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SYMBOLS

a transition amplitude from the § mode to the a mode of vibration
A surface area of the panel
Am normalization factor for ¥,
b Ue
c damping coefficient
Coe equivalent damping coefficient for the « mode
D L 7~ , bending stiffness
12(1 - 6?)
E Young’s modulus
f frequency
Ja(t) generalized force
(% Strouhal number
F Y g,
Fy Fourier transform of f,
G(x,w) 25(x,w) one-sided power spectral density function
Gx',x",w) 25(x,x"",w) one-sided cross spectral density function
h thickness of panel
Hy(w) frequency response function
jaﬁ(“’) real part of acceptance
Tinw) real part of longitudinal acceptance
j;zs(“’) transversal acceptance

Jap(w) acceptance



kap(w) negative of imaginary part of acceptance

kmrw) negative of imaginary part of longitudinal acceptance
2, panel length in x, direction

L, panel length in x, direction

Mg generalized mass for the « mode

M, free-stream Mach number

OSp(g',g",w) operator corresponding to the pressure disturbance Sp(x’,x"",w)
plx,1) pressure fluctuation acting on the panel

Goo dynamic pressure

g, generalized coordinates

Qolw) Fourier transform of g,

R(x)x",7) cross correlation function

S x" w) two-sided cross spectral density function

S(x,w) two-sided power spectral density function

t time

averaging time

U, free-stream velocity
Uc(f) narrow-band convection velocity
w(x,t) displacement normal to the panel surface
W(x,w) Fourier transform of w
Xy | location on the panel in the longitudinal (or streamwise) direction
X3 location on the panel in the lateral direction
x(x1,%2) coordinate referring to location on the panel
1 %
1
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5*
6a5

A*

V4

m
n2
_7_?(771 sM2)

u

Vo

X2
2,

normalized coordinates referring to location on the panel

roots of the transcendental equations (4) and (5)
boundary-layer thickness
displacement boundary-layer thickness

Kronecker delta

8*
v
4 2 2 4
d +2 0 0 + 0
x4 ax:% ax,?r  ax,t

X'~ x"" coordinate referring to the separation distance of two points on the

panel
yi'=n"
y2' =y
yl _yfl

mass per unit area of the panel
loss factor for the « mode
Poisson ratio

correlation coefficient

delay time

mode shape function of the panel

mode shape function of a panel with unit dimensions

angular frequency

natural frequency of the & mode

vii



a = (m,n)

B=(rs)

viii

Subscripts
mode index
mode index
quantity evaluated at the free stream
streamwise direction
lateral direction
quantities related to the excitation field

quantities related to panel displacement

I



RANDOM RESPONSE OF RECTANGULAR PANELS TO
THE PRESSURE FIELD BENEATH A TURBULENT
BOUNDARY LAYER IN SUBSONIC FLOWS
Wei J. Chyu and M. K. Au-Yang

Ames Research Center
SUMMARY

The response of a rectangular panel under the excitation of a turbulent boundary layer
with a zero longitudinal mean pressure gradient in a subsonic flow was studied in detail. The
method of normal mode was used together with the technique of spectral analysis. Simply
supported and clamped edge boundary conditions of a panel were assumed. The response of
the panel has been expressed in terms of displacement power spectral density. The mode number
and frequency in the response computation were extended to 7 and 3000 Hz, respectively.

The results of response computation assuming a clamped edge condition compare favorably
with existing experimental data with a clamped edge condition. The simply supported edge
condition, however, overestimates the response. The effect of flow velocity on the response is
to increase the higher frequency components of the power spectral density per unit excitation.

Charts of structural acceptances, which provide a framework for estimating the response of
other rectangular panels, are presented as functions of dimensionless frequency and boundary-
layer displacement thickness. Physical significances of the structural acceptances are also discussed,
as regards the coincidence of the pressure and flexural waves and the probability of mode transition.

INTRODUCTION

The pressure fluctuations in regions of turbulent attached and separated boundary layers
and shock waves adjacent to the surface of aerospace vehicles cause structural vibrations throughout
atmospheric flight. The study of these vibrations is important in determining stress, fatigue, life
of structures, and noise transmission into the interior of the vehicle. Unfortunately, the analysis
of this type of vibration is complicated by the inherent random characteristics of the excitation
pressure fields, and the difficulty of analytically describing the vibration of a realistic structure.
For these reasons, early investigators of this problem considered only a hypothetical flow field
and made the simplifying assumption that the structure, almost invariably either a beam or a
rectangular panel, was infinitely large (refs. 1, 2, and 3). This assumption leads to a solution in
terms of the mean square displacement of the panel as a whole, but not as a function of location
on the panel.



