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INTRODUCTION

The purpose of this study has been the development of a

means of computing free-fall (non-thrusting) trajectories from

one specified point in the solar system to another specified

point in the solar system in a given amount of time. The prob-

lem, therefore, is the determination of the initial velocity

which--in combination with the initial position and time--can

be numerically integrated forward in time to the specified

final time to satisfy the final position requirement to within

some given tolerance.

As stated above, the problem is that of solving a two-

point boundary value problem for which the initial slope is un-

known. Two standard methods of attack exist for solving two-

point boundary value problems.

The first method is known as the initial value or shooting

method. All unknown quantities at the initial time are guessed

and the non-linear differential equations of motion are inte-

grated numerically to the final time. If the final miss dis-

tance is unsatisfactory, some corrective scheme is applied to

determine a new value for the guessed quantities and the proc-

ess is repeated. A disadvantage of this method is that the

initial values which were guessed must be "fairly close" to the

correct values or the shooting method may not converge. "Fairly

close" is a property of the individual problem for non-linear

problems and it is often most of the work to determine the ini-

tial guesses which are close enough to converge the initial

value process. An advantage of this method is that the differ-

ential equations of motion are satisfied to the tolerance of the

integration for each iteration and the converged trajectory"

represents a true solution to the integration accuracy.

The second method of attack for two-point boundary value

problems is to approximate the non-linear differential equations

by an appropriate linearized set. The solution method then con-

sists of solving a series of linear boundary value problems



which can be made to satisfy boundary conditions on every iter-

ate. This series of linear boundary value problems then ap-

proaches the non-linear problem until the difference between

the linear solution and the non-linear solution are less than

some specified tolerance.

The method of this study uses parts of both boundary value

problem solution techniques described above. A complete velo-

city history is guessed such that the corresponding position

history satisfies the given boundary conditions at the appro-

priate times. An iterative procedure is then followed until

the last guessed velocity history and the velocity history

obtained from integrating the acceleration history agree to some

specified tolerance everywhere along the trajectory. Conver-

gence for this method is obtained for fairly poor initial guesses

of the velocity history and terminal convergence is obtained in

a quadratic manner.

DESCRIPTION OF THE METHOD

Given a two-point boundary value problem for which initial

position and time and the final position and time are speci-

fied, determine the initial velocity which can be used in an

initial value integration scheme to satisfy the final conditions.

The procedure to be followed is described in detail below.

First, an initial guess is made of the entire velocity history.

This guess is made in a manner which satisfies the boundary

conditions when integrated. Designate this guessed velocity

history as the control velocity history to differentiate it

from an integrated velocity history obtained from the integrated

acceleration. The position is obtained by integrating the con-

trol velocity history. The position dependent acceleration is

integrated simultaneously to obtain an integrated velocity his-

tory. At the final time, two velocity histories are known:

the control velocity history which satisfies the boundary con-

ditions, and the integrated velocity history which satisfies the



rion- linear differential equations of motion. An iteration

scheme Is now used to drive the control velocity history toward

satisfaction of the non-linear differential equations while the

integrated velocity is driven toward satisfaction of the boun-

dary conditions. The method is considered to be converged when

the control velocity history and the integrated velocity history

agree to some specified tolerance everywhere along the path.

Therefore, a two-part correction scheme is applied to the

old control velocity history to yield a new control velocity

history. The first correction assures satisfaction of the boun-

dary conditions with the new control velocity history and the

second correction augments convergence to the integrated velo-

city history from the control velocity history.

DEVELOPMENT OF THE EQUATIONS

The formulation of the two-point boundary value problem

with given initial and final positions and time may be stated in

the following manner:

Determine v(t.) = v- for

x = v(t)

v = F(x,t)

t., x. Given

tr, x^ Given

where x is a 3 x 1 position matrix

v is a 3 x 1 velocity matrix

F is a 3 x 1 force matrix

t is a scalar

Guess a velocity history which satisfies the prescribed

boundary conditions and designate this as u(t) . Also, desig-

nate the corresponding integrated velocity history as A(t).



