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The paper investigates the use of active control for stability

augmentation of passive gravity gradient satellites. The reaction jet

method of control is the main interest. Satellite nonrigidity is emphasized.

The reduction in the Hamiltonian H is used as a control criteria. The

velocities /\rito( , relative to local vertical, of the jets along their force

axes are shown to be of fundamental significance. A basic control scheme

which satisfies the H reduction criteria is developed. Each jet o< is fired

when its r(jru<y<. becomes appropriately large. The jet is de-energized when

r(J'(j(ĉ  reaches zero. Firing constraints to preclude orbit alteration may be

needed. Control is continued until H has been minimized. This control

policy is investigated using impulse and rectangular pulse models of the

jet outputs. The impulse model leads to a simple equation for the optimal

instantaneous control magnitude. This model, however, is difficult to employ

in nonrigid satellite applications due to basic problems that are discussed.

The study using the rectangular pulse model includes (1) development of

general equations for the pulse duration which yields My^ — 0 and (2) investi

gation of a strategy to override this criteria when necessary to prevent

large structural vibrations.
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NOMENCLATURE
a semi-major axis of orbit

e orbit eccentricity

e , - e" unit vectors along axes of frame b
bl b3

e unit vector parallel to orbit pole
P

e~ unit vector parallel to local vertical

e~ , unit vector along force axis of jet <=><.
U^s.

G torque vector

,j inertia dyadic about satellite's c.m.

K-. arbitrary constant

m satellite mass

22
N j^ component of N due to viscous damping

R distance from planet's c.m. to satellite's c.m.

T kinetic energy component of zeroth order in £

tQ time at which a control operation is begun

U dynamic potential

V potential energy

V the component of V due to internal stiffness

yV, vector from satellite's c.m. to jet o<

5 true anomaly angle

/J gravitational constant

CO I angular velocity vector of frame b relative to frames R and r

true anomaly angular velocity vector

ii
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INTRODUCTION

This paper originated in a study performed for the RAE-B satellite.

RAE-B will have four 750' gravity gradient booms, a passive damper system,

and six freon reaction jets. The jets will be used for spin vector control

early in the mission before deployment of the booms and capture by the

gravity field. The purpose of the study was to investigate the feasibility

of a suggestion, raised by GSFC personnel, to also use the jets for attitude

stability augmentation during or after boom deployment if an emergency situ-

ation is encountered or if unsatisfactory performance of the damper system

is experienced. Feasibility hinged largely on whether or not properly

timed force pulses could alleviate attitude librations or tumbling on RAE-B

without generating intolerably large boom vibrations. The difficulty arises

because the long booms will be extremely flexible, and the force outputs of

the jets will be comparatively large.

The material which has been included in the paper is not limited to

satellites of the RAE-B configuration. Instead, it is directly applicable

to virtually any satellite which is stabilized by the passive gravity

gradient method and includes one or more reaction jets. While the analytical

methods which are employed do have some potentiality for extension to other

types of control, the study is devoted almost entirely to techniques,

particularly reaction jets, which provide damping or control by the appli-

cation of external forces to the system.
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The concept of stabilizing satellite attitude solely by gravity

gradient forces and a passive damper has received considerable attention

during the past 12 years. Satellites which have employed the method,

1-4
however, often have not performed well. Attitude motions of several

degrees or more are to be expected even under the best conditions. Failure

of the passive damper always is a possibility. Major stability problems

have been experienced even when the damper was functioning normally.

Particular difficulty has been encountered due to thermal bending of the

long booms which usually are needed to obtain adequate moments of inertia.

The yaw motion on triaxially-stabilized satellites has been very trouble-

some. Many systems which are intended to improve the performance by supple-

menting the gravity forces by semi-passive, semi-active, or active control

have been proposed, and some have been built and tested in orbit . Reaction

jets are one of the methods by which performance can be augmented. Emergency

control of satellites which are strictly passive during normal operation is

one potential application; this concept should be potentially attractive

on satellites, such as RAE-B, where a jet system already is required for

other purposes.

If active control forces are to be applied to satellites with highly .

nonrigid parts, such as inertia booms, careful consideration must be given

to the excitation of the elastic vibration modes. At present, there is

considerable interest in the dynamics, stability, and control of nonrigid
/ rt

satellites . The present study emphasizes nonrigidity effects. It is

applicable to situations in which the purpose of the active control is to

attenuate the attitude motions without generating unacceptably large

structural vibrations and also to cases where attenuation of both the
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initial attitude and structural motions ia desired. Ihe work can be applied

to rigid satellites by deleting the nonrigidity portions of the mathematical

results. The study is devoted to the basic dynamics aspects of the control

problem. The related problem of atate estimation is given only secondary

attention.

The attitude control of rigid satellites by jets has been studied

in numerous previous papers. A partial listing is given as Refs. 9 to 13.