In recent investigations the response of finite-size rectangular panels to the excitation of an
attached turbulent boundary layer has been considered, but the panels were assumed to be simply
supported (refs. 4 to 6). This assumption simplifies the algebra tremendously, permitting solutions
to be expressed in closed forms. Although these theoretical results agree better with experiment
than those obtained with the infinite panel assumption, they tend to overestimate the response
of a realistic panel. Previous analysis also fails to predict the wave matching accurately between
the flexural wave of a panel and the pressure wave. The estimation of this wave matching is
important, particularly when the matching occurs at one of the resonant frequencies of the
structure, and causes a large structural response. With the advent of modern high speed computers,
a theoretical analysis of a finite rectangular panel with clamped edges under the excitation of a
turbulent boundary layer is now feasible. Analytical integration in closed forms is not necessary,
since numerical integration can be carried out with no algebraic simplification of the integrand.
This digital computer oriented approach has the following additional advantages over an analytical
approach: (1) The transparency of the problem is preserved, as often the physics of the problem
is lost among a great length of closed-form mathematical formulas; (2) future developments are
simplified, as the basic computer program can be modified to describe different flow fields and/or
different structures.

A research program has therefore been undertaken to improve the analytical capability, and
to develop practical computer programs for computing the displacement, velocity and stresses at
different locations on realistic panel structures in different flow fields, including attached and
separated flows at subsonic, transonic, and supersonic speeds. The first step in this process,
discussed in this report, has been to consider the response of a clamped edge panel to the excitation
of a subsonic attached turbulent boundary layer. The subsonic case was chosen because of the
availability of corresponding excitation data (ref. 7) and response measurements (ref. 6). A similar
analysis pertaining to attached and separated supersonic flow is in progress along with tests to
obtain corresponding structural response data. For this reason, a computer program has been
developed that is in modular form so that additions can be made to the program to accommodate
different flow and structural conditions without affecting the rest of the program. The computer
program pertaining to the analysis will be published separately.

METHOD OF ANALYSIS

Formulation of Displacement Power Spectral Density (DPSD)

The displacement w(x,?) of a vibrating panel (fig. 1) is assumed to obey the classical thin
plate equation:

uw + cw + DV*w = p(x,1) H

In the present analysis a uniform plate is considered. Hence u and D are constants and independent
of x. The above equation with ¢ and p set equal to zero is the equation of free vibration of the
plate, of which the solutions ¥ ,(x) are called the natural normal modes of the plate. In the
subsequent analysis, it will be assumed that the damping is so small that the natural normal modes
and frequencies are not significantly changed. It is assumed further that w(x,?) can be expanded
in terms of ¥ ,(x) as follows:



w(x,1) =§:qa(t)¢/a&) 0))

Here ¢, is assumed to be properly normalized:

L Va@)¥(x) dx = 8ap

Furthermore, it will be assumed that ¥, (x) can be obtained by separation of coordinates:
VaX) = ¥ ¥ule;)
The term ¥ 4 (x) will be properly normalized if ¥ ,,(x, ) and ¢ ,(x, ) are normalized:

2
f l\l’n'z(xl)‘l/n(xl)dxl =8dmn

)

I‘Q2
j l[’rn(xz )wn(xz)dxz = 6ﬂ’ll’l

0

It can be shown that, for a panel with simply supported edges

N2 mxi
bmlxi) = [ sin =

For a panel with clamped edges, ¥,, takes on different forms according to whether m is even
or odd:

i=1,2 (3)

(a) Ifmisodd,

V(xi) = . [cos YmG‘_; -%) + ky, cosh ~ym(;c—ii - %)] 4)

mvV i

where v, are the roots of the equation

Ym TYm _
tan > + tanh 3 =0
and
sin Ym
km = 2
inh Ym
sinh =



(b) If m is even,

fsin 7m(%fi ~2) + kpp sinh 7,,,(;(—1,"- Il (5)

1
Yy, (xi) =
T AT

where v,, are the roots of the equation

Tm Tm _
tan > —tanh-2——0

The orthogonality condition of the mode shape function can be used to find the normalization
factors A

Ay = L2
m - Zm
where
Zm = vy *sin v,y + kpy* (sinh vy, +vy,) if m is odd
= Yy = SNy, + hkm® (sinh vy, - vy) if m is even
The numerical values of Ay, and v,y are:
m A}n Ym
1 0.7133 4.730040
2 7068 7.853202
3 7071 10.995608
4 7071 14.137164
5 7071 17.278758
6 7071 20.420352
Note that
Am = 0.7071 formz= 3
and
Y =Y t(m-6)7 form > 7

The generalized coordinate q,(?) satisfies the Lagrange equation

may (1) + Col (1) + Kaqy (1) = ful0)



where the generalized mass
ma =u [ o @dx =

in view of the orthonormality condition of ¥aX).
Similarly,
Cq =c
Ky = mgwe?

