJ 0.1 gisimooo.s

problem, the analytical expression of the model was not so obvious. Being
.boi'iaites ai noiiaJrio mwraiicjo aaiBupa JassI 'gniwollol srfi dolnvv

convinced of the linearity of the problem, one was expecting a linear analytical

expression. Duality principle offe^^jj^$j{$cana^fm9(gt the suitable analytical

expression for the linear regression model. The fact that drfe knows the statistical

model does not discharge him from being obligated to discuss it stochastically

and to appraise the valTdity-ef-the statistical assumptions which accompany the
\ ^-— ---^^^ (\) \

model, undeir the conditions of the problem7~~Thts~subsection-aims at a general
^ 1 __ ___ ______ ____ __ __ : ____ JTT~ r̂~=»X

statistical; trteatmemvof, ̂ the problem. \

\\ t: \
2.26I< Statistical Model— _ _ .

\-~, ~~ - — — , \
Twol ground stations P! and P8 af^~ca-i?i5dBg__put simultaneous optical

observatibns of a "set~~o:f"saf erfite~ p^sifioiT poir3fs~Q7i

\
fj i \

uant^feiessbj: station Pt at the event [ E j . Q j | tj ](S[ee section 1) are~ '^
»«-_

equivalent \to the direction cosines^fffp^-Kb^^^Ci ^ ] of the diriection

At each evenk^wo^djir^^ip^^ which

are not independent from each ot^her, for they meet at Qj. Th'ese two

directions intersecting at Q j, determfneSa^plane rr j which is defined as

passing from Qj and being parallel to the directions PiQj and PaQj(see section

9 ~\\ Thn<3 thp^pi ift^!?)<ilSf !WTi'rf?l5fWp^^Tr'S/¥(ii}'p9® 998) (rff indftV&ndPSfl^w£j • A. 11 A 11U.Q • UliCI C 1O1 d- / O Vxlf v/1 LflCClXw D 1 \J • -^- • ^j > • • ' J f / U>U w L/v> 1J.U t* IJH* Xjr

determined from each other. One might think that since the planes TT^ are

passing through the line (Pl Ps^,J&heycJcolild be-j2Smsider.ed as^-piembers of

a pencil of planes with axis, "thet line (J^Pa). feut such a thing would

kill the problem statistically, for the pla4es,^. sosdefyiead^, arei not inde-

pendent from each other any more. Further discussion on this is post-

poned until later. These planes determine Cap = p(p - l)/2 independent
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intersection lines. The line (PXP3) is considered as the fitting straight

line to the set of the intersection lines, or that is the same as the

least-squares straight line through the set of planes TJ (j = 1, 2, ...,p).

Let (£) be the line (Pi P3) with direction cosines [a.,b ,c ]. Then

according to the discussion in section 2. 22, it corresponds to the line for

which the fallowing least squares optimum criterion is satisfied.
' . • • • • . - . • ' • p - " . . - • . • •

) pP(TToJ, TTJ) = minimum, „ (62)
'

x,+p. Xj fYj x3 +-6 jX4 =0

Fig. 11

where D(TTOJ , TT^) (see section 2. 25) is given by (61), i. e.,

= [of

One may write

Njia. + jv , (63)
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where

are the normalized coordinates of TTJ .

If (63) is written in the form

O!NJ a .+ fiNjb^ + TNIJ c^ + 0
Dj § + b 3 +\2] A ^ , (J = 1,...,P) (65)

£ 1 4

where as is known

r i 1-. 2 i 2 1 ^ / f* f* \[at + bt + ct ] = 1 , (66)

then one recognized immediately the formula for the distance of a point

with coordinates [ (iN j> ^NJ^NJ] from the plane, the perpendicular vector

of which is [a., b , cf}. This is very remarkable because the problem

in question is thus reduced to a very well-known case, namely: find the

least-squares plane through a set of points. Hamilton's presentation

of the least squares solution to this problem will be adopted here [18,19].