Now x = u(t)

X = F(x,t)

t . , x. Given
i' i

t<r, Xrr Given

The last set of equations will be solved on each iteration

until the new guessed velocity history and the new integrated

velocity history agree to some specified tolerance.

The integrated velocity history is to 'be changed by <5A(t)

to satisfy the boundary conditions on the next iterate while

the control velocity history is changed by 6u(t) to agree with

the integrated velocity history on the next iteration.

The following relations are desired on the Ji + 1 st iter-

ation.

6u£(t) = 6A£(t) + A£(t) - u£(t)

or 6u = 6A + P(A - u)

The multiplier P in the above expression is a weighting

matrix which can be preset to some constant value or included

in the computation. Since P represents the partial derivative

matrix of the control velocity to the integrated velocity, the

secant method could be applied to each point to accelerate con-

vergence. For this study, a constant scalar P where P £ 1

was used.

Linearizing the differential equations leads to the follow-

ing linear perturbation equations.

6x = 6u = 6 A + P(A - u)

6A = F 6x



Assuming that 6x and 6X can be written as linear func-

tions of their initial conditions (with time-dependent coeffi-

cients) results in the following relations when the fact that

<5 x . = 0 is taken into account.

fix = A(t) 6Xi + M(t)

6X = B(t) 6X + N(t)

where A is a 3 x 3 matrix with A- = 0

M is a 3 x 1 matrix with M. = 0

B is a 3 x 3 matrix with B- = 0

N is a 3 x 1 matrix with N- = 0

Now, the last relations are differentiated to yield

6x = A6Xi + M

SX = %&\ + N

6x = 6u = <5A + P(X - u)

6X = E&\i + N + P(X - u)

6X = FY6x
J\.

6X = F A6X. + F M
x i x

Comparing coefficients, the following differential equa-

tions for the linear perturbation mapping result.

A = B

B = FxA

M = N + P(X - u)

N = F M
j\.

These equations are integrated along with the non-linear

equations. At the final time:



Sx£ = x£ - x(tf)

6x£ = A£6Ai + M£

6Ai = A£
1(x£ - x(t£) - M£)

This provides the new value for the initial velocity.

6A = B6Ai + N

6u = 6A + P(A - u)

6u = B6Ai + N + P(A - u)

6u. = 6A.

This is the procedure to follow in making changes in the

old control velocity history to begin a new iteration. The

iteration procedure is stopped when the maximum value of Su

anywhere along the path is less than the specified tolerance.

NUMERICAL INTEGRATION AND INTERPOLATION

In order to apply the iteration scheme in the preceeding

section, it would be advantageous to employ a constant stepsize

numerical integration procedure so that the corrections to the

control velocity history would always occur at the tabulated

points of the control velocity history. The terminal conver-

gence properties and the integration accuracy are limited in a

constant stepsize integrator--particularly if any singularities

are present in the interval of interest.

Due to these limitations, a variable step Runge-Kutta-

Fehlberg integrator with truncation error control was chosen

for the integration package. In order to use this integrator,

an interpolation scheme for the control velocity history is

necessary to provide values of the control velocity between the

tabulated points on each iteration. The stepsize pattern



changes from iteration to iteration so the tabulated control

velocity points also change from iteration to iteration. For

the interpolator, a cubic spline was chosen. The cubic spline

fits a third order polynomial in time between tabulated points

and provides continuous function values and continuous first

and second derivative values throughout the entire control ve-

locity history. The cubic spline was chosen for its stability,

availability, and applicability.

With the cubic spline fitting a third order polynomial in

each stepsize interval, the natural choice of the integrator

order was determined to be the RKF 3(4) integrator which inte-

grates a third order polynomial to the specified integration

tolerance. The integrator, therefore, chooses a stepsize for

a third order polynomial on integration and the spline fits a

third order polynomial of interpolation to this interval.

Although the combination of RKF 3(4) integrator and cubic spline

should be optimum for accuracy, the combination is not the opti-

mum for minimizing storage requirements. A higher order inte-

grator takes fewer steps for the same integration and, there-

fore, requires less storage for the tabulated velocity history.