and

fa®) = [ pCr.0Wa@)dx )

The above Lagrange equation is valid only for viscous damping. With structural damping the
corresponding Lagrange equation (ref. 6) takes the form:

Maga(t) + Ko(l +ive')q, (1) = fal2)

where vq' is the loss factor corresponding to structural damping. For harmonic solution the above
equation can be cast into viscous damping form because g = (1/iw)q. Therefore

maqa(t) + Coaeqa(t) + Kaq, (1) = fo(1)

where Cge = (Kgqrg'/w) is the equivalent viscous damping coefficient. In practice, both viscous
and structural damping are present, and the Lagrange equation takes the final form

Mad o (1) + Caeq () + Kaq,(2) = fo(t) 7
where
Cae = Cae + Cqy

is the equivalent damping coefficient that takes into account the effect of both viscous and
structural damping. The viscous loss factor 84" is usually defined by the following relation:

_ 2Kadg'
-

Ca

Hence,




If the combined damping is small, so that the PSD curve is sharply peaked at the natural fre-
quencies, only the frequencies around the neighborhood of the natural frequencies are of interest.
Therefore

W= Wy
and
Ka i I
Cae = (28¢" +vo)
_ Kova
w
where

Vo = l)a, + 26(1'

is the combined loss factor for both structural and viscous damping.! It is this combined loss
factor vo that is measured experimentally. The natural frequency wgq will be computed by the
method of Hearman (ref. 8).

The Fourier transform of the Lagrange equation (7) takes the form:
Qa(w) = Hy(w)Fg(w) (8)
where?

1
mel(wa? - w?) + vqwe®]

Ho(w) = )

Equations (2) and (8) together give

W(x,w) = Zalﬂa(w)Fam)wan) (10)

The displacement power spectral density is related to W{x,w) by

Sgxw) = Jlim 7 WrtGo)Wrlx.e) (1

IThe loss factor vy takes into account the effect of hysteretic damping as well as viscous damping. The
latter includes the interaction of panel motion on the flow field within and outside the boundary layer, and
the effect of acoustical radiation into the interior of the structure (cavity), and into the exterior flow field.
The present state of art requires that vy be measured experimentally. Development of analytical and experi-
mental methods for the determination of loss factor are in progress.

20ne can alternatively write Coe ~ 2Kod ol we Where 284 = 28¢’ + v This will give H(w) = 1/mq [(we? - w?)
+2i8 quoqw] instead of equation (9). The two expressions are equal at w = wa-
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where Wy is the truncated Fourier transform of w. Equations (7), (8), (10), and (11) together give

Syxw) = 25 ;ﬁ‘.‘.Ha(w)Hﬁ*(w)wa(x)wBo_c)
o

T T 41r fff f Vax Wl &' Opl”, ") w1
. dt’ dt” dz' d:x”

The excitation cross correlation function Rp(x',x",#) and the cross spectral density Sp(x’,x", w)

are defined by:

Rp(x'x"7) = lim 57 j p&' . )pG"t + r)de’

T—oo -T

Spls'x"w) =50 [ Rplax" e ds
Equations (12) and (13) can be used to derive the following expression for Sy:
Sg(x,0) = ASp(w) 3 ¥o? OIH(w)I* Jaalw)
a
+ 248p(w) é}ﬁ ¥ (¥ gHa(w)Hg* (0 Vg p(w)
¢

o, B counted once

where

1 L n 4 " 14 P
Tap@) = 753 £ £ Valx' W g IS p(x' x" )z’ dx

(12)

(13)

(14

(15)

is the familiar structural acceptance first introduced by Powell (ref. 9). Note that it is dimensionless.
An empirical formula for Sp(x’,x",w) is given in appendix A, and in appendix B the structural
acceptance J, 5 is shown to be equal to the transition amplitude per unit area per unit excitation

between the a and § mode of vibration.

Separation Into Real and Imaginary Parts and Factorization of Acceptance

Since Sp(x’.x",w) is a complex function (see appendix A), the structural acceptance is

generally complex. Therefore it can be written as



Jog = Jag - ikap (16)

Furthermore, with the assumption that both the mode shape function and the excitation can be
factored into their respective coordinate components, the acceptances can be factored in the
following forms:

jaB =jnsjmr
kap=iyskmr

for homogeneous turbulence

Ry
¥ m(x ')lllr(xl ”)IPP(E1 ,0,w)lcos bE, dx, “dx,"

o\m
—

. 1
Tmr(@) =g,

. 1
Ins@) =%~

2

QZ QZ
[ [ om0 oo 0.2 el dxa”
1] 0

1
kmr(@)= g~

g
1 0

TS
[ [ om0l O.c0)isin bty dixs” dx,”
0

Since the correlation coefficients pp(E, ,0,w) and pp(O,Sz,w) do not depend on the signs of ¢, and
£, , that is,

pp(én,O,w) = pp(|£1 1,0,w)
pp(O’EZ :w) = pp(O:ISZ |,OJ)