The present study differs from earlier ones mainly in that (1) it includes

nonrigidity of the satellite and (2) it uses the Handltonian H to establish

the control laws. Previous use of H in satellite studies has been directed

mainly toward its application as a lyapunov function. The first such study

was performed by Pringle . Meirovitch, LikLns, and Budynas and Poli also

have published papers in this area. H also was used by Mackinson and

Bainum in analyzing the performance of a magnetically damped, rigid

gravity gradient satellite and by Bowers and Williams to optimize the

timing criteria for the first boom deployment on RAE-I. Although he did not

17use the word "Hamiltonian"j It also was employed by Watson in a study of

the capture of a rigid satellite by the gravity field.

The" Hamiltonian used here is the H of the nonrigid satellite's

mechanical state X relative to the rotating local vertical-orbit pole

coordinate frame R under the approximation that the orbit is Keplerian.

It will be assumed, as necessary, that the active control forces u are

balanced so that they do not alter the orbit. Consider first the idealized

case of a circular orbit and negligible disturbances and internal damping.

Assume that all three moments of inertia are unequal, that the satellite

includes no parts -such as free rotors- whose motion is not constrained by

3
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stiffness forces, and that it is passive except for the control jets.

When U = 0, the satellite then will possess time-invariant stable equili-

brium states JCe/,. H can be defined in such a manner that it is zero when
— (Dk.

X = JCSC. H then will be positive for anyX ̂ a3<?* it also win be time-

invariant when U - 0 regardless of theX motions. H thus can serve as a

metric of the displacement of X- from XSe. The purpose of the on-board

control system can be regarded as being to drive H to the smallest possible

value. (H can be driven to zero only if the mathematical model of the

dynamics is completely controllable by the thruster systems). H or its

reduction AH, therefore, can serve as performance measures for developing

the control laws. The H criteria must be supplemented by a constraint on

the DCS_ about which capture is achieved in applications where the satellite

is tumbling at the start of the control operation and not all of the stable

equilibrium orientations are suitable for the mission. Under some conditions

- particularly a highly nonrigid satellite, large control forces, and/or

large initial attitude rates - control laws based solely on H can yield,

unacceptably large structural vibrations; in these cases, structural vibra-

tion mode amplitudes impose additional constraints on the control.

H will include cyclic coordinates if two moments of inertia are

identical or if the satellite includes elements whose motion is not con-

strained by stiffness forces. Control criteria based solely on H can

control the velocities of these cyclic coordinates, but not their magnitudes.

The H viewpoint of active control still is applicable when disturbances,

orbit eccentricity & , or internal damping are not negligible. H then,

however, will not be time-invariant when u = 0. Disturbances and C can

produce short term variations in H and, under some conditions, secular growth.

4
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Reaction jet systems, particularly those that are operated with low duty

cycles, should be effective mainly against the secular component. Internal
•

damping is beneficial, since it yields H 4 0. In some situations, active

control operations yield the side benefit of increasing the fraction of H

which is contained in structural vibration modes where internal damping is

present.

In the following sections, 3x1 Cartesian vectors are indicated

by an over-bar. Lower case letters with an under-bar are column matrices.

Upper case letters with an under-bar are rectangular or square matrices.

A prime indicates a matrix transpose or a row vector. A comma signifies

differentiation. The double subscript summation convention is employed in

portions of the work, but only where specifically indicated. Subscripts

i and j span the range 1 to m where m is the total number of generalized

coordinates. )\ H. and y span 1 to h where n = m-3 is the number of

"structural" coordinates. P and tf span 1 to 3 to indicate rotation

coordinates. £ spans 1 to 2 m to indicate etate variables, o^ and /o span

1 to s where s is the number of on-board jets. The Nomenclature Section

includes only symbols which are not defined elsewhere in the paper. Specific

definitions are not given for symbols which are believed to be self-defining

from their usage in the equations.

5
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BASIC EQUATIONS AND CONTROL POLICY

This section develops an approach to the problem of establishing

control laws for active augmentation of the dynamics of nonrigid gravity

gradient satellites and derives the necessary analytical model. The follow-

ing two sections employ this material in studies in which the controller forces

first are modeled as impulses and then as rectangular pulses. The Hamiltonian
*

rate H under the action of control forces and disturbances is significant to

18 *
the work. The classical equation H = H,t is not applicable because it

does not include the effects of nonconservative forces and because it

assumes that H is expressed as a function of generalized coordinates q, time

t, and generalized momentum rather than q, t, and velocity which will be used
•

here. To obtain H, consider a mechanical system whose configuration is

specified by an mxl coordinate vector q. Using subscript summation convention,

H and the Lagrangian L can be expressed as follows:

H= •«" M + U

I •= er A/I, * • i • /l (2)

where (J - V - T0 t K u (3)

The operations required to derive the desired H equation are (a) substitute

18
Bq. (2) into Lagrange's equation , (b) multiply this result by q̂  and sum,

(c] form H by differentiating Eq. (l) and simplify using the result of step

(b), and (d) convert to matrix notation. The result is:

where p^ is the mxl generalized force vector.