Let
m - [a , b^, c f], (67)

and

* , (j - 1, 2,..., p) (68)

be the coordinate vectors of the "plane" to be fitted and a typical

observed "point"* respectively. Then (65) and (66) may be written

T=

(69)

mm= 1 (70)

*The quotation marks are justified by the fact that the notions point and
plane are symbolic there.
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The equations (69) are the so-called observation equations while (70) is

an absolute constraint. As far as statistical assumptions go, it is

assumed that a N J , j8 f )j and >NJ are independent normal random variables.

Before proceeding to the least squares solution, some comments on the

statistical model are set forth.

2.262 Comments on the Statistical Model

It certainly has been noticed that the "observed quantities" in the

above adjustment are the coordinates otH j , PN ] , yN j of the plane rr j .

One might wonder how far away these quantities are from the quantities

which are actually recorded by the observer. In Principle, the quantity

which enters the adjustment as observed, represents the observational

unit, so to say, that is the event which is repeated during the obser-

vations and which may be considered independent from the preceding and

following one. The question now is, what is the observational unit in

the optical observations mode ? The "instrument" of these observations

is not each one of the two instruments at the observing stations, but

both of them, and the "observed quantity" is not each one of the two

directions, but both of them together as a unit. That unit is nothing

else but the plane defined by these two directions which, by fact, meet

at the satellite position point. Obviously, this is the observational

unit, or the event, if one wishes, which is repeated during the observa-

tions and may be considered independent from the other such events.

Therefore, the quantities which enter the adjustment as observed

must represent the planes which are defined independently from one

another and each by the corresponding simultaneous directions. Thus,

the above adjustment cannot be simplified further without violating basic

statistical principles about adjustments. But there are many ways to

represent one and the same plane. This matter was discussed in section

2. 1, where it was concluded that the only statistically permissible

representation of the plane TTj (see Fig. 12) is from the two
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Fig. 12

• • —* —*

intersecting directions PiQj and PgQj. If one considers the planes r^,

forming a pencil of planes with axis the line (Pi PB)> then the independence

of these planes disappears, and a mathematical model for which this is

the case, does not yield an adjustment of this problem. From the above

discussion it became clear that there was no other way to look at this

problem, (i.e., two unknown ground stations observing simultaneously

directions to a set of satellite position points). That means one must

look at (PiP3) as the fitting line of a set of lines (all possible inter-

sections of the planes TT j). in the following of the present commentary,

a mathematical model for the same problem different from the above which

appeared in geodetic publications will be discussed briefly [2]. The

mathematical model given here there (somehow arbitrarily) is the following

(see Fig. 13).

Direction P^j:

Xj - xi - nj aij = 0
YJ -Yi - rijbu = 0

Zj- zx - PIJ-CIJ = 0
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Direction, P2Qj:

xj - xs - r8jaaj

Yl - Ya - r3b3

=. 0

= 0

- 0

ORIGIN

Fig. 13

There is no question that they are necessary, but as ,t turns out

they are not suffice for th.s problem. One may observe the foUow^ng
points. ^

After elimiaation of the satelUte coordinates, the above conditions
are reduced to threp TK^O *u

three. These three resultant equations have the form
xa - xg + rijaij - r8Ja2j = 0

(only the x-component is written for brevity).

One might ,hlnk tnat ,he presence ot the'coordinates and the distances

m the above formuJas is ...Hnsic. But this is np, the case. As a matter

of fact, the distances ru and rs) are unknown and they become known

". . ' " ' . 52 '



after the introduction of the length ris, through the relations

sin9a

and
sinBT

Then

xi - xa sin9a sin9i
ria sin93

 a i j~ sin93
 aaj

or

(sin93) aia + (sin9g) aij - (sin9i) aar = 0.

The last one is independent from the coordinates of the points Pj and P8.
•

Another thing which must be pointed out is that the directions
-+ ' ' . "

and PaQj are introduced independently, while they are not independent for

they intersect at Qj. This dependence is expressed by the equation of

the plane through Qj and parallel to PiQj and P^Q3, which is not

mentioned anywhere there. These two points show that the above model

does not give the required adjustment. It is not easy to visualize what it
' • ' • — > — » — » .

does. It seems that after such an adjustment each triple [PiPa. PiQjt paQj]

is parallel to a plane, but there is no connection between these planes.