The above expressions for the acceptances can be simplified considerably if the region of integration
is divided into two triangles bounded by the straight lines x"=0,x"=¢and x' =x";x" =0,
v = ¢ and x"" = x' and the symmetry property of the mode shape function is used:

U )= 1Yy @ - x)
The final results are:

Q x "
. _ 2 ! ! ] " ! " .
Imr(e@) —;ijo fo ¥ mO W xp (81 ,0,0)Ic0s bEy dxy dx, if m+r even
(17)
=0 if m+rodd



) € X,
j;is(w) =Q_2 f / ‘lfn(xz')ws(xz”)mp(ofz Jo)idx," dxy” if n +seven
o 7o

(18)
=0 if n + 5 odd :
Q x r
2 ! ! m r : 1] 4 :
kmr(w) =ﬁfo fo U W s lo (€1 ,0,0)Isin bE, dx," dx, if m+rodd
(19)
=0 if m +r even

A physical argument leading to the second identity of the above equations will be given in
appendix B.

Two-Parameter Formulation of Acceptance

As formulated above, the acceptances depend on the panel dimension &,, 2, the convection
velocity U, the frequency w, and the boundary-layer displacement thickness &*. Previous
mathematical procedure requires recomputation of acceptances when any one of the above four
parameters is changed. Since this recomputation is extremely time consuming, the acceptances
have been reformulated as follows so that they do not depend on all of the above parameters.
Define:

4 .
F; =—&
1 UC
_Xi
Vi “E
nl = yll _ylu
6*
Ai*=—
g
where
i=1,2

The acceptances then take the form:

n

1 W
. — - r rn Fﬂ]
j(Fi) =2 Vim0 ,0n") UL
mr {fo

> dy," dy," ifm+reven

=0 if m + r odd

(20)



1 W
ns@F2) = 2[ f 'Jn(Vz')Ws(yn”)pp@,nz ,l?)"th' dy,” if n + s even
[ 0
(21)
=0 if n + 5 odd
! yl”_ N 1’ TfFl . TIFIT]I y " .
kD =2 [ [ 098,00 o (11,0552 sin ATy, irm o+ 1 odd
0 o
(22)
=0 if m +reven

Here ¥ m(») are the normalized mode shape functions (eqs. (4) and (5)) with ¢ replaced by unity;
the pressure correlation coefficients lp,(n,, 0, nF,/2)I, Ipp(O, n2, nF,/2)| are as defined in
appendix A. In equations (20) to (22), the acceptances now depend on only two parameters,
Fjand Aj*. As long as Aj* remains constant, the same acceptance curves can be used to compute
the displacement power spectral density of different rectangular panels at different free-stream
velocities.

In terms of these new acceptances, the displacement power spectral density takes the form:
SN =Sp(f) }; ¥ o> O Ha(270) By D7 i Fy)

> VoUW g Yip(Fa V8o g/mrF1) + hagkmr(F1)]

+250) a#p mamp(gys + hap) (23)

where
8ap = (we? —w?) ((;.Jﬁ2 —w2)+vaVﬁwa2w52 249
hag =vawa2(wﬁz —w’)—vﬁwﬂz (wg? - w?) (25)

Acceptance charts based on equations (20) to (22) have been developed for the case of a
rectangular panel under excitation of a turbulent boundary layer in a subsonic flow with a zero-
longitudinal mean pressure gradient. The application of these charts in displacement PSD compu-
tation is described in appendix C.

RESULTS

The first part of the results from the present analysis includes the response of a clamped edge
panel to turbulent flow excitation applied on one side of the panel. The panel properties and flow
parameters used for an illustrative computation are given in table 1. The results are shown in
figures 2 to 9 along with some results of an identical panel with simply supported edges. Fig-
ures 2 to 6 show the structural acceptances for a boundary layer with §*/¢, = 0.04468 and

10



§*/2, = 0.06499, for which the corresponding response data are available from Wilby’s experi-
ment (ref. 6). Figure 6 shows the variation of acceptance with boundary-layer displacement
thickness. Figure 7 shows the calculated DPSD at the quarter- and midpoints of the panel,
together with the corresponding experimental results. Figure 8 depicts the perspective view of
the distribution of displacement PSD components at each mode on the panel. Figure 9(a) shows
the variation of the displacement PSD with longitudinal distance x, /%, , evaluated at the lateral
position x, /2, for which the PSD is a maximum for a given mode shown in figure 8. Similarly,
figure 9(b) shows the variation of the displacement PSD with lateral distance x, /2, evaluated at
the longitudinal position x,/2, for which the PSD is a maximum. PSD results are obtained by
truncating the series in equation (23) after the seventh mode. It is found that decreasing the
mode number to five, or increasing the mode number to nine, has a negligible effect on the results.