6
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In the present satellite application, a defines the system's con-

figuration relative to a rotating local vertical reference frame R. The

origin of R is the satellite's c.m.. The orbit will be constrained in the

modeling to be Keplerian. Equations for K, b, and U are given in Appendix A.

The partial time derivative terms in Eq. (4) arise from (1) active on-board

alteration or control of the satellite's geometry or mass distribution and

(2) disturbance phenomena that are not included in fq. Often, it is easier

to model actively-controlled geometric variables as independently-derived

time functions J^(t) than it is to include them in £. In this case, the

partial t derivative terms in Eq. (4) can be the main mechanism through which

active control of H is accomplished. Such systems, however, will not be in-

vestigated in the present study. The work instead will encompass only
18

scleronomous-coordinate models in which the active control is generated

through f_n by point forces U^ and which otherwise are passive. Assuming

that the satellite's mass properties are affected insignificantly by the

expenditure of controller fuel, K,tinEq. (4) then win be zero. U,t and
•

b,t, when nonzero, will affect H as disturbances. Eq. (A.3) shows that

b. will be zero if orbit eccentricity e is zero. U,. will be zero if e = 0
—'t z

and if, in addition, phenomena, such as temperature gradient variations, that

make Va vary explicitly with t are negligible.3

fg consists of components fQds f^^ and f^ due to disturbances,

internal damping, and the active control forces respectively. In the present

application, f_Qd can include not only non-conservative forces, but also

conservative phenomena such as gravity gradient harmonics which act as dis-

turbances and hence should be excluded from H. Let the satellite contain a

jets and let u (t) be the s x 1 vector comprised of the sealer values of their

7

UNCLASSIFIED



UNCLASSIFIED

Aerospace and Electronic Systems-

force outputs. (In the present terminology, a unit which can apply forces

of either polarity is considered to be a single jet). Using the classical

18equation for generalized forces , f_ and u can be shown to be related
x^U

through an equation f^ = Y u where Y = Y (g) . Let /v^ be the s x 1 vector

of the sealer values of the translational velocities of the jets, relative

to frame R, along their force axes. It can be shown that /V^ and 4 aj'e re~

lated through I'.

Oft =T i (5)
•

Lumping all H components due to disturbances and orbit eccentricity into a
. • •

single term H and letting H and H^ be the components due to active control

and internal damping respectively, Eq. (4) now becomes

where Hw - (\r(± = ^ H^. - «£ ^ •^ (6b)
o(̂ \ c<~,

•

The time integral of HU is the work done, relative to frame R, by u. A

block diagram of the system is given as Figure 1.

The purpose of the active control can be regarded as being to reduce

H and /or to maintain it small. The present paper will employ as a basic

control principle the tenet that none of the individual jets ever should act

directly to increase H. When any jet »< is fired, the correct polarity of

its force C/ then is opposite to the instantaneous velocity ^^ . This

policy is not optimal in all problems. The solutions of minimum time problems,
11

such as the rigid gravity gradient satellite one considered by Zach , fre-
• •

quently yield H > 0 at times during the operation. The advantage of the
•

present H ^0 approach is that it provides a relatively simple basis for

developing control laws in nonrigid satellite problems where the dynamics

8
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may be nonlinear, high order, and difficult to predict accurately. De-

pending on the thruster-satellite system and the operational requirements,
•

many control policies are possible within the framework of this H ^ 0

criteria. Eq. (6b) shows that the effectiveness of any jet -̂  in reducing

H is directly proportional to the magnitude /^u^J of the instantaneous

velocity A^. In applications where fuel utilization efficiency is the

main requirement, a simple on-off policy consists of (1) turning each indi-
t

vidual jet e( on at times when its \̂ 4̂  I is close to a local maximum and

(2) de-energizing o< when //l/j^l has been reduced to zero or a specified

nonzero value. The policy can be modified as necessary to incorporate con-

straints on the control, such as employing the jets in pairs. The near-

maximum | W^rfl criteria for energizing the jets is abated in applications

where rapid H reduction is more important than fuel economy. By driving the

f\r\JA *s to zero a sufficient number of times it can be anticipated that, in

the absence of disturbances, a condition will be reached wherein the between-

pulse values of the rt/Cu's remain negligibly small. This signifies that any

remaining motions of the satellite are in uncontrollable modes, and no farther

reduction of H by jet firings is possible.

The studies to be presented in the following two sections require
•

dynamical equations for the satellite's response in 3. , Q_ , and £V̂ . The

generalized coordinate method which will be used was employed previously in

Ref. 19. The m generalized coordinates are of two types, q^ to q« are a set

of Euler angles Q which define the orientation, relative to frame R, of an

arbitrarily-selected body frame b of the satellite. The remaining n = m-3

coordinates ^ specify the satellite's configuration relative to frame b.