That model cannot be identified with any of the known statistical models,

ft belongs to the category of the so-called generalized least squares.

There appears to be no objection against the generalized least squares,

provided the employed conditions are proved to be not only necessary but

sufficient too; sufficient in the sense that they define the configuration

uniquely. Unless the sufficiency of the conditions is proved, the results

are very precarious. The fact that there is no rigorous statistical

foundation for the generalized least squares is an additional reason for

some people to keep their reservations with this method. In the last

analysis, why should one have recourse to an unconvincing generalized

least squares solution, while he has a clearer, fully convincing solution

of the adjustment problem ?
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2.263 Least-Squares Solution ,

Equations (69) and (70) constitute the mathematical model of the problem.

The least-squares solution to this problem is very known. As a matter of fact

there are more than one approaches to the solution of this problem [17, 18].

Since this mathematical model is very common in statistics there exists a

vast bibliography about its statistical analysis (computing techniques for estimation,

hypothesis testing, etc.) which is very beneficial for the geodetic problem. Once

the problem of the optical observations mode is reduced to that one above, the task

of the present work in this direction has been accomplished. Nevertheless for com-

pletion purposes, Hamilton's method of solution will be given below.

Hamilton's solution to the problem of fitting a "plane" through a set of "points".

The following matrix notation is introduced

D = (Dj, Efe, . . . , Dp) , ( Ixp) ^ (71)

X = ( x , , , . . . , Xp) ' < 3 x P > <72)

(3p x 3p) variance-covariance matrix of X

Mj ( p x p ) variance-covariance matrix of D

W= Mg"1 weight matrix of D [to be discussed later]

Point estimation.

Proceeding formally one obtains the function to be minimized, i. e.,

$ = B W DT - k ( m m - 1), (73)

where k is a Lagrange multiplier for the constraint mm^= 1. From (69) and

(70) one has

D = (injc^, mxa , . . . , m x p ) = mX (74)
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Then (73) may be written

$ = m ( X W X T ) m T - k ( m m T - 1) .

The least-squares estimate of the unknown vector m is given as it is known by

the solution of the following system:

or

( X W X T - k I 3 ) m T = ( C - k I 3 ) m = 0 (75)

But the last equation shows that mT is an eigenvector of C corresponding to the

eigenvalue k. Since C is a symmetric positive definite matrix it has three real

eigenvalues, and let them be in the following order

Then m corresponds to k = min X = X : . By some standard numerical

procedure one may obtain the minimum eigenvalue. The eigenvalues of (3 ~ are

the inverses of those of C, and the maximum eigenvalue of C"1 corresponds to

the minimum of C. Since the numerical procedure to find the eigenvalues starts

with the maximum eigenvalue one is looking for the maximum eigenvalue of C -1 ,

whose the inverse is the minimum of C. Given the fact that C = X WXT is a

( 3 x 3 ) matrix there is not much numerical trouble involved in these manipulations.

Nature of the Weight Matrix W.

In this problem the variance covariance matrix of X, i.e. M^ may be

considered diagonal with ( 3 x 3 ) diagonal blocks. That because, the planes 77. ,
J

(j => 1,2, . . . , p) may be considered independent. Nevertheless in this general

treatment, a full variance-covariance matrix M^ is taken and let its typical

element be denoted by M ^ 1 3 , i.e.,

M,,1'1 . . . M,1
*M is ( 3 x 3 ) (76)
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Equation (74) may be written

T
D =

, . m ' ,03 . . . 0,
1 3 1 J 1 J

,03 ,1x1. ... 0i • 1 . 3 .

0 0 . . ^Sg

•

"xj

**
X p_

(77)

Then the formula for the propagation of error yields

= Md = JJl Mx-M (78)

The typical element of Md is

_

Ma = m Mx m (79)

— — , —
If M is diagonal, then M =0 for i ^ j and M is diagonal too, i.e.,

Md =

- M 1 ' m ) 0 0

__3,3 :_T

(m M m ) . . . . 0

P , P _ T

0 . . . . . ( m M m )

(80)

or

W =

m
I \
1 , 1 _ T

Mx m

0

- •

0

0 . . .