The second part of the results (figs. 10 to 12) are charts of acceptances plotted against the
frequency parameter Fj for various A;*. These charts, together with equation (23), enable the
displacement PSD of the response of a clamped edge panel to be computed for attached turbulent
boundary-layer excitations in subsonic flow.

DISCUSSION

Structural Acceptances

Coincidence of structural and pressure waves— The response of a panel to a spatial-temporal
correlated random pressure fluctuation caused by a turbulent boundary layer is characterized by
wave-length matchings between the pressure wave and the flexural waves of the panel; a condition
often referred to as “coincidence.” It is this peak coincidence that gives rise to large response if it
occurs at one of the resonant frequencies of the structure. Coincidence frequencies are identified
by peaks of the longitudinal joint acceptance curves (fig. 2). They occur at F (or 4f%/U¢) = 2m
for both simply supported and clamped edge panels.

Figure 2 shows that the degree.of wavelength matching is highest in the first mode, and
decreases with increase of mode number for both boundary conditions. A simply supported panel
exhibits a higher degree of matching than a clamped edge panel. Since the joint terms (the first
sum on the right-hand side of eq. (23)) involving the joint acceptances account for almost all of
the S d@,w), it follows that a simply supported panel will undergo a larger mean square displace-
ment than a clamped edge panel.

In the case of a simply supported panel, the peaks occur at F < 2m because of the finiteness
of the panel. This means that the flexural wavelength of the panel is shorter than the matching
wavelength of the pressure wave. As the mode number is increased, the peaks approach F = 2m,
the matching condition of an infinite panel, because the panel appears to be infinite when
compared with the small wavelengths of the pressure waves at higher mode numbers.

When the panel edges are clamped, the panel boundary has two effects, one due to the

finiteness of the panel as stated above, and the other due to the rigidity of the clamped boundary,
For a nonresponsive region of a clamped-edge panel the effect appears to be small when compared

11



with the long pressure waves at the lower modes, and large when compared with the short pres—
sure waves at higher modes. Thus, the effect of the clamped edges is negligible at lower mode
matchings. The acceptance curves (fig. 2) show that the peaks at lower mode numbers occur at
F < 2m, because finiteness of the panel dominates. At higher mode numbers the opposite effect
of the nonresponsive part of the panel edges begins to dominate and the peaks shift to FF > 2m.
It is significant that the peaks shift a half wavelength larger than 2m. Thus, the generally accepted
assumption that wave matching always occurs at ¥ = 2m is not true for a finite panel.

Structural acceptances as transition amplitudes— Suppose an arbitrary external force is
applied on a structure initially vibrating in the 8 normal mode. The structure will generally
transit into another mode (the « mode) of vibration, which can be a normal mode or a linear
superposition of normal modes of vibration. The probability of this transition is called the
transition amplitude between the § normal mode, and the « mode when the structure is excited
by the specific force in question. It is shown in appendix B that the structural acceptance Jyg(w)
is equal to the transition amplitude per unit area per unit excitation from the g to the & mode of
vibration when the panel is excited by randomly fluctuating pressure forces.

In the case of two-dimensional panel vibration the transition amplitude is regarded as a
product of longitudinal and lateral acceptances. The longitudinal acceptance Imr = tkmy corresponds
to the transition amplitude between the mth and the rth mode of vibration of a one-dimensional
structure (a beam) under th? excitation of the longitudinally correlated component of the pressure
force or jp(%,, 0, w)le"“’gl Ucin equation (A ). The in~phase part of this longitudinal component
of the pressure force gives rise to the real part Jyy Of the longitudinal acceptance and the out-of-
phase part to the imaginary part Az The lateral transition amplitude j;zs corresponds to the
transition amplitude of another one-dimensional structure under the excitation of the laterally
correlated component of the pressure force or [p(0,£, ,w)I.

Several interesting characteristics of the transition amplitudes are disclosed by the acceptances
in figures 3, 4, and 5. Figures 3 and 4 show that longitudinal transition amplitudes Fmn and kmp
are typically maximum when m = n. In case m # n the magnitude decreases with increasing order
of the sum of m and n. This implies that the probability of the initial mode remaining in the same
mode is the highest and that there is less probability of transition to other modes. The figures also
show that the acceptances have maxima at F~twice the lower mode number of m or n, indicating
that the maximum transitions occur also at coincidence frequencies of the lower mode numbers
of m or n.