""" 20
The term "hybrid coordinates" has been coined by likins and V&rsching to

10
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indicate "mixed" coordinate sets such as the L d\ r\' J one. The f\_ portion of

£ is omitted if the satellite is assumed to be rigid. In the equations of

motion, it will be convenient to use the angular velocity vector CO^ of frame
• _ •

b relative to frame R instead of 9 . £Dfc and 9 can be related through a

transformation ^ = I(a& 9 where I^KLe (£)• Let ^f be the m x 1 velocity

/ * / ' -r *vector nr= /_ t-oM H.J. rt>" and Q then are related through fif - X/irc, ^ where

— r x

-p
'/W/ "~ ^"" r ^

Several rectangular matrices in the dynamics equations must be transformed

when switching between Or and 4 velocities. Matrices that are employed with

will be indicated by a subscript nr- . In ̂ f velocities, Eq. (5) becomes

. .f

where V ' - V

Ihe kinetics model which will be used was obtained by modifying

the equations developed in Ref . 19 to make them directly applicable to the

present application. Ihe resulting equation is

* ~ ^ f * '
Appendix B presents detailed expressions for the terms appearing in Eq. (8).

Similar-appearing equations were used in flexible satellite studies reported

in Refs. 20 to 22. The equations in these studies, however, all were lineari-

zed, limited to satellites comprised of a rigid central body to which non-

rigid auxilliary bodies are attached, and also limited to very specific

representations of the nonrigidity. Ihese restrictions have n ot been imposed

on Eq. (8) and the associated equations in Appendix B. The advantage of the

n
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use of £T rather than £ velocities is largely due to the fact that the

method reduces the dependency of the rectangular matrices in Eq. (8) on Q.

M/l̂  and Y^ are functions of fi . N/y- is a function of j^ and 6. Unless the

satellite is highly nonrigid, however, it usually should be possible to omit

the H_ dependency in M^, Y^, and N^ . M^ is symmetric and positive de-

finite. Efj-y results from (l) gyroscopic forces due to U-̂ and (2) viscous

damping. M̂  is skew symmetric if damping is negligible, f̂  and f_2 include

both actual forces and also "apparent forces" due to kinematic effects, f^

is comprised of conservative forces due to internal stiffness and central

force field gravity gradient; it also includes the centrifugal potential force.

f? consists of apparent forces involving quadratic terms in AT; it also in-

cludes disturbance forces.

IMPULSE MODEL OF CONTROL FORCES

This section will use the material developed in the preceding section

to investigate the case where the control forces are of sufficiently large

magnitude and short time duration that useful information can be obtained by

modeling them as impulses. The advantages of the impulse representation are

that it is the easiest model to investigate and it yields the simplest

result. The study does not require linearization of the equations of motion.

The weaknesses of the impulse assumption will be discussed at the end of the

section. Let subscripts 0 and 1 indicate conditions at the start and end of

a control action which consists of the simultaneous firing of one or more of

the s on-board jets. Let u-j. be the s x 1 impulse vector. Uj is the time ;

integral of u. Uj will produce step changes A /rand ^H- since a undergoes

no change during the impulse, the matrices M^, N^ , and Y^ in Eq. (8) will

12

UNCLASSIFIED



UNCLASSIFIED

ftjf) —• Aerospace and Electronic Systems-

be constant. N^A^, f , and fL do not affect the A*r step. Eqs. (6) and (8)

can be shown to yield

D = M Y. (90)

The step change in̂ - is ̂ ££ = Duj. 'Any element D^ of D thus is the velocity

step change along the force axis of jet ̂  which is generated by a unit im-

pulse from jet /3 . It can be demonstrated that D is symmetric and at least

positive semidefinite.

Eq. (9b) now will be used to derive the impulse vector uj" which

yields the minimum (i.e., the most negative) value AH* of A H. It will be

assumed that no amplitude limits are placed on any of the u-j-̂  's. The

derivation of u-* then constitutes an unconstrained static minimization

problem . The solution given in the following paragraph will demonstrate

that UT* is unique if and only if D is nonsingular. D will be only positive

semidefinite, and hence singular, if the satellite possesses redundant jets.

The analytical difficulty which this causes can be overcome by imposing a

selected set of.Sd constraints on the relations between the u. 's where s

25 c cis the degeneracy of D. A constraint equation Uj = £ u , therefore,

will be assumed, u-,-0 has dimensions SG x 1 where sc = s-ŝ . The constraints

might, for example, be set up to restrict the 3x1 Cartesian vector of the

total impulse to be zero; this eliminates the potential problem of altering

the orbit significantly by the jet firing. The sc x 1 impulse vector u^

can be regarded as the output of a ficticious set of sc jets which will be

referred to here as the "constrained jets." VL. will be unique, since the
j.