1
i nM y

a ' 3 m T

0

6 • • •

. . . . 0
.

0 .

i
P,P _T

mMx m

(81)

Since the weight matrix W is a function of m the equation (75) is non-linear in m.

Therefore an iterative procedure is followed. One assumes a vector m, calculates

the weights from (78), derives a new value for in from (75) and then recycles. In

cases of two or three dimensions, like the present one, the process converges in

no more than two iterations.
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Remark. Because the weights depend on m and an iterative procedure is

used it is important to note that the minimum eigenvalue of C does not necessarily

correspond to the best solution. When the solutions to the eigenvalue equation (75)

have been found, the quantity ID WDT should be computed for each eigenvalue.

If the ellipsoids of error for the individual points are very eccentric, it frequently

happens that the minimum D WD does not correspond to the minimum eigenvalue [20].

This is particularly likely to happen if the initial choice of m for the iteration is

far from the correct one.

Covariance matrix of m { Mm ) .

From (74) one obtains

DT = X T n i T or X W DT = X WXT inT = "C mT

and _ __ _
mT = (CT1 X W) D T (82)

By the formula for the propagation of error the last relation yields

Mm = (CT1 X W) Md (WX T^"1)

__ _ f^^f _ T _ _l_m_ T ^ ^

= C^X W - M d M d " l X ( X W X )

_ . , . . . _ _ . y ____ _ _ j .

= c" (x wx ) (x w x )"
or

Mm = C"' (83)

Testing hypothesis .

Consider the hypothesis H: mo = in. Assuming that the distribution of D

is normal then the quadratic form

Q2 = (ff i -m) C(mo - m ) T (84)
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is distributed as 3Faf p, where F is the well-known variance-ratio distribution

and 3 is the number of unknown parameters. If Q? is less than the tabular value,

the hypothesis is accepted. That means Trig may characterize the "plane, " which

is the line (£) in this problem. Since

lim 3F3,P = X*
P-*OO

for large p one may use \8 test instead of F.

In every statistical problem, after the statistical model has been chosen,

the goodness of the estimation and the statistical inferences depends upon the

weights assigned to the observed quantities. For the present problem, the

difficulty is about assigning the weight to the observation vector"xj. By recalling

equations (2) - (5) (see section 2.1), one has

XJ =•

or

T 1

Pj °J ' J '

a!J
(85)

where

It is interesting to note that pj is the sine of the angle which is formed by

the two observed directions at the satellite position point (see relation (44)).

If the observed angular quantities are the declination (6) and the hour angle (h)

the following relations hold

a^ =. cosdj j cosh l j a,, = cos i

= cos6T j
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3J

(86)
:= cos6SJ

j = sin 62 j



Then

a, =
cos6 1J

cos62J

!J

J C2J

cos

cos6aj • cos

sin 6

sin 6a

cos 63

= sin(P1Qj, P aQj) - sin9j (cos

cos6a

(87)

(88)

(89)

or

sin63] +cos6 1 J cos6Sj (90)

The above formulas are not too complicated to compute the errors of

a N J , / 3 N J , y N J , by using the formula for propagation of error on the linearized

expressions of the above when the errors of 6X j, h x j , 68 3, hg 3 are given. It

is stressed again that the observational unit of this problem is the plane TTj ,
—» • —>

and not the directions P1QJ and P2Qj individually. Hence, the coordinates of

this plane are the "observed quantities" for the adjustment problem and these

are those which must be assigned a weight. As it was inferred above, the plane

TTJ is the simplest observational unit and any mathematical model whose observa-

tional unit is simpler than that plane does not adjust the observations of this

problem.
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2. 3 Determination of the Cartesian Coordinates of the Stations

After the above adjustment one has at its disposition the direction cosines

of the line (£) = (P^g). In order to compute the coordinates, one needs the

coordinates of either one of the two points and the length. Let xi.yi, zj be the

coordinates of Plt and S13 be the length of the distance (P^Pg). Then

Yi

.3. THE CASE OF MORE THAN TWO STATIONS

Let PL P8, . . . , Pj be a set of ground stations. Consider all the pairs of

stations from this set, each one of which has observed simultaneously at least one

satellite position. It does not matter whether some of the satellite position

points take part in more than one pair. Let these pairs be classified

Fig. 14
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as follows:

Ag set of station pairs each of which has observed more than two satellite

position points,

Ag set of station pairs each of which has observed just two satellite

position points,

Aa set of station pairs each of which has observed just one satellite

position point.