Figure 5 shows that the lateral acceptances j;qs are small compared with the longitudinal
acceptances in figures 3 and 4, particularly at high mode numbers. Since the pressure field is
less correlated in the lateral direction, it follows that the lateral acceptances should contribute
less to the panel response than longitudinal acceptances (see eq. (23)). The appearance of wave
matching in the lateral acceptances is not possible because of the lack of convection velocity in
the lateral direction. :

Acceptance as a function of F and A*— Typical acceptances as shown in figure 6 vary signi-
ficantly with A, * at low Strouhal number F,, and their dependence on A, * gradually disappears
as /7, increases. The reduction in dependency on A, * occurs because high values of F; correspond
to high frequencies and short pressure wavelengths, and the boundary layer therefore appears to
be infinitely thick in comparison with the short pressure waves. This factor was also taken into
account when the empirical formulas for the correlation coefficients were derived as shown in

12



appendix A, where the correlation coefficients are independent of A, * at high frequencies. This
same variation of wavelength with F; relative to A * causes the acceptances for lower modes to
vary more significantly with A;* than those involving higher modes. This variation can be seen
by comparing typical acceptance j,; with j44 in figures 6(a) and 6(b), respectively.

Structural Response

Displacement PSD as function of frequency— Figures 7(a) and 7(b) show the results of the
computed displacement power spectral density (DPSD) at the quarter point of the panel at
M_, = 0.3 and 0.5, and’ their comparisons with Wilby’s measurements (ref. 6). Results are shown
for both clamped edge and simply supported panels. The dimensions and material properties of
the panel are listed in table 1. Figure 7(c) shows the results of the calculated panel response at the
midpoint of the panel, where no experimental data are available for comparison.

The study of figure 7 discloses that the peaks of the response curve always occur at, or very
near, the natural frequencies. The envelope of the peaks in the spectra decays rapidly with fre—
quency to justify the normal mode approach used in the present analysis. The response compu-
tation based on the clamped edge boundary condition (figs. 7(a) and 7(b)) agrees better with
Wilby’s measurements (ref. 6) than with the computations based on the simply supported boundary
condition. The results also show that the joint terms (the first sum of eq. (23)) account for almost
all of the contribution to DPSD at the peaks. The contribution of the cross terms (the second
sum of eq. (23)) to DPSD is completely negligible except at some valleys of the DPSD curve.
Powell (ref. 9) showed that because of the orthogonality condition of the mode shape functions,
the cross—term contribution to a uniformly loaded surface will be zero when averaged over the
entire surface. However, he also pointed out that the cross terms cannot be neglected if damping
is appreciable or if the force is applied to a localized area.

When the Mach number is changed from 0.3 to 0.5 (figs. 7(a) and 7(b), the overall shape of
the DPSD curve does not change, but the displacement per unit excitation increases at higher
frequencies. The corresponding rms displacement per unit pressure input increases by about
11 percent at the quarter point and 17 percent at the midpoint of the panel. This increase in
response is attributed to the increase in the spatial correlation of the pressure field at high fre-
quencies as the Mach number is increased. Since pressure excitation also increased with velocity
/pP? = 0.006 q), the rms displacement of the panel will increase, as a result of both the increase
in pressure excitation Sp(f) and the increase in DPSD per unit pressure excitation, SdQc,f)/Sp(f).

The computed DPSD at the midpoint of the panel (fig. 7(c)) does not have peaks at natural
frequencies, which correspond to antisymmetric modes, because the panel midpoint is a node
point for the antisymmetric modes.

Displacement PSD distribution on a panel— Computer programs capable of displaying the
perspective view of displacement PSD on a panel were also developed. The displacement PSD on
a panel is necessary information for the assessment of the distribution of stress. Typical results
given in figure 8 show the distribution of PSD components on a clamped edge panel at natural
frequencies corresponding to modes (1-1), (2-1), (1-2), (3-1), and (2-2). Figure 9 shows the
variation of maximum displacement PSD with longitudinal and lateral coordinates. Note that
when mode m or n > 1, the peaks of the PSD next to the panel edge do not occur at exactly
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2/2m from the edge, as they would in the case of a simply supported panel. The fact that the
peaks of the PSD occur at distances greater than 2/2m from the edge is due to the rigidity of the
panel at the clamped edge. Note also that when mode m or » > | and the mode number is odd
(for instance m = 3 in fig. 9(a)), the PSD in the middle region of the panel is symmetric, but the
PSD next to the panel edge is asymmetric about the respective peaks.

CONCLUSIONS

The study on the response of a rectangular panel under the excitation of a turbulent boundary
layer discloses the following:

1. The matching between the pressure wave and the flexural wave of a panel does not
occur exactly at even integer values of the reduced frequency F = 4f2/U,, as it would when the
panel is infinite for two reasons; (a) the finiteness of the panel significantly affects the low fre-
quency matchings, and (b) the rigidity of the clamped boundary significantly affects the high
frequency matchings.