The spline fit to this larger interval is not as accurate as in

the preceeding combination. A compromise is, therefore, indi-

cated- -the choice of integrator to couple to the cubic spline

being governed by the accuracy and storage requirements. An

optimum compromise between accuracy and storage is probably the

RKF 4(5) integrator coupled to the cubic spline.

For the initial value process which follows the conver-

gence of the control velocity iteration, a high order integrator

[RKF 7(8)] with a fine tolerance is used to refine the trajec-

tory. The high order integrator is used in this part for high

accuracy with few steps. Since this is an initial value proc-

ess, no interpolation is necessary and the differential equa-

tions are satisfied to the integration accuracy.



APPLICATIONS

The initial test of the control velocity iteration scheme

was chosen to be the generation of Apollo-type earth-moon tra-

jectories. The initial trajectories have been generated for

both .coplanar and non-coplanar cases. The coplanar cases util-

ize initial and final points which lie in the moon's orbital

plane and the non-coplanar cases have final points which do not

lie in this plane. The initial point was chosen for a 100 mile

departure altitude from earth and a 50 mile arrival altitude at

the moon.

Beginning with the coplanar cases, a control velocity his-

tory was chosen which kept the spacecraft in the lunar orbital

plane at all times. The initial guess missed the desired final

point by over 2000 miles. Convergence of the control velocity

iteration scheme required 9 iterations for a total of less than

20 seconds computation time on the CDC 6600. Using this ini-

tial velocity in a standard perturbation scheme (initial value

method), convergence to a position miss of less than 1 inch re-

quired 3 iterations for a total of 7 additional seconds.

Choosing a non-coplanar initial velocity history guess with

the same initial and final points as the case above, the control

velocity iteration scheme converged back to the coplanar veloc-

ity history. Again, the perturbation scheme converged in 3

iterations. Run times for both sections were comparable to the

run times of the first case.

Moving the final point 24 miles out of plane caused the

third case to converge to a non-coplanar velocity distribution
(rrom the initial guess of the first case. Run times were again

compatible with the first case.

The control velocity iteration scheme was next applied to

the generation of interplanetary trajectories. Initially, the

planets were placed in circular orbits about a fixed sun.

Several trajectories of the earth-mars, earth-venus, earth-

mercury types have been generated for short flight times

on the order of 50 to 100 days. The short flight time



allows the use of a constant velocity for the initial guess at

the velocity history. The trajectories have been generated for

an initial point which is at a 300 mile altitude above the earth

and a final point which is 300 miles altitude at the target

planet. During the computation of these trajectories, the sun

and the five inner planets were active gravitational sources.

Computation time and accuracy for these trajectories were com-

parable to those of the earth-moon trajectories. For example,

a 90-day earth-venus trajectory from 300 mile altitude to 300

mile altitude converged the control velocity iteration scheme in

5 iterations for a computation time of less than 24 seconds.

The perturbation scheme again converged in 3 iterations.

A second planetary ephemeris which used 3-dimensional el-

liptic orbits with constant elements was the next improvement.

An attempt was then made to generate an earth-saturn trajectory

with an intermediate jupiter flyby. The control velocity iter-

ation scheme converged to a trajectory from the initial point

to the final point but the flyby at jupiter was not present.

The initial corrections to the velocity history move the trajec-

tory path away from the flyby local extremum to the strong non-

flyby extremum. A change in the flight time might bring this

trajectory back within the influence of jupiter to permit a

flyby.

Several other short flight time trajectories between two

planets were converged and it was observed that the 3-dimen-

sional trajectories were more difficult to converge than the

2-dimensional trajectories.