13
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transformed sc x sc matrix D
c= CCpCc which appears in Eq. (9b) when u^ is

employed is nonsingular. For the present purposes, it will be convenient to

impose an additional set of constraints on the jet firing. The discussion

p in the preceding section indicates that use, in any single firing operation,

of all the s constrained jets often should be undesirable because it utilizesc

the available fuel inefficiently. Let u* be the sa x 1 impulse vector from

the sa constrained jets which actually are used in a given firing, u^ and

t c CQ a ca
Uj can be related by an equation u-j. = C u . C has dimensions SQ x s&

where sa ̂ < SG. Each row of .Cca will contain either (1) all. zeros or else

(2) all zeros except for a single element with a value of unity.

Substitution of the relations specified in the above paragraph into

Eq. (9b) yields

where AT'a = C1 rj~ , Da = C1 D C, and C = Cc £ca. u^" now can be
— M ~~ ^_ U "~ I

obtained by differentiating Eq. (10) with respect to u*, setting the left

side to zero, and solving. It also is necessary, in principle, to differ-

entiate with respect to UT a second time in order to check that the resulting

Z± H* is a minimum rather than a maximum. The result is :
* —1

u^ = -D /ir̂  (lla)•=1 -a _ u o
J>a.

*H* = .5 «rjo "I * '= '5 ̂  fir* U** (lib)
et-l

= D (lie)
~

24
Since D is positive definite, AH* is a minimum.

*

14
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•>!-
u# can be obtained from uT using u = C u . The equations

ugiven in this section can be used to show that u a" yields nru{ ~ 0. Thus,

a*the optimal impulse u is the one which drives the force axis velocities,

relative to frame R, of the s constrained jets to zero. Eq. (lib) shows
at

that the greatest reduction in H in any single firing operation is obtained

by using all sc constrained jets except any whose initial velocities /Vr

are zero. Eq. (lib), however, also shows that the AH* component which is

contributed by the optimal impulse ua* of any individual constrained jet o^

is proportional to the magnitude \r(rUOa( I of its initial velocity. Thus, from

the standpoint of fuel efficiency, the most effective firing procedure is to

fire each constrained jet only at times when its/"̂ Jis passing through a

maximum.

Practical satellites usually should be sufficiently rigid that the

variation of D~ with ([ can be omitted when establishing the criteria for

active control. Eq. (lla) shows that u then is not dependent on the

Si
complete state 3t of the satellite. Rather, it is dependent only on nr̂ 0

If the satellite's sensor system is such that a measure of nr^ can be obtained

without generating an estimate of £. , actual knowledge of _X then is not

needed for control.

While the unlimited-amplitude impulse model of the jet outputs

yields a simple criteria (Eq. (lla)) for determining the instantaneous optimum

control effort, the technique encounters two major difficulties when the

satellite is highly nonrigid. First, even if the mathematical model of the

SL %•
satellite and jet outputs were perfect, it is still possible that the U

computed by Eq. (lla) might generate unacceptably large structural vibrations.

Placing amplitude limits on the impulses is one approach toward alleviating the

15
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potential problem. With this method (^ would be obtained by solving

Eq. (10) subject to control constraints / Ux* ' *-• ^i^max c '

A less fallible, but more difficult, approach is to place the amplitude con-

straints directly on the magnitudes of the structural vibration modes. This

method is used in the following section in the rectangular pulse approximation

study.

The second difficulty concerns the compatibility between the approxi-

mation that the jet outputs are impulses and the implicit assumption that,

for the present purposes, the nonrigidity of the satellite can be modeled

adequately by a finite number of coordinates f]_ y . The use of a finite number

of H 's 'to model a continuous structure requires, in principle,, the truncation

of an infinite set. The ̂ ,,/s which are included are ones which contribute

mainly to the lower frequency modes of vibration; theft's which are omitted

contribute mainly to the higher modes. Before Eq. (Ha) could be used in an

actual nonrigid satellite application, it would be necessary to verify, by

supplementary analysis, that the excitation of the neglected vibratory modes

by the short force pulses will not be great enough to cause difficulties.

Also, Eq. (lla) will be accurate only if the time durations of the actual

pulses are short enough in relation to the periods of the vibratory modes

which are included in the model that the impulse approximation is acceptable.

The filtering action which tends to attenuate the effect of non-impulsive

inputs on higher vibration modes is not encountered in the present model. The

computed (-1̂ . therefore, depends on the number of rjy's that are

used.

16
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RECTANGULAR PULSE MODEL OF CONTROL FORCES

In the present section, the active control forces will be approximated

as rectangular pulses. This representation alleviates, to a considerable

extent, the impulse model difficulties noted at the end of the previous

section. The on-off control policy discussed earlier will be used. The

problem which will be considered is the computation of the optimum pulse

duration 'Y when the "height" of the force pulse and the satellite's dynamic

state -Xo at the start of the pulse are known. In an actual application, the

1 pulse durations would have to be determined a priori by such a computation if

lags or other deficiencies in the sensor system prohibit a "closed loop"

determination of the proper jet shut -off points using real-time information.