2. The structural acceptance Jop is equal to the probability of transition, or transition
amplitude, from the § mode to @ mode of vibration, per unit excitation power spectral density
per unit area of the panel, when the panel is excited by the random pressure. The longitudinal
transition amplitudes (j,,,,, and kpy) exhibit a general behavior, being maximal when m = n.
When m # n, the magnitude decreases with increasing order of the sum of m and n. This decrease
implies that the probability of preserving the same mode is higher than the probability of transiting
to different modes.

3. An expression that depends only on the dimensionless frequency F; and boundary
layer thickness A;* can be derived for the structural acceptance. Corresponding acceptance
charts were therefore prepared which make possible a quick estimation of the response of any
rectangular panel to excitation of a turbulent boundary layer in subsonic flow with a zero
longitudinal mean gradient.

4. The lateral acceptances are small compared with the longitudinal acceptances. Since
pressure field is less correlated in the lateral direction, the lateral acceptances contribute less to
the panel response than longitudinal acceptances.

5. The response computation based on the clamped edge boundary condition of a panel
is in better agreement with the measurements than previous results obtained by investigators who
used a simply supported boundary condition in the acceptance calculation.

6. As the Mach number is increased within the subsonic range, the response of a panel is
also increased in its high frequency components of vibration. The increase is attributed to two
factors: the increase in the spatial correlation of the pressure field at high frequencies; and the
increase of the magnitude of pressure excitations.

14



7. The variation of boundary-layer thickness affects only the low frequency component
of the response through the structural acceptances, which vary significantly near the low fre-
quency, particularly where the wave matching occurs.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, July 7, 1972

15



APPENDIX A
RANDOM EXCITATION BY SURFACE PRESSURE FLUCTUATIONS

The pressure fluctuations that occur on a surface adjacent to a turbulent boundary layer
have been shown by many investigators (refs. 7 and 10 to 16) to be spatially and temporarily
correlated. For homogeneous turbulence, as attached flow, the cross spectral density of the
fluctuating pressure depends only on the separation distance and can be expressed in the following
form:

S (E 5E ,w) ‘
LS;)(Tz)_= o€ £, ,w)le"wsx/UC A

where Ipp(sl, £,, w)l is the cross correlation coefficient between two points separated by distances
of £, and &, in the x; and x, directions. Experimental data also show that the correlation
coefficient can be separated in coordinates as follows:

lpp(gl 522 ’w)l = Ipp(zl ;O’w)l 'pp(OJEI 7(‘0)' (Az)

In the case of a turbulent boundary layer at a zero longitudinal pressure gradient in a subsonic
flow, empirical formulas have been constructed for Ipp(E, ,0,w)l and ipp(O,Ez ,w)l based on Bull's
experimental data (ref. 7):

nF
Pp("?lyoa”r“g—vl)’ = e —2‘L|n1l ifn—fzrlA1*>k1
= ealm /A, if 20 4, % < £,
(0.02 222) - o 52 na) if Inal > - [9.1 Io ("—F—2A *+ 54514,
pPp\Usnz; o) 2 M2l 2 . gl\™3 22 . 2

¢+ dealnalfAs® if Inyl < - [9.1 log (T2 A,%) + 54518, %

where
a, =0.1 c =0.28
a, = 0.037 d =0.72
a; =0.715 k,=0.37
a, = 0.547
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The convection velocity, Ug, in this mathematical model is given by,

Ue = (k, + k, s 98" Uy (A3)
where
Kk, =0.59
Kk, = 0.30
as = 0.89
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APPENDIX B

ACCEPTANCE AS TRANSITION AMPLITUDES BETWEEN TWO NORMAL MODES

OF VIBRATION AND ITS SIGNIFICANCE IN PANEL VIBRATION

In view of the importance of acceptances in predicting structural response to random forces,
a physical meaning of acceptances is derived below. Suppose a structure is vibrating initially in
the § normal mode. If an arbitrary external force is applied, the structure will in general transit
into another mode of vibration which can be a linear superposition of normal modes or a pure
normal mode. The probability of this transition is called the transition amplitude between the
8 normal mode and the final mode when the structure is excited by the specific force in question.
Since the final mode is, in general, a linear superposition of the normal modes, it can be expressed
as; aaf¥ o» Where agg is the transition amplitude between the a and § normal mode.