Remark. It is possible, of course, one and the same station, say Pk, to be

found in all these three sets of pairs, but never as it is understood, two and

the same stations can be found in two different sets of pairs.

1st Estimation.

For each station-pair of the set A3, an adjustment is carried out

which yields the directional cosines of the line of that pair. For each station-

pair of the set A2, there is no adjustment problem inasmuch as there exists

only one intersection line, which is taken as the line of that station-pair. If,

for example, (P^Pg) is a station-pair which has observed two satellite points

Qi and Q2 (see Figure 14), the only intersection line is that of the planes

77i and 1T2 (see Section 2.1). For the station-pairs of the set AI there is no

information during the first estimation. Thus, the first estimation consists

of the direct information provided to the ground stations from the satellite

observations, that is, the directional cosines of the lines of the station-pairs

in Aa and A2.

After the first estimation one has additional information for the deter-

mination of the directional cosines of the lines of the station-pairs, which

may be called indirect observations. That is, in a second estimation of the

direction cosines of the line of a station-pair (Pi,P2) one may consider not

only the planes TTj corresponding to the satellite position points Qj observed

by the stations PI and P2, but also the planes II^ = (P1P2Pl)(i = 3, 4, ...),
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. . . - .
provided the directions PI Pt and Pa PI have been estimated in the first

estimation. Consider, for example, the simple configuration of three

stations P1,Pa,P3 (see Figure 14), where the lines (PiP2), (P2P3) and

(PaPI) have known directional cosines from the first estimation. The
- > - » - »

directions PI Pa, PsP»» PS PI as they result from the first estimation,

are not in general coplanar. One might consider here the coplanarity

condition of three directions, i.e.,

bis cis

a23 aa c2a = 0 , (92)

and adjust the results of the first estimation according to this condition.

This way is followed in [1]. But taking the first estimation results and

enforcing them to verify condition (92) it is like killing the problem statis-

tically, and abandoning the principles adopted in this treatment for the case

of two stations by implicating statistical models for which theories about

statistical inferences have dubious validity; the function F (aij , b l j } c^),

(i, j = 1, 2, 3) has nine variables and it is of third degree. Therefore,

by principal, the adjustment here will not proceed this way. The natural

way to proceed is that of a second estimation, as already quoted above.

2nd Estimation.

The second estimation is similar to the first, and only the number of

observations has been increased, by taking into account not only the direct

observations (which yielded the first estimation results), but the indirect

observations too. Consider a station-pair, say (Plf Ps), and let the following

sets be defined

B = [IT] = [TTi, . . ., ffj, . . . ]

c = [H] = [iil2 . . ., n|3,. . .],

where B is the set of planes corresponding to the satellite points Qj having

62



been observed by the station-pair (Pi, P2) and C is the set of planes

HI = (P1P2P1) corresponding to the ground stations PI, such that PI PI
-»

and P2Pi have been determined in the first estimation, ft is observed

that in the second estimation one obtains the direction cosines of a

station-pair whenever the set C is not empty, (the set B is not empty

by fact). Thus, while one could not estimate the direction cosines of a

station-pair in the set AI in the first estimation, he might be able to do

that in the second one, provided the set C of the station-pair in AI is not

empty.

Note. One should be aware of the definition of the plane n i2. ft is defined

as the plane which passes through the station PI (upper index) and it is
-> -»

parallel to the directions PI PI and P2P .

After the second estimation a third one should follow in which the

observations consists of the direct (original) and the indirect ones resulted

from the second estimation. Thus, an iterative procedure is established

which obviously leads to the coplanarity condition. The iteration steps

continue until no significant difference exists between the results of the last

step and the one immediately preceding it.

After that the adjustment is complete and for the Cartesian coordinates

of the stations one has to introduce the coordinates of one station and the

length of the distance between two of the stations whose direction has been

determined during the adjustment.
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