An analytical investigation using non-impulsive control forces re-

quires, as a practical necessity, a linearized, constant coefficient model of

the dynamics. The first step, therefore, will be to linearize Eq. (8). A

model which is applicable at least over the time spans of the individual pulses

is desired. Linearization of Eq. (8) limits the study to cases where the

quadratic nr terms in t-z are negligible over the duration of a pulse. The pre-

sent work will omit disturbances. Jf^ then can be deleted entirely. The study

also must be restricted to cases where the coordinate changes A <?, during a

control pulse are sufficiently small that M^ and N^w can be considered

constant and that r0 can be approximated by the first two terms in a Taylor

series expansion. Most satellites should be sufficiently rigid that no major

restrictions on the model's validity are imposed by omission of the higher

order effects due to the dynamics of the structural coordinates /^ . However,

when the satellite's initial attitude QQ is not close to the stable equilibrium

attitude, the subsequent 9 motions can be large enough to severely degrade the
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linearized model's validity. In such cases, the linearized model is applicable

only if the control pulses are sufficiently short that only small changes in

6 are experienced during their. duration. The study then must be limited to

large amplitude-short duration pulses such as those which were modeled as

impulses in the preceding section.

In linearizing Eq. (8), Gfwill be transformed into a velocity vector

which can be approximated as the time derivative of an m -t- i coordinate vector

/& . Consider a structural reference condition fl which is close to the
— — L r
initial value jQ . Let ̂  to P^ be chosen asJl-H^. The condition _H_se

encountered when the satellite is in equilibrium usually should be a suitable

choice for h . In establishing the rotation coordinates /ot to p3 , use

will be made of an auxilliary reference frame "r " which has zero angular

velocity relative to frame R and which, at tQ, has an orientation close to

that of frame b. Let & t to &•*> be a set of Euler angles £5 which specify the

attitude of b relative to r . ^ = 0 occurs when b and r are aligned. t-Ô

and gi can be related through an equation tD^ = 2̂ <j> $ where Ĵ ,0 ~ Ju,£ (j|0
• ~~ ' i

and T7«4>^~-' Similarly,̂  andj6 can be related through /v- -= J^ £ where

J/Ir̂  c$} and Tvyfti- J. 5 ̂ rQ is defined analogously to_J-^ used
- • —

previously. Qnploying this relation in Eq. (8), premultiplying byĵ  and

* *T̂ . 0' * *dropping F and a quadratic velocity term involving T^. 0 yields

Eq. (12) will be linearized about the reference ( r ) condition

/£ = 0. Superscript r will be used to indicate quantities which are evaluated

at @> =0. When expanded about ̂  = 0 and linearized, the left side of Eq.

(12) reduces to M^^ + Nnr /% '• I-t can be shown that T Po -- U.o - . *

18
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r
in a serieswhere the symbol UU indicates L U)& --- (JB J • Expanding U>£ i

about ft = 0 and retaining only the first two terms yields

The elements of k^ are listed in Appendix B. The J^, premultiplication in

Eq. (12) was performed so that the resulting stiffness matrix K^would be

symmetric. Expanding T Y^ w and retaining the only the first two terms yields

Y h a — P'' S where the columns /?/ of the unsymmetric i7)W matrix P are ofj/u- - - r . J-j -
\~ *"

the form AT-- - Detailed expressions for the D/a are given in Appendix

B. In applications where U is constant over the time intervals that the

linearized, constant coefficient model is to be used, P can be included by

adding it to k'̂. as an additional stiffness effect. It is not certain that

P^ will be negligibly small with respect to K/^in all cases. The first three

P*~ rows appear to be potentially comparable in size to the similar k/>^ rows

whose elements are nonzero solely because of gravity gradient and centrifugal

forces. It is believed, however, that omission of P tf usually should be

v rjustifiable largely on the grounds that is much smaller than J ̂ U . Conse-

quently, P*^ will not be included in the remainder of the paper.

Making the above-noted modifications to Eq. (12) and performing

similar operations on Eq. (7) yields the desired linear equations.

fl + £ ̂ -- t

U3a>

(i3b)

In order to solve Eq. (13b), conversion to state variables X is advantageous.
t, > ?

Letting Dt - LB> I £ ^ _jEq. (13) can be converted to the form

- £
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£ - /X * ^

- I v-

i
V

o

(14b)

Eqs. (14) next will be transformed into modal coordinates ̂ . Ihis is con-

sidered desirable in the present work because it enables a simpler and more

informative solution to be obtained. The 2. m eigenvalues %? of A will be

assumed to be distinct. Let X= ;S -^ where the a no columns A^ of S are the

^^ "eigenvectors of A.. Let R be S , and let K indicate the columns of R. Each

"" ~ ' ; ' r
£r will be separated into two m+ I components A ̂  - \__ A^ '_^fojj; this same

notational technique win be used later with g and J^ . Ihe s columns of

yh will be indicated by HM- t dimension vectors at ̂  . Eqs. (14a) and

(14b) then can be written in the form

(15a)

(15b)

The solution of Eqs. (I5b) is

-e,

20
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More than one jet may be in use at any given time because of their

non-zero firing durations and because of possible constraints on their oper-

ation - such as firing them in pairs. Subject to restrictions which such

constraints may impose, each jet ̂  should be energized when its / %^J

becomes appropriately large, (ihe present terminology assumes that each jet

can apply forces of either polarity). <y( is de-energized at, or slightly

before, the time that A^^ changes sign. Assuming that the jet pulses are

rectangular, <? in Eq. (16) will be constant during "constant control con-

dition" (CCC) time segments during which no jets are turned on or off.