To show the relationship between the transition amplitude and the acceptance, a mathematical
formulation of the above discussion is necessary. In the language of linear algebra, the method of
normal mode analysis assumes that the normalized mode shape functions ¥ o form an orthonormal
basis in a linear space, S, which is the space of all possible vibration modes of the structure. Any

mode of vibration is a vector in S and therefore can be expressed as a linear sum of Vo The
orthonormal condition of ¥4 can be expressed mathematically as:

[, vavga)x = 545 B1)

where the integration is over the entire structure, or in the present case, the area of the rectangular
panel. This suggests that the scalar product between two vectors 4, B in S can be defined as:

AIB) = lAQc)B(g_c)dg (B2)

In this linear space, a disturbance such as Sp(x’,x",w )is described mathematically by a linear
operator OSp(.g',_Jg”,w) in § with the property that if 4 is a vectorin S,

OSPQ',II’,&))A = »I[I dﬁ” Sp(_Z’,I”,Q))A(l”) (B3)

in accordance with the definition of scalar product in equation (B2). By definition of Og ., Og A

is also in §. In particular, when 4 = wﬁ(x), OSp ‘1/3 is also in S. Therefore it can be expgndedpas
follows: -

O, &"x" ) p") =);a75w7(),c')
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In the case of a flat panel, each of a,8,y contains two indices such as (1,1), (1,2) ... (). The
coefficients aag can be obtained by forming the scalar product between ¥4 and Og¢ (x'.x",w)
as follows, p

W a()_C')IOSp(z',z”,w)w gy =W a(z')l;aygh({’» \

= Zy:a'yﬁ WX (XD

; (B4)
= ;"7350‘7
By definition of equations (B2) and (B3),
<¢aQ€')|05p(£',£"»w)tl/g(&"» = /f\ £ Yo xSplx'x" @) gx")dx" dx” (B3)

Comparing equations (B4) and (B5) with the definition of the acceptance Jaﬁ,

Jog(@) = 50577 J[vateSplatx" ) px " dx”

the following identification can be established:

o1
Tapw) = 57537 %ab

Thus the acceptance Jug is just the transition amplitude per unit PSD of excitation per unit area
from the § to the e normal mode of vibration when the structure is excited by the disturbance
described by Sp(x',x",w).

In the case of two-dimensional panel vibration the transition amplitude is a product of
longitudinal and lateral acceptances (see equations (14) and (23)). The longitudinal acceptance
jmr—ikmr corresponds to the transition amplitude between the m and the r mode of vibration
of a one-dimensional structure under the excitation of the longitudinal correlated components
of the pressure force. The amplitude of a final mode r formed from initial modes 1, 2,...n is
proportional to the following sum:

n
Y Gt kmr)
m=i

where the first sum represents the transitions caused by the in-phasc pressure fluctuations, and
the second sum by the out-of-phase pressure fluctuations. When any two of the above acceptances
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have the same sign at a given frequency, the transition is such that they reinforce each other,
giving rise to constructive interference. If they have opposite signs, they cancel each other, giving
rise to destructive interference.

During a transition, the parity of the mode must be conserved if the excitation has even
parity or symmetry in space, and must change if the excitation has odd parity or antisymmetry
in space. Since j,,. is proportional to transition amplitude caused by the in-phase pressure force,
which is symmetric in space (it contains a cosine term in eq. (20)), j,,,, must be zero if m + r is
odd. On the other hand, since Ay is proportional to the transition amplitude caused by the
out-of-phase pressure force, which is antisymmetric in space (it contains a sine term in eq. (22)),
kmr must be zero if m + r is even. For the same reason j;nr must be zero if m + r is odd. The
physical significance of equations (20) to (22) is thus shown in terms of the parity of modal
transition.



APPENDIX C

APPLICATION OF ACCEPTANCE CHARTS IN

DISPLACEMENT PSD COMPUTATION

Values of Fid 1)y kme(Fy), and j;ls(Fz) up to the seventh mode have been computed and
plotted in figures 10 through 12 for F up to 15.0, and A;* ranging from 0.015 to 0.08 in incre-
ments of 0.01, for a clamped edge rectangular panel under boundary layer excitations. These
charts, together with equation (23), enable the displacement PSD be computed for a clamped
edge rectangular panel exposed to a subsonic freestream velocity. The procedure is to compute
the U first, using equation (A3). Then, knowing the dimensions of the panel and the boundary
layer displacement thickness, the two parameters F; and A;* can be computed. The corresponding
acceptances can be read from the charts and substituted into equation (23) with natural frequencies
and loss factors which can be determined experimentally or analytically. The method of linear
interpolation can be used if A;* does not coincide exactly with one of the values at which the
acceptances are evaluated.
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TABLE 1.— PANEL PROPERTIES AND FLOW PARAMETERS

[Ref. 6]

Mild steel panel
R; 0.10l6 m (4in.)
2, 0.06985 m (2.75 in.)
h  0.000381 m (0.015 in.)

E  0.2323X10'? N/m? (33.7X10° 1b/in.?)

o 0.3
v 0.009
Density

7473 kg/m® (0.27 Ibfin.?)

Flow parameters
Meo 03and 05

§*  0.00454 m (0.179 in.)
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Figure 3.— Real part of longitudinal acceptances of clamped edge panels for AT = 0.04468.
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