The third planetary ephemeris to be incorporated was the

J.P.L. Analytical ephemeris based upon polynomial approxima-

tions to the orbital elements of the planets. This ephemeris

was chosen as the final one and a specific trajectory was

chosen for computation. The specific mission was an earth

to venus trajectory with a heliocentric transfer angle greater

than 200°. This mission was chosen for its importance in the

radioactive waste disposal project.
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The trajectory end points were chosen such that the initial

p o i n t was at a 100 mile altitude over a specific point on the

earth and the final point was chosen to be at a 100 mile alti-

tude over a specific point on venus. The earth launch point

was chosen for compatibility with existing launch facilities

and the venus final point was chosen from preliminary patched

conic studies.

The initial velocity guess would ideally be the velocity

distribution from the patched conic trajectory which would con-

sist of hyperbolic planetocentric segments matched in position

and velocity to elliptical heliocentric segments. Unfortunately,

this system was not available. The result was that Lambert's

theorem was used to generate a heliocentric elliptical segment

connecting the initial and final points. If the planetary grav-

itational fields are introduced full strength, the trajectory

integration requires more integration steps than the allotted

storage permits.

The reason for this was that the elliptic section which was

the solution of Lambert's theorem passed through the earth near

to its center. The variable step integrator, therefore, needed

more and smaller steps for an accurate integration. To circum-

vent this difficulty, the planet's gravitational strength was

gradually increased from zero to 100% in steps. Lambert's

theorem provided the solution for 0%, then a II problem was con-

verged, then a 101 problem and finally a 1001 problem. This

allows the control velocity iteration scheme to shape the tra-

jectory gradually. More time is required for this procedure

but final convergence is obtained without exceeding the allotted

storage.

Beginning with the Lambert's theorem velocity history

guess, 4 iterations were required for convergence of the 1%

problem, 6 iterations were required for convergence of the 10%

problem, and 10 iterations were required for convergence of the

100% problem. The total run time was 179.59 seconds.

A better initial velocity guess history would do away with

the relaxation of the planetary gravitational fields and also
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augment convergence. This would greatly reduce the total re-

quired run time.

The initial velocity was taken from the above converged

run and used in a standard initial value perturbation scheme.

The integrated terminal miss was reduced somewhat but quad-

ratic convergence was not obtained. The initial integration of

this scheme usually shows a greater terminal miss than the con-

verged velocity guess scheme since the differential equations

of motion are obeyed exactly in the standard perturbation scheme.

A reduce-the-norm iteration procedure was employed with the

standard perturbation scheme which would not accept an iterate

unless it reduced the norm of the miss distance from the last

accepted iterate.

To generate a flyby trajectory, two problems of the pre-

ceeding type were solved. In the velocity guess iteration

scheme, the joining point was fixed at venus and the two trajec-

tories (earth-to-venus and venus-to-terminal-point) were matched

in position (to integration accuracy) but not in velocity at the

joining point. An iteration scheme was then employed in the

standard perturbation scheme which was to iterate out the veloc-

ity of each segment to vary. This process was successful in

decreasing the velocity mismatch to 30-40 fps but integration

accuracy was such that no further reduction could be obtained.

CONCLUSIONS AND RECOMMENDATIONS

The control velocity iteration is a very powerful tool for

solving two-point boundary value problems. Convergence can be

obtained to the accuracy of the interpolation scheme even for a

somewhat poor initial guess. The method is particularly appli-

cable to the computation of velocity histories for interplanetary

trajectories where the initial velocity guess might not con-

verge the standard perturbation scheme.

The generation of planetary flyby trajectories by the veloc-

ity guess iteration will require the inclusion of a constraint
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at the flyby planet in order to assure that the trajectory con-

verges to the flyby which is a weak local extremum instead of

the non-flyby which is a much stronger extremum. Without this

constraint, the early stages of the velocity iteration scheme

move the trajectory away from the flyby trajectory to a non-

flyby trajectory.

The accuracy of the integration should be improved in the

neighborhood of the planets if the integration scheme is switched

from heliocentric ecliptic to planetocentric ecliptic when inside

the planet's sphere of influence. More accuracy of the integra-

tor and, therefore, of the interpolator should improve the con-

vergence characteristics of the velocity guess iteration. The

accuracy should also be reflected in the initial value perturba-

tion scheme by providing much more accurate information for com-

puting changes in the initial velocity.