Inserting the constant g condition into Eq. (16), the 3 responses during
— 5

a CCC are determined to be

Assuming that the CCC is ended by de-energizing a jet because its terminal

AST - condition is reached rather than by energizing a new one, the CCC endw A

time can be computed using Eqs. (15a) and (17). The computation consists of

a determination (by iteration for example) of the first time point at which

the cut off Af^ is reached by any of the jets that are in use. An equation

for the ̂ H due to jet action during the CCC can be derived using Eqs. (6),

(15a), and (17). The result is

21
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As was noted previously, a drawback of the pure H reduction criteria

for establishing control laws is that it potentially can generate unacceptably

large structural vibrations even if the mathematical model can be considered

perfect. On some satellites, this problem can be alleviated by employing the

thrusters in sets so that the sensitivity of certain of the modes to the

firing is reduced or eliminated. The present paper will consider the supple-

mentary technique in which the jets are turned off prior to reaching the

•̂J~̂ gK = 0 condition when necessary to prevent the magnitudes of critical

structural modes from exeeding selected limits. This approach encounters

some difficulty if the satellite is highly nonrigid and the attitude motions

following the control application are sufficiently large that the subsequent

structural dynamics are significantly influenced by nonlinear effects. The

problem is that energy transfer due to nonlinear coupling, in principle at

least, can cause the amplitudes of some of the vibratory modes to increase

after the jets are shut off. This phenomena, however, will not be considered

in the present work. The study, instead, must be restricted to cases where

the previously-developed linearized model is adequate.

It will be assumed that, for the present purposes, internal damping

can be considered negligible and that the 2n eigenvalues X<of the structural

modes thus will be imaginary: \^ = / ̂ • "Ĵ ând ̂  will be complex.

Since the modes'occur in complex conjugate pairs, only n need be included.

Using the rectangular control pulse approximation, Eq. (15b) can be integrated

once to yield the following equations for the real (R) components of the

modal motions.

22
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(19a)

where *fr vR - "J y/2 T — r a v I ' d a \- (19b)

- -1 Ir- f . O ** (19C)
~ f , ' J» VT 'l -, / /cx/v

^ ' ̂ v

K y i s a positive constant which depends on the initial conditions. ?a^ and

are the components of a due to L£ and ^ . Jfavi
 is the iraaginary com-

ponent of Jr&v . The trajectories defined by Eqs. (19) are circles in the

rv\io~ 3 MO phase planes. When M = 0. the centers of the loci are aty AC ^j y f\ ~~ •—«*

•^k = 0. Firing one or more jets shifts the centers to
(/ V K.

A suitable choice for the amplitude limit constraint equations is

4 ^y (20)

It is assumed that all modes y are inside their \~v boundaries at the start

of the control operation. Figure 2 shows a typical response. If, as the

result of a control action begun at tQ, a mode V reaches its L,y boundary at

t.,, a modification to the control is made at t to prevent Lv from being

crossed. This normally would consist of de-energizing the jets that excite

mode V . It would take precedence over the A; 0̂<= 0 criteria. The point 1

where V reaches Ly can be determined by solving Eqs. (19a) and (20). The

result is

ayu (21a)

S\s

VVKI
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An imaginary ™~VM indicates that the Ly boundary will not be reached. The

time t, - t can be shown to be1 o

J

CONCLUDING REMARKS

The Hamiltonianprovides a useful measure of the displacement of

gravity gradient satellites from equilibrium. It can be used as a tool for

developing supplementary active control laws for rigid and nonrigid satellites.

Such approaches deal with the composite system in a unified manner and can be

used in cases the more common methods are difficult to apply. The main draw-

back appears to be the potentiality of exciting intolerably large structural

vibrations when the satellite is nonrigid and the initial attitude motions

are large. The velocities A^ of the thrusters along their force axes are of

primary concern for control. The impulse model of the jet outputs yields a

simple and practical control criteria when the forces are large and the sate-

llite is near-rigid. This approach must be applied with considerable caution,

however, if the satellite is highly nonrigid. The rectangular pulse model of

the jet outputs has far wider applicability, but leads to more complicated

control law mathematics when an "open loop" computation of the jet cut-off

times is needed. 6
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\

Figure 2. Phase Plane Response of Mode
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APPENDIX A

EQUATIONS FOR THE HAMILTONIAN OF NONRIGID GRAVITY STABILIZED SATELLITES

This Appendix and the following one are included to aid in inter-

preting and employing the material in the main body of the paper. The equa-

tions for H can be derived straightforwardly using basic principles. The

general form of H was given in Eqs. (l) and (3). Eq. (1) can be converted

into matrix notation and can be expressed ir. ̂r~ velocities by the transform-

ation rtf-TuT* %-• In the present application, the terms in Eqs. (1) and (3)
~"~ *~ 0 "-

can be shown to be

A*' A
(A.la)

M -• J M^ T

(J - - ) <S COS V

a o-e

(A.lb)

+ J(A.2)

1_\? ri

The term b which is used in Eqs. (2) and (4) is

f

A-l
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A1 and A2 arenxnand 3 x n respectively. Ihe elements A^y of A and columns

2 2A,, of A2 are obtained by integrating functions of £, and ̂  over the composite

satellite; the exact definitions of A ŷ and Ap are given in Ref . 19. J_ is

comprised of coordinates which are treated as independently-derived time
• •

functions and hence not included in <?. When the satellite is passive, J?

- i 2 — 1 2
is zero. A Q and A « are defined similarly to A and A .

A-2
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APPENDIX B

EQUATIONS OF MOTION OF NONRIGID GRAVITY STABILIZED SATELLITES

This Appendix lists detailed equations for the terms in Eqs. (8) and

(13). Eq. (8) was obtained by converting the basic nonrigid satellite equa-

tions in Ref. 19 into a form which is more convenient for the present study.

The main modification was the use of angular rate Cob relative to frame R in

place of 06 relative to a nonrotating frame. 6u3 o5fe ̂  and their first time
__ _ *. 1 —

derivatives with respect to frame b are related by: u?-<^>fo-i--CoR : «, -^-M-c^

The other modifications are mainly of a notational and algebraic manipulation

nature. It might be noted in particular that the symbol /^ is used here in

place of Ref. 19's q. The main restrictions on the equations given in this
e

Appendix are that Z and^ are assumed zero.

A/l/v- was defined in Appendix A. The other terms in Eq. (8) are

(B.la)

_ _ _ )' tofc "3 (B.lb)

y - -2 A y ' 3 5 f c <B- l c)
_^» «. *i » , o*72*^ _ ^ A 3 r^. , . *&£'

(B.ld)

(B.2a)

B-l
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(B.2b)

(B-3a)

(B-.4a)

(B.4b)

» -,/

y
j\) y and Z, are the columns of W and Zi. The double subscript summation

convention is used with X-/A and V . Superscript S indicates that the Cartesian

vector is arranged in its 3 x 3 skew-symmetric form. The A terms are defined

in Ref. 19. 0. p is an n x 1vector formed by differentiating U with respect to

the f] elements. Vectors which appear in the first three rows of Eq. (8) are

resolved on frame b.

The elements of K^- in Eq. (13) will be derived next. Limiting the
9

work to the <?•=-O J ~ _£ case, Eq. (A.2) can be written as

~~ F T ~\*° rri-
-bi-^ Cbh <ZR

" , _K _^ __ b. (B '5)

<Zp - T(~3ce ^ 3 f^w

Superscripts b and r indicate the resolution frame. C^ is the direction

cosine matrix from \r to b. eR is constant, Cb,_-=-CbK C<|p , J = J

B-2
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Since ,£ si- we thus have

'Separating into submatrices

(B.6)

The elements U^y of the n x n matrix

differentiating Eq. (B.5). The columns

-,nr can be obtained directly by

ffiyof the 3 x n matrix (J,̂  can be
_

shown to be equal to - T^ G-O .. • T^Q ^^
 be unity, since it is to be

evaluated at the reference condition (p = 0. (?• is formed by differentiating

Eq. (B.3b) with respect to r)yj* J" is the only term in Eq. (B.3b) which is

a function of f[ . The elements (^ X̂ fof the 3x3 matrix Û ff are obtained by

differentiating Eq. (B.5) with respect to fy and ̂ . As an aid in the

derivation, it is advantageous to first specify the sequence of the ̂  rotations.

Let the order in going from frame r to frame b be JẐ , 02, 0« where the sub-

scripts 1, 2, 3 also indicate axes ̂ /ĵ -j 3 •$<• Tt then can be shown that

where ̂  is the larger of the /^ ̂  pair

and /^ is the smaller; the 0̂'s are unit vectors along the instantaneous

axes of Euler angle rotation. Using this relation and Eq. (B.5),

be shown to be

can

u.w

B-3
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«r

The m x m matrix P generated when expanding _[/ir/3 J,-v —-

in Eq. (12) will be considered next. Its columns /6, are

(B.8)

Let the ̂  rotations be taken in the order noted in the preceding paragraph.

Noting that ]„ ^ is the control torque <5-M , it then can be shown that

O i °

oi o
<? U

O

(B.9)

irewhere &UA is the torque component along axis b^ . The remaining />'s.ar<

\-

— (B.10)
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